
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 19, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: 3D simulator for vision-based training of autonomous robots

 Student: Bc. Daniel Laube

 Supervisor: Ing. Zdeněk Buk, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of winter semester 2019/20

Instructions

Using the Unity game engine implement a 3D simulator for vision-based training of autonomous robots
controllers. Primary focus on self-driving cars. Input to the controller will be a visual information from the
camera. Implement a training algorithms and neural network-based controller. Create a communication
protocol for connection between the simulator and the training algorithm. Test the system using
experimental scenarios.

References

Will be provided by the supervisor.

Master’s thesis

3D simulator for vision-based training of
autonomous robots

Bc. Daniel Laube

Department of Applied Mathematics
Supervisor: Ing. Zdeněk Buk, Ph.D.

May 7, 2018

Acknowledgements

I would like to thank Ing. Zdeněk Buk, Ph.D., my tutor, for all his advice,
patience, and time he spent helping me finish this thesis. I would also like
to thank Amy Safarik, M.A., B.Ed., B.A., an English teacher in Canada, for
her prompt and helpful corrections of grammar, making the text much more
readable. Many thanks belongs to my family and friends who supported me
during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 7, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Daniel Laube. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Laube, Daniel. 3D simulator for vision-based training of autonomous robots.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2018.

Abstrakt

Tato práce se zabývá návrhem a implementací prostředí vhodného pro učení
neuronové sítě k ovládání robotů podobných autům. Neuronová síť se k prostředí
může připojit pomocí protokolu TCP a tím pádem nelimituje implementaci
neuronové sítě.

Druhou částí této práce je skript, který učí neuronovou síť zaparkovat
auto na parkovací místo. Parkování probíhá na základě obrazu z kamery
na autě. Tato část má sloužit jako důkaz použitelnosti implementovaného
prostředí k učení neuronové sítě, jak ovládat autu podobného robota. Finální
neuronová síť je rozdělena na dvě části, kde první část lokalizuje parkovací
místo na obrazu z kamery. Výstup této sítě je pak zpracován plně rekurentní
neuronovou sítí sloužící jako kontroler dávající povely autu.

Prostředí je implementováno v herním enginu Unity 3D a skript v Wolfram
Mathematica.

Klíčová slova Autonomní auto, neuronová síť, konvoluce, rekurentní neu-
ronová síť, Unity 3D, Wolfram Mathematica, TCP

vii

Abstract

This work focuses on the design and implementation of an environment suit-
able for training a neural neural network how to control a robot similar to
a car. A neural network can be connected to the environment via TCP pro-
tocol and, thus, does not limit the implementation of neural network.

The second part of this work is a script that teaches the neural network
how to park a car using data from the car’s cameras. This part serves as
a evidence of the usability of the created environment for the purpose of
teaching the neural network how to control a car-like robot. The final neural
network consists of two parts, where the convolutional network localizes the
parking spot from an image from a camera and output coordinates are fed to
the recurrent neural network giving commands to the car.

The environment is implemented in the game engine Unity 3D and script
in Wolfram Mathematica.

Keywords Autonomous car, neural network, convolution, recurrent neural
network, Unity 3D, Wolfram Mathematica, TCP

viii

Contents

Introduction 1
Self-driving cars . 1
Ideal result . 1
Assignment analysis . 2

1 Research 5
1.1 Existing simulators . 5
1.2 Methods for visual simulator 7
1.3 Methods for neural networks 7
1.4 Types of neural networks . 8
1.5 Methods for communication . 14

2 Analysis 17
2.1 Methods for simulation . 17
2.2 Methods for neural network . 17
2.3 Methods for communication . 17

3 Design 19
3.1 Requirements . 19
3.2 Communication protocol . 22
3.3 Neural network . 25

4 Implementation 27
4.1 Implementation details . 27

5 Experiments 43
5.1 Results of experiments . 43

Conclusion 49

ix

Bibliography 53

A Acronyms 57

B Users manual 59
B.1 Simulator . 59
B.2 Neural network . 59

C Images 61

D CD content 65

x

List of Figures

0.1 Ideal architecture of solution . 2

1.1 Screenshot of simulator made by Udacity 6
1.2 Screenshot of Carla simulator . 6
1.3 Illustration of structure of simple feed forward network[14] 8
1.4 Graph of logistic function[15] . 9
1.5 Example of a Convolutional Neural Network[17] 10
1.6 Graph of rectifier function . 12
1.7 Example of image before and after ReLU layer[16] 12
1.8 How max pooling works[16] . 12
1.9 Example of recurrent network[19] 13

3.1 Graph of final architecture . 21
3.2 Images from cars camera . 26

4.1 Graph illustrating how message is spread in simulator 28
4.2 EnvironmentInterface - important variables and functions. 31
4.3 LevelBuilder - important variables and functions. 32
4.4 Graph of structure of car robot . 33
4.5 CarInterface - important variables and functions. 34
4.6 Steering - important variables and functions. 34
4.7 WheelController - important variables and functions. 36
4.8 Sensor - important variables and functions. 36
4.9 CameraInterface - important variables and functions. 37

5.1 Two example scenarios . 43
5.2 Two example scenarios . 44

C.1 Scenarios 2 to 7 with trajectory of best performing candidate from
Experiment 6 5.1.6 . 62

xi

C.2 Scenarios 8 to 13 with trajectory of best performing candidate from
Experiment 6 5.1.6 . 63

xii

List of Tables

1.1 Illustration of how convolutional operator works 11

5.1 Results of best performing candidate solution in experiment 2 . . . 45
5.2 Results of best performing candidate solution in experiment 3 . . . 45
5.3 Results of best performing candidate solution in experiment 4 . . . 46
5.4 Results of best performing candidate solution in experiment 5 . . . 46
5.5 Results of best performing candidate solution in experiment 5 . . . 47

xiii

Introduction

Self-driving cars
The first experiments with driverless cars were conducted in the 1920’s, which
can be read about in an article in the Milwaukee Sentinel from 8th December
1926[2]. The car was controlled remotely by a person in a second car.

The first experiments with a truly autonomous car or so called road follow-
ing robot where conducted much later in 1980’s by Carnegie-Mellon University[3]
and Bundeswehr University Munich[4]. Autonomous cars have developed sig-
nificantly since these experiments. Road following robots developed to cars
that have a human driver present only as a safety precaution for unpredictable
situation; autonomous cars are still in development phase and are not publicly
available for purchase. A set of cameras and distance sensors are used for nav-
igation, and data from sensors are input for a neural network which outputs
commands for the car. Companies like Google or Uber are now conducting
test in public traffic. In March 2018 in Arizona, the first casualty was lost
as a result of such test, when Uber self driving car hit a pedestrian[5]. Self
driving software is still not capable of full autonomy, and it will probably take
years before fully autonomous cars will be available for the public. However,
a couple autonomous features are available for the public, like autonomous
parking or speed adjusting to the next car[1].

Ideal result
The ideal result of this work consists of two parts. The first part is a physical
based simulator that simulates the actions of a robot, primarily car-like robot.
This robot will have an optional number of wheels, where each wheel can
be controlled separately. Each wheel can also have different attributes, like
torque force, steering range, break force and size. The robot should be able
to perceive its environment with cameras and distance sensors. These sensors
will have a delay that can be set up by the user and will scan the surroundings

1

Introduction

with the period set up by the user as well. This environment should not be
limited to only one robot at a time, so the movement of multiple robots can
be simulated. The environment should be able to simulate different kinds of
terrains containing obstacles, a target and other robots. Communication with
the environment should not limit which kind of programming language is used
for the neural network.

The second part is a neural network proving valid functionality of the
environment. The proof in the ideal case would be a neural network capable
of parking a car-like robot into a parking space. Commands provided by
the neural network should be based only on the images from the robot’s camera
and the distances provided by the distance sensors. The movement of the robot
should resemble a car being parked by an actual human driver.

Figure 0.1: Ideal architecture of solution

Assignment analysis
1. Using the Unity game engine implement a 3D simulator for vision-based

training of autonomous robots controllers. Primary focus on self-driving
cars.

• Unity is a component based game engine with support for all types
of games. Among these games are racing simulators behaving ac-
cording to physics. This is going to be very helpful for creating
simulator with conditions similar to the real world.

2. Input to the controller will be a visual information from the camera.
Implement a training algorithms and neural network-based controller.

2

Assignment analysis

• Training algorithms and controller are going to be implemented us-
ing some verified library or solution capable of running and teaching
the neural network.

3. Create a communication protocol for connection between the simulator
and the training algorithm.

• Communication protocol should cover all necessary types of mes-
sages needed for training the neural network such as sending steer-
ing commands, requesting data from sensors and cameras or setting
up the scene. This protocol should be as simple as possible so it
does not slow down anything.

4. Test the system using experimental scenarios.

• Scenarios are going to be focused on parking a car in a parking spot.
Scenarios are going to be simple scene with a car and parking spot
in different locations with different rotation. The neural network
will navigate the car to the spot and should align the car in it.

3

Chapter 1
Research

This chapter is about exploring existing solutions of simulators for training
neural networks and about tools and methods which can be used for imple-
mentation simulator.

• The first subchapter is about existing simulators.

• The next subchapter explores possibilities for the implementation of
a simulator, focusing on game engines.

• The third subchapter looks at usable methods for creating a neural net-
work.

• The fourth subchapter briefly explains how certain types of networks
work.

• The last subchapter is about possible solutions for communication be-
tween simulator and neural network.

1.1 Existing simulators

1.1.1 Udacity

Udacity[6] created a simulator for a self-driving car using Unity and is now
open source. The simulator is inspired by Nvidia experiments with self-driving
cars. Nvidia conducted an experiment in which they attached three cameras
to a real car; one camera pointed left, one right and one forward. They
recorded 72 hours of driving for training data, collecting images from cameras
and information about thrust, direction and brakes. This data was used for
training the convolutional neural network. The Udacity simulator does the
same thing as Nvidia did in their experiment, except that testing data is
generated by driving in their simulator. Compared to the Nvidia experiment,
only a few minutes of driving is required for training the network.

5

1. Research

Figure 1.1: Screenshot of simulator made by Udacity

1.1.2 Carla

An interesting and advanced project is called Carla[7] (Car Learning to Act).
Carla is not based on any game engine and was built from scratch. It focuses
on simulations of urban locations with advanced graphics containing assets of
many types of cars, buildings, people and even simulates weather.

Figure 1.2: Screenshot of Carla simulator

We did not want to use Udacity’s simulator, because it is built for a dif-
ferent type of training than we would like to experiment with. Also Carla
did not fit our needs since it is not free for possible commercial use. Both
these environments limit the usable networks to certain types of frameworks

6

1.2. Methods for visual simulator

which are compatible with their platform; we want to create an environment
independent of the neural network implementation as much as possible.

1.2 Methods for visual simulator

1.2.1 Game engines

Game engines, which usually have solution for 3D graphics, physics, GUI and
much more, are a good option for building a visual simulator. For the purpose
of this thesis, we considered three game engines:

1. Unity 3D[8]

• User friendly engine, with a lot of implemented components. Free
for commercial use up to $100.000 annual gross revenue. Large
active community. Uses C# and Javascript for scripting. Supports
around 30 platforms.

2. Unreal Engine 4[9]

• Free for non-commercial use. Active community, creating tutorials
and other useful content. User friendly. Uses C++. Supports
Windows, iOS, Android, Playstation 4, Xbox One and more.

3. CryEngine 3[10]

• Quite complex and difficult to learn the engine, with a smaller
community compared to Unity 3D and Unreal Engine 4. Supports
Windows, Playstation 4, XBox One and Oculus Rift.

1.3 Methods for neural networks
In this subchapter selected methods for creating the neural network are as-
sessed. These methods include frameworks, libraries and whole solutions.

1.3.1 Frameworks

There are many good frameworks suitable for this kind of task, including the
following three:

1. Tensorflow[11]

• Open source software library for high performance numerical com-
putation. Python, C++, Java and GO API. C++, Java and GO
API are not covered by Tensorflow API stability promises.

2. Keras[12]

7

1. Research

• High level neural networks API written in Python and capable of
running on top of Tensorflow, CNTK or Theano.

3. Caffe2[13]

• Modular deep learning framework. C++ and Python API.

1.3.2 Whole solutions

1. Wolfram Mathematica

• Computational tool based on symbolic Wolfram language. Imple-
ments algebraic manipulation, visualisation, image processing, net-
working, neural networks and much more.

2. Matlab

• Wolfram Mathematica competitor. Similar functions like Wolfram
Mathematica.

1.4 Types of neural networks

1.4.1 Feed forward network

A basic feed forward neural network consists of one or more layers of percep-
trons. Each perceptron has one or more inputs and single output, which can
be sent to multiple perceptrons in the next layer as their input. This structure
is illustrated in the image 1.3.

Figure 1.3: Illustration of structure of simple feed forward network[14]

Perceptrons usually have one more input called a bias, which has a value
independent of input data and stays the same once the network has been
trained and is specific for each perceptron.

The evaluation of the input data is done by layers of the network, where
each neuron calculates its output from the input data, bias and weights. This
is usually done using these formulas:

8

1.4. Types of neural networks

• y(s) = 1
(1+e−s)

• s =
∑n

i=0(wi ∗ xi) + b ∗ wb

– y(s) – output value (logistic function) of perceptron
– wi – weight of input with index i
– xi – value of input with index i
– b – value of bias of this neuron
– wb – weight of bias
– n – number of inputs

From the formula it is clear that the output value of the neuron is from
interval (0,1). Computers have limited precision which can cause the network
to be unable to find the best values of weights and biases, because the logistic
function y(s) grows too fast.

Figure 1.4: Graph of logistic function[15]

To overcome this issue, constant k is added, changing the function to this
form.

y(s) = 1
(1 + e−s∗k)

The value of k is set experimentally. The other option is to use library
specialized in unlimited precision for the price of higher computational re-
quirements.

For training this type of network a backpropagation algorithm is used.
The basic version of this algorithm takes input data, allows the network to

9

1. Research

compute its output for this data, compares the output of the network to the
correct output, and changes weights in the network so the network for this
input gives the right output. Usually we want the network to give the correct
output for more than one input, and these changes can be done based on
summed errors from more inputs.

1.4.2 Convolutional networks

Convolutional neural networks[16] got their name from the convolutional op-
erator, which is their basic operation to process data. The convolutional
operator is also widely used in image processing for many purposes including
blurring and sharpening an image, extracting edges, and many others. The
main purpose of the convolutional operator in neural networks is to extract
features from the input data. Whole convolutional networks usually consist
of multiple layers of different kinds. This can be illustrated by the image 1.5.

Figure 1.5: Example of a Convolutional Neural Network[17]

The convolutional operator takes a predefined matrix of values called the
kernel. The kernel is then slide over the whole image with predefined step size
called stride. In each step it takes the input data and the kernel and does
the predefined operation with this data to get a new value. Table 1.1 shows
example of a 2D convolution with an image size of 5 by 5 pixels and kernel
size of 3 by 3 pixels. In each step is each field in kernel multiplied with one
field from an image. The result of the step is a sum of these products.

The convolved feature image can then be fed to another layer or taken as
final output of this network. Usually one convolutional layer uses more kernels
and has multiple convolved feature images as output. This is because each
kernel can extract different features. The number of used kernels is called
depth. As the example 1.1 shows, the convolved feature image is smaller than
the image fed to the convolutional operator. Sometimes it is useful to prevent
this by using a technique called zero padding, where the convolved image is
padded by zeros.

10

1.4. Types of neural networks

Table 1.1: Illustration of how convolutional operator works

Image matrix Kernel

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 1 1 0
0 1 1 0 0

1 0 1
0 1 0
1 0 1

Step 1 Step 2

1×1 1×0 1×1 0 0
0×0 1×1 1×0 1 0
0×1 0×0 1×1 1 1
0 0 1 1 0
0 1 1 0 0

4
1 1×1 1×0 0×1 0
0 1×0 1×1 1×0 0
0 0×1 1×0 1×1 1
0 0 1 1 0
0 1 1 0 0

4 3

Step 9 Convolved feature image

1 1 1 0 0
0 1 1 1 0
0 0 1×1 1×0 1×1
0 0 1×0 1×1 0×0
0 1 1×1 0×0 0×1

4 3 4
2 4 3
2 3 4

4 3 4
2 4 3
2 3 4

The convolutional layer is not the only layer type used in convolutional
networks. As essential layers have proven ReLU (Rectified Linear Unit) and
pooling layers. ReLU layers are used to introduce non-linearity. ReLU layer
does elementwise operation, where each pixels value is modified by following
the formula.

output = Max(0, input)

Pooling layers purpose is to reduce dimensionality of feature maps, which
basically works similar to the convolutional layer. It slides a window of pre-
defined size over the entire image with a predefined step. The step is usually
the same size as a sliding window. In each step the specified operation to the
data in the window is applied. These operations include taking the largest or
smallest value as an output, or sum of these values. It can be illustrated by
image 1.8.

The final neural network consist of combinations of these layers with dif-
ferent parameters. The last layer is usually layer of perceptrons with softmax

11

1. Research

Figure 1.6: Graph of rectifier function

Figure 1.7: Example of image before and after ReLU layer[16]

Figure 1.8: How max pooling works[16]

12

1.4. Types of neural networks

activation giving the final output of the network.
This type of network has proven to be very powerful for all sorts of purposes

from locating objects, to recognizing persons or objects, to replacing objects
on images and so on.

1.4.3 Recurrent networks

The main difference between feedforward and recurrent networks[18] is the
way the outputs of neurons are handled. In feedforward networks, the output
of each neuron is fed to the next layer. In the case of recurrent layers, the
output of neurons is also fed in the next steps to one or more previous layers or
the same layer depending on the network structure. This allows the network to
have memory, and the output of the network is dependent not only on actual
input data, but on all previous processed data. The image 1.9 illustrates how
the structure of a recurrent network can look.

Figure 1.9: Example of recurrent network[19]

For tasks where events processed by the network in previous steps are
important, it is necessary to have memory. This includes driving a car, gen-
erating text or music, and so on. For more complex tasks many different
types of neurons that can replace the perceptron neuron have been developed.
One of the widely used and well performing types is LSTM (Long-Short Term
Memory) with a much more complex structure.

The fact that the output of the recurrent layer is dependent on the previous
data makes their training complicated, and backpropagation will not work in
its basic form. In order to teach a recurrent neural network, a modified version
of this algorithms is used and is called backpropagation through time. This
algorithm requires set of training data and correct outputs, which in some
cases is not possible to obtain. One of these cases is learning how to control
a robot. There are useful evolutionary algorithms for these cases.

13

1. Research

1.4.4 Evolutionary algorithms

Evolutionary algorithms in general have a population of candidate solutions
encoded in the genome. The population of candidates have their fitness func-
tion evaluated in each iteration. The fitness function gives the candidate
a score, based on how well it performed. For the next iteration a new popu-
lation of candidates is created based on the previous population. There are
many heuristics how to select from the previous population and how to mod-
ify these candidates for further processing. These heuristics include selection
operators, crossover operators and mutation operators.

The selection operator selects a subset of the tested population for crossover
operator. The selection can be done in many ways, such as using a roulette
selection or tournament selection.

• Roulette selection selects candidates with better fitness with higher prob-
ability.

• Tournament selection selects two random candidates and for the new
population the candidate with better fitness is selected.

It is important to note that always selecting only the best performing
candidates can lead to being stuck in local optimum.

The crossover operator then takes two candidates from the set selected by
the selection operator and creates two new candidates by swapping parts of
their genes. These two new candidates then became part of the new popula-
tion. Crossover can be done on predefined or random points in the genome
with certain probability.

The mutation operator then with certain probability modifies randomly
selected genes of the new population to randomized values.

The fitness of the newly created population is evaluated again, and all
the steps above are repeated. This is just a basic description of evolutionary
algorithms, which can be extended with other heuristics, like island model (two
separated populations, which crossover only at predefined points) or elitism
(always adding the best performing candidate to the new population).

1.5 Methods for communication
There are two basic options to connect the game engine with the neural net-
work: either use API or the neural network library in the game engine, or
connect the engine to the neural network by a network socket.

1.5.1 Networking

Like with the game engines and neural network frameworks, there are many
possibilities, but we will consider only the most widely used TCP/IP protocol.

14

1.5. Methods for communication

Nevertheless this communication might seem similar to multiplayer games and
point us to UDP protocol; however, we can not use UDP protocol because we
need to be sure that all messages arrive intact. Some noise can be simulated
later for the purpose of training neural network.

1.5.2 API

As a good example of API serves .NET/Link allowing calling Wolfram Math-
ematica functions from C# code. This .NET/Link could be used for combi-
nation of Unity 3D and Wolfram Mathematica, since Unity 3D uses C# for
scripting.

15

Chapter 2
Analysis

This chapter assesses all the options mentioned in the previous chapter includ-
ing methods for simulation, methods for creating neural network, and methods
for connecting the simulator to a neural network.

2.1 Methods for simulation
The method for the simulation was specified in the assignment, based on
experience with this platform.

2.2 Methods for neural network
The method for creating and training a neural network was selected based on
our experience, as well as the simplicity of prototyping neural networks. The
chosen platform is Wolfram Mathematica 11.2.

2.3 Methods for communication

2.3.1 Networking

Networking has one primary advantage compared to API its independence
on implementation of other communicating side. A possible disadvantage is
a lower communication speed, which could be crucial for vision based training,
where image resolution might be affected as a result of maintaining a real time
processing.

2.3.2 API

API, on the other hand should be able to maintain the maximum possible
communication speed between the simulator and neural network, since the
environment would focused only on one type of platform.

17

Chapter 3
Design

This chapter describes the design portion of the work, including the require-
ments of the final simulator, communication protocol, and the neural network.

1. The first subchapter lists functional, non functional requirements and
use cases. The structure of the whole work is also described in this
chapter.

2. The next subchapter describes protocol designed for communication be-
tween the environment and the neural network.

3. The last subchapter is dedicated to the neural network itself.

3.1 Requirements

3.1.1 Functional requirements

• Create an environment suitable for training the neural network to control
an autonomous robot, primarily focusing on car-like robots.

• Create testing scenarios using environment interface - placement of robots,
obstacles, terrain.

• Test functionality of the environment by using experimental scenarios
for training the neural network.

• The robots distance sensors and cameras have to have an optional delay
of output.

• Multiple robots can be controlled in the scene.

• Each wheel of the robot can receive instructions for steering - direction
and torque.

19

3. Design

• Request data from all sensors and cameras from the robot.

• Set IP and port on which will environment/neural network wait for
connection.

3.1.2 Non-functional requirements

• 3D visualisation of the learning environment.

• Environment is implemented in Unity 5.

• The neural network is implemented in Wolfram Mathematica.

• Communication protocol uses TCP/IP sockets.

• The environment is able to run 30+fps with one robot with one camera.

• The neural network is able to receive 10+ fps from robots camera.

3.1.3 Use cases

• Train the neural network how to control a robot by using the created
environment.

3.1.4 Server-client

We have decided to use TCP/IP for communication between Unity and Math-
ematica. Therefore it is necessary to decide which part will pose as the server
and which as the client. The first idea was to make Mathematica the server
and Unity the client for the possibility of letting Mathematica operate with
multiple simulations at the same time and speeding up the training process.

This model was first tested with a simplified Python server without any
neural network running. Python server accepted a message, waited for some
time to simulate neural network processing accepted data and then it sent
response. This model was working quite well, and Python server was able to
communicate with around 6 instances of Unity at the same time, where each
socket had its own thread and all this was happening with stable 30 fps on
all Unity instances. The resolution in this experiment was set to 400 by 300
pixels.

Unfortunately it was not possible to implement this model with Mathe-
matica. The reason for this were possibly unresolved bugs in Mathematicas
functions serving to create and use a TCP server socket or documentation
not explaining these functions well enough to use them properly. The reason
for this is probably that these functions are still marked as experimental and
most of them were added in a version used for this work that is Wolfram
Mathematica 11.2. These possible bugs included:

20

3.1. Requirements

• While all packets were received, the function did not return received
data and blocked further communication.

• While reading from socket packet by packet, random errors occurred
throwing exceptions. If this exception was processed, it was possible to
continue reading from the socket and read the whole message without
any missing bits. Yet Mathematica stopped the evaluation when this
exception occurred.

These errors occurred while using following Mathematica functions and
objects:

• SocketReadMessage

• ReadByteArray

• ReadString

• SocketListener

We tried to solve these errors and experimented with different combina-
tions of Unity, Python and Mathematica. For both architectures, we man-
aged to fix communication between Mathematica and Python and Unity and
Python. However, for some unknown reason, when Python server was replaced
by Mathematica, all problems returned.

All these errors led to change of the architecture, and Mathematica become
the client and Unity the server. Unity environment maintained both options
to pose as the client and as the server for the possibility of using of this
environment with a different neural network or when the bugs are resolved in
future versions.

After these problems were solved another arose; the speed of communi-
cation between Unity and Mathematica. During testing Unity to Python
communication, sending Full HD images was done in a matter of hundredths
of a second; when it came to Unity to Mathematica, the time of the transmis-
sion rose to a few seconds. For this reason the resolution was lowered to 160
by 100 pixels, and average time of transmission decreased to 0.05 seconds.

Figure 3.1: Graph of final architecture

21

3. Design

3.2 Communication protocol
Communication protocol was designed to cover all necessary messages needed
for training a neural network controlling a car-like robot. But since we are
aware that it might not cover all future purposes of this environment, the ease
of extendability of this protocol was taken in account. Basic form of each
message is following:

<messageLength><messageType><messageData>’\0’
Messages that require more than confirmation needed have the same <mes-

sageType> for response to those messages to keep communication clearer.
Here follows a list of all implemented messages. If the response message

is not specified, it is expected to receive the standard confirmation or the
standard error message.

• Standard confirmation response message

– <messageLength>ok’\0’

• Standard error message

– <messageLength>ko’\0’

• Get image from camera

– Request image from camera(s).
∗ <messageLength>cam<#cameras><id><id>...<id>’\0’

– Send image from camera(s).
∗ <messageLength>cam<#cameras><width>

<height><pixels>...<width><height><pixels>’\0’

– Order of images in response is expected to be the same as in request.

• Get distance from sensors

– Request distance from sensor(s).
∗ <messageLength>dst<#sensors><id><id>...<id>’\0’

– Send distance from sensor(s).
∗ <messageLength>dst<distance><distance>...<distance>’\0’

– Order of distances in response is expected to be the same as in
request.

• Set steering for wheel(s)

– Set torque for chosen wheels.

22

3.2. Communication protocol

∗ <messageLength>stw<carID><wheelId>
<torque>...<wheelId><torque>’\0’

– Set direction for chosen wheels.
∗ <messageLength>sdw<carID><wheelId>

<direction>...<wheelId><direction>’\0’

• Prepare playground messages

– Set size of flat playground.
∗ <messageLength>sps<carID><width><height>’\0’

– Set target position and spawn it, if it was not previously spawned.
∗ <messageLength>tgp<carID><x><y><z>’\0’

– Set target rotation and spawn it, if it was not previously spawned.
∗ <messageLength>tgr<carID><x><y><z>’\0’

– Set car starting position and spawn it, if it was not previously
spawned.

∗ <messageLength>crp<carID><x><y><z>’\0’

– Set car starting rotation and spawn it, if it was not previously
spawned.

∗ <messageLength>crr<carID><x><y><z>’\0’

• Choose car type

– Changes the car type of car with selected carID.
– If this message is not sent during communication, environment uses

default car type.
∗ <messageLength>car<carID><type>’\0’

• Start session

– First message sent by environment to neural network.
∗ <messageLength>str’\0’

23

3. Design

• End session

– Last message sent by neural network to environment, which ends
simulation on Unity side and makes environment go to main menu.

∗ <messageLength>str’\0’

• Clear playground

– Deletes all objects from scene loaded by LevelBuilder class.
– Does not end simulation.

∗ <messageLength>clr’\0’

• Capture whole state

– Returns data from all cameras and images in order by their ids
from selected robot.

– Request:
∗ <messageLength>cpt<carID>’\0’

– Response:
∗ <messageLength>cpt<carID><#sensors>

<distance>...<distance><#cameras>
<width><heigth><pixels>...<pixels>’\0’

• Get absolute position/rotation of car/target

– Request of position and rotation of car.
∗ <messageLength>cpr<carID>’\0’

– Response:
∗ <messageLength>cpr<carID>

<xCoord><yCoord><zCoord><xRot><yRot><zRot>’\0’

– Request of position and rotation of target
∗ <messageLength>tpr<carID>’\0’

– Response:
∗ <messageLength>tpr<carID>

<xCoord><yCoord><zCoord><xRot><yRot><zRot>’\0’

24

3.3. Neural network

• Load predefined scenario by id

– <messageLength>scn<scenarioID>’\0’

• Place predefined obstacle by id

– <messageLength>obs<carID><obstacleID>
<xCoord><yCoord><zCoord><zCoord>
<xRot><yRot><zRot><xSize><ySize><zSize>|

• Continue simulation without communication for a specified number of
stepes, before resuming communication

– <messageLength>stp<#steps>’\0’

Each part of message has expected data type.

• All IDs (car, camera, sensor, obstacle, wheels, car type), playground size
and pixels from camera are expected to be in 8 bit integer.

• All coordinates, distances from sensors are expected to be 32 bit floats
(in terms of Mathematica reals).

• All message length and camera resolutions are expected to be 32 bit
integers.

• Message type is expected to be 2 or 3 ASCII characters.

3.3 Neural network
This subchapter describes the types of networks used. The first subchapter
is about convolutional networks, and the second is about recurrent networks.
The last two chapters are about the final shape of the image processing net-
work and controller network.

3.3.1 Image processing network

The image processing network has the very important task of locating the
target and returning its distance and rotation from the car’s perspective. We
decided to use a 2D convolution network.

For this purpose we used a network that has proven its qualities already.
We used YOLO[20] (You Only Look Once) network, which is network for
real time object detection. The graph shows comparison of YOLO with other
detectors. Comparison was done using COCO[21] dataset.

Since the network was originally trained to locate different objects than
parking spots, we had to train the network from the beginning. For this

25

3. Design

purpose we created a set of 10000 images taken from cars’ camera. Images
were saved in custom format.

• <xDistance><yDistance><angle><imageData>

– xDistance, yDistance and angle are saved as a 4 byte float/real
– Angle is in radians.
– imageData are saved as a sequence of blocks <r><g> where each

pixel is 1 byte long integer.

8000 images were used as a training set and the remaining 2000 as a valida-
tion set. Images had to be resized to 160 by 100 pixels before feeding them to
the neural network. The output of the network are four numbers - xDistance,
yDistance, sin (angle) and cos (angle). Each training iteration took around 20
minutes on Nvidia GeForce GTX 960M. This time could be lower, but all im-
ages did not fit in the memory, so they had to be loaded from hard drive many
times. After a couple tens of iterations the network was achieving acceptable
performance and was ready to use. The achieved average distance precision
was around 1/12 of a parking spot length, and the average rotation error was
under 5 degrees. This was achieved using default settings or Mathematicas
function NetTrain.

Figure 3.2: Images from cars camera

26

Chapter 4
Implementation

4.1 Implementation details

4.1.1 Unity section

Two scenes, one for the main menu and the second for simulation, were imple-
mented in Unity 3D. The main menu serves for setting up IP, port, the role
of the environment (client/server); this information is passed to the simula-
tion scene in instance of class EnvironmentInterface. For the simulation the
following classes were implemented:

• Initializer

• EnvironmentInterface

• LevelBuilder

• Scenario

• CarInterface

• Steering

• WheelController

• Sensor

• CameraInterface

The image 4.1 shows the directions in which messages are processed and
commands executed. Mentioned classes are described in the next few para-
graphs.

27

4. Implementation

Figure 4.1: Graph illustrating how message is spread in simulator

4.1.1.1 Initializer

The initializer class should be the only class with an implemented Start
method among objects saved in scene. This is because Unity does not the
guarantee the order by which Start method will be called on all objects.
Therefore this class should create all other objects needed at the beginning of
the simulation, or call their Init functions. This way of using uninitialized
objects should be prevented. In the current state it initializes only an instance
of EnvironmentInterface class, but previous experience with Unity says that
this is a good practice.

4.1.1.2 EnvironmentInterface

This is the most important class in the project, which serves as an interface
between Environment and neural network. This class creates and manages
TCP socket.

Init function finds instance of LevelBuilder class; if this object is not
present, an exception is thrown. Then follows call of the function makeConnection.
The function makeConnection creates an appropriate type of TCP socket.
When the connection is made SayHelloToServer function is called and the
communication begins.

Coroutine function receiveMessage is responsible for accepting the in-
coming message. This function assembles the whole message from incoming
packets and then passes the whole message to processMessage.

Function processMessage takes the message type (fourth to sixth byte)
and calls the appropriate function to process this message. If the message
type is not recognized, a standard error message is sent to the neural net-
work. In most cases, these functions just parse incoming data and pass it

28

4.1. Implementation details

to LevelBuilder or CarInterface. Here is a list of functions called from
processMessage and explanation of how they work:

• sendImageFromCamera

– Is a coroutine function. First it parses a message, then prepares
array for a new message with the exact size. Counts maximum
delay on all requested cameras. Sends requests for image from all
requested cameras using function of CarInterface
getCurrentImageFromCamera, which takes three parameters

∗ int cameraID
∗ byte[] message - array to which the image will be stored
∗ int index - index at which should the image start

– After this request, function waits for the maximum delay and calls
sendMessge function.

• sendDistanceFromSensor

– Is a coroutine function. First it parses a message, then prepares
array for a new message with the exact size. Counts maximum
delay on all requested sensors. Sends requests for distances from
all requested sensors using function of CarInterface
getDistanceFromSensor, which takes three parameters

∗ int sensorID
∗ byte[] message - array to which the distance will be stored
∗ int index - index at which should the image start

– After this request, function waits for the maximum delay and calls
sendMessge function

• captureWholePlaygroundState

– Is a coroutine function. First it parses a message, then prepares
array for a new message with the exact size. Counts maximum
delay on all requested sensors and cameras. Sends requests for
distances and images from all requested sensors and cameras using
functions of CarInterface getDistanceFromSensor and
getCurrentImageFromCamera. After this request, function waits
for the maximum delay and calls sendMessge function

• sendPositionAndRotation

– Based on first parameter char type this function creates message
containing position and rotation of car ‘c’ or target ‘t’.

• waitUpdates

29

4. Implementation

– Continues simulation without communication for a specified num-
ber of steppes, before resuming communication. One step is equal
to one FixedUpdate in Unity; in this project set to 0.01 seconds.

• endSession

– Closes TCP socket and loads main menu.

Functions mentioned in this list only parse message and call LevelBuilder
function with received parameters.

• setPlaygroundSize

• setTargetPosition

• setTargetRotation

• setCarPosition

• setCarRotation

• clearPlayground

• setSteeringTorque

• setSteeringDirection

• setCarType

• loadScenario

4.1.1.3 LevelBuilder

LevelBuilder is class responsible for instantiating and destroying terrain,
target, cars and obstacles. LevelBuilder also keeps references to all these
objects. All functions that modify the car, target or obstacles always make
sure that the modified object is spawned; if not they spawn it first with
default parameters and modified only a given parameter. For example if a
car is not spawned and the function setCarPosition is called, it will be
spawned with default rotation and default car type on location given to func-
tion setCarPosition.

Whenever function loadScenario is called, it destroys all objects using
function clearPlayground and then spawns new ones based on the informa-
tion contained in instance of class Scenario with given ID.

30

4.1. Implementation details

Figure 4.2: EnvironmentInterface - important variables and functions.

31

4. Implementation

Figure 4.3: LevelBuilder - important variables and functions.

32

4.1. Implementation details

4.1.1.4 Scenario

Serves for storing information about a predefined scenario. Each predefined
scenario is a saved instance of this class as a Unity asset. Scenario holds
information about position, rotation and type of cars, obstacles and targets,
as well as terrain size.

4.1.1.5 CarInterface

The main purpose of this class is to serve as an interface between a car’s
sensors, cameras and wheels and EnvironmentInterface. Also calls Init
function on all car components.

The basic structure of a car robot should model the graph 4.4.

Figure 4.4: Graph of structure of car robot

4.1.1.6 Steering

Serves as an interface between the car and its wheels. Holds references to all
wheels and gives them commands. These commands are then evaluated by

33

4. Implementation

Figure 4.5: CarInterface - important variables and functions.

WheelController and corrected (if the value of direction or torque are out of
range).

Figure 4.6: Steering - important variables and functions.

4.1.1.7 WheelController

This class makes the car actually move by setting parameters to instances of
Unity class WheelCollider. Parameters of this class set the wheels abilities.

34

4.1. Implementation details

Abilities include the maximum torque and steering direction or the ability to
break.

• bool isStatic

– Wheel can not change direction.

• bool noTorque

– Wheel can not apply acceleration.

• bool noBreak

– Wheel can not apply break force.

• float steeringForce, accelerationForce and breakForce

– Properties defining how the wheel will behave

• float steering

– Final steeringAngle of WheelCollider is defined as
steering*steeringForce

– Parameter steering should be from interval
< −steeringRange; steeringRange >, if not WheelCollider is go-
ing to set it to the closest number from this range.

• float acceleration

– Parameter set up by the neural network. Final motorTorque of
WheelCollider is defined as acceleration*accelerationForce.

– Parameter acceleration should be from interval < −1, 1 >, if not
WheelCollider is going to set it to the closest number from this
range.

• float breakForce

– Break force is applied if two conditions are met. First wheel has
to have noBreak parameter set to false. Second absolute value of
acceleration is lower than breakThreshold.

4.1.1.8 Sensor

With set period stores measured value to buffer. Buffer is an array using mod-
ulo indexing. When the getDistance function is called from CarInterface,
it starts coroutine saveData, which waits for number of FixedUpdates spec-
ified in delay parameter. After waiting, data from buffer at position actual
index minus sensorDelay are stored in passed array.

35

4. Implementation

Figure 4.7: WheelController - important variables and functions.

Figure 4.8: Sensor - important variables and functions.

36

4.1. Implementation details

4.1.1.9 CameraInterface

With set period stores image from camera to buffer. Buffer is an array us-
ing modulo indexing. When the getCurrentFrame function is called from
CarInterface, it starts coroutine saveData, which waits for number of FixedUpdates
specified in delay parameter. After waiting, data from buffer at position ac-
tual index minus sensorDelay are stored in passed array on specified index
together with resolution.

Figure 4.9: CameraInterface - important variables and functions.

4.1.2 Mathematica section

Mathematica was used to create the neural network for experiments and in-
terface between this neural network and simulator. The results are two note-
books, one for training the neural network how to locate a parking spot and
the second for training the controller, which takes coordinates from the first
network and gives commands to the car.

4.1.2.1 Localization network

The notebook containing code for training the localization network is called
localization.nb. It contains functions to load images in batches and to train
and test the network. The script takes the file with names of images meant for

37

4. Implementation

training. These images should be generated by the environment, or by other
means which will keep the expected format.

• <xDistance><yDistance><angle><imageData>

– xDistance, yDistance and angle are saved as 4 byte float/real
– angle is in radians
– imageData are saved as a sequence of blocks <r><g> where each

pixel is 1 byte integer.

Images are loaded in batches with size determined by user. For training
purposes there are two main functions.

• trainNet[batchSize_, batchCount_, network_,
imagesFilesCount_, namesFile_]

– The purpose of this function is to train a network capable of giving
location and rotation of parking spot.

– batchSize

∗ How many images should be loaded in one batch.
∗ Reason for this parameter is that Mathematica function NetTrain
tends to fail if too large batch of learning data is given to it.

– batchCount

∗ How many batches should be loaded at the same time.
∗ This parameters purpose is to have a possibility to control
RAM consumption.

– network

∗ network should be instance of NetChain.
– imagesFilesCount

∗ How many images should be used to train the network in total.
– namesFile

∗ Parameter with absolute path to the file containing names of
images used for training the neural network. Images should be
in the same folder as the file containing their names

• testNet[batchOffset_, batchSize_, batchCount_,
network_, imagesFilesCount_, namesFile_]

– The purpose of this function is to test trained network on different
set of images from training images.

38

4.1. Implementation details

– Parameters of this function have the same meaning as in trainNet
function

– batchOffset

∗ Is the index of the first image that should be used. If the file for
testing images is different than the file with learning images, it
should be equal to one.

– namesFile

∗ Parameter with absolute path to the file containing names of
images used for testing the neural network. Images should be
in the same folder as the file containing their names.

The trained network is then exported to .wl file, which can be loaded from
any other Mathematicas notebook.

Notebook contains the definition of YOLO network, which can be modified
for different resolutions, different outputs for future experiments.

YOLO = Ne t I n i t i a l i z e@
NetChain [{ ElementwiseLayer [2.∗# − 1 . &] ,

ConvolutionLayer [1 6 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [3 2 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [6 4 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [128 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [256 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [512 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
Pool ingLayer [2 , " S t r i d e " −> 2] ,
ConvolutionLayer [1024 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
ConvolutionLayer [1024 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
ConvolutionLayer [1024 , 3 , " PaddingSize " −> 1] ,
leayReLU [0 . 1] ,
F lattenLayer [] , LinearLayer [2 5 6] , LinearLayer [1 2 8] ,

39

4. Implementation

leayReLU [0 . 1] , LinearLayer [4] } ,
" Input " −> NetEncoder [{ " Image " , {160 , 1 0 0 } }]] ;

4.1.3 Controller network

For the purpose of training a controller network notebook client.nb was cre-
ated, which uses 4 other .wl files to keep the code better structured.

• messageProcessing.wl

– Imports messageParsing.wl and messageCreating.wl.
– Contains only one function processMessage[msg_], which based

on the message type decides how the message should be processed.

• messageParsing.wl

– Contains functions for extracting data from incoming messages and
giving this data format that is better for further processing by
Mathematica.

• messageCreating.wl

– Contains functions that generate outgoing messages to simulator
from Mathematicas objects and data types.

• fitness.wl

– Contains functions with three purposes.
∗ To evaluate the fitness of candidate solution.

· By default top 10 candidates are saved to variable top
∗ To save the statistics of the fitness progress.

· Fitness of all tested candidates is saved in a List called
fitnessG where each element of the array contains List
of fitness values of one population. A graph of best fitness
over the populations can be generated using the following
command:
DiscretePlot[Min[fitnessG[x]],
{x, 1, Length[fitnessG]}];

∗ To save best performing candidate solutions from the whole
learning process, which can then be used as initial population
for further learning.

Notebook client.nb uses functions from files above and contains couple
functions itself. These functions serve several purposes.

40

4.1. Implementation details

• Loading localization network.

• Running networks without training.

• Creating TCP connection to simulator.

• Creating and training the recurrent neural network.

– startLearningSession[imgProcessNetwork_, controllerNetwork_,
roundsPerScenario_, scenariosIDs_, initPoints_]

∗ This functions purpose is to evolve weights for controller net-
work.

∗ imgProcessNetwork
· Instance of NetChain.

∗ controllerNetwork
· Strucutre of a recurrent layer is stored in a 2 dimensional

List.
· {{neurons_layer1,inputs_layer1,},...,

{neurons_layern,inputs_layern}}

∗ roundsPerScenario
· How many seconds should the network have for a single
tested scenario.

· It can be easily switched to the number of steering com-
mands given to a car.

∗ scenariosIDs
· Which scenarios should be used for training the recurrent
network.

∗ initPoints
· Set of initial weights used for NMinimize.
· If it is equal to an empty List, random candidates are used
for the first round.

– startSession[imgProcessNetwork_, controllerNetwork_,
roundsPerScenario_, scenariosIDs_, initPoints_]

∗ This function serves for demonstration of controller.
∗ Parameters have almost identical meaning as in case of

startLearningSession.

Except for the functions, some important parameters are defined in this
notebook such as ip, port, popSize (size of evolved population) and iterations
(number of iterations of evolution).

41

4. Implementation

Training was realized by using Mathematicas function NMinimize, which
takes a function and tries to find its global minimum. In this case the function
was fitness function of candidate solutions. Differential evolution was set as
a method used to minimize fitness function.

4.1.3.1 Differential evolution

Differential evolution[22] is one of many versions of evolutionary algorithms.
It has specific forms of selection, crossover and mutation operator.

• Selection operator chooses one candidate solution from unmarked can-
didates. Chosen candidate is marked.

• Three more candidates are selected.

• Differential vector is gained by subtracting first candidate from the sec-
ond candidate from the second step.

• Differential vector is multiplied by mutation constant and this vector is
added to the third candidate from the second step. This vector is called
noise vector.

• New candidate solution is gained by going through all genes in genome,
where in each step a random number is generated. If this number is
lower than crossover constant, a gene from noise vector is used for the
new candidate. If this number is bigger than the crossover constant,
a gene from a marked candidate is used.

• Fitness function is evaluated for the newly created candidate. Fitness is
compared to the fitness of marked candidate. For the next population a
candidate with better fitness is used.

• All these steps are applied until all candidate solutions from the previous
iteration are marked.

• After applying these operators, fitness is evaluated and process starts
again.

42

Chapter 5
Experiments

5.1 Results of experiments

All experiments were conducted using 13 predefined scenarios with a single
four wheel car robot. The target parking spot was always visible from the
car’s only camera and placed at different distances with different rotations.
Examples of scenarios are visualized in the schemas 5.1 and 5.2.

Figure 5.1: Two example scenarios

Experiments were very time consuming and running a simulation of 100
iterations with populaiton of 10, where each candidate had 10 seconds per
scenario took around 20 hours.

43

5. Experiments

Figure 5.2: Two example scenarios

5.1.1 Experiment 1

The first experiment served as a test of the environment and training script
to search for possible bugs preventing the training of the car. The car in this
experiment had 5 seconds to park in the parking spot. Fitness was defined
only as a distance from the parking spot at the end of simulation. The car
started from 10 to 20 units away from the parking spot. After 100 iterations
of differential evolution with population of 10, the car was able to get as close
as 2.5 units from the parking spot. As a controller was used fully recurrent
layer with 8 neurons connected to fully recurrent layer with 2 neurons.

5.1.2 Experiment 2

After reviewing the car’s behavior from the first experiment, it was clear that
the car was approaching the parking spot just fast enough to be close enough
to the parking spot at the end of the simulation and would continue driving
after reaching the parking spot. Because of this, we decided to prolong the
time of simulation to 10 seconds. Fitness function was also changed to consider
the car’s alignment in the parking spot.

• F (x) = d+ (d+ 1) ∗ (α/180)

– F (x) – fitness function

– x – candidate solution

– d – distance from parking spot

– α – rotation difference between a car and a parking spot

44

5.1. Results of experiments

After 100 iterations with a population of 10, the car was starting to align
with the parking spot, but still was not stopping. Another problem emerged;
the car was changing directions between two consecutive commands very often
and was shaking. As a controller was used fully recurrent layer with 8 neurons
connected to fully recurrent layer with 2 neurons.

Table 5.1: Results of best performing candidate solution in experiment 2

Fitness
(F (x))

Distance
(d)

Rotation
difference
(α)

7.402 6.303 42.913

5.1.3 Experiment 3

The car in the previous experiment was still not stopping in the parking spot,
only driving slower. We also noticed that car was changing directions a lot
which does not resemble a human driver at all. These observations led to the
additional change of the fitness function.

• F (x) = d+ (1 + d) ∗ (/180) + (1 + d) ∗ t+ (ch/c)

– F (x) – fitness function

– x – candidate solution

– d – distance from parking spot

– α – rotation difference between car and parking spot

– t – torque of car at the end of simulation

– ch – number of changes of directions between two consecutive com-
mands

– c – total number of commands sent to car

After another 100 iterations, the car was not behaving better compared to
the previous experiment using the same controller network structure.

Table 5.2: Results of best performing candidate solution in experiment 3

Fitness
(F (x))

Distance
(d)

Rotation
difference
(α)

Direction
change
ratio (ch/c)

Final
torque (t)

5.062 4.067 39.574 0.036 0.519

45

5. Experiments

5.1.4 Experiment 4

In this experiment, we decided to use L2 norm for the fitness function instead
of L1 norm used so far. Changing the fitness function to the following form.

• F (x) =
√
d2 + ((1 + d) ∗ (/180))2 + ((1 + d) ∗ t)2 + (ch/c)2

– F (x) – fitness function
– x – candidate solution
– d – distance from parking spot
– α – rotation difference between car and parking spot
– t – torque of car at the end of simulation
– ch – number of changes of directions between two consecutive com-

mands
– c – total number of commands sent to car

After around 300 iterations with a population of 10, the shaking improved
significantly, even if the direction change ratio stayed almost the same, but
the distance from the parking spot and the alignment of the car was still quite
similar.

Table 5.3: Results of best performing candidate solution in experiment 4

Fitness
(F (x))

Distance
(d)

Rotation
difference
(α)

Direction
change
ratio (ch/c)

Final
torque (t)

4.753 3.338 36.875 0.035 0.892

5.1.5 Experiment 5

Observations from previous experiments led to the change of the structure
of the controller network to one fully recurrent layer of 4 neurons connected
to fully recurrent layer of 4 neurons connected to fully recurrent layer of 2
neurons. Results of this experiment after 100 iterations with population of 10
were similar to Experiment 4 5.1.4 after the same amount of iterations.

Table 5.4: Results of best performing candidate solution in experiment 5

Fitness
(F (x))

Distance
(d)

Rotation
difference
(α)

Direction
change
ratio (ch/c)

Final
torque (t)

5.244 4.690 31.773 0.035 0.302

46

5.1. Results of experiments

5.1.6 Experiment 6

The last experiment was conducted using the same fitness from Experiments 4 5.1.4
and 5 5.1.5, but changing the size of population to 50. The number of itera-
tions was lowered to 50, since 100 iterations with population of this size would
took around 200 hours to compute.

Table 5.5: Results of best performing candidate solution in experiment 5

Fitness
(F (x))

Distance
(d)

Rotation
difference
(α)

Direction
change
ratio (ch/c)

Final
torque (t)

4.305 3.722 47.530 0.036 0.238

47

Conclusion

Assignment assessment

Pros

We managed to create a working environment for training neural networks
how to control car-like robots with most of the features we wanted. The
environment is able to communicate with any neural network over TCP socket,
which makes it possible to create a neural network using almost any platform
or programming language. Limits on the resolution of a camera are quite high,
since experiments with python proved sending images in Full HD as possible
while maintaining stable 30fps with one camera. Full HD is more than enough
for the intended purposes of this environment.

The designed communication protocol covers all needs for learning con-
troller to control a car-like robot and is easily extendable. Protocol covers the
exchange of data from sensors, images from cameras, sending commands to
the robot and setting up a custom training ground.

Cons

We did not have enough time to do enough experiments with a controller
network to achieve a controller able to resemble a human driver. Its accuracy
was not as good as we hoped for, and often a change of direction was not
evaded as well. I believe that more iterations or a more complex controller
network would help improve controllers capabilities.

Wolfram mathematica TCP socket did not allow us to run simulations
faster than in real time by which times of experiments grew quite high and
limited number of iterations.

Assignment completion

• Using the Unity game engine implement a 3D simulator for vision-based
training of autonomous robots controllers. Primary focus on self-driving

49

Conclusion

cars.

– Chosen parts of implementation are described in chapter Implemen-
tation - Unity section 4.1.1. Full implementation is on the attached
disk. Even though the implementation still has a lot of space for
extensions and improvements, its usability was proven and this part
of assignment can be considered completed.

• Input to the controller will be visual information from the camera. Im-
plement a training algorithms and a neural network-based controller.

– The final environment fully supports the transmission of images of
various resolutions with user defined delay, simulating delay on real
circuits.

– Implementation of training algorithms is described in chapter Im-
plementation - Mathematica section 4.1.2 and chapter Design -
Neural network 3.3.

– We managed to train the controller aiming to the target parking
spot; nevertheless, the controller has a lot of room for improvement,
and this part of assignment can be considered completed.

• Create a communication protocol for connection between the simulator
and the training algorithm.

– Communication protocol is described in chapter Design - Commu-
nication protocol 3.2. Designed protocol covered all the needs for
training our controller and by that this part of assignment can be
considered completed.

• Test the system using experimental scenarios.

– We created 13 different scenarios for experiments and conducted 6
different experiments with controller networks. More details about
experiments are in chapter Experiments 5. This part can be con-
sidered as completed as well.

Possible improvements

The training of the controller could be possibly improved by adding obstacles
to the scene and giveing their location to the controller as input. This could
give controller some sense of space and allow more precise parking, when the
parking spot is not visible. This would require creating a new localization
network capable of locating these obstacles.

Training could be also improved if we would manage to make Mathemat-
icas TCP socket transmit data faster and would allow faster simulations. Al-
ternatively, we could use a different platform for prototyping neural networks
like Keras or TensorFlow which support Python.

50

Possible extensions

Possible extensions include adding more scenarios, different types of robots,
and better graphical visualisation. Implementations of message parsers for
different programming languages and platforms. Extensions also include im-
plementation of learning scripts using threading and by that allowing testing
multiple candidates at the same time.

51

Bibliography

[1] History of autonomous cars: Wikipedia: The Free Encylopedia [online].
Wikimedia Foundation, 2003. Page last edited 4. 4. 2018 v 04:11. [seen
2018-04-30]. Available at: https://en.wikipedia.org/wiki/History_
of_autonomous_cars.

[2] Milwaukee Sentinel: Phantom auto [online]. Milwaukee Sentinel, 8.
12. 1926. [seen 2018-04-30]. Available at: https://news.google.com/
newspapers?id=unBQAAAAIBAJ&sjid=QQ8EAAAAIBAJ&pg=7304,3766749.

[3] Takeo Kanade : Autonomous land vehicle project at CMU [online].
Carnegie-Mellon University, 1900 . Published 1986. [seen 2018-04-30].
Available at: https://dl.acm.org/citation.cfm?id=325197.

[4] Prof. Jürgen Schmidhuber: Prof. Schmidhuber’s highlights of robot car
history [online]. Bundeswehr University Munich, 1973. Published 2009.
[seen 2018-04-30]. Available at: http://people.idsia.ch/~juergen/
robotcars.html.

[5] The Guardian: Self-driving Uber kills Arizona woman in first
fatal crash involving pedestrian [online]. The Guardian, 1821.
Page last edited 22. 3. 2018. [seen 2018-04-30]. Available at:
https://www.theguardian.com/technology/2018/mar/19/uber-self-
driving-car-kills-woman-arizona-tempe.

[6] Udacity: Self-Driving Car [online]. Udacity, 2011. [seen 2018-04-
30]. Available at: https://eu.udacity.com/course/self-driving-car-
engineer-nanodegree--nd013.

[7] Carla: CARLA Open-source simulator for autonomous driving re-
search. [online]. CARLA Team. [seen 2018-04-30]. Available at: http:
//carla.org/.

53

https://en.wikipedia.org/wiki/History_of_autonomous_cars
https://en.wikipedia.org/wiki/History_of_autonomous_cars
https://news.google.com/newspapers?id=unBQAAAAIBAJ&sjid=QQ8EAAAAIBAJ&pg=7304,3766749
https://news.google.com/newspapers?id=unBQAAAAIBAJ&sjid=QQ8EAAAAIBAJ&pg=7304,3766749
https://dl.acm.org/citation.cfm?id=325197
http://people.idsia.ch/~juergen/robotcars.html
http://people.idsia.ch/~juergen/robotcars.html
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://eu.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://eu.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
http://carla.org/
http://carla.org/

Bibliography

[8] Unity: Unity 3D - FAQ [online]. Unity Technologies SF, 2004. [seen 2018-
04-30]. Available at: https://unity3d.com/unity/faq.

[9] Unreal Engine: Unreal Engine - FAQ [online]. Epic Games, 1991. [seen
2018-04-30]. Available at: https://www.unrealengine.com/en-US/faq.

[10] CryEngine: CryEngine - FAQ [online]. Crytek GmbH, 1999. [seen 2018-
04-30]. Available at: https://www.cryengine.com/faq.

[11] TensorFlow: TensorFlow Version Compatibility [online]. Google,
1998. [seen 2018-04-30]. Available at: https://www.tensorflow.org/
programmers_guide/version_compat.

[12] François Chollet: Keras documentation [online]. François Chollet, 2015.
[seen 2018-04-30]. Available at: https://keras.io/.

[13] Caffe2 Caffe2 [online]. University of California, Berkeley, 1868. [seen
2018-04-30]. Available at: https://caffe2.ai/.

[14] Michael Nielsen: Using neural nets to recognize handwrit-
ten digits [online]. [vid. 2016-05-13]. Available at: http:
//neuralnetworksanddeeplearning.com/chap1.html.

[15] Logistic function: Wikipedia: The Free Encylopedia [online]. Wikimedia
Foundation, 2003. Page last edited 15. 4. 2018 v 08:23. [seen 2018-04-30].
Available at: https://en.wikipedia.org/wiki/Logistic_function.

[16] ujjwalkarn: An Intuitive Explanation of Convolutional Neural Networks
[online]. [vid. 2016-05-13]. Available at: https://ujjwalkarn.me/2016/
08/11/intuitive-explanation-convnets/.

[17] Jan Koutník, Jürgen Schmidhuber, Faustino Gomez: Evolving Deep Un-
supervised Convolutional Networks for Vision-Based Reinforcement Learn-
ing [online]. Published 2014. [seen 2018-04-30]. Available at: http://
people.idsia.ch/~koutnik/papers/koutnik2014gecco.pdf.

[18] Eclipse Deeplearning4j: A Beginner’s Guide to Recurrent Net-
works and LSTMs [online]. [vid. 2016-05-13]. Available at: https://
deeplearning4j.org/lstm.html.

[19] Ramon Quiza, J. Paulo Davim Computational modeling of ma-
chining systems [online]. Published 2009. [seen 2018-04-30]. Available
at: https://www.researchgate.net/figure/Graph-of-a-recurrent-
neural-network_fig3_234055140.

[20] You only look once: YOLO: Real-Time Object Detection [online]. Joseph
Chet Redmon. [seen 2018-04-30]. Available at: https://pjreddie.com/
darknet/yolo/.

54

https://unity3d.com/unity/faq
https://www.unrealengine.com/en-US/faq
https://www.cryengine.com/faq
https://www.tensorflow.org/programmers_guide/version_compat
https://www.tensorflow.org/programmers_guide/version_compat
https://keras.io/
https://caffe2.ai/
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
https://en.wikipedia.org/wiki/Logistic_function
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://people.idsia.ch/~koutnik/papers/koutnik2014gecco.pdf
http://people.idsia.ch/~koutnik/papers/koutnik2014gecco.pdf
https://deeplearning4j.org/lstm.html
https://deeplearning4j.org/lstm.html
https://www.researchgate.net/figure/Graph-of-a-recurrent-neural-network_fig3_234055140
https://www.researchgate.net/figure/Graph-of-a-recurrent-neural-network_fig3_234055140
https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/

Bibliography

[21] Common objects in context: Common objects in context [online]. coco-
dataset.org. [seen 2018-04-30]. Available at: http://cocodataset.org/
#home.

[22] Bc. Michal Karger Algoritmus Diferenciální Evoluce s prvky determini-
stického chaosu (ChaosDE) v prostředí Mathematica [online]. Published
2011. [seen 2018-04-30]. Available at: http://digilib.k.utb.cz/
bitstream/handle/10563/16562/karger_2011_dp.pdf?sequence=
1&isAllowed=y.

55

http://cocodataset.org/#home
http://cocodataset.org/#home
http://digilib.k.utb.cz/bitstream/handle/10563/16562/karger_2011_dp.pdf?sequence=1&isAllowed=y
http://digilib.k.utb.cz/bitstream/handle/10563/16562/karger_2011_dp.pdf?sequence=1&isAllowed=y
http://digilib.k.utb.cz/bitstream/handle/10563/16562/karger_2011_dp.pdf?sequence=1&isAllowed=y

Appendix A
Acronyms

LSTM Long-Short Term Memory

fps frames per second

YOLO You Only Look Once

COCO Common Objects in Context

TCP Transmission Control Protocol

API Application Programming Interface

UDP User Datagram Protocol

ReLU Rectified Linear Unit

57

Appendix B
Users manual

B.1 Simulator
The environment has very limited settings once it is compiled, only IP, port
and type of a TCP socket can be changed. All other modifications have to be
done in Unity editor. These changes include for example:

• Adding new predefined types of cars, obstacles and scenarios

• Changing of

– properties of wheels
– resolution of sent images
– sensors delay

• Adding new types of messages

How to make these changes should be clear from the chapter Implementa-
tion4. User should start the simulation by pressing Start button in the main
menu. The button should be pressed before/after a neural network is running
and posing as a client/server.

B.2 Neural network
The neural network is run from the client.nb file. To run the network all cells
have to be evaluated before evaluating the last cell containing call of function
StartSession or StartLearningSession. If the environment is running and
IP and port are set up correctly, Mathematica should be able to connect to
this environment and start the simulation. Default IP is 127.0.0.1 (localhost)
and port 5005, both these values can be of course changed according to the
needs of user. More details on how the Mathematicas section works is in
chapter Implementation4.

59

Appendix C
Images

61

C. Images

Figure C.1: Scenarios 2 to 7 with trajectory of best performing candidate from
Experiment 6 5.1.6

62

Figure C.2: Scenarios 8 to 13 with trajectory of best performing candidate
from Experiment 6 5.1.6

63

Appendix D
CD content

readme.txt..................................Description of CD content
exe.............................Folder with executable implementation
src

impl.................................Source code of implementation
neural network............................Mathematica scripts
simulator .. Unity project

thesis...............................Source code of thesis in LATEX
text...Thesis

DP_Laube_Daniel_2018.pdfThesis in PDF

65

	Introduction
	Self-driving cars
	Ideal result
	Assignment analysis

	Research
	Existing simulators
	Methods for visual simulator
	Methods for neural networks
	Types of neural networks
	Methods for communication

	Analysis
	Methods for simulation
	Methods for neural network
	Methods for communication

	Design
	Requirements
	Communication protocol
	Neural network

	Implementation
	Implementation details

	Experiments
	Results of experiments

	Conclusion
	Bibliography
	Acronyms
	Users manual
	Simulator
	Neural network

	Images
	CD content

