

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Diploma Thesis

Data-driven user engagement optimization for mobile
applications

Bc. Jan Linka

Supervisor: doc. Ing. Michal Jakob, Ph.D.

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

May 25, 2018

iv

v

Acknowledgements
I would like to express my great appreciation for doc. Ing. Michal Jakob, Ph.D., my
supervisor, for his patient guidance, encouragement and useful critique. I would also like to
extend my thanks to Ing. Pavol Žilecký and Ing. Jan Nykl for making it possible to run
experiments on existing mobile application server.

vi

vii

Declaration
I declare that I elaborated this thesis on my own and that I mentioned all the information
sources and literature that have been used in accordance with the Guideline for adhering to
ethical principles in the course of elaborating an academic final thesis.

In Praha on May 25, 2018 .

viii

Abstract

Mobile application are large industry field that is highly competitive. This leads to a
necessity of use of techniques for user engagement optimization. Smartphones are also able
to use remote data processing which allows for automation of the optimization by machine
data analysis techniques.

In this thesis, is for this reason formalized a milestone reaching problem and solution
methods based on reinforcement learning are proposed. The proposed methods are tested in
simulated environment and in experiments in real mobile application.

Abstrakt

Mobilní aplikace jsou velké průmyslové odvětví s vysokou konkurencí, které proto musí
využívat techniky pro optimizaci angažovanosti uživatelů. Chytré telefony však mohou využí-
vat vzdáleného zpracování dat, které umožňuje tuto optimalizaci automatizovat na základě
technik strojové analýzy dat.

V této práci je proto formalizován problém dosažení milníku a navrženy způsoby jeho
řešení založené na metodách posilovaného učení. Navržené metody jsou otestovány v rámci
simulace a v experimentech v reálné mobilní aplikaci.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Thesis . 1
1.3 Structure of the Thesis . 2

2 Preliminaries 3
2.1 Defining User Engagement . 3
2.2 User Engagement Optimization . 4
2.3 Mobile Applications . 4

2.3.1 Applications, Games & Gamification 4
2.3.2 Gamification . 4
2.3.3 Monetization Models . 5
2.3.4 Mobile App Monetization Models . 5
2.3.5 Combining Monetization Models . 6

2.4 Retention . 6
2.5 Communication Channels . 7

2.5.1 Email & Phone Number . 8
2.5.2 In-app Messages . 8
2.5.3 Notifications . 8

2.6 Recommendations . 9
2.7 Mobile Optimization Industry . 9
2.8 Multi-armed Bandit Problem . 10

2.8.1 Contextual Bandit Problem . 11
2.8.2 ε-greedy Algorithm for MAB . 11
2.8.3 Thompson Sampling . 12
2.8.4 Thompson Sampling for Bernoulli Bandits 12
2.8.5 Delay in Multi-armed Bandit Problem 13

3 Milestone Reaching Problem 15
3.1 User Journey . 15

3.1.1 Milestones . 15
3.2 Milestone Reaching Optimization Components 15

3.2.1 Messages . 16
3.2.2 User Data . 16
3.2.3 Activation Conditions . 17

xi

xii CONTENTS

3.2.4 Context Vector . 17
3.2.5 Reward . 17

3.3 Milestone Reaching Problem Specification . 17
3.4 Milestone Reaching Problem Properties . 18

4 Milestone Reaching Optimization Algorithm 19
4.1 Relation to Different Problems . 19
4.2 ε-greedy Algorithm with Context Buckets . 19
4.3 Thompson Sampling Algorithm with Context Buckets 21

5 Implementation 23
5.1 Message Optimization Module . 23
5.2 Mobile Application Integration . 24

5.2.1 Notification Delivery . 24
5.2.2 Notification Display . 24
5.2.3 Reaction and Context upload . 24

5.3 Application Backend Integration . 24

6 Evaluation 27
6.1 Simulation Results . 27

6.1.1 ε-greedy Simulation . 27
6.1.2 Thompson Simulation . 27
6.1.3 Simulation Comparison . 30

6.2 Experimental Results . 30
6.2.1 The Application . 30
6.2.2 The Milestone . 31

6.3 ε-greedy Sampling Algorithm Experiment . 31
6.3.1 Experiment Design . 31
6.3.2 Analysis of Results . 32

6.4 Thompson Sampling Algorithm Experiment 33
6.4.1 Experiment Design . 33
6.4.2 Analysis of Results . 33

6.5 Summary . 34

7 Conclusion 35

A CD content 41

List of Figures

2.1 Retention Curves for Android Apps - Andrew Chen, 2015 [14] 7

3.1 Milestone Reaching Problem Diagram . 18

5.1 Example of notification on Android 8 lockscreen 25
5.2 Example of expanded notification on Android 8 25
5.3 Simplified data flow between implementation components 25

6.1 Effect of delay from batching on ε-greedy sampling algorithm 28
6.2 Effect of delay from batching on ε-greedy sampling algorithm after first batch 28
6.3 Effect of delay from batching on Thompson sampling algorithm 29
6.4 Effect of delay from batching on Thompson sampling algorithm after first batch 29
6.5 Comparison between ε-greedy and Thompson sampling algorithms 30
6.6 Map with reports in UrbanCyclers application used for the experiments . . . 31
6.7 Tracked ride in UrbanCyclers application used for the experiments 31

xiii

xiv LIST OF FIGURES

List of Tables

6.1 ε-greedy Sampling - Users opening messages by message type 32
6.2 ε-greedy Sampling - Users with any rides by message type 32
6.3 ε-greedy Sampling - Users with any rides vs. opening any message 33
6.4 Thompson Sampling - Users opening messages by message type 33
6.5 Thompson Sampling - Users with any rides by message type 34
6.6 Thompson Sampling - Users with any rides vs. opening any message 34

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Smartphones are enormous field with 2 billion active users [7] that offers many oppor-
tunities for mobile application developers. The portable design leads to small screens, high
distraction level and short sessions. Furthermore, there is competition with over 3.5 million
other published applications [4]. However, the modern smartphones also offer many advan-
tages over traditional desktop software. The most of the devices are connected to the internet
allowing the developer to communicate directly with the user over notifications and in-app
messages. Another advantage is the wide array of sensors available to track the location or
movement of the device.

Average Android smartphone user launches less than half of installed applications and
uses only 10 applications daily [8].

This short attention span and high competition create a need for the user engagement
optimization. The internet connection on the other hand enables data gathering from all of
the users. This opens window to data-driven techniques and many commercial products are
offered for this optimization. However, very few of them seem to leverage machine learning
and even fewer publish their methods. This creates an opportunity to formalize and build
such technique.

1.2 Aim of the Thesis

The aim of the thesis is to explore how data-driven techniques based on machine data
analysis can be used to automate the optimization of user engagement by designing and
implementing a suitable data-driven technique.

To achieve this goal following steps will be performed. Firstly, the definition and possible
metrics of user engagement will surveyed. Then commercially available user engagement
solutions will be surveyed for the popular black-box solutions.

With information from the surveys a problem for user engagement optimization will
formalized and optimization technique for solving the problem will be designed.

Finally, the designed technique will be implemented and evaluated.

1

CHAPTER 1. INTRODUCTION

1.3 Structure of the Thesis

In the Chapter 2 the domains of user engagement, mobile applications and commercial
products for user engagement are surveyed. A promising problem related to user engagement
optimization is also described. In Chapter 3 a narrow part of user engagement problem is
formalized. Techniques for this problem are proposed in Chapter 4 and their implementation
is described in Chapter 5. The performance of proposed techniques are evaluated in Chap-
ter 6. Finally, Chapter 7 presents the conclusion from the evaluation results and proposes
future work.

2

Chapter 2

Preliminaries

In this chapter, user engagement is defined and types of user engagement optimization
are described. The domain of mobile application including its monetization in relation
with user engagement is also described. Furthermore, the available communication channels
are described. A Survey of commercial products for mobile optimization is also presented.
Finally, a problem with promising relation to user engagement is described including some
algorithms for solving it.

2.1 Defining User Engagement

In mobile applications domain, user engagement is a term used to denote various concepts
of interaction between the user and the application. Bouvier et al. [10] define it for digital
gaming as "the willingness to have emotions, affect and thoughts directed towards and
determined by the mediated activity". To present a definition from the industry, Taige
Zhang [28] from company Kissmetrics defines engagement as "the key performance indicator
(KPI) for your app’s core behaviors" with examples such as search queries, videos played per
session, likes and comments on a post or simply time spent in a game. Andy Carwell [9] on
the other hand defines engagement as a depth of the interaction in a contrast to the retention
which is the breadth. In Fabric Answers 1 mobile analytics platform, the engagement refers
to number of active users, the number of user sessions and their length.

All applications also have a notion of a user lifetime. It is the user retention and engage-
ment, but is usually measured as retention [22].

As the previous engagement definitions are focused on value to the user which might be
hard to measure, one of the alternatives for the developer is focus on a lifetime value (LTV)
which is the total monetary value of the specific user to the developer. The engagement and
lifetime value are linked, because only engaged user will contribute towards monetization
and type of monetization model can point to the region of engagement that is important for
optimization.

1https://fabric.io

3

https://fabric.io

CHAPTER 2. PRELIMINARIES

2.2 User Engagement Optimization

User engagement with a mobile application is ultimately determined by perceived value
for the user. The types of optimization methods described in following sections are stream-
lining the user experience, showing value, providing goals and providing content.

• Streamlining of the user experience is the most powerful method for applications that
are not based on novelty. Automated methods in this include layout A/B testing and
automated help for so called tripwires, when user stops using the application because
of unwillingness or inability to do a required action.

• Showing the value is also possible optimization to improve the perceived value. Auto-
mated methods can be used to select a value to advertise and choose right context to
do so.

• Providing goals works for keeping engagement with repetitive functionality or to show-
case available features to the new user. Automated methods can be used for selecting
the best encouragement towards the goal or for recommending the best goal to the
user.

• Providing content is the main goal of social, news and other types of applications with
growing content. Automated methods can be used to recommend the right content for
the user.

2.3 Mobile Applications

2.3.1 Applications, Games & Gamification

Mobile applications are divided into many categories leading to different interaction pat-
terns. The category with the most tools to affect user are games. This advantage led to
inclusion of the game elements to many applications from other categories. This phenomenon
is known as gamification.

2.3.2 Gamification

Gamification is defined by Deterding et al. [16] as "the use of design elements character-
istic for games in non-game context" where gaming means playing structured by rules and
competitive strife toward goals. The design elements interesting for improvement of engage-
ment are for example badges, leaderboards, user levels, time constrains, limited resources or
turns. The key feature of the elements is that they provide clear goals for the user.

Gamification can be successfully used for interactions that user considers to be valu-
able but not as engaging. This is very useful for education application such as language
learning Duolingo and Memrise, multi-field learning Khan Academy, or to health and fitness
applications such as Simple Habit.

Another advantage of virtual rewards is using them as reward for daily launch or simple
action in the application. The simplest example is the streak counter that shows current

4

2.3. MOBILE APPLICATIONS

count of consecutive days where the user took the action. This approach combined with
social pressure is so effective in messaging application Snapchat that it is considered to be
harmful by tech critic Tristan Harris [20].

2.3.3 Monetization Models

There are applications that serve simply as a tool for offline business or a just a digital
storefront for selling content, however many of them rely on revenue generated by the usage
of the application. Some possible revenue models are described as they promote different
type of interaction and the income generated by a user might be a metric that is optimized
by improving engagement.

2.3.4 Mobile App Monetization Models

Some common models are displaying third party advertisement, one time payment, sub-
scriptions, various forms of data gathering, paid downloadable content, paid consumable
content or often some combinations of these.

• Third party advertisement is the most common model where the most used platform
AdMob only is currently used in over of quarter of applications published on the Google
Play Store. As ad revenue comes from impressions (displaying the advertisement) or
clicks, the revenue can be generated simply by making the user repeatedly open the
application.

• One time payment is another common model for the application. With this model the
user engagement is mostly important for attracting more users for example through
favorable reviews.

• The subscription model is related to one-time payment model, however, it is a natu-
ral fit for applications that provide continually updated content. Many applications
also require backend server computations and continuous security and compatibility
updates. In case one time payment these costs must be paid by continuous growth
of the number of users or by releasing paid upgrades. Under those requirements, sub-
scription becomes more in line with the expenses for the publisher, however it might
not be favored by the users used to the one time payment model. This model requires
to persuade the user about the usefulness of the application in order to subscribe and
keep the subscription.

• Data gathering and subsequent data monetization is another revenue building model
as user generated data are useful as anonymous dataset used for rating and recommen-
dations based on item similarity such as products, media or even real life locations.
However, data gathering might also be used for building rich profile for advertisers that
leverage it trough other channels in ethically questionable ways. In contrast to hidden
gathering of data about user, the generation of useful dataset by explicit user input
usually requires strong interest from the user.

• Purchase of additional downloadable features or game levels is a model that specifically
requires reactivation of the user when the new content is released.

5

CHAPTER 2. PRELIMINARIES

• So called consumables for games and gamified applications can provide a profitable
monetization model. The game adds artificial waiting times or other barriers that
can be skipped each time by paying with real-world money. This can lead to gaining
an edge over other players and is made profitable by so called ’whales’, which are
users that keep playing a single game for a long time. Over the course of playing, the
accumulated sum of their in-app purchases can often greatly exceed the sum they would
be willing to spend on the game in the up-front single payment. This model however
requires strong game mechanism design considerations such as in-game currencies and
presenting the player with its benefits. These requirements and possibilities makes the
publishers bring a whole different set of techniques for user engagement that are not
suitable for other monetization models.

2.3.5 Combining Monetization Models

Most applications combine previously described models to target various type of the
users. Some examples from the list of Google Play Store Editor’s Choice which showcases
handpicked applications that are the best in innovation, creativity, and design are following:

• SkyView has third party advertisement and version that removes it by one time pay-
ment.

• Memrise has a free version with an advertisement for bonus content available only with
a subscription that is far more expensive than usual applications available as one time
purchase.

• Goodreads lets users create a database of their books and rate them to create recom-
mendation data and also uses affiliate links for purchases.

• Star WarsTM: Galaxy of Heroes is example of free to play game that offers consumable
purchases. The gameplay involving direct competition between players can lead to non-
paying players to being easily defeated by paying players which motivates the both of
them to buy additional consumables to stay competitive.

2.4 Retention

Retention is defined as a fraction of users that still use the application on specific day or
in a specific week after they have installed the app.

As it is very common for mobile application to offer a version that is free to install, the
majority of applications will see only a third of the users launching it in the day after the
installation, as users many of them before committing. This makes the new users a prime
target for engagement optimization.

Interesting data were released by Andrew Chen from company Quettra in 2015 [14]. As
shown in Figure 2.1, there is a rapid drop at day 1 for all the applications. However, in
these measurements from 125 million devices in five months since January 2015, the best
performing non-preinstalled applications retained a much higher percentage of users even on
day 90. As this metric measures the fraction of user that are active on the given day, it is

6

2.5. COMMUNICATION CHANNELS

not as useful for application in categories that are designed to be used less often. Especially
for those case, weekly activity window for measurement can be useful.

0
13 7 14 30 60 90

Days since App Install

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f U
se

rs
 S

til
l A

ct
iv

e Retention Curves for Android Apps

Top 10 Apps
Next 50 Apps
Next 100 Apps
Next 5000 Apps
Average App

Figure 2.1: Retention Curves for Android Apps - Andrew Chen, 2015 [14]

In most cases, to be counted as active for the retention, the only action the user has to
do is to launch the application. While this is useful value and means that user still at least
knows that the application is installed, the narrower definition can be better optimization
target. Example of this is "listener retention" as used at Soundcloud [9] that measured only
users that listened to the content, which is the core action for their application and thus also
better reflection of the user engagement.

2.5 Communication Channels

At the moment of writing (2018) the only major platforms for mobile applications are
Android and iOS. The both platforms have support for their native applications and allow
use of analogous sensors and services. However, the sensors and other APIs are restricted
due to battery life and privacy concerns, but some of them are available through Google’s
or Apple’s proprietary channels for registered developers.

Both platforms offer many communication channels towards the user. Any application
has internet access that might be unstable or limited resulting in important software archi-
tecture considerations. However, due to history in web application, it is not uncommon to
utilize connection to a remote server that can handle data from all the users. This connection
allows to show downloaded content such as in-app messages and the push notification that
are powerful channel with some restrictions. In some cases the email address or telephone
number might be available to the application.

7

CHAPTER 2. PRELIMINARIES

2.5.1 Email & Phone Number

Email and Phone numbers are two identifiers and communication channels that are not
available to the application in the default case, but might be acquired as a part of creation
of an account for the application. The email is provided by popular identity providers such
as Google, Facebook or Twitter accounts, or as part of email and password authentication.
The phone number also provide verifiable identifier that is cross-platform.

While both of the channels have the possibility to contact a user even without the appli-
cation installed, this is not that common for mobile only applications and might be limited
by a law.

2.5.2 In-app Messages

A message from the application operator can downloaded and displayed inside the ap-
plication for example as an overlay or inside a content feed that is important part of many
applications working with user generated content. The content and graphical representa-
tion is under full control of the operator and can use the same components as the rest of
application user interface.

The main disadvantage of this channel is that it can target only users using the application
at the moment. While this is not as much of a problem for games with longer sessions, a
context dependent application might be launched only for a brief time and on-the-go.

2.5.3 Notifications

Both platforms provide push messages that can be send over internet connection to the
device even when the application is not running. This message is presented to the user as a
notification. The main components of a notification is the title and the text content. If the
user is currently using the phone it is displayed over any currently running application for
a brief time. On a inactive device, it is displayed on the lock screen. The notification offers
interaction by clicking the body or one of the optional buttons. This can be used for opening
the application on any screen inside the application and thus guiding the user directly to
some functionality or just to do some action without opening the application.

The battery life concerns limited the background computation on iOS since first ver-
sions, meaning that push messages must be delivered trough Apple Push Notification service
(APN) that can forward the notifications through Apple’s servers to the device. While older
Android versions allowed custom solutions for message delivery as the background work
was not restricted, the recent versions restrict it only to short service windows. However,
Google provides Firebase Cloud Messaging service (FCM) that also allows forwarding the
notifications through the service that can ignore the battery optimization restrictions.

The important difference between the platforms is that notifications are the core part
of mobile Android OS. The improvements of the notification tray and interactivity of the
notifications play prominent role in updates of the OS and are even synchronized to Wear
OS wearables connected the Android OS device. Unopened notifications are shown as an
icon in the status bar reminding the user it can be accessed from the notification drawer
by pulling it from the top of any screen. The iOS also has notification drawer, however

8

2.6. RECOMMENDATIONS

without the icons in status bar, the visibility is much lower. This is noticed by the reviews
[23] and more importantly by analytics on opened notifications. Other important difference
is, that on Android, every application can show the notifications as default, but on iOS, the
application must request an explicit permission from the user first.

The various industry analytics report show very varied numbers for the share of the users
opening the messages, also known as click-through rate (CTR). While some sources such as
Kahuna in 2014 [13] claimed CTR of 10-40% based on application category, Leanplum in
2016 [17] presented open rate of 1.77% on iOS and 3.48% for Android and Phiture [11] the
rate of 0.1-10% for iOS and 0.5-15% based on level of personalization of the message for the
user.

2.6 Recommendations

Delivering relevant content to the user is an important part of user engagement in shop-
ping and media consumption applications. There is a variety of published solutions for this
problem. Ordered by number of items from which the recommended item is selected, Li et
al. [21] propose usage of contextual bandit problem algorithms for selection of the highlighted
news item on a front page from small pool. The classical solutions use collaborative filter-
ing to recommend items by learned similarity between users or the items themselves. The
item-based solution proved to be important for Amazon store [24]. Current developments
in this area involve training of deep neural networks, for example Covington et al. [15] from
video service Youtube created successful two stage architecture, which however requires mas-
sive computational power and data set size that is not available to majority of application
developers.

2.7 Mobile Optimization Industry

Acquisition, retention and engagement optimization for mobile applications is an indus-
try field with wide variety of companies offering their services to the mobile application
developers. The services range from more narrow such as message scheduling, re-activation
messages for inactive users, message personalization, or layout A/B testing to more data
analytics based segmentation of user types or prediction of certain events.

The offered services are however available only as the interface, with optimization ap-
proaches not known by public. Despite this, a survey of commercially available services
should show problems that have impact in real applications.

The following commercial offers are surveyed for available user engagement features:

• Mixpanel2 is a popular analytics solution that provides many data-driven features. It
offers automatic segmentation, prediction for future analytics events based on single
user history and anomaly analysis. It also offers sending of messages based on users
actions through push notification, email and in-app messages. Finally, A/B testing of
layouts is also offered.

2https://mixpanel.com

9

https://mixpanel.com

CHAPTER 2. PRELIMINARIES

• Firebase3 is a Google platform that offers wide variety of products for mobile appli-
cation developers. In addition to tools for building applications such as real time
database, it integrates Google Analytics and can use the user event data for prediction
of the future events. Tools for A/B testing of layouts and messages are offered with
ability to show experiments only to certain segments defined by analytics events.

• Flurry4 is a popular analytics solution owned by Yahoo. It offers usage analytics
and scheduling of push notification messages triggered by received event from the
application. It also allows creation of user segments, however the functionality is not
advertised as automatic or self-learning.

• Localytics5 is an analytics solution that offers prediction of user churn and is focused
on precise targeting of users with messages. An uncommon feature of their targeting
is the possibility to use location to trigger sending of the message.

The commercial services mostly use engagement optimization as a term for session length
from analytics view or as a term for sending messages through various channels such as push
notifications while combined with event tracking to precisely target the messages in case of
specific product. Another popular option is prediction of future event, especially of user
stopping using the application.

Another surprising use of data to optimize engagement is automated crash reporting. As
shown in report by Apteligence [2] users are up to 8x less likely to return to the application
the next day after a crash. This degradation of user experience also leads to Google Play
Store lowering the promotion of applications with high crash rate.

The importance of crash reporting for the applications can be inferred from inclusion of
Crashlytics6 service library in over 43% of Top 500 Android applications [3]. The data-driven
techniques are however targeting the developers of the applications by prioritizing common
crash causes and automated hints towards possible primary causes of the crash.

2.8 Multi-armed Bandit Problem

The multi-armed bandit problem (MAB) as described by Sutton & Barto [25] involves
concurrent learning and exploitation of stochastic environment that occurs for example when
deciding between two advertising layout in case of A/B testing for higher click through rate.

The multi-armed bandit problem is formalized with following abstraction: We are given
a slot machine with N arms. At each time step t = 1, 2, 3, ... one of the arms is pulled
and the agent immediately receives reward chosen from a stationary probability distribution
dependent on arm selected. The objective is to maximize the expected total reward over
some time period T . Rewards for repeated selection of the same arm are independent and
identically distributed and independent of the selection of the other arms.

An algorithm for MAB has no beforehand knowledge about the distribution associated
with the arm. If the distribution was known, the optimal algorithm would simply always

3https://firebase.google.com/
4http://www.flurry.com
5https://www.localytics.com
6https://try.crashlytics.com/

10

https://firebase.google.com/
http://www.flurry.com
https://www.localytics.com
https://try.crashlytics.com/

2.8. MULTI-ARMED BANDIT PROBLEM

pull the arm associated with the largest expected reward. Therefore, the algorithms used
for this problem balance between exploration pulls that try to improve the model of the
distributions that might lead to higher expected reward in the long run and the exploitation
pulls that try to maximize reward at the current step.

2.8.1 Contextual Bandit Problem

The contextual bandit is extension of MAB problem that adds context xt at each time
step t. Probability distribution from which is the reward chosen depends on the context in
addition to the arm selection.

2.8.2 ε-greedy Algorithm for MAB

The simplest model for MAB works with an assumption that if the expected reward for
each arm a was µa = E[rt|a] and was known, then µ∗ = maxa µa could be simply chosen.
The simple estimation of the expected reward of pulling arm a at time t can be created by
averaging the rewards actually received from pulling each arm:

µa(t) =

∑t−1
i=1 ri1a(i)=a∑t−1
i=1 1a(i)=a

where 1a(i)=a is 1 if arm a was chosen at time i and 0 if it was not. The default expected
reward in case of denominator being 0 can be set to 0.

With this model of µa(t) the ε-greedy algorithm chooses with probability 1 - ε the arm
a(t) = argmaxa µa(t) with ties broken randomly. This is called a greedy selection as it
exploits the knowledge at the time to maximize immediate reward. In order to explore other
than the first successful arm, at each time step, a random arm a from the N arms is selected
with the probability ε instead of the greedy selection. The pseudocode of this algorithm
based on described by Sutton & Barto [25] can be seen in Algorithm 2.1.

Algorithm 2.1 ε-greedy Algorithm for MAB
for each arm a do

µa = 0
na = 0

end for
for t = 1, . . . , T do

if Draw from [0, 1) < ε then
Select a(t) = random arm a

else
Select a(t) = argmaxa µa

end if
Observe reward rt
Update na = na + 1
Update µa = µa +

1
na
(rt − µa)

end for

11

CHAPTER 2. PRELIMINARIES

2.8.3 Thompson Sampling

Thompson sampling algorithm for MAB is based on the idea of randomly choosing an arm
based on the probability of it being optimal. This idea of probability matching described
by William R. Thompson [27] led to commonly referring to this algorithm as Thompson
sampling.

To apply this algorithm on MAB problem, the problem is redefined in Bayesian context.
The past observations are modeled by likehood function P (r | a, x, θ) where r is reward, a
is selected arm, x is the context and θ are hidden parameters.

While the probability matching approach is not optimal in the Bayesian decision mak-
ing about single decision and thus suboptimal compared to deterministic strategy in single
exploitation step, it leads to efficient balance of exploration and exploitation.

2.8.4 Thompson Sampling for Bernoulli Bandits

In cases where the reward for a MAB is binary only, e.g. success or failure, a Beta
probability distribution can be efficiently used with Thompson Sampling to achieve efficient
exploration and strong automatic exploitation during later time steps. This is possible, be-
cause a Beta distribution is conjugate prior probability distribution for Bernoulli distribution
that is used as model for the success rate of each arm.

The algorithm used for example by Chapelle & Li [12] shown in 2.2 is given prior knowl-
edge as α and β parameters as (1, 1) in unbiased case or larger to set direction and magnitude
of the bias.

Algorithm 2.2 Thompson Sampling for Bernoulli Bandit
Given: α, β
for each arm a do

Sa = 0 . Success counter
Fa = 0 . Failure counter

end for
for t = 1, . . . , T do

for each arm a do
Draw θa from Beta(Sa + α, Fa + β)

end for
Select a(t) = argmaxa θa
Observe reward rt
if rt is success then

Sa(t) = Sa(t) + 1
else

Fa(t) = Fa(t) + 1
end if

end for

12

2.8. MULTI-ARMED BANDIT PROBLEM

2.8.5 Delay in Multi-armed Bandit Problem

In many real-world situations that otherwise fit the multi-armed bandit problem, there is
a slight delay between selection of the arm to pull and observability of the reward. Example
of this is a selection and a display of a layout of a web page and user clicking or not clicking
on tested button while visiting the page.

This delay is at best of our knowledge not handled by specific algorithm, but treated by
many authors only as a constraint leading to choice of algorithm with best result at required
maximum delay of solved situation. This comparison is explored for example by Chapelle
& Li [12] and Joulani et al. [19]. Hill et al. [18] showed that in live production system an
algorithm not considering delay can be successful even at a delay as big as tens of thousands
selections.

13

CHAPTER 2. PRELIMINARIES

14

Chapter 3

Milestone Reaching Problem

In this chapter a milestone reaching problem is formalized in a way which can be optimized
by data-driven algorithms and which affects the user engagement in ways described below.

3.1 User Journey

For this problem, a user journey is defined as a sequence of milestones reached by the
user that are sufficient to turn the user from beginner to a regular user. Each milestone
can be reached by some specific action by the user. The actions might provide immediate
benefits, show possible future benefits or just strengthen a habit.

3.1.1 Milestones

A milestone is a domain specific and might not be directly observable by the application
or only after some time. An early milestone reaching actions taken by the user might be
for example watching a first video, creating an account, tracking a first fitness activity with
the application or simply returning to the application in a day after she installed it. Later
milestones might serve as exploration of non-core actions such as adding friends in non-social
application, switching to different target in a case of fitness applications or setting up some
custom content preferences. More complex milestones, such as doing an activity streak for
a week, can have required user activity in each day, however it is possible for example to
only define sixth and seventh day activity as the targets for optimization to let the user to
self-select towards the milestone over the first days.

3.2 Milestone Reaching Optimization Components

In this section we describe how we formalize milestone reaching in terms of messages,
activation conditions, rewards and context vectors. The user attributes, interaction history
and location are also described as user data sources for creation of activation conditions and
context vectors.

15

CHAPTER 3. MILESTONE REACHING PROBLEM

3.2.1 Messages

A message in a milestone reaching problem is the way of communication with the user
that is used to affect her and trigger the reaching of the milestone. To use mobile notifications
as a channel for delivering the message to the user, it can contain short text title and short
text description. As the interface for displaying the notification is generally controlled by the
OS, the support for emoji becomes an important part of the customization of the message.

Emoji are ideograms or smileys that can be displayed inside the text. Each emoji is only
defined as Unicode characters defined by short text description. This means each vendor can
supply their own graphics, which can in rare cases lead to slight shift in meaning of displayed
message in comparison to one intended and previewed by the sender.

The content of the message is created using domain knowledge of the operator and should
promote a way of achieving the milestone or just remind of its existence.

3.2.2 User Data

The user attributes describe the user in general and application domain specific ways.
The general attributes are for example gender, age bracket, country or general interest in
some area such as technology or sport. The domain specific attributes are other preferences
directly stated by the user such as preferred movie genre or reported fitness skill level.

Interaction history is a summary of action taken by the user while using the application,
e.g. preferred movie genre based on movies watched using the application, performance level
based on measured fitness activity or interest level based on the interaction with previous
messages.

Location is another type of data source for the problem. It can be detected by the
variety of sensors in a modern mobile device, but the acquisition is limited by the privacy
and battery life concerns.

• Geofencing wakes the application up if it enters or leaves a location, making it a viable
activation condition. However, without specialized hardware at the location such as a
beacon, the assumed accuracy is only about 50 meters. This is enough to detect that
the user is at home, at work or at some other preset location or at neither. Geofencing
re-uses location sources such as Wi-Fi scans which leads to low battery impact.

• Activity recognition can differentiate different types of movement such as walking,
driving a car, or not moving. This, however, requires many sensor readings. This
makes the activity type based activation conditions viable only if the application is
already actively using fine location sensors such as GPS.

• Coarse location of the device can also be utilized especially in a fusion with other
data sources about the environment such as weather situation, traffic conditions or
local events. This can be used both as a activation condition or similarly to an user
attribute.

16

3.3. MILESTONE REACHING PROBLEM SPECIFICATION

3.2.3 Activation Conditions

An activation condition fulfillment leads to including user into a milestone reaching prob-
lem. It combines an event such as user’s action inside the application, detection of real-world
situation or simply a physical clock reaching a time with good change to read the message,
with a conditions on user attributes or interaction history such as having no friends added
inside the application yet. Each activation condition fulfillment is treated as a logical time
step leading to a selection of the best message to send as the trigger towards the milestone.

3.2.4 Context Vector

At each logical time step a context vector is gathered as a representation of the user
affected by the environment approaching the milestone. It contains relevant subset of user
attributes, interaction history summaries and addition environment data fused with the
location.

3.2.5 Reward

The reward is granted if the user passes the milestone or a proxy for a milestone passing
in the future if it is hard to trace from a message. However, this reward can be observed
only after some physical time as the user needs time to react to the message, which can be
minutes in case of digital only milestone, or hours or even days in cases where milestones
require real-world action. It is assumed that reaction during any time in the window is
equally valuable.

One of the effects of the delayed observability of the rewards is that the activation con-
dition fulfillment happening only in batches with large enough interval between lead to the
rewards being observable also in batches.

3.3 Milestone Reaching Problem Specification

We define milestone reaching as the following problem:
We are given a set M = {m1,m2, . . . ,mk} possible messages for users and physical time
window W for each user to reach the milestone since the activation condition fulfillment.
After each fulfillment at each logical time step t = 1, 2, 3, ..., one of the k messages M must
be selected by a message selection function ψt(M,Ht, xt) and sent. When sent, message
yields a hidden real-valued reward rt from a stationary probability distribution that depends
on selected message mt and the context vector xt. The reward rt becomes observable at time
step t + δt where the delay δt is the effect of the time window W on reward observability.
The delay δt ∈ N0 is unknown at time t but observability at the end of the fixed size time
window W guarantees that ∀t1, t2 : t1 ≤ t2 ⇒ t1 + δt1 ≤ t2 + δt2

The goal is to maximize expected total reward in time T , i.e.

E[
T∑
t=1

rt(xt,mt)].

17

CHAPTER 3. MILESTONE REACHING PROBLEM

Trigger RewardSelected MessageSelection

Messages

User's Reaction

Mobile Device

User Attributes

Location

Interaction History

Figure 3.1: Milestone Reaching Problem Diagram

An algorithm for milestone reaching problem needs to choose at every time t a message
using current context vector xt and observable history of rewards received with corresponding
message selection and context vector Ht−1 = {rz(xz,mz) | z ≤ t + δt} to learn optimal
message selection series ψ∗ which maximizes the expected total reward.

3.4 Milestone Reaching Problem Properties

It is not generally true that a user being sent a message repeatedly or receiving different
messages in succession are events that are independent with relation to successful milestone
reaching. However, if we assume that user that has received multiple messages related to a
milestone and have not reached it is not interested in the milestone enough to be persuaded
by the automated messages, then we can remove such user from the optimization process.

Given the upper limit for repeated sends, if the number of the users is large enough
compared to the limit and the number of already received messages is a part of the context,
we assume that dependency becomes negligible.

18

Chapter 4

Milestone Reaching Optimization
Algorithm

In this chapter, multiple algorithms for solving milestone reaching problem are proposed
and their conditions and relations to algorithms for multi-armed bandit problem and its
extensions. Trade-offs of some methods are also compared.

4.1 Relation to Different Problems

The milestone reaching instance has time window W before it becomes observable. The
time window is defined by physical clock value, i.e. 24 hours, leading to a delay δt at
each time step defined in time steps. The ratio between the delay δ and final time step T
fundamentally affects the class of methods usable for the problem. If the delay δ is close to
T , any informed selection can be only done for few final steps. However, if the delay δ is
much smaller than T , as is a case if time window has size of a day and final time steps comes
after many days, the balance between the exploration for the best action and exploitation of
current knowledge becomes important.

As the pattern of the user journey through the application generally does not change
too fast, the following methods target the instances that require the balance between the
exploration and exploitation. As this is common in the field of reinforcement learning,
proposed methods incorporate various algorithms used in this field.

Multi-armed bandit problem as described in Chapter 2 also aims at optimal selection in
stochastic environment. The independence claim required in bandit problem is also present
in milestone reaching problem under the previously stated repeat limit.

4.2 ε-greedy Algorithm with Context Buckets

The first method for solving milestone reaching problem is based around the idea of
ε-greedy algorithm for multi-armed bandit problem as presented by Sutton & Barto [25].
It assumes that we are given mapping from the context vector x to few buckets. The
mapping can be created by some unsupervised algorithm, by creation of the buckets by the

19

CHAPTER 4. MILESTONE REACHING OPTIMIZATION ALGORITHM

operator and learning the mapping by supervised methods or simply by manual decision by
the operator with the domain knowledge.

The core idea of the algorithm is the estimation of reward by averaging the rewards
actually received from sending the messages.

Given the messages for each of the buckets, average reward for each of the messages is
kept. After each activation condition fulfillment, the estimates of the rewards are updated
by any rewards that became observable since last fulfillment. Then, a context bucket is
selected by the mapping from the context vector. From the bucket, either the message with
largest expected reward is selected, or, with probability ε a random action from the bucked
is selected instead. This message is sent and the corresponding reward will be observable
after some future trigger. The pseudocode is described in Algorithm 4.1.

The ε based exploration leads to a flat rate of exploration after the greedy actions stop
lowering the estimate of expected reward for at the moment largest reward. This means that
large ε such as 0.1 limits the total received reward as fraction of selections is still assigned
to messages that might be clearly inferior. On the other hand low ε can lead to slow start,
as first few selections can lead to hundreds of selections on message with lower actual value.

While delay δ generally lowers the accuracy of the reward estimations, a delay before
first observed reward actually forces random exploration that can prevent slow start with
low ε.

Algorithm 4.1 ε-greedy Algorithm
Given: messages M divided into b buckets M1, . . . ,Mb, ε ∈ (0, 1), mapping from context
vector x to buckets Mβ

H ← {}
O ← {}
for each message m do

µa ← 0 . Expected value
nm ← 0 . Selection counter

end for
for t← 1, . . . , T do

for all rτ in H and not in O in ascending order do
Observe reward r(τ) and O ← O ∪ r(τ)
Update nm(τ) ← nm(τ) + 1

Update µm(τ) ← µm(τ) +
1

nm(τ)
(rτ − µm(τ))

end for
Select the bucket Mβ by mapping from xt
if Draw from [0, 1) < ε then

Select m(t)← random message m from Mβ

else
Select m(t)← argmaxm µm where m is in Mβ

end if
Send message m(t) and r(t) will be observable in history at t+ δt

end for

20

4.3. THOMPSON SAMPLING ALGORITHM WITH CONTEXT BUCKETS

4.3 Thompson Sampling Algorithm with Context Buckets

This algorithm is based around the idea of Thompson sampling. It assumes we are given
the mapping from context vector to the buckets as described for previous ε-greedy algorithm.

A limitation of this method is that it only works with binary reward. However, binary
reward is also the most straightforward representation of the success or failure of passing the
milestone by the user.

Given the messages for each bucket, a count of successful and unsuccessful trials of sending
for each message is kept. The algorithm as seen in pseudocode form in Algorithm 4.2 utilizes
the increasing certainty about success rate of each message to automatically decrease the
exploration rate.

Algorithm 4.2 Thompson Sampling
Given: messages M divided into b buckets M1, . . . ,Mb, α, β, mapping from context vector
x to buckets Mβ

H ← {}
O ← {}
for each message m do

Sm ← 0 . Success counter
Fm ← 0 . Failure counter

end for
for t← 1, . . . , T do

for all rτ in H and not in O in ascending order do
Observe reward r(τ) and O ← O ∪ r(τ)
if r(τ) is success then

Sm(τ) ← Sm(τ) + 1
else

Fm(τ) ← Fm(τ) + 1
end if

end for
Select the bucket Mβ by mapping from xt
for each message m in Mβ do

Draw θm from Beta(Sm + α, Fm + β)
end for
Select m(t) = argmaxm θm
Send message m(t) and r(t) will be observable in history at t+ δt

end for

21

CHAPTER 4. MILESTONE REACHING OPTIMIZATION ALGORITHM

22

Chapter 5

Implementation

In this chapter the software architecture used to implement and deploy proposed mile-
stone reaching problem solutions is described. It is divided into implementation of the mes-
sage optimization module and additional functionality required from the application itself
and its backend server. The simplified data flow is shown in Figure 5.3.

5.1 Message Optimization Module

The optimization module is a library that offers selection of the best action over longer
timeframe for which it includes internal model and rewards persistence. It is designed for
solving milestone reaching problem by selection of the messages, however it can be used for
selection of other actions.

The module requires Java 8 runtime environment and access to SQL database with pre-
pared tables. The initial inputs consist of a list of messages, parameters of selected algorithm
and a provider of a connection to the database in form of java.sql.Connection [1]. During
the optimization process, it requires being called back when any reaction to the message be-
comes serializable and when the batch of responses to the selected messages is finished. With
the previous inputs, a recommended message can be requested by a trigger event coming
from the hosting backend system.

Internally, the module takes cares of restarts and updates of the deployed system by
eagerly serializing the state of any running experiment and by tracking the status and origin
of each of the messages selected by the experiments.

The module is written in Kotlin [6] 1.2 language and can be used as a library jar by JVM
languages such as Java. As the experiments and messages are identified by universally unique
identifier (UUID) it requires database with support for this data type such as PostgreSQL1.

The test deployment uses Java 8 language at JRE 1.8 and with connection to PostgreSQL
10.3 database through PostgreSQL JDBC Driver 42.1.4.

1https://www.postgresql.org/

23

https://www.postgresql.org/

CHAPTER 5. IMPLEMENTATION

5.2 Mobile Application Integration

The deployment to an existing Android application requires a delivery method, a noti-
fication display implementation and a method for upload of user’s reaction and the context
composed from location, interaction history and user attributes. Each requirement is con-
strained by Android battery saving and privacy measures.

5.2.1 Notification Delivery

Notification delivery is effectively forced to use Firebase Cloud Messaging (FCM) due to
battery life optimization by the Android OS [5]. The application must be registered as lis-
tening to this proprietary Google service. The registration yields a registration token, which
must be forwarded to the backend as it is required to target the device. This communication
channel allows pushing of short JSON payload to the device. This payload is used to define
the notification message and is used at the same time to deliver additional data that can be
displayed as in-app message.

5.2.2 Notification Display

When the data message is delivered, a background service owned by the application is
invoked without displaying any user interface. The service has brief time period to compose
and present the notification message data to the OS. The delivery status is forwarded to the
sender by FCM itself.

Example of notification displayed by Android 8 phone is show in Figure 5.1 as displayed
on the phone lockscreen and in expanded state if user opens the notification drawer in
Figure 5.2.

To utilize the click action of the notification a deep linking is implemented allowing the
direct opening of a screen that is otherwise reachable only deep in the hierarchy of the entry
point of the application launched from the system launcher. As the application is not running
while the notification is displayed, an ID of the message must be forwarded during the open
event.

5.2.3 Reaction and Context upload

If the user successfully opens the application by the notification, this event must be
forwarded to the backend server by the application itself. The communication with the
test deployment backend server is over REST style API. As the application can be stopped
or killed by the OS at any time, any data must be persisted on the device. Then the
communication is scheduled by the system work API that can use network connection and
battery status to determine when to start.

5.3 Application Backend Integration

Application backend server is the component that offloads battery intensive computa-
tions, allows synchronization between the devices of single user and centralized interaction
between the users such as leaderboards or public comments.

24

5.3. APPLICATION BACKEND INTEGRATION

Figure 5.1: Example of notification on An-
droid 8 lockscreen

Figure 5.2: Example of expanded notification
on Android 8

The server instantiates the action optimization module experiments and sends the mes-
sages to the device through FCM. It receives the reactions to the messages from the applica-
tion and gathers user attributes, interaction history and in case of the test deployment, the
location of the device.

In combination with timers the received data provides the information about activa-
tion conditions fulfillment and context about the user and environment to the optimization
module experiments.

optimizer
database

backendoptimizer

FCM

user actions

selected
message

(push)

selected
message

context
reaction

to the message

backend
database

message
history

selected
message

App

context

Figure 5.3: Simplified data flow between implementation components

25

CHAPTER 5. IMPLEMENTATION

26

Chapter 6

Evaluation

In this chapter the proposed algorithms are evaluated. In the first section the simulated
environment is used to explore the properties of the algorithms under various conditions of
the environment. In the second section the experiments using the application UrbanCyclers
on real user base are described and evaluated.

6.1 Simulation Results

The simulations were performed to test the performance of ε-greedy sampling and Thomp-
son sampling algorithms under delay.

The test environment has two messages with success rate of 15% and 20% respectively.
This represents environment with two moderately successful messages with clear difference of
preferred message. Each experiment configuration run for 1000 time steps and was repeated
4000 times. The configurations made the reward observable immediately, each 50, 100 and
200 selections.

6.1.1 ε-greedy Simulation

Figure 6.1 shows the average reward for ε-greedy sampling algorithm with ε = 0.1. The
horizontal lines shows the first selection where any learned knowledge could be used for the
corresponding configuration. The same averaged series are also shown in Figure 6.2 with
each step series shifted so that the exploitation of observed rewards start at step 0.

This data show that the delayed observability actually can enable the algorithm to escape
the possibility of greedily selecting the lower actual value message.

6.1.2 Thompson Simulation

Figure 6.3 shows the average reward for Thompson sampling algorithm with α = 1 and
β = 1. The horizontal lines again shows the first selection where any learned knowledge
could be used for the corresponding configuration.

Figure 6.4 presents the series shifted with first observable batch to step 0. It shows the
undesirable effect of the delay to estimate distribution update. The data from first batch
are unable to offset the delayed updates during later steps leading to lower accuracy.

27

CHAPTER 6. EVALUATION

0 200 400 600 800 1000
Time steps

0.165

0.170

0.175

0.180

0.185

0.190

0.195

0.200

Av
er
ag

e
re
wa

rd

1-batch average
1-batch average ±σ
50-batch average
50-batch average ±σ
100-batch average
100-batch average ±σ
200-batch average
200-batch average ±σ

Figure 6.1: Effect of delay from batching on ε-greedy sampling algorithm

−200 0 200 400 600 800 1000
Time steps

0.170

0.175

0.180

0.185

0.190

Av
er
ag

e
re
wa

rd

1-batch average
50-batch average
100-batch average
200-batch average

Figure 6.2: Effect of delay from batching on ε-greedy sampling algorithm after first batch

28

6.1. SIMULATION RESULTS

0 200 400 600 800 1000
Time steps

0.165

0.170

0.175

0.180

0.185

0.190

0.195
Av

er
ag

e
re
wa

rd

1-batch average
1-batch average ±σ
50-batch average
50-batch average ±σ
100-batch average
100-batch average ±σ
200-batch average
200-batch average ±σ

Figure 6.3: Effect of delay from batching on Thompson sampling algorithm

−200 0 200 400 600 800 1000
Time steps

0.170

0.175

0.180

0.185

0.190

Av
er
ag

e
re
wa

rd

Figure 6.4: Effect of delay from batching on Thompson sampling algorithm after first batch

29

CHAPTER 6. EVALUATION

6.1.3 Simulation Comparison

Figure 6.5 shows comparison of ε-greedy sampling algorithm with Thompson sampling
algorithm from 3000 runs of 3000 steps. The ε = 0.1 and α = β = 1. The average reward is
shown in band of one standard deviation around it represented by the dotted line. While the
ε-greedy sampling shows advantage at start, the adaptive estimate by Thompson sampling
allows better exploitation in later steps.

0 500 1000 1500 2000 2500 3000
Time steps

0.165

0.170

0.175

0.180

0.185

0.190

0.195

0.200

0.205

Av
er
ag

e
re
wa

rd

50-batch ε-greedy sampling average
50-batch ε-greedy sampling average ±σ
50-batch Thompson sampling average
50-batch Thompson sampling average ±σ

Figure 6.5: Comparison between ε-greedy and Thompson sampling algorithms

6.2 Experimental Results

6.2.1 The Application

The experiments were integrated to and executed at Android version of existing commer-
cial application UrbanCyclers1. It targets cyclists and has focus on cycling as a sustainable
transport option in urban areas. This cycling focus places the core user activity in the real
world and makes the mobile device with the application an assistant and a motivator enabled
by sensor data read about the real-world situation.

The main features are centered about navigation, gamification elements such as ride
leaderboards and badges, and social elements especially based around reporting of places
that are difficult or dangerous to ride. A map from the application with some reports is
shown in Figure 6.6.

1https://play.google.com/store/apps/details?id=com.umotional.bikeapp

30

https://play.google.com/store/apps/details?id=com.umotional.bikeapp

6.3. ε-GREEDY SAMPLING ALGORITHM EXPERIMENT

The monetization model includes a subscription for unlocking premium features, but
base features are available for free as all active users provide anonymous data that can be
used for improvements of the cycling infrastructure.

Figure 6.6: Map with reports in Ur-
banCyclers application used for the
experiments

Figure 6.7: Tracked ride in Urban-
Cyclers application used for the ex-
periments

6.2.2 The Milestone

The most important milestone for the UrbanCyclers app user is the first ride with the
application. The experiment targeted users that installed the application and signed up for
an account but did not use it for a ride up until the next day after their sign up. Example
of successfully tracked ride inside the application is shown in Figure 6.7.

6.3 ε-greedy Sampling Algorithm Experiment

6.3.1 Experiment Design

The experiment targeted users with no tracked ride in the first day after sign up. The
deployed algorithm was ε-greedy with context buckets. The context mapping selected be-
tween two buckets by the cycling frequency reported by the user during the sign up. The
self-reported high frequency group received a message about gamification features selected
between leaderboards and virtual badges received for reaching certain bike riding goals. The
rest of users received a message selected between weight loss and general health improve-
ments.

31

CHAPTER 6. EVALUATION

The selected reward was a unit reward for each opened notification by a user. The time
windows for the user to open the message was 24 hours. This was assumed to be a proxy of
a ride in next week after the message.

The used ε = 0.01 meaning exploration rate of of 1%.

6.3.2 Analysis of Results

The experiment ran for 16 days in spring 2018 and the messages were sent to 743 users
from which 202 were self-reportedly high frequency riders with 541 remaining in low or
average categories. This led to rewards being observable approximately after 45 time steps.

Results of each type of message are shown in Table 6.1 and Table 6.2. The number of
messages that were opened by the users in Table 6.2 shows some preference for the weight
and leaderboards messages, however with p-value from Fisher’s exact test [26] at 0.58 for
weight vs. health and 1.0 for leaderboards vs. badges respectively, the null hypothesis of the
type of message not affecting the outcomes cannot be rejected with the current number of
samples. The difficulty of learning of superior reward is also supported by the balance of the
number of selections for the weight and health messages that is caused by changes between
the highest expected message value estimates. On the other hand, high imbalance between
selections of leaderboards and badges messages makes the rejection of null hypothesis hard
by itself.

Health Weight Leaderboards Badges

Opened 47 56 27 1
Not opened 214 224 164 10

Success ratio 0.18 0.20 0.14 0.09

Table 6.1: ε-greedy Sampling - Users opening messages by message type

Results of each type of message in numbers of user that have at least one ride in seven
days after delivery is in Table 6.2. At p-value of 0.58 for weight vs. health and 0.51 for
leaderboards vs. badges the hypothesis no effect of type of message cannot be rejected.

The phi coefficient of the same user opening the messages and having any rides computed
from Table 6.3 is 0.22 which shows low relation. However, the message being displayed as
a notification can be read and affect the user without being opened, similarly to relations
between clicks and impressions for online advertising. With same preferred message for both
rides and clicks the proxy reward might still work through impressions.

Health Weight Leaderboards Badges

Some rides 36 50 57 2
No rides 225 230 134 9

Success rate 0.14 0.18 0.30 0.18

Table 6.2: ε-greedy Sampling - Users with any rides by message type

32

6.4. THOMPSON SAMPLING ALGORITHM EXPERIMENT

Opened Not opened Total

Some rides 50 95 145
No rides 81 517 598

Total 131 612 743

Table 6.3: ε-greedy Sampling - Users with any rides vs. opening any message

6.4 Thompson Sampling Algorithm Experiment

6.4.1 Experiment Design

The experiment with Thompson sampling algorithm with context buckets also targeted
users with no tracked ride in the first day after sign up. The same context mapping as in
previous experiment selected between two buckets by the cycling frequency reported by the
user during their sign up. The messages were again targeting general health benefits, weight
loss, availability of competition in leaderboards or personal targets in badges.

The selected reward was also a unit reward for the opening of the notification by the user
and the time windows for user to open the message was 24 hours.

6.4.2 Analysis of Results

The experiment ran for 15 days in spring 2018 and the messages were sent to 989 users
from which 290 were self-reportedly high frequency riders with 699 remaining in low or
average categories. This led to rewards being observable approximately after 65 time steps.

Results of each type of message are show in Table 6.4 and Table 6.5. The numbers of
message that were opened by the users presented in Table 6.4 show promising preference
for weight and badges messages. At respective p-values from Fisher’s exact test of 0.22 and
0.10, this experiment has the better chance at rejecting the null hypothesis of no difference
between the messages, but both p-values are still far above the 0.05 baseline.

Health Weight Leaderboards Badges

Opened 38 91 7 35
Not opened 201 369 73 175

Success rate 0.16 0.20 0.09 0.17

Table 6.4: Thompson Sampling - Users opening messages by message type

Results of each type of message in numbers of user that have at least one ride in seven
days after delivery is in Table 6.5. The p-value of 0.37 for weight vs. health means the
hypothesis no effect of those types of message cannot be rejected. With p-value of 0.012 for
leaderboards vs. badges the null hypothesis could be rejected by the test, however the high
difference of the success rates between the experiments and lower number of samples in this
context bucket might hint at broken identical distribution assumption.

33

CHAPTER 6. EVALUATION

The phi coefficient of the same user opening the messages and having any rides computed
from Table 6.6 is 0.18 which again shows low relation.

Health Weight Leaderboards Badges

Some rides 102 180 46 85
No rides 137 280 34 125

Success rate 0.43 0.39 0.58 0.40

Table 6.5: Thompson Sampling - Users with any rides by message type

Opened Not opened Total

Some rides 104 309 413
No rides 67 509 576

Total 171 818 989

Table 6.6: Thompson Sampling - Users with any rides vs. opening any message

6.5 Summary

Simulations have shown that ε-greedy sampling and Thompson sampling algorithms are
able to identify and exploit the message with higher value even under delay from batched
observability of message results.

Experiments deployed to a mobile application have shown that the different messages
aimed at directing the user towards the milestone of the first bike ride have different rate
of being opened and also the rate of the first successful ride after different messages being
received is different. However, the difference have not proven to be statistically significant.
Furthermore, the opening of the message was shown not to be correlated with the first ride of
the same user within the 7 days of delivery. To show more conclusive results, the experiments
could be run for longer time to gather more data, set up with the first ride as direct reward,
or with different messages.

34

Chapter 7

Conclusion

The primary aim of the thesis was to explore how data-driven techniques based on ma-
chine data analysis can be used to automate the optimization of user engagement. In order
to reach this goal following steps were performed.

First, the milestone reaching problem was formalized based on survey of actions proposed
by industry experts as effective ways of increasing user engagement. The user is encouraged
to reach a milestone by the most effective message.

To solve the formalized problem, two algorithms were proposed - ε-greedy sampling
with context buckets and Thompson sampling with context buckets. Their relations to the
algorithms for reinforcement learning multi-armed bandit problem was described.

The implementation of proposed algorithms as a message optimization module that allows
their deployment due to included persistence was described. The required features of the
application itself and its back end server were also described.

The simulations demonstrated that proposed algorithms work in environment with mes-
sages with distinguishable success rate.

The experiments run with over 1700 users of real mobile application tested the hypotheses
of different messages leading to different engagement rate as measured by opened messages
and physical world actions. The hypotheses were not proven to be statistically significant
at the sample size and the link between the opening of the message and the physical world
action of bike ride was dismissed.

Future work includes a larger experiments to accept or reject the difference of efficiency
of the messages and design of algorithms with automatic handling of context vector either by
segmentation or by creation of a metric for the context space. The investigation of algorithms
based on classification or collaborative filtering for solving the milestone reaching problem
is also possible.

35

CHAPTER 7. CONCLUSION

36

Bibliography

[1] Connection (Java Platform SE 7), . Available at: https://docs.oracle.com/javase/
7/docs/api/java/sql/Connection.html.

[2] Data Report: Crash & Churn Edition, November 2016. Available at: https://www.
apteligent.com/2016/11/data-report-crash-churn-edition/.

[3] Development tools - Android library statistics - AppBrain, . Available at: https:
//www.appbrain.com/stats/libraries/dev.

[4] Number of Google Play Store apps 2018 | Statistic, . Available at: https:
//www.statista.com/statistics/266210/number-of-available-applications-
in-the-google-play-store/.

[5] Optimize for Doze and App Standby, . Available at: https://developer.android.
com/training/monitoring-device-state/doze-standby.

[6] Reference - Kotlin Programming Language, . Available at: https://kotlinlang.org/
docs/reference/index.html.

[7] Smartphone users worldwide 2014-2020 | Statistic, . Available at: https://www.
statista.com/statistics/330695/number-of-smartphone-users-worldwide/.

[8] Spotlight on Consumer App Usage, . Available at: http://files.appannie.com.s3.
amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.pdf.

[9] BALFOUR, B. Solving Mobile Growth & Retention with Andy Carvell, ex Growth at
SoundCloud, July 2017. Available at: https://brianbalfour.com/essays/mobile-
growth-retention-soundcloud.

[10] BOUVIER, P. et al. Identifying Learner’s Engagement in Learning Games: a Qualitative
Approach based on Learner’s Traces of Interaction. In 5th International Conference on
Computer Supported Education (CSEDU 2013), s. 339–350, Aachen, Germany, May
2013. Available at: https://hal.archives-ouvertes.fr/hal-00854579.

[11] CARVELL, A. RRF: a framework for building impactful notifications, April 2017.
Available at: https://mobilegrowthstack.com/rrf-a-framework-for-building-
impactful-notifications-73c7b91c45a7.

37

https://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html
https://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html
https://www.apteligent.com/2016/11/data-report-crash-churn-edition/
https://www.apteligent.com/2016/11/data-report-crash-churn-edition/
https://www.appbrain.com/stats/libraries/dev
https://www.appbrain.com/stats/libraries/dev
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/training/monitoring-device-state/doze-standby
https://kotlinlang.org/docs/reference/index.html
https://kotlinlang.org/docs/reference/index.html
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.pdf
http://files.appannie.com.s3.amazonaws.com/reports/1705_Report_Consumer_App_Usage_EN.pdf
https://brianbalfour.com/essays/mobile-growth-retention-soundcloud
https://brianbalfour.com/essays/mobile-growth-retention-soundcloud
https://hal.archives-ouvertes.fr/hal-00854579
https://mobilegrowthstack.com/rrf-a-framework-for-building-impactful-notifications-73c7b91c45a7
https://mobilegrowthstack.com/rrf-a-framework-for-building-impactful-notifications-73c7b91c45a7

BIBLIOGRAPHY

[12] CHAPELLE, O. – LI, L. An Empirical Evaluation of Thompson Sampling. In
Proceedings of the 24th International Conference on Neural Information Processing
Systems, NIPS’11, s. 2249–2257, USA, 2011. Curran Associates Inc. Available at:
http://dl.acm.org/citation.cfm?id=2986459.2986710. ISBN 978-1-61839-599-3.

[13] CHEN, A. New data on push notifications show up to 40% CTRs, the
best perform 4X better than the worst (Guest post), September 2014. Avail-
able at: http://andrewchen.co/new-data-on-push-notification-ctrs-shows-
the-best-apps-perform-4x-better-than-the-worst-heres-why-guest-post/.

[14] CHEN, A. New data shows losing 80% of mobile users is normal, and why the best
apps do better, June 2015. Available at: http://andrewchen.co/new-data-shows-
why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-
much-better/.

[15] COVINGTON, P. – ADAMS, J. – SARGIN, E. Deep Neural Networks for YouTube
Recommendations. s. 191–198. ACM Press, 2016. doi: 10.1145/2959100.2959190.
Available at: http://dl.acm.org/citation.cfm?doid=2959100.2959190. ISBN 978-
1-4503-4035-9.

[16] DETERDING, S. et al. From Game Design Elements to Gamefulness: Defining Gami-
fication. In Proceedings of the 15th International Academic MindTrek Conference: En-
visioning Future Media Environments, MindTrek 2011, 11, s. 9–15, September 2011.
doi: 10.1145/2181037.2181040.

[17] FLEIT, B. What Happens When You Analyze 1.5 Billion Push Notifications?, Septem-
ber 2016. Available at: https://www.leanplum.com/blog/analyze-1-5-billion-
push-notifications/.

[18] HILL, D. N. et al. An Efficient Bandit Algorithm for Realtime Multivariate Optimiza-
tion. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, s. 1813–1821, New York, NY, USA, 2017. ACM.
doi: 10.1145/3097983.3098184. Available at: http://doi.acm.org/10.1145/3097983.
3098184. ISBN 978-1-4503-4887-4.

[19] JOULANI, P. – GYORGY, A. – SZEPESVARI, C. Online Learning under Delayed
Feedback. In International Conference on Machine Learning, s. 1453–1461, February
2013. Available at: http://proceedings.mlr.press/v28/joulani13.html.

[20] KLEIN, E. How technology is designed to bring out the worst in us, Febru-
ary 2018. Available at: https://www.vox.com/technology/2018/2/19/17020310/
tristan-harris-facebook-twitter-humane-tech-time.

[21] LI, L. et al. A Contextual-bandit Approach to Personalized News Article Recommenda-
tion. In Proceedings of the 19th International Conference on World Wide Web, WWW
’10, s. 661–670, New York, NY, USA, 2010. ACM. doi: 10.1145/1772690.1772758. Avail-
able at: http://doi.acm.org/10.1145/1772690.1772758. ISBN 978-1-60558-799-8.

38

http://dl.acm.org/citation.cfm?id=2986459.2986710
http://andrewchen.co/new-data-on-push-notification-ctrs-shows-the-best-apps-perform-4x-better-than-the-worst-heres-why-guest-post/
http://andrewchen.co/new-data-on-push-notification-ctrs-shows-the-best-apps-perform-4x-better-than-the-worst-heres-why-guest-post/
http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/
http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/
http://andrewchen.co/new-data-shows-why-losing-80-of-your-mobile-users-is-normal-and-that-the-best-apps-do-much-better/
http://dl.acm.org/citation.cfm?doid=2959100.2959190
https://www.leanplum.com/blog/analyze-1-5-billion-push-notifications/
https://www.leanplum.com/blog/analyze-1-5-billion-push-notifications/
http://doi.acm.org/10.1145/3097983.3098184
http://doi.acm.org/10.1145/3097983.3098184
http://proceedings.mlr.press/v28/joulani13.html
https://www.vox.com/technology/2018/2/19/17020310/tristan-harris-facebook-twitter-humane-tech-time
https://www.vox.com/technology/2018/2/19/17020310/tristan-harris-facebook-twitter-humane-tech-time
http://doi.acm.org/10.1145/1772690.1772758

BIBLIOGRAPHY

[22] MONEREO, I. Insights for evaluating lifetime value for game developers, March
2018. Available at: http://services.google.com/fh/files/blogs/insights_for_
evaluating_lifetime_value_for_game_developers.pdf.

[23] RUDDOCK, D. Switching to the iPhone, part three: Everything I hate about the
iPhone X, December 2017. Available at: https://www.androidpolice.com/2017/12/
22/switching-iphone-part-three-everything-hate-iphone-x/.

[24] SMITH, B. – LINDEN, G. Two Decades of Recommender Systems at Amazon.com.
IEEE Internet Computing. 2017, 21, 3, s. 12–18. ISSN 1089-7801.

[25] SUTTON, R. S. – BARTO, A. G. Reinforcement Learning: An Introduction. Cambridge,
Massachusetts : The MIT Press, second edition, 2018. ISBN 978-0-262-19398-6.

[26] The SciPy community. scipy.stats.fisher_exact — SciPy v1.1.0 Reference Guide, May
2018. Available at: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.fisher_exact.html.

[27] THOMPSON, W. R. On the Likelihood that One Unknown Probability Exceeds An-
other in View of the Evidence of Two Samples. Biometrika. 1933, 25, 3/4, s. 285–294.
ISSN 0006-3444. doi: 10.2307/2332286. Available at: http://www.jstor.org/stable/
2332286.

[28] ZHANG, T. A Simple Framework for Building User Engagement Features. Available
at: https://blog.kissmetrics.com/user-engagement-features-framework/.

39

http://services.google.com/fh/files/blogs/insights_for_evaluating_lifetime_value_for_game_developers.pdf
http://services.google.com/fh/files/blogs/insights_for_evaluating_lifetime_value_for_game_developers.pdf
https://www.androidpolice.com/2017/12/22/switching-iphone-part-three-everything-hate-iphone-x/
https://www.androidpolice.com/2017/12/22/switching-iphone-part-three-everything-hate-iphone-x/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html
http://www.jstor.org/stable/2332286
http://www.jstor.org/stable/2332286
https://blog.kissmetrics.com/user-engagement-features-framework/

BIBLIOGRAPHY

40

Appendix A

CD content

• source - contains the Gradle project and source for building the message optimization
module and running simulations, see README.txt for the instructions.

• text - contains the text of this diploma thesis in pdf format.

• text source - contains LATEX files for the text of this diploma thesis.

41

	Introduction
	Motivation
	Aim of the Thesis
	Structure of the Thesis

	Preliminaries
	Defining User Engagement
	User Engagement Optimization
	Mobile Applications
	Applications, Games & Gamification
	Gamification
	Monetization Models
	Mobile App Monetization Models
	Combining Monetization Models

	Retention
	Communication Channels
	Email & Phone Number
	In-app Messages
	Notifications

	Recommendations
	Mobile Optimization Industry
	Multi-armed Bandit Problem
	Contextual Bandit Problem
	epsilon-greedy Algorithm for MAB
	Thompson Sampling
	Thompson Sampling for Bernoulli Bandits
	Delay in Multi-armed Bandit Problem

	Milestone Reaching Problem
	User Journey
	Milestones

	Milestone Reaching Optimization Components
	Messages
	User Data
	Activation Conditions
	Context Vector
	Reward

	Milestone Reaching Problem Specification
	Milestone Reaching Problem Properties

	Milestone Reaching Optimization Algorithm
	Relation to Different Problems
	epsilon-greedy Algorithm with Context Buckets
	Thompson Sampling Algorithm with Context Buckets

	Implementation
	Message Optimization Module
	Mobile Application Integration
	Notification Delivery
	Notification Display
	Reaction and Context upload

	Application Backend Integration

	Evaluation
	Simulation Results
	epsilon-greedy Simulation
	Thompson Simulation
	Simulation Comparison

	Experimental Results
	The Application
	The Milestone

	epsilon-greedy Sampling Algorithm Experiment
	Experiment Design
	Analysis of Results

	Thompson Sampling Algorithm Experiment
	Experiment Design
	Analysis of Results

	Summary

	Conclusion
	CD content

