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Instructions

Anomaly detection methods aim to identify unexpected deviations or novelties in various kinds of data.
Online methods for time-series narrow this field to detecting anomalies in time-ordered data and adds the
capability to adapt and continuously learn as the new data come. Variety of methods, ranging from simple
statistical methods to neural networks are used for anomaly detection. However, not every method can be
used for online detection in time-series.

1) Review and theoretically describe state of the art methods for anomaly detection in time series data
with special emphasis on online methods for continuous time-series.
2) Use or implement at least three methods and experimentally compare their performance on various
data sets. Avoid implementing anew those methods that can be easily taken over from available
implementations.
3) Propose directions for further improvements of reviewed methods.
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Abstrakt

Metody pro online detekci anomálíı jsou navrženy pro odhalováńı anomalíı
ve spojitém proudu dat namı́sto ve statickém datasetu. Tyto metody jsou
schopné se adaptovat na změny v charakteristice datového proudu, který může
v čase nastávat (concept drift).

Tato práce analyzuje čtyři metody vhodné pro online detekci anomálíı
v časových řadách (klouzavý pr̊uměr, local outlier factor, isolation forest, hi-
erarchical temporal memory) a několik metod detekce concept driftu včetně
některých nových př́ıstup̊u. Je navrženo obecné schéma, které umožňuje kom-
binovat r̊uzné metody pro detekci anomálíı a concept driftu. Pro všechny
analyzované metody jsou provedeny experimenty na pěti realných datasetech
a jednom umělém. Během experiment̊u byly zkoumány vlastnosti jednotlivých
metod a porovnáván jejich výkon s ostatńımi metodami.

Výsledky experiment̊u ukazuj́ı, že žádná metoda neńı lepš́ı než ostatńı na
všech datasetech z hlediska F1 skóre upraveného pro úlohu detekce anomalíı
(harmonický pr̊uměr specificity a mı́ry falešné pozitivńıch detekćı) a AUC. Ve
většině př́ıpad̊u bylo nalezeno optimálńı nastaveńı methody s F1 skóre > 85%
a AUC > 90%.

Kĺıčová slova detekce anomálíı, online, streaming, časové řady, klouzavý
pr̊uměr, local outlier factor, isolation forest, hierarchical temporal memory
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Abstract

Methods for online anomaly detection are designed to reveal anomalies in
a continuous stream of data rather than in a static dataset. These methods
are able to adapt to the changes of underlying characteristics of the stream
that might occur in time (concept drift).

This thesis reviews four methods suitable for online anomaly detection in
time-series (moving average, local outlier factor, isolation forest, hierarchi-
cal temporal memory) and several concept drift detection methods including
some novel approaches. A general framework that allows to orthogonally com-
bine various anomaly detection methods and concept drift detection methods
is proposed. Experiments were executed for all reviewed methods on five
real-world datasets and one artificial dataset. During the experiments, the
properties of individual methods were examined as well as their performance
compared to the other methods.

Results of the experiments show that none of the methods is superior to
the others on all datasets in terms of F1 score adapted for anomaly detection
(harmonic mean of recall and false positive rate) and AUC. In the majority
of cases, an optimal method settings with F1 score > 85% and AUC > 90%
was found.

Keywords anomaly detection, online, streaming, time-series, moving aver-
age, local outlier factor, isolation forest, hierarchical temporal memory
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Introduction

Anomaly detection is a problem that has been researched within many re-
search areas and application domains. Statisticians identified and studied this
problem already in the 19th-century. Probably the first effort in this area was
made by F. Y. Edgeworth in 1887 [1] who proposed three statistical hypotheses
for revealing items in a set of integers that were generated by a different pro-
cess than the majority of the others. In these days, anomaly detection plays
an important role in the critical systems e.g. for healthcare and computer
security as well as in various industrial and business applications.

In healthcare, anomaly detection is used for example in order to identify
possibly dangerous abnormal growths such as tumours in the outputs of mag-
netic resonance imaging (MRI). Another example can be the analysis of the
electrocardiogram (ECG) data. In this case, properly used anomaly detection
can identify deviations from a normal heartbeat and alert the medical per-
sonnel about the possible impending problem before it gets more serious. In
the field of computer security, anomaly detection has been successfully used
for investigating security-related incidents as well as for intrusion detection
systems (IDS) to identify breaches in real-time. A well-known example of
anomaly detection deployed in the industrial environment is predictive main-
tenance. In this context, the maintenance is understood as a continuous effort
to keep some industrial systems working correctly and to minimize downtime.
The predictive maintenance approaches use data from sensors attached to the
machines and strive to identify anomalies. When the anomaly is found, it
might signalize a change in the device condition and increase a probability
that the machine or some of its components will soon fail. In the area of retail
banking or telecommunications, anomaly detection can be used to minimize
financial damages caused by frauds or organized scams. An example can be
the modelling of the users’ normal payment behaviour to be able to identify
anomalies in this behaviour if the e.g. credit card is stolen.

Anomaly detection is a very general problem that has many specific sub-
areas. Most of the introduced examples are built on a data that are ordered
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Introduction

in some manner, typically by the time of a measurement. Data in such form is
called a time-series. Also, the great deal of anomaly detection methods used
in the examples is expected to identify anomalies in the continuous stream of
data and rather than on a static set of data. This is so-called online anomaly
detection.

The goals of the thesis

At first, this thesis strives to establish a solid theoretical foundation that is
used for the ongoing description of several anomaly detection methods. As
mentioned in the very beginning, the authors of the literature concerned with
the anomaly detection come from various domains and their approaches and
terminology is very heterogeneous and inconsistent. An output of this part is
an assembly of various relevant point of views found in literature in a form of
a consistent theoretical framework.

The main part of the thesis focuses on the analysis of several specific
anomaly detection methods. Some of these methods are directly designed
for the online anomaly detection in time-series, but many of them are the
adaptations of more general approaches. The ultimate motivation for laying
the theoretical framework is the ability to precisely describe the analyzed
methods.

Organization of the thesis

There are three fundamental chapters. The first chapter (Theoretical Frame-
work) is building up the theoretical framework of an online anomaly detec-
tion in time-series. The second chapter (Methods) defines a generic online
anomaly detection system and then, several specific methods are analyzed
and compared in the context of this system. The last, third, chapter (Exper-
iments) proposes the ways how to quantitatively measure and compare the
performance of online anomaly detectors. The design of the experiments is
established. Finally, a significant number of experiments is executed for each
of the analyzed methods on real-world datasets. The thesis is concluded by
the discussion of places for possible improvement that were identified during
the work.
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Chapter 1
Theoretical framework for online
anomaly detection in time-series

In this chapter, theoretical background needed for subsequent analysis of
anomaly detection methods and experiments will be established. The chapter
starts with introduction to the domain of general anomaly detection and con-
tinues with narrowing this domain to anomaly detection in time-series using
online learning.

This chapter strives to be very formal to avoid possible misconceptions
during further description and analysis of specific methods. Next chapters are
less formal and refer to this chapter for necessary definitions.

1.1 General anomaly detection

An anomaly is defined as “something different, abnormal, peculiar, or not
easily classified” [2]. In the context of data science, these anomalies are rep-
resented as unexpected patterns in various kinds of data (see Figure 1.1 for
example). Anomaly detection is a field concerned with identifying such pat-
terns. Often, it is understood as another class of machine learning problems,
among e.g. classification, regression or clustering problems.

Anomalies can occur for several reasons. For example, the data arriving
from sensors of a flying aircraft changes in case of a fault scenario [3]. From
the statistical point of view, the underlying distribution of the incoming data
changes (e.g. temperature of the engine rises) or the incoming data are mixed
with data from different distribution (e.g. engine component that went loose
starts making unusual noise).

In mathematical terms, an anomaly detector is a morphism D with the do-
main of input data I (see Section 1.1.1.1 below for definition) and the codomain
of detection output D (see Section 1.1.1.2). The detection output is used to
decide whether an instance of input data is an anomaly or not:
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1. Theoretical framework

D : I→ D
where I is the domain of input data (1.1)

and D is a domain of detection output.

The decision whether an instance of input data is an anomaly or not is
widely dependent on the application domain, observer and other external fac-
tors [4]. Therefore only very general definition of an anomaly placed earlier
in this section is provided instead of a rigorous mathematical definition.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Anomaly

Anomaly

Figure 1.1: Example data generated using function f(x) = x+ 0.08 · N (0, 1).
Several anomalies were introduced by generating some points using modified
function a(x) = f(x) + 0.64 · N (0, 1). This example represents situation when
the normal data are mixed with data from different distribution as described
in Section 1.1.

Terminology inconsistencies In literature, the term anomaly detection is
often used interchangeably with outlier detection or novelty detection. This
inconsistency in naming is caused by a different background of researchers
studying this area [5]. Some authors make a slight distinction between an
anomaly and a novelty. This distinction is based on fact that novelties are
usually incorporated into the normal model after detection and unlike anoma-
lies or outliers, are not considered once detected [4].

In the rest of this thesis, the term anomaly detection is used exclusively.

Relation to noise and noise removal Another related terms are noise
and noise removal. However, the distinction between noise and the previous
group of terms (anomaly, outlier, novelty) is very clear. In this context, noise
is understood as an error in underlying data caused by the e.g. low accuracy
of an industrial sensor or mistakes in human-crafted data. On the other side,
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1.1. General anomaly detection

anomaly “may arise from the natural variation within the population or pro-
cess” [6]. Noise removal is a discipline focusing on removing the noise from
data while preserving as much valuable information as possible.

Noise and noise removal are considered to be out of the scope of this thesis.

1.1.1 Taxonomy

In this section, the definitions and concepts will be stated that are essential
for the further analysis of detection methods.

1.1.1.1 Input data

In the context of this thesis, the input data (input dataset) is defined as
the set X containing n data points (instances) xj . Therefore X = {xj |j ∈
{1, 2, 3, . . . , n}} ∈ I. The data points are inputs for morphism D defined in
1.1. Each data point xj is a d-dimensional vector of scalar values. Domain
of these scalar values and by extension the definition of domain I will be dis-
cussed later in Section 1.1.1.3. The n and d are natural numbers. We say that
the dataset is high dimensional if n� d [7].

Dimensions of the data points are referred to as attributes (also known as
features or columns). The value of an attribute a of vector xj is notated as
xj [a].

In terms of linear algebra, the input dataset can be defined as a n × d
matrix Xn,d containing the data point vectors as rows:

Xn,d =


xT1
xT2
...

xTn

 =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
... . . . ...

xn,1 xn,2 · · · xn,d

. (1.2)

Data points can be also associated with so called label(s). Label li for the
vector xj is an e-dimensional vector of scalar values where e ∈ N is from space
L:

Xn,d+e =


xT1 lT1
xT2 lT2
...

...
xTn lTn

 =


x1,1 · · · x1,d l1,1 · · · l1,e
x2,1 · · · x2,d l2,1 · · · l2,e

... . . . ...
... . . . ...

xn,1 · · · xn,d ln,1 · · · ln,e

. (1.3)

In the context of anomaly detection, the labels carry information, whether
the related data points are considered anomalous or not.

In the real-world datasets, the attribute values or labels might be missing
for some data points. In such cases, the input dataset must be preprocessed
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1. Theoretical framework

1 in order to comply with definitions 1.2 and 1.3 or the anomaly detection
methods must be able to handle such incomplete data points (see 1.1.1.5 for
description of such methods).

Univariate vs. Multivariate The input dataset is said to be univariate if
each data point xj is a single-component vector, resp. multivariate if each xj
is a vector with more than one component:

an input dataset is univariate, resp. multivariate
⇔

∀j ∈ {1, 2, . . . , n} : xj is a d-dimensional vector ∧ d = 1, resp. d > 1.

Categorical vs. Continuous The attribute of input data is said to be cat-
egorical or symbolic if the related components of each xj belong to a finite set
C of categories or symbols. Sometimes, this kind of input data is inaccurately
called discrete:

an attribute a is categorical
⇔

∀j ∈ {1, 2, . . . , n} : xj [a] ∈ C where C = {1, 2, 3, . . . , c} and c ∈ N, c <∞.

In real-world data, the set C is frequently just an encoding for some prop-
erties.

On the other hand, for the continuous attribute, the related components
of all xi are real numbers:

an attribute a is continuous
⇔

∀j ∈ {1, 2, . . . , n} : xj [a] ∈ R.

In many cases, the data points can consist of a mix of categorical and
continuous attributes.

Dependencies between data points In the trivial case, there are no de-
pendencies between data points. Otherwise, three major categories of depen-
dencies are recognized [4].

Sequences are input data containing data points with a defined linear order.
Especially significant are sequences with temporal meaning. Each data point

1Typically, the incomplete data points are removed from the dataset or missing values
are filled with some suitable surrogate values.
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1.1. General anomaly detection

describes some system in a given point in time. Such input data are called
time-series.

In Spatial dataset, each data point is related to its neighboring points.
This implies that there must be some relation, like distance, defined over the
data points.

Data points of a graph input data represent vertices of a graph that are
connected with edges. These edges can be defined by attributes that reference
other data point(s).

Combination of these categories is also possible. For example, spatio-
temporal dataset which contains a time-based sequence of data points with
spatial properties.

1.1.1.2 Output of an anomaly detector

Anomaly detection methods can be categorized by the type of their output.
It can be either the score or the label.

The scoring anomaly detector yields a scalar real value, typically normal-
ized to interval 〈0, 1〉. If the anomaly detector works as expected, this value
should correlate with the confidence of whether the analyzed data point is an
anomaly or not:

D : I→ R for scoring detector,
D : I→ 〈0, 1〉 for scoring detector with normalization.

The labelling anomaly detector yields only a binary value from {0, 1} telling
whether the analyzed data point is an anomaly or not:

D : I→ {0 7→ normal, 1 7→ anomaly}.

The detection output has a significant impact on the application. In a
situation when the scoring detector is available and the label is required, the
score must be converted to the label. It can be done by simple thresholding or
some more sophisticated approaches combining the score with other external
information (like a certainty measure of the analyzed data point) might be
used. In either way, additional effort is required. On the other hand, the
labelling detector is not able to produce any score which could be used for e.g.
finding the top k anomalies with the highest confidence.

1.1.1.3 Domain I of input data and domain D of detection output

With definitions of input dataset (section 1.1.1.1) and detection output (sec-
tion 1.1.1.2), the definition of anomaly detector 1.1 and domains I,D can be re-
fined as:

7



1. Theoretical framework

D : I→ D ≡


D : Rd → D for continuous attributes (I = Rd),
D : C1 × C2 × · · · × Cd → D for categorical attr.,
D : Rd−m × C1 × · · · × Cm → D for mixed attr.,

(1.4)

where D = {0, 1}, resp. D = R.
Then, an example of a morphism (function) 1.4 for continuous attributes

and binary output can be written as follows:

D((21.4, 15.6, 61.3)T ) = 0,
D((23.4, 15.5, 14.3)T ) = 0,
D((55.5, 0.3, 0.2)T ) = 1,
D((12.0, 85.1, 12.3)T ) = 0.

1.1.1.4 Types of anomalies

Chandola, Banerjee and Kumar [4] define three following types of anomalies:

Point anomalies The simplest type of anomalies. Each data point can be
analyzed by the anomaly detector without considering any other data points
in the input dataset.

Contextual anomalies For detecting a contextual anomaly, anomaly de-
tector has to consider the context in which the data point occurred. In prac-
tice, this type of anomaly can occur especially in sequence or spatial (see
Section 1.1.1.1) datasets.

Figure 1.2 illustrates the difference between a point anomaly and a contex-
tual anomaly. Point anomalies in this figure are data points that have higher
or lower values than the majority of other points. Therefore, they can be
labelled as anomalies right away. On the other hand, the figure contains also
contextual anomalies that have values in expected range but are anomalous
with regard to placement of other points with similar value.

Collective anomalies Collective anomalies are special in that the only sets
of data points can be labelled as collective anomalies (not individual data
points). The data points in anomalous set themselves can be normal, but
together, they represent an anomaly.

1.1.1.5 Learning and availability of labels

In general case, anomaly detection methods require initial phase called learn-
ing before actual detections are made. The output of the learning phase is

8



1.1. General anomaly detection
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Point anomaly

Contextual anomaly

Contextual anomaly

Figure 1.2: Example data generated using function f(x) = sin(0.8 · x) +
0.08 · N (0, 1). Several anomalies were introduced by generating some points
by modified functions a1(x) = 2 · sin(0.8 · x) + 0.08 · N (0, 1) and a2(x) =
sin(0.8 ·x+3)+0.08 ·N (0, 1). This example represents a situation when there
are data points that can be considered as anomalies only in specific context.

called a model (this model is a realization of the anomaly detector D defined
in 1.4). During the learning phase, the parameters of the underlying detec-
tion model are set. The dataset used for learning phase is known as training
dataset.

The methods can be categorized depending on the presence of labels in
the training dataset as described in the following paragraphs.

Unsupervised anomaly detection In this approach, labels are not con-
sidered. The methods based on unsupervised learning strive to detect the
anomaly without explicit knowledge whether the learning data points are ac-
tual anomalies or not. Identification of anomalies is based on their deviation
from the other (normal) data points [8]. These methods make an assumption
that [4] normal data points are far more frequent than anomalous instances.
The primary focus of this thesis lies in the unsupervised methods.

Assumption for unsupervised anomaly detection:

|{xj |j ∈ {1, . . . , n} ∧ xj is anom.}| � |{xj |j ∈ {1, . . . , n} ∧ xj is norm.}|.

Supervised anomaly detection Supervised methods require having a la-
bel for each data point in the training dataset. They use this information
to learn differences between normal and anomalous instances using discrimi-
native or generative algorithms [9]. The supervised approach in the context
of anomaly detection can be understood as a significantly imbalanced binary
classification.
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1. Theoretical framework

Semi-supervised anomaly detection Semi-supervised methods are able
to work with partially labelled data [9]. In case of anomaly detection, there
can be labels only for e.g. part of anomalous instances or part of normal
instances.

In reality, obtaining labels is usually problematic and requires an effort
of human domain experts. Therefore, unsupervised methods are superior to
supervised methods in this context. Getting labels for anomalous instances
is especially problematic [4] and often only labels for normal instances are
present if any. Semi-supervised methods are suitable candidates for this kind
of tasks.

1.2 Online anomaly detection in time-series

So far, the general case of anomaly detection has been discussed. From now
on, the focus will be placed on online anomaly detection in time-series. This
section starts with the definition of a time-series, continues with the definition
of online learning and is concluded with the discussion of the concept drift
and related problems. The topic of engineering challenges connected to the
online anomaly detection is also discussed, however, only marginally.

It should be noted that a lot of research and methods exist on the topic
of general anomaly detection. However, the amount of literature and research
on specifically online methods for time-series is significantly smaller.

1.2.1 Time-Series

Time-series is a special case of input dataset X that can be classified as a
sequence. All previously defined properties and categorizations hold.

Data points in a time-series are ordered by one of their continuous at-
tributes. Let this attribute be called temporal attribute t 2. In the following
text, the value of the temporal attribute for data point xj will be referred to
as tj :

xj [t] = tj .

Until now, the actual order of data points xj was irrelevant. From now on,
the data points xj are considered to be ordered by their values of attribute t.

To simplify the ongoing notation, several simplification are made without
loss of generality:

2The temporal attribute usually represents time.
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1.2. Online anomaly detection in time-series

• In reality, the time and therefore the ordering can be given by multiple
attributes. However, only a single attribute is considered to be temporal
in this thesis3.

• Order of values of t corresponds to order of its indices (1.5).

• Data point xj , resp. label lj can be referred to as xtj , resp. ltj (1.6).

• The value of the temporal attribute is the first component of the data
point vectors (1.7).

∀j ∈ {1, . . . , n} :
j < n⇒ tj < tj+1, (1.5)

xj = xtj , resp. lj = ltj , (1.6)
xj,1 = tj . (1.7)

By incorporating the temporal attribute to the definition 1.2 and applying
the simplification given by 1.5, 1.6, 1.7 the following matrix is obtained:

Xn,d =


xT1 = xTt1
xT2 = xTt2...
xTn = xTtn

 =


t1 = x1,1 x1,2 · · · x1,d
t2 = x2,1 x2,2 · · · x2,d

...
... . . . ...

tn = xn,1 xn,2 · · · xn,d

. (1.8)

A time-series is called equidistant if the values of temporal attribute are
equally spaced by a time step ∆:

∀j ∈ {1, . . . , n} : j < n− 1⇒ tj+1 − tj = tj+2 − tj+1 = ∆,
∀j ∈ {1, . . . , n} : j > 1⇒ tj = t1 + (j − 1)∆.

This thesis focuses mainly on time-series with continuous attributes. Many
comprehensive research papers and methods exist specifically on the topic of
anomaly detection in symbolic time-series [3]. Some methods for symbolic se-
ries might be used also for continuous series however many of them, especially
those based on string matching, are not applicable.

In the following text, a time-series is considered to be equidistant, with
continuous attributes and without labels, unless otherwise specified.

3Multiple attributes can be collapsed to a single one and the ordering function is adapted
to handle the collapsed attribute. Possibly, the collapsed attributes can be copied as normal
attributes if necessary.
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1. Theoretical framework

1.2.1.1 Windowing

Many anomaly detection methods require the input dataset to be preprocessed
using a technique called windowing [3].

Let the function Wσ,τ be the windowing function morphing the matrix X
from 1.8 to the vector of q matrices w = (W1,W2, ...,Wq). Each component
of the vector w is a submatrix of X containing all d attributes (columns) but
only σ data points (rows):

Wσ,τ : Rn,d → Rσ,d × Rσ,d × · · · × Rσ,d︸ ︷︷ ︸
q

. (1.9)

Size σ and step τ are parameters of W and can be chosen arbitrarily with
only restriction given by the following conditions:

σ, τ, q ∈ N,
σ ≤ n,

q =
⌈
n− (σ − 1)

τ

⌉
.

Components of w can be defined as:

∀k ∈ {1, 2, . . . , q} :

W σ,d
k =


tH(k) xH(k),2 · · · xH(k),d
tH(k)+1 xH(k)+1,2 · · · xH(k)+1,d

...
... . . . ...

tH(k)+(σ−1) xH(k)+(σ−1),2 · · · xH(k)+(σ−1),d

 (1.10)

where H(j) : N→ N := (j − 1) · τ + 1.

Simple example of application of windowing function on 8× 3 matrix fol-
lows:

Wσ=3,τ=2





1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8




=


1 1 1

2 2 2
3 3 3

 ,
3 3 3

4 4 4
5 5 5

 ,
5 5 5

6 6 6
7 7 7


 .

(1.11)
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1.2. Online anomaly detection in time-series

Note that in some cases, up to (σ − 1) last data points can be left out. In
example 1.11 , it is the row

(
8 8 8

)
. This issue must be resolved specifically by

each detection method – e.g. the unused data points are ignored or the last
window is constructed as incomplete or suitable dummy values are supplied
to enable construction of complete last window.

1.2.2 Online learning

In this section, the scope of this thesis will be finalized by putting specific
constraints on the learning phase of the detection methods. In section 1.1.1.5,
different types of learning process were described based on the (un)availability
of labels in the input dataset. However, the learning process can be categorized
by another aspect and it is whether the detection method learns on a static
dataset or a streaming dataset.

Learning on the static dataset is a traditional [10] way of learning for
anomaly detection algorithms as well as other machine-learning algorithms.
It is assumed that all necessary information can be extracted from the static
training dataset before making actual detections. It means that the dataset
must be available all at once and contain enough information. This approach
is not suitable for situations where the complete training dataset is not avail-
able beforehand. In reality, there are many use cases (medical, IT security,
agriculture) [10] where there is a little to none data in the beginning but
new data arrives over time (streaming dataset). The detection methods must
be able to start making detections as soon as possible with very little initial
knowledge and adapt this knowledge as new data are available 4. This process
is called incremental or online learning.

The properties of online anomaly detection stated above are summed up
and extended by Polikar [10] and Ahmad [11] who define ideal properties of
real-world online anomaly detection algorithm as follows:

• The algorithm must learn continuously without storing all the previous
data points and detections.

• The algorithm must incorporate information about all previous data
points into the current detection.

• The algorithm must run in an automatic manner without requirements
for manual parameter tweaking.

• The algorithm must adapt to dynamic environments and non-stationarity
of the underlying statistics of the stream of data points.

4This property of online learning can be extended to cover not only data points incoming
one at a time but also to the data points incoming in batches. Batch is the set of new data
points that are presented to the detector at the same time.
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1. Theoretical framework

• The algorithm must make anomaly detection as soon as possible. In
terms of section 1.1.1.4, this applies to contextual and collective anoma-
lies.

• The algorithm should minimize false positives and false negatives.

• The algorithm should minimize the time for making the detection.

Anytime algorithms Another concept worth mentioning while discussing
online learning is an anytime algorithm. Similarly to online methods, any-
time algorithms are able to give a result at any given moment and the results
should be improving over time. However, the context and usage are differ-
ent. Anytime algorithms primarily focus on trading shorter execution times
for lower accuracy in a controllable manner while keeping properties like mea-
surable quality, interruptibility or resumability [12], [8]. Anytime algorithms
represent a much broader field of study than online anomaly detection and
are considered to be out of the scope of this thesis.

1.3 Concept drift

The concept drift is a change of the underlying process generating the data
points that happens over time. It is a phenomenon that largely influences the
design of anomaly detection methods. For example, the models generated by
non-online supervised algorithms have no way how to adapt to the changes
and the concept drift leads to continual degradation of their results. At best,
the results of these models can be continuously validated and, in case that the
degradation reaches some threshold, the model is discarded and a new model
is trained. On the other hand, online unsupervised algorithms have all the
necessary prerequisites to continuously adapt the model to the concept drift.

Let the concept Ct at the time t be the joint probability distribution
Pt(Xt,Lt) where Xt and Lt are random vectors 5. Input data points with
the value of temporal attribute lesser or equal to t, resp. associated labels are
realizations of Xt, resp. Lt. Concept drift occurs when Ct 6= Cu. Let the Rt,u
be the concept drift indicator defined as:

Rt,u =
{

0 if Ct = Cu,
1 if Ct 6= Cu.

The difference between two concepts can be quantified by binary function
M which is applied to two concepts and returns a real number. Various
measures such as total drift magnitude or marginal drift magnitude exists [13]
but will not be further discussed in this thesis.

5multivariate random variables
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1.4. Engineering point of view

Various methods for handling the concept drift (adaptation) will be studied
in the following text.

In the next two sections, the pair of problems related to concept drift and
online learning will be briefly introduced. These problems have been studied
especially in the context of neural networks architecture, however, the ideas
are considered to be general enough to apply to other algorithms capable of
online (incremental) learning.

1.3.1 Stability-Plasticity dilemma

The plasticity is the ability of the learning algorithm to incorporate new, pre-
viously unseen patterns in data into the detection model. The stability is
a property that enables the detection model not to discard the knowledge
about previously seen patterns while processing other irrelevant or very fre-
quent patterns. According to the Carpenter and Grossberg, “The properties
of plasticity and stability are intimately related. An adequate system must
be able to adaptively switch between its stable and plastic modes.” [14],
[15]. This tradeoff between stability and plasticity that must be made during
the design of incremental machine learning algorithms is referred to as the
stability-plasticity dilemma.

1.3.2 Catastrophic forgetting

The catastrophic forgetting or catastrophic inference is an infamous property of
neural networks which manifests itself during sequential learning of a network.
The neural network discards all previously gained knowledge or majority of it
upon receiving new training input [16]. This problem can be understood as
an instance of the stability-plasticity dilemma (low stability, high plasticity)
and the methods for overcoming this problem represent a widely studied area
of neural network research.

1.4 Engineering point of view

This thesis is more focused on the theoretical than the practical aspects. How-
ever, there are very interesting engineering problems related to the topic of
online anomaly detection. Therefore, this section is included to peek inside the
challenges associated with architecture and implementation of real anomaly
detection systems.

Combination of all the required properties stated in Section 1.2.2 imposes
not only theoretical challenges but engineering challenges as well. The archi-
tecture of underlying computer systems (detection systems or more generally
stream processing systems) running the anomaly detection algorithms is sub-
ject to significant research effort in areas of distributed systems and software
engineering.
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1. Theoretical framework

Scenarios involving multiple independent real-time data streams originat-
ing in a large number of source systems (Internet of things (IoT), industrial
sensors, e-commerce, social media etc.) require advanced computer systems
with the following properties:

Availability, reliability, low latency In critical applications like health-
care, the reliable detection of anomalies is fundamental. The detection systems
have to make sure that each data point is considered and none of them is lost
or omitted (at-least-one delivery guarantee). Sometimes the delivery guaran-
tee is even more strict and it is also necessary to ensure that no data point
is delivered more than once. This so-called exactly once delivery guarantee,
often required e.g. in the finance industry, is in general very hard to achieve
in distributed systems. In e-commerce, on the other side, the requirements
on delivery are lower, however, minimization of latency is extra important
because it has been experimentally shown that the latency correlates with a
decrease in revenues [17].

In reality, the requirements for low-latency or availability and reliability
are inherently contradictory due to the CAP theorem [18]. Therefore, tradeoffs
like sacrificing reliability in favor of low-latency or the other way around must
be made in architecture and implementation of stream processing systems.

Also, the source systems (especially IoT devices) have often very limited
capabilities. These devices cannot effort to wait long periods to complete
sending a data point nor can they buffer the data points in case that stream
processing system is unavailable. Therefore, any outage of the stream pro-
cessing systems results in a loss of data.

High throughput, parallelization, distribution, and scalability To
handle multiple large data streams, the underlying computer systems must be
able to parallelize or distribute the workload to more than one physical ma-
chine (compute instances). This distribution requirement represents a chal-
lenge for design and implementation of anomaly detection algorithms. The
algorithm must be able to efficiently exchange the gained knowledge about
data points between compute instances.

The load of the detection system may also vary over time. The data stream
can grow, which requires more compute instances (scale out). On the other
side there might be some periods (e.g. night hours) of low activity of the
source systems and in this situation, it is not feasible to run the same number
of machines as at peak hours (the number compute instances must be scaled
down). Because of the reasons above, the detection systems must be able to
dynamically scale out and down.
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Chapter 2
Methods of online anomaly

detection in time-series

This chapter focuses on the theoretical description of several anomaly detec-
tion methods. At the beginning of the chapter, the general online anomaly
detection system is introduced. Then, the properties of the specific methods
are analyzed in the context of this system.

2.1 General online anomaly detection system

In this section, a general system for online anomaly detection will be described.
Properties of the specific methods in the following text will be analyzed in
terms of this system.

The detection process begins with feeding the newly incoming data point
into the anomaly detector which then decides whether the data point is anoma-
lous or not. This detection output is returned to the observer and also fed
into another component called concept drift detector. The concept drift de-
tector strives to reveal that a concept drift occurred. When this happens, the
anomaly detector is discarded and relearned for the new concept by a learning
algorithm. See Figure 2.1 for diagram of such system.

Some anomaly detectors are able to continuously adapt themselves [11] to
the occurring concept drift. For such detectors, the detection of concept drift
and relearning is irrelevant. The anomaly detector with such capability is
considered superior to those that require relearning. Without discarding and
relearning, much more information is preserved for making the subsequent
detections. Also, from the practical point of view, the relearning can be time-
demanding and requires to pause the detections.

The anomaly detector, the concept drift detector and the relearning al-
gorithm all have the capability to access the last l ingested data points and
use them for their internal operations. The anomaly detectors can use these
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2. Methods

data points to gain surplus information while making detections. The concept
drift detector can combine these data points with detections of the anomaly
detector to detect the drift. See the Section 2.1.1 for further discussion of the
topic of the concept drift detection. The relearning algorithm uses the last
data points for learning the new detector.

The process described above is repeated for each incoming data point. Be-
fore yielding the very first detection, all components of the system might need
to be initialized. This is especially important for the anomaly detector which
needs to gain some knowledge about the analyzed data. This initialization is
usually done by providing a finite, relatively small, number of learning data
points for learning 6.

In practice, the initialization phase can be omitted, but the first few de-
tections should be considered to be highly unreliable.

xt

Concept drift 

occurred

Anomaly detector

Concept drift 

detector

Yes

Data source

D(xt)

D(xt)

Detection 

output

Discard and re-learn 

the anomaly detector 

using k data points

Learning 

algorithm

Figure 2.1: Diagram depicting the components of general online anomaly
detection system. Components and relations with dashed lines are optional.

2.1.1 Detecting the concept drift

In literature, two basic methods for detecting concept drift in unsupervised
online anomaly detection have been suggested. The third method combining
multiple approaches is proposed. To the best of author’s knowledge, this third

6For (semi-)supervised detectors, these data has to be labelled.
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2.1. General online anomaly detection system

method has not been published yet. One of the methods detects the drift using
solely information from data points while the other methods use the output
of the anomaly detector. All of the methods require setting of one or more
parameters.

2.1.1.1 Ratio of anomalies in the last l data points

This method keeps track of detections for the last l data points and an asso-
ciated ratio RA between anomalous and normal instances. The ratio can be
defined as:

RA = |{anomalous data points from the last l data points}|
l

.

The concept drift is detected if RA > % where % is a parameter. This
method is clearly suitable for a labelling anomaly detector and can be also
adapted to handle data from a scoring anomaly detector. The validity of this
method has been verified e.g. in [19].

Setting the correct value of the parameter % might be problematic. Instead,
this thesis proposes to use the complementary cumulative distribution function
(CDF) of a normal distribution with mean equal to the expected ratio of
anomalies in a time-series and variance equal to 1. Given that FX(x) =
P (X ≤ x) is the CDF of such distribution X and its complement F̄X(x) =
P (X > x) = 1− FX(x), the concept drift is detected if:

F̄X(RA) < τ ,

where τ is a threshold probability given by some parameter. The intuition is
that the drift is detected, if the value RA of the ratio is improbably high.

2.1.1.2 Distribution of the last l data points

In this method, a static empirical distribution S is obtained from some set
of initial data points. Another empirical distribution D is dynamic and is
calculated from a window of the last l data points.

Next step is to perform a comparison of the distributions S and D. Statis-
tical tests like Kolmogorov–Smirnov test (K-S test) can be used for comparing
the distributions. In case of the K-S test, the concept drift is detected if the
null hypothesis (the distributions are the same) can be rejected on a level α
where the α is a parameter. If the concept drift occurs, new static distribution
S is obtained from the last l data points. This method is described e.g. in
[20].

The beneficial property of this method is that no assumptions are made
about the anomaly detector.
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2.1.1.3 Distribution of anomaly scores for the last l data points

This thesis proposes to use the idea of comparing two empirical distributions
as in 2.1.1.2, however, keep both distributions dynamic. Another change to
the original idea is that the anomaly scores of the data points are used for
obtaining the distributions instead of the data points themselves. This deci-
sion has its origin in [11] where the authors used a similar technique for the
anomaly detection (not the concept drift detection).

The first distribution L is obtained from the anomaly scores of all last l
data points. The second distribution M is obtained from anomaly scores of
only from last m data points where l� m.

The distributions of anomaly scores in L andM can be compared to detect
a concept drift. For example, the distributions can be compared by the well-
known K-S test as in the previous method. The concept drift is again detected
if the null hypothesis of the K-S test can be rejected on the level α which is a
parameter.

Technically, only the anomaly labels can be used, but it would mean that
the compared distributions have only 2 unique value. Therefore, this approach
requires anomaly scores to make sense which might be problematic for some
anomaly detection methods.

This method could be also extended by incorporating the idea of the previ-
ous method. Instead of comparing solely the distributions of anomaly scores,
the multivariate distribution of both anomaly scores and data points could be
used. However, other statistical test instead of K-S test must be used because
K-S test does not handle multivariate distributions.

2.2 Anomaly detection methods

In this section, four specific methods for online anomaly detection will be
introduced.

2.2.1 Moving averages

The moving averages are one of the simplest methods for online anomaly
detection. In this thesis, two types of moving averages will be recognized:
simple moving average (SMA) and weighted moving average (WMA).

The essential idea is to keep the average At,a(l) of the last l values of some
continuous attribute a of the incoming data points in each point in time t.
The value of the attribute a of the next data point xt+1 is compared to the
average At,a(l). If the difference between these values exceeds a limit given by
some parameter τ , the data point xt+1 is marked as anomalous. Alternatively,
the normalized difference can be used directly as the anomaly score.

This approach can be straightforwardly extended to work with windows
of size s and step 1 instead of individual data points. For each data point xi,

20



2.2. Anomaly detection methods

the window Wi is created containing s data points and with the xi as the last
data point. Then the arithmetic mean from all values of the attribute a in the
window is calculated and used. To keep the ongoing text clear, the value vt,a
for data point xi will be defined as:

vt,a =


xt,a for individual data points,
1
s

∑
xk∈Wt

xk,a for windows of size s. (2.1)

The generic moving average can be defined as:

At,a(l) = 1∑l−1
i=0 κ(i)

l−1∑
i=0

κ(i)vt−i,a, (2.2)

where the κ : N → R is a scaling function. The SMA and WMA are the
specializations of this generic formula. Their description can be found in the
following subsections.

The simplest condition for anomaly detection can be defined as:

∣∣∣∣∣At,a(l)− vt+1,a
At,a(l)

∣∣∣∣∣
{
/∈ (−τ, τ) =⇒ xt+1 is anomalous,
∈ (−τ, τ) =⇒ xt+1 is normal.

A more advanced condition can make an assumption that the data points are
normally distributed with the mean At,a(l) and the variance Vt,a(l) defined as

Vt,a(l) = 1∑l−1
i=0 κ(i)

l−1∑
i=0

κ(i)(vt−i,a −At,a(l))2.

Then, the anomaly label of the value vt−i,a can be obtained as follows:

vt+1,a


/∈
(
Q

(
τ

2

)
, Q

(
1− τ

2

))
=⇒ xt+1 is anomalous,

∈
(
Q

(
τ

2

)
, Q

(
1− τ

2

))
=⇒ xt+1 is normal,

(2.3)

whereQ is the quantile function of the normal distributionN (At,a(l),
√
Vt,a(l)).

This approach can be directly modified to use other, less popular, statis-
tics like moving median or moving variance. Different kind of means (such
geometric or harmonic) could be also used.

As stated above, this approach is very simple. However, for point anoma-
lies, it is usable and in context of this thesis, it is considered as a baseline for
comparison with other, more advanced methods.
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2.2.1.1 Simple Moving Average (SMA)

Simple Moving Average is defined as the arithmetic mean over the last l values.
The values are not scaled:

ASMA
t,a (l) =

∑l−1
i=0 vt−i,a
l

.

For SMA, the κ is defined as κ(p) = 1.

2.2.1.2 Weighted Moving Average (WMA)

Weighted Moving Average is an arithmetic mean over the last l values scaled
by their position in time. This scaling is defined by the function κ(p) which
is non-constant in this case.

The range of options for specific κ(p) is very wide. In this thesis, three
instances are defined and described.

Linearly Weighted Moving Average The newer values have a larger
impact than the older ones. The difference in impact is given by a linear
function. The formula for this average is as stated follows:

ALWMA
t,a (l) =

∑l−1
i=0(l − i)vt−i,a

l(1+l)
2

.

For LWMA, the κ is defined as κ(p) = l − p.

Exponentially Weighted Moving Average The exponentially weighted
average is similar to the linearly weighted average but the values are scaled
exponentially. The rate of decreasing of the impact for older values is given
by a parameter α < 1 . The lesser the α, the lesser significance is assigned to
the older values (the information is discarded faster):

AEWMA
t,a (l) =

∑l−1
i=0 α

i · vt−i,a∑l−1
i=0 α

i
.

For EWMA, the κ is defined as κ(p) = αp.

Non-monotonically Weighted Moving Average The previous two
weighted averages favour the new data points before the older data points.
Sometimes, this behaviour is unwanted because it can cause too much false
anomaly detections in case that there are some lonely outliers in the data
that should not be considered as an anomaly. This problem can be solved by
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Figure 2.2: The plot showing two sets of weights for 64 data points. The
x-axis represents time. The weights are based on a normal distribution with
σ = 256 and various values of µ. Both sets of weights do not favor older
or newer values in some simple manner. The blue weights (µ = −32) are
balanced between the older and newer points while the the orange weights
(µ = −48) are slightly biased towards older points.

not giving the largest weight to the newer points. A good example of a scal-
ing function achieving this goal is a probability density function of a normal
distribution N (µ, σ) with appropriately chosen parameters:

κ(p) = 1√
2πσ2

e
−(p−µ)2

2σ2 .

In this case, especially important is the value of parameter µ because it
directly controls the difference between the impact of older and newer data
points. The Figure 2.2 illustrates the influence of the parameter µ on the
distribution of scaling weights.

2.2.1.3 Concept drift detection and relearning

The moving average can be used both with and without the concept drift
detector. Any concept drift detection approach from 2.1.1 can be used. The
solution with concept drift detection requires some initialization on some finite
set of data points and subsequent relearning on some finite set of last data
points in case that the drift is detected.

However, in practice, the moving averages can be easily used without con-
cept drift detection. Given the triviality of computation, the anomaly detector
can use last data points to recalculate a value of the average each time a new
data point arrives. In terms of the general anomaly detection system, this
approach essentially boils down to very frequent relearning without concept
drift detection.
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2.2.1.4 Additional remarks

The principles of anomaly detection with moving average can be easily gener-
alized to other statistical functions. It possible to use median, other kinds of
means (harmonic, geometric), maximum, minimum, variance or even higher
moments. Theoretically, any function morphing the windows to comparable
scalar values can be used. The same goes also for the morphing the windows
to scalar values at definition 2.1.

2.2.2 k-Nearest Neighbours (k-NN)

The k-nearest neighbours (k-NN) is a very well known algorithm for distance-
based classification and regression. It is also known to be highly sensitive to
the curse of dimensionality [21], [7]. This section describes the usage of k-NN
for anomaly detection in time-series.

In anomaly detection terms, the k-NN is able to detect point anomalies
in data with continuous attributes. More formally, the k-NN can work on
any metric space (it requires a metric to be defined between all data points).
Unlike e.g. moving averages, it also naturally handles multivariate data points.

Using the k-NN, the anomalies are searched for in a global manner [22].
Unlike Local Outlier Factor (LOF) method discussed below, the k-NN does
not consider the local properties of analyzed data points. This means that if
there is more than one natural grouping of data points in the analyzed dataset,
the k-NN cannot distinguish between the groups and treat them together as
one. Such behaviour does not take advantage of all available information and
can result in insufficient performance. The more detailed discussion of these
matters can be found in Section 2.2.3 – Local Outlier Factor. On the other
hand, the LOF is more computationally demanding compared to k-NN. This
is why both approaches are worth studying.

In the following paragraphs, three approaches to the anomaly detection
using k-NN are described. They differ in various aspects but all of them
operate on the last l data points in the analyzed time-series. All following
approaches can be extended to work also with windows instead of individual
data points, similarly as in Section 2.2.1.

To simplify following notation, function δ, scalar k and a set Lt will be
defined as:

δ : I× I→ 〈0,∞) (distance),
k ∈ N (number of neighbours),

Lt = {xi|i ∈ N ∧ i > t− l ∧ i ≤ t},
(last l data points in a time-series at time t).
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2.2.2.1 Distance to the k-nearest neighbour

Given a parameter k and a metric δ, the anomaly score for the data point
xt+1 can be defined as

δ(xt+1,xk),

where xk is the k-th data point from the set Lt ordered by value of δ(xt+1,xi)
ascendingly [23]. To obtain the anomaly label, the distance can be compared
against a threshold θ ∈ R0,+. Then, the data point xt+1 can be labelled as
anomalous if

δ(xt+1,xk) > θ.

2.2.2.2 Number of neighbours within a given distance

Given a parameter θ1 and a metric δ, the anomaly score for data point xt+1
can be defined as the negative cardinality of the following set [24]:

{xi|xi ∈ Lt ∧ δ(xt+1,xi) ≤ θ1}.

The meaning of the cardinality can be rephrased as a number of data
points from Lt within a given distance θ1 from xt+1. The anomaly label can
be obtained by comparing the cardinality to some parameter θ2.

2.2.2.3 Average distance to the k-nearest neighbours

Given a parameter k and a metric δ, the anomaly score for data point xt+1
can be defined as [25].

|Nk(xt+1)|−1 ∑
xi∈Nk(xt+1)

δ(xi,xt+1),

where the neighborhood Nk(xt+1) is defined as a set containing k data points
from Lt with the lowest δ-distance from xt+1. As in previous two cases, the
anomaly label can be obtained by comparison with some parameter θ.

2.2.2.4 Concept drift detection and relearning

No matter what specific method is used, the situation is similar to moving
averages. No concept drift detection is required because the k-NN based
methods do not need to keep some complex internal model. They support
online updates just by adding points and removing the old ones from the
analyzed set.
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The analyzed set is not expected to be big, but if the computational per-
formance of detections is an issue, the space-partitioning data structures like
K-D trees [26] can be used to boost the detection speed. However, the usage
of such structures must be carefully considered. For example, the additions
and removals of points in the K-D trees are not constant-time operations.
Also, the trees must be kept balanced after accepting updates which incur
additional overhead.

When using the space-partitioning structures, it might be worth to employ
some concept drift detection and avoid the overhead caused by the updates by
making the detections based on a static set of data points. When a concept
drift occurs, this static set is simply refreshed based on the last data points.

2.2.2.5 Additional remarks

The approaches based on pure k-NN will not be further pursued. Following
effort is rather focused on description of more advanced method – Local Outlier
Factor. However, the both methods share many concepts and therefore the
information provided in this section will be used further.

2.2.3 Local Outlier Factor (LOF)

The Local Outlier Factor has been designed in 2010 to take an advantage of
local properties of data points that the other similar approaches like k-NN
(2.2.2) ignore. In the Figure 2.3 and its caption, there is an example of points
in a 2-D space for which the k-NN based methods fail to detect all anomalies.
The LOF incorporate the local properties of the data points by examining
their neighborhood. Then, the anomaly score based on the (dis)similarity to
the respective neighbourhoods is yielded.

The LOF has been proposed for general anomaly detection problems (not
specifically to time-series). Therefore, the following definitions do not take the
time-series into an account either. However, the extension for the time-series
is trivial and will be described at the end of the section.

To fully describe the LOF, two supporting functions called reachability
distance and local reachability density must be introduced. The reachability
distance is a special distance function between two data points with smoothing
effect. Original authors use this augmented distance to get rid of statistical
fluctuations in distance between points that are too close to each other:

rdk(p,q) = max(δk(q), δ(p,q)) (reachability distance for p w.r.t. q),

where δ(p,q) is an ordinary distance metric function (as in k-NN) and δk(p)
is a distance of p from its k-th nearest neighbor based on the distance function
δ.
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A

B

C

D
(anomaly detectable by k-NN)

(anomaly not detectable by k-NN)

(lower density cluster)

(higher density cluster)

Figure 2.3: The figure shows artificially generated points in the further un-
specified 2-D space. There are two clusters of points A and B. Also, there are
two anomalies C and D. The anomaly D could be easily detected by k-NN
based methods because it has significantly larger distance from the nearest
neighbour than all other points. On the other hand, the anomaly C is hard
to detect for k-NN because its distance to the nearest neighbor is similar as
for points in cluster B. However, the C is clearly an anomaly with regard to
the cluster A. This figure has only illustrative character and is based on an
example in the original paper [22] where a more formal description can be
found.

A side effect of this augmentation is, however, that the resulting function
rdk is not a metric because of its asymmetry.

Based on the reachability distance, the local reachability density for p can
be defined as an inverse average of reachability distances for all neighbours of
p:

lrdk(p) =


∑

q∈Nk(p)
rdk(p,q)

|Nk(p)|


−1

(local reachability density of p),

where the Nk(p) is neighborhood set containing k-nearest neighbours of p.
With these definitions, the Local Outlier Factor (LOF) for a data point

p is equal to the average of ratios of local reachability densities w.r.t. to all
neighbours of p:
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LOFk(p) =

∑
q∈Nk(p)

lrdk(q)
lrdk(p)

|Nk(p)| (local outlier factor of p).

Intuitively, it can be said that LOF of a data point is low if the local
reachability density of neighbouring data points is similar.

By default, the LOF returns an anomaly score. Conversion of the score to
the anomaly label can be done by thresholding the LOF score. However, the
LOF score is unbounded and therefore setting of the threshold is problematic.
One way to obtain this threshold, implemented in the Scikit-Learn library [27]
7, is to calculate the LOF score for all training data points and then set the
threshold τ equal to the (100 · κ)-th percentile of the calculated LOF scores
for all data points (linearly interpolated if an exact value is not available).
The κ is some bounded parameter from 〈0, 1〉 8. Then, the data point xt+1 is
considered anomalous if

LOFk(xt+1) ≥ τ . (2.4)

The LOF can be used also on time-series. In that case, all following def-
initions hold but the neighborhood Nk(xt+1) for calculating the LOFk(xt+1)
which is obtained from only the l last data points xt−l+1, . . . ,xt−1,xt.

The topic of concept drift detection and relearning for LOF will not be
discussed because the same arguments as for k-NN based methods (section
2.2.3) apply.

2.2.4 Isolation forests

Isolation forests are an ensemble method specifically designed for general
anomaly detection by Liu and Zhou [28]. Later, the isolation forests have
been successfully used also for an online anomaly detection in sequence data
[19].

At the beginning of this section, the fundamental ideas of isolation forests
and relation to the other tree-based methods are introduced. Then, the for-
mal definition of the anomaly detection process using the isolation forests is
presented. At last, the properties related to the concept drift and relearning
are discussed.

The isolation forests are based on an idea of the explicit isolation of anoma-
lous data points. This approach is fundamentally different to a great number
of methods that models the profile of normal instances instead of the profile
of anomalous instances.

7https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/
neighbors/lof.py#L195

8In the Scikit-Learn library, the parameter κ is called the contamination.
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The core idea is to perform recursive partitioning of the data point space
until all data points are isolated in their own single partition (subspace).
This partitioning is done independently multiple times (the forest (ensemble)
consists of multiple trees) and the assumption is made that the anomalous
data points will be in average isolated significantly earlier than the normal
data points. This assumptions, similarly to other detection methods, heavily
relies on the minor representation of the anomalies among the data points and
on the significant deviations in the values of (some) attributes.

The partitioning procedure for each tree is done in a stochastic manner
and each partitioning step has two phases. First, a split attribute a is selected
at random from all available attributes. Then, a random value from a proper
range is uniformly sampled. This randomly sampled value (split point) is then
used to split the data point space in the dimension of a. This partitioning is
done recursively. Therefore, each partitioning step is applied on a subspace
of the original data point space. This partitioning scheme can be very con-
veniently represented by the binary search tree (BST) data structure. The
example of such partitioning can be found in the Figure 2.4.

The process of forest training and detecting an anomaly will be formally
described later. Only a brief intuition is presented at this moment: multiple
trees (partitionings) are created from the training dataset. Then, the newly
incoming data point is evaluated by measuring the distance of the leaf that the
data point would belong into from the root of the tree (height). More specif-
ically, an average height across all trees in the forest is considered. Smaller
height means more anomalous data point.

The isolation forest consists of several so-called isolation trees 9. Each
isolation (binary) tree represents a single instance of partitioning of the data
point space as indicated in the previous paragraph. This composition of mul-
tiple isolation trees forms ensemble model called the isolation forest. For each
tested data point, the isolation forest yields an anomaly score which is a com-
bination of the outputs of all trees in the forest. Therefore, the isolation forest
can be considered as a bagging ensemble model. The ensemble nature of the
isolation forests enables the existence of so-called expert trees that can be
narrowly specialized for different kinds of anomalies.

Unlike k-NN or LOF, no distance or density measure is required to be
defined and calculated which also implies the lower computational costs. On
the first sight, the isolation trees seem to be similar to classic decision trees
used for classification or regression. However, the more detailed analysis shows
that only common element is the usage of the binary search tree data structure.
There is a lot of research regarding the usage of classic decision trees for online
anomaly detection. The Hoeffding trees [29] are a good example. However,
these methods are supervised and need both anomalous and normal labels.
Therefore, they are not studied further in this thesis. In the end of this

9100 trees have been used in the original paper
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A
(11 partitions required to isolation)

(4 partitions required to isolation)
B

Figure 2.4: This figure based on [28] shows artificially generated points in the
further unspecified 2-D space. There is a single clearly visible cluster of normal
instances with several anomalous instances around its borders. Isolation of a
normal point (A) from within the core of the cluster took 11 recursive random
partitions. On the other hand, isolating the anomalous point (B) took only 4
such partitions.

section (2.2.4.2), more such examples can be found.
The formal definition of an isolation tree follows. The isolation tree T is

a proper tree graph with recursive structure. Each node can have zero, resp.
two descendant nodes. Such nodes are called external, resp. internal. Every
node has exactly one predecessor node except the single root node that has no
predecessor node. If a node N is internal it contains a pair of properties (qN ,
pN ). The qN is a split attribute and the pN is split value with domain given
by qN . This recursive tree structure with properties unambiguously defines
the partitioning of the data point space.

The height hT (N) of the node N in the tree T is defined as a number of
edges from the root node to the node N . During the training, the tree is grown
until all data points are isolated (in terms of the induced space partitioning) or
the growing can be reduced by limiting the maximum value of hT for each node
(the node N is not further divided if the hT (N) reaches some threshold. See
details in subsection 2.2.4.1.). When the tree T is constructed, each newly
incoming data point can be unambiguously assigned to one of the external
nodes. The path length hT (xi) for data point xi is equal to the hT (M) where
M is the node ingesting the xi.

The anomaly score sF (xi, n) for data point xi in a forest F consisting of t
trees T1, T2, . . . , Tt built from n data points is defined as:
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sF (xi, n) = 2−
1
t

∑t

k=1 hTk (xi)
c(n) ,

where the c(n) is a normalization function in n defined as:

c(i) = 2H(i− 1)− 2(i− 1)
i

,

where the H(i) is the i-th harmonic number that can be approximated using
the Euler–Mascheroni constant as H(i) ≈ ln(i) + 0.5772156649. The value
of c(n) is based on the analysis of properties of classic Binary Search Trees
(BST) [30] 10. This definition of anomaly score intuitively means that the
lower hT (xi) is, the data point xi is more anomalous.

Conversion of the anomaly score to the anomaly label is not discussed in
the original paper. During, the ongoing experiments the very same approach
as for LOF (2.4) will be used (calculating the anomaly score for all training
data points, obtaining a threshold based on a value given by some percentile
given by a bounded parameter and then comparing the anomaly score of the
new data points to this threshold). This approach is also implemented in the
Scikit-Learn library 11.

2.2.4.1 Training

In this subsection, the training procedure indicated above is explained in more
detail. The isolation forest is grown by constructing individual isolation trees.
Each tree is built independently to the others in the following way.

1. Randomly select ψ (subsampling size) data points from the training
dataset into the sampled training dataset S.

2. Build an isolation tree from S:

a) Randomly select an attribute from the set of available attributes.
b) Randomly select the attribute’s split point (value of the attribute).
c) Divide the S into two subsets Sl and Sr by comparing the relevant

attributes of the data points with the split point (≤, >).
d) Repeat this procedure recursively for both Sl and Sr. The selec-

tion of the split point (its minimal and maximal value) is now
constrained by the current position in the recursion tree.

10It is an equivalent of the average length of unsuccessful search in the BST.
11https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/

ensemble/iforest.py#L203
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e) This recursive process is stopped when the set can be split no more
or if the height of the recursion tree reaches the value log2(ψ) (av-
erage expected tree height). The reasoning behind this constraint
is that the data points with the height larger than the average are
not interesting for the isolation tree.

3. Repeat this procedure including the sampling of S t-times to obtain t
isolation trees.

Authors of the original paper experimentally concluded that a good base-
line parameter settings are ψ = 256 and t = 100. Larger subsampling size
or larger number of trees do not increase the detection performance by a
significant amount. On the contrary, larger values increase computational
complexity.

A modification of this training process is proposed: The step 2b could
incorporate potential knowledge of the distribution of the attribute’s values.
Therefore, the split point could be sampled from other distribution than the
uniform one.

2.2.4.2 Concept drift and relearning

A straightforward way how to use the isolation forests for anomaly detection
on streaming data with expected concept drift has been studied by [19]. Given
that isolation forests yield an anomaly score for each tested point, any concept
drift detector can be used together with relearning on the last l data points.

An interesting property of the isolation forests that has been experimen-
tally verified by the original authors is that the absence of anomalous instances
during the training phase does not influence the performance. This property
allows to safely re-train the forest at any point on the last l data points.

An incremental approach to incorporating knowledge into the isolation
forests is not known. There is a lot of research regarding the incremental
learning of the classic decision trees (Hoeffding tree or VFDT [29], ID4 [31],
ID5R [32]). Some of these methods are even able to deal with the concept drift
(CVFDT [33]). However, all of them heavily rely on the supervised learning
approach and therefore they were not further examined in this thesis.

2.2.5 Hierarchical Temporal Memory (HTM)

This section explores a method that originated in the domain of computational
neuroscience and it is based on a special type of neural network specifically
designed for learning and prediction of sequence data. The essence of this
network is tightly coupled with the morphology of the neocortex which is an
important part of the mammalian brain. For humans, it provides capabil-
ities like speech understanding, visual object recognition or planning. This
method, called Hierarchical Temporal Memory (HTM), strives to resemble
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the structure and functionality of the neocortex. Despite the very complex
function of the neocortex, its structure is quite uniform and clear. Thus, the
HTM utilizes the idea of combining the functionality of a large number of rel-
atively simple components in order to get very complex capabilities, similarly
as better known perceptron-based (deep) neural networks. However, the ar-
chitecture of HTM and common artificial neural networks (ANN) is different.
Unlike perceptron-based ANNs, the time is a crucial concept for the HTM.
Also, the HTM stores a lot of information about encountered patterns and
sequences [34] which is also unusual for the common ANNs.

The origins of HTM theory can be traced to 2004 [35]. In 2005, a company
named Numenta 12 has been founded by the original authors with the aim to
transform the theoretical framework of HTM into a software system. Since
then, there has been a series of papers by the original authors as well as
Numenta researchers: [34] (2011), [36] (2015), [37], [38], [39], [40] (2016). The
latest publication from 2017 deals specifically with using the HTM for online
anomaly detection [11].

Given the very complex neuroscience background required for the proper
understanding of the HTM, more detailed formal description of the HTM is
omitted in this thesis. Only the very basic concepts that are necessary for
ongoing experiments are described.

2.2.5.1 Principle of HTM-based anomaly detection and sparse
distributed encoding

From a simplified point of view, the HTM network accepts a sequence of
special binary vectors as its input. Vectors in this input sequence is passed
through the network one by one . After each passed vector, a prediction of the
following vector is produced. In HTM-based anomaly detection, the predicted
vector and the real vector from the next step are compared and an anomaly
score is yielded based on their difference [11]. With each input data point,
the HTM continuously updates its internal state and thus it should be able to
automatically deal with a concept drift. Unlike previous methods, the concept
drift detection and relearning is therefore irrelevant for the HTM.

Sparse distribution representation (SDR) The crucial part of the HTM
is encoding of the input data points into sparse binary input vectors called
sparse distributed representation. The authors of HTM implementation pro-
posed multiple encodings for various data types [41] and explored various
properties of such encodings [36]. For this thesis, only encoding of real num-
bers is important. The idea of this encoding is explained in the Figure 2.5.
Basically, the binary vector is aligned with the expected range of values and
only bits that are topologically close to the encoded value are set. Such en-

12https://numenta.org
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coding requires four parameters: maximum expected value, minimal expected
value, length of the binary vector and number of active bits. The length of
the binary vector directly determines the resolution that the real values will
be treated with.

00000000111111100000000000

0 5 10  15 20 ...

...Encoding

Values

Figure 2.5: The figure illustrating the principle how the real values are encoded
into the sparse binary vectors in HTM. In the figure, the value 9 is encoded.

Detecting anomalies The anomaly score for a data point xt in a time
point t is derived from the difference of the sparse encoding representation of
the data point, e(xt), and HTM’s prediction for that point, π(xt−1). More
formally, the anomaly score is inversely proportional to the number of common
bits of the binary vectors e(xt) and π(xt−1):

st = 1− π(xt−1) · e(xt)
pop(e(xt))

,

where v1 · v2 is a dot product of some vectors v1 and v2 and pop(v) 13 is a
number of 1 bits in a vector v. This score is bounded to 〈0, 1〉 and can be used
directly for yielding anomaly scores or labels. However, authors of this method
introduce the concept of anomaly likelihood that should be better in dealing
with very noisy data. To calculate the anomaly likelihood, it is necessary to
keep two windows of length W and W̃ with last yielded anomaly scores where
W � W̃ . The anomaly scores in these windows are modelled as a normal
distribution with following parameters:

µt =
∑W−1
i=0 st−i
W

, µ̃t =
∑W̃−1
i=0 st−i

W̃
, σ2

t =
∑W−1
i=0 (st−i − µt)2

W − 1 .

Then the anomaly likelihood Lt is defined as:

Lt = 1−Q( µ̃t − µt
σt

),

where Q is Q-function or tail distribution function of standard normal distri-
bution. A data point xt is labelled as anomaly if Lt ≥ 1 − τ where τ is a
threshold parameter.

13population count
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Chapter 3
Experiments

The purpose of this chapter is to evaluate reviewed anomaly detection sys-
tems. In the first part, the design of experiments is presented. It includes the
selection of relevant performance metrics and datasets as well as formaliza-
tion of the overall experimentation process. In the second part of the chapter,
selected anomaly detection systems are tested and compared according to the
previously defined procedures.

3.1 Experiment design

This section starts with discussion and selection of performance metrics, con-
tinues with description of datasets used for testing and is finalized with defi-
nition of conditions under which the detection systems will be tested.

3.1.1 Performance metrics

The anomaly detection can be understood as a special case of (binary) classi-
fication problem on data with extremely unbalanced classes. This means that
the well-known metrics based on the confusion matrices are usable also in the
context of anomaly detection.

Confusion matrix Before discussing the specific metrics, the definition of
the confusion matrix that is used in the following paragraphs of this thesis is
presented. The confusion matrix is 2× 2 matrix in the following form:

TP FP

FN TN

 ,

where TP is number of anomalous data points correctly labelled by the de-
tector (True Positives), FP is the number of normal data points incorrectly
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labelled as anomalous (False Positives), FN is the number of anomalous data
points incorrectly labelled as normal (False Negatives) and TN is the number
of normal data points correctly labelled as normal (True Negatives).

Given the huge expected disproportion between classes (anomalous and
normal data points), some popular classification metrics are unusable. For
example, accuracy ACC defined as

ACC = TP + TN

TP + TN + FP + FN

is completely irrelevant for anomaly detection. Even the trivial anomaly de-
tector (null detector) that is labeling every data point as normal (TP = 0)
would have very high accuracy because

ACCnull = TN

TN + FN

and the number of anomalous instances is assumed to be much lower than
number of normal instances and therefore TN+FN ≈ TN =⇒ ACCnull ≈ 1.

On the other side, the recall metric (sometimes referred to as sensitivity
or true positive rate) and false positive rate (fall-out, FPR) are very suitable
metrics because they describe properties that are naturally expected from a
good anomaly detection system:

recall = TP

TP + FN
,

false positive rate = FP

FP + TN
.

The description of other metrics directly or indirectly derived from the con-
fusion matrix follows.

F1 score Comparing different anomaly detection systems using the recall
and false positive rate is challenging because systems with higher recall tend to
have lower FPR and the other way around. Therefore, it is suitable to combine
these metrics into a single one. Traditional example of such combination of
two different metrics is the F1 score defined as harmonic mean of recall and
precision:

F1 = 2 · precision · recall
precision+ recall

,

where precision is equal to the TP
TP+FP . In this thesis, the same idea is used

for recall and false positive rate instead of recall and precision:
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F1 = 2 · (1− FPR) · recall
(1− FPR) + recall

.

In the rest of the thesis, the F1 score will refer to this modification.

Area Under Curve (AUC) Most anomaly detectors require definition
of some threshold value that significantly influences the resulting recall and
false positive rate. However, the impact on the recall and FPR is exactly
the opposite. Two edge cases are recognized: threshold value that causes
all data points to be labelled as anomalous (recall = 1, high FPR) and the
opposite value that causes all data points to be labelled as normal (recall = 0,
FPR = 0) 14. Important information about the properties of an anomaly
detection system can be gained by observing the changes in its behaviour
(relation between recall and FPR) while modifying the threshold value. This
observation can be formalized by plotting the ROC15 curve and calculating the
area under this curve (AUC). The ROC can be obtained by simply plotting
the 2-D points with coordinates given by x → FPR, y → recall for various
threshold settings and applying the trapezoidal rule. This definition implies
that anomaly detectors with higher AUC are better (intuitively, higher recall
is gained with lower increase in FPR). An example for ROC with AUC can
be found in the Figure 3.1.

Usually, the points for ROC curve (performances of trained models) are
generated by adjusting single threshold parameter of a learning algorithm.
With increasing threshold, the recall and false positive rate should be therefore
both non-decreasing. However, this assumption is not valid for the anomaly
detection system with concept drift detection. Any change to the thresh-
old parameter can significantly influence not only the anomaly detector itself
but also the concept drift detector and by extension the relearning procedure
(when a concept drift is detected, new model is learned on a dataset that is
changing in time). Therefore, multiple different models are effectively tested
together during a single evaluation pass. This can cause the recall and FPR
to be changing non-monotonically with the increasing threshold.

To be able to obtain meaningful ROC and AUC, only the points that are
included in the Pareto set are considered (Pareto set with preference for larger
recall values and smaller FPR values). Illustration of this idea can be seen in
the Figure 3.1, where the excluded points are marked with red color.

NAB Score Another interesting metric that is not widely known and is
specifically designed for benchmarking streaming anomaly detection systems
is the NAB score (Numenta Anomaly Benchmark Score) [42]. It is also a

14Given that the used dataset contains at least one normal and one anomalous data point
15Receiver Operating Characteristics
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Figure 3.1: Four plots serving as an example of ROC curves with calculated
AUCs. Specifically, these are ROC curves for moving average detector with
window sizes σ = 64, 128, 256, 512. Excluded points (those that are not in-
cluded in the Pareto set) are marked with red color.

confusion matrix-based metric that combines TP , FP , FN into an single
number. Also, it can take into an account the point of a detection in time
(the earlier detections are better). The formal definition of this score is out
of the scope of this thesis and can be found in the original paper. Only the
basic version without considering the point of a detection in time is briefly
described.

The NAB score is parameterized with so called application profiles that
enable to measure the detection performance with regard to expected ap-
plication. The application profile is a vector of three positive coefficients
AP = (αTP , αFN , αFP ). The basic definition of a NAB score for a given
detector D, a dataset X and an application profile AP is the following:
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nab(D, X,AP ) = αTP · TP − αFN · FN − αFP · FP. (3.1)

Examples of the application profiles can be AP1 = (2, 3, 1) and AP2 =
(1, 1, 2). The AP1 emphasizes that all maximum number of anomalies are
catched whereas the AP2 lowers the number false alarms.

The resulting NAB score itself is very hard to interpret (it largely depends
on the underlying dataset). However, the score can be used to rank detectors
on a given dataset.

The extension of this metric that includes the exact point of a detection
in time requires that the testing data does not only contain the ground-truth
labels for each anomaly but also a definition of anomalous windows centred
around each anomaly. Then, the weighting of TP in 3.1 is extended by multi-
plication by a value of a sigmoidal logistic weighting function of time which is
defined over each anomalous window and is decreasing. Only the first anomaly
in each anomalous window is considered and given that the the sigmoidal func-
tion is decreasing, earlier detections are weighted more. This idea is illustrated
in the Figure 3.2.
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Figure 3.2: Plot illustrating the purpose of sigmoidal weighting function used
in NAB scoring that assigns larger weights to earlier detection (w.r.t. to
position in the anomalous window).

The F1 score, recall, false positive rate and AUC are all well-known, inter-
pretable metrics suitable for anomaly detection and therefore they are chosen
to be used for evaluation of all performed experiments. Final ranking of the
detection systems is done by the F1 score. Regarding the NAB score, only the
basic variant is calculated during the experiments as a secondary metric.

3.1.2 Datasets

All anomaly detection methods, concept drift detection methods and param-
eters were tested on six distinct fully labelled dataset. First two datasets
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are provided by Yahoo! Research [43]. Remaining four datasets comes from
Numenta Anomaly Benchmark (NAB) corpus [42]. Both real and synthetic
datasets are represented. Each dataset contains 1 to 100 distinct time-series.
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Figure 3.3: Bar charts with basic statistics for each dataset.

• Yahoo-A1 Dataset is based on the real Yahoo! production traffic and is
hand-labelled.

• Yahoo-A2 Artificial time-series with introduced anomalies.

• NAB-AWS-Cpu Hand-labelled AWS (Amazon Web Services) server met-
rics for EC2 instances (CPU load percentage).

• NAB-AWS-Disk Hand-labelled AWS server metrics for EC2 instances
(Disk I/O in bytes per second).

• NAB-AWS-Network Hand-labelled AWS server metrics for EC2 instances
(Network I/O in bytes per second).

• NAB-Real-Taxi Number of NYC taxi passengers in the 30 minutes inter-
vals. For each anomaly, the exact real cause is known: NYC marathon,
Thanksgiving, Christmas, New Years day, and a snow storm.

All datasets (time-series) are preprocessed into the form of CSV files con-
taining three columns: timestamp, value, is anomaly. Each time-series file
starts with the header (column names) and then there is one datapoint with
timestamp and label per line. Number of datapoints as well as number of
anomalies can be found in Table 3.1 or in Figure 3.3.
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3.1. Experiment design

Dataset # of TS # of datapoints # of anomalies Mean TSL
Yahoo-A1 67 94866 1669 1416
Yahoo-A2 100 142100 466 1421
NAB-AWS-cpu 8 32256 13 4032
NAB-AWS-disk 2 8762 4 4381
NAB-AWS-network 2 8762 3 4381
NAB-Real-Taxi 1 10320 5 10320

180 297066 2160

Table 3.1: Table containing basic statistics about used datasets. TS stands
for Time-Series and TSL for Time-Series Length.

3.1.3 Process

This section defines the process that is executed for each evaluated anomaly
detection system. The decisions about the architectures of tested detection
systems, parameter settings, and interpretation of results are discussed.

Architecture of evaluated detection systems and experiments work-
flow All evaluated systems fit into the definition of general online anomaly
detection framework described in the beginning of the second chapter of this
thesis. Therefore, there are initialized with some finite set of data points and
then all the remaining data points from test dataset are fed into the detection
system one-by-one. For each data point (except the initial ones), a detection
label is yielded by the detection system. This label is compared with the
ground-truth label and the confusion matrix is properly updated based on
the result of this comparison (e.g. if the detection label is anomaly and the
ground-truth label is normal, the FP (false positives) are incremented by 1).

After yielding a detection label, the procedure for concept drift detection
is executed and if a drift is detected, the detection system is relearned on the
last window of data points (relearning window). Four concept drift detection
methods are tested:

• Ratio of anomalies in the last l data points with usage of CDF as defined
in 2.1.1.1. The l chosen to be equal to the size of the relearning windows
and threshold τ = 0.3.

• K-S test applied to the distributions given by current and initial window
(2.1.1.2). Length of compared windows is equal to the length of the
relearning window. The p-value is chosen to be 0.05.

• Null concept drift detector that does detect any drifts.

• Trivial concept drift detection with relearning after each incoming data
point.

The values of the concept drift detection parameters stated above were
chosen to yield reasonable results during the exploratory testing of several
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anomaly detection methods. More rigorous choice based on some form of
grid-search would be more appropriate. However, it would require infeasible
amount of another calculations. The available computational resources were
rather used for testing the parameters of anomaly detectors.

The concept drift detection and relearning is not incorporated in experi-
ments with methods that are specifically designed not to require the concept
drift detection.

Parameters of anomaly detectors For each anomaly detector, following
parameters and their values are used:

• Window length ∈ {16, 32, 64, 128, 256, 512}. The maximum value 512
has been chosen with respect to the length of datasets.

• Expected ratio of anomalies in a dataset (contamination) ∈ {0, 0.005,0.01,
0.02, 0.04, 0.08, 0.16, 0.32, 0.48, 0.5, 0.64, 0.8, 0.96, 1}. The choice of
this values has been made from the following reasons:

– The contamination parameter has direct impact to sensitivity to
anomalies for almost all detectors. Therefore, the contamination
values sample all interval from 0 to 1 in order to properly construct
the ROC curve and calculate AUC. Exact usage of the contamina-
tion parameter is explained for each method separately.

– Real contamination in data is expected to be low, therefore the
contamination interval is sampled more granularly for lower values.

The parameters that are unique for individual tested anomaly detection
methods are described in relevant sections below.

Calculation of performance metrics For each dataset and anomaly de-
tection method, a grid search is performed in the space of concept drift detec-
tion methods, window lengths, contaminations and values of special methods’
parameters. For each anomaly detection method, at least 60480 experiments
(passing a whole time-series through detection system with given configura-
tion) must be made. For some methods this number is even five times higher.

{time-series} × {window lengths} × {contaminations}×
×{concept drift detection methods}

→ 180 · 6 · 14 · 4 = 60480

In context of a single dataset and single configuration, the combined con-
fusion matrix from all time-series is obtained and then the relevant metrics
are calculated (recall, false positive rate, F1 score, AUC and NAB score).
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Comparison of anomaly detection methods For each dataset and each
anomaly detection method, the best configurations in three categories are
selected. The categories are following:

1. Configurations with the highest F1 score.

2. Configurations with the highest AUC.

3. Configurations with the highest NAB score with application profile
(αTP = 1, αFN = 1, αFP = 0.25).

These best performing configurations in given categories are then com-
pared between each other in context of a given dataset.

3.1.4 Configuration of evaluated detection systems

This subsection describes the configuration and parameters that are specific
for given anomaly detection methods. Following anomaly detection methods
are tested: Moving Average, LOF, Isolation Forest and HTM. The method of
k-nearest neighbours is omitted because the LOF is a similar distance-based
method that is more suitable for the task of anomaly detection.

All code used for evaluation, concept drift detection as well as anomaly
detection by moving average has been written in Python using the SciPy
ecosystem (NumPy, SciPy, Pandas, IPython, Jupyter) [44] libraries. For LOF
and IsolationForest, the Scikit-Learn implementations were used [27]. For
HTM, the Numenta implementation available from GitHub 16 has been used.

3.1.4.1 Moving Average

The moving average anomaly detector is evaluated in two variants with dif-
ferent scaling functions (as defined in 2.2):

• Simple moving average (constant scaling function: κ(p) = 1),

• Exponentially weighted average (exponential scaling function: κ(p) =
0.8p).

The anomaly detection is based on the quantile function (2.3) with thresh-
old parameter τ = contamination/2.

16https://github.com/numenta/nupic
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3.1.4.2 Local Outlier Factor

Local Outlier Factor method requires a single parameter k defining the number
of considered neighbours. Following values of this parameter were tested: 1, 2,
4, 8, 16. The more neighbours are considered, the more information is available
to the detector. Therefore, the expected impact of this parameter is that
the performance will be increasing with the increasing number of neighbours.
The parameter κ used for calculating the thresholding percentile is set to
κ = 1− contamination.

3.1.4.3 Isolation Forest

For isolation forest, there is a parameter defining the number of trees in the
forest (size of the ensemble). Original authors suggests to use 100 trees in
the forest as a baseline that covers most cases. To verify this suggestion, the
following ensemble sizes are tested in this thesis: 25, 50, 100, 125.

3.1.4.4 Hiearchical Temporal Memory

For the ongoing experiments, there is only one available implementation, pro-
vided by the Numenta company as mentioned in the previous description of
the HTM. Following values of the resolution parameter are tested : 0.01,
0.001, 0.0001, 0.00001. The minimal value and maximal expected values in
general have to be set according to domain knowledge about the data. In the
experiments, this values are set based on some initial sample.

All experiments are performed with the raw anomaly score as well as with
the anomaly likelihood.

3.2 Experiment results

This section presents results of the experiments. It is divided into two parts.
At first, the best models found for each method and each dataset are presented
and the influence of selected parameters that are unique to some methods
is investigated. Then, the final results for all methods on all datasets are
presented and compared.

The F1 score is the primary metric. For each method and dataset, the
model configuration with the best achieved F1 score is presented and the scores
are compared between all methods. As a secondary metric, the best achieved
AUC for each method and dataset is stated. The optimal model configuration
for the F1 score and the AUC is not necessarily the same because both metrics
describe different properties of the model. The AUC examines the overall
behaviour under various values of the detection threshold (contamination)
while the F1 finds the single best model that is fully configured (including the
detection threshold). In the result tables below, the stated configurations are
for the F1-optimized models.
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3.2. Experiment results

In the ongoing paragraphs, following abbreviations are used:

• WL → Window Length,

• CDD → Concept Drift Detection,

• ratio, distribution, eachtime, nulldetect → Abbreviations of concept drift
detection methods as described in the Section 3.1.3,

• Cont → Contamination,

• FPR → False Positive Rate.

3.2.1 Results of Moving Average detector

For the Moving Average detector, the two scaling functions κ were tested:
constant (κ(p) = 1) and exponential (κ(p) = 0.8p). Results for the exponential
scaling were inferior to the constant scaling in almost all cases. Constant
scaling function yielded higher F1 score (1 - 10 percent) for all window lengths
and all datasets. Only single exception where the exponential scaling function
yielded significantly better F1 score was the NAB-AWS-CPU dataset with
the window length of 512, where the exponential function yielded approx. 7
percent higher score. Possible explanation for the inferior performance of the
exponential scaling could be that the scaling is conflicting with the concept
drift detection. The highest F1 score for each dataset and the parameters of
the related model can be found in the Table 3.2.

Dataset WL CDD Cont SF F1 FPR Recall AUC
Yahoo-A1 512 ratio 0.08 const 0.873 0.127 0.873 0.926
Yahoo-A2 16 eachtime 0.01 const 0.944 0.053 0.942 0.973
NAB-AWS-CPU 64 distribution 0.08 const 0.960 0.077 1.000 0.980
NAB-AWS-Disk 512 eachtime 0.8 const 0.903 0.177 1.000 0.961
NAB-AWS-Network 16 ratio 0.005 exp 0.996 0.007 1.000 0.996
NAB-Real-Taxi 32 eachtime 0.16 const 0.805 0.326 1.000 0.800

Table 3.2: Table containing optimal configurations of the moving average de-
tector for each dataset in the terms of F1 score. The column SF is Scaling
Function and the value const, resp. exp is abbreviation for constant scaling
function, resp. exponential scaling function. Last column is the best AUC
achieved by the method on a given dataset (possibly with different configura-
tion).

3.2.2 Results of Local Outlier Factor

As described in the previous section, the impact of the number of considered
neighbours k (k ∈ {1, 2, 4, 8, 16}) in terms of achieved F1 score has been ex-
plored. Models with window lengths ∈ {16, 64, 128, 512} were tested. For each
combination of k and window length, the model with optimal concept drift
detection type and contamination value in terms of F1 score has been picked.

45



3. Experiments

Observed results confirm the expectation that in general the larger number
of neighbours increases the performance. However, in the significant number
of cases, this trend is stopped or even reversed at k = 8. For datasets Yahoo-
A1, NAB-AWS-CPU and NAB-Real-Taxi this trend seems to be logarithmic.
The results for dataset NAB-AWS-Disk, resp. NAB-AWS-Network, are very
noisy, resp. insensitive to the number of neighbours. Related plots can be
found in the Figure 3.4.
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(e) NAB-AWS-Network

2 4 6 8 10 12 14 16
Neighbours

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

F 1
 sc

or
e

Window length = 16
Window length = 64
Window length = 128
Window length = 512

(f) NAB-Real-Taxi

Figure 3.4: Plots representing the relation between number of neighbours in
LOF anomaly detector, window length and F1 score. Each plot shows the
result for a single dataset.
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The best F1 score achieved for each dataset can be found in the Table 3.3.
The results for NAB-AWS-Network and NAB-Real-Taxi might seem strange
at first sight (none zero recall with 0% contamination). However, this can be
explained by the specific way of thresholding done by the LOF (described in
2.4). The zero contamination mean that the thresholding value is equal to the
100%-percentile and therefore no other value should be higher. However, if
the anomaly values were higher than any of the values used for calculating the
thresholding percentile (or the concept drift occurs), this thresholding value
is exceeded.

Dataset WL CDD Cont K F1 FPR Recall AUC
Yahoo-A1 256 ratio 0.08 8 0.839 0.181 0.860 0.887
Yahoo-A2 256 eachtime 0.02 16 0.894 0.077 0.867 0.902
NAB-AWS-CPU 32 distribution 0.16 16 0.933 0.126 1.000 0.975
NAB-AWS-Disk 512 ratio 0.01 1 0.837 0.054 0.750 0.853
NAB-AWS-Network 16 ratio 0.0 16 0.993 0.013 1.000 0.993
NAB-Real-Taxi 16 nulldetect 0.0 1 0.872 0.042 0.800 0.895

Table 3.3: Table containing optimal configurations of LOF for each dataset
in the terms of F1 score. The column K is the number of neighbours. Last
column is the best AUC achieved by the method on a given dataset (possibly
with different configuration).

3.2.3 Results of Isolation Forest

For isolation forest, the impact of ensemble size has been tested. During the
experiments included in this thesis, the suggestion of the original authors [28]
(ensemble size = 100) was confirmed to be valid. Difference in F1 score, resp.
in AUC did not exceed 5%, resp. 3% for both lower and larger ensemble
sizes and it cannot be said that either lower nor higher values performed
consistently better. Comparison of F1 scores and AUC for various ensemble
sizes and datasets can be found in the Figure 3.5. Parameters of the model
with the highest F1 score for each dataset can be found in the Table 3.4. The
suspicious result of non-zero recall with 0% contamination for NAB-AWS-
Network can be explained in the very same way as for LOF.

Dataset WL CDD En. size Cont F1 FPR Recall AUC
Yahoo-A1 256 ratio 125 0.02 0.910 0.099 0.918 0.951
Yahoo-A2 256 eachtime 100 0.02 0.876 0.121 0.873 0.911
NAB-AWS-CPU 128 eachtime 100 0.04 0.931 0.061 0.923 0.965
NAB-AWS-Disk 256 eachtime 25 0.005 0.955 0.086 1.000 0.972
NAB-AWS-Network 512 eachtime 125 0.0 0.999 0.003 1.000 0.999
NAB-Real-Taxi 128 nulldetect 50 0.08 0.836 0.124 0.800 0.872

Table 3.4: Table containing optimal configurations of Isolation Forest for each
dataset in the terms of F1 score. Last column is the best AUC achieved by
the method on a given dataset (possibly with different configuration).
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Figure 3.5: Impact of the ensemble size on the Isolation Forest performance.

3.2.4 Results of Hierarchical Temporal Memory

For all tested datasets, the usage of anomaly likelihood yielded worse F1 scores
and AUC then the usage of raw anomaly score. Therefore, all following re-
sults are for the raw anomaly score. Based on the expectation of the original
authors, this conclusion can be explained by the used datasets that are not
very noisy and therefore the anomaly likelihood does not have an opportunity
to bring some benefit.

The experiments with various values of the resolution showed that the
HTM is insensitive to this parameter on all tested datasets when the resolution
is < 0.001. The differences in F1 score were negligible (< 0.5%).

Parameters of the model with the highest F1 score for each dataset can be
found in the Table 3.5.

Dataset Resolution Cont F1 FPR Recall AUC
Yahoo-A1 0.01000 0.08 0.784 0.170 0.744 0.849
Yahoo-A2 0.00001 0.16 0.866 0.159 0.893 0.886
NAB-AWS-CPU 0.00001 0.08 0.912 0.099 0.923 0.931
NAB-AWS-Disk 0.00001 0.5 0.843 0.039 0.750 0.841
NAB-AWS-Network 0.00001 0.5 0.795 0.014 0.667 0.809
NAB-Real-Taxi 0.00001 0.08 0.833 0.132 0.800 0.816

Table 3.5: Table containing optimal configurations of HTM for each dataset
in the terms of F1 score. Last column is the best AUC achieved by the method
on a given dataset (possibly with different configuration).

3.2.5 Results summary

The results show comparable performance of Isolation forest (best for Yahoo-
A1, NAB-AWS-Disk, NAB-AWS-Network), LOF (best for NAB-Real-Taxi)
and Moving Average (best for Yahoo-A2, NAB-AWS-CPU ). None of the ana-
lyzed methods is significantly better than the others on any dataset (difference
in F1 and AUC between the best method and the second best method is< 6%).
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Surprising fact is the low performance of the HTM in comparison with other
methods even if its surely the most complex one. The graphic representation
of the final results can be found in the figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11.
In each of these plots, there are two sets of models. There are the best models
per method in terms of F1 score on the left side, resp. in terms of AUC on the
right side. The numbers under the method names on the left side represent
the NAB ranking for the models (the absolute numbers are not stated because
they have no meaningful interpretation).

From the summary Table 3.6 it can be seen that for the vast majority of
cases (specific method on a specific dataset), some non-trivial form of a con-
cept drift detection yielded better results than the null concept drift detector
(nulldetect method). Interesting is also the fact that the relearning after each
new data point (eachtime method) is not optimal in roughly half of the cases.
In these case, the relearning after each data point probably causes the under-
lying models to absorb some noise that is ignored by the other concept drift
detection methods. An important result in the context of this thesis is that
the performance of the proposed concept drift detection method based on the
anomaly ratio and the complementary CDF (ratio method – 2.1.1.1) is very
good. According to the results, this method is optimal in more cases than
comparing the distribution of the data points (distribution method – 2.1.1.2).

Concept drift detection method Optimal in # cases
nulldetect 2
eachtime 8
distribution 2
ratio 6

Table 3.6: Number of cases when the various concept drift detection methods
have been found as optimal. A case is considered to be the performance (F1
score) of a specific anomaly detection method on a specific dataset.
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Figure 3.6: Bar chart comparing the best results of all analyzed methods on
the Yahoo-A1 dataset in terms of F1 score, AUC and NAB ranking.

HTM
4

IsolationForest
3

LOF
2

MovingAverage
1

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

0.87 0.88 0.89
0.94

0.89 0.87 0.87
0.94

0.16 0.12
0.08 0.05

F1 score
Recall
False Positive Rate

HTM IF LOF MA
0.88

0.90

0.92

0.94

0.96

0.98

1.00

AU
C

0.886

0.911
0.902

0.973

AUC

Figure 3.7: Bar chart comparing the best results of all analyzed methods on
the Yahoo-A2 dataset in terms of F1 score, AUC and NAB ranking.
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Figure 3.8: Bar chart comparing the best results of all analyzed methods on
the NAB-AWS-cpu dataset in terms of F1 score, AUC and NAB ranking.
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Figure 3.9: Bar chart comparing the best results of all analyzed methods on
the NAB-AWS-disk dataset in terms of F1 score, AUC and NAB ranking.
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Figure 3.10: Bar chart comparing the best results of all analyzed methods on
the NAB-AWS-network dataset in terms of F1 score, AUC and NAB ranking.
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Figure 3.11: Bar chart comparing the best results of all analyzed methods on
the NAB-Real-Taxi dataset in terms of F1 score, AUC and NAB ranking.
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3. Experiments

The performance of the moving average is notable because it is a very
simple method compared to the other ones. Especially interesting is the result
on the Yahoo-A2 and NAB-AWS-CPU datasets where its the best method.
In the case of Yahoo-A2 dataset, it is even the best method by the largest
observable difference (5% in F1 and 6% in AUC). This might be caused by
the synthetic origin of this dataset. A representative example time-series
from this dataset can be found in the Figure 3.12. It clearly shows, that the
dataset consists of time-series generated by a relatively simple process with
artificially inserted anomalies. This synthetic nature is apparently suitable
for the moving average. The dataset NAB-AWS-CPU contains only point
anomalies and minimal concept drift, which probably also suits to the moving
average.
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Figure 3.12: Two sample time-series from the synthetic Yahoo-A2 dataset.
The x-coordinates of the ground-truth anomalies are marked with the red
points at the underside of the plots.

The very good results of the moving average suggest that the anomalies in
the chosen datasets are not very hard to detect. The low relative performance
of the HTM might be caused by this property of datasets. It possible that
on the different datasets that contain some more complicated phenomena,
the HTM could utilize its internal complexity and outperform the simpler
methods.

The NAB ranking is not completely consistent with the other metrics.
However, this is an expected result because the NAB score largely depends
on the selected application profile and there are very small differences in F1
score and AUC.

For other mentioned results, no possible explanation has been found.
Datasets have been statistically and visually examined and no property pro-
viding such explanation emerged. Also it is not possible to say, that one
method has in general e.g. higher recall or FPR.
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Chapter 4
Discussion

In the thesis, three novel approaches have been proposed:

1. concept drift detection by anomaly ratio and complementary CDF (sec-
tion 2.1.1.1),

2. concept drift detection by comparing multivariate distribution of data
points and yielded anomaly scores (section 2.1.1.3),

3. using other distribution than uniform one for selecting the split point of
Isolation Forests (section 2.2.4.1).

The experiments confirming the feasibility of the first proposal have been
performed. The future works might explore the second proposal for concept
drift detecting by comparing the multivariate distributions. However, it re-
quires the anomaly detectors to yield an anomaly score (not only labels) and
therefore it is not so widely applicable. Moreover, to properly pursue this ap-
proach, a statistical test that is able to compare two multivariate distributions
will have to be carefully chosen. The third proposal might be useful for the
future works for which enough background domain knowledge about the data
will be available.

Current experiment design could be improved by taking into an account
the situations when the anomaly detectors are able to detect an anomaly but
there is a delay between an anomalous data point and the moment when the
detector reveals an anomaly. For example, the ground-truth anomaly label is
on the data point xt, but the detector yields the anomaly label k data points
later on xt+k. Some detectors could even make early detection (an anomaly is
detected on xt−k). In current experiment design, this behaviour would result
in one false negative detection and one false positive detection. This behavior
could be changed by placing a window around the ground-truth label that was
briefly described in the introduction to NAB scoring (3.1.1). If the detector
yields several positive anomaly labels in one window, only single true positive
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4. Discussion

detection is counted. No positive label yielded for the whole window would
result in a single false negative detection. Next, the true detections at the
beginning of the window would be scored better than at the end of the window.
However, this technique brings up many questions. For example, should be
the detector that is making earlier detections but with lower recall considered
better than the detector with higher recall and later detections? What is the
proper weighting function? How large should be the anomaly window? Should
the window be centred around the anomaly or shifted backwards or forwards?
Correct answers to these questions are heavily domain-dependent, however, it
represents a possibly interesting topic for another work that is more focused
on some specific domain.

All chosen datasets are univariate. Such data is very common in many
real-world scenarios involving the online anomaly detection. However, if some
future works will be dealing with multivariate data, it might by interesting to
test methods like LOF or Isolation Forest that naturally supports multivariate
datasets.

In the description of the Moving Average, there is a note about using
this method to detect anomalous windows instead of only anomalous data
points. This approach was not pursued in this thesis because there are similar
problems with evaluation and acquisition of suitable datasets as described in
the previous paragraphs. However, for some application domains, this could
be a feasible approach. Also, the methods like LOF or Isolation Forest can
be adapted to this task by considering the windows to be equivalent to the
multivariate data points (e.g. a window of 16 univariate data points is a single
multivariate data point with 16 dimensions).

Although that the results show good overall performance, future works
might try to fine-tune the parameters of the concept drift detectors (thresholds
and p-values) to achieve even better results.

In the performed experiments, the length of the relearning window was
chosen to be equal to the window used for concept drift detection. This is
a straightforward way that made the implementation and experiments less
complicated and also no reason was found to use different lengths. However,
the usage of different lengths is possible.

Also, the future works might consider testing more than one NAB ap-
plication profile. The profiles are significantly domain-dependent which was
undesired for this thesis, however, for other works, it might be a benefit.
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Conclusion

Anomaly detection is an important problem within various research and ap-
plication domains. There is a lot of literature on the topic of the general
anomaly detection. However, when this problem is narrowed to the online
anomaly detection in time-series, the amount of available literature is signif-
icantly lower. Moreover, there is no well-established theoretical framework
around the online anomaly detection in time-series. Therefore, in the begin-
ning, this thesis provides a consolidated view and terminology on this topic
that is used to propose a design of a general anomaly detection system that
enables to orthogonally combine various anomaly detection methods and con-
cept drift detection methods.

A major part of the thesis focuses on four specific anomaly detection meth-
ods (moving average, local outlier factor, isolation forest and hierarchical tem-
poral memory). An experimental framework has been designed in order to test
interesting properties of the detectors as well as to compare them on five real-
world dataset and one artificial dataset. This framework incorporates classic
machine-learning metrics like recall, false positive rate, F1 and AUC as well as
less widely known metric called NAB score. Relatively large number of exper-
iments (around six hundred thousand of evaluated time-series) were executed.
The results supports various hypotheses made about the methods’ behaviour.
For the majority of results that do not comply with the expected behavior or
were otherwise notable, explanations were proposed. Main conclusion is that
no method is better than the others on all tested datasets. Only the hierar-
chical temporal memory lags behinds the other methods by a small amount.
For the other three methods, the results show F1 score and AUC very close
or above 90% for five datasets and roughly 83% on remaining one dataset.

A significant part of the thesis deals with the problem of concept drift
detection. Several methods found in the literature were described and tested.
Two new approaches combining the ideas from these methods were proposed.
One of these approaches was tested and the experimental results confirm its
feasibility.
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Appendix A
Mathematical symbols

N (µ, σ) normal (Gaussian) distribution with mean µ and
standard deviation σ

N domain of natural numbers (not containing 0)

R domain of real numbers

R0,+ domain of non-negative real numbers

X,Y,C,D sets

Xa,b matrix containing a rows × b columns

x, y, σ, τ scalar values

x,y,xi,yi column vectors (matrices m × 1 where m is the
number of vector components)

XT , resp. xT transposition of matrix X, resp. vector x

xi,k k-th component of vector xi
{1, 2, 3, . . . , n} set containing natural numbers from 1 to n

A,D, E ,F morphisms
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Appendix B
Acronyms

ANN Artificial Neural Network

AUC Area Under Curve

CDD Concept Drift Detection

IoT Internet Of Things

LOF Local Outlier Factor

NAB Numenta Anomaly Benchmark

ROC Receiver Operating Characteristics

WL Window Length
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Appendix C
Contents of enclosed CD

Data ............. folder containing the instruction for obtaining datasets
DataPreprocessing...........Jupyter notebooks for data preprocessing
Models................Python script for training and evaluating models
ResultsProcessing.Jupyter notebooks for processing of acquired results
ResultsRaw.............................CSV files with acquired results
Thesis.......................LATEX source codes and PDF of the thesis
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