
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 9, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Developing Normalized Systems Conceptual Modeler

 Student: Bc. Peter Uhnák

 Supervisor: Ing. Robert Pergl, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

The goal is to develop an advanced and detailed conceptual modeling tool for the data and flow models in
Normalized Systems Theory. The tool must serve to explore the requirements for a state-of-the-art
conceptual modeling environment for analysts and programmers working on Normalized Systems projects
(from small- to large-scale, mission critical systems). The tool should focus on the modeling using graphical
diagrams and support the inspection and comprehension of models as well as error detection and
prevention. In combination with Normalized Systems Theory, the tool would offer the user a unique
platform for modular conceptual models for information systems.

Key characteristics of the tool include:
- User friendly
- High flexibility
- Robustness
- Loosely coupled integration with the NS Prime Radiant, which functions as the repository and code
generation environment for the conceptual modeling tool.

References

Will be provided by the supervisor.

Master’s thesis

Developing Normalized Systems
Conceptual Modeler

Bc. Peter Uhnák

Department of Software Engineering
Supervisor: Ing. Robert Pergl, Ph.D.

May 9, 2018

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as school work under the provisions of Article 60(1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 9, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Peter Uhnák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Uhnák, Peter. Developing Normalized Systems Conceptual Modeler. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2018.

Abstrakt

Tato práce se zaměřuje na tvorbu modelovacího a diagramovacího nástroje v
platformě OpenPonk pro potřeby Normalizovaných Systémů a meta-systému
Prime Radiant.

Stručně je představena teorie Normalizovaných Systémů, platformy Open-
Ponk a dalších nástrojů použitých při tvorbě modeláře.

Pro potřebu integrace mezi systémem Prime Radiant a implementovaným
modelářem jsou analyzovány soubory XML obsahující deskripce Normalizo-
vaných Systémů. Z analýzy je následně zkonstruován vhodný metamodel. Jak
proces analýzy, tak i výstupný metamodel je detailně rozebrán.

Současná notace používaná pro Normalizované Systémy je obohacena, a
mimo jiné čerpá z myšlenek notací jako je diagram databází, UML diagramy
tříd či stavových strojů. Jsou probrány různé možnosti, návrhy a přístupy k
diagramové tvorbě modelů Normalizovaných Systémů.

Dále je představena série validačních pravidel pro modely Normalizovaných
Systémů. Téma samotného popisu takových pravidel je probrána, stejně jako
i aktuální způsob implementace.

Neboť tato práce popisuje softwarový projekt, je modelář zanalyzován a
zhodnocen z hlediska testování a testovatelnosti, stejně jako i dlouhodobé
údřzby.

Na závěr jsou shrunty přínosy této a práce a je navřžena série kroků vhod-
ných k budoucímu prozkoumání.

Klíčová slova

Normalizované Systémy, Prime Radiant, OpenPonk, modelování, dia-
gramování, vizualizace, Pharo, Smalltalk

v

Abstract

This thesis explores the topic of providing modeling and diagramming sup-
port for Normalized Systems constructed in the Prime Radiant tool using the
OpenPonk modeling platform.

The current state of the art of defining NS systems is summarized. The
Normalized Systems theory, Prime Radiant, OpenPonk, and other framework
used in the making of the modeler are introduced.

The thesis then continues by analyzing the artifacts produced by the Prime
Radiant that hold the definitions of NS systems. These artifacts are reverse
engineered and a metamodel is constructed; both the process, and the result
is discussed.

Inspired by existing notations, such as Entity-Relationship diagrams, UML
class diagrams, State Machine diagrams, and Flow diagrams, the existing NS
diagramming notation is extended. It discusses various aspects not just of the
notation itself, but also of the process of diagramming as a natural way to
create the models. Several possibilities of forthcoming exploration are intro-
duced.

Modeling rules and validations are introduced and explored as a way to
guide a user through possible pitfalls, and to raise the quality of the defined
models. The implemented rules, the current state, and an approach relevent
from mid- and long-term perspective is explored and discussed at length.

As the main artifact of this thesis is a software project, testing, error
tracking, and operations utilized in construction of the modeler are described.

Finally, the achievements of this project are evaluated, and the path for-
ward summarized.

Keywords

Normalized Systems, Prime Radiant, OpenPonk, modeling, diagramming,
visualizations, Pharo, Smalltalk

vi

Contents

Introduction 1
Motivation . 1
Goals and Objectives . 2
Structure of the Thesis . 2

I Review 5

1 Normalized Systems Theory 7
1.1 High-level Overview . 7
1.2 Dimensions of Evolvability . 8
1.3 Stable Modular Architecture 9

2 OpenPonk Modeling Platform 13
2.1 Overview . 13
2.2 Editors . 14
2.3 Diagram Editor Architecture 14
2.4 Orthogonal Perspectives . 15

3 Magritte 19
3.1 Descriptions . 19
3.2 Accessors . 21
3.3 Validations and Conditions . 21
3.4 Magritte Renderers . 22
3.5 XML-Bindings Extension . 22

II Analysis and Reverse Engineering of Metamodel 25

4 Normalized Systems Metamodel 27
4.1 Component Metamodel . 27
4.2 Application and Project Metamodel 30

vii

4.3 Flow Metamodel . 32
4.4 Option Types . 35

5 Metamodel Engineering 37
5.1 XML files . 37
5.2 XML Analysis . 37
5.3 XML Magritte Generator . 38
5.4 Component Analysis . 41
5.5 X/O mapping and XSDs . 42
5.6 Workflow Analysis and Transformation 43

6 Rules and Validations 45
6.1 Model Validations . 45
6.2 Validation Rules . 45
6.3 Describing Rules . 48
6.4 Renraku static analysis framework 50
6.5 Rule Implementation . 51
6.6 User Tools . 54

IIIImplementation 57

7 Diagram Editors 59
7.1 Component Diagramming . 59
7.2 Flow Diagramming . 63
7.3 Diagram Views and Partitioning 65

8 Magritte Extensions 69
8.1 Spec Properties Form Renderer 69
8.2 Calypso Extensions . 71

IVTesting and Operations 73

9 Error Tracking and Reporting 75
9.1 Error Tracking . 75
9.2 Pharo-Sentry . 76
9.3 Error and Model Capture . 79

10 Testing, Continuous Integration and Deployment 81
10.1 Code Testing . 81
10.2 Scenarios Testing . 83
10.3 Continuous Integration & Deployment 86

Conclusion 87
Achieved Results . 87
Future Work . 89

viii

Author’s Contributions . 90

Bibliography 93

A Acronyms 95

B Contents of enclosed CD 97

ix

List of Figures

2.1 OpenPonk Workbench showing a portion of an OntoUML profile
in a UML profile editor . 13

2.2 MVC architecture with limited communication from model 15
2.3 DSL editor for a BORM model . 16
2.4 Perspectives on a UML “Class” metamodel entity 17

3.1 Person class specifies Descriptions that are used to describe Per-
son’s instances . 19

3.2 Hierarchy of Magritte Description types 20
3.3 Hierarchy of Magritte accessors . 21
3.4 Available condition classes . 22
3.5 Magritte form with a subview . 23

4.1 Component metamodel . 28
4.2 Component core . 29
4.3 Application metamodel . 31
4.4 Project metamodel . 31
4.5 Flow metamodel . 32
4.6 Basic NS flow step . 33
4.7 BORM diagram . 34
4.8 Option Types . 36

5.1 Element types . 39
5.2 Complex type classification . 40
5.3 Diff after a small change to the XML 41
5.4 UML diagram of a DataFlowTask 43
5.5 Flow Elements, Task Elements, Data Elements 44

6.1 Metamodel fragment with elements used in a rule 49
6.2 Visual OCL on “Data Element with Flow should have a corre-

sponding [Element]TaskStatus” rule 50
6.3 Renraku Metamodel . 51
6.4 CustomRule . 51

xi

6.5 Rules Metadata Editor . 52
6.6 Validations Browser . 55
6.7 Validation Warning Icons in Component Diagram 56
6.8 Validations Inspector on a single Data Element 56

7.1 Component Editor . 59
7.2 Link fields and relationships in a component diagram 60
7.3 Action opening or creating flows on Primary data elements 61
7.4 Validation Warning Icons in a Component Diagram 61
7.5 Showing additional properties of the model 62
7.6 A concept of Data Projection presentation 63
7.7 A selected task with two available actions. 64
7.8 A state is accepting transition from a task 64
7.9 A state is denying transition from another state 65
7.10 Selected task no longer offers any actions 65

8.1 Properties widget showing options for a Data Element 69
8.2 Rules metadata editor . 71

9.1 The current model of pharo-sentry 76
9.2 Comparison of Stacktrace views in Sentry UI (App Only, Full, Raw) 77
9.3 Settings configurable during runtime 78
9.4 Report button in Debugger . 79
9.5 Report button if the event was already submitted 79

10.1 Code coverage visualization of NS rules. 82
10.2 Untested browsers . 83
10.3 Addressing browser testability . 84
10.4 Opening an application with Task Element missing a Data Element 84
10.5 Component with variations of local linkFields 85
10.6 Component with variations of remote linkFields 85
10.7 TaskXY has two different end states, and Tasks ABa and ABb

share the same begin state . 85

xii

Introduction

Motivation

The Normalized Systems (NS) theory provides a comprehensive approach to
constructing large-scale information systems based on the laws of entropy and
thermodynamics. Such systems remaining flexible, modular, and evolvable
even in the face of unbounded growth and changes. The NS theory provides a
bottom-up approach, where it defines the design and properties of fine-grained
modules that are directly mapped to a programming language.

Such bottom-up approach is in contrast to ontological approaches, where
users define their systems in high-level abstract models, typically utilizing rich
diagramming notations (e.g. UML, OntoUML, BPMN). But those approaches
do not properly address the problem of translating the high-level concepts to
real, executable systems. Thus there is a large conceptual gap between high-
level ontologies and low-level implementation.

Currently, NS systems are designed in a meta-information system Prime
Radiant, which is itself an NS system. There, the analysts and program-
mers describe system’s technical properties using extensive and detailed tex-
tual forms. With such a strong focus on the low-level details, it can become
hard for the users to maintain an overview of the entire system, thus often
resulting in both technical and semantical errors. Users may choose to cre-
ate paper drawings and sketches, but such approach is error-prone in itself,
time-consuming, and not maintainable.

The Normalized Systems modeler is an attempt to categorically improve
the situation.

The NS modeler makes a step towards unifying the low-level technical
detail of Normalized Systems and the high-level conceptual perspective. It
provides a diagramming editor where NS systems can be described through
a visual notation similar to many existing modeling notations. High-level
concepts and approaches are introduced for clarity, convenience, better under-
standing, and prevention of many potential errors. However, such concepts
are still directly mapped to the low-level NS definitions – the modeler does

1

Introduction

not jump across the conceptual gap.
Furthermore, the modeler acts as an exploration ground for aspects re-

lated to the modeling and analysis of NS systems, such as the definition and
implementation of validation rules.

Goals and Objectives
The goal is to develop an advanced and detailed conceptual modeling tool
for the data and flow models in Normalized Systems Theory. The tool must
serve to explore the requirements for a state-of-the-art conceptual modeling
environment for analysts and programmers working on Normalized Systems
projects (from small- to large-scale, mission-critical systems). The tool should
focus on the modeling using graphical diagrams and support the inspection
and comprehension of models as well as error detection and prevention. In
combination with Normalized Systems Theory, the tool would offer the user a
unique platform for modular conceptual models for information systems. Key
characteristics of the tool include user-friendliness, high flexibility, robustness,
loosely coupled integration with the NS Prime Radiant.

In addition to above goals, an internal set of goals exists in respect to
OpenPonk. Namely the advancement of OpenPonk modeling platform, and
possibly Pharo, and the Pharo ecosystem as well. It means that general (or
generalizable) improvements and new features in the NS modeler should ideally
be transferable back into OpenPonk to enrich it. I consider it essential, as
OpenPonk is meant to provide a free foundation for building tools such as the
NS modeler, and conduct modeling research, as is done in FIT CTU’s Centre
For Conceptual Modelling and Implementation (CCMI)1 research group, under
which OpenPonk is created. With such approach, additions made in one place
can improve situation elsewhere and vice versa.

Structure of the Thesis
Part I Review focuses on review of theory and tooling utilized in this work.

Chapter 1 Normalized Systems Theory presents the an excerpt of the Nor-
malized Systems Theory that is relevant and/or applicable to this work and
the implementation of the modeler.

Chapter 2 OpenPonk Modeling Platform reviews the current state of the
OpenPonk modeling platform, and how it advanced during the past years since
its inception during my undergraduate studies.

Chapter 3 Magritte discusses the Magritte meta-description framework
that is used in several places throughout this work.

1 https://ccmi.fit.cvut.cz/en/

2

https://ccmi.fit.cvut.cz/en/

Structure of the Thesis

Part II Analysis and Reverse Engineering of Metamodel focuses on explor-
ing and explaining the Normalized Systems metamodel as understood through
the artifacts produced by Prime Radiant.

Chapter 4 Normalized Systems Metamodel describes the Normalized Sys-
tems metamodel and the NS modeler metamodel. The chapter focuses mostly
on the technical details of it.

Chapter 5 Metamodel Engineering navigates through my reverse-
engineering of XML files and other data artifacts produced by the Prime
Radiant system, and though much of the metamodel in Normalized Systems
Metamodel was engineered.

Part III discusses main technical aspects and features of the NS modeler.
Chapter Rules and Validations discusses in depth both theoretically and

technically validation rules that are applied to Normalized Systems models.
Chapter Diagram Editors shows the current state of the diagramming as-

pect of component and flow modeling. A portion of the chapter is dedicated
to exploring potential future expansions.

Chapter Magritte Extensions shows additional use cases and features built
using the Magritte meta-description framework.

Part IV foucses on the Testing and Operations aspects of building tools
such as the NS modeler and OpenPonk

Chapter Error Tracking and Reporting deals with detection of errors during
the lifetime of the application and with their reproducibility.

Chapter Testing, Continuous Integration and Deployment summarizes the
continuous testing efforts and explores various strategies applicable to the NS
modeler and OpenPonk. A section is dedicated to Continuous Integration &
Deployment.

Finally, in Chapter Conclusion the achievements of this thesis are summa-
rized and a road forward is presented.

3

Part I

Review

5

Chapter 1
Normalized Systems Theory

In this chapter, several principles and concepts of Normalized Systems (NS)
theory [12] are presented. The information presented is a fragment of the
entire NS theory and by no means is meant to be exhaustive nor canonical.

Furthermore, the purpose of the modeler was not to construct NS systems,
but rather to provide another way to describe such systems, and support the
existing infrastructure – namely the Prime Radiant system.

1.1 High-level Overview

Normalized Systems (NS) is theoretical framework investigating modular
structures under change. More specifically it aims to address and solve the
problems and challenges associated with the unbounded growth of information
systems.

NS observes coupling and ripple effects as a primary contributor to the
ever-growing cost of development and maintenance of existing systems. A
linear addition to such a system results in a superlinear impact on the system
– the cost of every addition increases with the size of the system, not the size
of the addition.

To address this problem, NS founds itself in the natural laws of entropy
and thermodynamics used in physical sciences and engineering and applies
them to the construction of software systems. Using these laws, it explores
and defines properties that are necessary for a stable modular architecture
(Stable Modular Architecture). It defines fine-grained building blocks that
can be combined, changed, and modified while maintaining an impact on the
system proportional to the size of the input (addition), rather than to the size
of the (unbounded) system.

The combination and construction of such fine-grained and uniform build-
ing blocks is performed by an automated generation process called expansion.
The expanders are subject to their own requirements – dimensions of evolv-
ability (Dimensions of Evolvability; in fact, the expanders are necessary to
construct a system with the essential evolvability properties. The expanders

7

1. Normalized Systems Theory

accompany the (expanded) system during its entire lifetime and allow for con-
tinuous regeneration (rejuvenation) as the system grows and changes.

1.2 Dimensions of Evolvability
All software systems, NS or not, have several orthogonal dimensions along
which they can evolve. Any change in any of these dimensions has a potentially
negative impact on the entire the entire system. Therefore it is critical to
separate the dimensions so they can evolve independently.

NS theory identifies the following four dimensions of evolvability.

Mirrors (models) Real world concepts are mirrored in the software world
via the construction of domain models. The mirrors are the fundamental
core of a system, as they represent the targeted business. As the business
evolves and changes, so must the mirrors.
It is necessary to express the models in some (software) form, but the
representation itself should have no bearing on the model itself. Even
expressed in different programming or modeling languages, they should
maintain their essence.
The mirrors are described in a meta-information system Prime Radi-
ant. However, the NS modeler aims at providing an alternative, or a
complementary approach to Prime Radiant.

Technology (utilities) This dimension is concerned with the choice of tech-
nical stacks of the constructed systems. The concerns include selections
of the user interface frameworks, database, logging, etc.
In traditional systems, the choice of technology is often critical, as it di-
rectly places limitations and possibilities on the remaining dimensions.
For example, a team lead by database specialists may decide to go so
far as to define the mirrors only in the database of their choice, which
would be fundamentally different between a relational and a NoSQL
database. In another team, the developers of a web application may
choose a framework due to its current hype and vendor-lock themselves.
A particularly dangerous situation considering the current proliferation
of web frameworks. In both cases the technological choice impacts every
other aspect, and a change to a different platform can result in a com-
plete rewrite of the application without providing any new value to the
business.
The ability to separate the technology dimension poses an immense value
for growth and flexibility of a system.

Element Structure (skeletons) Skeletons are the shape and content of the
fine-grained building elements. The element structure defines how vari-
ous concerns ought to be combined, how the element should connect to
other elements and communicate with them.

8

1.3. Stable Modular Architecture

The structure must be flexible and powerful, as the expansion process
combines the three other dimensions according to the structure descrip-
tions.

Plugin Code (craftings) Living systems are always subject to evolution,
change, and ever more complex requirements. The existing state of a
system may not be flexible enough or advanced enough to accommodate
quickly new changes in a clean, generic way. Quite the contrary, often
a full understanding of a requirement comes from the implementation
itself, as it forces to explore every possible scenario and variation.
To address the insufficient flexibility, the system must offer engineers
the option to combine clean, generated code with their hand-crafted
solutions.
At the same time, the evolution of other dimensions should not impact
the injected code, and there should be a natural way for the custom
craftings to slowly dissolve and become a normalized part of an expanded
system.
NS systems achieve this by generating anchor points where an engineer
can introduce custom code. To maintain evolvability of the other dimen-
sions, it can harvest and separate the craftings. In this way, it is possible
to regenerate the entire system due to e.g. a technology change while
preserving the custom code – the expanders harvest code, regenerate the
system, and apply the craftings where they belonged.

1.3 Stable Modular Architecture
This section presents four key theorems necessary for an architecture that is
considered stable and evolvable in the scope of the NS theory.

Separation of Concerns Separation of Concerns is the separation tasks (in-
dividual steps) within a processing function. A processing function
should handle only one task that is a potential change driver. A change
driver in this context is a change that can occur independently of other
steps within the processing function.
A low-level example violating separation of concerns is a processing func-
tion that reads a CSV file, extracts data for reporting and sends them via
email. Such processing function contains at least three distinct concerns
(change drivers) that can change independently.
A high-level example upholding the theorem is an enterprise service bus
(ESB). Any service added has a fixed impact – only the integration with
the ESB. Without the ESB, integration with all previously existing ser-
vices may be required (the number of connections grows quadratically).

9

1. Normalized Systems Theory

That theorem ties directly to the generally accepted concept of maintain-
ing high cohesion. More importantly, it explicitly states what constitutes
a highly cohesive element via the description of change drivers.

Data Version Transparency This theorem postulates that processing
functions of data structures must be capable of accepting different ver-
sions of the same structure without being negatively affected by them.
Within object-oriented systems, this implies that functions should be
provided with composite objects (stamp coupling) instead of separated
primitive types (data coupling).
In a classical approach the latter is preferred, as the processing function
is coupled only to the arguments that are provided and used by it. With a
stamp coupling, such function is coupled to every property of the stamp,
whether they are used or not.
From an evolvability point of view, any addition would result in an
impact on the interface of the processing function. Thus stamp coupling
is required for Data Version Transparency.
This theorem is provided in many non-oo systems. For example, a newly
added attribute to an XML element is often ignored by a processing
function which is not (yet) aware how it should handle it. Likewise, the
query portions of an URL can be amended with additional key=value
pairs without any impact on the functionality.

Action Version Transparency Similarly to Data Version Transparency, to
achieve an evolvable system without combinatorial effects, it must be
possible for actions (processing functions) to change without impacting
processing functions that call the changed processing function.
In OO languages, this is achieved primarily via polymorphism – all in-
stances of classes implementing the same interface can be used inter-
changeably. Thus a new version of a processing function, assuming the
interface remains honored, can replace its previous version without im-
pacting the callers.

Separation of State This theorem is concerned with the propagation of
state through calls between processing functions. It mandates that it
is not the processing function’s concern to deal with the state of other
processing functions.
An example in many OO languages is exception handling mechanism.
After a change to a function, a new potential error state has been in-
troduced or discovered, and the function fires a new exception. In such
scenario, all calling functions are potentially impacted, as they should
start handing the new exceptional behavior. Note that this is different
from Action Version Transparency violation, as the interface remains to
same.

10

1.3. Stable Modular Architecture

The theorem thus requires separation (externalization) of state from the
processing function.
An example with clearly defined separation of state is an assembly line.
At each step of the assembly line a (Data Version Transparent) input
is provided, the assembly step performs its action (processing function),
and the constructed artifact is returned back to the assembly line. If
an error occurred, then the artifact can be placed on a different line or
removed entirely. At no point is an assembly step concerned with what
the next step is doing, or what the previous step has done. It is the
responsibility of the assembly line designer to place the steps in proper
order. Similarly, in NS system it is the responsibility of a workflow to
chain the individual actions as appropriate.
Returning to the exception handling mechanism, with Separation of
State in mind, the calling function is no longer responsible for handling
the error state. Instead, it has performed its job, passed data to the next
step, and terminated. New error states arising in the called processing
function no longer have any impact.

11

Chapter 2
OpenPonk Modeling Platform

OpenPonk modeling platform [13] is a free, open-source platform for develop-
ing tools for conceptual modeling such as diagramming, DSLs, model trans-
formations, automatic layouting, validation, and more.

2.1 Overview

Figure 2.1: OpenPonk Workbench showing a portion of an OntoUML profile
in a UML profile editor

Figure 2.1 shows OpenPonk Workbench, the main window of the model-
ing and diagramming environment. Each such workbench is tied to a single

13

2. OpenPonk Modeling Platform

project, which in itself includes one or more models. The contained models
do not have to be related or connected, nor do they need to share the same
metamodel.

The individual subparts of the Workbench are as follows.
The left side of the Workbench contains Diagrams and Model Tree widgets.

The former displays all diagrams available in a project and opens them. The
latter shows a hierarchical tree of a subset of entities in the project’s models
and provides basic contextual actions. Needless to say, both widgets are under-
utilized. Later in this work, some ideas about improving diagram organizations
are presented.

The right-most widget is Properties form. This widget provides easy access
to the essential aspects and properties of a currently selected entity. This
widget has been improved in this thesis (see Spec Properties Form Renderer
in Magritte Extensions).

The central part is occupied by the main diagramming interface. The Dia-
gramming View itself can provide contextual controls for convenience, however
the main controls are present in the Tools Palette. With both, users can create,
modify, and view their models through an appropriate diagram notation.

The overall UI in its form started as a monolith, but it is slowly being
replaced by a more modular approach.

2.2 Editors
To provide support for different models and notations, OpenPonk operates in
terms of editor plugins. Every plugin is associated with a specific model and
notation. For example Figure 2.1 shows a ClassEditor Plugin. The plugin is
responsible for providing interaction between the model and non-diagramming
components such as the Model Tree, or Workbench toolbar menus. It also
determines the entry point for the Diagram Controller (see further).

2.3 Diagram Editor Architecture
The architecture of the diagram editor is a variation of the MVC pattern
[14] (see Figure 2.2). A significant difference is the observability (or rather
non-observability) of the model. OpenPonk can operate on foreign metamodel
implementations – that is, a code base that is provided as-is without the option
to modify it in any way. As a result, the instantiated model entities do not
always announce their internal changes, an essential component of a classical
MVC architecture.

Thus it is the responsibility of the controllers to be able to accommodate
for it. It is a relevant problem in the Pharo environment, as users can do
access model instances directly or through other means and interfaces. A
smooth integration despite these challenges continues to be explored.

As for the MVC in this context:

14

2.4. Orthogonal Perspectives

Figure 2.2: MVC architecture with limited communication from model

model Implementation of a particular metamodel that is being instantiated
to create models, such as UML metamodel, BPMN, etc.

view OpenPonk uses Roassal visualization library [15] for the drawing and
management of visual elements. For practical purposes, it may be con-
venient to introduce intermediate layers for a better notation representa-
tion. E.g., the UML editor and the NS component editor both use UML
shapes library (see Author’s Contributions in the chapter Conclusion).

controllers The controllers are responsible for mediating actions and changes
between user, view, and model. Typically every metamodel concept that
has a visual counterpart has a controller. In its current form, it can
end up handling all matters related to an entity; a challenge that is
continuously reexamined as new circumstances arise.

In addition to one controller per visual entity, a special diagram controller
is required that manages other controllers and the overall interaction, including
the description of a tool palette1.

2.4 Orthogonal Perspectives
Although the Workbench provides the canonical approach to manipulate mod-
els, it is not the only one. As was already noted, the model can and is used
independently of the Workbench. We demonstrate it on the following two
examples.

Figure 2.3 shows a Domain Specific Language (DSL) editor for BORM
model. The editor is an independent application in the same Pharo runtime,
but is not in any way connected to the OpenPonk Workbench. The editor
only operates on the same BORM model instance as the Workbench. Thus it

1 Palette tools typically only instantiate new controllers at a user-chosen place and mo-
ment.

15

2. OpenPonk Modeling Platform

is possible to edit the model in one tool and see the changes live in another
one and vice versa.

Figure 2.3: DSL editor for a BORM model

In Figure 2.4 we can see four different perspectives on portions of the
UML metamodel. Going from left to right they are: (1) package diagram
of base UML packages, (2) class diagram of “StructuredClassifiers” package,
but without relationships, (3) diagram of all superclasses of the UML Class
entity, and (4) the same superclasses in a textual form. A user can click on
any textual or visual entity to navigate into further detail or throughout the
model.

Such scenario is not unique, it is very common to want to see the same
model from a different perspective or summarize some concepts. All four
perspectives and other such like that were created during my implementation
of the UML metamodel, and were immensely helpful in my understanding of
much of the arcane technical aspects of the UML specifications.

Ultimately, the objective of OpenPonk is not just a single diagramming in-
terface, but a comprehensive environment for programmers, analysts, students,
and researchers to explore and play with their models and understanding.

16

2.4. Orthogonal Perspectives

Figure 2.4: Perspectives on a UML “Class” metamodel entity

17

Chapter 3
Magritte

Magritte is a meta-data description framework [8] used extensively in both
OpenPonk and the NS modeler. Magritte provides a system of descriptors
through which it is possible to describe and manipulate individual properties
of domain objects.

3.1 Descriptions
Figure 3.1 shows a diagram of an example situation and the relationships
between the involved classes, their instances, and their descriptions. Listing
1 then shows the actual code used to describe the attributes from the same
example.

Figure 3.1: Person class specifies Descriptions that are used to describe Per-
son’s instances

Listing 1: Descriptions for name and contacts properties
Person>>descriptionName
<magritteDescription>
^ MAStringDescription new

accessor: #name;
label: 'name';
priority: 1;
yourself.

(continues on next page)

19

3. Magritte

(continued from previous page)
Person>>descriptionContacts
<magritteDescription>
^ MAToManyRelationDescription new

accessor: #contacts;
label: 'contacts';
priority: 2;
classes: { Contact };
yourself

All description methods are annotated with a pragma1 <magritteDescrip-
tion> and return an appropriate description object. Each description object
is an instance of a particular type class.

In Listing 1 we see two such type classes3. MAStringDescription is a
description of a string value, whilst MAToManyRelationDescription describes
a collection-based relationship to instances of a Field class.

Figure 3.2 shows the hierarchy of all available Description types. Naturally,
each description offers different API specific to its needs. MAToManyRelation-
Description requires specification of classes it can accept, MASingleOption-
Description (typically represented with a droplist input) will need a list of
permitted options from which the user can choose, etc.

Figure 3.2: Hierarchy of Magritte Description types

1 Pragmas are Pharo method annotation mechanism.
3 For brevity I will omit Contact descriptions in this chapter.

20

3.2. Accessors

3.2 Accessors
Magritte offers additional dimensions of flexibility. In the examples in Listing 1
the access to an instance variable was specified by a simple symbol (accessor:
#name); this will use a getter (name) and a setter (name:) of the Person
instance to read and write the real value. But this is not the only way how to
specify the access path, as shown in Figure 3.3.

Figure 3.3: Hierarchy of Magritte accessors

Symbol used in the earlier examples is converted into a SelectorAccessor,
but if no getter/setter is available, we could still utilize e.g., VariableAccessor
which writes directly to the instance variables. Likewise, if the description is
not defined directly on the object holding the data, a PluggableAccessor or a
DelegatorAccessor can be used instead.

Listing 2: Using pluggable accessor to delegate
PersonProxy>>descriptionName
<magritteDescription>
| accessor |
accessor := MAPluggableAccessor

read: [:proxy | proxy realObject name]
write: [:proxy :newValue | proxy realObject name: newName].

^ MAStringDescription new
accessor: accessor;
label: 'Name';
priority: 1;
beRequired;
beNonEmpty;
yourself

In Listing 2 a PluggableAccessor is used to read from and write to a dif-
ferent object (Person) than where the description is defined (PersonProxy).
The option to delegate is particularly useful when the real object does not an-
nounce its internal changes, and we need to perform additional actions after
the writing process.

3.3 Validations and Conditions
Specific description types by their nature limit the possible values that can be
stored. However, a user will typically need a distinction even within the same

21

3. Magritte

type.

Listing 3: Additional conditions on #name description
Person>>descriptionName
<magritteDescription>
^ MAStringDescription new

"..."
beRequired;
addCondition: [:newName | newName first isUppercase];
addCondition: (MACondition selector: #isNotEmpty) labelled: 'The value is empty.'
yourself

Listing 3 shows three different conditions/validations. The beRequired con-
dition is a special condition provided for all description types, ensuring that
a nil (empty) value cannot be set. The second condition is a PluggableCon-
dition, where we can plug-in semantics of the test. The last condition is a
simple condition which sends the provided selector to the value and expects a
boolean return.

Additionally, conditions can be combined in boolean trees via additional
condition classes show in Figure 3.4.

Figure 3.4: Available condition classes

3.4 Magritte Renderers

Magritte provides a Morphic2 renderer, which is capable of generating an in-
teractive form from the descriptions. For our Person example, such a form
is shown in Figure 3.5. For contacts, which is a ToManyRelation description,
buttons Add/Edit/Remove were added to manage the referenced elements.
Here also comes to effect priority specified in the descriptions, as they deter-
mine the order of the entries in the form.

Another renderer specific for OpenPonk and the modeler is shown in chap-
ter Magritte Extensions.

3.5 XML-Bindings Extension

XML-Bindings [9] is a Magritte extension that provides XML/Object mapping
(X/O mapping) functionality – conversion between object graph and XML
serialization and vice versa.

2 Morphic is a low-level widget framework used by Pharo.

22

3.5. XML-Bindings Extension

Figure 3.5: Magritte form with a subview

XML-Bindings extends Magritte description objects where it stores infor-
mation about the strategy for storing and reading the description values.

Each class holding descriptions needs a class-side method which defines
a XML element name under which instances of the class will be serialized
(Listing 4).

Listing 4: Specification of XML element names
Person class>>xmlElementName

^ 'person'

Contact class>>xmlElementName
^ 'contact'

Then, in each description that we want to serialize, a strategy must be
chosen (Listing 5).

Listing 5: Specifying serialization strategy
Person>>descriptionContacts
<magritteDescription>
^ MAToManyRelationDescription new

"..."
beXmlElement

Person>>descriptionName
<magritteDescription>
^ MAStringDescription new

"..."
beXmlChildAttribute;
xmlAttributeName: 'value'

Serializing an object using these descriptions produces the XML document
in Listing 6. Both contact attributes were produced via beXmlAttribute, and
if needed a beXMLElementCData is available. The order of elements and
attributes once again utilizes the priority property. In fact, XML-Binding can

23

3. Magritte

be a considered as yet another Magritte renderer.

Listing 6: Example XML produced by Magritte X/O
<person>

<name value="John Doe"/>
<contacts>

<contact type="email" value="johndoe@example.com"/>
</contacts>

</person>

To summarize, Magritte offers a systematic description of domain objects
which are used by automatically generated user interfaces and reflective pro-
cessing.

24

Part II

Analysis and Reverse
Engineering of Metamodel

25

Chapter 4
Normalized Systems Metamodel

This chapter is a description of my contemporary understanding of the tech-
nical details of Normalized Systems metamodel.

My understanding is built primarily by reverse engineering XML files and
other artifacts produced by the Prime Radiant (further described in chapter
Metamodel Engineering). Of course I was already familiar with the theoretical
perspective (see chapter Normalized Systems Theory), however here I focus on
the precise technical details. For several NS entities I draw a comparison to
UML [10] model entities and properties.

For better organization, the metamodel is here into three parts: component
metamodel, application metamodel, and flow metamodel.

4.1 Component Metamodel

Component metamodel (Figure 4.1) is responsible for representing the struc-
tural aspect of NS models.

4.1.1 Primary Elements
A view limited to the primary entities and their relationships is shown in
Figure 4.2.

The primary entities are as follow.

Component An organizational entity collocating related elements and their
flows. Although it is comparable to a package, Component can contain
Data Elements with different package names, but not other Components.

Data Element Main structural element encapsulating a concern. Data Ele-
ment is expanded into a cluster of classes bearing the same name, each
responsible for a particular aspect. Comparable to a UML Class or En-
tity in an ER diagram.

Field An attribute of a Data Element. Comparable to a UML Property
(in the role of an attribute). It can be one of three categorical types.

27

4. Normalized Systems Metamodel

Figure 4.1: Component metamodel

A value field is a basic attribute with a specified type. A calculated
field, comparable to UML derived, typically represents a value through
a computational method – the value is computed on demand. Note that
calculated field is represented as a Value Field, only the field type is
different. Lastly, a link field marks the attribute as a relationship.

Link Field An extension of a Field that specifies another Data Element to
which the Field’s own Data Element is connected via a relationship. Link
Field Types determine the cardinality:

• “one to many” (Ln01) and its inverse “from many to one” (Ln05)
• “many to many” (Ln03) and its inverse “from many to many”

(Ln06),
• Ln02/Ln04 with the same semantics as Ln01/Ln05, but at runtime

managed as low-level Java collections, and not at the conceptual
level of NS software

28

4.1. Component Metamodel

Figure 4.2: Component core

Note that the inverse relationship always requires the opposite (the
“base” relationship) to be specified.

Flow Element and Task Element Discussed in section Flow Metamodel.

4.1.2 Non-Primary Elements
The remaining elements provide additional configuration (e.g., Data Options,
Field Options) and support structure.

Finder Reifies a search query on a specified combination of fields using which
Data Elements can be searched for. Crucial, as most relationships are
stored as named strings. For example in Figure 4.2 both Flow Element
and Link Field locate the target Data Element by lookup based on the
specified targetPackage and targetClass String fields.

29

4. Normalized Systems Metamodel

Data Child Marks an existing link field as a parent-child relationship. By
default, this has no impact on the semantics of the relationship (compa-
rable to UML Property aggregation), however it is possible to configure
it so the lifecycle of the child element follows the parent (UML Property
composition). Data Child is used primarily to provide hierarchical user
interfaces (so-called waterfall screens).

Data Projection A virtual-like (or an aggregate) Data Element that selects
several value and calculated fields of a Data Elements and possibly com-
bines them with calculated fields of its own.

Data State A state in which a Data Element can be at runtime. The set
of specified Data States determines what Flows can be designed in the
model. However, at runtime the Data Element’s state is not limited.

4.1.3 Other Elements
The component metamodel contains many more elements not described here
such as Commands, Service Elements or Value Field Type specifications. At
the time of writing, operating on these elements is not supported by the mod-
eler, nor have I thoroughly familiarized myself with their meaning. Their
support will be gradually added based on the demand for them; e.g., support
for Value Field Types is already underway.

4.2 Application and Project Metamodel

4.2.1 Application Elements
Application metamodel (Figure 4.3) represents organizational information
about the application, such as its metadata, components that are to be con-
sidered part of the application, and most importantly DataFlowTasks, which
contain the behavioral aspect of NS models.

Application Description data for an NS application.

Data Flow Task and Workflow See Flow Metamodel.

Component Not to be confused with Component from Component model.
Specifies component names and versions that are considered part of the
application; i.e., the components upon which the application depends.

4.2.2 Project Elements
The Project metamodel (Figure 4.4) is used to collocate all models related
to the same application. This is a required OpenPonk interface implemented
by the NSProject. Also, the components and flows are aware of each other
through the NSProject.

30

4.2. Application and Project Metamodel

Figure 4.3: Application metamodel

Figure 4.4: Project metamodel

31

4. Normalized Systems Metamodel

OPProject OpenPonk base class representing a project tied to a single Work-
bench. It provides a collection of all models within the project.

NSProject OPProject subclass linking all primary models together – the
Components (section Component Metamodel), Flows (section Flow
Metamodel), and the root Application (subsection Application Ele-
ments). Via NSProject Flow is connected to its Data Element in the
proper Component and vice versa.

4.3 Flow Metamodel

Flow metamodel (Figure 4.5) is a modeler-specific metamodel for flow mod-
els. The Application already contains the basic flow information in the form of
DataFlowTasks. But in practice, a more natural representation is needed. Fur-
thermore, The Application XML (represented in the Application metamodel)
is not the only possible source of DataFlowTask descriptions. Thus a differ-
ent representation is needed regardless. Likewise, Task Elements and Data
States that are present in the Component and Data Element where the Flow
is running should still be represented, even if no DataFlowTask is currently
operating on them.

Figure 4.5: Flow metamodel

The Flow model is positioned orthogonally to the Component metamodel.
Each concrete entity in the Flow metamodel is backed by a structural entity
from the Component metamodel. The metamodel itself is capable of rep-
resenting arbitrary graph structure, as all incoming and outgoing (sources,
targets) links are multivalued. Note that targets and sources of one subclass

32

4.3. Flow Metamodel

always point to elements of the other subclass – State Nodes and Task Nodes
alternate.

Flow Model Container for a Flow and its states and tasks. Operates on a
Flow Element from a Component.

Flow Node Base class for connectable objects in the flow.

State Node Entity representing a state in which a Data Element can be; is
linked to Data Element’s Data State. State in the role of busyState is
used when a Task is being performed. State in the role of failedState is
used when Task execution has failed.

Task Node Entity representing a Task Element that is performed during a
transition between states. The task node has references to a busy and
failed states with abovementioned semantics. Figure 4.6 shows a single
NS step of state processing.

Figure 4.6: Basic NS flow step

4.3.1 Advanced Flows
The flow model in its current form is used to represent simple state-task-state
steps. Although this is the most common usage, it is far from the full power
of NS flows. Several extensions follow that are either in the development or
are subject for future elaboration.

1. Busy and Failed States were likely (in my understanding) conceived as
a technical detail for NS systems. However, they are sometimes used as
regular domain states. For example, a task InvoiceSender branches into
two domain states (Sent / Failed to Send) and uses its failed state for
a genuinely unexpected situation (Invoice is invalid). But with the new
approach, the “Failed to Send” state “Invoice is invalid” become merged.
This is a work-in-progress feature.

33

4. Normalized Systems Metamodel

2. The Failed State and the End State as described in the metamodel are
not the only states where a Data Element can end after performing a
Task. With branching Task Elements, the implementation of the Task
returns the name of the next state. The modeler can represent it through
multiple targets of the Task Node. Unfortunately, it cannot be expressed
in Prime Radiant Data Flow Tasks while preserving the branching se-
mantics.

Figure 4.7: BORM diagram

3. A single Flow always operates only on a single Data Element. However,
multiple Flows operating on different Data Elements collaborate through
updater and bridging Task Elements.

Supporting and visualizing such functionality was discussed only
in passing, but Business Object Relation Modeling (BORM) [11]
is an interesting direction of exploration due to its similarities to
NS flows at both the metamodel, as well as diagramming level (see
Figure 4.7).
Participants (blue rectangles) are equivalent to NS flows, states
(boxes) and activities (rounded boxes) alternate with the same
semantics as states and tasks in NS flows, and the participants
communicate via communications between activities in a similar
fashion to updater/bridging communication between NS Task El-
ements.

34

4.4. Option Types

4.4 Option Types
Many entities in the component metamodel can be provided with a collec-
tion of options. E.g. DataElement has DataOptions, Field has FlowOptions,
etc. Figure 4.8 lists all known option types. Note that several options (e.g.
DataOptionTypes::hasDisplayName) are marked with a {value} property. This
property is marking types that require an Option to provide a specific string
or numeric value. Non-marked options are considered binary flags. As there
is no definite list to determine which options are binary and which are value-
based, the information shown in the model is based on observations of existing
components.

35

4. Normalized Systems Metamodel

Figure 4.8: Option Types

36

Chapter 5
Metamodel Engineering

This chapter presents and overview of efforts and challenges associated with
reverse-engineering artifacts provided by Prime Radiant, and engineering the
current metamodel as described in Normalized Systems Metamodel.

5.1 XML files
The primary interchange artifacts produced by Prime Radiant are XML files
containing descriptions of an NS system. The XML files are of two types. The
Application XML file contains general metadata pertinent to the application,
flow definitions, as well as listing of all components used in the application.
The Component XML file contains the remaining model elements, such as
Data Elements, Flow Elements, Task Elements, custom Value Types, Finders,
etc.

Neither XML has a XSD schema1 nor documentation describing their exact
structure or meaning. Therefore an analysis of both XML files was required
to infer a metamodel usable for representing and manipulating the models
contained within.

5.2 XML Analysis
The approach to analysis and XML processing was constrained by several
factors that all had to be addressed.

1. Already mentioned lack of technical information about the structure and
relations within the XML documents, as well as my lack of knowledge
of those relations.

2. Lack of schema support in Pharo’s XML libraries.
1 XSDs discussed in X/O mapping and XSDs were created much later, and are not yet

used for metamodel regeneration.

37

5. Metamodel Engineering

3. Lack of dedicated XML/Object mapping (X/O mapping) libraries even
in if I had XML schemas at my disposal.

4. Initial lack of access to Prime Radiant.

5. Incomplete XML files, as only a subset of metamodel is utilized by any
NS system.

6. Ability to relatively quickly reanalyze XML files when new content is
added or a mistake is discovered.

Particularly constraint (6) implicated either a fully or a semi-automated
solution.

To resolve this, a new tool named XML Magritte Generator was created.

5.3 XML Magritte Generator
The responsibility of this tool is to take an arbitrary XML document, make
an educated guess about the relationships and types within the model, gener-
ate classes and/or attributes in the document, and generate Magritte descrip-
tions (see Magritte) for everything. Furthermore, it utilizes Magritte extension
XML Bindings, which is capable of providing usable2 X/O mapping when the
Magritte descriptions and the classes containing them are properly annotated.

5.3.1 Analysis
The analysis part of the tool is demonstrated on a simple XML document in
Listing 1.

Listing 1: Example XML document
<machine id="12">

<version value="1.2.7" />
<anyOnline>false</anyOnline>
<nodes>

<node id="node-1">
<isOnline>false</isOnline>
<address>

<host>127.0.0.1</host>
<port>80</port>

</address>
</node>

</nodes>
</machine>

The analyzer performs a three-step classification to determine relationships
and types for both XML attributes and elements.

The first step decides what is the relationship between an element and its
parent as seen in Listing 2 and Figure 5.1.

2 This X/O mapper doesn’t play well with arbitrary XMLs and extra steps were needed
for the processing.

38

5.3. XML Magritte Generator

Listing 2: Element type classification
types := XOGTypeClassification new classificationFor: doc.

The result is a map between element’s XPath and a Type.

Figure 5.1: Element types

The meaning of the element types is as follows.

Any The type has not been determined yet. Any is an internal type and does
not appear in the output.

Complex Element should be represented by a Class because it contains a
complex structure (other elements or multiple values).

Inlined Element contains only string nodes. It will be represented as an
attribute of the parent. Parent’s type is expected to be Complex.

List Element’s child elements are all of the same type and share the same
name. The element therefore acts as a container for a list and will be
represented as a collection-based attribute.

The type is checked against all elements with the same XPath and the
type with the highest priority (Complex > List > Inlined > Any) is picked.
Theoretically a situation could arise, where different types are actually needed.
That has not been encountered in the analyzed XMLs, thus it is not given any
further consideration.

Second step of the analysis is guessing the value types of element attributes
and XML string nodes. At present only Boolean, Integer, Float, Number,
and String value types are considered and in the same ascending priority.
Naturally, this can lead to ambiguous definitions, such as is “1.0” being either
a Float or a String. As the type depends on the target domain, it cannot
be determined automatically, but the tool provides an option to manually
override types.

The last step combines information from the previous two steps and creates
another map that describes all complex types. Non-complex types do not
require creation of classes, so they contain nil for description.

39

5. Metamodel Engineering

Figure 5.2: Complex type classification

As can be seen in Figure 5.2, some elements (here namely <version
value=”1.2.7”>) have been inlined (#(#inlinedAttribute ‘value’ #String)) to
form a single attribute value in the parent complex element. This is an inten-
tional effort to reduce the number of model entities which would not bring any
additional value to the domain. If new attributes or subelements were added,
then regeneration of the model would properly create an independent class.

The result of the analysis also contains the location of an attribute or an
element. It is necessary for accommodating accurate X/O mapping.

5.3.2 Generation
The generation of the metamodel is straight-forward. A class is generated for
each complex type. A class attribute, accessors, and Magritte description is
generated for each analyzed3 attribute.

Listing 3: Generating the metamodel
"doc is <machine> XML from earlier examples"

gen := XOGStructureGenerator new.
"optional attributes, they have their default values"
gen packageName: 'MachineGenerated'.
gen classPrefix: 'MG'. "to avoid name conflicts"
gen rootClassName: 'MXObject'. "a class from which all the classes will inherit"

"run the generator; this will NOT create the code yet"
gen processDocument: doc.

"retrieve CBChangesSet, so additional modifications can be performed"
(CBChangesBrowser changes: gen changes refactoringChanges) open.

Generating the metamodel shows a simple code requesting the actual gen-
eration. To demonstrate earlier claim that elements with string nodes and
elements with single attribute are identical, I’ve changed in the original XML
example the element <isOnline>false</isOnline> to <isOnline value=”false”

3 I.e., attribute, element with string nodes content, or inlined element with a single
attribute.

40

5.4. Component Analysis

/> and regenerated the model. As Figure 5.3 shows, the only difference is
change to the X/O mapper configuration.

Figure 5.3: Diff after a small change to the XML

Using a code diff works well as a substitute for a fully-fledged model diff
tooling. Furthermore, model diff would focus primarily on the domain, how-
ever in this instance knowing the precise technical difference is required, as
custom overrides and code is continuously being added to the metamodel im-
plementation as new understanding is gained.

5.4 Component Analysis
Despite its simplicity, The XML-Magritte-Generator tool has proven very ef-
fective. Even though a significant amount of code has been added throughout
the NS development, it is still possible to perform regeneration, albeit increas-
ingly more care is required when the tool attempts to alter existing code. For
new entities whose support is only about to be introduced, the tool easily
accommodates for most of the newly introduced metamodel code.

The main lacking feature of the generator is no support for horizontal
references between entities. Entities often refer to each other via a combination
of several attributes (e.g., package name and element name), or they contain
an aggregated name that has to be expanded before the target model entity
can be searched for.

This problem is side-stepped by a pair of transformations that happen
after a model is materialized from XML (reading), and before it serialized
back into the XML (writing). The reading transformation according to defined
rules processes all model entities, connects them to a single, coherent model,
and possibly transforms some values into a more object-appropriate form.
The writing transformation performs the opposite – during its operation, the

41

5. Metamodel Engineering

modeler interacts with the model primarily via its relationship links, thus it
is necessary to break apart the links into a form that can be persisted, as well
as adds or updates aggregate names that are used throughout the XML file.

The combination of X/O mapper taking care of the majority of issues
and the bidirectional transformation handling special cases has so far been
sufficient to fully manage the content of the both XML files.

5.5 X/O mapping and XSDs

The X/O mapping provided by Magritte’s XML-Binding has its blind spots.
Notably, the ordering of the elements is based on the priority of the Magritte
descriptions. Unfortunately, this priority has been modified by the modeler for
its own purposes and therefore no longer usable by the X/O mapper. Further-
more, the X/O removes missing (i.e. nil or empty) elements and attributes
from the output. Finally, NS XML files use custom approach to represent nil
(null) values.

Different element and attribute ordering or removing empty nodes is prob-
lematic not only semantically – Prime Radiant could misinterpret some omis-
sion, but it also produces textual changes even if the model remained un-
changed4 . This in turn confuses Version Control Systems (VCS) and make it
hard, if not practically impossible, to trace any changes made in the XMLs.

To address these problems, I have created XSD documents for both the
component and application XML.

• Each XSD defines the desired element ordering via its <xs:sequence>
element.

• For attribute ordering, the order is based on the order definitions in the
XSD itself – there’s no explicit ordering element for attributes, as XML
considers attribute ordering not significant.

• Nillable elements are represented as such with nillable=true (e.g.
<xs:element name=”modelOwner” nillable=”true”>).

• The attribute requirement is specified via the use attribute
(use=”required” vs use=”optional”), although at the time of writing,
all observed attributes were required.

Information in the XSDs is used in transformations applied on the XML
documents produced by Magritte’s X/O. Ordering transformation takes care
of element/attribute reordering. Missing transformation ensures that missing
required attributes are present, and that missing nillable elements are repre-
sented with undefined=”true” attribute.

4 The XMLs produced by both modeler and PR were consistent with themselves, but
not with each other.

42

5.6. Workflow Analysis and Transformation

As a closing note on XSDs, most (if not all) information available in the
XSD is similar to the information gained from the XML analysis used for
model regeneration. Thus it is desirable to eventually update the generator to
be able to process provided XSDs and skip (or complement) its own type and
value type inference.

5.6 Workflow Analysis and Transformation
Workflows are represented in the Application XML file in the form of Data
Flow Tasks. Both the XML code (Listing 4) as well as the model (Figure 5.4)
seem simple on the surface.

Listing 4: DataFlowTask XML fragment
<application name="Tutorial App">

<dataFlowTasks>
<dataFlowTask name="InvoiceSender">

<workflow component="tutorialComp" name="Invoice" />
<endState name="Sent" />
<beginState name="Initiated" />
<interimState name="SendingBusy" />
<failedState name="SendingFailed" />

</dataFlowTask>
</dataFlowTasks>

</application>

Figure 5.4: UML diagram of a DataFlowTask

Each <dataFlowTask> node represents a single step through a flow. That
is, only going from beginState to endState and executing the task during the
transition. To get the full flow, all DataFlowTasks with the same workflow
must be grouped together.

The Data Flow Tasks, however, only reference by name the actual model
entities that are involved in the flow – all of them part of the component
metamodel (shown in Figure 5.5), as well as the Flow metamodel (shown in
Figure 4.5 in the Chapter Normalized Systems Metamodel). As the location

43

5. Metamodel Engineering

is effectively a horizontal reference, it is performed during the reading/writing
transformation already described.

Figure 5.5: Flow Elements, Task Elements, Data Elements

In practice, this part of the model has proven to be the most problematic,
as every single reference in the Data Flow Task can be missing. From the
Component to the last Data State. Appropriate measures are slowly being
taken to help users reasonably address such situations.

In summary, through a combination of detailed analysis, code generation
and custom transformation it was possible to achieve near-exact (except for not
yet supported content) match with the artifacts in Prime Radiant. However,
I do not consider this situation satisfactory from a long-term perspective. A
canonical source of truth for the metamodel definition should be provided to
provide for a well engineered, and well maintainable interchange of data and
representation of systems.

44

Chapter 6
Rules and Validations

6.1 Model Validations
Every experienced programmer is familiar with code validations and code.
Whether in the form of compiler errors and warnings, external static analysis
linters, or hints provided by an IDE. They all assist the programmer, help them
find problems in their code, and even improve their code bases by suggesting
refactoring changes clarifying their intent.

Such suggestions range in their value, scope, severity, and even the options
to fix them.

Of course, not everything reported is an actual issue. A typical example
in many programming languages is the usage of an assignment operator inside
an if or a while statement: while (a = queue.first()) { . . . }. A reasonable
linter would report this as a potential problem, but it cannot decide whether
it is a bug or not. Thus it is vital for any such warning to include helpful
information so the user can address it adequately.

Such warnings are not limited to just code. The same principles, require-
ments, and demands apply to conceptual models as well. Code syntax is
replaced with the metamodel structure, and unlike the code, the important of
semantical correctness is increased.

This chapter presents model validations introduced in the NS modeler.

6.2 Validation Rules
At the time of writing, 38 validation rules are implemented. These rules
range from checking simple typos in names, through warnings about missing
elements, to structural validations across several model entities.

The table in Table 6.1 shows an excerpt2 of the rules, they were chosen for
they are referenced throughout this thesis. The Class Name column contains
the name of the class implementing the rule. Description provides a detailed

2 . The table is shortened for brevity, but the full list is readily available to NS modeler
users.

45

6. Rules and Validations

description of the situation. The last column – Example, is generated by
running tests on example cases to mimic what an actual user would see in
their validation reports.

Table 6.1: Validation Rules

46

6.2. Validation Rules

C
la

ss
N

am
e

D
es

cr
ip

ti
on

G
ro

up
Se

ve
ri

ty
E

xa
m

pl
es

A
pp

B
as

eD
ep

en
de

nc
ie

s
B

as
e

de
pe

nd
en

ci
es

sh
ou

ld
be

ad
de

d
fo

r
an

ap
pl

ic
at

io
n.

M
is

si
ng

de
-

fa
ul

ts
pr

E
rr

or
M

is
si

ng
de

pe
nd

en
cy

"a
cc

ou
nt

".
M

is
si

ng
de

pe
nd

en
cy

"u
til

s"
.

M
is

si
ng

de
pe

nd
en

cy
"v

al
id

at
io

n"
.

M
is

si
ng

de
pe

nd
en

cy
"w

or
kfl

ow
".

D
at

aC
hi

ld
R

ef
er

en
ce

D
at

a
ch

ild
s

sh
ou

ld
re

fe
r

to
ex

is
tin

g
co

m
po

ne
nt

s,
el

em
en

ts
,a

nd
fie

ld
s.

R
ef

er
en

ce
s

er
ro

r
C

om
po

ne
nt

un
kn

ow
nC

om
po

ne
nt

is
m

is
si

ng
.

D
at

a
E

le
m

en
t

U
n-

kn
ow

nE
le

m
en

t
in

co
m

po
ne

nt
un

-
kn

ow
nC

om
po

ne
nt

is
m

is
si

ng
.

Fi
el

d
U

nk
no

w
nE

le
m

en
t::

un
kn

ow
nF

ie
ld

is
m

is
si

ng
.

D
up

lic
at

eN
am

es
N

o
tw

o
el

em
en

ts
in

th
e

sa
m

e
na

m
es

pa
ce

(d
at

aE
le

-
m

en
ts

/t
as

kE
le

m
en

ts
/fl

ow
E

le
m

en
ts

in
a

co
m

po
ne

nt
,

fie
ld

s/
fin

de
rs

in
a

da
ta

E
le

m
en

t,
...

)
ca

n
sh

ar
e

th
e

sa
m

e
na

m
e.

N
am

in
g

er
ro

r
In

vo
ic

e:
:fi

el
ds

::i
nv

oi
ce

Id
is

du
pl

i-
ca

te
.

E
m

pt
yC

om
po

ne
nt

A
co

m
po

ne
nt

sh
ou

ld
no

t
be

em
pt

y.
M

is
si

ng
de

-
fa

ul
ts

w
ar

ni
ng

C
om

po
ne

nt
te

st
C

om
p

ha
s

no
el

e-
m

en
ts

.
Fl

ow
E

le
m

en
tD

at
aE

le
m

en
tN

am
in

gT
he

re
is

no
da

ta
el

em
en

t
m

at
ch

in
g

th
e

flo
w

el
em

en
t’s

na
m

e.
R

ef
er

en
ce

s
er

ro
r

D
at

a
E

le
m

en
t

In
vo

ic
e

is
m

is
si

ng
fo

r
Fl

ow
E

le
m

en
t

In
vo

ic
e.

P
rim

ar
yE

le
m

en
ts

W
ith

Fl
ow

s
D

at
a

E
le

m
en

ts
w

ith
flo

w
s

sh
ou

ld
be

in
th

e
P

rim
ar

y
ca

te
go

ry
.

C
la

ss
ifi

ca
tio

n
w

ar
ni

ng
D

at
a

E
le

m
en

tI
nv

oi
ce

sh
ou

ld
be

pr
i-

m
ar

y.
R

ev
er

se
Li

nk
Fi

el
d

A
re

ve
rs

e
lin

k
m

us
t

be
de

fin
ed

fo
r

Ln
04

(L
n0

2)
,

Ln
05

(L
n0

1)
,

an
d

Ln
06

(L
n0

3)
lin

k
fie

ld
s.

R
ef

er
en

ce
s

er
ro

r
Ln

05
lin

k
C

us
to

m
er

::i
nv

oi
ce

s
is

m
is

si
ng

op
po

si
te

Ln
01

lin
k.

Ta
sk

St
at

us
E

le
m

en
t

E
ac

h
flo

w
(i.

e.
,

pr
im

ar
y

el
e-

m
en

t
w

ith
a

flo
w

de
fin

ed
on

it)
sh

ou
ld

ha
ve

a
co

rr
es

po
nd

in
g

[E
le

m
en

t]T
as

kS
ta

tu
s

re
la

te
d

to
it.

R
ef

er
en

ce
s

pr
E

rr
or

D
at

a
E

le
m

en
t

w
ith

flo
w

In
vo

ic
e

is
m

is
si

ng
In

vo
ic

eT
as

kS
ta

tu
s

el
em

en
t.

47

6. Rules and Validations

Group and Severity provide categorizations to organize and consume the
rules. The severity translates as follows: Error will usually prevent an appli-
cation from being built by the expanders. Warning may result in a problem
during runtime, or it points to a technically correct, but unusual situation,
such as mixing different package names within the same component. Finally
prError is technically an error if a user tried to build an application directly
from XMLs produced by the modeler, but if the user loads the XMLs into
Prime Radiant, the system will automatically resolve them.

From a technical point of view, the modeler can be readily extended to
automatically fix such prErrors. However, any such implementation has to
weighed against duplication between the modeler and Prime Radiant. Apart
from the double effort required, it creates a risk of behavioral misalignment,
where each tool fixes the same issue in different, incompatible ways. This issue
is a topic of ongoing discussion.

6.3 Describing Rules
The table Table 6.1 lists a wide range of complexity from simple “Data ele-
ments should start with a capital letter” rules that require nothing more than
just the name to test, to more complex scenarios requiring the test of several
model entities such as the TaskStatusElement rule.

However, just implementing a rule is rarely enough. We need a way to
state when the rule should be applied, and what the rule exactly does. Both
in a way that can be understood not just by the original author, but also by
people not familiar with the codebase, but knowledgeable of the modeling (or
modeled) domain, e.g., analysts.

6.3.1 Visual OCL
A possible approach that I have begun exploring is Visual OCL [16]. Visual
OCL combines the technical precision and expressiveness of OCL and aug-
ments it with equal graphical representation. I will further use the Smalltalk
language instead of the textual OCL language, as that is the language in which
the rules are implemented, but the Visual OCL remains OCL-based.

What follows is a Visual OCL (VOCL) description of a TaskStatusElement
rule. To better contextualize the VOCL, Figure 6.1 shows a fragment of the
NS metamodel used and checked by the rule. We see that Data Elements are
organized in Components, and that a Field that is a link field must have a
targetElement pointing to the linked element. Finally, a Flow can be attached
to a Data Element.

With the knowledge of the metamodel fragment, we can look at the VOCL
in Figure 6.2. The constraint segment contains a Smalltalk code representation
of the rule check. If the precondition is met (Data Element has a Flow), then
the model graph is traversed and the required association is checked.

48

6.3. Describing Rules

Figure 6.1: Metamodel fragment with elements used in a rule

The visual equivalent is expressed in the next two boxes of Figure 6.2, both
using UML instance diagram notation. Inv (invariant) box contains instances
of Data Element and Flow linked to each other, stating that these objects
exist and are in a concrete (flowModel) relationship. Implies box contains
an instance model of the desired outcome. There are two Data Elements in
the same Component (they are both linked to the same instance). One Data
Element has the same name as the one checked (self), but a “TaskStatus”
suffix is added; its field is pointing back to the original checked Data Element
just as required.

In this approach, we reverse the way we look at rules. Instead of describing
how to test to rule, we show the desired outcome.

But to bring it into practice, a translation mechanism is required.

manual implementation The most straightforward approach is manually
implementing every rule described by VOCL. But as with any manual
implementation of a model-described structure, a real risk is introduced
that the technical specifics will drift from the original intention, and the
VOCL will become unmaintained.

code generation A more advanced approach is to create a code generator
capable of transforming VOCL into code. At the moment it is unclear to
me what effort would be required. A question opens up whether it would
be possible to describe the rules in NS theory instead, as the rules are not
technically complicated and are directly relevant to the NS metamodel.
Then only the visual aspect of VOCL would remain.

validation engine Another possibility is a creation of validation engine that
can directly consume the VOCL, or rather the underlying OCL. Many
such engines already exist, but at least to some extent they are tied only
to UML-based, and UML profile-base metamodels.

49

6. Rules and Validations

Figure 6.2: Visual OCL on “Data Element with Flow should have a corre-
sponding [Element]TaskStatus” rule

6.4 Renraku static analysis framework
In this section is an explanation of how are the rules currently written and
tested.

The rules are written in the Renraku [17] framework. Renraku, among
others, powers Pharo’s internal static code analysis checker. I have chosen
Renraku for its simplicity and familarity; it provides only the necessary facili-
ties required for custom analysis and does not force its users to commit to an
extensive framework.

The basic metamodel of Renraku is shown in Figure 6.3. A Rule is given a
Target (e.g., a Data Element instance) and produces a number of Critiques for
the checked Target. Each critique describes a single problem with the Target.
As multiple checks in the same context are performed inside some rules, the

50

6.5. Rule Implementation

number of produced Critiques can be higher.
An example of such situation is the AppBaseDependencies rule, where a

critique is created for every missing dependency.

Figure 6.3: Renraku Metamodel

6.5 Rule Implementation
Each validation rule is encompassed in a NSPAbstractModelRule subclass.
Each subclass is responsible for providing all the necessary metadata infor-
mation about the rule (Figure 6.4), the actual code of the rule, as well as the
information provided to a user.

6.5.1 Metadata
Table 6.1 shows the metadata attributes that a rule class must provide.

Figure 6.4: CustomRule

51

6. Rules and Validations

Figure 6.5: Rules Metadata Editor

Listing 1: List of Model entities to which the rule applies
NSPGeneralNamingRule>>interest

^ #(DataElement Field StateNode TaskNode)

As the metadata is entered manually, I have extended Pharo’s code edi-
tor/browser with a custom editor shown in Figure 6.5. The data in the form
is exchanged directly with the source code – changes in the form change the
underlying source code and vice versa. A more technical perspective is offered
in Magritte Extensions.

6.5.2 Basic Check

A basic check can be added by implementing basicCheck: method. The
method should return true when the rule was violated. An argument of the
method is a model entity whose type depends on whatever is returned by the
interest metadata method.

52

6.5. Rule Implementation

NSPEmptyComponentRule>>basicCheck: aComponent
^ aComponent dataElements isEmpty

6.5.3 Complex Rule

When the rule should produce multiple different critiques, check:forCritiquesDo: should be implement implemented instead of basicCheck:.
In this method, every time we see a violation, we call back the critic
block and give it a new Critique intance.

NSPAppBaseDependenciesRule>>check: anApplication forCritiquesDo: aCriticBlock
self baseDependencies

do: [:each |
anApplication components

detect: [:comp | comp name = each]
ifNone: [aCriticBlock cull: (self critiqueFor: anApplication about:␣

→˓each)]]

6.5.4 Critiques
The result of a validation check is a subinstance of ReAbstractCritique. This
object contains additional information telling the user what precisely went
wrong.

The default critique is ReTrivialCritique, which apart from a reference to
the infringing model entity contains a tinyHint description of the problem.
Examples in Table 6.1 are provided this way.

In Listing 2, a critique is provided with a human-friendly description of
the issue.

Listing 2: critiqueFor: implementation
critiqueFor: aField

^ self
critiqueFor: aField
about:

'Type "' , aField type , '" for field ' , aField dataElement name , '::' ,
→˓ aField name

, ' is not supported'

6.5.5 Testing a Rule
Every rule must have tests. They are not only used to verify that the rule
operates correctly, but the test cases are used to create reports, such as the
examples in Table 6.1. To create a test, subclass NSPRuleTest; the name
of the test class follows [RuleClass]Test pattern. By subclassing and proper
name, the system automatically tests basic metadata (name, group, ratio-
nale/description). Furthermore, it provides custom assert methods.

53

6. Rules and Validations

Each rule must have at least the following tests and methods:

• ruleClass returns the class of the rule we are testing

NSPDuplicateNamesRuleTest>>ruleClass
^ NSPDuplicateNamesRule

• testInterest checks all entities that are expected to go into the rule

NSPDuplicateNamesRuleTest>>testInterest
self assertInterest: NSPComponent new.
self assertInterest: NSPDataElement new.
self assertInterest: NSPFlowModel new

• testPassing checks a correct (valid) situation (denyRule:)

NSPDuplicateNamesRuleTest>>testPassing
| namespace |
namespace := NSPDataElement new.
namespace fields add: (NSPField new name: 'hello').
namespace fields add: (NSPField new name: 'world').
self denyRule: namespace

• testFailing that checks an invalid situation (assertRule:) * the critiques
attribute is automatically populated from assertRule to minimize the
perceived complexity

testFailing
| namespace |
namespace := NSPDataElement new name: 'El'.
namespace fields add: (NSPField new name: 'hello').
namespace fields add: (NSPField new name: 'hello').
self assertRule: namespace.
self assert: critiques first tinyHint equals: 'El::fields::hello'

6.6 User Tools
An essential part of the validation is not just checking the rules, but presenting
the results to the user. The first interface is Validations Browser, shown in
Figure 6.6. The browser displays all generated critiques to the user organized
by all the available dimensions, such as the source component, severity, group,
rule types, etc. Additional tabs provide different groups or context. Some
actions are available to regular users (Select in Diagram), as well as to modeler

54

6.6. User Tools

developers (e.g., inspecting the object internals, or browsing the source code
class of the rule). Action to automatically fix problems where possible is
planned for future releases.

Figure 6.6: Validations Browser

Other place where users can see the issues is directly in the diagram (Figure
6.7).

The warning icon in the top-left corner of the diagram applies to the entire
component and opens Validation Browser scoped on it. The Warning Icons
in the Data Elements open a smaller validation browser (Figure 6.8) which
displays critiques only for the Data Element and its subentities (fields, data
childs, etc.).

55

6. Rules and Validations

Figure 6.7: Validation Warning Icons in Component Diagram

Figure 6.8: Validations Inspector on a single Data Element

56

Part III

Implementation

57

Chapter 7
Diagram Editors

7.1 Component Diagramming

Figure 7.1: Component Editor

Component editor (see Editor in OpenPonk Modeling Platform) is respon-
sible for modeling the structural aspect of an NS model. An example of a
diagram of a component model is shown in Figure 7.1. The visualization is
based on Entity-Relationship database notation that is typically used to repre-
sent NS components. The inspiration for additional notation has been drawn
from UML class diagrams based on similar understanding as was described in
Chapter Normalized Systems Metamodel.

59

7. Diagram Editors

All primary structural aspects – Data Elements, Fields (of all types), and
Relationships are supported.

7.1.1 Link Fields and Relationships
From an NS perspective, a separate relationship concept doesn’t exist. A
relationship is merely a link field pointing to another Data Element. However,
in the diagram we provide an explicit representation using a line between the
concerning elements. Note that the real link field is still shown inside the
appropriate Data Element box (e.g., order field in OrderTaskStatus element
in Figure 7.2).

Figure 7.2: Link fields and relationships in a component diagram

The relationship lines in Figure 7.2 are not labeled and end at the bor-
ders of the related elements; a typical approach used by many diagramming
tools2. To ease the identification, both the target Data Element and source
Field are highlighted when a user selects a relationship line (e.g. Order -<
OrderTaskStatus::order); the same applies when a user selects the source Field.

Not all link fields are representable with relationship lines. Figure 7.2 shows
two such fields: InvoiceTaskStatus::stateTask and OrderTaskStatus::stateTask.
Although both are link fields, neither references a Data Element in the current
component. Instead, they point to remote components, such as another user
component in the application, or in this case, to one of the base components.
As this gives them a special standing, they are shown in different color.

7.1.2 Data Elements and Flows
One of the recommendations for building NS applications is creating Flows
only on Primary Data Elements. In the modeler, this is addressed by offering
create flow or open flow action only on Primary elements, as shown in Figure
7.3.

2 Some tools support layouting where the line ends precisely at the position of the
source/target field, but that approach has downsides of its own.

60

7.1. Component Diagramming

Figure 7.3: Action opening or creating flows on Primary data elements

This seemingly simple one-click action addresses a series of problems that
a user could inadvertently create. As noted, the action is only offered for Pri-
mary Data Elements (see PrimaryElementsWithFlows in Table 6.1), creates
the necessary Flow Element, links it to the correct Data Element (FlowEle-
mentDataElementNaming rule), and populates Flow Element attributes with
proper content. All in a single click.

7.1.3 Errors and Warnings
To provide more localized information about potential problems, er-
ror/warning icons are shown on an entity with failing validation (Figure 7.4).
Displaying the icons is optional so as not to distract the user.

Figure 7.4: Validation Warning Icons in a Component Diagram

61

7. Diagram Editors

7.1.4 Secondary Diagram Content
Not all information is visible in the diagram by default. Showing everything
would clutter the diagram and overwhelm the user with noise. Some additional
properties, such as finders and data or field options are available on demand
(see Figure 7.5).

Figure 7.5: Showing additional properties of the model

7.1.5 Future Concepts
The current state of the component diagram is far from complete. Many
entities are created using form-based interfaces while a diagramming-based
approach could be better.

7.1.5.1 Merged Bi-directional Relationships

Link fields of all types (see Primary Elements) are modeled and diagrammed
in the same manner – Link Field is created, it is provided with a target, and
a particular link field type. However, the inverse types (Ln04, Ln05, Ln06)
require the “base” type to exist and point in the other direction. This creates
a potential point of failure where user neglects or accidentally removes the
base side (see ReverseLinkField rule). If that is the case, then we can merge
the visual lines, thus reducing the total number of edges and improving both
layouting and aesthetics [2].

Furthermore, instead of letting the user manually define the inverse link,
a simple add inverse link checkbox (possibly with a configurable field name)
can be provided for the base link. This approach always ensures that: (1) the
base link exists, (2) the inverse link is always of the correct type (because it

62

7.2. Flow Diagramming

is updated according to the base type), and (3) removing the base link will
ensure removal of the opposite link.

7.1.6 Data Child Link Field Property
In the same perspective, we can view Data Child entities. Although it may
not be directly evident, they always operate on a pre-existing link field.

Thus we add a is data child checkbox on the base link. Removal of the
link once again removes the Data Child. Combined, they prevent the user
fcreating yet another problem (see DataChildReference rule). Technically, the
already existing (form-based) UI of the modeler guards the creational part of
the problem, but the user has to think about what they are doing, instead of
seeing what they are doing.

7.1.7 Projections
Data Projections are defined on Data Elements and filter (project) the Data
Element’s fields. Additionally, they can contain new calculated fields. We can
view Projections as a more limited kind of a Data Element and show them as
such in the diagram. But care must be taken concerning clutter in the diagram
and disrupting the layout. Likewise, it must be easy for the user to choose
whether they want to see them or not and even conditionally show them just
for specific Data Elements.

Figure 7.6: A concept of Data Projection presentation

Figure 7.6 shows a potential approach. Instead of adding new entities
directly to the diagram and overlapping existing elements or disrupting the
layout, they are placed in a box layered on top. The box demarks where the
Projections are, to what Data Element they belong, and the box can be easily
toggled on or off.

7.2 Flow Diagramming
Figure 7.7 shows a diagram of a simple flow. States are represented by black
dots, tasks are represented by rounded boxes, transitions between them rep-

63

7. Diagram Editors

Figure 7.7: A selected task with two available actions.

resented by arrowed lines indicating the direction.
The figure also shows a new task that has just been added and selected.

Directly in the diagram are offered actions (highlighted in red) that a user can
perform. The top action creates a new state and adds a Transition from the
selected task to a new state, thus merging several actions into one. Similarly,
the bottom action adds a Transition to a target state. It is still more practical
than the palette, as the source of the transition is already specified.

When we proceed with an addition of a new entity or a connection, the
modeler performs basic validation on whether an entity can be added inside
another, or whether the user is trying to connect compatible objects. Flows are
governed by two elementary rules. The first rule permits creation of transitions
only from a task to a state (or vice versa) as shown in Figure 7.8, but not from
task to another task (Figure 7.9) or from state to another state.

Figure 7.8: A state is accepting transition from a task

The second rule allows only a single outgoing transition from a state or
a flow. In Figure 7.10 the same task no longer offers any actions, because it

64

7.3. Diagram Views and Partitioning

Figure 7.9: A state is denying transition from another state

already has an outgoing transition. Of course, if the user attempted to add
transition via Palette, they will be met with the same visual denial.

Figure 7.10: Selected task no longer offers any actions

7.2.1 Future Concepts
Future concepts for the flow modeling and diagramming are discussed as part
of the Flow Metamodel section of Normalized Systems Metamodel chapter.

7.3 Diagram Views and Partitioning
A common concern for larger models of any kind is viewing just the right
amount of information. Even component diagrams with a few dozen Data
Elements are, or can become overwhelming; especially considering NS systems
unlimited growth.

At the moment, partitioning at the level of the model is achieved by spec-
ifying aspects such as package name or Taxonomy. Alas, no first-class parti-
tioning is available for the entire model in a similar manner as Data Projection
is for Data Element.

65

7. Diagram Editors

How to address this in the model is well outside of the scope of this work,
but for the diagrams, three approaches seem appropriate3.

Static partitioning Such partitioning can be implemented across existing
axes of similarity. For example, the user could choose what Taxonomy
of Elements they want to see – e.g., only Primary and History, or only
Taxonomy, or all Elements with a particular package name. Another
example would be to hide all fields and focus only on elements and
their relationships. These scenarios are static because they are explicitly
implemented when a particular use case was foreseen or needed. A user
cannot modify them and is bound by their behavior. A benefit is that
they can cover the most common scenarios, and they can be provided via
easy-to-use interfaces, as a modeler developer can design an appropriate
place for them. Both the earlier presented user-configurable showing of
Children/DataOptions/. . . , as well as the concept of a layered view of
Projections fall into this category.

Stored partitioning Diagrams are created by manually selecting model en-
tities. For example, a user of a UML modeling tool drags a couple of
UML classes from a large model tree onto the diagram. Then the user
proceeds with dragging a subset of attributes for each, and perhaps a
subset of relationships between them. This approach is very flexible, as
the user has full control over the information presented. At the same
time, constructing each diagram from scratch is time-consuming. But
when new entities are added to the model, the diagram remains the
same even if the new entities are relevant in the context presented by
the diagram. This makes it the user’s responsibility to be aware of any
modifications and to make amends to the diagram. In a collaborative
environment, it is an easy way how to end up with misleading, or out-of-
date diagrams. Nevertheless, this approach is very desirable. OpenPonk
does not support this functionality on the surface (i.e., UI), but the
underlying code is mostly ready.

Dynamic partitioning This approach tries to achieve best of both worlds;
providing full flexibility for the user while ensuring the content is always
up-to-date. A user is provided with a query language of sorts4, where
they can describe in abstract terms (metamodel terms) what should be
shown. For example, a sentence like:

component dataElements select: [:el |
(el fields select: #isLinkField) anySatisfy: [:field |

field targetElement name = 'Person']]

3 The chosen naming is mine, as I have not encountered a proper naming elsewhere, even
though some or all approaches are used in other tools.

4 Whether the language is visual, textual, or described via UI form screens is not relevant
here.

66

7.3. Diagram Views and Partitioning

would show all Data Elements that are linking to the Person Data Ele-
ment.
As the content is described by evaluable predicates, any addition or
removal in the model is automatically propagated to the diagram without
the need for user involvement. Reifying these predicates could lead to
reusable and combinable diagram descriptions. The viability of this
strategy remains a subject of future exploration.

67

Chapter 8
Magritte Extensions

Chapter Magritte contained a general discussion of Magritte. Here I presented
in an illustrative detail two use cases for both OpenPonk and the NS modeler.

8.1 Spec Properties Form Renderer
OpenPonk has a Properties widget showing essential properties of a selected
model entity (as shown in Figure 8.1).

Figure 8.1: Properties widget showing options for a Data Element

Initially, this toolbar was created imperatively. In fact, one of the oldest
editors created for OpenPonk (BORM) still uses this imperative construction.
It was nothing more than a thin layer on top of one of the UI frameworks
available (Listing 1.

69

8. Magritte Extensions

Listing 1: Imperative construction of forms
BormProcessNodeController>>buildEditorForm: aForm

(aForm addText: 'Name')
text: self model name;
whenTextIsAccepted: [:newValue | self model name: newValue asString].

(aForm addDroplist: 'Submodel')
items: {nil} , self bormModels;
displayBlock: [:m | m ifNil: '' ifNotNil: #name];
setSelectedItem: self model submodel;
whenSelectedItemChanged: [:newValue | self model submodel: newValue]

Such approach, although sufficient to provide basic functionality, is hardly
a good long-term solution. It couples the code to a concrete UI framework
and is not reusable in any other context. It creates a non-uniform code, as the
widgets tend to have slightly different API, e.g. text: and setSelectedItem: for
writing, and whenTextIsAccepted: and whenSelectedItemChanged: for reading.
Furthermore, it promotes mixing several widgets inside a single method, as
there is no natural approach to separate the code.

To address all these issues, Magritte was chosen as a natural alternative.
Each form field is now described by an appropriate Magritte description (List-
ing 2). This approach separates the data from UI, forces separation of every
description and unifies read/write access via Magritte’s accessors.

Note that at the moment controllers mostly use PluggableAccessor. How-
ever, they are planned to be replaced with a custom DelegateAccessor.

Listing 2: Rewritten buildEditorForm: with Magritte
BormProcessNodeController>>descriptionName
<magritteDescription>
^ MAStringDescription new

accessor: (MAPluggableAccessor read: [:ctrl | ctrl model name] write: [:ctrl␣
→˓:newValue | ctrl model name: newValue];

label: 'Name';
priority: 1;
yourself.

BormProcessNodeController>>descriptionSubmodel
<magritteDescription>
^ MASingleOptionDescription new

accessor: (MAPluggableAccessor read: [:ctrl | ctrl model submodel] write: [␣
→˓:ctrl :newValue | ctrl model submodel: newValue];

label: 'Submodel';
options: self bormModels;
priority: 2;
yourself

With the imperative construction replaced by declarative descriptions, we
still need to preserve the original behavior and look of the properties toolbar.
Thus a new renderer was created to transform the descriptions into the original
Spec API calls. With this approach, a gradual transition is possible, as both
the old and the new method can be used at the same time from different
controllers even within the same OpenPonk editor.

Compared to the Morphic renderer (shown in Figure 3.5), this Form ren-

70

8.2. Calypso Extensions

derer cannot (at the moment) display Relationship descriptions. This has been
a partially intentional decision, as such relationships (e.g., between a DataEle-
ment and its Fields) should be managed via the diagramming interface.

On the other hand, it contains two new features. (1) Action descriptions
performing arbitrary actions that are visualized as buttons. (2) Support for
(sub)container descriptions (MAContrainer and MAPriorityContainer). With
containers, descriptions can be grouped, and more importantly, they can be
dynamically generated. For example all the individual Data Options (from
hasCountByStatusGraph to uniqueKey) shown in Figure 8.1 are in fact dy-
namically generated based on the current modeler configuration (which op-
tions should be available by default), options that were already specified for
the selected Data Element, and whether such options are boolean or string
based. Recall that there were over 20 Data Options Types (Figure 4.8), yet
the properties form shows only five of them.

8.2 Calypso Extensions
In chapter Rules and Validations I have shown a simple editor for manipulating
Rules metadata, once again shown in Figure 8.2.

Figure 8.2: Rules metadata editor

This editor utilizes the meta-capabilities of Pharo, extensibility of the

71

8. Magritte Extensions

newly developed Calypso [18] browser1, the flexibility of Magritte descrip-
tions, and composability of other Pharo UI components.

The individual descriptions for the editor are stored in a separate class
whose instance has a reference to the rule class we are currently editing. But
instead of (or in addition to) accessing values of an object, the description’s
accessor operates directly on the source code (Listing 3) by recompiling new
or existing methods, or even removing ones when they are not warranted.

Listing 3: Simplified code of the rule descriptions
NSPClyRuleInfoDescription>>descriptionName
<magritteDescription>
^ MAStringDescription new

accessor:
(MAPluggableAccessor

read: [:obj | obj ruleClass new name]
write: [:obj :newValue | obj ruleClass compile: ('name<n><t>^ <1p>'␣

→˓expandMacrosWith: newValue)]);
label: 'Name';
priority: 1;
yourself

NSPClyRuleInfoDescription>>descriptionSeverity
<magritteDescription>
^ MASingleOptionDescription new

options: #(error warning information prError);
morphClass: MADropListMorph;
accessor:
(MAPluggableAccessor

read: [:obj | obj ruleClass new name]
write: [:obj :newValue |
newValue = #warning

ifTrue: [obj ruleClass removeSelector: #severity]
ifFalse: [obj ruleClass compile: ('severity<n><t>^ #<1s>'␣

→˓expandMacrosWith: newValue)]]);
label: 'Severity';
priority: 4;
yourself

This use case was initially a demonstrative prototype, but has proven to
be quite useful.

Other uses of Magritte are present, and many additional user interfaces
were developed for Pharo. To limit the extent of this thesis, they are not
discussed in further detail and are only sporadically mentioned in relevant
context.

1 Calypso will be the default code editor for Pharo 7.

72

Part IV

Testing and Operations

73

Chapter 9
Error Tracking and Reporting

9.1 Error Tracking
Writing code without any errors or mistake is indeed a dream of every pro-
grammer, and many practices, such as Test Driven Development (TDD) are
attempting the lower the number of errors produced and improve the qual-
ity of code and product. Nevertheless, errors are present in possibly every
conceivable piece of software. Therefore it is essential to consider what to do
when errors occur during operations.

One of many possible ways is automated error reporting. Whenever a bug
occurs, information about the failure is automatically sent to a location where
the developers can review the issues, learn from them, and address them in
future releases. This is also a strategy chosen for the NS modeler, and later
for OpenPonk itself.

The initial attempt was a simple collection of error stack traces using
Pharo’s ShoreLine Reporter [3] sent to a private AWS S3 bucket. After over
a month in production, this solution proved to be grossly insufficient – a very
problematic situation considering the limited options available for Pharo. The
main problem was not the collection itself, although just an error stack trace
by itself is insufficient. But instead the consumption and processing of the
captured information, which is perhaps even more important. Hand-analyzing
files individually without any overview or organization was neither practical
nor efficient, and eventually, I was forced to give up on this solution.

Neverthless, a solution was still required. So I have reversed my criteria
and started looking for solutions that were addressing the second part of the
problem – the consumption of the data. As Pharo did not have any support
in this area, my search criteria had to accommodate for it. I was looking for a
self-hosted (to negate/minimize any costs), open-source, feature-rich solution
capable of integration with Pharo.

From several alternatives I have concluded on Sentry error tracking plat-
form [4]. The platform is, as required, feature-rich, open-source, easily self-
hosted, and most critically provides well-documented SDK for implementing

75

9. Error Tracking and Reporting

bindings for a custom language. The last requirement was the most impor-
tant, as no platform had native support for Pharo, nor any bindings existed
in Pharo community.

Thus parallel to the development of the modeler I have created pharo-
sentry [5] project, which provided the necessary bindings to integrate Pharo
and Sentry.

9.2 Pharo-Sentry
Pharo-Sentry is composed of three parts.

9.2.1 Sentry-Core

Figure 9.1: The current model of pharo-sentry

The first part is the core functionality, model of which is shown in Figure
9.1. The core is responsible for representing captured events, serializing them
to correct Sentry SDK forms, and dispatching them to a configured server.

I have implemented bindings for most of the functionality that Sentry
offers. Notably:

• serialization of exception/stack traces/individual trace frames

– Compared to stack traces provided by ShoreLine, these can contain
variable values (if enabled), location and code context, and distin-
guishing between OpenPonk/NSM frames and Pharo frames, which
further improves reading the reports (see Figure 9.2 for compari-
son).

• breadcrumbs

– Logging of application events that are sent when a problem occurs,
thus providing a trail of events that happened before the error.

• messages

76

9.2. Pharo-Sentry

Figure 9.2: Comparison of Stacktrace views in Sentry UI (App Only, Full,
Raw)

– An arbitrary content sent to the server, typically notification mes-
sages or warnings.

• context and event attributes

– A very valuable functionality with which additional information
such as library versions, modeler version, user information, error
level, etc. can be attached to all events.

Attaching version information, in particular, has proven to be especially
valuable, as it makes it obvious whether a particular problem has resurfaced,
or just merely some user is running an older version of the modeler.

A major remaining feature that is still due to be implemented are so-
called Releases. Releases provide first-class tracking of individual versions and
automatically integrate with Git versioning. However, the current tracking of
the modeler version via context information has been good enough solution so
far, which enabled to refocus effort back onto the modeler itself.

9.2.2 Sentry-Beacon
The second part of the pharo-sentry project is integration with logging frame-
work Beacon [6].

Pharo-sentry provides a separate logger (Listing 1) which dispatches events
to Sentry.

Listing 1: SentryLogger
SentryLogger start.
"send a Sentry Message event"
StringSignal emit: 'test'.
SentryLogger stop.

(continues on next page)

77

9. Error Tracking and Reporting

(continued from previous page)
SentryLogger new runDuring: [

"send a Sentry Exception event"
[1/0] on: Exception do: [:ex | ex emit]

].

Furthermore, serializers are provided for all standard Beacon signals (Ex-
ception, String, Wrapper, ThisContext). Therefore it is possible to send signals
collected from other Loggers as well.

9.2.3 System Integration and Debugger
The final part of pharo-sentry is integration with Pharo itself and its tooling.

Figure 9.3: Settings configurable during runtime

Several configuration options are available that a user can modify (Figure
9.3). Particularly Send Context Data is an important option, as enabling it will
send variable and model data to report server(s). Such data can potentially
contain sensitive information. Thus it is vital to ensure that a user has control
over what is being sent. For example, the default releases of the modeler
intended for NS developers have this option disabled, but we enabled it in in
releases intended for students and university courses.

Lastly, pharo-sentry integrates directly with Pharo debugger. When any
runtime exception happens, they are dispatched to sentry if Automatic Submis-
sion is enabled. When it is not enabled, a Report button is added to Debugger
window for a user to send the exception manually (Figure 9.4). With enabled
submission, the button states that the exception was already reported (Figure
9.5).

78

9.3. Error and Model Capture

Figure 9.4: Report button in Debugger

Figure 9.5: Report button if the event was already submitted

9.3 Error and Model Capture

9.3.1 Serializing Modeler State
A practical issue for debugging is handling state, and addressing problems
that occurred in one place, even though the source of the problem lied in an
entirely different part of the application. A typical scenario in many languages
is module A setting a variable of some object to null. The setting itself works
as expected, but when module B, which assumes for it to be always non-null,
tries to access it, an error is encountered an exception raised. Most impor-
tantly those two events (writing to a variable, and reading from it) can happen
in separate time events, and thus analyzing the exception stack is fruitless, as
the incriminating code is not part of the stack. To ease debugging in such
cases, a full application state logging and reporting was introduced. When an
exception is raised, the entire state of all objects related to the opened ap-
plication (individual instances of all model entities, all NS/OpenPonk objects
responsible for the runtime of the modeler is serialized. The serialization is
performed using Fuel [7] which can serialize and compress tens of thousands
of objects in a fraction of a second. The data is then sent to a private S3
bucket. To avoid organization issues, the payload is marked and paired with
an appropriate Sentry event/issue.

79

9. Error Tracking and Reporting

9.3.2 Submitting User Models
Many problems encountered in the past months were not related to issues
in the modeler, but rather to the content of XML files. This stems mostly
from lack of documentation of the metamodel and what possible combination
of entities was permitted. This problematic is illustrated by the following
situations.

Flow Elements should be always tied to Data Elements. In fact, neither
the modeler nor Prime Radiant permits the creation of a Flow Element with-
out associating it to an existing Data Element. However Prime Radiant (and
until recently the modeler1) does not prevent the user from deleting the Data
Element. When a user then tries to open an application with such a com-
ponent, a problem is raised, as the modeler attempts to construct the model
graph, but is missing a mandatory component.

In some cases, such as missing Data States (very common scenario), the
modeler automatically creates missing model entities. But in the case of the
mentioned missing Data Element, no such default action can be performed,
as the resolution is ambiguous. Perhaps the user meant to delete the Flow
Element, but forgot. Or the Data Element was removed by accident and should
be added back to the component. Or perhaps the Data Element was renamed,
and so should be the Flow Element. Other such problems will undoubtedly
arise, especially in less utilized entities of the metamodel. For Prime Radiant,
the detection of such issues usually occurs during expansion, but the modeler
requires a more nuanced and a user-friendlier approach.

To ease the detection of such issues, when Context Data is enabled, the
application and component files are serialized and reported in the same fashion
as the application state serialization. This is paired with a Sentry Event and
uploaded to S3.

1 As of yet the modeler permits renaming of Data Element without renaming the Flow
Element, resulting in the same problem.

80

Chapter 10
Testing, Continuous Integration

and Deployment

10.1 Code Testing
This section summarizes all efforts related to direct code testing, whether in
the form of unit tests, integration tests, or end-to-end tests.

10.1.1 General Summary
The modeler version 1.18.0 (latest at the time of writing) contains a total of
686 tests.

Broken down by individual packages with tests, the result is shown in Table
10.1.1.

Package Package Test Coverage Total Coverage
NSP-Editor 49.23 51.69
NSP-Model 19.59 69.08
NSP-GT-Inspector 37.5 37.5
NSP-Rules 61.02 71.51
NSP-Serialization 84.03 86.55
NSP-Browsers 57.25 57.25
NSP-Settings 19.4 41.79

Package test coverage is computed based only on tests within the same
package, while Total coverage is based on tests from all packages. All numbers
are percentages. For NSP-Model package in particular, the numbers differ
significantly, as most of the code has been generated (by a tested generator),
and only manually added code was explicitly tested. Of course, most packages
are heavily utilizing the model (e.g., Rules), so they all contribute significantly
to the total coverage.

Most packages (probably all) have the coverage somewhat deflated by ex-
perimental code, generated code, hard to test UI code, and support code I

81

10. Testing, Continuous Integration and Deployment

have created to ease or guide some of my programming (typically scripts to
explore, inspect, . . .). However, manually removing these pieces of code for
the code coverage aggregation was an undue burden.

As an example, if we look only on the code of Rules themselves, and ignore
UI and some of my experiments, the coverage jumps to 93.72%, nicely shown
in Figure 10.1.

Figure 10.1: Code coverage visualization of NS rules.

10.1.2 Testing Strategies
An important aspect of testing is developing strategies for approaching code
with specific characteristics.

One of the examples are once again Rules, for which I’ve created a system-
atic testing approach (see :doc:rules:). With a system, it is both easy to write
tests, as I already know what is needed to test, as well as easy to verify that
the tests are present4.

Another example is controllers, which are responsible for managing the
diagram visualizations and mediating user interactions and mediating data
changes between models, visualized information, and associated widgets. Con-
trollers code inherently performs a lot of manipulations on both the models
and visualizations, often intertwined, which makes testing it particularly prob-
lematic, as all sides must be fully initialized. As it was short-sighted to leave
such critical piece of code almost untested, another strategy was formed. The
controllers (both in OpenPonk and later in NS modeler) were refactored, model
and visualization interaction and construction was separated to a large degree,
and I have started utilizing mocking framework Mocketry [19] to achieve fur-

4 In practice Rules are usually written in TDD style, so tests are written first.

82

10.2. Scenarios Testing

ther separation. With this approach, I’ve managed to increase code coverage
from almost zero to the current ~80% (and for Component Controllers ~90%)5.

Another approach is, quite naturally, separation of problematic code. By
separation I do not mean separation of concerns, but rather moving the code
hiding within a well-tested module somewhere else. The intent is to make
problems visible and obvious. Point in case, most browser-based user interfaces
did not have any automated tests and instead were tested mostly by-hand.
Because they were part of a larger package, their poor testing (or lack thereof)
was easily overlooked – it was only a single (or couple) classes. Thus from a
high-level perspective it was not ideal, but it was passable. Further addressing
just a single browser would result in very specific tests that would not be
applicable elsewhere. But by moving browsers from many different packages
together, it became literally a glaring issue (Figure 10.2). Furthermore, by
moving them together, patterns and commonalities between them emerged,
and it was possible to start addressing the problems in a consistent manner
(Figure 10.3).

Figure 10.2: Untested browsers

That previous text discussed automated testing. On top of it, before every
release some time is devoted to manual QA to ensure that at least the most
common operations go correctly. It is desirable to also automate this as much
as possible, inspired by, e.g., Selenium used for website testing. But no such
tool exists as of yet for Pharo.

10.2 Scenarios Testing
A non-automated approach that I am utilizing is scenarios testing. A scenario
is an NS application or component that contains a particular configuration of
elements and entities.

5 Controllers are part of NSP-Editor package.

83

10. Testing, Continuous Integration and Deployment

Figure 10.3: Addressing browser testability

These scenarios are useful in several ways.
Firstly, they can be used to represent a problematic model state (whether

application or component model state). Such scenarios are typically created
directly in Prime Radiant, as the modeler has not yet addressed the prob-
lem. Several such examples were mentioned in the Flow Metamodel section of
Normalized Systems Metamodel chapter.

Figure 10.4: Opening an application with Task Element missing a Data Ele-
ment

The second usage is a visual/manual inspection of how the modeler behaves
in edge scenarios (Figure 10.4), or overviewing all aspects of a certain feature
such as local (Figure 10.5) and remote (Figure 10.6) link fields.

Another usage is exploration and communication. Figure 10.7 shows a flow
that contains several prohibited situations (e.g., TaskXY has two different end
states). Unlike the modeler, Prime Radiant permits the creation of such flow,
even though it will fail during expansion. Note that in principle Task having
multiple different end states does make sense. However Prime Radiant cannot
process such semantics at the moment. Thus although it is a bug at the
moment, we are discussing how to turn it into a feature.

At the moment there are 14 scenarios in two applications, both having in
total 11 components and 3 flows. On top of this are other applications that
serve different purposes. An application with a significant amount of Data

84

10.2. Scenarios Testing

Figure 10.5: Component with variations of local linkFields

Figure 10.6: Component with variations of remote linkFields

Figure 10.7: TaskXY has two different end states, and Tasks ABa and ABb
share the same begin state

85

10. Testing, Continuous Integration and Deployment

Elements and entities to observe performance, typical (tutorial) applications,
a “playground” application to experiment with behavior, and more.

10.3 Continuous Integration & Deployment
OpenPonk and all its projects make use of automated testing and Continuous
Integration.

The standard pipeline used by OpenPonk and all open-source projects I
have written for Pharo utilize GitHub as source code repository, Travis for
automated code testing, Coveralls for watching the code coverage trajectory1,
and for OpenPonk specifically, private CCMi server to host build artifacts.
This stack serves well and posits no cost as all mentioned services are provided
for free for public open-source projects.

NS modeler, however, is not a public project; therefore an alternative solu-
tion was required. I chose to host the code in a private repository on a GitLab
[20] instance provided by my faculty. It naturally followed to seek Continuous
Integration (CI) server well integrated with GitLab, namely GitLab CI/CD
[21].

Just like GitLab itself, GitLab CI/CD can be self-hosted, which I took full
advantage of2 and hosted it on a private AWS EC2 instance. Direct access
to the server was surprisingly valuable, as it significantly reduced the effort
required to debug a pipeline. Likewise, the cost was negligent, ~$5/month for
an all-purpose server usable for other purposes, compared to $69/month (or
$129/month for 2 concurrent jobs) for just Travis.

Only for Coveralls I have failed to find any reasonable alternative. Attempt
to collect code coverage data and process them manually failed with the same
problems as already mentioned ShoreLine stacks.

However, code coverage is only a single metric of many that are worth
watching. The ideal scenario is a fully-fledged Pharo support for some mature
code quality service such as SonarQube [22]. That is, however, a significant
amount of effort, and well outside of the scope of this work.

1 Whether the overall code coverage is increasing or decreasing.
2 At a later point, my faculty began providing GitLab CI/CD runner.

86

Conclusion

Achieved Results
This section summarizes the achievements in respect to the goals defined in
the introduction (see Goals and Objectives).

Primary Goals
The goal is. . .

. . . modeling tool for the data and flow models in NS Theory. The
tool provides full support for all primary aspects of data and flow
models.
In addition, the tool is continuously adding and improving support for
auxiliary elements of both models.

. . . serve to explore the requirements of users working on NS projects
During the entire development, I have maintained a close collaboration
with the target user base.
We were able to effectively and efficiently explore needs and requirements
for the current state of the modeler.

The tool should focus on the. . .

. . . modeling using graphical diagrams All the primary elements can be
modeled using the canonical notation (ER diagrams, Flow diagrams).
The modeler provides non-graphical modeling for some auxiliary ele-
ments, however the chapter Diagram Editors explores the options of
providing additional support for graphical modeling of such elements.

. . . support the inspection and comprehension of models The pri-
mary approach to inspection and comprehension is provided via the
graphical diagrams. Additional UI explorers, browsers, and inspectors
are available.

87

Conclusion

An ontological inspection is currently being discussed but falls outside
the scope of this thesis.

. . . as well as error detection and prevention. The modeler provides
many ways to prevent users from creating errors, whether it is in the
diagramming interface, or in form-based editors.
Many validation rules (doc:rules) were created to detect errors in models
created both by the modeler and by the Prime Radiant.
A discussion is provided for the comprehension of the rules by analysts,
as well as a potential technology-neutral representation.

Key characteristics of the tool include. . .

. . . user friendliness A close collaboration with the users provided an im-
portant feedback to improve aspects of the user interface and the user
experience.
The modeler offers the user higher-level tools to construct their models
while shielding them by resolving technical details of the model on their
behalf. Where it is not possible, various tools provide relevant feedback
for the actions the user is performing.
Depending on the context where the user is operating, different ways to
access the same functionality is provided for users’ comfort.

. . . high flexibility During the collaboration, it was possible to introduce
new functionality in very short cycles.
Likewise, it was possible to address technical problems quickly end ef-
fectively.

. . . robustness The modeler is tested with different approaches (Testing,
Continuous Integration and Deployment) to assure a certain level of
quality and functionality of the modeler.
If the modeler fails, mechanisms for comprehensive error detection (Error
Tracking and Reporting) are provided, so problems can be assessed and
resolved effectively.

. . . loosely coupled integration with the NS Prime Radiant. The
modeler exchanges information with the Prime Radiant via external
XML files with a stable format. Thus the modeler is not reliant on the
current state and interfaces of the Prime Radiant.
Data retrieved directly from Prime Radiant are stored directly in the
modeler, therefore there is no coupling for users. Updates are performed
only by the modeler programmer. This data includes option types and
contents of base components.

88

Future Work

The modeler was field-tested by students of the University of Antwerp in
their Normalized Systems course. The students were able to easily construct
both their data and flow models, and provide analysis based on their construc-
tion.

The modeler is also regularly used by some of the NS developers.

Secondary Goals
The development of the NS modeler forced many improvements in the Open-
Ponk platform, which in turn can improve other editors developed for Open-
Ponk. Several new libraries were created to assist with the development of
OpenPonk and Normalized Systems. The section Author’s Contributions sum-
marizes all projects created and/or related to OpenPonk or the NS modeler.

Future Work
The NS modeler is planned to be developed for the coming years, so all fu-
ture plans and concepts discussed throughout the thesis are very relevant. A
summary of them follows.

growing modeling support The discussed metamodel (see chapter Nor-
malized Systems Metamodel) continues to grow as more and more parts
are being utilized by the modeler.

extended diagramming support Many improvements and additions were
discussed for the diagramming notation (Diagram Editors).

rules comprehension A better approach to defining rules, possibly even
outside the modeler (Rules and Validations).

richer integration between PR and the NS modeler A progressive en-
hancement1 base integration between the modeler and PR is of interest,
e.g., a user could request expansion from the modeler, or full model
validation from Prime Radiant.

modeler becoming NS-compliant Although the modeler is not an infor-
mation system, growth challenges will eventually befall it, assuming that
unbounded growth of the modeler is even desirable. Nevertheless, it is
worth exploring what would be the challenges associated with normal-
izing such a graphical tool.

1 Progressive enhancement is a term used in web design where a core functionality is
always provided to every user, but if their browser support novel functionality, the web will
automatically offer improved functionality.

89

Conclusion

Author’s Contributions
This work focused primarily on the NS modeler. However since its inception,
a lot of parallel effort is going into the underlying platform OpenPonk, Pharo,
and its ecosystem, without which the modeler wouldn’t be possible in its
present scope.

This section briefly summarizes all libraries I have created for OpenPonk,
as well as other projects I have created that either directly or indirectly sup-
port OpenPonk and/or the modeler; some of which were already described in
greater detail in this thesis.

Pharo
Since the inception of OpenPonk, I have been an active contributor to Pharo,
and to many libraries and tools in the Pharo ecosystem. My primary contribu-
tions were quite naturally in libraries directly relevant to OpenPonk, namely
the Roassal visualization library used to provide the diagramming support,
and the Spec UI framework.

The contributions include code contributions, debugging, detailed bug re-
ports, extensive discussions, and providing help to new and existing developers
alike (Pharo mailing list (2000+ mails), StackOverflow (top 5% contributor to
UML, top 10% to Smalltalk and Pharo)).

OpenPonk libraries
Projects under the OpenPonk umbrella.

OpenPonk OpenPonk platform core; extensions and additions for other li-
braries used by OpenPonk, such as Roassal and Spec.

UML-Metamodel UML 2.5 metamodel implementation.

uml-bootstrap-generator Self-bootstrapping UML 2.5 metamodel genera-
tor based on UML specifications.

XMI & UML-XMI XMI (XML Metadata Interchange) reader/writer for
UML 2.5.

UML shapes A Roassal abstraction layer for management of hierarchical
visual structures, and inspired by UML Diagram Definition/Diagram
Interchange specifications. Used by both UML editor, and NS modeler.

uml-profiles & OntoUML profile UML-Metamodel extensions for creat-
ing UML profiles and automatically generating their implementations.
UML profile for OntoUML.

synchronized-links Utility for creating self-synchronizing bidirectional ref-
erences between objects. Used by both UML-Metamodel and NS mod-
eler metamodel.

90

Author’s Contributions

class-editor UML class diagram editor and UML profile editor.

DEMO editor DEMO user-interactive simulator (puppeteered theater sim-
ulation).

fsm-editor Finite State Machine editor

borm-editor BORM editor, custom DSL language for BORM models

Pharo libraries
Other projects I have created to either directly or indirectly support OpenPonk
and/or Pharo itself.

xmi-analyzer Analysis of XMI-like documents and generation of their equiv-
alent domain code. Predates UML-Metamodel/UML-XMI.

xml-dom-visitor Extension of XMLParser to help with hand-processing of
arcane XML files.

xml-magritte-generator (see chapter Metamodel Engineering)
Generator of domain objects augmented with Magritte support, based
on analysis of XML documents.

IconFactory Library for managing Icons inside Pharo.

metalinks-toolkit Library for management of MetaLinks. (MetaLinks are
Pharo mechanism for transparent, non-intrusive injection of custom code
to other code at runtime.)

live-instance-viewer (presented in [1]) Experimental live capture and
instance visualization of runtime object structures using MetaLinks.
(Live UML instance visualizations.)

git-migration Utility for migrating Pharo code from its custom versioning
format to git. Originally written to migrate OpenPonk to git. Continues
to be used by many Pharo users.

tonel-migration Utility for migrating Pharo code to new textual represen-
tation by performing a deep git history rewrite.

git-fast-writer Support library for git-migration & tonel-migration convert-
ing commands and rewrites to Git fast-import format.

file-dialog New file picker dialog for Pharo. To be included in Pharo 7 release.

pharo-trello (to be released) Trello API implementation in Pharo. Orig-
inally written to help manage trello tasks during NS modeler develop-
ment.

91

Conclusion

pharo-sentry (see chapter Error Tracking and Reporting) Sentry er-
ror tracking SDK for Pharo.

pharo-changes-builder Wrapper for better management of interactive code
generation. Used by all my projects that generate any code (including
the NS modeler).

92

Bibliography

[1] Peter Uhnák and Robert Pergl. Ad-hoc Runtime Object Structure Visual-
izations with MetaLinks. In IWST‘17: Proceedings of the 11th Edition of
the International Workshop on Smalltalk Technologies, 1–10. ACM Press,
2017. doi:10.1145/3139903.3139912.

[2] Peter Uhnák. Layouting of Diagrams in the DynaCASE Tool. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology. 2016.

[3] Tommaso Dal Sasso. ShoreLine [software]. 2014. [Cited 2018-05-01] Avail-
able from: http://shoreline.inf.usi.ch/.

[4] Functional Software, Inc. Sentry [online]. [Cited 2018-05-01] Available
from: https://sentry.io.

[5] Peter Uhnák. Pharo-sentry [software]. 2017. [Cited 2018-05-01] Available
from: https://github.com/peteruhnak/pharo-sentry.

[6] Feenk. Beacon [software]. http://www.humane-
assessment.com/blog/beacon. [Cited 2018-05-01] Available from:
http://www.humane-assessment.com/blog/beacon.

[7] Martín Dias, Mariano Martinez Peck, Stéphane Ducasse, and Gabriela
Arévalo. Fuel: a fast general purpose object graph serializer:
FUEL: A FAST GENERAL PURPOSE OBJECT GRAPH SERIAL-
IZER. Software: Practice and Experience, 44(4):433–453, April 2014.
doi:10.1002/spe.2136.

[8] Lukas Renggli. Magritte - Meta-Described Web Application Develop-
ment. 2008.

[9] Norbert Hartl. XML-Bindings [software]. 2010. [Cited 2018-05-01] Avail-
able from: https://github.com/magritte-metamodel/XML-Bindings/.

93

https://doi.org/10.1145/3139903.3139912
https://doi.org/10.1002/spe.2136

Bibliography

[10] OMG. Unified Modeling Language (UML) v2.5. March 2015. [Cited 2018-
05-01] Available from: http://www.omg.org/spec/UML/2.5.

[11] Martin Podloucký and Robert Pergl. Towards Formal Foundations for
BORM ORD Validation and Simulation. In 16th International Conference
on Enterprise Information Systems, 315–322. SCITEPRESS - Science and
and Technology Publications, 2014. doi:10.5220/0004897603150322.

[12] Herwig Mannaert, Jan Verelst, and Peter De Bruyn. Normalized Sys-
tems Theory: From Foundations for Evolvable Software toward a General
Theory for Evolvable Design. Koppa Digitale Media, 2016. ISBN 978-90-
77160-09-1. OCLC: 1021375288.

[13] Peter Uhnák and Robert Pergl. The OpenPonk modeling plat-
form. In IWST‘16: Proceedings of the 11th Edition of the Interna-
tional Workshop on Smalltalk Technologies, 1–11. ACM Press, 2016.
doi:10.1145/2991041.2991055.

[14] Stephen T. Pope and Glenn E. Krasner. A Cookbook for Using Model-
View-Controller User Interface Pradigm in Smalltalk-80. Journal of
Object-Oriented Programming, 1988.

[15] Alexandre Bergel. Agile Visualization. Alexandre Bergel, 2016. ISBN 978-
1-365-31409-4.

[16] Christiane Kiesner, Gabriele Taentzer, and Jessica Winkel-
mann. Visual OCL: A Visual Notation of the Object Con-
straint Language. 2002. Available from: http://www.user.tu-
berlin.de/o.runge/tfs/projekte/vocl/gKTW02.pdf.

[17] Yuriy Tymchuk, Mohammad Ghafari, and Oscar Nierstrasz. Renraku: the
One Static Analysis Model to Rule Them All. In IWST‘17: Proceedings of
the 11th Edition of the International Workshop on Smalltalk Technologies,
1–10. ACM Press, 2017. doi:10.1145/3139903.3139919.

[18] Denis Kudriashov. Calypso - Pharo system browser [software]. [Cited
2018-05-01] https://github.com/dionisiydk/Calypso.

[19] Denis Kudriashov. Mocketry [software]. [Cited 2018-05-01] Available from:
https://github.com/dionisiydk/Mocketry.

[20] GitLab. GitLab [online]. https://about.gitlab.com/. [Cited 2018-05-01]
Available from: https://about.gitlab.com/.

[21] GitLab. GitLab CI & CD [online]. https://about.gitlab.com/features/gitlab-
ci-cd/. [Cited 2018-05-01] Available from:
https://about.gitlab.com/features/gitlab-ci-cd/.

[22] SonarSource S.A. SonarQube [online]. [Cited 2018-05-01] Available from:
https://sonarqube.org.

94

https://doi.org/10.5220/0004897603150322
https://doi.org/10.1145/2991041.2991055
https://doi.org/10.1145/3139903.3139919

Appendix A
Acronyms

NS Normalized Systems

PR Prime Radiant

OP OpenPonk

ER Entity-Relationship (ER diagram, ER model)

UML Unified Modeling Language

OntoUML Ontological UML

BPMN Business Process Model and Notation

BORM Business Object Relation Modeling

95

Appendix B
Contents of enclosed CD

readme.txt........................the file with CD contents description
nsp-windows-1.18.0.zip...........all-in-one (modeler+source) archive
text.. the thesis text directory

thesis.pdf...........................the thesis text in PDF format

97

	Introduction
	Motivation
	Goals and Objectives
	Structure of the Thesis

	Review
	Normalized Systems Theory
	High-level Overview
	Dimensions of Evolvability
	Stable Modular Architecture

	OpenPonk Modeling Platform
	Overview
	Editors
	Diagram Editor Architecture
	Orthogonal Perspectives

	Magritte
	Descriptions
	Accessors
	Validations and Conditions
	Magritte Renderers
	XML-Bindings Extension

	Analysis and Reverse Engineering of Metamodel
	Normalized Systems Metamodel
	Component Metamodel
	Application and Project Metamodel
	Flow Metamodel
	Option Types

	Metamodel Engineering
	XML files
	XML Analysis
	XML Magritte Generator
	Component Analysis
	X/O mapping and XSDs
	Workflow Analysis and Transformation

	Rules and Validations
	Model Validations
	Validation Rules
	Describing Rules
	Renraku static analysis framework
	Rule Implementation
	User Tools

	Implementation
	Diagram Editors
	Component Diagramming
	Flow Diagramming
	Diagram Views and Partitioning

	Magritte Extensions
	Spec Properties Form Renderer
	Calypso Extensions

	Testing and Operations
	Error Tracking and Reporting
	Error Tracking
	Pharo-Sentry
	Error and Model Capture

	Testing, Continuous Integration and Deployment
	Code Testing
	Scenarios Testing
	Continuous Integration & Deployment

	Conclusion
	Achieved Results
	Future Work
	Author’s Contributions

	Bibliography
	Acronyms
	Contents of enclosed CD

