
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague November 29, 2017

ASSIGNMENT OF MASTER’S THESIS
 Title: Framework for mobile applications using Linked Data and the RÚIAN registry

 Student: Bc. Martin Melka

 Supervisor: RNDr. Jakub Klímek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

The goals of this thesis are:
 - Survey existing libraries for RDF and Linked Data [1] [3] manipulation on mobile devices.
 - Survey techniques for spatial querying using SPARQL [5].
 - Survey basic usability standards for Android OS and API for geolocation.
 - Design and Implement a framework for displaying data linked to RÚIAN [6] registry based on current
location.
 - Demonstrate usefulness of the framework on a chosen domain.

References

[1]  Tom Heath,  Chr is t ian  B izer .  L inked Data:  Evolv ing  the  Web into  a  Global  Data  Space -
http:// l inkeddatabook.com/edit ions/1.0/
[ 2 ]  B e y o n d  S e a r c h  u s i n g  V i r t u o s o  F a c e t e d  B r o w s e r  &  L i n k e d  D a t a  C l o u d  C a c h e  -
h t t p : / / w w w . y o u t u b e . c o m / w a t c h ? v = 8 B T d z B X 5 4 O s
[3] Linked Data - Connect Distributed Data across the Web - http://linkeddata.org/
[4] Openlink Virtuoso Universal Server - http://virtuoso.openlinksw.com/
[5] SPARQL 1.1 - http://www.w3.org/TR/sparql11-overview/
[6] RÚIAN - http://www.cuzk.cz/ruian/RUIAN.aspx 





Master’s thesis

Framework for mobile applications using
Linked Data and the RÚIAN registry

Bc. Martin Melka

Department of Software Engineering
Supervisor: RNDr. Jakub Kĺımek, Ph.D.

May 3, 2018





Acknowledgements

I would like to thank my supervisor, Jakub Kĺımek, for the insight and guid-
ance he offered me whilst I was working on this thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 3, 2018 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Information Technology
© 2018 Martin Melka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Melka, Martin. Framework for mobile applications using Linked Data and
the RÚIAN registry. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2018.



Abstrakt

Tato diplomová práce se zabývá návrhem a tvorbou frameworku, jenž umožńı
efektivńı vizualizaci a vyhledáváńı v datech, která jsou propojena s existuj́ıćı
sadou lokačńıch dat za využit́ı princip̊u propojených dat (Linked Data). Pro
ověřeńı a demonstraci funkcionality frameworku bude použit český Registr
územńı identifikace, adres a nemovitost́ı (RÚIAN). Navrhovaný framework
definuje flexibilńı zp̊usob propojováńı entit bez lokačńıch údaj̊u s městy, domy
a jinými objekty z RÚIAN nebo jakéhokoliv jiného vyhovuj́ıćıho zdroje propo-
jených dat. Práce nejprve definuje RDF slovńık, kterým lze popsat metainfor-
mace o propojovaných datech. Následně je vytvořena knihovna pro zpracováńı
definic strukturovaných podle tohoto slovńıku. Dále je navržen a implemen-
tován indexovaćı server, který zefektivńı vyhledáváńı propojených objekt̊u
na základě jejich lokace. Nakonec je vytvořena klientská Android aplikace,
využ́ıvaj́ıćı tento framework k zobrazováńı propojených dat na mapě.

Kĺıčová slova Propojená data, RÚIAN, Framework, RDF, Android, mapa

Abstract

The aim of this thesis is to design and implement a framework which will allow
for effective search and visualization of data linked to an existing geospatial

vii



dataset using the Linked Data principles. The functionality of the framework
will be validated and demonstrated using geospatial data provided by the
Czech registry of territorial identification, addresses and real estate (RÚIAN).
The data is publicly accessible and large enough to assess the performance
of the framework. The proposed framework defines a flexible mechanism of
linking entities with no spatial information to cities, houses and other objects
located in RÚIAN or any other Linked Data source. Firstly, an RDF vo-
cabulary used to provide metadata about the data to be linked is defined in
the thesis. Then, a parsing library is created that converts data structured
according to the vocabulary into Java objects. After that, an indexing server
is designed and implemented to speed up spatial queries. Finally, an Android
client application leveraging this framework is created.

Keywords Linked Data, RÚIAN, Framework, RDF, Android, map

viii



Contents

Introduction 1

1 State-of-the-art and available technology 3
1.1 Linked Data and RDF . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Existing applications for visualizing Linked Data . . . . . . . . 10
1.3 Existing libraries for RDF and Linked Data on Android . . . . 13
1.4 Techniques for spatial querying using SPARQL . . . . . . . . . 13
1.5 Basic usability standards for Android OS and API for geolocation 16

2 Analysis 19
2.1 RÚIAN registry . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Framework functionality . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Naive solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Solution using an index server . . . . . . . . . . . . . . . . . . . 25
2.5 Data definition vocabulary . . . . . . . . . . . . . . . . . . . . . 32
2.6 Android app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Design 43
3.1 Data definition parser library . . . . . . . . . . . . . . . . . . . 43
3.2 Index server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Android app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Implementation 67
4.1 Data definition parser library . . . . . . . . . . . . . . . . . . . 67
4.2 Index server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Android app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Testing 79
5.1 Automated testing . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 User scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



5.3 Stress test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Deployment 93
6.1 Integrating linked data to the Andruian framework . . . . . . . 93
6.2 Index server software stack . . . . . . . . . . . . . . . . . . . . 94
6.3 Android app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Conclusions and future work 97
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101

A Acronyms 107

B Resources 109
B.1 Index SPARQL query template . . . . . . . . . . . . . . . . . . 109
B.2 Data definition vocabulary . . . . . . . . . . . . . . . . . . . . . 111
B.3 Example data definition . . . . . . . . . . . . . . . . . . . . . . 116
B.4 Property path source for RÚIAN objects . . . . . . . . . . . . . 118
B.5 SPARQL query for creating incremental testing data . . . . . . 121
B.6 Data definition created during a user scenario . . . . . . . . . . 122

C Diagrams 125

D Contents of enclosed CD 129

x



List of Figures

1.1 Linked Open Vocabularies graph [1] . . . . . . . . . . . . . . . . . 8
1.2 DBpedia Mobile map view [2] . . . . . . . . . . . . . . . . . . . . . 11
1.3 DBpedia Places screen [3] . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 LinkedPipes Visualization screen [4] . . . . . . . . . . . . . . . . . 12

2.1 RÚIAN VFR data model [5] . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Model of source data for Andruian framework . . . . . . . . . . . . 24
2.3 Architecture of solutions with and without an index server . . . . . 27
2.4 Actors of the index server . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Index server use case diagram . . . . . . . . . . . . . . . . . . . . . 30
2.6 Index server domain model . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Schema of including a remote RDF file . . . . . . . . . . . . . . . . 36
2.8 Data definition parser library domain model . . . . . . . . . . . . . 39

3.1 Data definition parser library class model . . . . . . . . . . . . . . 44
3.2 Components of Jena Spatial . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Indexing using Solr and MongoDB . . . . . . . . . . . . . . . . . . 48
3.4 Component diagram of Andruian index server . . . . . . . . . . . . 50
3.5 Class diagram of Andruian index server . . . . . . . . . . . . . . . 51
3.6 The color scheme of the ViewLink app. . . . . . . . . . . . . . . . 59
3.7 The home screen of ViewLink app . . . . . . . . . . . . . . . . . . 60
3.8 The home screen of ViewLink app with drawer menu open . . . . . 60
3.9 The place details screen of ViewLink app . . . . . . . . . . . . . . 60
3.10 The data sources configuration screen . . . . . . . . . . . . . . . . 61
3.11 The data source color choosing dialog . . . . . . . . . . . . . . . . 61
3.12 The add data source screen . . . . . . . . . . . . . . . . . . . . . . 61
3.13 The Model-View-Presenter pattern [6] . . . . . . . . . . . . . . . . 62
3.14 ViewLink app Component model . . . . . . . . . . . . . . . . . . . 62
3.15 ViewLink app package model . . . . . . . . . . . . . . . . . . . . . 64
3.16 Subpackages of the ui package . . . . . . . . . . . . . . . . . . . . 65

xi



4.1 Query visualization screen . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Administration screen . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 ASyncTask sequence diagram . . . . . . . . . . . . . . . . . . . . . 73
4.4 The main screen of the ViewLink app. . . . . . . . . . . . . . . . . 75
4.5 The drawer menu of the ViewLink app. . . . . . . . . . . . . . . . 75
4.6 The place detail screen of the ViewLink app. . . . . . . . . . . . . 75
4.7 The data definition manager screen of the ViewLink app. . . . . . 76
4.8 The color picker dialog of the ViewLink app. . . . . . . . . . . . . 76
4.9 The new data definition screen of the ViewLink app. . . . . . . . . 76

5.1 Schema of the testing dataset . . . . . . . . . . . . . . . . . . . . . 85
5.2 Determining a SPARQL endpoint in Fuseki UI . . . . . . . . . . . 86
5.3 The structure of testing data . . . . . . . . . . . . . . . . . . . . . 88

C.1 Andruian Framework Data Definition schema . . . . . . . . . . . . 126
C.2 Class diagram of the DataDef class of the ViewLink app . . . . . . 127
C.3 UI flow of the ViewLink app . . . . . . . . . . . . . . . . . . . . . 128

xii



List of Tables

5.1 Indexing times with dual-core 2.8 GHz CPU and 12GB of RAM . 89
5.2 Android app data loading times without using index server . . . . 91

xiii





Introduction

The Internet is a vast collection of information and a large portion of it is un-
structured. That makes extracting knowledge from it difficult. One approach
to make this task easier is the concept of Linked Data. The “regular” web
which is widely known and used is a web of documents. The documents are
linked together through hyperlinks which have no metadata associated with
them. Their meaning must be therefore inferred by the reader. The web of
data, facilitated by the Linked Data paradigm, consists of ontological entities
and clearly defined relations among them. One source of such data is RÚIAN,
the Czech Registry of Territorial Identification, Addresses and Real Estate.
The data describes all spatial entities in the Czech Republic and provides
meaningful links among them.

The aim of this thesis is to create a framework which allows users to
visualize entities linked to RÚIAN or other sources of geospatial data. The
entities may be offices, points of sale, businesses and others which have been
previously linked to the RÚIAN registry by data publishers. The framework
also allows for effective geospatial querying over data linked this way.

The thesis first introduces the Linked Data paradigm, existing solutions
for Linked Data visualization and techniques for spatial querying. It also
researches libraries that can be used to manipulate linked data on Android
devices and highlights basic usability standards for Android OS.

Then it describes the RÚIAN registry and its data model, defines the
requirements on the framework and analyzes the possible approaches to the
problem. After the need for an indexing component is identified, requirements
on it are formally declared along with the requirements on the Android client
application. Afterwards, a data definition RDF vocabulary is defined which
is used to provide metadata about the data linked to the registry.

Next, the three identified components are designed and implemented. The
first is a data definition parser library, which is able to convert RDF data
definitions into a structure of Java objects. The second is an indexing server,
which preprocesses data described by data definitions to allow for effective

1



Introduction

spatial queries. The third component is an Android application which can
consume data definitions and visualize geospatial data described in them on
a map.

After implementation, the automated testing process of all three compo-
nents is briefly discussed. It is followed by detailed user scenarios providing a
step-by-step tour through all parts of the implemented framework. A stress
testing is also performed to assess the performance limits of the framework.

The last chapter provides a guide on the deployment of the components
of the framework.

2



Chapter 1
State-of-the-art and available

technology

The first section of this chapter gives an introduction into the technology of
Linked Data, the RDF model, its serialization format Turtle, the querying
language SPARQL and the concept of RDF vocabularies. The second section
provides an overview of already existing solutions from the domain of this
thesis. That is, applications visualizing Linked Data with a geospatial com-
ponent. Thirdly, the chapter introduces some available libraries for RDF and
Linked Data manipulation for the Java platform and Android OS. Fourthly,
techniques for spatial querying using SPARQL are discussed. The fifth sec-
tion highlights some basic usability standards of the Android platform and
explores the available geolocation API.

1.1 Linked Data and RDF

This section is an introduction to the technology of Linked Data. It examines
the basic principles of Linked Data, the reasons for it and the language used
by it.

1.1.1 Linked Data

Linked Data is a set of best practices, a paradigm for publishing data in a
flexible and inter-operable way. It was coined by Sir Tim Berners-Lee and
provides a solution to the silo problem, where organizations and departments
within those organizations all store data in their own separate way, creating
isolated data islands [7]. Even when data is open and intended for public use,
its utility may be degraded by the format it is published in.

Linked Data uses the well-established Hypertext Transfer Protocol (HTTP)
and Uniform Resource Identifiers (URIs) and so does not try to reinvent the
wheel. It reuses already existing technologies to create a web of data, readable

3



1. State-of-the-art and available technology

by machines and algorithms, as opposed to the web of documents, which is
mostly readable by humans. There are four basic principles of Linked Data
[8]:

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the
standards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

Following those principles results in a unifying data model, where data can
be shared globally across different schemata. Because entities are identified by
HTTP URIs, data from different data sources may be linked and automatically
discovered. However, unlike the web of documents, Linked Data uses the
concept of vocabularies. Vocabularies are sets of metadata which define the
ontological meaning of entities and relationship links among them.

1.1.2 RDF

Resource Description Framework (RDF) is a model designed for data exchange
on the web [9]. Its core principle is evolvability of data and its schema. In
contrast to common data sharing formats, such as JSON and XML, and stan-
dard data storage technologies, such as relation database systems, the schema
of data published using RDF is flexible and may change without necessitating
data consumers to act upon this change.

RDF model is formed by a set of triples. Each triple represents a relation-
ship between two entities. The simplest RDF serialization format, N-Triples,
consists of entries such as:

<subject> <predicate> <object>

This triple specifies that a subject is in a relationship of type predicate with
an object. Each of the first two terms are URIs. The third term, the object,
may either be an URI or a literal. Literals may be typed and they might even
have a language tag.

According to Linked Data principles, every modeled entity has its own
unique identifier, and that includes predicates. Therefore the meaning of a
link between two entities can be found by dereferencing its URI and obtaining
more information about it.

RDF model can be thought of as a directed multigraph, with subjects and
objects as its nodes and predicates as its named edges.

4



1.1. Linked Data and RDF

1.1.2.1 Turtle

There are several serializations which can be used to represent RDF. These
include RDF/XML, N-Triples, Turtle, JSON-LD and others[10].

All examples of RDF in this thesis will be using the Turtle serialization be-
cause of its density and good human readability. This section covers the basic
syntax, for more details refer to the RDF 1.1 Turtle W3C Recommendation
document [11].

Each subject and predicate must be an IRI. IRI is a superset of URI with
the difference that Unicode characters may be used instead of plain ASCII.
That is only a subtle difference so I will be using URI and IRI interchangeably
throughout the thesis. An IRI can either be fully qualified and enclosed in
angle brackets, e.g.

<http://example.org/resource>

or it can be written in a compact form, CURIE [12], without angle brackets.
In that case the IRI will consist of a prefix and a reference. Prefixes in Turtle
are defined using the keyword @prefix. The two triples are identical:

@prefix ex: <http://example.org/> .

ex:subject ex:predicate ex:object .

<http://example.org/subject>
<http://example.org/predicate>
<http://example.org/object> .

To be concise, in examples below where the prefix is irrelevant, an empty
prefix (a colon followed by a reference) will be used.

In Turtle a triple is represented as

:subject :predicate :object .

Literals are values in place of the object that are not resources and do not
have IRIs. They may be integers, floats, strings and other types, as shown
below:

:s :o "string" . # A plain string literal
:s :o 42 . # An integer literal
:s :o 3.14 . # A floating-point literal
:s :o "2018-03-28T19:20:45"ˆˆxsd:dateTime . # A datetime-typed literal
:s :o "řetězec"@cs . # A language-tagged literal

Often a subject will be present in several triples with only the predicate
and object changing. In such cases, a shortened form may be used, where
different predicates and objects are separated by a semicolon (;). This is a
representation of two triples with the same subject:

5



1. State-of-the-art and available technology

:subject
:predicate :object;
:anotherPredicate :anotherObject .

Sometimes both subject and predicate should be the same and only object
be different. In that case, a colon (,) is used to separate objects. This is a
representation of two triples with the same subject and predicate:

:subject :predicate :object,
:anotherObject .

It may be helpful to model a relationship, where the URI of an object node
(in the graph representation) is not needed. In that case a blank node may be
used in place of an object. For example, a subject having a relation to a date,
which consists of a day, month and a year, may be modeled this way:

:subject :date [ :month 3;
:day 14;
:year 1592

] .

Furthermore, the rdf:type predicate is used so often that it warrants a
shortcut - the keyword a:

:subject a :object .

Sometimes we might want to traverse multiple properties at once and get
the object at the end of the property chain. Turtle offers a shortcut which is
called a property path and does exactly that. Two or more properties may be
separated using a slash (/ ). In the following example, the :subject contains a
property of type :a to an anonymous object. That object contains a property
of type :b to another anonymous object, which contains a property of type
:c, that leads to the final :object.

:subject :a/:b/:c :object .

1.1.3 RDF vocabularies

Plain RDF does not concern itself with ontological meaning of entities and
relationships among them. It does not define any domain-specific concepts
and instead makes its users provide the meaning through RDF vocabularies.
A vocabulary is a mechanism for ontologically describing RDF data. It allows
for creation of new RDF classes and properties, giving them human-readable
names and descriptions and impose certain constraints on them.

A basic and widely used language for describing vocabularies is RDF
Schema [13]. It defines several elementary classes and property types upon

6



1.1. Linked Data and RDF

which ontologies may be built. They belong to the rdf or rdfs namespace1.
Below is an incomplete list of the most important entities [13].

rdfs:Resource is anything described by RDF. Everything is a resource.

rdfs:Literal is a node containing a literal value. It may be typed to represent
a number, a string, a date and more.

rdfs:Class represents the concept of a type of a resource. For example,
a resource identifying a book could belong to the category (have a
type) dcterms:BibliographicResource, which is a class defined by
the Dublin Core Metadata Initiative Terms vocabulary located under
the dcterms prefix.

rdf:Property represents resources that are RDF properties.

rdf:type property indicates that a resource is a member of a class, or, in
other words, that it is an instance of a class.

rdf:range is a property that may be defined for rdf:Property and specifies
instances of which classes may be objects of the property.

rdf:domain is similar to rdf:range. It is a property that may be defined for
rdf:Property and specifies instances of which classes may be subjects
of the property.

rdfs:label is a property used to provide resources with a human-readable
name.

rdfs:comment is a property used to provide resources with a human-readable
description.

This is an example definition of a rdfs:Class describing a book, an article,
or any other documentary resource:

dcterms:BibliographicResource
dcterms:hasVersion <http://dublincore.org/usage/terms

/history/#BibliographicResource-001> ;
dcterms:issued "2008-01-14"ˆˆ<http://www.w3.org/2001

/XMLSchema#date> ;
a rdfs:Class ;
rdfs:comment

"A book, article, or other documentary resource."@en ;
rdfs:isDefinedBy <http://purl.org/dc/terms/> ;
rdfs:label "Bibliographic Resource"@en .

1A useful tool for looking up the fully qualified IRIs based on prefixes is available at
https://prefix.cc

7

https://prefix.cc


1. State-of-the-art and available technology

Figure 1.1: Linked Open Vocabularies graph [1]

Hundreds of vocabularies have already been created. It is a cumulative ef-
fort and vocabularies often reuse one another. The Linked Open Vocabularies
(LOV) is a service which gathers information about the most popular vocab-
ularies and attempts to help users find a vocabulary that fits their needs. The
Figure 1.1 shows the vocabularies contained in LOV. The size of each circle
reflects the amount of other vocabularies using the given vocabulary.

The vocabularies used further in this thesis include:

dcterms2 is a vocabulary maintained by the Dublin Core Metadata Initiative.
It defines classes and properties mainly related to books and publications
and their properties.

schema3 is a vocabulary maintained by Google, Microsoft and others and
aims to provide a way for webmasters to markup their data. Correctly
formatted data may then be easily understood by search engines and of-
fer users more relevant information. The vocabulary covers the concepts
of creative works, e-shops, events, organizations and more.

8



1.1. Linked Data and RDF

ruian4 is a vocabulary used in the Linked Data representation of RÚIAN.
It defines territorial concepts of regions, counties, cities, address places,
relationships among them and more.

1.1.4 SPARQL

This section describes the basic of the SPARQL query language. It only covers
features used later in the thesis.

SPARQL[14] is a RDF query language for the retrieval and manipulation
of RDF data. It can be loosely thought of as a counterpart of SQL for data
stored in RDF format. It defines several query types, including inserting and
deleting data, but we will only focus on the type used in this thesis - the
SELECT query. Much like SQL, the SELECT query returns data based on a
given set of conditions.

Each query of this type consists of a SELECT clause, where variables to
be returned are listed, and a WHERE clause, where search conditions are spec-
ified. Below is an example of a SPARQL query. This query will match all
triples in the database that have the given title as their predicate. For each
matched query the subject IRI and the object will be returned. As shown in
the example, variables in SPARQL are identified by a question mark (?).

SELECT ?subject ?title
WHERE
{

?subject <http://purl.org/dc/elements/1.1/title> ?title .
}

In order for SPARQL to return a result, all parts of the query must match.
If we want to match some parts of the query optionally, and return a null
value if they are not provided, we can use the OPTIONAL clause. The following
query will match patterns where a resource contains the property :a and the
property :b. In cases where the object of property :b contains the property :c,
its object is returned as variable ?optVal. Otherwise, nothing is returned for
this variable (but the pattern still matches, because it is marked as optional).

SELECT ?subject ?val ?optVal
WHERE
{

?subject :a ?val;
:b ?anotherObject.

OPTIONAL{
?anotherObject :c ?optVal.

}
}

9



1. State-of-the-art and available technology

The result patterns may be filtered based on a custom set of conditions,
using the FILTER function. It accepts a boolean expression as a parameter,
which must evaluate to True else the result pattern is discarded from the
result. The following query will return IRIs of all resources that have the
property :a defined and its value compares as greater than 10.

SELECT ?subject
WHERE
{
?subject :a ?val.
FILTER(?val > 10)

}

It may be the case that a given RDF store does not contain all the data
we need and a part of it is located elsewhere. As long as the remote location
also exposes the data via SPARQL, it can be fetched using a federated query.
The following query demonstrates this feature. The “main” SPARQL endpoint
contains triples with properties of type :a. The objects of those triples further
contain properties of type :b whose objects we want to retrieve, but they are
accessible at a remote SPARQL endpoint, http://example.org/sparql:

SELECT ?subject ?val
WHERE
{
?subject :a ?anotherObject.

SERVICE <http://example.org/sparql> {
?anotherObject :b ?val.

}
}

1.2 Existing applications for visualizing Linked
Data

This section highlights a few applications that offer Linked Data visualization
functionality. However, none of the applications solves the problem that is
addressed by this thesis.

1.2.1 DBpedia Mobile

DBpedia is a project started by the Free University of Berlin, Leipzig Univer-
sity and the University of Mannheim in collaboration with OpenLink Software[15].
It is the pioneer project leveraging the linked data paradigm and is one of the

10

http://example.org/sparql


1.2. Existing applications for visualizing Linked Data

Figure 1.2: DBpedia Mobile map
view [2]

Figure 1.3: DBpedia Places screen
[3]

main sources of data in the linked open data cloud[16]. Its aim is the extrac-
tion of structured content from Wikipedia and related Wikimedia projects.
The content includes over 4 million consistently classified entities in the En-
glish version. Various amount of data is also available in over 100 other
languages[17]. All data is published in accordance to the linked data prin-
ciples, discussed in subsection 1.1.1.

DBpedia Mobile is a DBpedia client application for mobile devices. It
allows users to view and browse data sourced from DBpedia based on their
real world location. The data is presented on a map and upon inspecting a data
element, detailed information about it is displayed based on the well-known
RDF links defined for it. This data may include related entities, reviews,
images and more. The application utilizes the location of a mobile device
provided by an embedded receiver of GPS or other geospatial system to show
places in proximity to the user[2]. An example screen of the application is
shown in Figure 1.2.

The application is rather outdated and aimed at devices using Windows
Mobile 6. It is not clear what its performance is, nor how efficiently it can
query geospatial data. Its data source is also only limited to DBpedia, no
custom sources may be added.

1.2.2 DBpedia Places

DBpedia Places is another mobile location-aware browser of DBpedia data.
It is aimed at Android devices and allows users to display data sourced from
DBpedia on a map and view their details. It also supports searching through
entities. A picture of the screen is shown in Figure 1.3.

It was last updated in 2015 and like DBpedia Mobile, it does not support
serving data from a source other than DBpedia[3].

11



1. State-of-the-art and available technology

Figure 1.4: LinkedPipes Visualization screen [4]

1.2.3 LinkedPipes Visualization

LinkedPipes Visualization[4] is a project of the LinkedPipes team that aims
to provide a graphic representation of Linked Data. The tool does not focus
solely on map-based visualization. It understands geospatial data described
through the schema.org vocabulary, and also other data types described by
appropriate well-established RDF vocabularies. Only the map-based visual-
ization is relevant for this thesis, so the other operation modes will not be
discussed further.

The visualization tool can consume data from a local or remote RDF file
or through a SPARQL endpoint. It does not require any further configuration
and is able to visualize data based solely on its structure and vocabularies
used to annotate it. Given geospatially-annotated data, the tool shows a map
with markers placed at the locations of the data points. An example of the
visualization screen is shown in Figure 1.4.

The tool supports arbitrary data sources, which makes it much more flexi-
ble than the mobile applications discussed previously. However, it presupposes
a particular structure of the data. It requires that every data point has its
location coordinates attached to it. A data point may not be linked to an-
other data point which would supply the location information. Furthermore,
no optimization in terms of geospatial indexing is implemented. The dataset
is processed in its entirety and it is not possible to query data only around a
certain region.

12



1.3. Existing libraries for RDF and Linked Data on Android

1.3 Existing libraries for RDF and Linked Data on
Android

This section provides an overview of existing libraries that may be used to work
with RDF and Linked Data. It describes the libraries without going into much
detail and does not attempt to name the most suitable one. That question is
expanded upon and answered later in the thesis, in section subsection 3.1.1.

1.3.1 Semargl

Semargl is a modular Java framework for crawling linked data. It is designed
to be lightweight and requires no external dependencies. That makes it a good
candidate for use in mobile applications which are sensitive to library sizes.
However, it only supports a small subset of RDF serialization formats.

The library is publicly available from GitHub[18].

1.3.2 Jena

Apache Jena is a Java framework for RDF manipulation and building appli-
cation leveraging Linked Data[19]. Along with its RDF API it also provides
SPARQL support, a triple store for RDF data and ontology APIs. It is not
primarily intended to be used in mobile applications and is quite large.

Jena does not work on Android out-of-the-box due to missing packages
and namespace conflicts. However, ports of the original library for Android
exist, such as androjena[20] and jena-android[21], which attempt to work
around this issue. Both ports seem not to be maintained anymore, however.

1.3.3 RDF4J

RDF4J is a Java framework for RDF manipulation which was initially devel-
oped by the Aduna company under the name OpenRDF Sesame. After the
company dropped its support in 2016, it was forked by Eclipse and named
RDF4J [22]. The feature set of the framework is similar to what Jena offers.
Namely, it provides an RDF model, API for its manipulation, a RDF parser
and serializer called Rio (RDF I/O), a triplestore and a HTTP SPARQL
server.

Like Jena, RDF4J does not work on Android out-of-the-box due to missing
packages for XML manipulation.

1.4 Techniques for spatial querying using SPARQL

This section provides an overview of possible approaches for querying over
spatial data using SPARQL. The approaches include a “naive” solution as
well as more efficient techniques supported by various RDF database engines.

13



1. State-of-the-art and available technology

1.4.1 Naive spatial SPARQL querying

This approach for spatial querying works with any database supporting SPARQL.
It presumes that the spatial element of the data is represented by a latitude
and longitude value. It is constituted by a FILTER function inside a SPARQL
query which filters out all resources whose position does not fall into a certain
rectangular area. The filtering is done by a expression consisting of a set of
comparisons. In the following example ?lat and ?lng are variables containing
latitude and longitude coordinates of a resource, respectively. The search area
is defined by a bounding rectangle with coordinates minLat, minLng, maxLat
and maxLng.

FILTER(
?lat > ?minLat && ?lat < ?maxLat
?lng > ?minLng && ?lng < ?maxLng

)

This formula needs to be adjusted for the corner case of the latitude or lon-
gitude of the area “overflowing” from positive values to negative ones. That
is due to the fact that the positional system WGS84 which is used in this
thesis allows latitude to have values ranging from -90 to +90 and longitude to
have values ranging from -180 to +180. For example, a rectangle’s leftmost
longitude may be 170 and its rightmost -175. This may be solved by detecting
the case of an overflow and adding an “offset” of 180 or 360 to the latitude or
longitude, respectively.

The simplicity of this approach results in poor performance. The database
engine still has to effectively walk through all triples in the dataset and filter
each of them individually.

1.4.2 Jena Spatial

Jena Spatial[23] is an extension to Apache Jena ARQ, which is the Jena
SPARQL processor. The extension requires an external spatial index for effi-
cient spatial queries. The index may be either Apache Lucene[24] or Apache
Solr[25].

In order to introduce the spatial element into SPARQL queries, Jena Spa-
tial defines an RDF vocabulary with properties specific for spatial search-
ing. That includes the spatial:nearby property, which returns all resources
around a certain position. This is an example query taken from the Jena Spa-
tial documentation [23] which makes a query for all places within 10 kilometers
of latitude/longitude 51.46, 2.6.

PREFIX spatial: <http://jena.apache.org/spatial#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

14



1.4. Techniques for spatial querying using SPARQL

SELECT ?placeName
{

?place spatial:nearby (51.46 2.6 10 'km') .
?place rdfs:label ?placeName

}

1.4.3 GeoSPARQL

GeoSPARQL[26] is a geographic query language for RDF data. It defines
a vocabulary for representing geospatial data in RDF and it also defines an
extension to SPARQL for processing such data.

Like Jena Spatial, GeoSPARQL defines functions for SPARQL for posing
spatial queries. For example, the following query finds all resources of type
ex:Park that are less than 3000 meters away from the resource ex:WashingtonMonument.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX geof: <http://www.opengis.net/def/function/geosparql/>

SELECT ?p
WHERE {

?p a ex:Park ;
geo:hasGeometry ?pgeo .

?pgeo geo:asWKT ?pwkt .
ex:WashingtonMonument geo:hasGeometry ?wgeo .
?wgeo geo:asWKT ?wwkt .

FILTER(
geof:distance(?pwkt, ?wwkt, units:m) < 3000

)
}

Unlike Jena Spatial, which was specific to Apache Jena, GeoSPARQL is a
standard and is not bound to a particular SPARQL processor and triple store.
One of the databases that support GeoSPARQL is GraphDB. It supports
spatial querying both with and without using an index [27].

1.4.4 Virtuoso Geo Spatial Enhancements

OpenLink Virtuoso also offers spatial query functionality [28]. The support
includes SPARQL functions for working with geometric shapes, determining
their relative location, intersections, transformations and more.

The documentation states that Virtuoso is also increasingly compliant with
the aforementioned GeoSPARQL standard.

15



1. State-of-the-art and available technology

1.5 Basic usability standards for Android OS and
API for geolocation

This section is concerned with two topics - the usability standards and the
geolocation API for the Android platform. The usability standards are thor-
oughly covered by the Material Design visual language, which is further dis-
cussed below. The geolocation API offered by the Android platform is shortly
described afterwards.

1.5.1 Material Design

In 2014, With Android 5.0 Lollipop, Google introduced Material Design[29].
It is a set of principles that aim to help create better user interfaces (UI) not
only for mobile devices that are easy to grasp by the users. It has become
widely used and is the de-facto standard for most apps targeting the Android
platform.

The basic principle of the Material Design visual language is the metaphor
of a material. Each element of the user interface is a piece of material, which
is grounded in tactile reality [29]. The material has surfaces and edges, user
interface elements are in relation to one another, they overlap and cast shad-
ows. The concept of light, surface and motion conveys how objects exist in
space and relate to each other.

Another principle of the visual language is the use of grids, white space
and contrasting colors. That creates hierarchy among the visual elements and
helps guide the user’s focus. Each application is defined by its primary color
used, among others, for toolbar headings and an accent color, which is usually
used to indicate the main action the user may perform.

These are the very basic concepts of the Material Design. It is a compre-
hensive set of guidelines and its analysis is out of the scope of this thesis.

1.5.2 Geolocation API

The Android platform provides a straightforward API for determining the
device location. Each application may access the system LocationManager
and query it for device location updates [30]. The location may be requested
at two precision levels. The first is a coarse location, which is precise to the
size of a city block and is determined through GSM towers, WiFi networks
in range and others. The second one is a fine location, which is as precise as
the GPS chip allows. The difference among the two modes of location is in
accuracy, speed of obtaining the location and battery efficiency.

Both levels of location precision require a user permission declared in the
AndroidManifest.xml file in order for the Android OS to deliver the location
data to the application. The requirement names are:

android.permission.ACCESS FINE LOCATION for fine location,

16



1.5. Basic usability standards for Android OS and API for geolocation

android.permission.ACCESS COARSE LOCATION for coarse loca-
tion.

Android versions prior to 6.0 Marshmallow will prompt the user to agree
to the permissions required by the app upon installation, whereas with later
versions the developer must prompt the user when the resource protected by
a permission is first requested.

Subscribing an application to location updates is illustrated in the follow-
ing code snippet [31]:

// Acquire a reference to the system Location Manager
LocationManager locationManager = (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);

// Define a listener that responds to location updates
LocationListener locationListener = new LocationListener() {

public void onLocationChanged(Location location) {
// Called when a new location is found by the
// network location provider.
makeUseOfNewLocation(location);

}

public void onStatusChanged(String provider,
int status,
Bundle extras) {}

public void onProviderEnabled(String provider) {}
public void onProviderDisabled(String provider) {}

};

// Register the listener with the Location Manager
// to receive location updates
locationManager.requestLocationUpdates(

LocationManager.NETWORK_PROVIDER, 0, 0, locationListener
);

17





Chapter 2
Analysis

This chapter is concerned with the analysis of topics relevant to the thesis.
Firstly, it describes the RÚIAN registry in regards to the proposed framework.
The RÚIAN data model and the RDF vocabulary for that data are also cov-
ered. Secondly, the functionality of the framework is outlined. Thirdly, a
naive approach to the problem of the framework implementation is discussed.
Fourthly, a better, scalable solution to the problem, which uses an interme-
diate index server, is presented. Lastly, the requirements on the proposed
Android applications are defined.

2.1 RÚIAN registry

RÚIAN stands for the Registry of Territorial Identification, Addresses and
Real Estate[32]. It is one of four primary registries which were launched by
the Czech government in 2012. RÚIAN contains descriptive and location data
about territorial elements, addresses and other units relevant to the Czech
State Administration of Land Surveying and Cadastre. It is the source of
all addresses in the country - any new address place must be registered and
created here [33]. The registry exposes stored data in XML-based format VFR
(Výměnný Formát RÚIAN) [34].

XML is a format that is easily readable by computers, but is not ideal for
linked data manipulation. The OpenData.cz initiative, consisting of students
and staff of Prague universities, works to provide the public with government-
published data in an open data fashion. One of their projects is the conversion
and publication of RÚIAN data from the VFR format into the RDF, linked-
data format. The resulting dataset is published on the OpenData website5

and can be queried via a SPARQL endpoint6.

5https://linked.opendata.cz/dataset/cz-ruian
6https://ruian.linked.opendata.cz/sparql

19



2. Analysis

Figure 2.1: RÚIAN VFR data model [5]

The VFR format defines the underlying data model shown in Figure 2.1.
The model starts with the broadest entity on top - the country - and goes on
to describe every region, county, town, street, cadastre unit, parcel and more.
The converted RDF schema reuses the same entities used in VFR. However,
according to Linked Data principles, the RDF schema has to define unique
URIs for all objects, including the links between them. This is not covered in
the VFR format specification and had to be done by the OpenData initiative.

2.1.1 RÚIAN linked data model

This section analyses the RÚIAN linked data model, as provided by the
OpenData organization. It is based on the VFR data format, but enriched
with unique names, links and properties. The analysis is concerned with the
HTTPS version of the RÚIAN SPARQL endpoint7. A HTTP version also ex-
ists, but uses a slightly different naming schema and is considered deprecated
by the maintainer.

The analysis and diagram do not cover all properties, but only focus on
items relevant to the framework. That primarily means determining how
is each entity type linked to information about its latitude and longitude

7https://ruian.linked.opendata.cz/sparql

20



2.1. RÚIAN registry

coordinates. This information will be used to make linking custom source
classes to RÚIAN easier. Data publishers will be able to simply link their
data to RÚIAN objects and the framework will automatically know how to
retrieve the location data for any object.

The linked data model mirrors the structure of the underlying RÚIAN data
shown in Figure 2.1. It adds names to classes and relationships among them,
per linked data standards. A brief description of each entity type is provided
below. Each entity type also contains information about its coordinates.

The naming of the entity links is consistent. The links fall under the
ruian prefix and always lead from a more specific entity to the more gen-
eral one. In terms of the diagram in Figure 2.1 it means that the link al-
ways leads upwards. For example, from Adresnı́ mı́sto (an address place)
to Stavebnı́ objekt (a building) and to Ulice (a street). The name of the
link is identical to the name of the class it leads to, only camel-cased. For
instance, a link from ruian:Adresnı́Mı́sto to ruian:Stavebnı́Objekt would
be ruian:stavebnı́Objekt.

The ruian prefix corresponds to the RÚIAN ontology URL8. When used
in a SPARQL query, it must be first defined:

PREFIX ruian: <https://ruian.linked.opendata.cz/slovnı́k/>

2.1.1.1 ruian:Stát

A country. The location is linked to instances of ogcgml:Point via the prop-
erty ruian:definičnı́Bod.

2.1.1.2 ruian:Kraj1960

A region of the country, based on the region division system which was in place
before the year 1960. The location is linked to instances of ogcgml:Point via
the property ruian:definičnı́Bod.

2.1.1.3 ruian:Okres

A county in a pre-1960 region. The location is linked to instances of ogcgml:Point
via the property ruian:definičnı́Bod.

2.1.1.4 ruian:RegionSoudrznosti

A region of the CZ-NUTS classification (Nomenclature of Units for Territo-
rial Statistics). These regions are mostly formed by several pre-1960 regions
merged together. The location is linked to instances of ogcgml:Point via the
property ruian:definičnı́Bod.

8https://ruian.linked.opendata.cz/slovńık/

21



2. Analysis

2.1.1.5 ruian:Vusc

A subdivision of a ruian:RegionSoudrznosti. The location is linked to in-
stances of ogcgml:Point via the property ruian:definičnı́Bod.

2.1.1.6 ruian:Orp

A subdivision of a ruian:Vusc which is administered by a single city. This
entity does not have a location linked to it. Custom data must not be linked
to instances of this class under the Andruian framework.

2.1.1.7 ruian:Pou

A subdivision of a ruian:Orp, a territorial unit administered by a single mu-
nicipal office. This entity does not have a location linked to it. Custom data
must not be linked to instances of this class under the Andruian framework.

2.1.1.8 ruian:Obec

A city. The location is linked to instances of ogcgml:Point via the property
ruian:definičnı́Bod.

2.1.1.9 ruian:Ulice

A street of a city. This entity does not have a location linked to it. Cus-
tom data must not be linked to instances of this class under the Andruian
framework.

2.1.1.10 ruian:ČástObce

A disctrict of a city. The location is linked to instances of ogcgml:Point via
the property ruian:definičnı́Bod.

2.1.1.11 ruian:KatastrálńıÚzemı́

A cadastral territory belonging to a city. The location is linked to instances
of ogcgml:Point via the property ruian:definičnı́Bod.

2.1.1.12 ruian:Zsj

An inhabitable unit belonging to a cadastral territory. The location is linked to
instances of ogcgml:Point via the property path ruian:definičnı́Bod/ogcgml:pointMember.

2.1.1.13 ruian:Parcela

A parcel located in a cadastral territory. The location is linked to instances
of ogcgml:Point via the property ruian:definičnı́Bod.

22



2.2. Framework functionality

2.1.1.14 ruian:Momc

A territory of a city district. The location is linked to instances of ogcgml:Point
via the property ruian:definičnı́Bod.

2.1.1.15 ruian:Mop

A territory of a district in the city of Prague. The location is linked to in-
stances of ogcgml:Point via the property ruian:definičnı́Bod.

2.1.1.16 ruian:SprávńıObvod

A district in the city of Prague. The location is linked to instances of ogcgml:Point
via the property ruian:definičnı́Bod.

2.1.1.17 ruian:StavebńıObjekt

A building. The location is linked to instances of ogcgml:Point via the
property ruian:definičnı́Bod.

2.1.1.18 ruian:AdresńıMı́sto

An address place. The location is linked to instances of ogcgml:Point via
the property ruian:adresnı́Bod.

2.1.1.19 ogcgml:Point

A place on Earth with a latitude and longitude coordinates. Instances of this
type in RÚIAN have properties s:geo/s:latitude and s:geo/s:longitude
linking to latitude and longitude coordinates of this point, respectively.

2.2 Framework functionality

This section gives a general overview of what the framework’s functionality
and use cases will be.

Publishing data with a location component may be done simply by pub-
lishing numeric coordinates with every data entry. Those coordinates can then
be used to display such data on a map. For simple uses, this may be enough.
However, this approach leaves out a lot of information about the location the
data is pointing at. The latitude and longitude coordinates specify an abstract
point on a map, they do not say anything about what the point represents, for
example whether it is a building or a city. They do not provide any context.

The Andruian framework aims to provide a simple way for data publishers
to link their data about real-world entities to the RÚIAN registry which con-
tains representations of concrete places. Developers may consume and quickly

23



2. Analysis

Figure 2.2: Model of source data for Andruian framework

search through this data using location queries and allow end-users to view
the linked entities currently around them on their devices.

The diagram depicting the structure of the linked data to be processed
by the framework is shown in Figure 2.2. The user of the framework (a data
publisher in this case) has an arbitrary data model for their specific domain
(left section). They want data consumers to be able to search through and
display instances of the Source Class, which are linked to instances of the
RÚIAN Class (right section). The path between the two instances may consist
of several properties, forming a property path. The data publisher should
only have to publish a basic configuration file for the framework, containing
information such as the location of the two data sources and a path from
Source Class to RÚIAN Class.

This configuration file will then also be used by client applications lever-
aging the framework (from now on referred to as clients). The users using
the applications will only need to point to the published configuration file
and the application will be able to find all the information needed to use the
published data. They can query the framework for entities located around a
certain position and, for example, view them on a map.

2.3 Naive solution

A straightforward solution to the aforementioned case only uses a single client
application. The client, who wants to display all entities around them defined
in a data configuration file hosted and accessible via an URL, needs to perform
these steps:

1. Download and process the data configuration from the given URL. The
configuration will, among other information, define an URL of where

24



2.4. Solution using an index server

the data source may be polled and a property path leading to a RÚIAN
class.

2. Download all relevant entities from the data source.

3. For each of the entities find the linked RÚIAN object and download its
location coordinates.

4. Filter all source entities based on their location (which was obtained in
the previous step).

5. Display filtered entities.

This solution has the advantage of being fairly simple to set up by the
data publisher. They only need to correctly specify the data configuration
in addition to publishing their data and clients can take advantage of its
connection to the RÚIAN registry.

However, the simplicity has a drawback in performance. Even when the
user only wants to display places inside a small area, all source entities must be
always downloaded and their location found through RÚIAN objects. Some,
potentially most, of those entities will be ultimately filtered out for being
outside the required area. This overhead may not be too severe with small
datasets, but will increase with the size of the dataset. Furthermore, it strains
the client both in terms of computation complexity and data transfer size. The
amount of data transferred is especially important, given that the prototype
implemented as a part of this thesis (and indeed a typical client as well) will
be a mobile application.

For improved performance and smaller data requirements, a more complex
solution which preindexes the source data is proposed in the next section.

2.4 Solution using an index server

The approach described in section 2.3 is not satisfactory for large datasets.
A solution that is able to effectively handle larger amounts of data uses an
index server. The server will consume the same data definitions as the client
in the naive approach, which will make it optional - it will only be necessary
to create the data definition once, regardless of the infrastructure chosen.

The index server will pre-process data and then serve it to clients without
communicating with the data source or RÚIAN. The indexing and querying
will include these steps:

1. Download and process data definition.

2. Download all entities specified in the definition from the user data source.

3. For each entity find the linked RÚIAN object and download its location
coordinates.

25



2. Analysis

4. Store the entities and their location internally in a way that allows for
spatial indexing.

5. When queried by a client, retrieve entities from the internal storage
based on a location query and return them to the client.

In order to allow for data updates, the index server will periodically per-
form reindexing. There are two modes of reindexing. A full reindex of a
data definition will drop any existing data associated with the data definition
and index the data from scratch. An incremental reindex will query the data
source and exclude all the data it already has indexed. This way, only the
data that was newly added to the source will be indexed. The incremental
reindex will, however, not be able to pick up changes to existing data in the
source. If it is likely that the data in a particular data source will be changing,
full reindexing will be necessary.

The advantage of this solution is that the client will only receive data that
is relevant for it. The query will also be faster as a result of the indexing
capability and lack of any network communication between the index server
and the data sources.

The disadvantage is the added infrastructure requirements on the data
publisher. It is no longer enough to simply publish a linked dataset and a
data definition. The data publisher or client application developer must also
deploy the server and maintain it. Furthermore, in this setup the index server
becomes a bottleneck, so enough resources must be dedicated to it to ensure
it can handle the workload.

Figure 2.3 shows the component and communication diagram for both
solutions. In both cases the part of the architecture that the data publisher
is responsible for is highlighted.

A timely response is a crucial requirement on the framework, as it is in-
tended to be used on mobile devices in real time. Therefore, despite the
mentioned disadvantages, this solution will be preferred and an index server
implemented.

The rest of this section covers the formal analysis of the proposed server.
Firstly, the requirements on the index server are discussed and defined. Sec-
ondly, a use case model is created based on the identified requirements. Thirdly,
the ontological entities are identified from the first two sections and a domain
model of the problem is created.

2.4.1 Requirements

Based on the shortcomings of the naive solution identified above, we can con-
struct formal requirements on the index server solution. The requirements are
listed below, each assigned an identifier. The requirements should cover all
functionality that is required on an abstract level, as well as specify where are
the boundaries of the system and what it will not do.

26



2.4. Solution using an index server

Figure 2.3: Architecture of solutions with and without an index server

F1 Indexing.

F1.1 Spatial indexing. The server will preprocess the data defined
in the data configuration in a way that will make location-based
querying over that data effective.

F1.2 Repeated indexing. The indexing process can be customized to
run repeatedly at a specified time. The indexing should be incre-
mental, unless required otherwise by the administrator.

F2 Querying.

F2.1 Spatial querying. The server will be able to answer spatial
queries - respond with entities of a given class that are located
around a given point inside of a specified radius. The server will
also be able to list all stored entities or entities of a given class,
regardless of the location.

F2.2 Query response format. The response of the server will be in
a JSON format and will contain the entity IRI, the IRI of the as-
sociated location entity, a latitude and longitude coordinates, a
human-readable label (if specified) and all selected properties de-
fined in the data definition schema.

F3 Administrator access.

F3.1 Indexing. The server will provide a way for administrators to
trigger indexing, either incremental, or complete.

27



2. Analysis

F3.2 Data definition management. The server will allow adminis-
trators to add and remove data definitions.

F4 Query visualization. The server will provide a simple user interface
for visualizing queries. Given a location query and object type, the user
will be shown a map with the matching results.

N1 External data configuration. The server will be able to consume
data sources configuration provided as linked data in a static RDF file
using the TURTLE serialization. The configuration shall adhere to the
Andruian data definition vocabulary defined in section 2.5.

N2 Multiple data configurations. The server will be able to handle
several data configurations at once, in the format according to the re-
quirement N1.

N3 Data source. The server will be able to process source data available
via the SPARQL protocol.

N4 Coordinate system. The coordinates system (e.g. WGS84) used for
spatial queries will reflect the coordinates system used in the data source.
The indexing server will not do any format conversions.

N5 Security. The system will not provide a user-management functionality.
A single user with a customizable username and password will be used
as an administrator.

2.4.2 Use cases

A use case is a description of a concrete way an actor will be interacting with
the system. Use cases are derived from requirements and represent a more
detailed view of the requirement.

2.4.2.1 Actors

The actors in the system are shown in Figure 2.4.

1. Consumer is a person who wants to use the data made available by
the Administrator. He or she will typically be a developer and will use
the index server as a part of their application.

2. Administrator is a data publisher and the one setting up and running
the index server. He or she configures the server with data definitions
and other settings. He or she is a specialization of the Consumer and as
such all actions available to a Consumer is available to an Administrator
as well.

28



2.4. Solution using an index server

Figure 2.4: Actors of the index server

2.4.2.2 Use cases list

Identified use cases are shown in Figure 2.5. A more detailed description of
the use cases follows below.

UC1 Configure data definitions. Instructs the server to index data de-
scribed by a data definition. The definition file is a static TURTLE
RDF file adhering to the Andruian data definition vocabulary. The file
shall be accessible via HTTP/S. The data definitions may be added and
removed while the server is running.

UC2 Set up a repeated re-indexing task. Makes the server repeatedly
perform an incremental re-index of its configured data sources. A Cron
expression [35] may be defined in the server configuration file, which
is read on the server startup. This expression specifies when the re-
indexing should be triggered.

UC3 Trigger re-indexing. Allows the administrator to manually trigger
a re-index. This functionality will be available through a web UI and
exposed via a HTTP endpoint. The administrator may choose to re-
index incrementally, or to drop an existing index and completely recreate
it.

UC4 Add a data definition. Allows the administrator to add a new data
definition by entering a URL pointing to a RDF file. The file must be in
the Turtle serialization and contain one or more data definitions using
the schema defined in section 2.5.

UC5 Remove a data definition. Allows the administrator to delete any
data definition file URL from the system to delete all associated data
and stop it from being indexed.

29



2. Analysis

Figure 2.5: Index server use case diagram

UC6 List entities in JSON. Lists all entities indexed in the system in a
machine-readable JSON format.

UC7 Visualize entities. Shows entities indexed in the system on a map.

UC8 Filter by class. Extends use cases UC6 and UC7. Filter entities based
on their class.

UC9 Filter by class. Extends use cases UC6 and UC7. Filter entities based
on their location. The user chooses a circular area through latitude
and longitude of the center point and the circle radius and only entities
located inside this circle will be listed.

2.4.3 Domain model

A domain model provides an abstract view of entities present in the system.
It only contains domain-specific entities that can be identified in the previous
steps of analysis, it does not contain any implementation details.

30



2.4. Solution using an index server

Figure 2.6: Index server domain model

The domain model is shown in Figure 2.6. Below is a textual description
of what each entity represents.

Place is the main stored and indexed entity. A Place is created from an
instance of the source class and an instance of the location class that
is linked to it. It contains information about its location, URIs of the
two objects (source and location) it represents, and its type (an URI
identifying a subclass of rdfs:Class).

Property is an additional piece of information stored with a Place. A prop-
erty corresponds to the andr:SelectPropertyDef class in the frame-
work data definition schema. It may have a value of any type.

DataDefFile is a file hosted on the Internet at a particular URL. The file
contains one or more data definitions for the server to index. This entity
keeps a reference to the file URL and a cached list of data definition IRIs
contained in it to avoid having to look them up.

The index server will have to be able to work with the data definition
schema, so the domain also includes a representation of the schema defined
in section 2.5. This is, however, provided by the parser library and does not
need to be recreated here.

31



2. Analysis

2.5 Data definition vocabulary

This section is concerned with the definition of an RDF vocabulary which
describes the data definition schema. The schema is designed so that it con-
forms to the requirements on the framework informally discussed in previous
sections. Firstly, a general structure of the vocabulary is discussed and after-
wards a formal definition is presented.

2.5.1 Outline

There are two main components of the framework that need to be configured
- the source (user) data and RÚIAN data. This thesis is using RÚIAN as the
source of referential entities with location coordinates, but there is no reason
this particular data source has to be used. Allowing users to configure their
own data source as well as the location data source makes the framework
extensible and reusable. For that reason, we will refer to RÚIAN data and its
classes as location data and location classes from now on.

For both the source and the location data, the publisher will need to
specify a class. That will define which source class is being mapped to which
location class. They will also have to specify where the data can be found.
The framework expects that both source and location data are available via
SPARQL.

In order for the framework to be able to find the location classes’ latitude
and longitude, the configuration must provide information about how it is
linked to the class. In other words, every class in the location dataset to
which the data publisher may link their data must have an entry provided
in the configuration. The entry will specify the property path from the given
class to its coordinates. I expect that there will be a limited number of location
data sources, which will be reused by data publishers. To that end, it should
be possible to externalize this configuration and data publishers should be
able to reuse it. One such externalized definition is listed in the appendix of
this thesis, section B.4. It defines the property paths for all RÚIAN classes
discussed in subsection 2.1.1. This definition is ready to be used by data
publishers who use RÚIAN as their location source.

For the source data, the data publisher must specify the property path
linking the source class to a location class. In addition to that, the publisher
may specify a set of properties of the source class that should be downloaded
or indexed along with the instances of the class. This will help data consumers
find out what information about an entity is important and should be shown
to a user.

And optionally, the data publisher may provide information about an index
server where the data may be queried more effectively.

32



2.5. Data definition vocabulary

2.5.2 Formal definition

This section formalizes the outline of a data definition schema discussed be-
fore. The Andruian data definition vocabulary is described using the RDF
Schema language [13]. The diagram of the schema is shown in the appendix
in Figure C.1. The RDF file with the vocabulary in a Turtle serialization is
available on the medium included with the thesis and on http://purl.org/
net/andruian/datadef.

RDF Schema does not provide a mechanism for enforcing mandatory ob-
jects and properties. Nonetheless, the consumers of data definitions may
assume that certain objects and properties are present in the dataset with
certain cardinality. This requirement is shown in the schema diagram using
UML domain modeling terminology. The same approach has already been
used elsewhere, for example in the DCAT-AP specification [36]. All classes
marked as mandatory must be present in the schema. Similarly, all mandatory
properties of mandatory classes must be provided. Classes and properties not
marked as mandatory are optional. Unless specified otherwise, the cardinality
of properties is 1:1, meaning that a property may be defined for a particular
subject only once. If the property is also mandatory, it must be provided
exactly once for its subject.

The rest of this section describes elements defined by the vocabulary. Re-
sources whose name starts with a capital letter are classes and resources whose
name starts with a lowercase letter are properties, as per convention. For each
class in the vocabulary, applicable properties are mentioned and their meaning
described.

For easier understanding of the schema, it may help to inspect the vocab-
ulary diagram in Figure C.1 and the provided example of a data definition file
which uses this vocabulary. It is listed in the appendix, section B.3.

2.5.2.1 andr:DataDef

This is the root element of the data definition schema.

andr:sourceClassDef Mandatory property. Links to a definition of the source
data.

andr:locationClassDef Mandatory property. Links to a definition of the
location data.

skos:prefLabel Recommended property. A human-readable description of
the data. Multiple may be provided, one per language.

andr:indexServer Optional property. Links to an index server configuration,
if provided by the data publisher.

It must link to a source data and a location data definitions. Optionally
it may link to an index server, if set up by the data publisher.

33

http://purl.org/net/andruian/datadef
http://purl.org/net/andruian/datadef


2. Analysis

2.5.2.2 andr:SourceClassDef

This class defines the source data.

andr:sparqlEndpoint Mandatory property. Links to a SPARQL endpoint
URL, where instances of the class described by this data definition may
be found.

andr:class Mandatory property. Links to a Class.

andr:pathToLocationClass Mandatory property. Links to andr:PropertyPath.
The path will lead from the class referenced by the andr:class property
to the location class.

andr:selectProperty Optional property, may be specified multiple times.
Links to a definition of an important property.

2.5.2.3 andr:SelectPropertyDef

This class specifies an important property of a class. It is a suggestion for the
data consumer that it might be useful to show this property to an end-user.
It also instructs the index server to cache this property with the index so that
it can be served without needing to query the data sources.

s:name Mandatory property. Specifies a name that the value of this property
should be referenced as by the data consumer.

andr:pathToLocationClass Mandatory property. Links to andr:PropertyPath.
The path will lead to a resource or literal that should be used as impor-
tant.

2.5.2.4 andr:PropertyPath

This class is equivalent to a predicate or sequence SHACL property path [37].
SHACL does not define a RDFS class for property paths, but only refers to
them as to a plain rdf:Resource with a textual explanation. andr:PropertyPath
class is defined in Andruian data definition schema to make the diagram and
property domains easily readable.

A predicate or sequence path may be used wherever andr:PropertyPath
is expected. A predicate path is a single property in place of the object; a
sequence path is an RDF list containing two or more properties in place of
the object. For example, in Turtle notation:

# A predicate path formed by a single property
:subject :predicate example:aProperty .

# A sequence path formed by three properties
:subject :predicate ( example:a example:b example:c ) .

34



2.5. Data definition vocabulary

2.5.2.5 andr:LocationClassDef

This class defines the location data.

andr:sparqlEndpoint Mandatory property. Links to a SPARQL endpoint
URL, where instances of the class described by this data definition may
be found.

andr:class Mandatory property. Links to a Class.

andr:classToLocPath Optional property, may be specified multiple times.
Links to a specification of property path for a particular location class.

andr:locationClassPathsSource Optional property. Links to a source of
andr:ClassToLocPath objects.

andr:includeRdf Optional property. Points to an URL where an RDF file
is located and indicates that the contents of the file should be included
in the configuration dataset while parsing it.

2.5.2.6 andr:LocationClassPathsSource

A source of andr:ClassToLocPath objects. Useful when the data publisher
wants to use an external definition of paths from location classes to their lati-
tude and longitude coordinates. This object can be defined in a separate RDF
file. Data publishers may link to objects of this class and specify RDF files
where they are located via andr:includeRdf property. This is shown in Fig-
ure 2.7. An instance of this class, a source containing all the paths of RÚIAN
objects is provided as a part of this thesis. It is available in the enclosed CD,
ready-to-use from a static website9 and in the appendix, section B.4.

andr:classToLocPath Optional property, may be specified multiple times.
Links to a specification of property path for a particular location class.
The andr:LocationClassPathsSource will have one property per each
class for which it defines a location property path.

2.5.2.7 andr:ClassToLocPath

A specification of property paths for objects of a particular class linking the
object to its latitude and longitude coordinates. The coordinates pointed at
by the property path shall be literals that are decimals or strings convertable
to decimal numbers by applying the xsd:float() transformation.

andr:class Mandatory property. Specifies which class the property path
applies to.

9http://purl.org/net/andruian/location-sources/ruian

35

http://purl.org/net/andruian/location-sources/ruian


2. Analysis

Figure 2.7: Schema of including a remote RDF file

andr:lat Mandatory property. Links to andr:PropertyPath. The path will
lead to the specified class’ latitude coordinate.

andr:long Mandatory property. Links to andr:PropertyPath. The path
will lead to the specified class’ longitude coordinate.

2.5.2.8 andr:IndexServer

A specification of an index server where the data described by the data defi-
nition may be queried effectively.

andr:uri Mandatory property. The URL where the index server is listening.

andr:version Recommended property. An integer literal representing the
version of the index server. Its meaning is specific to clients and index
servers.

2.5.2.9 andr:sourceClassDef

A property linking an andr:DataDef to andr:SourceClassDef.

2.5.2.10 andr:sparqlEndpoint

A property linking an andr:ClassDef to a SPARQL endpoint URL. There
objects of the class defined in andr:ClassDef may be found.

2.5.2.11 andr:class

A property linking an andr:ClassDef to any rdfs:Class. This property
specifies which class is described by the andr:ClassDef.

36



2.5. Data definition vocabulary

2.5.2.12 andr:pathToLocationClass

A property linking an andr:SourceClassDef to a resource that is a SHACL
property path [37]. The property path leads from instances of the class spec-
ified by the andr:class property to instances of the location class specified
in andr:LocationClassDef.

2.5.2.13 andr:selectProperty

A property linking an andr:SourceClassDef to andr:SelectPropertyDef.

2.5.2.14 andr:propertyPath

A property linking an andr:SelectPropertyDef to andr:PropertyPath.

2.5.2.15 andr:locationClassDef

A property linking an andr:DataDef to andr:LocationClassDef.

2.5.2.16 andr:locationClassPathsSource

A property linking an andr:LocationClassDef to an andr:LocationClassPathsSource.
This property may point to a dataset separate from the rest of the data def-
inition schema is located in. In that case, the external dataset must be an
RDF file and it must be pointed to by the andr:includeRdf property.

2.5.2.17 andr:classToLocPath

A property linking to an andr:ClassToLocPath.

2.5.2.18 andr:includeRdf

A property linking an andr:LocationClassDef to an RDF file. When a data
consumer is processing the data definition schema, they will import the data
contained in the linked RDF file into their internal data model before resolving
any other links leading from the andr:LocationClassDef.

This property allows for a limited extensibility of the data definition by in-
cluding external sources. The intended use case is to include a separately pub-
lished andr:LocationClassPathsSource object containing information about
location classes the data publisher wants to link to. This case is depicted in
Figure 2.7, where an object is located in an external file (external-source.ttl)
and is being linked to by an object in the data definition RDF file.

Another possible solution to the problem of fetching RDF entities located
in remote datasets is using a IRI Resolver. The resolver is a separate service
which uses a database of known prefixes and locations to resolve entities lo-
cated in an external dataset [38]. That is, however, more complicated to set

37



2. Analysis

up as opposed to hosting a plain RDF file at a public server, which is why the
schema defines this property.

2.5.2.19 andr:lat

A property linking an andr:ClassToLocPath to an andr:PropertyPath. The
property path leads from instances of the associated class to a latitude coor-
dinate, which is a literal of type xsd:double.

2.5.2.20 andr:long

A property linking an andr:ClassToLocPath to an andr:PropertyPath. The
property path leads from instances of the associated class to a longitude co-
ordinate, which is a literal of type xsd:double.

2.5.2.21 andr:indexServer

A property linking an andr:DataDef to an andr:IndexServer.

2.5.2.22 andr:uri

A property linking an entity to its URI. The meaning of this property depends
on the entity it links from.

2.5.2.23 andr:version

A property linking to a numeric literal, denoting a version of the resource.

2.5.3 Data definition parser library

All data consumers will need to be able to read the data definition schema
to understand the data. This includes the index server and the Android app
prototype created as a part of this thesis, as well as any client application
created in the future. For that reason, the data definition parsing functionality
will be implemented as a standalone library, which will be able to transform
raw RDF data to object structure similar to the structure defined by the data
definition vocabulary.

This section provides an analysis of the needs on such a library.

2.5.3.1 Requirements

The requirements on the library are straightforward. It should be able to
consume data definitions in RDF text format and convert them to native
Java objects. The resulting object structure should reflect the data definition
schema.

38



2.5. Data definition vocabulary

Figure 2.8: Data definition parser library domain model

A single RDF file may contain several data definitions. As long as they
conform to the structure defined in section 2.5, the library will convert them
all and return a set of disjoint object hierarchies.

2.5.3.2 Domain model

The domain model shown in Figure 2.8 closely resembles the data definition
schema. Unlike the schema, it does not contain the LocationClassPathsSource
class. Its function is to provide several ClassToLocPath objects, which, after
being resolved, are linked directly to their LocationClassDef. The same ap-
plies for the includeRdf property. It is only useful while parsing and has no
function afterwards, which is why it is dropped from the model.

The DataDef entity contains a map member which represents the human-
readable labels for the data definition in different languages.

39



2. Analysis

2.6 Android app

This section introduces the Android application prototype which will be using
the Andruian framework. It is not intended to be feature-complete, but rather
a useful starting point for developing customized applications on top of the
framework. Firstly, the app requirements are formally defined and analyzed,
after which the use cases and domain model are created.

2.6.1 Requirements

This section defines the requirements on the application. The requirements are
purposefully vague and describe the overall functionality of the application.

F1 Data visualization. The app will allow users to visualize data pub-
lished in terms of the Andruian framework. The data to be displayed
may be restricted to a certain geospatial region.

F2 Device location. The app will work with the location of the device
and allow displaying data based on it.

F3 Remote data definition sources. The user will be able to customize
data to be shown by adding data definitions from remote URLs.

F4 Optional index server. The app will be able to fetch data from an
Andruian index server, if such a server is defined. If it is not, the app
will still be able to fetch non-indexed data.

2.6.2 Use cases

This section defines more fine-grained interaction scenarios of a user with the
app in the form of use cases. The use cases are based on the requirements
listed above.

There is only a single actor in the use case model, the app User. All
identified use cases belong to them.

UC1 Show data on a map. The data is shown on an interactive map. Each
data point has a marker.

UC2 Show data around the device. Extends UC1. The data shown may
be restricted to the vicinity of the device. The range is customizable.

UC3 Show data in a custom region. Extends UC1. The data shown may
be restricted to a particular user-defined region on the map.

UC4 Customize data source map markers. The color of the map markers
can be changed to a user-defined color.

40



2.6. Android app

UC5 Add a new data source. A new data source may be added by spec-
ifying a HTTP URL pointing to an RDF file in Turtle serialization. If
there are multiple data definitions, all of them are added.

UC6 Remove existing data source. An existing data source may be re-
moved from the app.

UC7 Hide and show data from a data source. Data from any data
source may be stopped from being shown on the map, without removing
the data source itself.

UC8 Show detailed information about a data point. Each data point
may be expanded to show detailed information about it, such as location
coordinates, source and location object IRIs, a human-readable label (if
provided), and all properties defined in the data definition.

UC9 Navigate to a data point. Each data point can be navigated to using
a third-party navigation app, such as Google Maps.

2.6.3 Domain model

The domain model is very similar to the model of the index server, since both
apps work with the same entities. Unlike the index server, the application will
not need the DataDefFile entity, because once a data definition file is parsed,
it will not be needed to keep track of the origin of the data it contains. The
application will work with the data definition class hierarchy provided by the
ddfparser library described in section 3.1. Other domain classes are Place
and Model, as described and shown in a diagram earlier, in section 2.4.3.

41





Chapter 3
Design

This chapter covers the design of the framework components. Firstly the
design of the data definition parser library is created. Secondly, the index
server is designed. Its design was created in two phases, after the initial one
proved to be insufficient for large data. Thirdly, the design of the Android
application is worked out.

3.1 Data definition parser library

This section discusses the design of the data definition parser library, named
ddfparser. Firstly, the libraries used for implementation are chosen. Then
the model of the parser component is created.

3.1.1 Technology

The library will be used both by the index server and the Android app. They
will both be built on Java, so the library will be implemented in Java as well.
It requires an external library for RDF parsing and because it will be used by
the Android app, the library has to be compatible with it.

Available libraries for RDF manipulation were introduced in section 1.3.
Out of the three RDF4J will be used, because it supports the most serializa-
tion formats (including Turtle, unlike the Semargl library). RDF4J will not
work on Android out-of the box due to the Android Runtime (ART) is missing
certain packages for working with XML. However, that is fairly straightfor-
ward to fix, as is explained later in subsection 4.1.1. That way the latest
version is always available and the library does not have to use ports of Jena
which are several years old.

For easy distribution and usage, the library will be packaged and available
as a Maven artifact.

43



3. Design

Figure 3.1: Data definition parser library class model

3.1.2 Class model

The class model of the library is depicted in Figure 3.1. All of the user-
facing functionality of the library is present in the DataDefParser class. The
parse() methods will take raw RDF text, an input stream or an RDF4J
model as a parameter, and return a list of DataDef objects, which will be
the roots of domain class hierarchies described in the previous section. Those
objects are located in the model package.

The parser class also provides methods for parsing parts of the data defini-
tion schema. Those methods take a RDF4J node and a model as arguments,
and return appropriate Java objects constructed from the node.

During the parsing two checked exception types may be thrown:

RdfFormatException is thrown when the format of the given text is not valid
and cannot be parsed by RDF4J.

DataDefFormatException is thrown when the format is correct, but the struc-
ture of the dataset does not conform to the Andruian data definition
schema.

The library supports parsing any RDF format that RDF4J supports. The
parse() methods accept a constant defined by the RDF4J API which identi-
fies the RDF serialization format that should be used.

The URI class is where all URIs needed for parsing are defined as constants.

3.2 Index server

This section is concerned with the design of the index server discussed previ-
ously in section 2.4. Firstly, a language and frameworks used for the imple-

44



3.2. Index server

mentation are chosen. Then the process of indexing data is discussed. This
includes the choice of a persistence solution which will allow for effective spa-
tial querying. Then the architecture of the solution is outlined and the HTTP
API that the clients may use to communicate with the server is defined. Next,
the configuration options of the server are briefly described. Lastly, the fea-
ture of server-side clustering is introduced, which was found to be necessary
after the initial prototype was implemented and tested in subsection 5.3.2.

3.2.1 Language and frameworks

The index server will be written in Java. Java is a mature, widely adopted
language with many resources and libraries and can run on any platform where
JVM is available.

The server will need to be able to read RDF files and parse the Andruian
data definition schemata. This will be handled by the parser library described
in subsection 2.5.3.

A framework used by the server will be the Spring Framework [39]. It
lets the application use the dependency injection pattern, which simplifies
modularization of source code. The framework also includes web support
for serving content over HTTP. Finally, it provides data persistence options
integrating with many popular data storage systems.

3.2.2 Indexing

A core functionality of the server is the spatial indexing of the configured data.
Firstly, the process of fetching data to be indexed is discussed. Secondly,
approaches for indexing and storing the data are discussed.

3.2.2.1 Indexing process

The indexing process will be realized through SPARQL queries. First, the
server fetches data definition files from the configured locations. The defini-
tion files are not large so repeated network requests should not be an issue.
Repeated downloading ensures that in the case of any data definition change,
all index servers that consume it will pick up the change automatically. The
downside is that the file must be reachable at the given URL every time the
indexing takes place.

After being downloaded, the data definition file needs to be parsed and
understood. Among others, it contains information about where the SPARQL
endpoints for Source and Location classes are.

The server will then build a select query to be sent to the Source SPARQL
endpoint. The query selects all required properties, i.e. the URI of the object,
its type, label, the URI of the associated location object, and all extra proper-
ties listed in the data definition. The query will contain a federated query [40]

45



3. Design

which will issue a sub-query to the Location SPARQL endpoint and retrieve
the location information of each object.

When reindexing incrementally, a FILTER clause is inserted into the query.
It filters out all source objects that already exist in the index server database
based on their IRIs.

The selected properties listed in a data definition are considered optional,
which means that all objects matching the definition will be indexed, regard-
less of them having or missing any of the properties. The client consuming
data from the index server must handle the cases when expected properties
might be missing. The query template is available in the appendix, section B.1.

After the data definition schema is read and the appropriate data is fetched
and transformed, it needs to be stored in a way that makes spatial queries over
it effective. The possible solutions for indexing, storing and querying spatial
data are discussed in the next sections.

3.2.2.2 SPARQL spatial querying

One possible approach to storing and querying spatial data is the family of
techniques introduced in section 1.4. Those techniques extend SPARQL with
various predicates that allow for geospatial filtering in the queries. Only some
triplestore engines implement each of the extensions, however.

The functionality required by the index server is searching for triples
around a certain point in a certain distance. All mentioned techniques of-
fer this functionality, and Jena Spatial explicitly shows how to speed queries
up by using an external index server. We will focus on it in the rest of this
section.

Jena Framework provides support for spatial SPARQL queries via the
jena-spatial module [23]. The data storage Jena-spatial uses is TDB, a
triple store, i.e. a database for RDF graphs. That alone would not perform
well for spatial queries so Jena also uses Lucene or Solr to index spatial infor-
mation about the data stored in TDB. The diagram is shown in Figure 3.2.

An advantage of this approach is the fact that the SPARQL server, Jena
Fuseki, can use TDB as its data storage. Users then can access this indexed
data over HTTP using SPARQL and run custom queries on it. They are not
bound by the data format of the responses from the index server.

Unfortunately, at the time of writing, the documentation for Jena Spatial
is not particularly thorough and the only Java example code linked to crashes
at runtime.

Furthermore, serving data to clients directly from a SPARQL endpoint
would not allow the index server to perform any custom query processing.
That proved to be necessary after the initial implementation, because the
Android client was not able to handle large amounts (1̃00.000) of data points
and so the data points in the query response had to be pre-clustered by the
index server.

46



3.2. Index server

Figure 3.2: Components of Jena Spatial

3.2.2.3 Solr

Another approach to the persistence or, in other terms, indexing layer, does
not use Jena to store data. This approach converts the data returned from
the index query to Plain Old Java Objects (POJOs) and those are then saved
in a storage that supports spatial indexing. Solr is one such storage system
that is robust, battle-tested and has a great community and resources.

Solr documentation states that two modes of operation are supported - a
schema-based and schema-less. The schema-less mode is more flexible - the
data types of unknown fields are guessed based on the content of the first such
field encountered. However, this is not recommended for production use and
when a field type is guessed incorrectly, subsequent writes may cause errors
due to the guessed data type being incompatible with the value to be inserted.
The preferred mode of operation is one where a schema is defined. The schema
states details of fields of objects stored in the database. A field is identified
by a name and has a data type. Each field may optionally be indexed.

Because each indexed place may have any number of additional properties,
a dynamic behavior is necessary. Solr schema offers dynamic fields, which are
similar to regular fields, but instead of having a name, they have a wildcard
pattern. Any field whose name matches the pattern will be indexed as defined
by the dynamic field settings.

The relevant section of the Solr data schema for the Andruian index server
follows:

<field name="location" type="location_rpt"
indexed="true" stored="true"/>

<field name="type" type="string" multiValued="false"
indexed="true" stored="true"/>

<field name="iri" type="string" multiValued="false"

47



3. Design

Figure 3.3: Indexing using Solr and MongoDB

indexed="true" stored="true"/>
<field name="locationObjectIri" type="string" multiValued="false"

indexed="true" stored="true"/>
<field name="label" type="string" multiValued="false"

indexed="false" stored="true"/>
<dynamicField name="*_dynstr" type="string" multiValued="false"

indexed="false" stored="true"/>

• Field location contains latitude and longitude as plain string in the
format lat,long. Solr knows how to parse this format and index based
on it. Type location rpt is required over the type location, because
it allows for heatmap faceting. That is a Solr feature used for server-side
clustering discussed in subsection 3.2.7.

• Field type contains the type of the object - IRI of its RDF class. It is
indexed so that queries selecting a particular place type may be executed.

• Field iri contains the unique IRI of the place.

• Field locationObjectIri contains the IRI of the location object that
is linked to the stored object.

• Field label contains a human-readable name of the place.

• Field * dynstr matches all fields with the dynstr suffix. It is used to
store all additional properties associated with the object.

The whole Solr configuration schema is provided on the enclosed medium
and on the indexer GitHub page [41].

Spring Framework, which is used by the index server, offers support for
communicating with Solr. The developer only needs to define an interface
with method declarations following a certain pattern and the framework does
the heavy lifting of implementing those methods. That simplifies the imple-
mentation of the persistence layer. The diagram depicting this setup is shown
in Figure 3.3.

This setup, leveraging Solr, will be used in the implementation of the index
server.

48



3.2. Index server

3.2.3 Architecture

The general architecture of the index server is straightforward. It can be
thought of as a three-layer architecture. The first layer is the controller layer,
which handles interaction with users over HTTP. It processes the HTTP re-
quests and calls appropriate methods on classes in the service layer. The
service layer then processes data and stores them using the persistence layer.

The persistence layer leverages Solr for indexing places and uses MongoDB
to store server configuration data. The communication with the triple store
where source linking data is located is facilitated by SPARQL over HTTP.
This allows the triple store to be at a separate location than the index server.
The communication should not pose a major overhead, because the majority
of time it takes to receive a response is spent by the triple store evaluating the
query internally. I have analyzed the option of allowing the index server to use
Jena’s TDB triple store data storage directly. However, the documentation
states that this is advised against:

A TDB dataset should only be directly accessed from a single JVM
at a time otherwise data corruption may occur. (...) If you wish to
share a TDB dataset between multiple applications please use our
Fuseki component which provides a SPARQL server that can use
TDB for persistent storage and provides the SPARQL protocols for
query, update and REST update over HTTP [42].

The component diagram in Figure 3.4 shows a broad structure of the server
application. This view works on a higher level of abstraction; the components
do not directly correspond to classes and packages but show a logical structure
of the system [43]. The Controller component forms the controller layer, the
DAO component forms the persistence layer and the rest of the components
form the service layer. Components outside of the bounding box are external
to the application.

The Controllers component is responsible for handling communication over
HTTP. That includes displaying a GUI for browsers and responding to HTTP
API queries. It processes the incoming request and delegates business logic to
the Services component. Services use DAO for persistence-related functions
and SparqlQueryBuilder to create queries to be sent to a Sparql endpoint
via the Net component. The DataDefFetcher is responsible for fetching data
definition files by getting raw data from a server via the Net component and
processing the response by using the ddfparser library.

3.2.4 Class model

A more fine-grained view of the system is shown in Figure 3.5. A class diagram
shows classes and their packages in the system. This section describes the
purpose of each package and classes.

49



3. Design

Figure 3.4: Component diagram of Andruian index server

3.2.4.1 controller package

This package is responsible for handling HTTP requests. It is divided into
two more packages - rest and ui. The former contains classes which provide
API functionality for client applications, described in subsection 3.2.5. The
latter deals with the GUI for human users.

These classes are annotated as @Controller for the Spring MVC frame-
work.

3.2.4.2 service package

This package provides the business logic. IndexService handles all index-
related operations and QueryService performs queries on behalf of the Con-
troller layer. PostStartupService is only invoked after the server starts, to
perform initialization tasks, such as indexing or reindexing of configured data
definitions. IndexCron fires repeatedly, as often as defined by the user.

3.2.4.3 net package

The net package handles tasks related to Internet communication. The DataDefFetcher
downloads RDF files and uses the ddfparser library to convert them to native

50



3.2. Index server

Figure 3.5: Class diagram of Andruian index server

Java objects representing the data definition. NetHelper is a utility class pro-
viding a simple interface for HTTP requests. SparqlConnector is responsible
for performing SPARQL queries and processing their results.

3.2.4.4 rdf package

A single class belongs to this package, IndexSparqlQueryBuilder. It is used
to create SPARQL queries based on data definitions. The queries are then sent
to endpoints through other components and the returned data is indexed.

3.2.4.5 dao package

This package provides data persistence. The entities that need to be persisted
are Place and its properties, and configuration-related entities, such as a list
of URLs to data definitions. All functionality related to data persistence is
accessible via PlaceDAO.

51



3. Design

3.2.4.6 config package

This package contains definitions of Spring Beans, Spring Web security con-
figurations and others.

3.2.4.7 model package

The model classes are located in this package.

3.2.4.8 exception package

All custom Exception types used by the index server are located here.

3.2.4.9 root package

The IndexerApplication is the main class of the Spring Context. Util
contains miscellaneous utility functions.

3.2.5 HTTP API

This section describes HTTP API endpoints exposed by the index server.

3.2.5.1 GET /api/query

Perform a data query based on the given parameters. Returns a JSON list of
objects, each object describing one indexed place.

Example:

http://localhost:8080/api/query
?lat=49.74468693637641
&long=13.37622390978595
&r=1.011
&type=http%3A%2F%2Fexample.org%2FAClass

Parameters:

lat Floating point number. Latitude of the spatial search center. If used,
then all three of lat, long, r must be used.

long Floating point number. Longitude of the spatial search center. If used,
then all three of lat, long, r must be used.

r Floating point number. Radius in kilometers. If used, then all three of lat,
long, r must be used.

type String. If provided, only show objects of the given RDF class.

52



3.2. Index server

count Boolean. Defaults to 0, enable by 1. If true, only return the number of
objects that would be returned by the query and do not actually return
the objects. (responseType 0)

Response formats Each response has a type identified by the responseType
key and a body identified by the responseBody key. The types are following:

0 When only the number of places is being returned.

1 When places matching the query are being returned.

Below are listed JSON examples of the responses. The first one is a re-
sponse to a query with count parameter enabled.

{
"responseType": 0,
"responseBody": 42

}

The second one is a “regular” query.

{
"responseType": 1,
"responseBody": [
{

"iri": "http://src.com/https%3A%2F%2Fruian.linked.opendata.cz
%2Fzdroj%2Fadresnı́-mı́sta%2F25821318",

"type": "http://example.org/SourceObjectA",
"locationObjectiri": "https://ruian.linked.opendata.cz/zdroj/

adresnı́-mı́sta/25821318",
"label": "Americká 1",
"properties": {
"StreetName": "Americká",
"PSC": "12000",
"StreetNum": "1"

},
"latPos": 50.070746,
"longPos": 14.439492

},
...

]
}

iri is the unique identifier of a particular place.

type is the place’s RDF type (i.e. its class).

53



3. Design

locationObjectIri is the IRI of the location object that the place is linked
to.

label is a human-readable label of the place, taken from the skos:prefLabel
or s:name RDF property, if exists. If no label can be determined, this
field will fall back to the place IRI.

properties contains a list of name-values. Names are the names of properties
as defined in a data definition and values the corresponding values of
those properties.

latPos, longPos are location coordinates of the place.

3.2.5.2 POST /api/admin/reindex

Trigger a reindex of all or a particular data definition.
This request requires a basic HTTP authorization of the admin user defined
in the application configuration.
Body parameters:

dataDefUri String. If provided, only the data definition with this URI will
be reindexed. It must be defined in the application config. If not pro-
vided, all data definitions are reindexed.

fullReindex Boolean. Defaults to 0, enable with 1. If enabled, all existing
data for the data definition being reindexed is dropped first, and the
whole index re-built.

3.2.5.3 GET /api/admin/datadefs

List the URLs of all data definition files being indexed by the server and the
data definitions they contain.

No parameters.

Response format

[
{
"fileUrl": "https://example.com/example-datadef.ttl",

"dataDefIris": [
"http://foo/dataDefA"

]
}
...

]

54



3.2. Index server

3.2.6 Configuration

Some aspects of the index server are configurable. The configuration is pro-
vided by creating a file named application.properties in the same folder
as the runnable jar file. These are the supported properties:

indexing.cron A quartz cron expression [35] defining when to run incremen-
tal reindexing.

indexing.onstart If true, an incremental reindex will be run on application
startup.

db.solr.url URL to a Solr server, e.g. http://localhost:8983/solr

db.solr.collection Name of a collection or Solr core to use to store objects.

spring.data.mongodb.uri URI of a MongoDB database.

admin.username A username for the admin account.

admin.password A password for the admin account.

server.port A port for the server to listen to when running in the embedded
mode.

logging.file A path to the log file.

The accepted file format is Java Properties Format [44], for example:

indexing.cron = 0/30 * * * * *
indexing.onstart = true
admin.username = JohnDoe
admin.password = secret

3.2.7 Server-side marker clustering

After the index server and Android client app were implemented based on
the initial design, the performance of the app was lacking when it came to
showing a large number (tens of thousands) of places. Even though the client
application was able to cluster places together to avoid cluttering the map, the
place data still had to be kept in memory. Depending on the number of places
required to show, this made the app sluggish, unresponsive and memory-
intensive to the point it would crash due to running out of heap space. This
is discussed further in subsection 5.3.2.

To mitigate that, we introduce the option to perform server-side clustering
of places in the event that the number of the places in a response should be
too high. This functionality is available through a new parameter to the data
query endpoint previously defined in subsubsection 3.2.5.1:

55



3. Design

clusterLimit Integer. Specifies the upper limit of how many places may
be returned without being clustered. If not provided, they are never
clustered.

If the number of places is lower than the limit, a response of type 1,
described earlier, is returned. Otherwise, a new response type identified with
number 2 is returned. The body of the response is a list of clusters. Each
cluster contains its position and the number of places that belong to it:

{
"responseType": 2,
"responseBody": [
{
"placesCount": 5,
"latPos": 50.07072687149048,
"longPos": 14.455454349517822

},
{
"placesCount": 3,
"latPos": 50.070555210113525,
"longPos": 14.457128047943115

},
{
"placesCount": 1,
"latPos": 50.07042646408081,
"longPos": 14.455368518829346

},
{
"placesCount": 2,
"latPos": 50.07038354873657,
"longPos": 14.455196857452393

}
]

}

Internally, the clustering functionality of the index server leverages Solr’s
Heatmap Faceting feature. That allows clients to request a heatmap of spatial
data covering a specified geographical area. A heatmap is essentially a grid
projected over a portion of a map, with each cell of the heatmap aggregating
data from its region. The size of the region is calculated by Solr in a way so
that the number of grid cells forming the heatmap is constant, regardless of
the size of the area the heatmap covers[45].

The designed architecture of the index server does not need to change
much to accommodate for this added functionality. A new class is intro-
duced into the model, representing a cluster of places. A new Data Access

56



3.3. Android app

Object, ClusteredPlaceDAO is added to the architecture to facilitate faceted
querying. The Spring Data for Apache Solr component used for non-faceted
communicating with Solr does not support the full extent of query options
required by the faceted queries, nor is it able to deserialize the Solr response
into cluster objects. For that reason, the ClusteredPlaceDAO communicates
with Solr through custom-crafted HTTP queries and deserializes its responses
into PlaceCluster objects.

The details of this process are discussed further in the thesis, in subsec-
tion 4.2.4.

3.3 Android app

This section covers the design of an Android application prototype which was
outlined in section 2.6. First the language, libraries and frameworks used
are described. Then the UI/UX is designed using lo-fi mockups for each
application screen and logical connections among them. The next section
talks about the broad architecture of the application, which is then described
in detail in the last section.

3.3.1 Language and frameworks

There are two officially supported languages for Android - Java and Kotlin.
Both languages are built on JVM and compile into JVM bytecode. They are
interoperable, meaning that one can directly call the other. The app will be
written in Java, as at this point in time I am more familiar with it.

The app will use several common framework and libraries.

OkHttp [46] is used as a HTTP client. It’s stable and has an easy-to-use
API.

Butterknife [47] is a small library which helps reduce boilerplate code when
inflating Android Views. By using Java annotations, views and con-
stants are automatically bound to their variables and lookups do not
have to be implemented by hand.

Room [48] is a persistence library, providing an abstract layer over the na-
tive Android storage system, SQLite. The library is similar to ORM
tools, such as Hibernate, but better suited for mobile apps. It is able to
seamlessly save and load data classes with primitive attributes. It does
not, however, automatically load whole object hierarchies. The reason
is, according to the library creators, the limited resources of mobile de-
vices and the need for responsiveness. Quite often the app only needs
to load and work with a particular object and does not need to load all
the objects it references. One solution to this issue is lazy loading, but

57



3. Design

the way the Room library works is more low-level. Through Java anno-
tations child entities define some of their attributes to be foreign keys of
their parents. This allows the framework to check integrity constraints
and delete child relations from the database when their parent is deleted.
If a referenced object needs to be retrieved, it must done so manually by
calling the appropriate database query method. The library generates
code communicating with the database based on user-defined interfaces
and SQL query templates.

Mockito [49] is a mocking framework for unit testing in Java. It allows for
fine-grained testing thanks to replacing dependencies of objects under
test with friendly fake objects with pre-determined, simple behavior.

Espresso [50] is a testing library for automated UI tests. It can simulate
a user interacting with the app under test and make assertions about
what should be happening on the screen of the device. It is intended to
be run on a real device or an emulator and for that reason it is slower
than simple unit tests.

3.3.2 User Interface

In this section the UI/UX design of the app is discussed. A mockup of the
application flow and its screens is created to visualize the general look and
feel of the app.

The first section below introduces the color schema of the application.
Each following section below covers one of the screens and describes its pur-
pose. The whole user interface flow is shown in a diagram in the appendix,
Figure C.3.

3.3.2.1 Color scheme

A color scheme is an important visual feature of an Android application user
interface. With Android 5.0 Lollipop Google introduced the most comprehen-
sive set of guidelines on how to design Android applications. The guidelines
define a so-called called Material Design, which describes the user interface as
an abstraction of sheets of paper and ink [29]. Applications designed in accor-
dance to the Material Design philosophy are primarily defined by three colors.
The primary color is the most ubiquitous one, used for toolbars throughout
the application. A primary dark color is a darker version of the primary color,
intended to look as if the primary color was covered by a shadow. Finally,
an accent color is a color that should complement the primary color, but be
different enough to stand out. It is used for important buttons and visual
elements that should draw the user’s attention.

I created the color scheme using Adobe’s online color wheel tool [51]. The
wheel helps with finding a palette of complementary colors that are aestheti-

58



3.3. Android app

Figure 3.6: The color scheme of the ViewLink app.

From top: primary, dark and accent color.

cally pleasing together. The color scheme used in the Android application is
shown in Figure 3.6. The topmost color is the primary color, the middle is its
dark version and the bottom color is the accent.

3.3.2.2 Main screen

The home screen is the main screen the user will interact with. It is formed by
a fullscreen map which displays markers of the enabled data definitions and
the user’s location. The map is interactive and can be dragged around. It will
center on the user’s location and follow them by pressing the GPS indicator
button in the bottom right corner.

The places shown will be automatically refreshed when necessary as the
map moves. A potential refresh event will be generated on each map move-
ment, which may be automatic, when following the device location, or manual,
triggered by the user dragging the map. The event will lead to refreshing the
places if the current map viewport is sufficiently different than the last view-
port the places were updated for. This will be determined by creating a sub-
viewport, a rectangle, every time the map is moved, and calculating whether
this whole sub-viewport is visible in the last-updated viewport. If it is, no
update is needed. Otherwise, a refresh will be triggered and the last-updated
viewport replaced with the new one.

Clicking a map marker will bring up a pop-up label describing the label.
Clicking on this label will show a screen with detailed information about the
given place, discussed in subsubsection 3.3.2.3.

Clicking the burger menu icon on the top left will expand a drawer menu
from the left side of the screen. The menu will contain a list of all data sources
configured in the app with a switch which can be used to enable or disable
any data source. On the bottom of the list a button is located, which opens
the data source configuration screen.

59



3. Design

Figure 3.7: The home
screen of ViewLink app

Figure 3.8: The home
screen of ViewLink app
with drawer menu open

Figure 3.9: The
place details screen of
ViewLink app

3.3.2.3 Place details screen

This screen, shown in Figure 3.9, shows all details about a place defined by its
data source. Some properties are default and defined for all places, and some
properties can be defined by the data publishers through the Select Property
mechanism in the Andruian data definition schema. This screen shows all that
data in text form. When a value contains a link, clicking that link will open
a browser with it.

3.3.2.4 Data sources screen

The data sources screen shown in Figure 3.10 lists all data sources registered
in the app. Each of them shows a caption or a link to the data source,
information about the source and location object class and its assigned color.

Clicking the color circle will bring up a color picker dialog, where the user
can change the marker color for this data source. This dialog is shown in
Figure 3.11.

Clicking the FAB on the bottom right of the screen brings up screen for
adding a new data source, which is discussed in subsubsection 3.3.2.5.

3.3.2.5 Add data source screen

This screen, shown in Figure 3.12, contains a single text field, where the user
enters a URL to a data definition file. Tapping the FAB downloads the file
pointed to, parses it and adds one or more new data definitions to the app
configuration, or reports an error with the communication or parsing.

60



3.3. Android app

Figure 3.10: The data
sources configuration
screen

Figure 3.11: The data
source color choosing
dialog

Figure 3.12: The add
data source screen

3.3.3 Architecture

A common Android architecture follows the Model-View-Presenter pattern.
In this architecture, a View is a plain object from the Android framework,
such as an Activity. It implements a View interface and is only responsible
for notifying its Presenter with events and displaying data as instructed by
the Presenter. No business logic should be located there.

A Presenter is a mediator between a View and the Model. It is notified
of events, knows how to react to them, and invokes appropriate methods of
the View and Model layers. The Model is responsible for data storage and
retrieval. It is often considered to also encompass what would usually be called
a service layer - a layer providing functionality such as network communication
or device location. A diagram of this architecture is shown in Figure 3.13.

The high-level component diagram of the ViewLink app is shown in Fig-
ure 3.14. The components inside the boundary ViewLink app belong to the
application while the components outside are external - libraries, data storage
systems or remote servers.

3.3.3.1 Persistence

The application will need to persist information about the data definitions it
is set up with. For that it will leverage the Room library, at a cost of a slight
complication. In order to persist objects of a class through the Room library,
the class must be annotated using Room annotations and may not contain
references to instances of other complex classes. This requirement forces the
application to have a separate class hierarchy that mirrors the DataDef class

61



3. Design

Figure 3.13: The Model-View-Presenter pattern [6]

Figure 3.14: ViewLink app Component model

62



3.3. Android app

hierarchy of the ddfparser library, with slight adjustments made to accom-
modate for the Room library. The class diagram of this DataDef hierarchy is
shown in Figure C.2.

3.3.4 Package model

The classes that form the application are divided into several packages based
on their concerns. A diagram of the package is shown in Figure 3.15. The
responsibility of each package is discussed further in this section.

3.3.4.1 data package

The concern of this package is data manipulation. The NetHelper inter-
face provides convenience methods for accessing data over the Internet. The
DataDefHelper interface defines a contract for fetching data definitions con-
verted into internal Java objects. Both of those classes are instantiated via
their Provider classes, which makes subsequent unit testing easier thanks to
being able to provide mock objects instead of real implementations.

The package also contains two subpackages. The first one, place, handles
fetching data specified in data definitions. The PlaceFetcher, given a Data
Definition object, fetches Places from a remote source. If an index server is
defined, it is used first. If there is no index server defined or fetching from it
results in an error, the resolution falls back to the naive solution (section 2.3)
and attempts to resolve data from SPARQL an endpoint.

The persistence subpackage provides an interface for the rest of the
application to the Room persistence library. It defines Room-annotated inter-
faces that define database queries to be implemented by the library, as well as
primitive-to-complex type conversions in the Converters class, and the main
Room database class AppDatabase. The class ParserDatadefPersistor is
responsible for persisting DataDef objects received from the ddfparser li-
brary. Because the application has its own DataDef hierarchy (for reasons
discussed in subsubsection 3.3.3.1), this class also acts as an adapter from the
library classes to the app classes.

3.3.4.2 model package

The model package is concerned with the data classes present in the applica-
tion. The package is divided into three subpackages. The first one, datadef,
contains classes representing a data definition. There needs to be a separate
hierarchy to the one already defined in the ddfparser library as discussed
in the previous section and in subsubsection 3.3.3.1. The class diagram for
classes of this package is shown in the appendix, Figure C.2.

The place package defines classes representing the data to be fetched and
shown on the map. Each Place is represented by one marker on the map and

63



3. Design

Figure 3.15: ViewLink app package model

refers to a single instance of the Source Class in the Andruian framework. A
Place has an optional list of properties, which are simple key-value pairs.

The ui package contains classes that tie the model and the UI together.
Both classes are subclasses of the RecyclerView.Adapter abstract class de-
fined by the Android framework. They are used to show lists of elements on
the screen by the RecyclerView widget.

3.3.4.3 util package

This package contains miscellaneous utility classes, such as a wrapper class
for the result of an AsyncTask which may be a result or an exception, or a
class to simplify the process of asking the user for permission and obtaining
their location.

3.3.4.4 ui package

This package contains all the classes forming a user interface and handling
user interaction. Each of the subpackages corresponds to one screen in the
application workflow. Each screen consists of two interfaces - the View and

64



3.3. Android app

Figure 3.16: Subpackages of the ui package

Presenter - and their implementations. A detailed ui package diagram is
shown in Figure 3.16.

The base package defines interfaces and abstract classes implementing
those interfaces that are common for all screens. An example of a shared
concern is showing messages to the user, keeping and exposing a reference to
the Application context and the associated View or Presenter.

Package main contains classes forming the main screen of the application
showing a map to the user. The classes in srcmgr package make up the
datasource management screen and classes of addsrc package constitute the
screen for adding a new data source. The place detail screen is only formed
by a single activity, because it does not have any complicated workflow to
warrant a definition of View and Presenter interfaces.

3.3.5 Client-side marker clustering

The Andruian framework does not limit the amount of data that can be pub-
lished and so, theoretically, it may be required to show a marker for every
address place in the Czech Republic. The Google Map API does not opti-
mize displaying a large amount of markers in any way and so even though the
markers would overlap, they would still all be rendered. This would cause map
cluttering, strain the CPU and potentially make the application unusable.

A solution to this problem is marker clustering. When the map is zoomed
in in such a way that two or more markers overlap, a cluster marker is created
that acts as a placeholder for the place markers in its proximity. The cluster
marker is colored the same as the place markers it represents, and differs only

65



3. Design

in shape. The cluster marker also shows the order of magnitude of the number
of contained markers.

The implementation details of marker clustering as well as relevant screen-
shots are discussed in subsubsection 4.3.2.1.

3.3.6 Server-side marker clustering

The client-side marker clustering proved to be useful for de-cluttering the map,
but in order for the application to handle displaying large quantities of data,
a server-side clustering functionality was introduced in subsection 3.2.7. To
accommodate for this change in the server, several adjustments must be made
in the app design.

On the most abstract level, the architecture does not need to change.
The changes are isolated only to some classes. As in the case of the in-
dex server, a new model class is added to represent a cluster of places. The
IndexServerPlaceFetcher class responsible for fetching data from an index
server must be changed to send queries containing the clusterLimit param-
eter and to accept the new response type - a list of clusters instead of a list
of places.

Classes in the ui.main package are the last to require a change. The
presenter must be able to handle receiving clusters as well as places from the
service layer and the view has to be able to show both types of objects on the
map.

The visual look of the server-side clusters is identical to the look of client-
side clusters. The user should not know whether the application has data
about any actual places hidden inside a cluster or not.

66



Chapter 4
Implementation

This chapter consists of the implementation process of the three components of
the system - the parser library, the index server and the Android application.
All source code and testing data are provided on the enclosed medium and on
the GitHub Andruian page[52].

4.1 Data definition parser library

The source codes of the parser library are publicly available on GitHub10.
The library can be downloaded via Maven or Gradle from Bintray11 with the
group ID cz.melkamar.andruian and the artifact ID ddfparser.

The GitHub repository contains detailed instruction about how to use the
library. The API is straightforward and contained in a single class. Parsing a
text in the form of an InputStream is as simple as:

InputStream is = null; // Provide your own
List<DataDef> l = new DataDefParser().parse(is, RDFFormat.TURTLE);

The library depends on RDF4J, particularly on the artifact rdf4j-rio-turtle
of group org.eclipse.rdf4j. This artifact must be on the Java classpath
when using the ddfparser library. If using Maven or Gradle, this is done
automatically through a transitive dependency.

The ddfparser library is capable of parsing RDF serializations based on
the RDF4J artifacts provided on the classpath. In its basic version, only Turtle
is supported. To allow parsing other RDF formats, appropriate artifacts must
be added to the project’s build.gradle file and the library rebuilt.

10https://github.com/andruian/datadef-parser
11https://bintray.com/andruian/releases

67



4. Implementation

4.1.1 Using parser library on Android

In order to use the ddfparser library on Android, the Xerces2 library must
be provided [53]. This can be done either manually or by specifying it as a
dependency in the Gradle build system. However, including the Xerces library
may pose some stability risks, which are further elaborated in subsection 4.3.4.

4.2 Index server

This section covers the implementation of the index server. The server struc-
ture and components have already been discussed in the previous chapter and
the implementation is only a realization of it. The design outlined in earlier
parts of this thesis proved valid and no major changes had to be made during
the implementation. Therefore, this section is brief and only describes topics
not covered before.

The source code is commented and publicly available on GitHub12.

4.2.1 Build system

The Andruian Index Server, or Indexer for short, uses the Gradle build sys-
tem. It provides a convenient way of automating build-related tasks, such as
dependency management, automated testing and application packaging.

The implementation leverages Spring Boot, a project on top of the Spring
framework, which takes an opinionated view on Spring configuration. It sim-
plifies development with Spring by offering a set of pre-defined starter POMs,
which are library and configuration bundles related to a certain implementa-
tion aspect, such as web development or security. It also removes the need
for tedious XML configuration and provides a sane set of defaults and cus-
tomization through Java annotations. Furthermore, Spring Boot implements
a Gradle task that produces a standalone, production-ready runnable JAR
file including all dependencies and an embedded web server. This greatly
simplifies both development and deployment of the server. [54]

4.2.2 Web GUI

The web graphical interface is a simple tool for quick visualization of the data
indexed on the server. The implementation uses the Spring MVC framework
and Thymeleaf templating engine for generating pages.

The GUI constitutes of two screens:

Home screen is a screen with an interactive map and a form allowing users
to query and visualize the data. It uses the Google Map JavaScript API
to show a map and populate it with markers [55]. The number of markers

12https://github.com/andruian/indexer

68



4.2. Index server

Figure 4.1: Query visualization screen

shown is limited due to performance reasons. The limit is customizable
through the ui.maxPointsShown configuration key. A picture of this
screen is shown in Figure 4.1.

Administration is a screen showing the current configuration of the server.
It is only available after logging in as the administrator. It allows the
administrator to add a new data definition by providing a URL to a RDF
file where one or more data definitions are provided. The administrator
can also trigger full or incremental reindexing for a data definition, drop
any indexed data or remove a data definition source from the system.
Each action is performed on all data definitions located in a specified
RDF file. The screen is shown in Figure 4.2.

4.2.3 Reporting of indexing progress

One thing not discussed in the design chapter is the fact that indexing is a
task that may take a long time. It must not be implemented as blocking,
or the administrator would have to wait for the task to complete before they
could interact with the system again.

The server implementation uses asynchronous methods provided by the
Spring framework through the @Async annotation. When a user triggers
reindexing, the asynchronous method is called and it immediately returns a

69



4. Implementation

Figure 4.2: Administration screen

CompletableFuture object. This object is a wrapper around the result value
that may be available in the future. The Future is stored in an internal list
and the control returned to the user.

Whenever the Administrator page is loaded, the UI controller sends a
request to a service to poll all running jobs and retrieve their current status.
If the Future does not contain any value, the job is still running. If it contains
a value, it has already finished and is removed from the running pool. If it
contains an exception, something wrong happened during the execution and
the indexing failed. The controller then presents this information to the user.

4.2.4 Server-side marker clustering

This section delves deeper into the implementation of processing a faceted
heatmap query response from Solr, which is used to cluster markers on the
server.

Below is an example of the format of the faceted query response. The
heatmap data is identified by the facet heatmaps key. The data is formed
by an array of metadata values and a nested array describing the position of
clusters and the number of places in them.

The response does not contain the geospatial coordinates of the clusters.
Instead, it only provides the bounding rectangle of the heatmap grid region
through minX, minY, maxX and maxY coordinates and the number of grid cells
through columns and rows. The number of places belonging to each grid cell
is represented via a 2D array. The outer index of the array denotes the row
and the inner index of the array denotes the column. Whenever the whole

70



4.2. Index server

row is empty, a null is passed instead to save bandwidth.
In the following example, there are no clusters anywhere except the 4th

row. Inside that row, there are 3 places contained in the second cell, 2 places
in the fourth cell, 5556 in the 18th cell and 42 in the 27th cell.

{
"responseHeader":{

...
},
"response":{

"numFound":107307,
"start":0,
"docs":[

{
"iri":"http://src.com/adresnı́-mı́sta%2F21922179",
"type":"http://example.org/SourceObjectA",
"location":"50.00653,14.413629",
"locationObjectIri":"https://example.org/21922179",
"label":"Amortova 1",
"srcddf_dynstr":"http://foo/dataDefA",
"StreetName_prop_dynstr":"Amortova",
"PSC_prop_dynstr":"14300",
"StreetNum_prop_dynstr":"1",
"_version_":1598026549471215616

},
...

]
},
"facet_counts":{

"facet_queries":{},
"facet_fields":{},
"facet_ranges":{},
"facet_intervals":{},
"facet_heatmaps":{

"location":[
"gridLevel",2,
"columns",32,
"rows",32,
"minX",-180.0,
"maxX",180.0,
"minY",-90.0,
"maxY",90.0,
"counts_ints2D",[

null,

71



4. Implementation

null,
null,
[
0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,5556,
0,0,0,0,0,0,0,0,42,0,0,0,0,0

],
...
null,
null]]}}}

In order to calculate the position of each cell on a map, the bounding
rectangle defined in the response is divided evenly based on the number of
rows and columns. That gives us the width and height of each cell. The
coordinates of each cluster are then calculated by adding a certain multiple
of cell widths or heights to the bounding rectangle’s left or top coordinates,
respectively. This results in the coordinate of the top left edge of each of the
cells. To center, half of the cell’s width and height is added to the result.

A special case might occur due to the coordinates “overflowing” and a small
correction is required. This has already been discussed in subsection 1.4.1.
This way of calculating the position of clusters is not absolutely precise. How-
ever, as the user zooms in on the map, the clusters will be re-queried over a
smaller area and so the imprecision will not be noticeable.

When processing a query, the server needs to determine how many places
would fall into the query result. The number of places is then compared to
the clusterLimit parameter and the server either responds with a list of
places or list of clusters. Processing a clustering query is significantly faster
than processing a regular query, especially when covering large ares, such as
the whole Czech Republic. Based on experiments during the implementation,
responding to a cluster query is up to 10 times faster than responding to a reg-
ular query. For that reason, when a data query is being processed, the server
always internally performs a clustering query. That results in a collection of
clusters from which the total number of places may be easily calculated. This
number is then compared to the clusterLimit parameter. If the number
of places is smaller than the limit, a regular query is executed and its result
returned. Otherwise, the cluster collection is returned without any further
processing.

4.3 Android app

The implementation of the Android application, ViewLink, is discussed in this
section. Implementation details that were not discussed in the design section
are addressed here. Also, a gallery of screenshots is provided and compared
to the mockups put forward during the design.

72



4.3. Android app

Figure 4.3: ASyncTask sequence diagram

4.3.1 Asynchronous UI

An issue in Android programming that was not raised in the design stage is
the inherent asynchronous nature of the system. An Activity is a basic build-
ing block of the application and represents a single screen the user interacts
with. Navigating to a different screen usually means instructing the Android
framework to create a new instance of a different Activity and launch it for
the user to see.

When an Activity is being instantiated by the system, various listeners are
typically attached to visual elements of the UI. Whenever the user interacts
with an element in a particular way, the system calls the listener’s predefined
method and thus gives control to the application. The application can now
react to the event however it sees fit. In the architecture used by the ViewLink
app, a method of the Activity’s Presenter is usually invoked. The Presenter
handles the logic of what that event means and eventually gives control back
to the Android system.

The issue is that the scenario above is executed on the application UI
thread. The system cannot update the UI or react to events for as long as the
thread is being blocked by the application. Blocking the UI thread for a time
as short as 16 milliseconds can lead to visual lag that the user may notice.
Blocking the thread for more than 5 seconds will cause the system to show an
Application not responding dialog suggesting to kill the application.

73



4. Implementation

The solution is to make sure that long-lasting tasks are executed asyn-
chronously, off the UI thread. Some functionality is deemed inherently long-
lasting and will result in application crashes if run on the UI thread at all - for
example, networking. Database access in general may be performed on the
UI thread, but Google’s Room persistence library, used by the application,
requires its methods to be executed off the UI thread as well, else it throws
an exception.

This restriction means that most of the application functionality executed
outside the View and Presenter needs to be asynchronous. However, the ar-
chitecture does not differ greatly from the one put forward during design. Any
operation that requires network or database access is executed asynchronously
from the Presenter layer using an ASyncTask. That is a utility class supplied
by the Android framework for operations that need to be run in the back-
ground, but are not long-lasting (such as a messenger application waiting for
events and displaying notifications would be). The Presenter implements call-
backs that are invoked on the main thread once the asynchronous execution
completes. The control is then returned back to the View and the Android
system. An abstract diagram of this process is shown in Figure 4.3. The
lifeline objects in the diagram are only abstract entities, not actual objects in
the system.

An exception thrown during the asynchronous execution would lead to
the app crashing, and catching the exception without giving the user any
information would be bad design. To accommodate for that a generic wrapper
class was implemented for easier handling of AsyncTask results. The class
implements two constructors - one for the type of the actual result and one
for the Exception type. Every consumer of the ASyncTask result value is
responsible for checking whether this wrapper object contains a correct result,
or an exception. If an exception is found, the consumer should display it to
the user in a manner depending on the current application context. [56]

4.3.2 Screenshots

This section shows screenshots of the implemented application. Although the
screens are based on the mockups realized in section 3.3, there are several
differences in the final app.

The drawer menu shown in Figure 4.5 contains one more button than was
shown in the mockup - the settings button. Tapping it brings the user to the
settings screen where he or she can adjust the application behavior. Currently
the only supported option is whether to automatically update markers on the
map as the user drags the map view. Enabling it results in a higher data
consumption, so some users might prefer to only update markers manually.

The place detail screen is shown in Figure 4.6. Unlike its mockup coun-
terpart, it uses Material elements, such as card views to show a list of items,
and a collapsible header toolbar with a main action button.

74



4.3. Android app

Figure 4.4: The main
screen of the ViewLink
app.

Figure 4.5: The drawer
menu of the ViewLink
app.

Figure 4.6: The place
detail screen of the
ViewLink app.

4.3.2.1 Client-side marker clustering

The implementation of client-side map marker clustering uses a utility library
provided separately from the Map API, the Marker Clustering Utility [57].
The library provides the ClusterManager class, which acts as an adapter
between the data source and the map. The application does not populate
the map directly, instead it provides data to be shown to a ClusterManager,
which determines which markers to render directly and which to group to-
gether before passing that information to the map. There is one instance of
ClusterManager for each data source being shown. Multiple ClusterManager
objects are necessary in order to display the cluster markers in different colors.
The marker grouping is shown on the screenshot in Figure 4.4.

4.3.3 Server-side marker clustering

Zooming in on the map requires special handling when displaying server-side
clusters. When only client-side clusters are displayed, all the underlying place
data is actually available to the application. The marker clustering library is
notified when the map is zoomed and performs reclustering, perhaps displaying
some places as separate markers. No communication with the data source is
needed as long as the user is looking at a portion of a map which has already
been queried for.

However, when displaying a server-side markers, it is necessary to perform
a query every time the user zooms in. That way, the server may perform
clustering over smaller area and provide data with higher detail.

75



4. Implementation

Figure 4.7: The data
definition manager
screen of the ViewLink
app.

Figure 4.8: The color
picker dialog of the
ViewLink app.

Figure 4.9: The new
data definition screen
of the ViewLink app.

4.3.4 Using ddfparser library

The RDF4J component used by the ddfparser library does not work on
Android out-of-the-box. Including and using the library with no further de-
pendencies results in the following exception:

Caused by: javax.xml.datatype.DatatypeConfigurationException:
Provider org.apache.xerces.jaxp.datatype.DatatypeFactoryImpl

not found
at javax.xml.datatype.DatatypeFactory.newInstance()
at org.eclipse.rdf4j.model.impl.AbstractValueFactory.<clinit>
at org.eclipse.rdf4j.model.impl.SimpleValueFactory.getInstance
at org.eclipse.rdf4j.rio.RDFFormat.<clinit>

RDF4J expects the org.apache.xerces library to be present in the class-
path. This is the case with JVMs distributed with full-fledged JRE and
JDKs[58], but not the case with ART. Besides being embedded with Java
releases, Xerces is also distributed as a Maven artifact[53]. Including this
artifact in build.gradle of an Android project fixes the issue.

However, another problem arises when the application is built in the release
variant. The build process terminates with an error stating that there is an
”Ill-advised or mistaken usage of a core class (java.* or javax.*) when not
building a core library.”. The full error message, very explicit in its warning,

76



4.3. Android app

can be found for example on StackOverflow13. This is because by default
the release build process checks whether a class is being implemented in the
core Java package namespace, as it may potentially cause clashes with core
libraries in future Android versions.

The suggested workaround is to repackage classes so that they are not
located in the core java package. That is not a viable solution in this case,
however. Repackaged versions of Xerces already exist to allow a smooth usage
on Android[59]. But RDF4J uses the ServiceProvider mechanism and looks
for a provider of a particular name, which is supplied by the Xerces library[60].
Renaming the Xerces classes causes this lookup to fail with the error whose
stacktrace is shown above.

A possible solution could be rebuilding the RDF4J library with a changed
name of the dependency, but that would mean maintaining a separate branch
for Android compatibility. I did not pursue this approach further. Instead I
acknowledged the possible risks and instructed the build process to ignore its
warning by using the --core-library flag.

13https://stackoverflow.com/questions/18266853/attempted-to-fix-androids-
ill-advised-or-mistaken-usage-of-a-core-class-went-b

77

https://stackoverflow.com/questions/18266853/attempted-to-fix-androids-ill-advised-or-mistaken-usage-of-a-core-class-went-b
https://stackoverflow.com/questions/18266853/attempted-to-fix-androids-ill-advised-or-mistaken-usage-of-a-core-class-went-b




Chapter 5
Testing

This chapter first covers the automated testing process of all the implemented
components. Afterwards, it lays out user scenarios according to which the
components have been tested. The scenarios are designed so that they can be
followed along by the reader. Finally, the results of a stress test are presented,
where the performance of the implemented framework is assessed.

Whenever it is mentioned that sources are available at GitHub, they are
also available in the enclosed medium.

5.1 Automated testing

This section briefly explains the automated testing process of the data defini-
tion parser library, the Android application and the index server.

5.1.1 Data definition parser library

There are automated unit tests for each parsing function of the library. The
tests execute the parsing methods of the library against a set of data definition
files. The parsed objects are then run through a series of checks to verify
everything was parsed as expected.

With every push into the GitHub repository a build is automatically trig-
gered on Travis CI[61] to verify whether the automated tests succeed or not.
The build results are published back to GitHub via a status badge icon.

The tests are available on GitHub in the ddfparser repository[62].

5.1.2 Android app

This section discusses the testing of the Android application ViewLink. The
same approach has been applied to it as with the Index server - some func-
tionality has been tested automatically, and the complete flow has been tested
manually.

79



5. Testing

The core functionality of the app has been tested automatically using the
Espresso UI testing framework. The tests include the manipulation of data
definitions and assertions that map markers are being shown as expected.

The tests are available on GitHub in the viewlink repository[63].

5.1.3 Index server

Automated tests using JUnit4, Mockito and SprintBootTest were written to
check the indexing and HTTP API functionality. Those tests are run with
every push to the project GitHub repository.

The tests are available on GitHub in the indexer repository[41].

5.2 User scenarios

This section lists user scenarios for testing the Android application and in-
dex server. Scenarios for both components begin with the simplest ones and
continue to the more complicated ones.

5.2.1 Android app

The application has been tested manually using the following scenarios to en-
sure all use cases identified during the analysis in section 2.6 are covered. The
scenarios are described in the following sections. They start with installing
the application and then explore the functionality the application has to offer.

The scenarios in this section are intended to be executed on a real mobile
device. In order to make typing links easier, they will be shortened using the
Google URL Shortener service[64]. The scenarios are “incremental” in the
sense that a latter scenario may require completing a prior one.

5.2.1.1 Installing and opening the application

The first step of testing the application is installing it. The easiest way to
install the application is through Google Play. The application may be found
either by searching for viewlink in Google Play or on URL https://goo.gl/
GsjZdN.

After the application has finished installing, open it by tapping the ViewLink
icon in the application drawer.

5.2.1.2 Adding a data source

1. Open the drawer menu by tapping the top left corner or by dragging the
left edge of the screen inwards.

2. Tap the Manage data sources button to open the Manage datasources
screen.

80

https://goo.gl/GsjZdN
https://goo.gl/GsjZdN


5.2. User scenarios

3. Tap the plus button on the bottom right side of the screen to open the
Add datasource screen.

4. Enter URL containing a data definition. To use an example data def-
inition, enter the following URL: goo.gl/dDxRSd. It points to several
thousands of address places in Prague whose streets begin with a con-
sonant.

5. Confirm your selection and wait for the data definition to be parsed.

6. The Manage datasources screen should be shown. Verify that a new
entry with the name Consonant street names has been added to the
data definition list. The entry further contains the IRI of the data
definition (http://foo/dataDefConsonant) and indicates which source
class is being mapped to which location class.

7. Optionally change the marker color of the data definition by clicking the
colored circle.

5.2.1.3 Displaying data on the map

1. Make sure that at least one data definition is set up in the application.
If not, refer to scenario in subsubsection 5.2.1.2.

2. Open the drawer menu by tapping the top left corner or by dragging the
left edge of the screen inwards.

3. Enable any number of data definitions by tapping the switch buttons
next to their names. The switch button reflects the color of the markers.

4. Close the drawer menu. Tap the focus location button on the bottom
right side of the screen to center the map on the device location, or
manually drag the map view.

5. A loading indicator should be shown in the top right corner of the map
while places are being fetched. When that is finished, markers will be
shown on the map.

6. Zoom in the map to view individual markers.

7. Zoom out the map to make the markers cluster together.

5.2.1.4 Changing the auto-refreshing behavior

By default the application will refresh markers shown after the map is moved
by the user. This behavior may be disabled.

1. Drag the map around and verify that markers are being automatically
refreshed.

81

http://foo/dataDefConsonant


5. Testing

2. Open the drawer menu by tapping the top left corner or by dragging the
left edge of the screen inwards. Tap the Settings button.

3. A Settings screen will open. Disable the Update map markers automat-
ically switch.

4. Navigate back to the map view by tapping the back button.

5. Drag the map around and verify that instead of automatically refreshing
markers, a button on the top of the screen is shown.

6. Tap the Show places in this area button. Verify that markers are re-
freshed for the current map view.

7. Revert the setting to the original (enabled) state.

5.2.1.5 Displaying a large amount of places on the map

When a large amount of data is to be shown, it is pre-clustered on the server
side before being sent to the client application. This scenario uses an existing
data definition that contains hundreds of thousands of places to test that case.

1. Add a new data definition to the app by entering this URL: goo.gl/
3AQ3iq. For detailed steps refer to the scenario in subsubsection 5.2.1.2.

2. After the data definition finishes parsing and is shown in the Manage
datasources screen, navigate back to the map.

3. Center the map on Prague.

4. Zoom out the map. At a certain level of zoom the clusters shown should
form a uniform grid. The grid is calculated by the index server instead
of relying on the mobile device.

5.2.1.6 Displaying detailed information about a place

1. Make sure that at least one data definition is set up in the application
and some of its markers are shown on the map.

2. Position the map so that a single marker is visible. If only clusters are
visible, zoom in on one of them until a single marker appears.

3. Tap the marker to show its label.

4. Tap the marker label to open up the Place detail screen.

5. Verify that the Place detail screen shows information about the place.
The amount of information shown is determined in the data definition
containing the inspected place.

82

goo.gl/3AQ3iq
goo.gl/3AQ3iq


5.2. User scenarios

6. Tap the navigation button to start a Google Maps navigation to the
place. Afterwards, press the back button to navigate back to the app.

7. Verify that some of the property cards contain buttons. A button is
shown when the content of the corresponding card is understood by
the application. Currently the application recognizes URLs and GPS
coordinates.

5.2.1.7 Displaying data without an index server

So far, all the scenarios used data definitions that relied on data provided by
an index server. In this scenario, we will test how the app behaves when no
such server is available.

1. Add a new data definition to the app by entering this URL: goo.gl/
fzgPPi. For detailed steps refer to the scenario in subsubsection 5.2.1.2.

2. Verify that the Manage datasources screen contains a data definition
named A street names, no index.

3. Navigate back to the map.

4. The map should show the spinning bar indicating places are being fetched.
This may take over 10 seconds.

5. Verify that after the places have been fetched, the markers behave iden-
tically as if they were fetched from an index server. That includes clus-
tering and tapping individual markers.

5.2.2 Index server

The web interface of the index server has been tested manually according to the
scenarios listed below. An instance of the index server is set up for demonstra-
tion purposes and publicly available here: http://andruian.melkamar.cz/.
The administrator username is melka and the password 1234.

5.2.2.1 Displaying data on a map

The index server provides a simple interface for displaying the data currently
indexed. It is intended to only be used for debugging purposes and so does
not have the feature set of the Android application.

1. Open the URL http://andruian.melkamar.cz in a web browser.

2. Click on Prague. Verify that a marker has been placed on the map and
the form fields Latitude and Longitude have been populated with the
coordinates of the created marker. Change the radius field to ”1”.

83

goo.gl/fzgPPi
goo.gl/fzgPPi
http://andruian.melkamar.cz/
http://andruian.melkamar.cz


5. Testing

3. Click the Show button. The page should reload and markers should be
shown around the place you selected.

4. Check the Cluster markers checkbox and enter ”100” to the Radius text
field.

5. Click the Show button. The page should reload and display markers that
are evenly spaced, forming an incomplete grid.

5.2.2.2 Removing and adding a data definition to be indexed

1. Open the administration tab of the index server at URL
http://andruian.melkamar.cz/admin.

2. If a login screen is shown, enter melka as the username and 1234 as the
password and confirm.

3. If the data definition list contains URL https://goo.gl/9oxPha or a
long URL ending with streets-starting-with-a-datadef.ttl, click the Drop
indexed data button next to one of them and then delete them from the
server using the Delete button.

4. Add a data definition source URL https://goo.gl/9oxPha to the Man-
age data definitions text input and click the Add button.

5. The page should refresh and a message box at the top of the page will
inform you that a data definition has been added. Depending on the
server configuration, it may automatically start indexing, which would
be written in another message. If the indexing did not start, trigger it
manually using the Full reindex button.

6. The indexing should take about 30 seconds. Refreshing the page contin-
uously will show the indexing progress. The indexing time is discussed
more thoroughly in section section 5.3.

7. After the indexing finishes, verify that the server has indexed 714 places
for this data definition.

8. Optionally add the URL of the data definition to the Android application
and verify that it may be used successfully. Detailed steps are described
in subsubsection 5.2.1.2.

5.2.2.3 Adding new data to a triple store

This scenario explains how to upload new data to a Fuseki triple store.

84

http://andruian.melkamar.cz/admin
https://goo.gl/9oxPha
https://goo.gl/9oxPha


5.2. User scenarios

Figure 5.1: Schema of the testing dataset

An example dataset is already created and available in the
andruian/example-data GitHub repository14. The data was created by run-
ning a SPARQL CONSTRUCT query against the RÚIAN SPARQL endpoint.
The query is listed in the appendix, section B.5. The schema of the resulting
data is shown in Figure 5.1.

1. Open the Fuseki web interface at URL http://fuseki.andruian.melkamar.cz/.
Log in using username admin and password some-secret.

2. Navigate to manage datasets and open the add new dataset tab. Choose
any name for your new dataset and click create dataset.

3. In the list of datasets available on the server, click the upload data button
next to your newly created dataset. In the next page click the select
files... button and choose the streets-starting-with-a-1.ttl file you can
either download from GitHub15 or find on the enclosed medium in the
example-data folder. Click the upload button.

5.2.2.4 Creating a new data definition

In this scenario we create a new data definition file and use it to index the data
added in the scenario from subsubsection 5.2.2.3. The final data definition can
be found in the appendix, section B.6.

1. Use an existing data definition as a starting point. A suitable one is pro-
vided in the appendix, section B.3, which is used in this scenario. This
definition is also available on the enclosed medium, under example-data
with name streets-starting-with-aeiou-datadef.ttl.

14https://github.com/andruian/andruian/tree/master/example-data/datasets/
incremental

15https://github.com/andruian/andruian/blob/master/example-data/datasets/
incremental/streets-starting-with-a-1.ttl

85

http://fuseki.andruian.melkamar.cz/
https://github.com/andruian/andruian/tree/master/example-data/datasets/incremental
https://github.com/andruian/andruian/tree/master/example-data/datasets/incremental
https://github.com/andruian/andruian/blob/master/example-data/datasets/incremental/streets-starting-with-a-1.ttl
https://github.com/andruian/andruian/blob/master/example-data/datasets/incremental/streets-starting-with-a-1.ttl


5. Testing

Figure 5.2: Determining a SPARQL endpoint in Fuseki UI

2. Give a unique IRI to the data definition. Change the :dataDefVowel
to any IRI. It does not have to actually be dereferencable. It is also
recommended to change the skos:prefLabel describing the data definition.

3. Change the details of :sourceClassDef :

a) Change the andr:sparqlEndpoint to the endpoint you have created
during scenario in subsubsection 5.2.2.3. The URL of the endpoint
may be determined from the query tab, as shown in Figure 5.2.

b) Change the andr:class to the IRI of the source class,
http://example.org/SourceObjectATest. The data structure is shown
in Figure 5.1.

c) Change the andr:pathToLocationClass to reflect the path from the
source class to the location class. The path is shown in Figure 5.1
and consists of a single predicate - <http://link.to.ruian>.

d) Keep a single andr:selectProperty entry, describing the sole prop-
erty of the source class, skos:prefLabel.

4. The location definition will remain the same, because the new data is
linking to AdresńıMı́sto classes in RÚIAN.

5. Publish your data definition so that it is accessible via HTTP/S. A good
tool for testing is Pastebin[65], where you can paste the created data
definition. After publishing the definition there click the RAW button
to obtain a direct link to the plain text.

6. The data definition is now ready to be used. Refer to scenario subsub-
section 5.2.2.5 to continue working with the new data definition.

86



5.2. User scenarios

5.2.2.5 Incremental indexing of new data

This scenario illustrates incremental indexing of the new data which was up-
loaded to the Fuseki server during scenario 5.2.2.3. The data definition corre-
sponding to this data was created during scenario 5.2.2.4.

The scenario consists of three parts. Firstly, we remove any traces of
possible previous testing with the new data. Then we index the data currently
loaded in the triple store. Finally, we upload more data to the triple store and
perform an incremental reindex.

1. Open the administration tab of the index server at URL
http://andruian.melkamar.cz/admin.

2. If a login screen is shown, enter melka as the username and 1234 as the
password and confirm.

3. If the data definition list contains any data definitions with 383 or 714
indexed places, first drop their indexed data and then remove them all
from the system.

4. Add the URL of the data definition published in scenario 5.2.2.4 and
trigger a full reindex.

5. After the indexing ends, verify that 383 places have been indexed.

6. Following scenario 5.2.2.3, upload file streets-starting-with-a-2.ttl into
the triplestore into the same dataset as previously.

7. In the indexer web admin interface, trigger an incremental reindex for
your dataset.

8. After the reindexing has ended, verify that 714 places are now indexed.
You may view the incremental query that was executed by clicking the
Show indexer log button and browsing through the application log.

5.2.3 Further testing data

More testing datasets are available in the andruian GitHub repository16.
They were created using a SPARQL CONSTRUCT query based on the template
construct-query.sparql which is located in the same folder as the data def-
initions. The structure of the constructed data is shown in Figure 5.3. The
structure is similar, but richer than the structure of the data used in scenario
5.2.2.4. The data covers address places in Prague, Czech Republic, and is
divided into several datasets based on the first letter of the street the address
place is on.

16https://github.com/andruian/andruian/tree/master/example-data/datasets

87

http://andruian.melkamar.cz/admin


5. Testing

Figure 5.3: The structure of testing data

A large dataset, containing almost 4.000.000 triples out of which 400.000
are indexable places, is also available for testing. It is further discussed in
section 5.3.

5.3 Stress test

In order to assess the performance and the limits of the index server and
framework, a stress test was performed. The data for the test was constructed
from RÚIAN using the LinkedPipes ETL tool[66]. The server was a rented
VPS with a single-core 1.7GHz CPU and 4GB RAM. The index server had
heap space capped at 1.5GB, Fuseki at 1.2GB.

The testing Android device was a Nexus 5X.
The structure of the data was similar to the testing data used and described

in subsection 5.2.2. The difference is that it was not limited to Prague, but
covered the whole Czech Republic. Each building (ruian:StavebńıObjekt) in
RÚIAN has information about whether it features an elevator. A building can
either have it, not have it, or be unspecified [67].

Three datasets were created from these three categories and are available
on the enclosed medium17 and GitHub18. There are about 360.000 triples in
the dataset containing places with an elevator, about 460.000 triples in the
dataset containing places where an elevator is undefined and about 3.950.000
triples in the dataset containing places without an elevator. Note that due to
the structure of the testing data, 10 triples are generated from a single place
in RÚIAN.

5.3.1 Index server

It took the index server about 7 minutes to index the places with an elevator.
However, the first 6 minutes were spent waiting for a reply to the indexing

17In folder stress-data
18https://github.com/andruian/stress-data

88



5.3. Stress test

Triples Places Indexing time
2.000.000 200.000 62 min
3.000.000 300.000 89 min
3.950.000 395.000 118 min

Table 5.1: Indexing times with dual-core 2.8 GHz CPU and 12GB of RAM

query from the source triplestore. The time the index server needed to index
the data once it received them was less than a minute. The number of places
where an elevator was undefined was similar to the number of places with an
elevator, so the performance for that dataset was not measured.

When attempting to index the full 3.950.000-triples dataset, Fuseki ran out
of JVM heap space after processing the indexing query for about 85 minutes.
Consequently we tried reducing the number of triples to about 2.000.000.
Fuseki answered the query after about 63 minutes, but this time the Index
server ran out of heap space while processing the response. When the input
dataset was reduced to about 1.500.000 triples, the index server was able to
successfully process it in 49 minutes. The index consisted of about 150.000
places, each place corresponding to 10 triples in the original dataset.

The stress test shows that the indexing server is sensitive to the amount
of memory available. 4GB was not sufficient for MongoDB, Solr, Fuseki,
Indexer and Nginx. However, 4GB of RAM is arguably a small amount and
most servers will have more of it. One possible way to decrease the memory
footprint is to stop using MongoDB for storing the server configuration and
save it locally or in Solr, where an appropriate schema would have to be
created. Another possible improvement would be using a scrollable cursor for
indexing in chunks instead of requiring all the data to be loaded into memory
at once. This is outlined further in section 6.3.

In order to verify that having more operating memory at our disposal will
allow the index server to process larger datasets, the indexer stack was de-
ployed in a virtual machine on a more powerful computer. It was not accessible
from the Internet, however, so its use was limited to indexing and displaying
data on a client application running inside an emulator. The computer had
16GB RAM and dual-core Intel Core i7 processor running at 2.8GHz. The
virtual machine could utilize 12GB of RAM. The maximum heap space for
both the index server and Jena Fuseki was set to 4GB. With this setup, in-
dexing larger datasets was successful. Table 5.1 shows the indexing times for
various sizes of the dataset.

5.3.2 Android application

Initially, the server did not support server-side clustering. Without this fea-
ture, displaying data in the area of the whole Czech Republic on the Android

89



5. Testing

client was not successful. The index server was able to respond to the query
in about 7 seconds, but the Android application was not able to show the
data, ran out of memory and crashed. The reason is the fact that all the
data contained in the server response is converted into POJOs and passed to
the map cluster manager to display. The cluster manager internalizes all the
objects given, regardless of how many will be shown. If one was to zoom in
from the country level to the street level without re-querying the data, all the
places would still be shown, because all of them are kept in memory.

The failure to display large areas prompted a slight change to the design
and implementation which allowed the server to generate clusters of places
without sending them all to the client. That change is discussed in several
sections throughout chapter 3 and chapter 4. After the change the Android
application was able to handle all the testing data served from the index server
with no issues.

5.3.3 Data loading times

This section summarizes the loading time required to show data of different
sizes with or without an index server. It provides an overview of the dataset
sizes that may be used without an index server.

5.3.3.1 Querying data without an index server

This section presents the experimental results of displaying data of various
sizes in the Android application without using an index server. The experi-
ment was performed using the same hardware described earlier in section 5.3.

The data structure is identical to the one described earlier. The data was
created by running a SPARQL CONSTRUCT query on the RÚIAN endpoint.
For every RÚIAN object matched, 10 triples were created. The queries con-
tained a LIMIT clause, limiting the number of results returned to the query.
The IRI of resources in a dataset were unique across all datasets of vari-
ous sizes. In other words, if a RÚIAN object appeared in two different-sized
datasets, the resulting IRI of resources created from it was different.

Table 5.2 shows the loading times for various sizes of the dataset. Triples
from datasets of all sizes were loaded into a single Jena Fuseki endpoint. The
results show that the framework may be used comfortably without an index
server for small datasets, up to about 100 places. Datasets of sizes 300 or even
700 could still be used without an index server, but the loading time would be
very noticeable. Judging from the linear time increase, the application would
theoretically be able to handle datasets containing up to 3000 places with the
current timeout setting (30 seconds). However, a loading time of 30 seconds
is too high for a comfortable usage.

90



5.3. Stress test

Triples Places Loading time
100 10 0.889 s
1000 100 1.678 s
3000 300 3.647 s
7000 700 7.652 s
15000 1500 15.524 s
50000 5000 Timeout after 30 s

Table 5.2: Android app data loading times without using index server

5.3.3.2 Querying data with an index server

Most of the time required to execute a query and display data in the client
application is taken by the index server. As explained in subsection 4.2.4, a
precise lookup of places is only executed after a quick clustering query deter-
mines that there are not enough places to warrant being clustered. That means
that the worst-case scenario time-wise is displaying non-clustered places, as
both clustering and non-clustering query needs to be executed. However, the
duration of the non-clustering query is limited by the fact that it is always
executed over a predetermined maximum number of elements (otherwise they
would be clustered).

A good threshold value for the number of places to show before they should
be clustered was experimentally determined to be 1000. Using this value, the
loading time was never higher than 2 seconds and was in most cases lower than
1 second. Experiments were also made with an Android emulator querying an
index server deployed on a more powerful local machine, as described at the
end of subsection 5.3.1. The loading times stayed the same even when using
the largest testing dataset containing 395.000 places (3.950.000 triples).

To conclude, the Android application was able to display testing data of
all sizes seamlessly.

91





Chapter 6
Deployment

This section provides a detailed set of instructions about how to generate,
deploy or install various elements of the Andruian framework. Firstly, in-
structions are provided about how to create a data definition describing the
structure of data linked to a location data source. Secondly, the deployment
process of the index server is described. Lastly, the installation of the Android
application is explained.

6.1 Integrating linked data to the Andruian
framework

In order to publish a dataset linked to RÚIAN or any other location source
using the Andruian framework, these steps should be followed:

• Publish your linked data so that it is accessible via SPARQL over HTTP.

• Create a data definition file using the RDF vocabulary discussed in sec-
tion 2.5. An example of such a file is shown in the appendix of this
thesis, section B.3, in the enclosed medium and in the project’s GitHub
repository19. Publish this file somewhere publicly accessible. For a more
detailed guide, refer to subsubsection 5.2.2.4.

• Optionally set up the index server and set it up to index the data defi-
nition created above.

• Set up client applications to use the URL of the published data definition
file.

19https://github.com/andruian/andruian/tree/master/example-data

93



6. Deployment

6.2 Index server software stack

This section describes how to deploy the index server and the services it de-
pends on - Apache Solr, MongoDB and a triple store - Jena Fuseki in par-
ticular. First each component is described separately, and then a guide for
Docker Compose is provided, simplifying the deployment of the whole stack
to a simple command.

6.2.1 Solr

The index server requires a Solr instance which has a core set up using a partic-
ular configuration set. The configuration is provided on the medium supplied
with the thesis and is available from the Indexer GitHub repository[41].

First, download the Solr distribution from the project download page20.
Unpack the archive and run the following commands in the unpacked folder,
supplying your own path to the Solr configuration:

$ bin/solr start
$ bin/solr create_core -c andruian -d "/path/to/andruian_configset"

Then, in the application.properties, supply the index server with set-
tings db.solr.url and db.solr.collection pointing to the url of the server and the
name of the core created (the -c name argument).

6.2.2 MongoDB

MongoDB does not need any configuration. Simply download and run the
database21, or use the cloud solution, and provide the configuration key spring.data.mongodb.uri
in application.properties.

To start MongoDB, first create a folder to store the database in and then
start the database with the --dbpath parameter:

$ mkdir /data
$ bin/mongod --dbpath /data

6.2.3 Apache Fuseki

Apache Fuseki is used to store and server RDF data and its setup is extremely
simple. Download the Fuseki archive from the Jena download page22, unpack
it, and start the server using the following command:

$ ./fuseki-server
20http://lucene.apache.org/solr/downloads.html
21https://www.mongodb.com/download-center
22https://jena.apache.org/download/

94



6.2. Index server software stack

6.2.4 Index server

The index server may be built from source or obtained as a release JAR. The
sources are located in the Indexer GitHub repository[41] and on the enclosed
medium. The release JARs are also provided on the medium and published
as Releases in the same GitHub repository as the.

The deployment of the index server itself may be done in two ways - using
an external servlet container to deploy a WAR file, such as Tomcat or Jetty,
or by running the self-contained JAR file. Both deployments are functionally
equivalent, but unless the reader already has a servlet container deployed, it
is easier to run the JAR file. WAR files are not provided and must be built
from source.

To run the JAR file, invoke this command, substituting the JAR filename
for whichever version you are running. The java executable must be in PATH.

$ java -jar indexer-1.0.0.jar

The default configuration of the server expects Solr and Mongo to be
accessible on localhost on their default ports, 8983 and 27017, respectively.
To change the server configuration, place the application.properties file
in the same folder as the JAR. The configuration is described in detail in
subsection 3.2.6.

The index server was tested with Java 1.8.0 131.

6.2.5 Docker and Docker Compose

The deployment can be greatly simplified using Docker and Docker Compose.
A docker-compose.yml file is available on the enclosed medium and in the
Indexer GitHub repository[41] in the docker subfolder. The Docker Compose
setup uses unchanged Fuseki[68] and Mongo[69] images, a slightly customized
Solr image [70] and a custom-made image for the Indexer server based on the
OpenJDK 8 image[71].

The customized images are automatically rebuilt anytime a new tag with
format x.y.z is pushed into the Indexer GitHub repository. All of x, y, z
must be integers. The tag of the image corresponds to the git tag. The latest
Docker tag is updated with the newest tag automatically. The automatic build
is facilitated by the Docker Cloud service[72].

The docker-compose.yml file is crafted to be plug-and-play. Simply run
docker-compose -d up while in a directory with the file and the whole stack
comes up. If required, the components may be customized by mounting con-
figuration files for them before starting up. For more information refer to the
docker-compose.yml and the image homepages.

95



6. Deployment

6.2.5.1 Ports

The ports exposed by the Docker containers where the services are accessible
are the following:

3030 : Jena Fuseki

8080 : Andruian Indexer

8983 : Apache Solr

27017 : MongoDB

6.2.6 Testing instances

As mentioned in the Testing chapter, a Andruian Index server stack is running
and available for testing. Below is a list of services and URLs they are available
at:

http://fuseki.andruian.melkamar.cz : Jena Fuseki. Credentials admin /
some-secret.

http://indexer.andruian.melkamar.cz : Andruian Indexer. Administrator
credentials melka / 1234.

http://solr.andruian.melkamar.cz : Apache Solr.

http://andruian.melkamar.cz:27017 : MongoDB.

6.3 Android app

The ViewLink application can be installed in two ways. One way is manually
delivering the signed release APK file to the target device and opening it.
The APK is provided on the enclosed medium and on the Releases tab of the
ViewLink GitHub repository[63]. When installing this way, it is necessary to
allow the installation of applications from untrusted sources.

The second, preferred way of installation is through the Google Play Store
[73]. The application will also be automatically updated this way. To avoid
having to manually type the link into the device, the app may be found under
andruian viewlink in the Store search.

96

http://fuseki.andruian.melkamar.cz
http://indexer.andruian.melkamar.cz
http://solr.andruian.melkamar.cz
http://andruian.melkamar.cz:27017


Conclusions and future work

The aim of this thesis was the design and creation of a framework allowing the
visualization of RDF data linked to a source of geospatial data on Android
devices. The framework would define a mechanism to describe the structure
of the data and links in it, which would allow clients to efficiently visualize
the data based on spatial queries. An index server was implemented to speed
up spatial searches of the linked data. The Czech Registry of Territorial
Identification, Addresses and Real Estate (RÚIAN) was used as an example
source of spatial data throughout the thesis. An Android application capable
of visualizing the data on a map was created for the purpose of demonstration
the functionality of the framework.

At the beginning of the thesis, in the first chapter, the technology of Linked
Data and RDF was introduced, including one of its serialization formats, Tur-
tle. Next, existing solutions that are similar to the functionality of the pro-
posed framework were presented. They were briefly described and it was
pointed out why they are not sufficient and why the need for this frame-
work exists. Afterwards, libraries for RDF and Linked Data manipulation
for Android were researched, as well as existing techniques for spatial query-
ing using SPARQL. Finally, usability standards for Android applications were
introduced and the geolocation API described.

In the second chapter, the RÚIAN registry was analyzed. The data model
of the registry was discussed, as well as its linked data publication structure.
Afterwards, the requirements on the framework were outlined, including the
reasons for the need of such a framework and the analysis of its architecture.
Two possible approaches for querying the data linked using the framework
were suggested - a naive one where the client communicates directly with
location-unaware SPARQL endpoints, and one which utilizes a separate in-
dexing server. The solution using an indexing server was analyzed and its
requirements, use cases and domain model were created. Next, the data def-
inition vocabulary was defined. The vocabulary is used to provide metadata
about the data being linked and is a core part of the proposed framework. Fi-

97



Conclusions and future work

nally, the requirements and use cases of a prototype Android application were
analyzed. The application demonstrates the functionality of the framework
by visualizing data on a map.

The third chapter was concerned with the design of the three components
outlined in the previous chapter. The first component was a standalone Java
library, ddfparser, capable of parsing data definitions provided by data pub-
lishers into Java objects. The library was used by each of the remaining
components. Next, the design of the index server was discussed. It included
the design of the indexing process and the choice of a storage technology sup-
porting spatial querying. Then the component architecture of the server was
created, as well as the more detailed package and class architecture and the
HTTP API format used to communicate with the server. It was also discussed
why it is necessary for the index server to support server-side marker cluster-
ing and the appropriate change to the HTTP API was proposed. The Android
application design was crafted in the rest of the chapter. The design comprised
of choosing the frameworks to work with, defining a color scheme, creating a
logical UI flow and producing screen mockups. The chapter concluded with
the design of the component and package architecture.

The fourth chapter covered the implementation of the three components
designed earlier. It pointed out some of the problems encountered during the
framework realization and elaborated on the implementation details of server-
side marker clustering. Images of screens of the index server and Android
application were shown and compared to the mockups created before.

The content of the fifth chapter was the testing of the implemented server
and application. A brief note was made about automated tests. Afterwards,
several user scenarios were laid out according to which both the index server
and the Android application could be manually tested. The steps of the
scenarios were described in detail, illustrating all pieces of the framework’s
functionality. Finally, a stress test was conducted to assess the performance
of the system and find its limits. The limiting factor for the index server was
the size of operating memory available to it, but despite not being able to
process large datasets on the limited testing machine, it was able to perform
well for reasonable amounts of data. Response time was measured for querying
data without using an index server and the maximum size of a dataset which
is still able to be processed this was discussed. By virtue of the server-side
clustering functionality, the client application was able to display any number
of data points on the map.

The last chapter talked about the process of using the framework to de-
scribe data and deploying the index server to make queries more effective. The
deployment process was detailed for each of the components necessary to run
the index server and a convenient way of deploying the whole stack, which
uses the Docker technology, was suggested.

In conclusion, the Andruian framework created in this thesis can be suc-
cessfully used for linking data to the RÚIAN registry. Any data source may be

98



Future work

used in place of the RÚIAN registry as long as it exposes a SPARQL endpoint
and appropriate metadata for it exists. An index server may be deployed
to make spatial queries significantly more effective. The Android application
demonstrates the functionality of the framework by displaying places from
various datasets across the whole of the Czech Republic.

Future work

There are several areas in which this work can be expanded upon. The frame-
work core - the data definition schema - could be adjusted to allow publishing
data in static files, without having to set up a SPARQL server. In the current
state, the index server expects to consume all data from SPARQL servers.
However, it is conceivable that a data publisher with only a small set of data,
such as a set of cafés, will not be willing to undergo the effort of deploying a
server just to link the data to its location. If the dataset was indeed small, it
might not even require setting up an index server.

The data definition parser library as well as the index server could be
improved to natively understand more well-known RDF links. Currently only
skos:prefLabel and schema:name are processed automatically to assign a name
to each indexed element. Other information may perhaps be added, such as
a description, an image, publisher, and more.

The index server currently requires more operating memory as datasets
get bigger. The reason for that is the fact that the whole response from a
SPARQL endpoint is kept in memory at once. One possible improvement
is to add support for Virtuoso’s scrollable cursor[74], which would reduce
the memory requirement by allowing the response to be split and queried in
chunks. Unfortunately, at the time of writing, executing the indexing query
on a Virtuoso SPARQL endpoint crashes the whole server[75].

99





Bibliography

[1] Linked Open Vocabularies. Available from: http://lov.okfn.org/
dataset/lov/

[2] Becker, C.; Bizer, C. DBpedia Mobile: A Location-Enabled Linked Data
Browser. Available from: http://ceur-ws.org/Vol-369/paper13.pdf

[3] DBpedia Places - Android Apps on Google Play. Available
from: https://play.google.com/store/apps/details?id=
com.lauer.dbpediaplacesandroid

[4] LinkedPipes Visualization. Available from: https://
visualization.linkedpipes.com/

[5] Struktura a popis výměnného formátu RÚIAN (VFR). Available
from: http://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-
Poskytovani-udaju-RUIAN-ISUI-VDP/Vymenny-format-RUIAN/
Vymenny-format-RUIAN-(VFR)/Struktura-a-popis-VFR-1_8_0.aspx

[6] Applying MVP in Android. Available from: https://
www.grapecity.com/en/blogs/applying-mvp-in-android

[7] What is data silo? Available from: http://
searchcloudapplications.techtarget.com/definition/data-silo

[8] Heath, T.; Bizer, C. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, first edition, ISBN 9781608454310.

[9] Resource Description Framework (RDF). Available from: https://
www.w3.org/RDF/

[10] RDFSyntax. 2011-01-27. Available from: https://www.w3.org/wiki/
RdfSyntax

101

http://lov.okfn.org/dataset/lov/
http://lov.okfn.org/dataset/lov/
http://ceur-ws.org/Vol-369/paper13.pdf
https://play.google.com/store/apps/details?id=com.lauer.dbpediaplacesandroid
https://play.google.com/store/apps/details?id=com.lauer.dbpediaplacesandroid
https://visualization.linkedpipes.com/
https://visualization.linkedpipes.com/
http://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Vymenny-format-RUIAN/Vymenny-format-RUIAN-(VFR)/Struktura-a-popis-VFR-1_8_0.aspx
http://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Vymenny-format-RUIAN/Vymenny-format-RUIAN-(VFR)/Struktura-a-popis-VFR-1_8_0.aspx
http://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Vymenny-format-RUIAN/Vymenny-format-RUIAN-(VFR)/Struktura-a-popis-VFR-1_8_0.aspx
https://www.grapecity.com/en/blogs/applying-mvp-in-android
https://www.grapecity.com/en/blogs/applying-mvp-in-android
http://searchcloudapplications.techtarget.com/definition/data-silo
http://searchcloudapplications.techtarget.com/definition/data-silo
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/wiki/RdfSyntax
https://www.w3.org/wiki/RdfSyntax


Bibliography

[11] RDF 1.1 Turtle. 2014-02-25. Available from: https://www.w3.org/TR/
turtle/

[12] CURIE Syntax 1.0. Available from: https://www.w3.org/TR/2010/
NOTE-curie-20101216/

[13] RDF Vocabulary Description Language 1.0: RDF Schema. Available
from: https://www.w3.org/2001/sw/RDFCore/Schema/200203/

[14] SPARQL Query Language for RDF. Available from: https://
www.w3.org/TR/rdf-sparql-query/

[15] DBpedia - Contributing Persons and Organizations. Available
from: https://web.archive.org/web/20140921021528/http:
//wiki.dbpedia.org/Team

[16] lod-cloud.net. Available from: http://lod-cloud.net/versions/2017-
08-22/lod.svg

[17] About — DBpedia. Available from: http://wiki.dbpedia.org/about

[18] semarglproject/semargl: Highly performant, lightweight framework
for linked data processing. Available from: https://github.com/
semarglproject/semargl

[19] Apache Jena. Available from: https://jena.apache.org/index.html

[20] lencinhaus/androjena: porting of Jena to Android. Available from:
https://github.com/lencinhaus/androjena

[21] sbrunk/jena-android: This project aims to make the Apache Jena Frame-
work usable on Android. Available from: https://github.com/sbrunk/
jena-android

[22] Goodbye Sesame, hello RDF4J! Available from: http://rdf4j.org/
2016/05/18/goodbye-sesame-hello-rdf4j/

[23] Spatial searches with SPARQL. Available from: https:
//jena.apache.org/documentation/query/spatial-query.html

[24] Apache Lucene - Apache Lucene Core. Available from: http://
lucene.apache.org/core/

[25] Apache Solr. Available from: http://lucene.apache.org/solr/

[26] GeoSPARQL - A Geographic Query Language for RDF Data —
OGC. Available from: http://www.opengeospatial.org/standards/
geosparql

102

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/TR/2010/NOTE-curie-20101216/
https://www.w3.org/2001/sw/RDFCore/Schema/200203/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://web.archive.org/web/20140921021528/http://wiki.dbpedia.org/Team
https://web.archive.org/web/20140921021528/http://wiki.dbpedia.org/Team
http://lod-cloud.net/versions/2017-08-22/lod.svg
http://lod-cloud.net/versions/2017-08-22/lod.svg
http://wiki.dbpedia.org/about
https://github.com/semarglproject/semargl
https://github.com/semarglproject/semargl
https://jena.apache.org/index.html
https://github.com/lencinhaus/androjena
https://github.com/sbrunk/jena-android
https://github.com/sbrunk/jena-android
http://rdf4j.org/2016/05/18/goodbye-sesame-hello-rdf4j/
http://rdf4j.org/2016/05/18/goodbye-sesame-hello-rdf4j/
https://jena.apache.org/documentation/query/spatial-query.html
https://jena.apache.org/documentation/query/spatial-query.html
http://lucene.apache.org/core/
http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://www.opengeospatial.org/standards/geosparql
http://www.opengeospatial.org/standards/geosparql


Bibliography

[27] GeoSPARQL support – GraphDB SE 8.5 documentation. Avail-
able from: http://graphdb.ontotext.com/documentation/standard/
geosparql-support.html

[28] Virtuoso Geo Spatial Enhancements. Available
from: http://vos.openlinksw.com/owiki/wiki/VOS/
VirtGeoSPARQLEnhancementDocs

[29] Introduction - Material Design. Available from: https://material.io/
guidelines/material-design/introduction.html

[30] LACKO, L. Mistrovstvi - Android. Brno: Computer Press, first edition,
ISBN 978-80-251-4875-4.

[31] Location Strategies — Android Developers. Available from: https://
developer.android.com/guide/topics/location/strategies.html

[32] RÚIAN. 2016. Available from: https://www.cuzk.cz/ruian/RUIAN.aspx

[33] Registr územńı identifikace, adres a nemovitost́ı. Available
from: https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/7-
Publicita-projektu/RUIAN/letak_publicita.aspx

[34] ČÚZK - Výměnný formát RÚIAN (VFR). Available from: http://
www.cuzk.cz/vfr

[35] Cron Trigger Tutorial. Available from: http://www.quartz-
scheduler.org/documentation/quartz-2.x/tutorials/
crontrigger.html

[36] DCAT-AP v1.1. Available from: https://joinup.ec.europa.eu/
release/dcat-ap-v11

[37] SHACL Property Paths. Available from: https://www.w3.org/TR/
shacl/#property-paths

[38] Kĺımek, J. MI-SWE.16 Semantic web Lecture – Linked Data Patterns
[online]. [cit. 2018-03-19]. Available from: https://edux.fit.cvut.cz/
courses/MI-SWE.16/_media/lectures/mi-swe-ld-patterns.pdf

[39] Spring Framework. Available from: https://projects.spring.io/
spring-framework/

[40] SPARQL 1.1 Federated Query. Available from: https://www.w3.org/TR/
sparql11-federated-query/

[41] andruian/indexer. Available from: https://github.com/andruian/
indexer

103

http://graphdb.ontotext.com/documentation/standard/geosparql-support.html
http://graphdb.ontotext.com/documentation/standard/geosparql-support.html
http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs
http://vos.openlinksw.com/owiki/wiki/VOS/VirtGeoSPARQLEnhancementDocs
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://developer.android.com/guide/topics/location/strategies.html
https://developer.android.com/guide/topics/location/strategies.html
https://www.cuzk.cz/ruian/RUIAN.aspx
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/7-Publicita-projektu/RUIAN/letak_publicita.aspx
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/7-Publicita-projektu/RUIAN/letak_publicita.aspx
http://www.cuzk.cz/vfr
http://www.cuzk.cz/vfr
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
http://www.quartz-scheduler.org/documentation/quartz-2.x/tutorials/crontrigger.html
https://joinup.ec.europa.eu/release/dcat-ap-v11
https://joinup.ec.europa.eu/release/dcat-ap-v11
https://www.w3.org/TR/shacl/#property-paths
https://www.w3.org/TR/shacl/#property-paths
https://edux.fit.cvut.cz/courses/MI-SWE.16/_media/lectures/mi-swe-ld-patterns.pdf
https://edux.fit.cvut.cz/courses/MI-SWE.16/_media/lectures/mi-swe-ld-patterns.pdf
https://projects.spring.io/spring-framework/
https://projects.spring.io/spring-framework/
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-federated-query/
https://github.com/andruian/indexer
https://github.com/andruian/indexer


Bibliography

[42] Apache Jena - TDB. Available from: http://jena.apache.org/
documentation/tdb/

[43] UML 2 Component Diagram. Available from: https:
//www.sparxsystems.com.au/resources/uml2_tutorial/uml2_
componentdiagram.html

[44] Properties File Format. Available from: https://
docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/
s0204propertiesfileformat01.html

[45] Heatmap Faceting — Spatial Search — Apache Solr Reference Guide
6.6. Available from: https://lucene.apache.org/solr/guide/6_6/
spatial-search.html#SpatialSearch-HeatmapFaceting

[46] OkHttp. Available from: http://square.github.io/okhttp/

[47] Butter Knife. Available from: http://jakewharton.github.io/
butterknife/

[48] Room Persistence Library — Android Developers. Available from:
https://developer.android.com/topic/libraries/architecture/
room.html

[49] Mockito framework site. Available from: http://site.mockito.org/

[50] Espresso — Android Developers. Available from: https:
//developer.android.com/training/testing/espresso/index.html

[51] Color wheel — Color schemes - Adobe CC. Available from: https://
color.adobe.com

[52] andruian — GitHub. Available from: https://github.com/andruian

[53] Maven Repository: xerces � xercesImpl � 2.11.0. Available from: https:
//mvnrepository.com/artifact/xerces/xercesImpl/2.11.0

[54] Spring Boot. Available from: https://projects.spring.io/spring-
boot/

[55] Google Maps JavaScript API — Google Developers. Available from:
https://developers.google.com/maps/documentation/javascript/

[56] AsyncTask and error handling on Android. Available from:
https://stackoverflow.com/questions/1739515/asynctask-and-
error-handling-on-android

[57] Google Maps Android Marker Clustering Utility. Available from:
https://developers.google.com/maps/documentation/android-api/
utility/marker-clustering

104

http://jena.apache.org/documentation/tdb/
http://jena.apache.org/documentation/tdb/
https://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_componentdiagram.html
https://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_componentdiagram.html
https://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_componentdiagram.html
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html
https://lucene.apache.org/solr/guide/6_6/spatial-search.html#SpatialSearch-HeatmapFaceting
https://lucene.apache.org/solr/guide/6_6/spatial-search.html#SpatialSearch-HeatmapFaceting
http://square.github.io/okhttp/
http://jakewharton.github.io/butterknife/
http://jakewharton.github.io/butterknife/
https://developer.android.com/topic/libraries/architecture/room.html
https://developer.android.com/topic/libraries/architecture/room.html
http://site.mockito.org/
https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/training/testing/espresso/index.html
https://color.adobe.com
https://color.adobe.com
https://github.com/andruian
https://mvnrepository.com/artifact/xerces/xercesImpl/2.11.0
https://mvnrepository.com/artifact/xerces/xercesImpl/2.11.0
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://developers.google.com/maps/documentation/javascript/
https://stackoverflow.com/questions/1739515/asynctask-and-error-handling-on-android
https://stackoverflow.com/questions/1739515/asynctask-and-error-handling-on-android
https://developers.google.com/maps/documentation/android-api/utility/marker-clustering
https://developers.google.com/maps/documentation/android-api/utility/marker-clustering


Bibliography

[58] JDK 1.6 and Xerces. Available from: https://stackoverflow.com/
questions/7794281/jdk-1-6-and-xerces

[59] xerces-for-android. Available from: https://code.google.com/archive/
p/xerces-for-android/

[60] eclipse/rdf4j XMLReaderFactory.java. Available
from: https://github.com/eclipse/rdf4j/blob/
4c2b7e755e8375486248647e3977c0a30f8ddf45/util/src/main/
java/org/eclipse/rdf4j/common/xml/XMLReaderFactory.java#L24

[61] Travis CI - Test and Deploy Your Code with Confidence. Available from:
https://travis-ci.org/

[62] andruian/ddfparser. Available from: https://github.com/andruian/
ddfparser

[63] andruian/viewlink: Android client app for the Andruian framework.
Available from: https://github.com/andruian/viewlink

[64] Google URL Shortener. Available from: https://goo.gl/

[65] Pastebin.com - #1 paste tool since 2002! Available from: https:
//pastebin.com/

[66] LinkedPipes ETL. Available from: https://etl.linkedpipes.com/

[67] ČÚZK - Atributy stavebńıho objektu. Available from: https:
//www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-
udaju-RUIAN-ISUI-VDP/Ciselniky-ISUI/Atributy-stavebniho-
objektu.aspx#CE_VYBAVENI_VYTAHEM

[68] stain/jena-fuseki - Docker Hub. Available from: https:
//hub.docker.com/r/stain/jena-fuseki/

[69] library/mongo - Docker Hub. Available from: https://hub.docker.com/
_/mongo/

[70] melkamar/solr-indexer - Docker Hub. Available from: https://
hub.docker.com/r/melkamar/solr-indexer/

[71] melkamar/indexer - Docker Hub. Available from: https:
//hub.docker.com/r/melkamar/indexer/

[72] Docker Cloud. Available from: https://cloud.docker.com/swarm/

[73] Andruian ViewLink - Android Apps on Google Play. Avail-
able from: https://play.google.com/store/apps/details?id=
cz.melkamar.andruian.viewlink

105

https://stackoverflow.com/questions/7794281/jdk-1-6-and-xerces
https://stackoverflow.com/questions/7794281/jdk-1-6-and-xerces
https://code.google.com/archive/p/xerces-for-android/
https://code.google.com/archive/p/xerces-for-android/
https://github.com/eclipse/rdf4j/blob/4c2b7e755e8375486248647e3977c0a30f8ddf45/util/src/main/java/org/eclipse/rdf4j/common/xml/XMLReaderFactory.java#L24
https://github.com/eclipse/rdf4j/blob/4c2b7e755e8375486248647e3977c0a30f8ddf45/util/src/main/java/org/eclipse/rdf4j/common/xml/XMLReaderFactory.java#L24
https://github.com/eclipse/rdf4j/blob/4c2b7e755e8375486248647e3977c0a30f8ddf45/util/src/main/java/org/eclipse/rdf4j/common/xml/XMLReaderFactory.java#L24
https://travis-ci.org/
https://github.com/andruian/ddfparser
https://github.com/andruian/ddfparser
https://github.com/andruian/viewlink
https://goo.gl/
https://pastebin.com/
https://pastebin.com/
https://etl.linkedpipes.com/
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Ciselniky-ISUI/Atributy-stavebniho-objektu.aspx#CE_VYBAVENI_VYTAHEM
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Ciselniky-ISUI/Atributy-stavebniho-objektu.aspx#CE_VYBAVENI_VYTAHEM
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Ciselniky-ISUI/Atributy-stavebniho-objektu.aspx#CE_VYBAVENI_VYTAHEM
https://www.cuzk.cz/Uvod/Produkty-a-sluzby/RUIAN/2-Poskytovani-udaju-RUIAN-ISUI-VDP/Ciselniky-ISUI/Atributy-stavebniho-objektu.aspx#CE_VYBAVENI_VYTAHEM
https://hub.docker.com/r/stain/jena-fuseki/
https://hub.docker.com/r/stain/jena-fuseki/
https://hub.docker.com/_/mongo/
https://hub.docker.com/_/mongo/
https://hub.docker.com/r/melkamar/solr-indexer/
https://hub.docker.com/r/melkamar/solr-indexer/
https://hub.docker.com/r/melkamar/indexer/
https://hub.docker.com/r/melkamar/indexer/
https://cloud.docker.com/swarm/
https://play.google.com/store/apps/details?id=cz.melkamar.andruian.viewlink
https://play.google.com/store/apps/details?id=cz.melkamar.andruian.viewlink


Bibliography

[74] Working with SPARQL endpoint constraints via LIMIT & OFF-
SET. Available from: http://vos.openlinksw.com/owiki/wiki/VOS/
VirtTipsAndTricksHowToHandleBandwidthLimitExceed

[75] Server crashes with Segmentation fault when running SPARQL feder-
ated query. Available from: https://github.com/openlink/virtuoso-
opensource/issues/734

106

http://vos.openlinksw.com/owiki/wiki/VOS/VirtTipsAndTricksHowToHandleBandwidthLimitExceed
http://vos.openlinksw.com/owiki/wiki/VOS/VirtTipsAndTricksHowToHandleBandwidthLimitExceed
https://github.com/openlink/virtuoso-opensource/issues/734
https://github.com/openlink/virtuoso-opensource/issues/734


Appendix A
Acronyms

FAB Floating Action Button

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

JVM Java Virtual Machine

POJO Plain Old Java Object

RDF Resource Description Framework

RÚIAN Registr Územńı Identifikace, Adres a Nemovitost́ı

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

VFR Výměnný Formát Ruian

XML Extensible Markup Language

107





Appendix B
Resources

B.1 Index SPARQL query template

This is the SPARQL query template used for incremental indexing. Elements
enclosed in curly braces ({}) are placeholders that have to be replaced before
the query is sent to an endpoint.

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX eu: <http://eulersharp.sourceforge.net/2003/03swap/log-rules#>
PREFIX ru: <http://purl.org/imbi/ru-meta.owl#>
prefix ex: <http://example.org/>
prefix s: <http://schema.org/>
prefix xsd: <http://www.w3.org/2001/XMLSchema#>
prefix skos: <http://www.w3.org/2004/02/skos/core#>

SELECT distinct ?dataObj ?locationObj ?lat ?long
?dataClassType ?__prefLab__ ?__name__ {selectProps}

WHERE {
BIND(<{dataClassUri}> as ?dataClassType)

?dataObj a <{dataClassUri}>;
{pathToLocClass} ?locationObj;
.

OPTIONAL {
?dataObj skos:prefLabel ?__prefLab__.

}
OPTIONAL {
?dataObj s:name ?__name.

}

109



B. Resources

#
# Optional filter when reindexingto exclude all
# objects that already exist
#
# Example contents of excludeDataObjects:
# ?dataObj != <http://example.org/linkedobject-24481611> &&
# ?dataObj != <http://example.org/linkedobject-72715057> &&
#
# This will filter out the two objects listed.
# - Note that each line/expression MUST end with
# the && operator, including the last one, because
# there is a trailing True expression in the query template.
# The reason for that is to avoid parsing error
# thrown by FILTER() - there must be something in the parentheses.
#
FILTER(
{excludeDataObjects}
True

)

#
# Mapping of selectProps - name of any selectProp
# must NOT be any of the reserved ones
# (dataObj, locationObj etc.)
# Example mapping:
# ?dataObj ex:a/ex:b/ex:c ?selectPropA .
#
# There will be one line per each selectProp
{selectPropsMapping}

#
# Federated query for the location sparql controller.
# [lat,long]LocationPathForLocationClass will contain a
# property path from the Location class to its coordinates.
SERVICE <{locationSparqlEndpoint}> {
?locationObj {latLocationPathForLocationClass} ?lat;

{longLocationPathForLocationClass} ?long;
.

}
}

110



B.2. Data definition vocabulary

B.2 Data definition vocabulary

This is the data definition vocabulary in a Turtle serialization defined using
RDF schema language. It formally defines the vocabulary as proposed in
section 2.5 and shown in Figure C.1.

@prefix andr: <http://purl.org/net/andruian/datadef#> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix s: <http://schema.org/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

###########
# Classes #
###########

andr:DataDef a rdfs:Class;
rdfs:label "DataDef";
rdfs:comment """The definition of a single data mapping in

the Andruian framework. That is a mapping of Source class
instances to instances of the Location class. See
https://github.com/andruian/example-data for more information.""";

.

andr:LocationClassDef a rdfs:Class;
rdfs:label "LocationClassDef";
rdfs:comment """The definition of a Location class and its

metadata. That includes the SPARQL endpoint where instances
of this class may be found and property paths specifying how to
get the Location class' latitude and longitude.""";

.

andr:SourceClassDef a rdfs:Class;
rdfs:label "SourceClassDef";
rdfs:comment """The definition of a Source class and its metadata.

That includes the SPARQL endpoint where instances of this class
may be found, the property path leading to the linked Location
class and properties that should be indexed on the index server
for faster retrieval.""";

.

andr:SelectPropertyDef a rdfs:Class;
rdfs:label "SelectPropertyDef";

111



B. Resources

rdfs:comment """Definition of a Source class' property that
should be indexed on the index server. The definition specifies
name to use for the property and a property path leading to it.""";

.

andr:IndexServer a rdfs:Class;
rdfs:label "IndexServer";
rdfs:comment """An index server for the Andruian framework.

It is optional - if not present, clients fall back to naive queries.
They are slower though.""";

.

andr:LocationClassPathsSource a rdfs:Class;
rdfs:label "LocationClassPathsSource";
rdfs:comment """A source of property paths leading from an

instance of a class to its latitude and longitude.""";
.

andr:ClassToLocPath a rdfs:Class;
rdfs:label "ClassToLocPath";
rdfs:comment """A property path for a particular class

leading to its latitude and longitude.""";
.

andr:PropertyPath a rdfs:Class;
rdfs:label "A path of one or more properties";
rdfs:comment """This class is equivalent to a predicate sequence

SHACL property path. SHACL does not define a RDFS class for property
paths, but only refers to them as to a plain rdf:Resource.
andr:PropertyPath class is defined in Andruian data definition schema
to make the diagram and property domains easily readable.

A predicate or sequence path may be used wherever andr:PropertyPath
is expected. A predicate path is a single property in place of the object;
a sequence path is a RDF list containing two or more properties in
place of the object.""".

##############
# Properties #
##############

#
# DataDef
#

112



B.2. Data definition vocabulary

andr:sourceClassDef a rdf:Property;
rdfs:label "sourceClassDef";
rdfs:comment """A definition of the Source Class in the Andruian

framework. This class is typically user-defined and links to a
Location class.""";

rdfs:range andr:SourceClassDef;
rdfs:domain andr:DataDef;
.

andr:indexServer a rdf:Property;
rdfs:label "indexServer";
rdfs:comment """A definition of an Index Server in the Andruian

framework. This is an optional property.""";
rdfs:range andr:IndexServer;
rdfs:domain andr:DataDef;
.

andr:uri a rdf:Property;
rdfs:label "uri";
rdfs:comment """A link where the subject of the property

can be accessed.""";
rdfs:range rdf:Resource;
.

andr:version a rdf:Property;
rdfs:label "version";
rdfs:comment """An integer representing version of the subject

of the property.""";
rdfs:range xsd:integer;
.

andr:class a rdf:Property;
rdfs:label "class";
rdfs:comment """A specification of a resource type (class)

relevant to the subject of this property.""";
rdfs:range rdfs:Class;
.

#
# SourceClassDef
#
andr:selectProperty a rdf:Property;

rdfs:label "selectProperty";
rdfs:comment """Defines zero or more andr:SelectProperty

113



B. Resources

instances for the subject of this property. This is an optional
property, it may be specified multiple times.""";

rdfs:range andr:SelectProperty;
rdfs:domain andr:SourceClassDef;
.

andr:propertyPath a rdf:Property;
rdfs:label "propertyPath";
rdfs:comment """Defines a property path. The object

of this property must be a SHACL predicate or sequence path. See
https://www.w3.org/TR/shacl/#property-path-predicate for more details.""";

.

andr:pathToLocationClass a rdf:Property;
rdfs:label "pathToLocationClass";
rdfs:comment """Defines a property path that, when applied

to the subject of the property, leads to an instance of the Location
Class linked to the subject. The object of this property must be
a SHACL predicate or sequence path. See
https://www.w3.org/TR/shacl/#property-path-predicate for more details.""";

rdfs:domain andr:SourceClassDef;
.

andr:sparqlEndpoint a rdf:Property;
rdfs:label "sparqlEndpoint";
rdfs:comment """A definition of an URI where a SPARQL endpoint

relevant to the property subject may be reached.""";
rdfs:range rdf:Resource;
.

andr:sourceClassDef a rdf:Property;
rdfs:label "sourceClassDef";
rdfs:comment """A Source Class definition for this DataDef.""";
rdfs:range andr:SourceClassDef;
rdfs:domain andr:DataDef;
.

#
# LocationClassDef
#
andr:locationClassDef a rdf:Property;

rdfs:label "locationClassDef";
rdfs:comment """A Location Class definition for this DataDef.""";

114



B.2. Data definition vocabulary

rdfs:range andr:LocationClassDef;
rdfs:domain andr:DataDef;
.

andr:locationClassPathsSource a rdf:Property;
rdfs:label "locationClassPathsSource";
rdfs:comment """Defines a source object for property paths

describing the path from an entity of a given class to the
latitude/longitude coordinates associated with such class. The
object of this property will link to one or more property path definitions.""";

rdfs:range andr:LocationClassPathsSource;
rdfs:domain andr:LocationClassDef;
.

andr:includeRdf a rdf:Property;
rdfs:label "includeRdf";
rdfs:comment """Specifies an URL where an RDF file is

located. The consumer of this dataset shall download the linked file
and include the data contained there in their internal model
before processing any other properties of the subject.

This property is an analogy to import statements in programming
languages - only it imports a remote file.""";

rdfs:range rdf:Resource;
rdfs:domain andr:LocationClassDef;
.

andr:classToLocPath a rdf:Property;
rdfs:label "classToLocPath";
rdfs:comment """Defines property paths for a single resource

type (class), leading from an object of such class to its latitude/longitude.""";
rdfs:range andr:ClassToLocPath;
.

andr:latPath a rdf:Property;
rdfs:label "latPath";
rdfs:comment """Defines a property path linking to the latitude

coordinate. The object of this property must be a SHACL predicate
or sequence path. See https://www.w3.org/TR/shacl/#property-path-predicate
for more details.""";

.

andr:longPath a rdf:Property;
rdfs:label "longPath";

115



B. Resources

rdfs:comment """Defines a property path linking to the longitude
coordinate. The object of this property must be a SHACL predicate
or sequence path. See https://www.w3.org/TR/shacl/#property-path-predicate
for more details.""";

.

B.3 Example data definition

This is an example of a data definition using the data definition vocabulary.
The data definition is named Vowel street names, has an index server at url

http://andruian.melkamar.cz where objects of class http://example.org/SourceObjectAEIOU
may be queried. The same objects are available from a SPARQL endpoint at
url http://andruian.melkamar.cz:3030/streets/query. The objects are
linked to location objects of class ruian:AdresńıMı́sto through a property
path. The path consists of three predicates, twice http://a.property and
then http://link.to.ruian.

The property path defining how to get latitude and longitude coordinates
for objects of class ruian:AdresńıMı́sto is provided by an object identified by
IRI <http://purl.org/net/andruian/location-sources/ruian#locClassPathsSource>.
This object is contained in a RDF file at url http://purl.org/net/andruian/
location-sources/ruian.

@prefix andr: <http://purl.org/net/andruian/datadef#> .
@prefix ruian: <https://ruian.linked.opendata.cz/slovnı́k/> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix s: <http://schema.org/> .
@prefix ex: <http://example.org/> .
@prefix : <http://foo/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

:dataDefVowel
a andr:DataDef;
andr:locationClassDef :locationDef;
andr:sourceClassDef :sourceClassDef;
andr:indexServer :indexServer;
skos:prefLabel "Vowel street names";
.

#
# INDEX SERVER
#
:indexServer

a andr:IndexServer;
andr:uri <http://andruian.melkamar.cz>;

116

http://andruian.melkamar.cz
http://andruian.melkamar.cz:3030/streets/query
http://a.property
http://link.to.ruian
<http://purl.org/net/andruian/location-sources/ruian#locClassPathsSource>
http://purl.org/net/andruian/location-sources/ruian
http://purl.org/net/andruian/location-sources/ruian


B.3. Example data definition

andr:version 1;
.

#
# DATA DEFINITION
#
:sourceClassDef

a andr:SourceClassDef;
andr:sparqlEndpoint

<http://andruian.melkamar.cz:3030/streets/query>;

andr:class
<http://example.org/SourceObjectAEIOU>;

andr:pathToLocationClass (
<http://a.property>
<http://a.property>
<http://link.to.ruian>

);

andr:selectProperty [ a andr:SelectProperty;
s:name "PSC";
andr:propertyPath (

<http://a.property>
<http://psc.org>

)
];

andr:selectProperty [ a andr:SelectProperty;
s:name "StreetNum";
andr:propertyPath (

<http://a.property>
<http://a.property>
<http://number.prop>

)
];

andr:selectProperty [ a andr:SelectProperty;
s:name "StreetName";
andr:propertyPath (

<http://a.property>
<http://a.property>
<http://name.prop>

)

117



B. Resources

];
.

#
# LOCATION DEFINITON
#
:locationDef

a andr:LocationDef;
andr:sparqlEndpoint

<https://ruian.linked.opendata.cz/sparql>;

andr:class ruian:Adresnı́Mı́sto;

andr:includeRdf
<http://purl.org/net/andruian/location-sources/ruian>;

andr:locationClassPathsSource
<http://purl.org/net/andruian/location-sources/

ruian#locClassPathsSource>;
.

B.4 Property path source for RÚIAN objects

The following listing defines property paths from all RÚIAN objects to their
latitude and longitude. This file is also available online23 and may be used in
data definitions through the andr:includeRdf property. See data definition
vocabulary in section 2.5 for more details.

@prefix andr: <http://purl.org/net/andruian/datadef#> .
@prefix ruian: <https://ruian.linked.opendata.cz/slovnı́k/> .
@prefix s: <http://schema.org/> .
@prefix locsrc: <http://purl.org/net/andruian/location-sources/ruian#> .
@prefix ogcgml: <http://www.opengis.net/ont/gml#> .

#
# A source for location class -> coordinates paths for the RÚIAN registry.
#

locsrc:locClassPathsSource
a andr:LocationClassPathsSource;
andr:classToLocPath locsrc:stat;

23http://purl.org/net/andruian/location-sources/ruian

118

http://purl.org/net/andruian/location-sources/ruian


B.4. Property path source for RÚIAN objects

andr:classToLocPath locsrc:kraj;
andr:classToLocPath locsrc:okres;
andr:classToLocPath locsrc:regionSoudrznosti;
andr:classToLocPath locsrc:vusc;
andr:classToLocPath locsrc:obec;
andr:classToLocPath locsrc:castobce;
andr:classToLocPath locsrc:katastralniuzemi;
andr:classToLocPath locsrc:zsj;
andr:classToLocPath locsrc:parcela;
andr:classToLocPath locsrc:momc;
andr:classToLocPath locsrc:mop;
andr:classToLocPath locsrc:spravniobvod;
andr:classToLocPath locsrc:stavebniobjekt;
andr:classToLocPath locsrc:adresniMisto;
.

locsrc:stat
a andr:ClassToLocPath;
andr:class ruian:Stát;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:kraj
a andr:ClassToLocPath;
andr:class ruian:Kraj1960;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:okres
a andr:ClassToLocPath;
andr:class ruian:Okres;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:regionSoudrznosti
a andr:ClassToLocPath;
andr:class ruian:RegionSoudrznosti;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

119



B. Resources

locsrc:vusc
a andr:ClassToLocPath;
andr:class ruian:Vusc;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:obec
a andr:ClassToLocPath;
andr:class ruian:Obec;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:castobce
a andr:ClassToLocPath;
andr:class ruian:ČástObce;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:katastralniuzemi
a andr:ClassToLocPath;
andr:class ruian:Katastrálnı́Územı́;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:zsj
a andr:ClassToLocPath;
andr:class ruian:Zsj;
andr:lat ( ruian:definičnı́Bod ogcgml:pointMember s:geo s:latitude );
andr:long ( ruian:definičnı́Bod ogcgml:pointMember s:geo s:longitude );
.

locsrc:parcela
a andr:ClassToLocPath;
andr:class ruian:Parcela;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:momc
a andr:ClassToLocPath;

120



B.5. SPARQL query for creating incremental testing data

andr:class ruian:Momc;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:mop
a andr:ClassToLocPath;
andr:class ruian:Mop;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:spravniobvod
a andr:ClassToLocPath;
andr:class ruian:Správnı́Obvod;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:stavebniobjekt
a andr:ClassToLocPath;
andr:class ruian:Stavebnı́Objekt;
andr:lat ( ruian:definičnı́Bod s:geo s:latitude );
andr:long ( ruian:definičnı́Bod s:geo s:longitude );
.

locsrc:adresniMisto
a andr:ClassToLocPath;
andr:class ruian:Adresnı́Mı́sto;
andr:lat ( ruian:adresnı́Bod s:geo s:latitude );
andr:long ( ruian:adresnı́Bod s:geo s:longitude );
.

B.5 SPARQL query for creating incremental
testing data

CONSTRUCT {
?sourceObj a <http://example.org/SourceObjectATest>;

<http://www.w3.org/2004/02/skos/core#prefLabel> ?aLabel;
<http://link.to.ruian> ?addrPlace.

}

121



B. Resources

WHERE {
?obec a ruian:Obec;

schema:name ?obecName.

FILTER (STR(?obecName) = "Praha")

?ulice a ruian:Ulice;
ruian:obec ?obec;
schema:name ?uliceName .

?addrPlace a ruian:Adresnı́Mı́sto;
ruian:ulice ?ulice;
ruian:psč ?psc;
ruian:čı́sloOrientačnı́ ?streetNum.

FILTER (?streetNum < 20)
BIND ( IRI(CONCAT("http://src.com/incrementaltest/", ENCODE_FOR_URI(?addrPlace))) as ?sourceObj )
BIND ( CONCAT(?uliceName, " ", ?streetNum) as ?aLabel)

FILTER (REGEX(?uliceName, "ˆ[A]"))
}

B.6 Data definition created during a user scenario

@prefix andr: <http://purl.org/net/andruian/datadef#> .
@prefix ruian: <https://ruian.linked.opendata.cz/slovnı́k/> .
@prefix sp: <http://spinrdf.org/sp#> .
@prefix s: <http://schema.org/> .
@prefix ex: <http://example.org/> .
@prefix : <http://foo/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

:dataDefTEST
a andr:DataDef;
andr:locationClassDef :locationDef;
andr:sourceClassDef :sourceClassDef;
andr:indexServer :indexServer;
skos:prefLabel "TEST";
.

#
# INDEX SERVER
#

122



B.6. Data definition created during a user scenario

:indexServer
a andr:IndexServer;
andr:uri <http://andruian.melkamar.cz>;
andr:version 1;
.

#
# DATA DEFINITION
#
:sourceClassDef

a andr:SourceClassDef;
andr:sparqlEndpoint

<http://andruian.melkamar.cz:3030/NEW-DS/query>;

andr:class
<http://example.org/SourceObjectATest>;

andr:pathToLocationClass (
<http://link.to.ruian>

);

andr:selectProperty [ a andr:SelectProperty;
s:name "myNameForLabel";
andr:propertyPath skos:prefLabel

];

.

#
# LOCATION DEFINITON
#
:locationDef

a andr:LocationDef;
andr:sparqlEndpoint

<https://ruian.linked.opendata.cz/sparql>;

andr:class ruian:Adresnı́Mı́sto;

andr:includeRdf
<http://purl.org/net/andruian/location-sources/ruian>;

andr:locationClassPathsSource
<http://purl.org/net/andruian/location-sources/ruian#locClassPathsSource>;

123



B. Resources

.

124



Appendix C
Diagrams

125



C. Diagrams

Figure C.1: Andruian Framework Data Definition schema

126



Figure C.2: Class diagram of the DataDef class of the ViewLink app

127



C. Diagrams

Figure C.3: UI flow of the ViewLink app

128



Appendix D
Contents of enclosed CD

129



D. Contents of enclosed CD

andruian ..........................RDF-related data of the framework
andr

LocationClassPathsSource-ruian.ttl ............... the RDF
class-to-coordinates paths source for RÚIAN classes
schema.ttl ....... the Andruian data definition RDF vocabulary

example-data .......data definitions and appropriate RDF datasets
illustrating the usage of the framework

build .....................build artifacts of the individual components
indexer .......................................... the index server
ddfparser-*.jar .............................the ddfparser library
viewlink-*.apk .................the ViewLink Android application

ddfparser ............................ sources of the ddfparser library
indexer ................................... sources of the index server

docker....................................Docker-related setup files
docs......................................generated documentation
solr ..................................... configuration files for Solr
src..................................source code of the index server

stress-data ................data used for stress-testing the framework
thesis ..............................the source of the thesis document
viewlink ...........................sources of the Android application
thesis.pdf ................................................the thesis
thesis-assignment.pdf ..................the assignment of the thesis

130


	Introduction
	State-of-the-art and available technology
	Linked Data and RDF
	Existing applications for visualizing Linked Data
	Existing libraries for RDF and Linked Data on Android
	Techniques for spatial querying using SPARQL
	Basic usability standards for Android OS and API for geolocation

	Analysis
	RÚIAN registry
	Framework functionality
	Naive solution
	Solution using an index server
	Data definition vocabulary
	Android app

	Design
	Data definition parser library
	Index server
	Android app

	Implementation
	Data definition parser library
	Index server
	Android app

	Testing
	Automated testing
	User scenarios
	Stress test

	Deployment
	Integrating linked data to the Andruian framework
	Index server software stack
	Android app

	Conclusions and future work
	Future work

	Bibliography
	Acronyms
	Resources
	Index SPARQL query template
	Data definition vocabulary
	Example data definition
	Property path source for RÚIAN objects
	SPARQL query for creating incremental testing data
	Data definition created during a user scenario

	Diagrams
	Contents of enclosed CD

