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c© 2018 Martin Endršt. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
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Abstrakt

Důležitou součást́ı komunikace mezi lidmi je i exprese emoce. Pochopeńı emo-
cionálńıho rozpoložeńı jedince pomáhá porozumět řečnickým formám jako je
ironie, pochopit vážnost popisované situace a vńımat daľśı informace, které
často nejsou obsahem verbálńı komunikace. Vzhledem k rostoućı popularitě in-
tegrovaných rozhrańı mezi člověkem a strojem má automatizované rozpoznáńı
emoce potenciál zlepšit zp̊usob jakým se stroji interagujeme. Dı́ky př́ıtomnosti
kamerových senzor̊u téměř ve všech zař́ızeńıch je rozpoznáńı emoce na základě
výrazu obličeje nejpřijatelněǰśı formou vhodnou k masovému využit́ı. V rámci
této práce bylo navrženo a implementováno několik model̊u rozpoznávaj́ıćıch
emoci na základě sekvence obrázk̊u obličeje v čelńım pohledu. Jelikož je emoce
dynamický psychický stav, byly prozkoumány a porovnány tři druhy časového
kontextu. Pro zajǐstěńı využitelnosti vytvořených model̊u s obrazovými toky
v reálném čase byl vytvořen framework zapouzdřuj́ıćı funkcionalitu klasi-
fikátoru. Zapouzdřenému celku jsou sńımky předávány po jednom. Klasi-
fikátory založené na metodách hlubokého učeńı i klasifikátory bežného typu
byly využity v implementaci. Nejúspěšněǰśı implementovaný model dosáhl
přesnosti 95.1% na datové sadě CK+.

Kĺıčová slova klasifikace video sekvence, rozpoznáńı emoce, rozpoznáńı
výrazu obličeje, transfer learning, konvolučńı rekurentńı neuronová śı̌t, sup-
port vector machine
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Abstract

Emotion expression is an important aspect of human to human communi-
cation. Recognizing the emotional state of a person can help us better un-
derstand complex rethorical devices such as irony, understand the gravity of
described situation and infer other information that is often not expressed as
part of the verbal communication channel. With the growing popularity of
integrated human-machine interfaces automatic emotion detection has a great
potential to improve the way we interact with machines. Since camera sen-
sors are being integrated into almost all devices, emotion recognition based
on facial expression is one of the viable methods for widespread use. Several
models performing emotion recognition based on sequence of frontal facial
images were proposed and implemented in this thesis. Because emotion is
a dynamic psychical state, three different types of temporal context informa-
tion for recognition were examined and compared. To ensure usability with
real-time streams a wrapper framework consuming one frame at the time is
proposed. Both deep-learning based and conventional types of classifiers were
implemented. The best performing model achieved accuracy of 95.1% on the
CK+ dataset.

Keywords video classification, emotion recognition, facial expression recog-
nition, transfer learning, convoluitonal recurrent neural net, support vector
machine
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Introduction

Emotion expression is an important aspect of human to human communi-
cation. Recognizing the emotional state of a person can help us better un-
derstand complex rethorical devices such as irony, understand the gravity of
described situation and infer other information that is often not expressed as
part of the verbal communication channel. The ability to recognize emotion
traverses both cultural and language barriers [1] [2] and is therefore a vital
part of communication between foreign individuals.
With the growing popularity of integrated human-machine interfaces auto-
matic emotion detection has a great potential to improve the way we interact
with machines. All kinds of devices including, but not limited to automated
personal assistants, health robots and smart home hubs would benefit from
such ability. For these reasons emotion recognition has become a popular topic
of research in past few years.
There are several ways an emotion can be recognized such as voice intonation,
body language, or complex methods like electroencephalography (EEG) [3].
Because camera chips are integrated into most of the devices today the visual
examination of facial expression, which is the chosen method for this thesis,
is probably the most practical method for widespread use.
The problem of facial expression recognition (FER) can be categorized as
either static classification, where model is only classifying one frame at the
time, or sequence classification, which takes temporal aspect of emotion into
consideration. Large portion of related work examines static version of this
problem. Emotion, however, is a dynamic state and the temporal properties
of facial expression could be important in the recognition process.
This thesis aims to create and evaluate several models for FER in sequences
of frontal facial images. Seven expressions of basic emotion — anger, disgust,
fear, happiness, neutral, sadness and surprise — were selected. Approaches
based on deep-learning as well as conventional approaches will be examined.
Comparsion between temporaly-aware models and per-frame models will also
be performed.
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Chapter 1
Emotion and its expression

Before diving into the problem of automatic FER this chapter aims to sum-
marize psychological background of emotion and its manifestation in facial
expression.

1.1 Emotion

Even though the science of emotion is an active field there is no universal
definition of what emotion is and how to distinguish it from other psychological
states. According to Dr. Paul Ekman emotion has following characteristics:

1. There is a distinctive pan-cultural signal for each emotion
There is a distinctive universal expression associated with given state
which functions as a signal, even though it might be very subtle. Pres-
ence of expression is not a sufficient evidence of presence of an emotion,
as the expression can be simulated.

2. Distinctive universal expressions of emotion can be traced phy-
logenetically
While this characteristic does not help to clarify boundaries of emotion
it is important to note as an explanation of universality.

3. Emotional expressions involve multiple signals

4. There are limits on the duration of emotion

5. The timing of an emotional expression reflects the specifics of
particular emotinal experience
The duration of emotional expression is correlated to the strength of
emotional experience (possibly modified by an attempt to manage said
expression).

3



1. Emotion and its expression

6. Emotions are graded in intensity reflecting variations in the
strength of felt experience

7. Emotional expression can be totally inhibited

8. Emotional expressions can be convincingly simulated

9. There are pan-human commonalities in the elicitors for each
emotion

10. There is a pan-human, distinctive pattern of changes in the
autonomos nervous system for each emotion

Based on his cross-cultural experiments Ekman identified seven basic emo-
tions: anger, contempt, disgust, enjoyment, fear, sadness, surprise. [4] [5]

1.2 Universality of emotion expression

The question of universality of expression is an important one in order to
establish whether emotion recognition based on facial expression is a viable
general method. Until the second half of 20th century most academics be-
lieved that expresions of emotion are culturally bound and that only members
of same or similiar culture express emotions in same way. Charles Darwin,
however, thought otherwise. In [6] he argued that expressions of emotion were
universal as they were a product of evolution. To support this claim he pro-
posed three principles.
Principle of serviceable habits describes some expression habits as helpful and
therefore reinforced by natural selection. An example would be raising the
eyebrows to increase field of view in an event of danger (correlated with fear
emotion). Antithesis principle states that some expressions, such as shoulder
shrugging, exist merely because of their opposite nature to a serviceable habit.
Some expressions, as proposed by the expressive habit principle, are a result
of discharge of excitement in the nervous system. Vocal roar of anger would
be an example of such expression. [1] [2]
In mid-1960s Paul Ekman took an interest in this issue. Based on hundreds of
hours of film capturing isolated cultures in New Guinea highlands, taken by
Carleton Gajdusek and Richard Sorenson, Ekman found that in response to
given stimuli the face expressions observed were in accordance with his expec-
tations. No culturally unique expressions were observed either. Even though
he was leaned towards the culturally relativistic viewpoint at first, this expe-
rience swayed him that Darwin might be right and inspired him to travel to
the New Guinea highlands.
After conducting his own experiments and collecting supporting evidence for
universality of expression, Ekman came up with the idea of ”display rules”
(a set of socially learned, culturally unique behaviors that are used to mask,

4



1.3. Expression measurement

Figure 1.1: AU examples. AU1 — inner brow raiser, AU25 — lips part, AU9
— nose wrinklerer, AU12 — lip corner puller, AU6 — cheek raiser

exaggerate, diminish or exhibit expressions in specific cultural contexts) that
would explain culture-based differences in expressions. In late 1960s he gath-
ered evidence supporting this explanation by conducting a study of students
in Tokyo, Japan and Berkeley, California. He found that both Japanese and
American students reacted the same way to emotion inducing clips as long as
they were filmed alone by a hidden camera. However, when a scientist en-
tered the room, Japanese students masked negative expressions with positive
ones. [7]
Expression universality has been widely accepted as a number of cross-cultural
studies yielded supporting results. In [8] Lisa Feldman Barett and Maria Gen-
dron argue that only a few of these studies were truly cross-cultural. They
claim that cultures that have been exposed to the western culture have adapted
their emotion expressions and concepts. Furthermore, in the studies that were
truly cross-cultural (such as Ekman’s experiments in New Guinea), an emo-
tion conecptual context was included in the experimental method by asking
the subjects to assign facial expression to word or description. Their free label
experiment with participants from Himba ethnic group and America did not
find supporting evidence for expression universality and authors are suggest-
ing that emotion expressions are actually culture based to some degree.
Whether the emotion expression is truly universal or not, the findings of uni-
versality between cultures exposed to western culture is sufficient for vast
majority of potential FER applications.

1.3 Expression measurement

In order to be able to measure and describe facial expression Dr. Paul Ekman
and Dr. Wallace Friesen developed an anatomically-based system designed to
measure human facial movements called Facial Action Coding System (FACS).
The system uses Action Units (AUs) to describe muscular activities that pro-
duce changes in facial appearence. Action unit is a numeric code that repre-
sents muscle activity of certain facial muscles or muscle groups. FACS distin-
guishes 46 different AUs (e.g. AU1 - Inner brow raiser, AU23 - Lip tightener).
Resulting FACS code is a string of present AUs. Presence of emotion is decided
based on rules of presence of certain AUs. Even though FACS was primarily
developed to help describing facial expressions while studying emotion it is
a robust system that can be used in other areas as well. [9]
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Chapter 2
State-of-the-art

In addition to aforementioned distinction between static FER and FER on
sequences, approaches to FER can also be categorized by the features used
for classification. Conventional FER approaches use handcrafted features in-
ferred from face in the facial extraction step of FER process. Deep-learning
approaches often use convolutional neural network (CNN) to extract features
directly from images during training process.

2.1 Conventional approaches

Approaches in this category usually adhere to following FER process schema:

Figure 2.1: Conventional FER process

image(s)
collection

face region
detection

face landmark
detection

23.010
0.0124
1.2200
100.00
0.0022

feature
extraction

happy

sad

classification

Facial images are first collected and preprocessed (histogram equalization,
noise reduction, etc.). FER is usually performed on grayscale images as color
does not carry significant information about the expression. Next step is face
region detection. It is important to regionalize face in the image before at-
tempting to localize facial landmarks to avoid false-positives.
Multiple approaches to face region detection have been proposed over past few
decades. Haar cascade classifier is one of the more popular approaches. Local-
ization is performed via AdaBoost method using Haar-like features (descrip-
tors of contrast change between adjecent rectangular groups of pixels). [10] An-
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2. State-of-the-art

other popular method is based on Histogram of Oriented Gradients (HOG)
features and uses Support Vector Machine (SVM) to detect a region with
face. [11]
Detected face region is then used as a region of interest for face landmark
estimation (face alignment). Many face alignment approaches use cascade of
regressors. Each regressor is improving on landmark position estimate based
on image features relative to the previous landmark position estimate. In [12]
Kazemi and Sullivan use ensmeble of regression trees learned by gradient
boosting to achieve super-realtime performance while maintaining state-of-
the-art accuracy on face alignment problem.
Feature extraction step uses face landmarks to produce feature vector for
training. Temporal and appearence features are also often extracted in addi-
tion to geometric landmark features.
SVMs are dominant classification method in conventional FER approaches.
Radial Basis Function (RBF) kernel SVM seems to usually outperform linear
SVM in FER.

In [13] Suk and Prabhakaran present a real-time mobile application for
FER using a set of SVMs to recognize 7 basic emotions. Active Shape Model
(ASM) [14] is used to locate 77 face landmarks which are then used to gen-
erate 13 high-level distance features. The model performs classification based
on displacements relative to the neutral feature set. During classification pro-
cess each frame is first classified by binary classifier detecting neutral emotion
state. Extracted features from neutral frames are then used to update the
current neutral feature set. A CK+ dataset was used for training. Reported
accuracy on CK+ dataset is 87.9%

In [15] Ghimire and Lee used Elastic Bunch Graph (EBG) [16] to initialize
52 landmark positions which are then tracked in rest of the frames in sequence
using Gabor jets. The classification is performed by SVM using features of two
types. First type is x and y displacement of 52 landmarks relative to neutral
features. Second type is euclidean distance and angle change between all pairs
of landmarks relative to the distances and angles in neutral features. Neutral
frames are not being recognized in-process but rather an assumption is made
that neutral frame is always the first frame in sequence. Final feature vec-
tor is selected from a feature pool consisting of the two aforementioned types
of features using AdaBoost with Dynamic Time Warping (DTW) similarity.
CK+ dataset was used for training and reprted accuracy on this dataset is
97.2%

In [17] Happy et. al. present real-time FER system using multi-block
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2.2. Deep-learning approaches

Local Binary Pattern (LBP) appearance features and Principal Component
Analysis (PCA) to classify 6 basic emotions (neutral emotion is not being
classified). In proposed model Haar cascade is first used to detect face region
in source image. Face region is then divided into small subsections and the
LBP histogram is calculated for each block. Final feature vector is a concate-
nation of individual LBP histograms. The classification is done using PCA
eigen values for each emotion. Reported accuracy on custom dataset is 97%

Unlike appearance features extracted from the global face region as done
in [17], Ghimire et. al. [18] extracted region specific appearance LBP features
by dividing face region into 29 domain specific local regions. Incremental
search approach was employed to localize important local regions in order to
reduce dimensionality. In addition to appearance LBP features, geometrical
landmark features were also extracted using implementation of [12]. Final fea-
ture vector is presented to linear SVM classifier. Model was validated against
CK+ dataset with reported accuracy of 91.8% when classifying 7 basic emo-
tions.

Table 2.1: Conventional FER approaches

Reference Emotions
classified

Classification
method

Validation
dataset

Reported
accuracy

[13] 7 basic RBF SVM CK+ 87.9%
[15] 7 basic RBF SVM CK+ 97.2%
[17] 6 basic PCA custom 97%
[18] 7 basic SVM CK+ 91.8%

2.2 Deep-learning approaches

Deep-learning approaches to FER often use CNN to either perform classifica-
tion directly or to extract latent features. In order to capture temporal aspect
of expressions Recurrent Neural Networks (RNN) are sometimes used as well.

In their submission to the 2015 Emotion Recognition in the Wild con-
test, Winkler et. al. [19] examined effectiveness of transfer-learned CNN
on FER problem with small available dataset. They used pre-trained CNN
model of VGG-CNN-M-2048 [20] architecture wchich was trained on generic
image recognition task using images from ImageNet. This base model was
then transfer-learned in two fine-tuning phases using EmotiW and FER-2013
dataset. Resulting model achieved 55.6% accuracy on the test set.

9



2. State-of-the-art

In [21] Jung et. al. present joint model of deep temporal appearance con-
volutional network (DTAN) and deep temporal geometry network (DTGN).
Softmax outputs of these two networks is connected by element-wise addi-
tion with softmax applied to produce the final output. DTA is a 3D convo-
lutional network where convolutional filters are shared along the time axis.
This network captures temporal difference in appearance of the input images.
Sequence of facial landmarks is used as input for the DTGN. Each landmark
point is centered around a nose point and normalized using division by stan-
dard deviation of according dimension. Horizontal flipping and rotation were
applied to input image sequences in order to increase the amount of data avail-
able for training. Model was trained using MMI dataset. Accuracy of 97.25%
on CK+ dataset is reported.

Breuer and Kimmel employed deep CNN visualization methods to exam-
ine the relation between CNN-learned features and AUs in [22]. They used
architecture of three convolutional blocks (consisting of a convolutional layer
of 5x5 filters, activation by ReLu and max pooling layer with 2x2 window)
and two fully-connected layers to perform emotion classification. This archi-
tecture achieved 98.5% accuracy on CK+ dataset measured by 10 fold cross
validation. After examining the neuron activation in individual layers they
found high correlation between learned features and FACS AUs. They then
performed transfer learning on the same architecture to detect individual AUs
and found high accuracy of 97.5% in AU presence detection and 96.1% in AU
intensity prediction. This work demonstrates viability of deep CNN networks
in FER related tasks.

Submission to the 2015 Emotion recognition in the Wild challenge (EmotiW)
by Kahou et al. [23] proposes using hybrid CNN-RNN network for video clas-
sification. CNN network is used to extract high-level representation of input
frames. Multiple architectures of CNN network with various depths were tried.
Since the data provided as part of the challenge contained only videos labelled
with single emotion per video, other static datasets were used for training of
the CNN network. It was observed that deeper architectures tend to overfit
on the static datasets and therfore a 3 convolutional block (consisting of con-
volutional layer of 9x9 filters, ReLu activation and max-pooling) was chosen
as the best contender. The features extracted by CNN were used as input for
IRNN network (RNN of ReLu using initialization trick as described in [24]).
In addition to appearance features extracted by CNN authors also used ge-
ometrical landmark features and audio features to enhance the performance
of the final model. To combat different lightning conditions between datasets
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2.2. Deep-learning approaches

histogram equalization was applied to the images. Best reported accuracy on
the test dataset provided as part of the challenge was 52.875% and showed an
improvement over pure-CNN approaches.

Table 2.2: Deep learning FER approaches

Reference Emotions
classified

Classification
method

Validation
dataset

Reported
accuracy

[19] 7 basic VGG CNN FER2013 55.6%
[21] 7 basic DTAN & DTGN CK+ 97.25%
[22] 7 basic CNN CK+ 98.5%
[23] 7 basic RNN-CNN EmotiW 52.875%
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Chapter 3
Core concepts used

A brief introduction and overview of core concepts used in this thesis are
provided in this chapter.

3.1 Support Vector Machines

SVMs are a class of supervised learning models used for classification and re-
gression analysis originally developed by V. N. Vapnik and A. Y. Chervonenkis
in 1963. In its original form, SVM is a binary linear maximal-margin classifier.
Given a set of p-dimensional linearly separable binary class points as training
data an infinite amount of hyperplanes separating the data exist. In order to
minimalize generalization error the algorithm constructs a maximal-margin
hyper-plane separating training dataset. Such hyperplane has the maximal
possible distance to the closest datapoints. Training points closest to the sep-
arating hyperplane are called support vectors.
The hyperplane can be described as:

xTw + b = 0; wεRp, bεR

Figure 3.1: Support vector machine
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Let n be the number of data points in the training dataset. Under the con-
straint of

yi(xTi w + b) ≥ 1, i ε 1, ..., n

support vectors are data points that satisfy

yi(xTi w + b) = 1, i ε 1, ..., n

and their distance to the decision hyperplane can be computed as 1
||w|| . There-

fore in order to maximize the decision margin we want to minimize ||w|| and
the optimalization problem can be defined as:

min
w
||w||2; yi(xTi w + b) ≥ 1, i ε 1, ..., n

Classification of a new data point is then calculated as f(x) = sgn(xTw + b).
Because data is often not fully linearly separable a soft-margin variant of the
algorithm was proposed by Cortes and Vapnik in 1995. The maximal-margin
hyperplane constraint is relaxed to

yi(xTi w + b) ≥ 1− ξi; ξi ≥ 0, i ε 1, ..., n

and the optimization problem becomes

min
w
||w||2 + C

n∑
i=1

ξ2
i ; yi(xTi w + b) ≥ 1− ξi, ξi ≥ 0, i ε 1, ..., n

where CεR is a constant and defines the importance of all training datapoints
being classified correctly. For data that is not linearly separable in the space of
p dimensions U , it can be transformed into a feature space of higher dimension
V where points can be linearly separated. Because feature vectors xi only
appear in inner product in both the constraint and decision function, the
mapping function φ(x) : U → V does not need to be explicitly specified but
instead a kernel function is introduced. Kernel function is defined as

K(x1, x2) = φ(x1)Tφ(x2)

This is often referred to as the kernel trick. Popular non-linear kernel functions
are the polynomial kernel:

K(x1, x2) = (xT1 x2 + c)d

and radial basis function (RBF) kernel:

K(x1, x2) = exp(−γ||x1 − x2||2); γ = 1
2σ2
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Figure 3.2: Perceptron
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3.2 Artificial Neural Networks

Artificial neural networks (ANNs, further referred to simply as neural net-
works) are computing systems inspired by biological neural networks. The
initial groundwork was laid by McCulloch and Pitts when they introduced
the concept of perceptron in 1943. Perceptron is a binary classifier with n
inputs and their corresponding weights, a threshold gate and one output. De-
cision function of perceptron is described with formula:

y = f(xTw, h)

where x ε Rn is the input vector, w ε Rn is the vector of weights, h ε R is the
threshold and f : R×R→ {0, 1} is the step function.
The concept of perceptron is used as a foundation for neural networks. They

connect multiple perceptron-like units in layers. Neural network consists of
an input layer, 0 to m hidden layers and an output layer. Neural networks are
usually fully connected meaning that each neuron uses outputs of all neurons
in the previous layer as its inputs. The output of single neuron is computed
as

y = f(xTw + b)

where w are the weights, x are the inputs, b is bias and f is the activation
function. Multiple activation functions are used with the sigmoid function
f(x) = 1

1+ε−x and the rectified linear unit (ReLu) function f(x) = max(0, x)
being the most common. The most popular method for training NNs is back-
propagation of errors, a method used to calculate weight updates at each layer
by calculating gradient of loss function E. The weight update is calculated as

∆wi,j = ∂E

∂wi,j
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Figure 3.3: Convolutional Neural Network
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3.2.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) are deep neural networks typically con-
sisting of convolutional layers, pooling layers and fully connected layers. They
have been proven to be very effective in various computer vision tasks such as
image classification or face recognition.
Neurons in convolutional layers are not fully connected to previous layers, ev-
ery neuron is only connected to a spatial area (receptive field) of the previous
layer instead. It is however fully connected along the depth axis. Convolu-
tional layers have four hyperparameters – filter size F , stride S, zero padding
P and depth D (also referred to as the number of filters). F defines the size
of the receptive field, S is the offset of coinciding receptive fields, P is the
amount of zero padding at the edges of previous layers and D defines the
number of stacked layers. Weights are not assigned to every single connection
but are rather shared among the same stacked layer. Therefore i-th convolu-
tional layer has F 2

i Di−1Di weights. Width Wi and height Hi of the i-th layer
are calculated as Wi = Wi−1−Fi+2Pi

Si
+ 1 and Hi = Hi−1−Fi+2Pi

Si
+ 1.

Pooling layers are usually inserted in-between successive convolutional layers.
Similiarly to the convolutional layers pooling layers also employ the idea of
receptive fields however neurons are only connected along the spatial axes and
connections have no weights. Instead of weighted sum a pooling operation
(such as max or avg) is applied to the inputs of each neuron. Size of receptive
field F and stride S are used to define a pooling layer.

3.2.2 Recurrent Neural Networks

Some tasks require the ability to recognize patterns in sequences of data, such
as text, speech or numerical series. Regular NNs are not equipped with this
ability since they treat each input individually. Recurrent Neural Networks
(RNNs) are designed to produce output based not only on the current input
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3.2. Artificial Neural Networks

Figure 3.4: LSTM cell

X

σ σ tanh

+

X

σ

X

tanh

xt

ht-1

Ct-1 Ct

ht

ht

ft it Ĉt ot

but also taking previous inputs into consideration. Therefore such NN posesses
a form of memory. RNNs enjoy a great ammount of interest in recent decades
and have presented state-of-the-art performance in many fields.

3.2.3 Long Short-Term Memory networks

In order to capture patterns over long temporal distances a concept of Long
Short-Term Memory units (LSTMs) was proposed by Hochreiter and Schmid-
huber [25]. LSTM is an attempt to solve the vanishing gradient problem which
prevents simpler RNNs from learning over many time steps. At the core of
LSTM network is the LSTM cell (see fig. 3.4). An LSTM cell consists of mul-
tiple gates that modify the cell memory state Ct based on the hidden state
at previous time step ht−1 and the input xt. The first gate on the path of
the information flow is the forget gate. This part of the cell is responsible for
deciding what information to forget from the cell memory state and its output
is defined as:

ft = σ(wTf [xt, ht−1] + bf )
Next the cell decides how to update its memory state utilising an intention
gate which decides what is important to save to the memory state.

it = σ(wTi [xt, ht−1] + bi)

Ĉt = tanh(wTC [xt, ht−1] + bC)
Now the cell memory state can be updated and the information flows to the
last gate which is the output (or selection) gate. This gate learns to decide
what information to propagate to the hidden state at the current time step
ht, which is also the output of the cell.

Ct = ftCt−1 + itĈt

ot = σ(wTo [xt, ht−1] + bo)
ht = ottanh(Ct)
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Chapter 4
Available datasets

This chapter contains brief descriptions of available datasets suitable for FER
task. Multiple datasets of facial images (static or sequences) are available with
varying image resolutions, subject groups and types of labels. An important
distinction is whether the expressions are staged or spontaneous as sponta-
neous expressions tend to be more subtle in intensity and shorter-lived. Only
some datasets provide labels in terms of basic emotions. Because 2D based
analysis has difficulty handling head pose variations, datasets of 3D images
and videos are gaining popularity in the context of FER.
This thesis focuses on 2D based analysis and thus only 2D dataset are listed
in this section. Also note that this section only lists datasets that were consid-
ered most suitable for purposes of this thesis and is only a subset of available
2D datasets.

The Extended Cohn-Kanade Dataset (CK+) [26] published in 2010
builds upon the original Cohn Kanade dataset [27]. It contains 593 sequences
from 123 subjects of mostly posed expressions (122 sequences of spontaneous
smile from 66 subjects are also available). Full FACS coding is available for
the peak frames of all 593 sequences. All sequences are also labelled with
basic emotions: anger, contempt, disgust, fear, happiness, sadness and sur-
prise. All sequences begin with neutral expression and contain the onset and
peak of the emotion, some sequences end with neutral emotion and some end
after the peak. Participants were 18 to 50 years of age, 69% female, 81%,
Euro-American, 13% Afro-American, and 6% other ethnic groups. Sequences
vary in length from 10 frames to 60 frames, are of 640x480 format and are in
grayscale.

Japanese Female Facial Expressions (JAFFE) database [28] is a dataset
containing 213 static images of posed expressions performed by 10 japanese
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female models. Each image is labelled with one of 7 face expressions (anger,
disgust, fear, happiness, neutral, sadness and surprise) rated by 60 japanese
subjects based on six emotional adjectives. Images in the dataset have reso-
lution of 256x256 pixels and are in grayscale.

MMI Facial Expression Database (MMI) [29] contains over 2900
video sequences and high-resolution static images of 75 subjects. Every video
is fully annotated for the presence of AUs (event coding) and partailly coded
on frame-level indicating AU neutral, onset, apex or offset phase. A portion
of the dataset is also labelled with expressed emotion. There are a total of
238 video sequences on 28 male and female subjects. Images are colored and
have resolution of 720x576 pixels.

Multimedia Understanding Group Facial Expression Database
(MUG) [30] consists of 1462 sequences of posed and induced emotions per-
formed by 35 women and 51 men of caucasian origin aged between 20 and
35 years. In the first part of the dataset (posed emotions) participants were
asked to express each of the 6 basic emotions (anger, disgust, fear, happiness,
sadness and surprise), the neutral expressions were also recorded. Expressions
were captured at 896x896 pixels resolution with the frame rate of 19 fps. Each
sequence starts and ends with neutral expression and follows the onset, apex,
offset temporal pattern. The length of the sequence ranges from 50 to 160
frames. Emotion annotations are available for all sequences and a portion of
the dataset is labelled with 80 facial landmark points tracked at each frame.
In the second part of the dataset subjects were asked to watch an emotion-
inducing video while being recorded.

The Belfast Induced Natural Emotion Database (Belfast) [31] cap-
tures spontaneous expressions as responses to emotion-inducing tasks. The
database is split into three sets each collected at different time periods. Set 1
consists of 570 clips 5 to 30 seconds long capturing 70 male and 44 female sub-
jects performing tasks designed to induce frustration, disgust, surprise, fear
and amusement. 650 clips were collected for the Set 2 with lengths varying
between 5 and 60 seconds. 37 male and 45 female subjects were recorded
as part of Set 2 and performed tasks designed to induce disgust, surprise,
fear, amusement, anger and sadness. Tasks for Set 3 were designed to explore
cross-cultural differences in emotion expression and were expected to induce
disgust, fear and amusement. There are 180 clips of 30 to 180 seconds dura-
tion capturing 30 male and 30 female participants from Northern Ireland and
Peru as part of Set 3. Sequences are labelled with self-reported emotions.
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Chapter 5
Design and analysis

This thesis aims to create multiple models for FER in sequences. Both static
(frame-by-frame) and sequence approaches and both conventional and deep-
learning based meethods are utilised. To create these models following steps
are performed: data acquisition, validation and transformation, data
preprocessing, feature extraction and model creation and training.

5.1 Data acquisition, validation and
transformation

In order to collect sufficient ammount of data for deep-learning based ap-
proaches, four datasets described in the previous chapter – CK+, JAFFE,
MMI and MUG – will be used in this thesis. Because the static and sequence
variants of FER require different data, these four datasets will be combined
into two datasets (one static and one sequential) as a result of this step.

5.1.1 Data acquisition and validation

Each dataset has to be validated for presence of required labels, image and
video orientation and face detectability. Images / sequences with missing emo-
tion label or where face cannot be automatically detected will be discarded
from the final dataset.
Out of the 593 sequences contained in the CK+ dataset only 327 are labeled
with basic emotion. The other sequences do not exhibit expression that would
fit the definition of a prototypic emotion. These sequences are discarded. Fur-
thermore expression of contempt is recognized in the CK+ dataset and because
it is not directly mappable to any emotion used in this thesis sequences with
this expression are discarded. All frames contain a detectable face and are
upright.
Only 137 video sequences are labelled with prototypic emotion in the MMI
dataset. Furthermore, some of the emotion code labels do not correspond to
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5. Design and analysis

any of the basic emotions. Such sequences are discarded. Some sequences are
recorded sideways and need to be corrected.
All sequences in MUG dataset have proper label assigned, are in correct orien-
tation and faces are automatically detectable. There are no validation issues
with images in the JAFFE dataset either.

5.1.2 Data transformation

In order to combine datasets it is necessary to unify the format, label vocab-
ulary and temporal scale.
By examining sequence lengths and expected temporal durations of exhibited
expressions it was estimated that sequences in the CK+ dataset were captured
at the rate of roughly 8 frames per second. Since this dataset has the lowest
capture rate the 8 fps estimate is used as the target capture rate for other
datasets as well.
Video sequences in the MMI dataset were captured at 25 fps therefore, in
order to equalize temporal scale, videos are subsampled keeping every third
frame. Sequences in the MUG database were captured at 19 frames per sec-
ond. Keeping every second frame results in sequneces with capture rate of
roughly 9 fps which is an insignificant deviation from the 8 fps target.
Sequence lengths are normalized to 40 frames by duplicating first and last
frames in the sequences shorter than 40 frames and truncating the beginning
and end in sequences longer than 40 frames. Decision on the sequence length
was done based on observation of source sequences where the cycle neutral,
onset, apex always happened within 40 frames.

Common temporal regions of neutral, onset and apex phases are deduced
by sequence observation in each dataset.

Table 5.1: Expression phase temporal regions

Dataset neutral frames onset frames apex frames
CK+ 1 to 7 8 to 20 20 to 27
MMI 1 to 6 7 to 12 13 to 20
MUG 1 to 7 8 to 16 17 to 23

Dynamic dataset is constructed such that a 10-frame long subsequence is
formed for neutral, onset, apex and offset temporal regions. Because not all
of the sequences contain offset phase at the end of the sequence, reversed on-
set sequence is used instead. Subsequences created from neutral and reversed
onset regions are labelled with neutral emotion, subsequences created from
apex and onset regions are labelled with the sequence label. Subsequences are
normalised to the 10-frame length using algorithm described in Listing 5.1.
Because every sequence contributes two subsequences labelled with neutral
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emotion there is roughly 5 times more neutral subsequences than of the rest
of the expressions. In order to avoid classification bias towards dominant class,
neutral subsequences are randomly culled with keep-probability of 1

5 . Result-
ing dataset contains 4982 subsequences.
Two frames are selected at random from neutral and apex subsequences and
combined with the JAFFE dataset form the static dataset of 5408 images.

Listing 5.1: Sequence length normalisation
result = []
ratio = frames.length / target_length
cnt = 0
i = 1
for frame in frames:

while cnt < 1 and i <= target_length:
result.append(frame)
cnt += ratio
i++

cnt -= 1
return result

5.2 Data preprocessing

Because multiple source datasets are used and conditions under which se-
quences were captured differ, source images vary in illumination, intensity
distribution, face scale (distance from objective) and to some degree face po-
sition within the image. In order to minimize the effect of different conditions
on model performance these variations have to be normalized.

5.2.1 Histogram equalization

Histogram Equalization (HE) is a popular technique to increase the global
contrast of an image which effectivly spreads out most frequent intensity values
across the whole intensity range. Therefore all images processed by HE have
the same intensity scale. The algorithm constructs mapping from old intensity
values to new ones such that the cumulative intensity function of resulting
image is near-linear.
Given a greyscale image x, the probability of pixel having intensity value of i
is

px(i) = ni
n
, i εL

where ni is the number of pixels at intensity level i, n is the total number of pix-
els and L is the intensity range. Transformation function T (i) : L→ {0, ..., 255}
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mapping old intensity value to new one is defined as

T (i) = Lmax

i∑
j=0

px(j)

While HE achieves improved global contrast it can in some cases (e.g. when
the object of interest is significantly lighter than the rest of the image) reduce
local contrast of important regions.
Adaptive Histogram Equalization (AHE) addresses this issue by trans-
forming each pixel based on its local neighborhood. Histogram, CDF and
intensity transformation function is computed for neighborhood of set size for
each pixel according to the HE algorithm. When a neighborhood extending
beyond the edges of source image is being processed, rows and columns are
mirrored respective to the edge. While AHE improves local constrast even
in cases where original HE fails, AHE can exaggerate noise in the regions of
near-homogeneous intensities.
Contrast-Limited Adaptive Histogram Equalization (CLAHE) intro-
duces clipping threshold for the local histogram in order to eliminate the noise
amplification issue of AHE. Near-homogeneous regions manifest as a spike in
local histogram at the according intensity bin. During local histogram compu-
tation all bins exceedig the clipping threshold are clipped at the threshold and
the excess is uniformly distributed among the other bins. This modification
lowers the slope of resulting CDF.

As is apparent from Figure 5.1 demonstrating the effect of discussed HE vari-
ants, CLAHE provides most stable results and achieves great local contrast.
It is therefore the variant of HE used in data preprocessing in this thesis.

5.2.2 Face detection

For the purposes of FER only the face region of images is required. Further-
more face alignment requires a face bounding box to prevent false-positive
landmarks. In order to obtain the face boinding box a face detection is em-
ployed. There are multiple popular object-detection methods, most based
either on wavelet features or Histogram of Oriented Gradients (HOG) fea-
tures. HOG based detector proposed in [11] is used in this thesis.
HOG utilises gradients of intensity calculated for each pixel and consisting
of magnitude g and angle φ. Given an image xε{0, ..., 255}n × {0, ..., 255}m
gradient for a pixel with coordinates i, j is calculated as:

ui,j = xi,j+1 − xi,j−1

vi,j = xi+1,j − xi−1,j

gi,j =
√
u2
i,j + v2

i,j
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Figure 5.1: Effect of histogram equalization, from left to right: original, HE,
AHE, CLAHE

φi,j = arctan
vi,j
ui,j

Image is divided into 8x8 cells. For each cell a histogram is calculated. The
histogram contains bins of angles 0, 20, 40, 60, 80, 100, 120, 140 and 160. If
for a pixel with coordinates i, j the closest bin angle is α and second closest
is β then bin contributions are calculated as

∆Hβ = gi,j

∣∣∣∣∣φi,j − αφi,j − β

∣∣∣∣∣
∆Hα = gi,j −Hβ

To make the descriptor indifferent to luminosity variance L2 normalization
is performed on concatenated histograms of 16x16 blocks. Resulting HOG
descriptor is a concatenation of all the histograms of the 16x16 blocks. In
order to detect face bounding box HOG is calculated for various patches of
original image and classified with learned classifier (such as linear SVM). [32]

5.2.3 Face alignment

Face alignment is a process of estimating facial landmark positions on the
source image. Many methods were proposed over past decade. Method util-
ising cascade of tree-based regressors published in [12] is used in this thesis.
The algorithm starts with initial estimate equal to learned mean shape

Ŝ(0) = {a1, ..., ap}
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Figure 5.2: Histogram of Oriented Gradients

Figure 5.3: Face alignment

where ai, i ε {1, ..., p} are the x,y coordinates of p landmarks of the mean shape.
The estimate for step t+ 1 is devised as

Ŝ(t+1) = Ŝ(t) + rt(x, Ŝ(t))

where x is the source image and rt is the learned regressor for step t.
Resulting 68 landmarks are saved along with each frame and will be used in
following steps.

5.2.4 Scale, rotation and offset normalization

Because the distance between subject and camera lens can vary, faces in the
dataset can be in different scales. Position of the face within the image (offset)
and rotation of the face can also vary. To assist in normalization of these
aspects a center of gravity (COG) of all landmarks is first computed and is
used as an anchor point.

cog = 1
p

p∑
i=1

ai
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5.3. Feature extraction

Figure 5.4: COG, face angle

Face angle φ is then estimated using the COG and the root of nose, which
usually lays on the y-axis of the face.

u = a− cog

φ = arccos(u
T v

||u||
)

a is the landmark located at the root of nose and v = (1, 0) is normalized
vector along the x-axis. Both the image and landmarks are rotated around
COG by −φ so that the y-axis of the face is vertical. Images are cropped to
the face bounding box defined by points b1, b2 which are inferred from detected
landmarks. Cropping ensures invariance to the face position within the image.

b1 = (axmin, aymin), b2 = (axmax, aymax)

axmin = min(
p⋃
i=0

(1, 0)Tai), aymin = min(
p⋃
i=0

(0, 1)Tai)

axmax = max(
p⋃
i=0

(1, 0)Tai), aymax = max(
p⋃
i=0

(0, 1)Tai)

Resulting crops are resized to 256x256 size which normalizes the scale (at
the cost of potential proportion distortion). Scale normalization and position
invariance in landmarks is achieved by transforming the points to COG-centric
coordinates and normalizing by the largest landmark-COG distance.

5.3 Feature extraction

Since images are already preprocessed and CNN-based classifiers perform im-
plicit feature extraction, this step focuses on creating multiple landmark-based
feature sets.
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Table 5.2: FACS AU
Emotion AUs present AU description
Happiness 6,12 cheek raiser, lip corner puller

Sadness 1,4,15 inner brow raiser, brow lowerer,
lip corner depressor

Surprise 1,2,5,26 inner brow raiser, outer brow raiser,
upper lid raiser, jaw drop

Fear 1,2,4,5,7,20,26
inner brow raiser, outer brow raiser,
brow lowerer, upper lid raiser, lid tightener,
lip stretcher, jaw drop

Anger 4,5,7,23 brow lowerer, upper lid raiser, lid tightener,
lip tightener

Disgust 9,15,16 nose wrinkler, lip corner depressor,
lower lip depressor

5.3.1 Landmark selection

There are 68 landmarks available from the face alignment part of the data
preprocessing step. In order to reduce dimensionality and mitigate poten-
tial overfitting feature selection is performed. Established expression rules of
FACS AUs are a great source of understanding which areas are important for
each expression. AUs presence for each expression is listed in Table 5.2. For
example AU1 (inner brow raiser) quite intuitively maps to landmarks located
at the inner part of brows. Some landmarks, such as those located on the jaw,
always move together so keeping all of them is not necessary. Examination of
availabe examples of isolated AUs was used to select 28 most relevant land-
marks (see Figure 5.5).
Simple random tree classifier was used to ensure no important information
was lost by feature selection. Full feature set of 68 landmarks achieved 10-
fold cross-validation accuracy of 78.76% and the reduced feature set achieved
accuracy of 78.35%.

Figure 5.5: Selected landmarks
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5.3. Feature extraction

Figure 5.6: Lip corner puller AU and tracked distance

Figure 5.7: Selected landmark pairs to approximate AUs

5.3.2 Distance-based features

Because muscle activities described by AUs essentially either contract or stretch
the distance between facial points, distance-based feature set aiming to ap-
proximate AUs is constructed. Similiarly to the landmark selection step, ex-
amples of AUs are used to identify possible landmark pairs that would best
represent individual AUs. Some AUs are represented with multiple landmark
pairs.
Figure 5.6 demonstrates how distance between a lip corner and a landmark
located on the face outline is used to approximate AU12 — lip corner puller,
which is usually present in expression of hapiness. Frames of happines onset
were used to create a graph capturing the change of tracked distance during
onset phase of the expression. Figure 5.7 displays selected landmark pairs.
Distance feature set achieved 76.23% cross-validation accuracy using random
forest classifier. Combined with reduced landmark feature set the accuracy
improved to 80.76%.

5.3.3 Area features

When multiple facial muscles are involved in an aspect of expression, com-
pression or expansion of certain areas occurs. For example pressing lips to-
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Figure 5.8: Area features

gether (AU24) greatly reduces the area between upper and lower lip. Some
expressions, such as fear, are very subtle in the distance feature space. Fear
manifests mainly through wide open eyes and brow raiser, but otherwise is
very similiar to neutral or sad emotion. Change in the area of eye when being
opened is much larger than the change in the lid-to-lid distance. Therefore
a feature set of areas enclosed by feature landmarks was created to examine if
areas are viable descriptors to improve model performance on subtle emotions.
Area feature set achieves performance of 73.25% on its own and 78.31% when
combined with landmarks.

5.3.4 Feature differentiation

As demonstrated in [15] [13], differentiated features relative to features for
neutral expression lead to better performance. In [15] an assumption is made
that neutral expression is always the first frame in the sequence. While that
is a valid constraint when dealing with a laboratory dataset the final model of
this thesis aims to be useable with real-life data. Approach used in [13], which
starts with learned neutral feature vector estimate which is then updated dur-
ing classification process, is better aligned with the goals of this thesis.
Neutral feature vector for static dataset is devised for each feature set as the
mean of feature vectors labelled with neutral emotion in the static dataset.
Differentiated feature sets are then created such that neutral feature vector is
deducted from each feature vector in feature set of static dataset. In sequence
dataset each sequence is differentiated by computing neutral feature vector as
mean of feature vectors in the neutral subsequence, which is then deducted
from all feature vectors in the sequence.
Differentiating the features improved performance on static dataset with ran-
dom forests classifier from 80.76% to 82.31%.
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5.3.5 Temporal differentiation

Because emotion is a dynamic psychological state temporal context is impor-
tant in FER. Temporal differentiation is introduced as a method to introduce
temporal context to the data. Each feature vector Ut is extended by history
difference between current frame and last frame in the sequence ∆U (t−1)

t as
well as frame three time steps in history ∆U (t−3)

t

∆U (t−1)
t = Ut − Ut−1

∆U (t−3)
t = Ut − Ut−3

The final feature vector is then Ût = {Ut,∆U (t−1)
t ,∆U (t−3)

t }.

5.4 Model creation and training

This section describes architecture of constructed models and describes the
classification and training process for each of them. Constructed models are
categorized into conventional models and deep-learning based models.
Ten models were created as part of deep-learning based approaches. First is
a CNN-RNN hybrid network utilising the Inception V3 [33] architecture and
transfer learning for the CNN part, and a 4-layer RNN using CNN-processed
sequence as its input. Second model is the CNN part of the hybrid network
used for static classification. The rest of deep models are 5-layer RNN, one for
each feature set and differentiation. For conventional approach Linear SVM,
RBF SVM, k-NN and random forest methods were tried. RBF SVM showed
marginally better performance on both static and sequence datasets and is
thus used as the classifier for conventional models.
Following subsections describe how individual models are trained.

5.4.1 CNN-RNN hybrid network

CNN-RNN model performs classification based on preprocessed subsequence
of images as described in section 5.2. Inception V3 network was used because
of its great performance on image classification problems (achieving 93.7%
accuracy on the 1000-class ImageNet test dataset).
The architecture is based on the GoogleNet architecture published in [34]. The
core building block is the Inception module. Main idea behind the Inception
module is that instead of selecting the convolution size on each layer of CNN,
which can greatly affect the performance of resulting model, Inception mod-
ules perform multiple convolutions and let the training process decide which
one is the best suited for required results.
Weights for the Inception V3 network that were pre-trained on ImageNet
dataset are used for the CNN part of the hybrid network. Original fully con-
nected layers are replaced with a 4-layer network. The output from the last
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Figure 5.9: CNN-RNN hybrid network schema
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convolutional block is funneled into a layer with 1024 nodes utilising ReLu
activation function followed by 50% dropout, another 1024 node ReLu layer
and finally a 7 node layer with softmax activation function representing the
final prediction. Transfer learning is performed on resulting network.
Transfer learning is a technique where a pre-trained model is presented with
new task and re-trained for it. Because many of the learned features are com-
mon for most image classification tasks, transfer learning greatly reduces the
required amount of training data and training time.
The network is trained in three phases. First all the convolutional blocks of
Inception V3 are frozen and only the fully connected layers are being trained
on the static dataset. Afterwards 6 convolutional blocks are unfrozen and
the training is performed again. After these two steps the CNN part of the
network is fully trained. The output from the last convolutional block is then
used for training of the RNN network and CNN functions as an automatic
feature extractor.
In order to increase the data variance data augmentation is used. All images
are rotated by random angle between −20 and 20 degrees. Images are also
horizontally flipped at random.
The RNN consists of an LSTM layer of 1024 nodes, dropout layer with drop
probability of 50%, fully connected layer with 1024 nodes and ReLu activation
function and last fully connected layer with 7 nodes and softmax activation
function.
Adam optimization method with categorical crossentropy loss function achieved
best results in experiments and was therefore used to train both networks.
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5.4. Model creation and training

Figure 5.10: Static SVM parameter search

5.4.2 RNN models

An RNN model is created for each feature set and differentiation. The RNN
models process 10-frame long sequences of landmark features. The final archi-
tecture that was chosen by experimentation consists of 224-node LSTM layer,
30% dropout, 112-node dense layer with ReLu activation function, 32-node
dense layer with ReLu activation function and finally a 7-node dense layer
with softmax function. The network was trained using Adam optimization
with categorical crossentropy loss function.

5.4.3 SVM models

SVM models utilise the RBF kernel function

K(x1, x2) = exp(−g||x1 − x2||2); g = 1
2σ2

A model is created for each feture set described in previous section. Hyper-
parameter tuning of the regularization constant C and the influence area
spread constant g were done by grid search of the 2-D parameter space (see
Figure 5.10). This fine-tuning step is important because if g is too small the
model becomes too constrained and cannot capture the complexity of data,
setting g too high shrinks the radius of influence of individual support vectors
and model tends to overfit. Regularization constant C counterweights the
constant g by affecting the number of support vectors.
Static models perform classification on frame-by-frame basis, sequential mod-
els use concatenation of feature vectors of all frames.
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5. Design and analysis

5.4.4 Wrapper framework

In order to use these models with various data sources such as video streams,
final models cannot depend on availability of the entire sequence at once or
on a specific temporal pattern (such as each sequence must start with neutral
expression). For this reason a wrapper framework, which is presented with
only one image and corresponding set of 68 aligned landmarks at a time is
proposed for static, static differential, sequential, sequential differential and
temporal differential types of models.

Static model wrapper is the simplest case as the enclosed static model
inherently operates on frame-by-frame basis. Wrapper only extracts the re-
quired features and passes them to the classifier.

Figure 5.11: Static model wrapper
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Classifier

Image
Landmarks Prediction

Static differential model wrapper uses neutral feature vector to per-
form neutral-based feature differentiation. A learned mean of face aligned
landmarks for neutral expression is deployed with the model and is always
used as the initial input to initialize the estimation of neutral vector. A static
binary classifier is embedded in the wrapper along with the primary classifier
and is used to detect neutral expression in each frame. If current frame S is
classified as neutral the neutral vector estimate Sneutral is updated as

S
(t+1)
neutral = 1

2(S(t)
neutral + S), t ≥ 0

S
(0)
neutral = S
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5.4. Model creation and training

Figure 5.12: Static differential model wrapper
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Sequential model wrapper keeps a buffer B of length N of previous
frames to perform sequence-based classification. At each timestep t the buffer
is updated by shifting the buffer to the left and adding current frame S to the
end. Upon initialization the first frame in sequence is copied to fill the whole
buffer.

B
(t+1)
i = B

(t)
i+1, 1 ≤ i < N, t ≥ 0

B
(t+1)
N = S, t ≥ 0

B
(0)
i = S, i ε {1, ..., N}

Figure 5.13: Sequential model wrapper
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Sequential differential model wrapper is a combination of static dif-
ferential model wrapper and sequential model wrapper. The neutral feature
detection and differentiation process is inserted before buffer handling in the
sequential model wrapper.

Figure 5.14: Sequential differential model wrapper
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5. Design and analysis

Temporal differential model wrapper is a modification to the sequen-
tial model. It implements identical buffer handling but instead of feeding the
buffer directly into the classifier a temporal differentiation as described in
5.3.5 is performed. Buffer length N is set to 4 and the feature vector U for
the classifier is constructed as U = {BN , BN −BN−1, BN −BN−3}

Figure 5.15: Temporal differential model wrapper
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Chapter 6
Implementation

This chapter briefly summarizes the implementation of data preparation and
model training processes. A simple application was also developed to demon-
strate the performance of implemented models and the deployability of the
wrapper framework.

6.1 Language choice

Two languages were considered for the implementation — C++ and Python.
C++ is a compiled, strongly typed language wchich gives it the edge in terms
of computational efficiency. Many popular data science and computer vision
libraries, such as the OpenCV, Dlib or TensorFlow, are either implemented in
C++ directly or provide C++ API. The lack of convenience features, such as
an automatic garbage collecor, can lead to slower development. Source codes
in C++ have to be compiled for the target platform, which increases the de-
ployment complexity. C++ is a popular choice in fields where computational
performance of final model is of great importance, such as some computer
vision tasks or AI in games.
Python is a general-purpose, dynamically typed interpreted language with
tremendous popularity and support from community. Most of the data sci-
ence, computer vision and deep-learning libraries provide API in Python. Its
popularity can be be attributed to the ease of development, rapid prototyp-
ing capability and ease of deployment thanks to integrated tools like Pip.
Python is often used in combination with Jupyter Notebook, which provides
interactive, computation-cell based GUI with Python backend suited for rapid
prototyping and light data exploration.
Since computational performance of resulting models is not an objective of
this thesis, Python was selected as the language of implementation (mainly
because of the ease of developent and intuitive APIs).

37



6. Implementation

6.2 Used libraries and tools

Various machine learning, computer vision and deep-learning libraries were
used for the implementation. This section lists the most import ones with
brief description.
The Open Source Computer Vision Library (OpenCV) is a computer
vision library written in C/C++ and released under BSD license. It provides
API in Java, C++ and Python. It is used predominantly for image loading
and manipulation in this thesis.
Dlib is a toolkit containing machine learning algorithms licensed under the
Boost Software License. It is written in C++ and provides API in Python as
well. Included implementation of face detection and face alignment are used
in this thesis.
TensorFlow is a popular deep learning library originally developed by the
Google Brain team. It was released in 2015 under the Apache 2.0 license.
TensorFlow provides API to Python, C++, Java, Go and Swift. TensorFlow
is used as the primary backend for deep models in this thesis.
Keras, a high level neural network API working on top of Tensorflow, CNTK
or Theano backends. It offers user-friendly fluent API, modularity end exten-
sibility. It is written in Python and is released under the MIT license. Keras
is used in this thesis because of its intuitive and easy-to-use API as well as
backend interchangeability.
Matplotlib [35] is used to visualize all the data in this thesis. It is an open
source 2D plotting library written in Python and distributed under the PSF
license.
Jupyter Notebook, part of the Project Jupyter, is a tool allowing for cre-
ation of interactive code notebooks in the browser. It supports over 40 lan-
guages, has integration with many data visualization libraries and can be
easily shared with GitHub.
Scikit-learn is a Python machine learning, data mining and data analysis
toolkit. It utilises the NumPy, SciPy and Matplotlib libraries. Scikit-learn
is released under the BSD license. Implementations of SVM, random forrest
and k-NN classifiers provided by Scikit-learn were used in this thesis.

6.3 Project structure

Large portion of work on this project was done in an unstructured manner
utilising Jupyter Notebook. This allowed for easy data exploration and ex-
perimentation with different data preprocessing methods, model training, fine-
tuning and evaluation. After finalization of all processes the code was divided
into three modules based on functionality — a common library, main appli-
cation code and accompanying scripts.
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6.3. Project structure

6.3.1 Common library

Common funtions were extracted into library files based on their purpose.
preprocessing.py contains functions used during preprocessing steps. An
example of such function would be face angle estimation or resizing and crop-
ping of the image to the face region.
classification.py contains implementation of all classifiers. The wrapper
framework described in 5.4.4 is implemented as abstract base classes. Defi-
nition of specific classifier is done by simply extending appropriate base class
and providing learned model and implementation of feature extraction func-
tion.
ui.py contains classes VideoProcessor and SequenceProcessor which are re-
sponsible for loading and handling the data source. Processor objects call
a callback function (provided at initialization) frame by frame. Classes Emo-
tionDisplay and EmotionPlot which are responsible for displaying the classi-
fication result are also defined in this file.
landmark features.py contains functions specific to landmark features, such
as computing distance features or performing COG-centric normalization.

6.3.2 Main application

The purpose of the main application is to demonstrate the performance of
implemented models and deployability of the wrapper framework. Applica-
tion accepts the name of the model to be used and the sequence source as
command line arguments. Sequence source can be a webcam or other video
stream, video file or a directory containing images.
Three windows are opened after launching the application — window display-
ing frames with face aligned landmarks, window displaying a bar chart of the
emotion probability classification for current frame and a window containing
line plot of classification development in time (see Figure 6.1).

6.3.3 Accompanying scripts

Functionality that is not required by the main application was condensated
into accompanying scripts. These scripts perform data transformation for each
of the source datasets, combination of datasets, data preprocessing, training
of the deep models and evaluation of the trained models.

6.3.4 Trained models

SVM models were trained in the Jupyter Notebook and are stored in binary
form using serialization provided by the pickle library. Fine-tuning of the
hyperparameters C and g was done by a linear grid search of the 2D parameter
space (see Figure 5.10). An SVM classifier was trained and implemented for
each combination of featureset (landmark, distance, area, combined), temporal
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6. Implementation

Figure 6.1: Main application

type (static, sequence, temporal difference) and differentiation, amounting to
a total of 24 SVM classifiers.
Deep models were trained by a script. Training was set to early-stop if 10
successive epochs did not improve validation accuracy. Keras Checkpoint
callback was used which stores the network weights every time validation
accuracy improves. Adam optimization method was found to provide best
results. Deep models are stored in h5 format. Information about the learning
process was collected using TensorBoard.
Implementation of 10 deep models is provided — pure CNN static classifier,
hybrid CNN-RNN sequence classifier and RNN sequence classifier for each
feature set and differentiation.
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Chapter 7
Results

To asses the performance of implemented models four metrics are used —
accuracy A, average precision Pavg, average recall Ravg and F-measure F .
To calculate these measures a confusion matrix MεNC×C , wehre CεN is the
number of classes, is constructed such that c-th row represents instances where
class c is the ground truth and c-th column represents instances where class c
is predicted. Metrics are then calculated as:

A =
∑C
c Mc,c∑C

c

∑C
i Mc,i

Pavg = 1
C

C∑
c

Mc,c∑c
iMi,c

Ravg = 1
C

C∑
c

Mc,c∑C
i Mc,i

F = 2 Pavg ∗Ravg
Pavg +Ravg

Accuracy is the ratio of correct predictions to the total number of instances,
precision for class c is the number of correct predictions of class c to the total
number of predictions of class c, recall for class c is the number of correct pre-
dictions of class c to the total number of instances in class c and F-measure
is the weighted average of Precision and Recall.
There are two sets of performance measurements that were collected. First
was collected using 5-fold cross validation and this set does not contain mea-
surements for deep models because retraining them is very time intensive.
Because many papers publish performance of proposed models on the CK+
dataset, second set was collected by training models on the MMI and MUG
datasets and splitting CK+ dataset in halves, using one half for training and
one for testing.
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7. Results

7.1 Cross validation performance

This section lists performance metrics for SVM models measured using 5-
fold cross validation. Note that these metrics show performance on datasets
in the same form as was used for training (static classifiers use extracted
static images, sequence classifiers use 10-frame subsequences). Therefore these
values can not be used to make comparsion between different temporal types.

Table 7.1: Cross validation performance, static SVM classifiers

Feature set Differential A Pavg Ravg F

Landmarks No 81.2% 80.6% 80.3% 0.805
Landmarks Yes 83.9% 83.7% 83.4% 0.836
Distance No 79.9% 79.4% 78.0% 0.787
Distance Yes 85.0% 85.1% 84.5% 0.848
Area No 73.6% 73.0% 72.1% 0.725
Area Yes 79.0% 79.1% 77.9% 0.785
Combined No 80.5% 80.1% 78.0% 0.790
Combined Yes 82.6% 82.4% 82.2% 0.823

Table 7.2: Cross validation performance, sequence SVM classifiers

Feature set Differential A Pavg Ravg F

Landmarks No 73.2% 71.4% 71.0% 0.712
Landmarks Yes 82.7% 81.0% 79.6% 0.803
Distance No 72.9% 70.4% 70.2% 0.703
Distance Yes 81.7% 79.1% 77.4% 0.782
Area No 66.7% 63.8% 63.3% 0.636
Area Yes 79.9% 78.9% 77.2% 0.781
Combined No 73.9% 71.4% 71.0% 0.712
Combined Yes 83.6% 83.4% 80.9% 0.821

Table 7.3: Cross validation performance, temporal SVM classifiers

Feature set Differential A Pavg Ravg F

Landmarks No 69.9% 72.1% 67.2% 0.695
Landmarks Yes 75.0% 77.1% 71.7% 0.743
Distance No 67.6% 68.6% 64.3% 0.664
Distance Yes 73.3% 74.7% 68.7% 0.716
Area No 63.6% 63.7% 61.7% 0.627
Area Yes 72.5% 73.6% 69.0% 0.712
Combined No 69.4% 72.0% 66.2% 0.690
Combined Yes 74.9% 78.0% 71.5% 0.746
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7.1. Cross validation performance

It is apparent that area features consistently achieve worst performance in
all temporal types. Differentiation of the features relative to neutral expres-
sion greatly imporves results as expected. Landmark, length and combined
feature sets perform similiarly and each achieves best performance in one of
the three temporal types. The F-measure is very close to the accuracy in all
classifiers which suggests that the models are not biased towards single class.
To better understand the relative difficulty of each class within the tempo-
ral type, aforementioned metrics were calculated on emotion basis instead of
classifier basis. Note that accuracy is not very useful metric in emotion-wise
performance as each emotion is considered in one-against-all manner and thus
becomes a minority class.

Table 7.4: Cross validation performance emotion-wise, static SVM classifiers

Emotion A Pavg Ravg F

Anger 93.3% 76.1% 80.1% 0.781
Disgust 94.3% 81.5% 80.9% 0.812
Fear 94.2% 72.1% 64.7% 0.682
Happy 96.9% 91.0% 89.4% 0.902
Neutral 92.4% 70.5% 85.7% 0.773
Sad 94.7% 80.1% 73.2% 0.765
Surprise 95.5% 91.6% 82.8% 0.870

Table 7.5: Cross validation performance emotion-wise, sequence SVM classi-
fiers

Emotion A Pavg Ravg F

Anger 92.3% 73.7% 77.6% 0.756
Disgust 92.9% 72.3% 76.2% 0.742
Fear 91.5% 63.8% 54.6% 0.589
Happy 96.2% 91.4% 85.3% 0.883
Neutral 92.5% 65.5% 70.1% 0.677
Sad 94.3% 77.3% 69.9% 0.734
Surprise 94.0% 80.5% 83.1% 0.818
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7. Results

Table 7.6: Cross validation performance emotion-wise, temporal SVM classi-
fiers

Emotion A Pavg Ravg F

Anger 92.3% 73.7% 77.6% 0.756
Disgust 92.9% 72.3% 76.2% 0.742
Fear 91.5% 63.8% 54.6% 0.589
Happy 96.2% 91.4% 85.3% 0.883
Neutral 92.5% 65.5% 70.1% 0.677
Sad 94.3% 77.3% 69.9% 0.734
Surprise 94.0% 80.5% 83.1% 0.818

These measurements show that fear is the most difficult expression to
recognize for all temporal types of classifiers while happiness is the easiest.
Static classifiers appear to be best-fit for neutral classification.

7.2 CK+ performance

Performance on CK+ dataset was measured such that MMI, MUG and train-
ing half of CK+ dataset were used for training. The testing half of CK+
dataset was then used to measure performance. This performance was mea-
sured using the final wrapped models on the original dataset. Using the knowl-
edge from the Data transformation step where the shortest neutral phase was 5
frames long, frame threshold is defined T = 5 . Each sequence S = {S1, ..., Sl}
is assigned predicted label cS equal to the emotion with maximum cummula-
tive probability for frames after the frame threshold.

cS = argmax
c

l∑
i=T+1

pc(Si)

where pc is the predicted probability of frame Si belonging to class c.

Table 7.7: CK+ performance, static classifiers

Feature set Classifier type Differential A Pavg Ravg F

Image CNN No 88.8% 84.5% 85.4% 0.849
Landmarks SVM No 93.3% 90.0% 91.1% 0.906
Landmarks SVM Yes 86.9% 81.7% 84.9% 0.832
Distance SVM No 92.4% 88.8% 89.2% 0.890
Distance SVM Yes 85.3% 80.4% 83.4% 0.819
Area SVM No 86.9% 83.3% 84.5% 0.839
Area SVM Yes 85.3% 79.9% 83.6% 0.817
Combined SVM No 93.6% 91.5% 91.1% 0.913
Combined SVM Yes 85.0% 80.2% 83.1% 0.816
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7.2. CK+ performance

Most feature sets with SVM classifier outperformed the deep CNN classi-
fier. An interesting observation is that contrary to the cross validation case,
differentiation on original CK+ dataset leads to decrease in performance. This
might be explained by the static SVM classifier, which is used in the differ-
entiating wrapper models to detect neutral faces, making more incorrect pre-
dictions on the CK+ dataset. Area features exhibit the worst performance
and landmark, distance and combined features perform similiarily, which is
consistent with measurements done by cross validation.

Table 7.8: CK+ performance emotion-wise, static classifiers

Emotion A Pavg Ravg F

Anger 94.7% 89.1% 70.6% 0.788
Disgust 96.2% 92.8% 85.9% 0.892
Fear 97.3% 82.5% 86.2% 0.843
Happy 98.8% 96.7% 97.9% 0.973
Neutral 95.3% 55.1% 86.4% 0.673
Sad 96.1% 76.9% 80.2% 0.785
Surprise 98.7% 98.3% 96.7% 0.975

Emotion-wise performance supports previous hypothesis. The lowest emotion-
wise performance for static classifiers on CK+ dataset is the neutral emotion,
which may explain the worse performance of differentiating models.

Table 7.9: CK+ performance, sequence classifiers

Feature set Classifier type Differential A Pavg Ravg F

Image CNN+RNN No 91.9% 90.6% 89.0% 0.898
Landmarks RNN No 85.3% 80.2% 75.8% 0.779
Landmarks RNN Yes 83.2% 76.6% 77.9% 0.772
Distance RNN No 83.5% 76.8% 76.2% 0.765
Distance RNN Yes 82.9% 76.8% 74.2% 0.754
Area RNN No 81.0% 76.6% 76.0% 0.763
Area RNN Yes 71.9% 71.1% 66.3% 0.686
Combined RNN No 81.3% 74.1% 73.8% 0.740
Combined RNN Yes 75.5% 72.9% 67.6% 0.702
Landmarks SVM No 91.4% 90.2% 86.7% 0.884
Landmarks SVM Yes 88.4% 84.3% 83.3% 0.838
Distance SVM No 89.9% 89.1% 82.3% 0.856
Distance SVM Yes 84.1% 82.1% 78.0% 0.800
Area SVM No 87.2% 88.6% 79.1% 0.836
Area SVM Yes 84.1% 78.6% 80.4% 0.795
Combined SVM No 93.6% 93.7% 88.7% 0.912
Combined SVM Yes 86.9% 81.1% 82.1% 0.816
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7. Results

The temporal information captured by RNN network from CNN-extracted
features considerably improved on accuracy of the pure-CNN model from
88.8% to 91.9%. SVM sequence classifiers show no significant improvement
over their static variants, in some cases the performance is worse. SVM se-
quence classifiers consistently outperform pure-RNN sequence classifiers.

Table 7.10: CK+ performance emotion-wise, sequence classifiers

Emotion A Pavg Ravg F

Anger 95.2% 90.0% 72.5% 0.803
Disgust 96.8% 95.2% 86.4% 0.906
Fear 96.9% 79.4% 86.0% 0.826
Happy 98.7% 95.2% 98.9% 0.970
Neutral 96.7% 67.6% 81.2% 0.738
Sad 96.1% 75.4% 85.7% 0.802
Surprise 97.8% 95.9% 95.5% 0.957

Table 7.11: CK+ performance, temporal classifiers

Feature set Classifier type Differential A Pavg Ravg F

Landmarks SVM No 95.1% 93.3% 92.6% 0.929
Landmarks SVM Yes 85.9% 81.4% 83.7% 0.825
Distance SVM No 92.4% 90.4% 87.1% 0.887
Distance SVM Yes 85.6% 80.3% 83.8% 0.820
Area SVM No 93.3% 91.0% 92.7% 0.918
Area SVM Yes 81.3% 76.3% 79.9% 0.781
Combined SVM No 94.2% 92.1% 91.1% 0.916
Combined SVM Yes 84.7% 79.5% 81.9% 0.807

Temporal differentiation outperforms either of other temporal types exam-
ined in this thesis achieving accuracy of 95.1% with landmark, non-differential
feature set. It scores higher accuracy with all other feature sets as well.

Table 7.12: CK+ performance emotion-wise, sequence classifiers

Emotion A Pavg Ravg F

Anger 94.3% 86.7% 69.7% 0.773
Disgust 94.7% 87.9% 81.5% 0.846
Fear 95.2% 73.1% 67.8% 0.703
Happy 97.8% 92.0% 98.6% 0.952
Neutral 95.0% 65.1% 60.1% 0.625
Sad 95.0% 70.6% 75.4% 0.730
Surprise 97.7% 94.0% 97.7% 0.958

Figure 7.1 shows the confusion matrix for the best model.
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7.3. Disadvantages of used methods

Figure 7.1: Confusion matrix of the best model
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7.3 Disadvantages of used methods

Because this thesis focused on analysis of 2D images and all of the datasets
used capture subjects looking directly into the camera in laboratory condi-
tions, there is very little head pose variance in the dataset. As a result the
trained models are sensitive to the pose and work well only when subject is
looking directly into the camera. Using dataset with 3D landmark annotation
would alleviate this problem but obtaining a 3D landmark annotation in real
time requires special equipment. One of the goals for this thesis was to create
a model that would perform recognition based on 2D streams with sources
such as web camera. Figure 7.2 demonstrates how prediction changes for con-
stant smile expression when the subject is looking to the sides.
One of qualitative aspect is stability of prediction. Because static models do
not use any temporal information about the development of expression their
predictions can be erratic, especially if there is a large amount of noise in the
source images. Figure 7.3 demonstrates the stability of static and sequence
classifier respectively when transitioning from smile to surprise face.
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7. Results

Figure 7.2: Prediction development based on head pose

Figure 7.3: Prediction stability for static classifier (top) and sequence classifier
(bottom)
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Conclusion

The task of this thesis was to propose and implement a model for human
emotion state recognition based on a sequence of frontal face images captured
from video stream with the output of probabilities for each emotion.
After researching the nature of emotion expression and the psychological back-
ground work done primarily by Paul Ekman, 7 basic emotional states were
selected for recognition — anger, disgust, fear, happiness, neutral, sadness and
surprise. The research of previous related work led to the decision of using
facial landmarks and CNN-extracted embeddings as descriptors of the facial
expression for emotion recognition.
Based on a survey of available viable datasets four of them were selected —
MMI [29], CK+ [26], MUG [30] and JAFFE [28]. An increased attention was
paid to the vaidation, transformation, preprocessing and normalization of the
data. Multiple preprocessing techniques like the histogram equalization or
face angle estimation and correction were used.
Four feature sets based on facial landmarks are proposed. The main source
of information when designing these sets was the observation of prototypic
Action Units (AUs, movements of muscles or groups of muscles changing the
appearence of the face) in the Facial Action Coding System (FACS) [9]. A sub-
set of originally detected landmarks with equal information value was selected.
Using this subset distance-based and area-based features best describing the
AUs were proposed. Last feature set is a concatenation of the three sets.
Because of the temporal properties of human emotion three types of temporal
context were proposed. One set of models performs recognition on frame-by-
frame basis having no temporal context at all. Second set of models utilises
temporal differentiation — each frame is extended by the changes respective
to previous frames in the sequence. Third set of models focuses on 10-frames
long subsequences, initially trained with subsequences of expression onset,
apex and offset.
Inspired by the success of Convolutional Neural Networks (CNN) in various
copmuter vision tasks in recent years and by the work of Winkler et al. [19]
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Conclusion

a deep CNN model based on the InceptionV3 architecture [33] was proposed.
Because training deep networks require a lot of data transfer-learning method
was deployed. The learned CNN model was used to create a hybrid CNN
RNN network which utilises the CNN network as feature extractor.
The landmark features are processed by RNN networks and Support Vector
Machine (SVM) classifiers. Relatively shallow RNN of 5 layers utilising LSTM
cells was used. This architecture was selected after experimentation with dif-
ferent architectures. Out of conventional classification methods the Radial
Basis Function (RBF) SVMs produced best results.
In order to ensure usability of produced models on real-time streams such as
web cameras a wrapper framework encapsulating the classifiers was proposed.
Frames are presented one at the time to the wrapper and it handles all nec-
essary feature extraction and classification internally.
Proposed solution was implemented in Python programming language. Deep
networks use TensorFlow backend with Keras high-level library for model def-
inition and training. An application consuming a video stream, video file or
a directory with sequence of images and displaying the emotion prediction in
real time was implemented.
A total of 10 deep models and 24 SVM classifiers were implemented and
their performance examined and compared. Models were tested on the CK+
dataset for comparability of achieved results with other related work. SVM
classifier with temporal differentiation context using selected landmarks as
features achieved the best performance — accuracy of 95.1%.
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Appendix A
Acronyms

FACS Facial action coding system

AU Action unit

FER Facial expression recognition

SVM Support vector machine

ANN Artificial neural network

CNN Convolutional neural network

RNN Recurrent neural network

RBF Radial basis function

ASM Active shape model

EBG Elastic bunch graph

DTW Dynamic time warping

LBP Local binary pattern

PCA Principal component analysis

LSTM Long-short term memory (cell)

HE Histogram Equalization

AHE Adaptive Histogram Equalization

CLAHE Contrast-Limited Adaptive Histogram Equalization

CDF Cummulative Distribution Function

HOG Histogram of Oriented Gradients
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A. Acronyms

COG Center of gravity
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

emotion detect.............................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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