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Abstract

The goal of this thesis is to evaluate the use of neural networks,
which are based on a relational approach for automatic evaluation of
machine translation. This approach makes use of a set of relational
rules, which serve as a template and which, together with relational
data can be used for creating neural networks. For the machine
translation quality evaluation a metric called Human UCCA-based
Machine Translation Evaluation is used, both for leaves and internal
nodes of tree representation of the input data. Part of the experiment
will be comparison of the evaluation of translation from English to
four different languages. Relational approach will be compared with
feature-based approach with the use of neural networks.

Abstrakt

Tato práce má za ćıl vyhodnotit použit́ı neuronových śıt́ı založených
na relačńım př́ıstupu pro automatickou evaluaci strojového překladu.
Tento př́ıstup využ́ıvá sadu relačńıch pravidel, která slouž́ı jako tem-
plate a která, spolu s relačńımi daty, může být využita pro vytvořeńı
neuronových śıt́ı. Jako ohodnoceńı kvality strojového překladu je
použita metrika Human UCCA-based Machine Translation Evalua-
tion a to na listech i vnitřńıch uzlech stromové reprezentace vstupńıch
dat. Součást́ı experimentu bude porovnáńı evaluace překladu z An-
gličtiny do čtyřech r̊uzných jazyk̊u. Relačńı př́ıstup bude porovnán
s feature-based př́ıstupem s využit́ım neuronových śıt́ı.
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1. Introduction

The idea of machine translation of a text or a speech from one hu-
man language to another is not a new phenomenon. The attempts to
have some sort of automated way of translation may be traced way
back, even before computers were available. In its beginnings, ma-
chine translation had much to do with cryptography, because code
breaking and tracking foreign ciphered messages was one of the main
tasks for which the early computers were used. Later on the focus
was more on the machine translation of technical, scientific as well
as legislative documents. Hutchins (2005) gives a quick overview
of this topic. Currently, machine translation is used for work with
various types of online content. The ultimate goal of machine learn-
ing research in the field of machine translation is to have a system,
which would produce translated text, that would be no worse than a
translation of the same text by a human being. Ideally, this should
work between any two languages. So far however, this doesn’t exist.
There is always some error on the output. In some cases, the error
might be very low, in fact low enough, that the translation may be
labeled as an acceptable translation. The main idea of this thesis is
to use deep learning and to look at ways how the quality of machine
translation could be evaluated automatically. Basically, if we have
a source text and it’s machine translation to another language, we
want to be able to decide whether the translation is good enough to
be acceptable by a set of introduced standards or not.

This thesis consists of three main parts. The first part describes fun-
damental theoretical principles behind Natural Language Processing
(NLP). It explains what statistal NLP is and describes language mod-
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2 CHAPTER 1. INTRODUCTION

els which are commonly used in NLP. Then it describes how sentences
can be represented as tree structures and how additional syntactic,
semantic and morphological information can be stored within these
tree structures. Finally, the UCCA semantic representation scheme
and the HUME semantic evaluation measure will be described. These
two concepts will be used in the most significant part of this thesis,
which will be learning using relational rules.

The second part of this thesis talks about a feature-based approach
towards classification of machine translation with the use of neural
networks. In this chapter we are going to define a feature vector
and we are going to use existing tools and functions for creating and
learning a neural network. The results obtained will serve as values
for comparison with the main part of this thesis, to see whether we
can get any better with relational-based approach.

The third and most important part of this thesis is the part ded-
icated to relational-based approach. We will work with annotated
trees representing translations of a text from English to four target
languages, Czech, German, Polish and Romanian, which will serve
as our input data. Several relational rules sets will be created and
run on several sets of input data. These input data sets will include
separate sets for each target language as well as combination of two
or more target languages to see whether learning on more languages
combined can bring us better results. Testcases with rules sets tak-
ing into account semantics will also be performed.

In the chapter Experiments, results from the previous two parts will
be presented, compared and discussed. Based on all the results we’ll
have, the best approach will be chosen as a starting point for possible
future work.



2. Natural language processing

2.1 Statistical NLP

Statistical Natural Language Processing describes a process, whose
input is a text written in a natural language and which outputs statis-
tical data about this text. People have been interested in statistical
data since always. One such example can be found in the field of
cryptography called cryptoanalysis. The substitution cipher, which
encodes a text by replacing the letters in the plaintext to obtain the
ciphertext, can be broken by frequency analysis. The frequency of all
letters are counted in the ciphertext, then the most frequent letters
are replaced by the most common letters of the alphabet. In English,
the most common letters are E, then T, then A. In a similar way,
frequency analysis can be used to find the most frequent pairs or
groups of letters. The basic statistical data we are interested in are
typically frequencies of words, collocations and phrases. Individual
words of collocations sometimes don’t stand right next to each other.
For such cases we may be interested in another statistical informa-
tion, so called mean offset. Say, there is an article about people who

3



4 CHAPTER 2. NATURAL LANGUAGE PROCESSING

are drinking tea. The article contains following collocations:

a) cup of tea
b) cup of black tea
c) cup of strong tea
d) cup of very strong tea

We can compute the mean offset between cup of and tea as follows:

1
4 (1 + 2 + 2 + 3) = 2.0

Other information which we are interested in are the deviations of
the individual offsets from the mean. This is called variance and here
is how to compute it:

s2 =
∑n

i=1(di−d)2
n−1

n - how many times the collocation occur in the text
di - offset for the collocation i
d - mean offset

For our example with the cup of tea the variance is computed as:

s =
√

1
4−1((1− 2.0)2 + (2− 2.0)2 + (2− 2.0)2 + (3− 2.0)2) ≈ 0.67

If the variance is low, then the distance between the two words is usu-
ally about the same. If the variance is zero, then the words within a
collocation have always the same distance.

2.2 Language models

In NLP, language model is understood to be a probability distribu-
tion. Manning et. al. (2008) describes language model as a function,
which puts a probability measure over strings, which are drawn from
a certain vocabulary. There are situations where we are interested
in how many and what words follow after some other words. Typ-
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ing first few words of a phrase into a search engine will offer a user
the most common words which follow in the current context. Other
situation could be the study of verb valency, the capability of verbs
to control (bind) other verb arguments. Let’s consider a scenario
where, reading some text, we obtained a sequence of words W.

W = (w1, w2, ..., wn)

Based on the chain rule in probability theory we get the probability
p(W).

p(W ) = p(w1, w2, ..., wn) = p(w1) x p(w2|w1) x ... x p(wn|w1, w2, ..., wn−1)

Theoretically, we could compute the probability p(W) using all the
words which have been read from the beginning until wn. To make
things less complex, we only work with a certain number of the most
recently read words. Such a subsequence of words is called an n-gram.
There are two reasons for this: working with too many variables isn’t
practical and we do not have an unlimited memory.

2.2.1 n-gram Language Model

n-gram is defined as a sequence of n items, typically words, in a given
text. Terminology for n-gram names is based on the value of n:

n n-gram name
1 unigram
2 bigram (or digram)
3 trigram

For the values of n ≥ 4, n-gram names follow a pattern, where n is
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replaced by the number of subsequent elements.

4 four-gram (or 4-gram)
5 five-gram (or 5-gram)
etc.

The value of n says how far back we look when parsing the text,
i.e. with 4-gram model, we look at the current word plus the three
preceding words.

2.2.2 n-th order Markov model

The task of language modeling is to correctly predict the next word
given certain number of previous words (Manning C.D., Schütze H.
(2010), p.191). The most efficient (in terms of memory efficiency)
would be such a model, which would be able to predict the next word
solely based on the current word. Markov model represents a general
idea for this type of behaviour. In Markov model, we have a set of
states and we are able to move from one state to another state with
a certain probability, but there is no impact of any of the previously
visited states on where to go from the state, we are currently at.
Yes, such a language model would require no extra memory. Once
we moved from one state to another by reading the next word on the
input, all the history which has been read so far, could be thrown
away and forgotten. This characteristic of a process would satisfy
the definition of Markov property - the conditional probability dis-
tribution of future states depends only on the current state, not on
any of the previous states (Serfozo R. (2009), p.2). Since we don’t
want to throw away the history immediately, we need to introduce
more memory into our model by using a higher order Markov model.
In order to compute the probability p(W), we need to know (and
remember) not only the current state (i.e. the current word), but
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also n preceding states (words).
For an n-th order Markov model it holds that:
p(xi|xi−1, xi−2, ..., x1) = p(xi|xi−1, ..., xi−n)

Consider the example in Figure 2.1. There is a set of four states
S = {x1, x2, x3, x4} and we are able to get from one state to any
other state with some probability. Once we visit all states, we’ll au-
tomatically get to the end. The value of n is for example 1. So we
have the 1st order Markov model, which means, that the probability
of getting to a state depends on one previous state.

Figure 2.1: 1st order Markov model

We want to know the probability of going through all the states in
this order: x1, x2, x3, x4. According to the general product rule (chain
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rule) p(x1, x2, x3, x4) would be calculated as:

p(x1, x2, x3, x4) = p(x1) x p(x2|x1) x p(x3|x2, x1) x p(x4|x3, x2, x1)

but since we are working with the 1st order Markov model, we can
simplify the formula as follows:

p(x1, x2, x3, x4) = p(x1) x p(x2|x1) x p(x3|x2) x p(x4|x3)

The general formula to compute the probability of the 1st order
Markov model for k states is then:

p(x1, x2, ..., xk) = p(x1) x
∏i=k

i=2 p(xi|xi−1)

As we can see, the n-th order Markov model is a general idea of a
process for which, in the field of Natural Language Processing, the
n-gram Language Model is used.

2.2.3 Maximum Likelihood Estimation (MLE)

MLE is a method of estimating the values of parameters, given some
observed data, by taking the values of parameters which maximize
the likelihood of observed data. The task in MLE is to find a dis-
tribution function which, with the highest likelihood, represents the
data.
In our case, we’ll look at MLE example, which works with n-grams.
We are interested in probabilities p(w1, ...wn) and p(wn|w1, ..., wn−1),
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where w1..n are words of a certain n-gram.

We know the Bayes’ formula for computing conditional probabilities:

P (B|A) = P (B∩A)
P (A)

We’ll use an inferred equation from the Bayes’ formula for our case:

p(wn|w1, ..., wn−1) = p(w1,...,wn)
p(w1,...,wn−1)

Translated to a human language, this asks, what is the probability of
the nth word to be wn, given the fact that the previous n− 1 words
were w1, ..., wn−1 ?
In our example, we have parsed a text from a certain training corpus,
we’ve found that there are 100 instances of the bigram the only. In
75 cases out of those 100 instances this bigram was followed by the
word one, in 10 cases by the word reason, in 10 cases by the word
thing and in 5 cases by the word known. We can already see, that
putting these values into the above formula will give us the proba-
bility estimate of what word is most likely to follow.

p(w3 =′ one′|w1 =′ the′, w2 =′ only′) = p(w1=
′the′,w2=

′only′,w3=
′one′)

p(w1=′the′,w2=′only′)
=

75
100 = 0.75

We get the relative frequency table:

p(w3 =′ one′) = 0.75
p(w3 =′ reason′) = 0.1
p(w3 =′ thing′) = 0.1
p(w3 =′ known′) = 0.05
p(w3 = wother) = 0.0

We have assigned zero probability to any other word wother, unseen
in the training text.
Our maximum likelihood estimate is the probability estimate, when
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using relative frequency values.

The biggest disadvantage of using MLE for probability estimates
in NLP is the fact, that MLE will assign zero probabilities to any
unseen data. Probabilities of longer n-grams is computed by mul-
tiplying the probabilities of shorter n-grams and so we may end up
having a zero probability for an ordinary, common sentence, only be-
cause its subpart didn’t occur in the training corpus. To avoid this,
we can use the method called smoothing or discounting (but they
mean the same thing). This method assigns very small, non-zero
probabilities to data not seen in the training corpus. At the same
time, the probabilities of the known data must be slightly discounted
(decreased) so that all the probabilities add up to 100%.

2.3 Tectogrammatical Representation

In the previous chapters we were looking at statistical methods for
NLP. We were able to go through some text, take the individual
words, use them merely as tokens, do some calculation and at the
end we obtained some probabilistic information. Lexical data - to-
kens - are very important for machine translation. We need to know
how one word translates from one language to another, but obviously
this alone is not sufficient for a good machine translation.

Team at the Charles University in Prague introduced a concept called
Functional Generative Description[6]. This concept consists of three
layers which capture lexical, grammatical and semantical informa-
tion, relationships and dependencies between clauses. Sentences are
then represented as tree structures where the words are represented
by nodes with annotation labels. The layers are as follows.

m-layer : morphological layer - deals with lexical analysis, tokeniza-
tion, lemmatization and assigns morphological categories to words.
The output of this layer for each word is a tuple which consists of the
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original form of the word, a lemma of the word and a morphological
tag.

a-layer : analytical layer - presents sentences as tree structures, words
are represented as nodes, captures syntactic information

t-layer : tectogrammatical layer - captures linguistic meaning of sen-
tences. This layer also captures things which are not explicitly stated
in the sentence, but are understood from the text. I.e. in the sen-
tence I told you yesterday..., the t-layer would indicate that there
is a topic, which was discussed yesterday. T-layer provides seman-
tic and syntactic information, topic information as well as grammar
information. Things like tenses, gender or case are covered in the
t-layer.

Example of a tectogrammatical tree structure, by Cinková et al.
(2009) for the sentence A Lorillard spokewoman said: ”This is an
old story.” is shown in the following figure.

Figure 2.2: Tectogrammatical tree structure[7]
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You can see several semantic labels in the Figure 2.2. They repre-
sent functions of the words in a sentence. ACT is for actor, who is
saying something. ADDR is for addressee, actor is saying something
to someone, here that person is unspecified - substituted by the
label #gen (generalized). EFF stands for effect (what the actor is
saying). Structuraly similar to the tectogrammatical tree structures
are the UCCA trees.

2.4 Machine Translation

Previous subsections of the Chapter 2: Natural Language Process-
ing talked about representations and models of text used for machine
translation, now we will look at the Machine Translation (MT) it-
self. Machine translation is a process of translating a text from one
human language to one or more other human languages. There are
several approaches to machine translation, the basic principles of the
three main ones will be discussed here.

2.4.1 Statistical MT

The most straightforward statistical MT is based on word-based and
phrase-based translations. Given an input sentence, a word-based
MT takes a single word and based on the conditional probability as
described in the Subsection 2.2.3 (MLE) it looks for a correspond-
ing target word. Phrase-based model on the other hand first finds a
good segmentation of the source sentence into several phrases, then
the translation happens for each phrase separately and at the end
translated phrases are put back together with a possibility of change
of their order. For training of a phrase-based MT model parallel
corpora are used. Och and Ney (2000) describe alignment template
approach, where alignment templates are ”pairs of phrases together
with an alignment between the words within the phrases”. This ap-
proach, in effect, combines a word-based MT with a phrase-based
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MT. To determine how good an alignment is, the Alignment Error
Rate (AER) can be computed (see the subsesction 2.4.4 for the de-
tails). Current state of the art tool for phrase alignment is a tool
called GIZA++[8]. Another useful tool for training translation model
for a pair of any two languages (using their parallel corpus) is a ”sta-
tistical machine translation system” called Moses[15]. Statistical MT
covers many topics or issues which could be looked at for further
investigation, such as finding the best way to split sentences into
phrases, how to deal with negative verbs in different languages or
looking for the best way for smoothing the model, etc.

2.4.2 Neural MT

Neural networks have become widely popular, especially since 2016
when Google started using neural machine translation in Google
Translate[24]. Apart from the fact that Neural MT is structurally
different to Statistical MT (building a neural network vs. creating
a phrase-based model), the main difference between Neural MT and
Statistical MT is that Neural MT process reads and translates a
whole sentence at a time, i.e. there are no translations of individual
words or phrases like in Statistical MT. It uses so-called encoder-
decoder model. The principle lies in encoding the input sentence as
a sequence of vectors x = (x1, ..., xTx

) from which the context vec-
tor c is computed. The translation of the output word y is then
predicted from the probability over the word yT , given the context
vector c and all previously predicted words for yT : y1, ..., yt−1

p(y) =
∏T

t1
p(yt|{y1, ..., yt−1}, c) where y = (y1, ..., yTy

)

Each conditional probability then equals:

p(yt|{y1, ..., yt−1}, c) = g(y{t− 1}, st, c)

where g is a nonlinear function which gives the probability of yt and
st is the hidden state of the recurrent neural network. The descrip-
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tion of the principle of recurrent neural network MT can be found in
the paper by Bahdanau D. et. al (2016).

2.4.3 Rule-based MT

This approach uses morphological and syntactic rules as well as se-
mantic analysis of the source text and the target text. During the
translation process, part-of-speech information (whether it is a verb
or a noun, etc.) is collected for each word. Then each word is an-
alyzed for obtaining syntactic information (tense, person, plural vs.
singular). After that the sentence is parsed for grammatical infor-
mation (subject, noun, adjective, etc.) Finally the target word is
translated and its appropriate morphological form is looked up. Fig-
ure 2.3 shows the overview of the Rule-based machine translation
process. Similar approach can be taken to the evaluation of the
quality of MT. In fact, the core part of this thesis will be dedicated
to finding relational rules which would automatically decide if the
translation is good or not.

Figure 2.3: Rule-based MT scheme[5]

2.4.4 Evaluation Metrics

For our purposes we’ll work mainly with the evaluation metric called
HUME. There exist several other metrics for evaluating the quality
of machine translation, which will be briefly described here. Some of
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the metrics use the F-measure.

F-measure - sometimes called an f-score is a statistical
measure of accuracy given by the following formulas:

F =
(β2 + 1)× P ×R
β2 × P +R

F ... F-measure
P ... Precision - how many selected items are correct (relevant)

P =
correct answers given

answers given
(×100%)

R ... Recall - how many correct (relevant) items are selected

R =
correct answers given

correct answers possible
(×100%)

β ... a constant, using which we can change the weight of
precision, so that it (precision) has higher/lower weight than
recall in the given task calculation

WER - Word Error Rate
Based on the Levenshtein distance comparison, WER takes into ac-
count number of substitutions, deletions, insertions and their sum
which is the same as number of words which should be correct.
WER is used in machine translation as well as in speech recogni-
tion systems[14].

WMT Relative Ranking (RR) and Direct Asessment (DA)
RR and DA are metrics which were used at the Conference on Ma-
chine Translation (WMT) in Berlin in 2016, see the paper by Bojar
et al.(2016). RR is a human assessment process, where the judges
evaluated 5 possible machine translation outputs and ranked them
best to worse. DA is also a manual evaluation, where a judge is in-
terested in adequacy as well as fluency of the output text.
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HMEANT - Human machine translation evaluation met-
ric
HMEANT calculation, introduced by Lo C., Wu D. (2013), is based
on weighted f-score. The focus is put on verbal structures, i.e. trans-
lations with omitted verbs are assigned very low score.

AER - Alignment Error Rate - Introduced by Och and Ney
(2003), it is a measure used in word-based and phrase-based MT.
Sometimes it is not straightforward to perform alignment between
single words, for example if we have a word which can be aligned
to one or more word in the target text and/or vice versa. Some-
times there might be things like idioms or function words which are
not translated to the target language. So we must count with cer-
tain ambiguity there. In a manual alignment there are two kinds of
alignments: S - sure alignments with no ambiguity and P - possible
alignment with some ambiguity. A - then represents the quality of
an alignment, computed from precision and recall, where:

recall =
|S ∩ P |
|S|

precision =
|A ∩ P |
|A|

The AER is based on F-measure calculation:

AER(A,P, S) = 1− |P ∩ A|+ |S ∩ A|
|S|+ |A|

BLEU - Bilingual Evaluation Understudy
BLEU score is a value between 0 and 1. It uses modified n-gram
precision to express the quality of machine translation. BLEU is
a generally accepted metric. Before assigning a score to a transla-
tion, we need a reference (correct) translation. The score is computed
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based on the occurence of words in a candidate translation compared
to the reference translation. One disadvantage is, that shorter sen-
tences achieve statistically better scores than longer sentences. Full
description of the algorithm can be found in the paper by Papineli
et al.(2002)

2.4.5 UCCA - Universal Conceptual Cognitive Annotation

Before we look at HUME evaluation metric, we need to look at
UCCA, a representation used by HUME. UCCA, introduced by Abend,
Rappoport (2013), is a scheme for semantic annotation. It is struc-
tured as a directed acyclic graph (DAG) where each leaf represents
a word in a text. Inner nodes (non-leaves) are called units, they
represent terminals or groups of words which, based on a certain se-
mantic consideration, represent a single entity. One UCCA structure
represents one interpretation of given text. Different interpretation
of the same text will then result into other graph which should have
the same leaves, but the structure of its internal nodes and edges
will differ. This is basically one of the main purposes why UCCA
has been introduced. We need the ability to express all the possible
semantics of how the text may be interpreted. UCCA has multilayer
structure. The lower levels in the graph focus more on the structure
of the text or sentence and the relations between the arguments.
Edges represent categories and show the relation between a unit and
its subunit(s).

Example of UCCA:

Figure 2.4: UCCA annotation graph[1]

This example was taken from the paper by Abend, Rappaport
(2013) and it is shown here to give the main idea how UCCA trees
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look like. More detailed specification follows.

Abend and Rappaport (2013) define a table of categories. The rela-
tion types in the table 2.1 are divided into 4 groups, based on how
they relate to a “Scene”. So let’s take a look at what a “Scene”
is. “Scene” is described as “movement or action” or a “temporally
persistent state”. It is meant to be used in any language and it
is similar to a “clause” in language theory. A Scene typically con-
tains one main relation, which serves as the anchor. It may contain
other less important relations, which are called Adverbials. Scenes
contain one or more Participants, which are either individual enti-
ties or other Scenes which play the role of a Participant. If there
is a set of categories which does not qualify to be a scene, then we
call those categories Centers. Non-scene set contains one or more
Centers. There are several types of non-Scene units. The first one
are Elaborators, which relate to a single Center. Then we have Re-
lators, which is a semantic relation between two or more Centers.
In the sentence “John and Mary bought a sofa together” two cen-
ters “John”and “Mary” are connected by a Relator “and”, while the
Elaborator “a” relates to a single Center “sofa”. Another type are
the units marked as Functions. They do not refer to an actual entity,
but form merely structural pattern of part of a sentence. Example
sentence: “It is OK to come late”. The “It” is a part of the sentence
but does not represent a specific entity, so the “It” is then marked
as the Function category.
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Overview of UCCA categories

Abbreviation Category Definition
Scene Elements

A Participant
Participant in broader sense, may include
location or abstract entities.

P Process
Main relation, usually an action or movement,
which evolves in time.

S State Main relation which does not evolve in time.
D Adverbial Secondary relation or temporary relation.

Elements of Non-Scene Units
C Center Categories which do not create a Scene.

N Connector
Relation which applies to two or more Centers,
and which highlights a common feature.

E Elaborator Relation which applies to one Center only.

R Relator
Other type of non-Scene relation, represents
either a top-down relation or a horizontal relation
between two units.

Inter-Scene Relations

H Parallel Scene
Links one Scene to others, if there exists semantic
connection.

L Linker Relations between one or more Parallel Scenes

G Ground
Relations between a speech and the Scene which
has a relation to that speech.

Other

F Function
A relation to an entity does not exist, but the
category is required by grammatical structure.

Table 2.1: UCCA categories

4 category groups

- Scene Elements
Elements which form a Scene. They relate to an event which is spe-
cific to a certain place, time or it is a generally valid scheme (e.g.
somebody likes something).

-Elements of Non-Scene Units
Elements which do have similar features, but do not form a Scene.
Example of this can be enumerations, e.g.: ”John, Peter and Mary”
or characteristics of one entity: ”top of the world”.
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- Inter-Scene Relations
One Scene plays the role of a Participant or Elaborator in other
Scene. Example sentence: “The movie I saw yesterday was good”.
“The movie I saw yesterday” is a Scene which plays a role in other
Scene which says that something (Participant) “was good”. Other
types of Inter-Scene Relations are Parallel Scenes and Linkers. These
often cover temporal or conditional relations between Scenes.

- Other
Categories which do not fall into any of the groups above. At the
moment there is just one category - the Function.

This categorization covers so-called Foundation Layer of UCCA struc-
ture. Abend and Rappaport go further and add additional layers to
the tree structure. As an example take the sentences “He replied
foolishly” and “He foolishly replied”. Differences which are more
subtle may be then expressed as additional layers, here to cover the
adverbial scope. Adding a new layer may however change the UCCA
structure of the foundation layer.

2.4.6 HUME - Human UCCA-based MT Evaluation

HUME is a semantic evaluation measure, which builds on the UCCA
semantic representation scheme. Its main presumption is that the
ultimate quality test of a machine translation system is going to be
human judgment. Humans, however, tend to have their own views
and opinions. To get a value, representing quality of a translation,
which may be considered good, we’d need judgment and evaluation
from more people. Also, we need to capture which parts of sentences
are translated correctly and which aren’t. Subsequences of sentences
with regards to machine translation have so far been evaluated as
either individual words or as n-grams. Now the area of our inter-
est are semantically defined units represented by UCCA structures.
HUME metric aggregates human evaluation of translation quality of
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these semantic units. One of the main advantages of this approach
is, that human eye is able to easily capture translations which seem
to be grammatically ok, but a native speaker would never use them.

Two levels of annotation are used in HUME. Color annotation is used
for atomic units, which are either individual words or phrases which
in the target translation are single words/units (“Took a shower” –
“dutschte”).

For atomic units annotation three colors are used:

Green – Correct, the meaning of the word or the phrase has been
preserved.
Orange – Partially correct, some parts of the translation are incor-
rect, but the overall sense has been preserved.
Red – Incorrect, the meaning of the original phrase/word has been
lost.

The non-atomic units are called structural units. They consist of
atomic units or/and other structural units.
For structural unit A/B annotation is used:

A – Adequate, translation is acceptable (though not necessarily
perfect).
B – Bad, relations between its sub-units are incorrect/lost.
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Figure 2.5 shows an example of a HUME annotation:

Figure 2.5: HUME annotation [3]

HUME score is then calculated as:

HUME(s, t) =
Green(s, t) + Adequate(s, t) + 0.5×Orange(s, t)

Units(s)

Green(s,t), Adequate(s,t) and Orange(s,t) are the numbers of corre-
sponding units. Units(s,t) is the number all units marked with any
label. The parameters “s” and “t” refer to the source text and the
target text.



3. Feature based approach

3.1 Feature vector

We need to define a feature vector, which is a set of values, which
will be used to classify our data. It will be based on HUME, since it
is the main metric for the evaluation of machine translation we are
working with. Each sample (meaning example) will be characterised
by the following attributes:

- SentenceId ... the sentence which the current subtree belong to

- GreenScaled
- OrangeScaled
- RedScaled
- AcceptableScaled
- BadScaled ... number of child nodes with Green (Orange, Red,
Acceptable, Bad) HUME annotation to the total number of child
nodes of a given sample

- MissingScaled ... number of child nodes with no annotation to
the total number of child nodes. Unfortunately the input data con-
tains some cases, where there is no annotation assigned to a child
node.

- TreeType ... this attribute will be added as an optional attribute,
it represents the tree type as defined in the subsection Basic LRNN
rules.

23
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- numberUCCA C
- numberUCCA E
- numberUCCA R
- numberUCCA F
- numberUCCA Other ... number of UCCA attributes of a given
type associated with child nodes.

- class ... finally, there is the class attribute

3.2 WEKA

WEKA - the Waikato Environment for Knowledge Analysis is a set
of tools for machine learning and data mining, developed by people
at the University of Waikato. It offers most of the functions for
data preprocessing, classification and regression, clustering and other
techniques used in machine learning.

The translation is evaluated either as A - acceptable (adequate) /
B - bad or as Green / Orange / Red. So it is obvious that this
will be a classification task. To demonstrate how classification in
WEKA works, we’ll first look at a baseline example, then we’ll look
for ways to make the baseline better. Final step will be to run the
classification process with all our data.

3.2.1 Weka example

The input files for WEKA are in the ARFF format (Attribute-
Relation File Format). It consists of the header part with the name
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of the relation and the list of attributes:

@relation train2hume

@attribute DocumentSource string

@attribute DocumentTarget string

@attribute color green, orange, red

and the data part:

@data

"While many cases of angina can be treated with medication

, a coronary angioplasty may be required to restore the blood

supply to the heart in severe cases .", "I když většina přı́padů

anginy pectoris může být léčena léky , pro obnovenı́ přı́vodu

krve do srdce u závažných přı́padů může být třeba koronárnı́

angioplastika .", green

"While many cases of angina can be treated with medication

, a coronary angioplasty may be required to restore the blood

supply to the heart in severe cases .", "Mnoho přı́padů , angina

pectoris , může být léčenı́ s léky , koronárnı́ angioplastika

může být potřebné k obnovenı́ přı́vod krve do srdce v závažných

přı́padech .", orange

"While many cases of angina can be treated with medication

, a coronary angioplasty may be required to restore the blood

supply to the heart in severe cases .", "Mnoho obaly angina

plechovka být pečovat s lék vencový plastika může být považováno

obnovit krev přı́vod do srdce bouřlivý obaly.", red

This was part of the arff file with the training data for our baseline.
The header tells us that there will be one source string, which in our
case is an English sentence, and one string with the target sentence
- the translation of the sentence into Czech. The final attribute is
the class attribute, which represents the HUME annotation as de-
scribed in the subsection dedicated to HUME and UCCA metrics.
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Green is the class for the correct (reference) translation, Orange la-
beled text is one of the machine translations for this sentence that
are available. The third sentence was created by translating each
word separately, it is the worst translation and therefore belongs to
the Red class. There are two other sentences in the baseline file, each
with the Green, Red and Orange cases. The whole content can be
found in the train2hume.arff file.

WEKA offers many classifiers, such as functions based on Bayes net-
works or tree algorithms (e.g. J48 - based on C4.5 decision tree,
developed by Quinlan (1993)), but for our baseline we are going to
use Multilayer Perceptron, this is the function which creates a neu-
ral network. Example of a neural network generated for the testcase
fb-1 can be seen in the following image.

Figure 3.1: Multilayer Perceptron



4. Relational Learning and Neural
Networks

4.1 LRNN - Lifted Relational Neural Networks

ANNs which are suitable for handling relational learning tasks are
called Relational Neural Networks (RelNN). This is not to be con-
fused with RNNs – recurrent neural networks, where connections be-
tween units may form cycles. RelNNs are right the opposite, they do
not form cycles, their units form feedforward neural network. Uwents
(2011) et.al. (page 6 – 2.2.1 Relational neural networks) states, that
the output function of RelNN is implemented as a feedforward neural
network.

LRNN is a concept, which has the ability to learn weights of la-
tent relational structures. So far, none of the other existing concepts
has the ability to learn weights of latent non-ground relational struc-
tures. Basically, LRNNs are templates for creating ground neural
networks. Grounding means that the NN consists of only ground
atoms. Ground atom contains no variables, it is basically a constant
(or has only ground terms as arguments).

The word “Lifted” refers to the fact that we work with the first
order logic.

Propositional logic → ”LIFT” → Predicate logic (1st order logic)

Lifted models are therefore first order (predicate) logic representa-
tions from which ground models can be unfolded. With unfolding,

27
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the number of layers in LRNN grows. LRNN doesn’t define some
specific ground model, but rather general set of ground models. I’ll
now briefly describe how LRNNs are formally defined by Šourek et
al.(2015), they are based on the Herbrand model H. If N is a LRNN
and N is its grounding, then:

- neuron representing a ground atom h in N is an atom
neuron Ah
- neuron representing a ground fact (h,w) in N is a fact
neuron F(h,w)

- ground rules are represented by rule neurons
- neurons with activation function g∗ are called aggregation
neurons
- inputs of an atom neuron are aggregation neurons, atom
neurons and fact neurons. Input weights are determined by the
outputs of aggregation and fact neurons.
- activation functions are defined as:
g∧(b1, ..., bk) = sigm(

∑k
n=1 bi − k + bo)

- g∧ has high output if all of its inputs are high
g∨(b1, ..., bk) = sigm(

∑k
i=1 bi + bo)

- g∨ has high output as soon as one of its inputs is high
g∗(b1, ..., bk) = maxi bi

The model consists of entities, properties which an entity satisfies
or not. Model also contains categories and sub categories. Each en-
tity can be described by its soft membership to these categories.

Assumption:
- entities have properties: HasProperty(e, p)± 1.0

Ground rules:
- entities have membership in categories: Wec : IsA(e, c)
- transitivity applies:IsA(A,C)← IsA(A,B), IsA(B,C)
- entities are determined by their category:
W ′

CeCp : HasProperty(A,B)← IsA(A, ce), IsA(B, cp),
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HasProperty(ce, cp)

The weights are learnt using SGD – Stochastic Gradient Descent.
How that works is well described in the paper by Šourek et al.(2015),
briefly: We have a set ε of training examples, each example is a
LRNN. Our aim is to find weights within each of these LRNNs so
that the cost of training individual atoms is minimized. Algorithm
iterates in random order over all LRNNS and updates weights by
gradient descent steps given some learning rate.

4.2 LRNN rules introduction

We are going to define rules, based on which the LRNN network will
classify the input data. Consider the most basic example: we define
rules, which say, that if there is a node Y labeled as green or red,
and a node X which is a parent node of Y, then the root node X will
be classified either as ”acceptable” or as ”bad”:

a1(a) :- green(Y), parent(X,Y).
a2(a) :- red(Y), parent(X,Y).
0.0 finalKappa(a) :- a1(a).
0.0 finalKappa(a) :- a2(a).

The value finalKappa(a) is the value of the output neuron. The set-
tings ”0.0 finalKappa(a) :- ...” means that the LRNN framework will
set the initial value of finalKappa as a random value (0.0). Then
follows the process of training of the network. Once the network
is fully trained we will be able to classify each tree either as 1.0 -
”acceptable” or as 0.0 - ”bad”. The input data have the following
structure:



30 CHAPTER 4. RELATIONAL LEARNING AND NEURAL NETWORKS

Figure 4.1: tree 1

Rules and results:
0.0 red(n16), parent(n15,n16).
1.0 green(n17), parent(n15,n17).
Example #0;

expected: 0.0; actual: 0.0

Example #1;

expected: 1.0; actual: 1.0

As expected, each of these two examples has been classified to be in
a different class.

Other, more complex, tree:

0.0 red(n16), parent(n15,n16).
1.0 green(n17), parent(n15,n17).
1.0 green(n18), parent(n15,n18).
1.0 green(n19), parent(n15,n19).

Figure 4.2: tree 2

For better clarity, the results are put into the table 4.1 and sorted top-
down by the example #. (Normally, the examples on the output are
in random order, since the input data are, by default, shuffled.) The
first column is the example number. The second column, Expected,
is the expected value, which is the leftmost value of the input data
(i.e. for the row with red(n16) this equals 0.0, for the rest it is 1.0).
The third column, Classified, is the class. Actual, is the computed
value of the output neuron, which is the fourth column. The last
column, Threshold, is the computed threshold based on which the
data is classified to be either 0.0 or 1.0.
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Results:

Example # Expected Classified Actual Threshold
0 0.0 0.0 1.387778E-17 0.5
1 1.0 1.0 1.0 0.5
2 1.0 1.0 1.0 0.5
3 1.0 1.0 1.0 0.5

Table 4.1: tree 2

Again, the actual classification meets the expected classification.
What happens if we change one of the examples with a green node
from 1.0 to 0.0 (in the last row):

0.0 red(n16), parent(n15,n16).
1.0 green(n17), parent(n15,n17).
1.0 green(n18), parent(n15,n18).
0.0 green(n19), parent(n15,n19).

Results:

Example # Expected Classified Actual Threshold
0 0.0 0.0 0.045264 0.36516
1 1.0 1.0 0.685055 0.36516
2 1.0 1.0 0.685055 0.36516
3 0.0 1.0 0.685055 0.36516

Table 4.2: tree 2

LRNN has enough correctly classified examples for training, so
the Example #3 in the table 4.2 has been classified to be 1.0, no
matter the change. Let’s revert the change and instead let’s try to
change the expected value of the example with the red node.

1.0 red(n16), parent(n15,n16).
1.0 green(n17), parent(n15,n17).
1.0 green(n18), parent(n15,n18).
1.0 green(n19), parent(n15,n19).
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Example # Expected Classified Actual Threshold
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0

Table 4.3: tree 2

Table 4.3 shows, that even the example with the red node has
been classified to be 1.0. There are not enough data with the red
nodes, in fact none, for training of our network, which is why LRRN
will not know that they should be classified as 0.0. So we cannot say
that LRNN has classified Example #0 incorrectly.

Next example will be a little bit more complex. In Figure 4.3 you
can see a tree with leave nodes n12, n14, n15, n17, n18. Each of
these leave nodes will have assigned a HUME color.

Figure 4.3: tree 3

Input data, which can be found in the file examples3b.txt, corre-
spond to the table 4.4. For the sake of simplicity there are only red
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leaves (R) and green leaves (G).

leave nodes

Ex.# class n12 n14 n15 n17 n18

0 1.0 G G G G G

1 0.0 R R R R R

2 1.0 G G R G R

3 0.0 G G G R R

4 1.0 R G R G G

5 0.0 G R R G R

6 1.0 R G R G R

7 1.0 R R G R G

Table 4.4: tree 3 - leave nodes

Rules (rules3.txt):

a1(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
acc(X) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
a2(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
acc(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
a3(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
a4(a) :- red(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
0.0 finalKappa(a) :- a1(a).
0.0 finalKappa(a) :- a2(a).
0.0 finalKappa(a) :- a3(a).
0.0 finalKappa(a) :- a4(a).
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Results:

Example # Expected Classified Actual Threshold
0 1.0 1.0 1.108886 0.351598
1 0.0 0.0 0.020673 0.351598
2 1.0 1.0 0.682522 0.351598
3 0.0 1.0 0.682522 0.351598
4 1.0 1.0 0.682522 0.351598
5 0.0 1.0 0.682522 0.351598
6 1.0 1.0 0.682522 0.351598
7 1.0 1.0 0.682522 0.351598

Table 4.5: tree 3

Class 1.0 is an acceptable translation - HUME label A, class 0.0
is a bad translation - HUME label B.
2 out of the 8 examples have been classified incorrectly. #5 and
#3 belong to the class 0.0, but LRNN has classified them as 1.0.
These two misclassified examples are very similar. They both have
the green node n12 and one of their subtrees has both children red.
The difference is in the other subtree where #3 has two green nodes
and #5 has one green node and one red node. If we look at the
rules again, you will find that there is no rule which would describe
a situation where the children of a subtree would have different color.
So we need to add a new rule (rules3b1.txt):

a5(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

Results of #3 and #5 are now:

Example # Expected Classified Actual Threshold
3 0.0 0.0 0.011725 0.412676
5 0.0 1.0 0.813626 0.412676

Table 4.6: tree 3

Example #3 is now correctly classified as 0.0. Example #5 is still
classified incorrectly. We would need to increase the number rules
for #5 to be classified correctly.
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4.3 LRNN for machine translation evaluation

Main task of this thesis is to create a system which would be able
to automatically evalute machine translation on a sentence level. In
other words, we are interested in the value (A or B) of the root node
of a give sentence.
In this section we’ll look at the situations which may occur within
the subtrees of our input data. Root node is represented here by
the variable X, child nodes by the variables Y1,...,Yn. The cases are
named based on the child node HUME labels. What needs to be
emphasized is the fact, that to have a good classifier, rules do not
need to cover every possible situation in the subtrees of our input
data. Weight learning of a good and to some extent generic neural
network is also important for good classification results.

4.3.1 Basic LRNN rules

Diagram
and LRNN rules Description

case G..G:

Figure 4.4: case G..G

Subtree with two or more child nodes labeled as
green. Logically the root of the subtree should
be A.

a1(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).

acc(X) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

The reason why there is the same rule twice, each time with a dif-
ferent left side, is that the root node may serve either as a root of
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the whole sentence, which is the first case aGG(a) or it may be an
internal node and serve as a child node of some tree hierarchically
higher, which is the second case acc(X).

case G:

Figure 4.5: case G

Single child node labeled as green is considered
A.

a1(a) :- green(Y1), parent(X,Y1).

acc(X) :- green(Y1), parent(X,Y1).

0.0 finalKappa(a) :- a1(a).

case A G:

Figure 4.6: case A G

Subtree with two children, where one of them
is A, is considered to be A. Even if the other
node wasn’t green, the subtree would still be
considered as acceptable. The reason being,
leaf labeled as A represents correct translation
of part of a sentence. Such correctly translated
sequence of words, concatenated with a single,
possibly incorrectly translated word, would
still be considered as acceptable. Two or more
incorrectly translated words might, however,
not be considered to be A.
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a1(a) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).

...

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

Here is the situation, which we talked about previously with the case
G..G. The left child node is labeled as A, but we do not know how
the underlying subtree look like, so the rules must be amended to be
able to cope with different scenarios.

case R..R:

Figure 4.7: case R..R

Two or more child nodes labeled as red are
considered to be B, bad translation.
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a1(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

acc(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

case R:

Figure 4.8: case R

Single child node labeled as red is considered B.

a1(a) :- red(Y1), parent(X,Y1).

acc(X) :- red(Y1), parent(X,Y1).

0.0 finalKappa(a) :- a1(a).

case B R:

Figure 4.9: case B R

Subtree with two children, one is B, the other
is R. The root node should be classified then as
B, bad translation. The rationale behind this is
similar to the case A G.

a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

.. see Appendix A

Note: Since in many cases the rules are quite similar, there is no
need to copy and paste many lines of text, where the difference will
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be only in one or two lines. In such situations, there will be a note ”..
see Appendix A”. You will find only the most important bits of the
rules stated here, whereas in Appendix A you will find the complete
list of all the rules for all the cases.

case G O:

Figure 4.10: case G O

The orange child node represents either a single
orange leaf or a subtree with two or more orange
leaves. Such a situation should be classified as
A. If there exists a green leaf and there is no red
leaf, then the subtree is acceptable. Internal
orange nodes within a properly trained LRNN
network should ideally have intrinsic value of
0.5.

a1(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

accx1(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

.. see Appendix A

4.3.2 Extended LRNN rules with UCCA annotations

So far the rules were based on the parent-child relations between a
root node and a child node, labeled by one of the three colors, G
- green, O - orange, R - red or by the labels A - acceptable or B -
bad. We have enough rules for creating a good LRNN network for
evaluation of machine translation. There might be cases however,
which are not so common. To be able to deal with such less frequent
situations, we will need to define more specific rules. Obviously the
aim is not to define rule for everything, that would be impossible.
Our scheme will be extended by UCCA annotation of the red node.
This will be introduced as an option in certain situations, so there
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will be a choice between standard rules (based on HUME labels only)
and extended rules with UCCA annotations, as described by Abend
O. and Rappoport A. (2013).
UCCA annotations which may have a negative impact on the trans-
lation are mainly:
C (Center) - as described in the subsection 2.4.5, Centers are those
units which do not create a scene, therefore if there are two children
connected via a root node where one child is labeled as C, then, even
though these two child nodes are not completely unrelated, their lin-
guistic and semantic bond might be somewhat lower then if they
were part of the same scene.
E (Elaborator) - also applies to non-scene units, more specifically
to a single Center. So E annotation may have similar impact as C
annotation.
R (Relator) - links two non-scenes units either on the same hierar-
chical level or top-down level, Similar impact as C annotation.
F (Function) - this annotation is used in cases where certain word
in a sentence is present only because the grammatical requires it to
be there. So if the translated word is there, but labeled as F, then
it might indicate that something is not right.

case G R:

Figure 4.11: case G R

If one child node is green and the other one
is red, then it seems logical, that the root
node will be classified as orange. However the
presence of certain UCCA labels might be the
factor why this would be classified rather as
red. (We are talking here about only two leaf
nodes, which is why R - red classification is
more suitable then B - bad.)
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a1(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccac(Y2).

a2(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccae(Y2).

a3(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccar(Y2).

a4(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccaf(Y2).

accx1(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccac(Y2).

accx2(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccae(Y2).

accx3(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccar(Y2).

accx4(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
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uccaf(Y2).

acc(X) :- accx1(X).

acc(X) :- accx2(X).

acc(X) :- accx3(X).

acc(X) :- accx4(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

0.0 finalKappa(a) :- a3(a).

0.0 finalKappa(a) :- a4(a).

case O R:

Figure 4.12: case O R

Since O node may represent more than one
orange node, whereas the R node represents
only one red node (it would have been labeled
as B if it covered more than one red node), then
we can hesitantly conclude, that the outcome
is going to be O. As in the previous case G R,
presence of certain UCCA annotation for the
red node could be the reason why the outcome
will be classified as R. Again, both version,
with and without UCCA rules, are stated here.

a1(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccac(Y2).

a2(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
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uccae(Y2).

...

accx1(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccac(Y2).

accx2(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccae(Y2).

.. see Appendix A

case G O R:

Figure 4.13: case G O R

One green node, one red node and one or
more orange nodes, this should be classified
as orange. Presence of C, E, R or F UCCA
annotations for the red node may be the reason
why this will be classified as R.

a1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3).

accx(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccac(Y3).

a2(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccae(Y3).

...

accx1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccac(Y3).

accx2(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
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red(Y3), parent(X,Y3), uccae(Y3).

.. see Appendix A

case A O R:

Figure 4.14: case A O R

This subtree consists of two or more green
nodes (child A), one or more orange nodes and
one red node. If it wasn’t for the red node,
this subtree would be classified as A. With the
single red node, it may still be classified as A,
for example if A represents a subtree with let’s
say 5 words, where all of the are G, in such a
situation one incorrectly classified word should
still be OK for acceptable translation of the
whole sentence. So we can’t really know. The
idea here is to distinguish between an ordinary
red node and a red node, which is really a
bad red node. If the red node has a UCCA
annotation C or E then this might be the case.
As opposed to previous cases (such as case G O
R), UCCA annotations R and F are not used
here, since we only look for extreme situations
where a single red node would indicate bad
translation of otherwise acceptable subtree.

a1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
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red(Y3),

parent(X,Y3).

.. see Appendix A

extended UCCA rules:

a1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccac(Y3).

a2(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccae(Y3).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccac(Y3).

accx2(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

red(Y3), parent(X,Y3), uccae(Y3).

.. see Appendix A

case A R:

Figure 4.15: case A R

Similar case to the previous one, should be
classified as A unless the red node has UCCA
annotation C or E.

a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

.. see Appendix A

extended UCCA rules

a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccac(Y2).

a2(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2), uccae(Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
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uccac(Y2).

accx2(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccae(Y2).

.. see Appendix A

case A O:

Figure 4.16: case A O

One A node (i.e. two or more green nodes), at
least one orange node, this case is quite clear,
will be classified as A.

a1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).

.. see Appendix A

case G O B:

Figure 4.17: case G O B

If part of a sentence is classified as bad transla-
tion, then the whole sentence can’t be classified
as acceptable. Therefore this subtree should be
classified as B.

a1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

acc(Y3), parent(X,Y3).

accx1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
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acc(Y3), parent(X,Y3).

.. see Appendix A

case O B:

Figure 4.18: case O B

Similar situation as case G O B, subtree should
be classified as B.

a1(a) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

accx1(X) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

.. see Appendix A

case G B:

Figure 4.19: case G B

Similar situation as the previous case, subtree
should be classified as B.

a1(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

accx1(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

.. see Appendix A

case A O B:

Figure 4.20: case A O B

Similar situation as the case G O B, if part
of a sentence is classified as B then the whole
sentence can’t A anymore, therefore B.
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a1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

acc(Y3),

parent(X,Y3).

accx1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),

acc(Y3), parent(X,Y3).

.. see Appendix A



5. Experiments

5.1 Input data description

The input data, which we have available were provided by the scien-
tists at the Charles University in Prague. We have machine trans-
lation from English to four languages - Czech, German, Polish and
Romanian. For each language we have more than 500 sentences rep-
resented as a tree structure with HUME-annotated leaves. Some of
the sentences are present twice, but in those cases, the HUME and
UCCA annotations were done by two different annotators. In total,
we have more than 2200 sentences. Each sentence has around 15 - 20
subtrees, that makes up to 10 000 examples for each language. For
each sentence we have the source language (English), the actual ma-
chine translation and a reference (correct) translation in the target
language. The data were provided in two Excel spreadsheets, they
can be found on the CD attached to this theses.

sentencesUTF8.xlsx - contains all the sentences
nodes2UTF8.xlsx - contains all the nodes with references to parent
and child nodes (tree structure), UCCA annotations and HUME an-
notations.

Before running any experiments, the data had to be parsed and con-
verted into the correct format for the input for LRNN framework.
The code of the parser can be found on the CD, should there be the
need to reuse it for future work.

49
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5.1.1 Example of the input data

The first sentence of our input data is:
”While many cases of angina can be treated with medication , a
coronary angioplasty may be required to restore the blood supply to
the heart in severe cases .” This data has already be preprocessed,
the comma after the word ”medication” and the period after the
word ”cases” have been separated by a space.
Following picture shows a HUME annotated tree of part of the first
sentence of the input data.

Figure 5.1: HUME annotated tree

Subset of training data corresponding to the tree in Figure 5.1:

- Example of the format of the input data for the feature-
based approach:
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@attribute SentenceId numeric
@attribute GreenScaled numeric
@attribute OrangeScaled numeric
@attribute RedScaled numeric
@attribute AcceptableScaled numeric
@attribute BadScaled numeric
@attribute MissingScaled numeric
@attribute TreeType numeric
@attribute class 1, 0.5, 0

@data
505, 0.0, 0.0, 0.2, 0.2, 0.2, 0.0, 16, 0
505, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 6, 1
505, 0.5, 0.0, 0.5, 0.0, 0.0, 0.0, 7, 1
505, 0.2, 0.0, 0.0, 0.8, 0.0, 0.0, 3, 0
505, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1, 1
...
etc.
The meaning of the individual attributes was fully described in the
section 3.1 Feature vector.

- Example for relational-based approach. (E.g. for red(n12 505) the
n12 is the node number, 505 refers to the sentence Id.)

1.0 red(n12 505), parent(n11 505,n12 505), acc(n13 505),
parent(n11 505,n13 505), acc(n118 505), parent(n11 505,n118 505).
1.0 green(n112 505), parent(n111 505,n112 505),
orange(n113 505), parent(n111 505,n113 505).
1.0 orange(n115 505), parent(n114 505,n115 505),
orange(n116 505), parent(n114 505,n116 505).
1.0 acc(n14 505), parent(n13 505,n14 505),
green(n110 505), parent(n13 505,n110 505),
acc(n111 505), parent(n13 505,n111 505),
acc(n114 505), parent(n13 505,n114 505).
1.0 acc(n15 505), parent(n14 505,n15 505),
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orange(n19 505), parent(n14 505,n19 505).
1.0 green(n16 505), parent(n15 505,n16 505),
green(n17 505), parent(n15 505,n17 505),
green(n18 505), parent(n15 505,n18 505).
...
etc.

5.1.2 Observed values

Values to be observed are:

1. train error
Train error is the ratio of correctly classified examples to all
examples on the training data set

2. test error
Test error is the ratio of correctly classified examples to all examples
on the testing data set, in our case the test folds.

3. test MSE Mean Square Error is defined as:

MSE = 1
n

∑n
i=1(e1i − e2i)2,

where e1i is the expected value of an example i and e2i is the
label of an example i.

4. test AUC pr
In the subsection 2.4.4 Evaluation Metrics, precision and recall were
explained. Basically, precision tells us how accurate the model is
and recall represents the completeness of returned data. Usually,
more precision means lower recall and vice versa. Based on the
practical application for what the classifier is used, we may want
either high precision and then recall would be less important, or
we tolerate some inaccuracy to get more data to be in our class.
Obviously the best case is if we have a model with high precision
and high recall. So that’s the information which we can visually get
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from the precision-recall (pr) curve. The closer the curve is to the
top-right corner the better. In figure 5.2, the AUC is the grey area
under the red pr curve.

Figure 5.2: AUC PR Curve

5. test AUC roc
Area Under Curve ROC evaluates a classifier how well it is able to
separate the classes. ROC (Receiver Operating Characteristic) curve
is a plot of all classification thresholds (between 0 and 1) of a binary
classifier. True Positive Rate (Y axis) is the ratio of correctly classi-
fied positive examples to the total number of positive examples. False
Positive Rate (X axis) is the ratio of incorrectly classified negative
examples (i.e. classified as positive when they should be classified as
negative) to the total number of negative examples. A good classifier
has a ROC curve close to the top left corner and AUC close to 1,
whereas a bad classifier has a ROC curve close to the diagonal and
AUC close to 0.5. The diagonal itself represents a classifier which
has no better results than random guessing. See the figure 5.3, the
ROC curve is in red, the AUC is the area under the ROC curve.
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Figure 5.3: AUC ROC Curve

5.2 Testcases and results - feature-based

Feature-based approach will serve as a baseline for future comparison
of the relational-based approach. For classification we will use the
function of the WEKA framework called MultilayerPerceptron,
which is how a neural network is called in WEKA. For the test values,
cross-validation will be used using 10 folds.

5.2.1 Testcase fb-1

We will start with the most basic testcase fb-1 (feature-based - 1).
The five observed values are defined in the subsection 5.1.2 - Ob-
served values. The attributes for the classifier are described in the
section 3.1 - Feature vector. We are not going to use the TreeType
attribute in this testcase. The input data can be found in the files:

Data files: examplesWeka{Cs,De,Pl,Ro} All.arff

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.174766 0.187633 0.286 0.870 0.855
German 0.212191 0.213174 0.3122 0.829 0.840
Polish 0.278534 0.285377 0.354 0.764 0.821
Romanian 0.137366 0.138276 0.2692 0.884 0.908

Table 5.1: Testcase fb-1
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5.2.2 Testcase fb-2

In this testcase the input data will be enriched by the attribute
TreeType. The value represents all the different tree types as de-
scribed in the section 4.3 - LRNN for machine translation evaluation.

Data files: examplesWeka{Cs,De,Pl,Ro} TreeType All.arff

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.180887 0.188007 0.2864 0.871 0.853
German 0.213502 0.213502 0.3125 0.829 0.841
Polish 0.270143 0.287332 0.3532 0.767 0.822
Romanian 0.137253 0.138276 0.2688 0.883 0.910

Table 5.2: Testcase fb-2

From both testcases we can see that the results are quite similar.
Romanian language was the one with the most correctly classified
instances. The values of AUC roc curve are all above 80%, which
can be considered to be an average, fairly good result.

5.2.3 Testcase fb-3

For the testcase fb-3 the input data from the previous testcase will
be enriched with 5 more attributes, which say how many UCCA
annotation of the type C, E, R, F, or other are associated with child
nodes of the current sample (subtree). Since the UCCA annotation
capture additional semantic information, we should be getting
better results.

Data files: examplesWeka{Cs,De,Pl,Ro} TreeType UCCA All.arff

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.178264 0.183885 0.2865 0.875 0.857
German 0.178928 0.196461 0.3052 0.855 0.861
Polish 0.265336 0.278289 0.3502 0.779 0.830
Romanian 0.135092 0.136002 0.2668 0.886 0.912

Table 5.3: Testcase fb-3

From the results we can see, that in all cases the train and test error
values are better. For Czech and Romanian the improvements are
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not significant, for Polish the improvement is between 0.5% - 1%.,
but for German, there is an improvement of more than 1.5% for the
test error, which is nonnegligible (not talking about the improvement
of the train error of 3.5%). The AUC pr/roc values are all mostly
the same, slightly better.

5.3 Testcases and results - relational-based

We will conduct several testcases with different rules sets and
different input data. We will then look into the values obtained and
try to determine which set of rules are the most suitable for the
evaluation of machine translation and why. For our experiments
three different sets of LRNN rules will be used. The first set of rules
will be the set as described in the subsection 4.3.1, plus the cases
G R and O R without UCCA annotations. The second set will
cover all cases (i.e. subsection 4.3.1 and 4.3.2 combined) without
UCCA annotations. The third set will cover all cases plus UCCA
annotations where applicable.

a) Set of Basic LRNN rules This set consists of cases: G
G, G, A G, R R, B R, G O, G R, O R.

b) Set of Extended LRNN rules This set consists of all
the cases from set a) plus cases: G O R, A O R, A R, A O, G O B,
O B, G B, A O B.

c) Set of Extended LRNN rules with UCCA annota-
tions This set consists of all the cases from set b) extended with
UCCA annotations. For the complete list of all three sets see
Appendix B - Sets of LRNN rules for experiments.

Experiments are run with the settings:
- number of folds: 10
- number of learning steps: 1000
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5.3.1 Testcase 1

The first testcase 1 (relational-based - 1), will be based on generic
rules with no rules based on HUME or UCCA annotations. The
complete set of generic rules can be found in Appendix B or on the
CD:

Data files: examples{Cs,De,Pl,Ro} All.txt
LRNN rules file: rulesGeneric.txt

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.202347 0.20825 0.162679 0.807008 0.638639
German 0.28255 0.284754 0.218365 0.68547 0.58586
Polish 0.333804 0.405052 0.235353 0.583616 0.575971
Romanian 0.237466 0.261774 0.212323 0.688104 0.642454

Table 5.4: Testcase 1

We have obtained some results, in the next testcases we will see if we
are able to obtain better results if the LRNN rules are more specific.

5.3.2 Testcase 2

For this testcase, we will use the Basic rules set. First we’ll examine
how the results change with increasing number of input data using
5 batches of English-to-Czech translations. We’ll start with 100
sentences for the first batch and then we’ll add 100 sentences
more with each batch, until the fifth batch, which will have all the
sentences available, which is over 500 (for English-to-Czech it is 529).

Data files: examplesCs 100.txt (100 sentences),....,
examplesCs All.txt (529 sentences)
LRNN rules file: rulesBasic.txt
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Sentences train error test error test MSE test AUC pr test AUC roc
100 0.190704 0.196732 0.155352 0.824688 0.689880
200 0.187123 0.194081 0.145393 0.841873 0.705534
300 0.200836 0.205088 0.154387 0.826062 0.687091
400 0.202979 0.208824 0.156933 0.823731 0.694995
529 0.19825 0.206499 0.155815 0.829746 0.691603

Table 5.5: Testcase 2a

We can see that with increasing number of examples, the train
error, test error and test MSE all follow the same characteristic.
For 300 and 400 sentences we got worse values than for 100 and 200
sentences, but when all the sentences (529) were used, the results
tend to get better again. It seems that after certain threshold, the
errors tend to go down and the AUC to go up again, unfortunately,
we are limited on the data set, to make this conclusion. In the
second part of testcase 2 the results for all four target languages
will be compared. Following table shows the results for all the input
data (i.e. over 500 sentences) for a given language.

Data files: examples{Cs,De,Pl,Ro} All.txt
LRNN rules file: rulesBasic.txt

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.19825 0.206499 0.155815 0.829746 0.691603
German 0.276666 0.284754 0.222829 0.685741 0.584489
Polish 0.32751 0.395762 0.255499 0.587642 0.580916
Romanian 0.215585 0.243799 0.192296 0.692827 0.655691

Table 5.6: Testcase 2b

We can see that the results for all four language show slightly better
results, than the all-generic rules from testcase 1. The biggest im-
provements are shown for Czech language, the train error got below
20%, the AUC pr increased by 3% and the AUC roc is up by 6%,
which is considered significant improvement.
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5.3.3 Testcase 3

For this testcase the network will be learned using the set of
extended rules (without UCCA annotations, can be found in
Appendix B). The input data are going to be the same, so we’ll be
able to compare the results with those of the testcase 2b.

Data files: examples{Cs,De,Pl,Ro} All.txt
LRNN rules file: rulesExtended.txt

Language train error test error test MSE test AUC pr test AUC roc
Czech 0.198249 0.205625 0.151446 0.842747 0.703289
German 0.276958 0.281311 0.226183 0.683834 0.580093
Polish 0.331721 0.393643 0.248456 0.590491 0.582195
Romanian 0.215585 0.243799 0.193729 0.694989 0.659354

Table 5.7: Testcase 3

From the comparison with the testcase 2, it is clear that the results
are not much different, but we can see small improvements, such as
the AUC roc is slightly better for 3 out of 4 languages by around
0.5 to 1%.

5.3.4 Testcase 4

For testcase 4 the set of extended LRNN rules with UCCA annota-
tions (see Appendix B) will be used. The goal of this testcase is to
determine the impact of extending the rules set from the testcase 3
with additional relations as described in the subsection 4.3.2.

Data files: examples{Cs,De,Pl,Ro} Ucca All.txt
LRNN rules file: rulesExtendedUcca.txt
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Language train error test error test MSE test AUC pr test AUC roc
Czech 0.194138 0.203125 0.174442 0.823884 0.683836
German 0.270291 0.277377 0.24451 0.679292 0.56758
Polish 0.327338 0.399103 0.301993 0.584006 0.563956
Romanian 0.217393 0.246643 0.21467 0.686908 0.647577

Table 5.8: Testcase 4

As we can see, the train error is, by another 0.5 % better than the
previous testcase, the test error, however, hasn’t improved. The
MSE, AUC pr and AUC roc got somewhat worse, therefore we need
to look for other ways how to obtain better model.

5.3.5 Testcase 5

In this testcase we’ll look at whether we’ll be able to obtain bet-
ter model using input data for combination of two or more languages.

Data files: examplesCs{De,Pl,Ro} All.txt
LRNN rules file: rulesBasic.txt

Language train error test error test MSE test AUC pr test AUC roc
Czech & German 0.237486 0.246453 0.18334 0.769111 0.648975
Czech & Polish 0.278703 0.320167 0.207284 0.687497 0.631804
Czech & Romanian 0.215366 0.232162 0.179079 0.76211 0.679215

Table 5.9: Testcase 5a

Comparing the values from Testcase 5a with the values from Test-
case 2b, we can see, that if we combine input data of two languages,
the results correlate to the arithmetic mean of the individual results
of these two languages. Combining the input data for all four
languages will give following results. Neither the combination of
all four languages gives better results than the individual language
input data.

Data files: examplesCsDePlRo All.txt
LRNN rules file: rulesBasic.txt
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Language train error test error test MSE test AUC pr test AUC roc
Cze, Ger, Pol, Rom 0.267131 0.296986 0.215714 0.686546 0.623902

Table 5.10: Testcase 5b

Data files: examplesCsDePlRo All.txt
LRNN rules file: rulesExtended.txt

Language train error test error test MSE test AUC pr test AUC roc
Cze, Ger, Pol, Rom 0.267358 0.296986 0.213771 0.688935 0.623135

Table 5.11: Testcase 5c

Data files: examplesCsDePlRo Ucca All.txt
LRNN rules file: rulesExtendedUcca.txt

Language train error test error test MSE test AUC pr test AUC roc
Cze, Ger, Pol, Rom 0.268789 0.301052 0.241068 0.68724 0.612666

Table 5.12: Testcase 5d

5.3.6 Testcase 6

So far the best results were for the setting in testcase 3 - extended
rules without UCCA annotations. Second best in terms of error
values was testcase 4 - extended rules with UCCA annotations and
in terms of AUC values testcase 2 - basic rules. So we will run
further experiments for these 3 settings. We want to find out how
can we train even better model. In this testcase we’ll increase the
number of learning steps (ls) by 1000 up to ls = 5000 and compare
the results with the data we already have, which is for ls = 1000.
For the sake of brevity, results for Czech only will be stated here.

Data files: examplesCs Ucca All.txt
LRNN rules file: rulesExtended.txt

1000 - 5000 learning steps , extended LRNN rules set:
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learning steps train error test error test MSE test AUC pr test AUC roc
1000 0.198249 0.205625 0.151446 0.842747 0.703289
2000 0.198347 0.203625 0.155065 0.828153 0.688434
3000 0.198361 0.205375 0.153892 0.837192 0.702469
4000 0.198236 0.205625 0.151446 0.842753 0.703302
5000 0.198625 0.205375 0.153218 0.834405 0.702734

Table 5.13: Testcase 6a

LRNN rules file: rulesBasic.txt

1000 - 5000 learning steps , basic LRNN rules set:

learning steps train error test error test MSE test AUC pr test AUC roc
1000 0.19825 0.206499 0.155815 0.829746 0.691603
2000 0.197916 0.204 0.152953 0.830635 0.695128
3000 0.198041 0.203874 0.151807 0.831099 0.696081
4000 0.198347 0.203499 0.152418 0.832958 0.700061
5000 0.198527 0.201874 0.152044 0.829786 0.691403

Table 5.14: Testcase 6b

LRNN rules file: rulesExtendedUcca.txt

1000 - 5000 learning steps , extended LRNN rules set
with UCCA annotations:

learning steps train error test error test MSE test AUC pr test AUC roc
1000 0.194138 0.203125 0.174442 0.823884 0.683836
2000 0.198708 0.20325 0.155345 0.830382 0.6936
3000 0.198402 0.203125 0.155445 0.828313 0.689012
4000 0.199555 0.20625 0.153051 0.830787 0.694376
5000 0.198569 0.202749 0.151944 0.829519 0.695238

Table 5.15: Testcase 6c

When we look at the results, increasing the number of learning steps
didn’t fulfil the expectation, which was bigger difference between the
train and test error. The AUC roc is best for the extended LRNN
rules set without UCCA, so for the next testcase we will be working
only with this rules set.
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5.3.7 Testcase 7

Since the error values in the previous testcase didn’t improve, in
this testcase we will be working with the learning rate. The default
value is 0.3, we will try to learn the model by using higher and lower
learning rates.

Data files: examplesCs Ucca All.txt
LRNN rules file: rulesExtended.txt

learning rate train error test error test MSE test AUC pr test AUC roc
0.1 0.198347 0.203625 0.150316 0.832914 0.699817
0.2 0.198222 0.20475 0.153599 0.831386 0.695958
0.3 0.198499 0.205499 0.156689 0.830022 0.692293
0.4 0.200555 0.205999 0.158978 0.858929 0.727563
0.5 0.224847 0.229499 9.604511E46 0.742039 0.480583
0.6 0.213874 0.210625 Infinity 0.804445 0.617375
0.7 0.231625 0.675 NaN 0.556213 8.205932E-4

Table 5.16: Testcase 7

The test error goes down with decreasing learning rate. The recom-
mendation is to use lower learning rate rather than higher.

5.4 Discussion

In the practical part of this thesis two approach methods have
been successfully tried and tested. The feature-based approach
and the relational-based approach gave us clear results which can
be compared to decide which approach has been more successful.
Looking at the outcomes of our testcases, we can see, that the
feature-based approach gives slightly lower error rates and bigger
AUC values. The best results we obtained there was the last
feature-based testcase, where additional semantic information
feature was introduced. The improvement was not very big, yet
still noticeable. The values of the AUC roc were always above
80% and sometimes reached even over 90%. This was never the
case in the testcases for the relational-based approach. On the
otherhand, relational-based results were not bad either and we were
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able to find ways how to improve the learning process. As opposed
to feature-based, rule-based approach didn’t bring us much of an
improvement when additional semantic information were introduced.

So the final conclusion is, that the recommended setting for
the relational-based approach is the use of extended set of rules
without UCCA annotations with the option of lr = 0.1. Increasing
the number or learning steps didn’t play any role, since the original
ls = 1000 was already good enough. For the feature-based approach,
the recommended setting is the one of the third testcase with UCCA
annotations taken into account.



6. Conclusion

Natural Language Processing offers many areas for research, evalua-
tion of the translation quality being one of them. In the theoretical
part of this thesis, existing metrics for translation quality were
discussed. Ways how to capture syntactic and semantic information
were described. For our work we used some characteristics from
different types of Machine Translation. Apart from the traditional
ones which deal with syntax and morphology, we also used semantics
to further improve our classifiers. Currently, human judgement on
the translation is the decisive authority, computers have not fully
replaced people yet, this however may change. The focus was on
human evaluation metric which, together with tree representations
were used to train neural networks.

There is still a lot of space left for future research. In partic-
ular, the use of semantic UCCA annotations may be further
explored. In our experiments, we used only four out of twelve
annotation types, there are another eight types which could be used
as well. Also, UCCA is certainly not the only way how to capture
semantics.

Another topic for future work is to enhance the feature-based
representation. Initially, this approach ment to be only a benchmark
for the relational-based approach, but since the results were quite
good, this could be a good topic for future work.
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8. Appendices

8.1 Appendix A - LRNN rules

case G..G:
a1(a) :- green(Y1), parent(X,Y1), green(Y2),

parent(X,Y2).

acc(X) :- green(Y1), parent(X,Y1), green(Y2),

parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

case G:
a1(a) :- green(Y1), parent(X,Y1).

acc(X) :- green(Y1), parent(X,Y1).

0.0 finalKappa(a) :- a1(a).

case A G:
a1(a) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), green(Y2),
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parent(X,Y2).

...

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case R..R:
a1(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

acc(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

case R:
a1(a) :- red(Y1), parent(X,Y1).

acc(X) :- red(Y1), parent(X,Y1).

0.0 finalKappa(a) :- a1(a).

case B R:
a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2),

parent(X,Y2).

...

...
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accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case G O:
a1(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

accx1(X) :- green(Y1), parent(X,Y1), acc(Y2),

parent(X,Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case G R:
a1(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx(X) :- green(Y1), parent(X,Y1), red(Y2),

parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccac(Y2).

a2(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccae(Y2).

a3(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccar(Y2).

a4(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccaf(Y2).

accx1(X) :- green(Y1), parent(X,Y1), red(Y2),
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parent(X,Y2), uccac(Y2).

accx2(X) :- green(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccae(Y2).

accx3(X) :- green(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccar(Y2).

accx4(X) :- green(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccaf(Y2).

acc(X) :- accx1(X).

acc(X) :- accx2(X).

acc(X) :- accx3(X).

acc(X) :- accx4(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

0.0 finalKappa(a) :- a3(a).

0.0 finalKappa(a) :- a4(a).

case O R:
a1(a) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2).

accx(X) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccac(Y2).

a2(a) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccae(Y2).

a3(a) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccar(Y2).

a4(a) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccaf(Y2).

accx1(X) :- orange(Y1), parent(X,Y1), red(Y2),
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parent(X,Y2), uccac(Y2).

accx2(X) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccae(Y2).

accx3(X) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccar(Y2).

accx4(X) :- orange(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccaf(Y2).

acc(X) :- accx1(X).

acc(X) :- accx2(X).

acc(X) :- accx3(X).

acc(X) :- accx4(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

0.0 finalKappa(a) :- a3(a).

0.0 finalKappa(a) :- a4(a).

case G O R:
a1(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3).

accx(X) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).

a2(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).

a3(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccar(Y3).

a4(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccaf(Y3).

accx1(X) :- green(Y1), parent(X,Y1), orange(Y2),
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parent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).

accx2(X) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).

accx3(X) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccar(Y3).

accx4(X) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccaf(Y3).

acc(X) :- accx1(X).

acc(X) :- accx2(X).

acc(X) :- accx3(X).

acc(X) :- accx4(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

0.0 finalKappa(a) :- a3(a).

0.0 finalKappa(a) :- a4(a).

case A O R:
a1(a) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3),

parent(X,Y3).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules:

a1(a) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).

a2(a) :- acc(Y1), parent(X,Y1), orange(Y2),
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parent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).

accx2(X) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

acc(X) :- accx2(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

case A R:
a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2),

parent(X,Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

extended UCCA rules

a1(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccac(Y2).

a2(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),

uccae(Y2).

accx1(X) :- acc(Y1), parent(X,Y1), red(Y2),

parent(X,Y2), uccac(Y2).

accx2(X) :- acc(Y1), parent(X,Y1), red(Y2),
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parent(X,Y2), uccae(Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

acc(X) :- accx2(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

0.0 finalKappa(a) :- a2(a).

case A O:
a1(a) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2).

accx1(X) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case G O B:
a1(a) :- green(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), acc(Y3), parent(X,Y3).

accx1(X) :- green(Y1), parent(X,Y1), orange(Y2),
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parent(X,Y2), acc(Y3), parent(X,Y3).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case O B:
a1(a) :- orange(Y1), parent(X,Y1), acc(Y2),

parent(X,Y2).

accx1(X) :- orange(Y1), parent(X,Y1), acc(Y2),

parent(X,Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case G B:
a1(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).

accx1(a) :- green(Y1), parent(X,Y1), acc(Y2),

parent(X,Y2).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).

case A O B:
a1(a) :- acc(Y1), parent(X,Y1), orange(Y2),

parent(X,Y2), acc(Y3), parent(X,Y3).

accx1(a) :- acc(Y1), parent(X,Y1), orange(Y2),
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parent(X,Y2), acc(Y3), parent(X,Y3).

...

accxn(X) :- [some rules]

acc(X) :- accx1(X).

...

acc(X) :- accxn(X).

0.0 finalKappa(a) :- a1(a).
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8.2 Appendix B - Sets of LRNN rules for exper-

iments

Generic rules
0.0 type1(X) :- red(X).
0.0 type1(X) :- green(X).
0.0 type1(X) :- orange(X).

0.0 type2(X) :- red(X).
0.0 type2(X) :- green(X).
0.0 type2(X) :- orange(X).

rule11(X) :- type1(Y), parent(X,Y), type1(Z), parent(X,Z).
rule12(X) :- type1(Y), parent(X,Y), type2(Z), parent(X,Z).
rule21(X) :- type2(Y), parent(X,Y), type1(Z), parent(X,Z).
rule22(X) :- type2(Y), parent(X,Y), type2(Z), parent(X,Z).

a type1(X) :- type1(X).
a type2(X) :- type2(X).

0.0 finalKappa(a) :- a type1(X).
0.0 finalKappa(a) :- a type2(X).

0.0 finalKappa(a) :- rule11(X).
0.0 finalKappa(a) :- rule12(X).
0.0 finalKappa(a) :- rule21(X).
0.0 finalKappa(a) :- rule22(X).

a) Set of Basic LRNN rules

aGG(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
aG(a) :- green(Y), parent(X,Y).
aAG(a) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accGG(X) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accG(X) :- green(Y), parent(X,Y).
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accAG(X) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
aRR(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aR(a) :- red(Y), parent(X,Y).
aBR(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accRR(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accR(X) :- red(Y), parent(X,Y).
accBR(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aGO1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
aGO2(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accGO1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
accGO2(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGR(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accGR(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aOR1(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aOR2(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accOR1(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accOR2(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
orange(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
orange(X) :- orange(Y), parent(X,Y).
acco1(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
acco2(X) :- orange(Y), parent(X,Y).
0.0 acc(X) :- accGG(X).
0.0 acc(X) :- accG(X).
0.0 acc(X) :- accAG(X).
0.0 acc(X) :- accRR(X).
0.0 acc(X) :- accR(X).
0.0 acc(X) :- accBR(X).
0.0 acc(X) :- accGO1(X).
0.0 acc(X) :- accGO2(X).
0.0 acc(X) :- acco1(X).
0.0 acc(X) :- acco2(X).
0.0 acc(X) :- accGR(X).
0.0 acc(X) :- accOR1(X).
0.0 acc(X) :- accOR2(X).
0.0 finalKappa(a) :- aGG(a).



8.2. APPENDIX B - SETS OF LRNN RULES FOR EXPERIMENTS 81

0.0 finalKappa(a) :- aG(a).
0.0 finalKappa(a) :- aAG(a).
0.0 finalKappa(a) :- aRR(a).
0.0 finalKappa(a) :- aR(a).
0.0 finalKappa(a) :- aBR(a).
0.0 finalKappa(a) :- aGO1(a).
0.0 finalKappa(a) :- aGO2(a).
0.0 finalKappa(a) :- aGR(a).
0.0 finalKappa(a) :- aOR1(a).
0.0 finalKappa(a) :- aOR1(a).

b) Set of Extended LRNN rules

aGG(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
aG(a) :- green(Y), parent(X,Y).
aAG(a) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accGG(X) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accG(X) :- green(Y), parent(X,Y).
accAG(X) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
orange(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
orange(X) :- orange(Y), parent(X,Y).
acco1(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
acco2(X) :- orange(Y), parent(X,Y).
aRR(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aR(a) :- red(Y), parent(X,Y).
aBR(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accRR(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accR(X) :- red(Y), parent(X,Y).
accBR(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aGO1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
aGO2(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accGO1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
accGO2(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGR(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accGR(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
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aOR(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accOR(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aGOR(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accGOR(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
aAOR1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
aAOR2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accAOR1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accAOR2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
aAR(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accAR(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aAO1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
aAO2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accAO1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
accAO2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGOB1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
aGOB2(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accGOB1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accGOB2(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
aOB1(a) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aOB2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accOB1(X) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accOB2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGB(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accGB(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aAOB1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),



8.2. APPENDIX B - SETS OF LRNN RULES FOR EXPERIMENTS 83

acc(Y3), parent(X,Y3).
aAOB2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accAOB1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accAOB2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
0.0 acc(X) :- accGG(X).
0.0 acc(X) :- accG(X).
0.0 acc(X) :- accAG(X).
0.0 acc(X) :- accRR(X).
0.0 acc(X) :- accR(X).
0.0 acc(X) :- accBR(X).
0.0 acc(X) :- accGO1(X).
0.0 acc(X) :- accGO2(X).
0.0 acc(X) :- acco1(X).
0.0 acc(X) :- acco2(X).
0.0 acc(X) :- accGR(X).
0.0 acc(X) :- accOR(X).
0.0 acc(X) :- accGOR(X).
0.0 acc(X) :- accAOR1(X).
0.0 acc(X) :- accAOR2(X).
0.0 acc(X) :- accAR(X).
0.0 acc(X) :- accAO1(X).
0.0 acc(X) :- accAO2(X).
0.0 acc(X) :- accGOB1(X).
0.0 acc(X) :- accGOB2(X).
0.0 acc(X) :- accOB1(X).
0.0 acc(X) :- accOB2(X).
0.0 acc(X) :- accGB(X).
0.0 acc(X) :- accAOB1(X).
0.0 acc(X) :- accAOB2(X).
0.0 finalKappa(a) :- aGG(a).
0.0 finalKappa(a) :- aG(a).
0.0 finalKappa(a) :- aAG(a).
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0.0 finalKappa(a) :- aRR(a).
0.0 finalKappa(a) :- aR(a).
0.0 finalKappa(a) :- aBR(a).
0.0 finalKappa(a) :- aGO1(a).
0.0 finalKappa(a) :- aGO2(a).
0.0 finalKappa(a) :- aGR(a).
0.0 finalKappa(a) :- aOR(a).
0.0 finalKappa(a) :- aGOR(a).
0.0 finalKappa(a) :- aAOR1(a).
0.0 finalKappa(a) :- aAOR2(a).
0.0 finalKappa(a) :- aAR(a).
0.0 finalKappa(a) :- aAO1(a).
0.0 finalKappa(a) :- aAO2(a).
0.0 finalKappa(a) :- aGOB1(a).
0.0 finalKappa(a) :- aGOB2(a).
0.0 finalKappa(a) :- accOB1(a).
0.0 finalKappa(a) :- accOB2(a).
0.0 finalKappa(a) :- aGB(a).
0.0 finalKappa(a) :- aAOB1(a).
0.0 finalKappa(a) :- aAOB2(a).

c) Set of Extended LRNN rules
with UCCA annotations

a1(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
aGG(a) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
aG(a) :- green(Y), parent(X,Y).
aAG(a) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accGG(X) :- green(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
accG(X) :- green(Y), parent(X,Y).
accAG(X) :- acc(Y1), parent(X,Y1), green(Y2), parent(X,Y2).
orange(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
orange(X) :- orange(Y), parent(X,Y).
acco1(X) :- orange(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
acco2(X) :- orange(Y), parent(X,Y).
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aRR(a) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aR(a) :- red(Y), parent(X,Y).
aBR(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accRR(X) :- red(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accR(X) :- red(Y), parent(X,Y).
accBR(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aGO1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
aGO2(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accGO1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
accGO2(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGR(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accGR(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aGRuccac(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccac(Y2).
aGRuccae(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccae(Y2).
aGRuccar(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccar(Y2).
aGRuccaf(a) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccaf(Y2).
accGRuccac(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccac(Y2).
accGRuccae(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccae(Y2).
accGRuccar(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccar(Y2).
accGRuccaf(X) :- green(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccaf(Y2).
aOR(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accOR(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aORuccac(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccac(Y2).
aORuccae(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccae(Y2).
aORuccar(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
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uccar(Y2).
aORuccaf(a) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccaf(Y2).
accORuccac(X) :- orange(Y1), parent(X,Y1), red(Y2), par-
ent(X,Y2), uccac(Y2).
accORuccae(X) :- orange(Y1), parent(X,Y1), red(Y2), par-
ent(X,Y2), uccae(Y2).
accORuccar(X) :- orange(Y1), parent(X,Y1), red(Y2), par-
ent(X,Y2), uccar(Y2).
accORuccaf(X) :- orange(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccaf(Y2).
aGOR(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
aGORuccac(a) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).
aGORuccae(a) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).
aGORuccar(a) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccar(Y3).
aGORuccaf(a) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccaf(Y3).
accGOR(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accGORuccac(X) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).
accGORuccae(X) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).
accGORuccar(X) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccar(Y3).
accGORuccaf(X) :- green(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccaf(Y3).
aAOR1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
aAOR2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
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aAOR1uccac(a) :- acc(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).
aAOR1uccae(a) :- acc(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).
aAOR2uccac(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3), uccac(Y3).
aAOR2uccae(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3), uccae(Y3).
accAOR1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accAOR2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3).
accAOR1uccac(X) :- acc(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccac(Y3).
accAOR1uccae(X) :- acc(Y1), parent(X,Y1), orange(Y2), par-
ent(X,Y2), red(Y3), parent(X,Y3), uccae(Y3).
accAOR2uccac(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3), uccac(Y3).
accAOR2uccae(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
red(Y3), parent(X,Y3), uccae(Y3).
aAR(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
aARuccac(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccac(Y2).
aARuccae(a) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccae(Y2).
accAR(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2).
accARuccac(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccac(Y2).
accARuccae(X) :- acc(Y1), parent(X,Y1), red(Y2), parent(X,Y2),
uccae(Y2).
aAO1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
aAO2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accAO1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2).
accAO2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGOB1(a) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
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acc(Y3), parent(X,Y3).
aGOB2(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accGOB1(X) :- green(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accGOB2(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
aOB1(a) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aOB2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accOB1(X) :- orange(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accOB2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aGB(a) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
accGB(X) :- green(Y1), parent(X,Y1), acc(Y2), parent(X,Y2).
aAOB1(a) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
aAOB2(a) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accAOB1(X) :- acc(Y1), parent(X,Y1), orange(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
accAOB2(X) :- acc(Y1), parent(X,Y1), acc(Y2), parent(X,Y2),
acc(Y3), parent(X,Y3).
0.0 acc(X) :- accGG(X).
0.0 acc(X) :- accG(X).
0.0 acc(X) :- accAG(X).
0.0 acc(X) :- accRR(X).
0.0 acc(X) :- accR(X).
0.0 acc(X) :- accBR(X).
0.0 acc(X) :- accGO1(X).
0.0 acc(X) :- accGO2(X).
0.0 acc(X) :- acco1(X).
0.0 acc(X) :- acco2(X).
0.0 acc(X) :- accGR(X).
0.0 acc(X) :- accGRuccac(X).
0.0 acc(X) :- accGRuccae(X).
0.0 acc(X) :- accGRuccar(X).
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0.0 acc(X) :- accGRuccaf(X).
0.0 acc(X) :- accOR(X).
0.0 acc(X) :- accORuccac(X).
0.0 acc(X) :- accORuccae(X).
0.0 acc(X) :- accORuccar(X).
0.0 acc(X) :- accORuccaf(X).
0.0 acc(X) :- accGOR(X).
0.0 acc(X) :- accGORuccac(X).
0.0 acc(X) :- accGORuccae(X).
0.0 acc(X) :- accGORuccar(X).
0.0 acc(X) :- accGORuccaf(X).
0.0 acc(X) :- accAOR1(X).
0.0 acc(X) :- accAOR2(X).
0.0 acc(X) :- accAOR1uccac(X).
0.0 acc(X) :- accAOR1uccae(X).
0.0 acc(X) :- accAOR2uccac(X).
0.0 acc(X) :- accAOR2uccae(X).
0.0 acc(X) :- accAR(X).
0.0 acc(X) :- accAO1(X).
0.0 acc(X) :- accAO2(X).
0.0 acc(X) :- accGOB1(X).
0.0 acc(X) :- accGOB2(X).
0.0 acc(X) :- accOB1(X).
0.0 acc(X) :- accOB2(X).
0.0 acc(X) :- accGB(X).
0.0 acc(X) :- accAOB1(X).
0.0 acc(X) :- accAOB2(X).
0.0 finalKappa(a) :- aGG(a).
0.0 finalKappa(a) :- aG(a).
0.0 finalKappa(a) :- aAG(a).
0.0 finalKappa(a) :- aRR(a).
0.0 finalKappa(a) :- aR(a).
0.0 finalKappa(a) :- aBR(a).
0.0 finalKappa(a) :- aGO1(a).
0.0 finalKappa(a) :- aGO2(a).
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0.0 finalKappa(a) :- aGR(a).
0.0 finalKappa(a) :- aGRuccac(a).
0.0 finalKappa(a) :- aGRuccae(a).
0.0 finalKappa(a) :- aGRuccar(a).
0.0 finalKappa(a) :- aGRuccaf(a).
0.0 finalKappa(a) :- aOR(a).
0.0 finalKappa(a) :- aORuccac(a).
0.0 finalKappa(a) :- aORuccae(a).
0.0 finalKappa(a) :- aORuccar(a).
0.0 finalKappa(a) :- aORuccaf(a).
0.0 finalKappa(a) :- aGOR(a).
0.0 finalKappa(a) :- aGORuccac(a).
0.0 finalKappa(a) :- aGORuccae(a).
0.0 finalKappa(a) :- aGORuccar(a).
0.0 finalKappa(a) :- aGORuccaf(a).
0.0 finalKappa(a) :- aAOR1(a).
0.0 finalKappa(a) :- aAOR2(a).
0.0 finalKappa(a) :- aAOR1uccac(a).
0.0 finalKappa(a) :- aAOR1uccae(a).
0.0 finalKappa(a) :- aAOR2uccac(a).
0.0 finalKappa(a) :- aAOR2uccae(a).
0.0 finalKappa(a) :- aAR(a).
0.0 finalKappa(a) :- aAO1(a).
0.0 finalKappa(a) :- aAO2(a).
0.0 finalKappa(a) :- aGOB1(a).
0.0 finalKappa(a) :- aGOB2(a).
0.0 finalKappa(a) :- accOB1(a).
0.0 finalKappa(a) :- accOB2(a).
0.0 finalKappa(a) :- aGB(a).
0.0 finalKappa(a) :- aAOB1(a).
0.0 finalKappa(a) :- aAOB2(a).



9. Content of CD

- inputData: input data in two .xlsx files

- LRNNDemo: demo examples used in section 4.2

- LRNNInputData: input data for relational-based testcases

- LRNNResults: results of all relational-based testcases

- LRNNRules: rules as described in the section 4.3

- parser: java code of the parser

- tex: tex code of this thesis

- WEKADemo: demo examples used in section 3.2

- WEKAInputData: input data for feature-based testcases

- WEKAResults: results of all feature-based testcases

- infoLRNN.txt: example of LRNN java command

- thesis.pdf: pdf file with this thesis
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