
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 10, 2017

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Alternative Network Layers in OpenStack

 Student: Pragya Sharma

 Supervisor: Ing. Tomáš Vondra

 Study Programme: Informatics

 Study Branch: Computer Systems and Networks

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2018/19

Instructions

The OpenStack cloud platform contains the Neutron component which controls virtual networking for
virtual machines created by other components. It provides an API standard as well as its reference
implementation using Linux components. There are also several competing implementations with different
features and using different technologies.

Research the available implementations. With the open-source ones, focus not only on functionality but also
on development status, user base, and deployment options.
Choose a few of them (e.g. 2 and the default one) and install them on your or provided hardware. An
OpenStack deployment supporting the selected solutions will be required. During the installation, observe
high availability features, if any.
Evaluate their features and benchmark their performance. Document the observed stability during the
benchmark and prolonged operation.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of computer systems

Master’s thesis

Alternative Network Layers in OpenStack

Er. Pragya Sharma

Supervisor: Tomas Vondra

15th May 2018

Acknowledgements

First and foremost, I offer my sincerest gratitude to God for His affection,
provision, and knowledge for my entire life. It is with incredible appreciation,
that I acknowledge the help of my Supervisor Tomas Vondra, without his
assistance, guidance, and direction this thesis would not be possible. I would
also like to give my most grateful for my grandparents Mr. Shri Ram Sharma
Acharya and Mrs. Bhagwati Devi, parents Mr. Brij Mohan Sharma and Mrs.
Shashi Sharma, and siblings Dr. Nivedita Sharma and Pranav Sharma who
supported me guided me and motivated me throughout my life.
THANKS

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 15th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 Pragya Sharma. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Sharma, Pragya. Alternative Network Layers in OpenStack. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstrakt

Cloud computing zskv rostouc popularitu dky vy klovatelnosti, vt flexibilitu a
snadnj dostupnost svch slueb. Cloud Computing umouje poskytovatelm slueb
vytvet velk mnostv zdroj zkaznkm, aby mli uivatel k dispozici zdroje na podn.
Na tento el poskytovatel slueb cloud computingu pouvaj virtualizaci, protoe
to dv schopnost efektivn sdlet zdroje mezi uivateli. OpenStack, relativn nov
open source cloud computing platforma, se zamuje na poskytovn st jako slubu
(NaaS) vyuvajc virtualizan technologii. OpenStack slibuje rozshl klovateln
cloudov infrastruktury. Bt nov, zstv prozkoumat, jak tyto schopnosti pin, a co
pesn fungovn jeho vnitnch detail. Clem tohoto projektu je studium intern sov
vkon OpenStack zaloenho na implementaci Neutron nebo jinch sovch plugins
jako Calico. Parametry vkonu st, jako je propustnost, ztrta paket a paket
zpodn bude vyhodnoceno v rmci provozu TCP a UDP pomoc benchmarkingu
IPERF nstroj.

eten o modelu toku st potvrzuje, e VM na tomt sov komunikace ve vrstv 2 a
komunikace v rznch stch ve vrstv 3 bez ohledu na umstn hostitele. Vsledky ze
st vkonnostn experimenty ukzaly, e OpenStack zaruuje vkon s prakticky dnou
sovou propustnost. Navc, vsledky ukazuj, e umstn stroj z hlediska hostitele a
sov adresa ovlivuje vkon st, nicmn Calico je silnm konkurentem pro Neutron,
pokud jde o vkon pedevm pro TCP..

Kĺıčová slova Cloud, cloud een, NaaS, veejn cloud, soukrom cloud, cloud
cloud, neutron, Open VSwitch, virtualizace, Multi-Tenancy, SDN

ix

Abstract

Cloud computing is gaining increasing popularity because of its higher scalab-
ility, more flexibility and ease of availability of its services. Cloud Computing
enables service providers to build a large pool of resources to their customers
so that users will have resources accessible on demand. To this end, cloud
computing service providers use Virtualization, since it gives them the ability
to effectively share resources among their users. OpenStack, a relatively new
open source cloud computing platform, focuses on delivering network as a ser-
vice (NaaS) using virtualization technology. OpenStack promises massively
scalable cloud infrastructures. Being new, it remains to be investigated on
how it delivers those abilities, and what the exact workings of its internal de-
tails are. The aim of this project is to study the internal network performance
of OpenStack based while using Neutron implementation or other networking
plugings such as Calico. Network performance parameters like throughput,
packet loss and packet delay will be evaluated under TCP and UDP traffic
using IPERF benchmarking tool.

The investigation about network flow pattern confirm that VMs on the
same network communicate at layer 2 and those at different networks com-
municate at layer 3, irrespective of their host locations. The results from
network performance experiments showed that OpenStack guarantees a per-
formance with virtually no network bandwidth bottleneck. In addition, the
results shows that the location of machines in terms of host and network ad-
dress affect network performance, however, Calico is a strong competitor for
Neutron in terms of performance mainly for TCP.

Keywords Cloud, Cloud Solutions, NaaS, Public Cloud, Private Cloud, Hy-
brid Cloud, Neutron, Open VSwitch, Virtualization, Multi-Tenancy, SDN

x

Contents

Introduction 1

Motivation and Objective . 2

Problem Statement . 3

1 State-of-the-art 5

1.1 Cloud Computing . 5

1.2 Overview of OpenStack . 9

1.3 OpenStack Networking: Neutron 20

1.4 Networks and multi-tenancy . 28

2 Open VSwitch 31

2.1 Motivation For Open vSwitch 31

2.2 Open vSwitch . 32

2.3 Opn vSwitch Characteristics . 34

2.4 Software Defined Networks . 35

2.5 Why SDN? . 38

2.6 Evolution of Software Defined-Networking 39

2.7 SDN Controller . 40

2.8 SDN into OpenStack . 41

3 Approach and Methodology 43

3.1 Rapid Deployment Tools . 43

3.2 OpenStack Deployment . 44

3.3 DevStack . 46

3.4 Neutron configuration . 51

3.5 Introduction of other Networking Project 57

4 Analysis and design 59

4.1 Experimental setup . 60

4.2 Experimental Design . 60

xi

4.3 Studying the Network Performance 61

5 Results 63
5.1 Results for Network Traffic flow 63
5.2 Results for Network Performance 63
5.3 Comparision between differnt Projects 66

Conclusion and Future work 69

Bibliography 71

A Acronyms 75

B Contents of enclosed CD 77

xii

List of Figures

1.1 Demand of Cloud Computing . 6
1.2 Cloud Computing Models . 8
1.3 OpenStack conceptual architecture 13
1.4 OpenStack logical architecture . 14
1.5 OpenStack Services . 17
1.6 Neutron Architecture Overview . 22
1.7 Plug-in architecture . 23
1.8 OpenStack Neutron L3 Agents . 26

2.1 Open vSwitch Architecture . 34
2.2 Overview of SDN Architecture . 37
2.3 Traditional vs. SDN networking 39
2.4 SDN Controller . 41

3.1 All-in-one architecture . 47
3.2 Neutron Default Agents . 48
3.3 Networks with CLI . 52
3.4 Networks with Dashboard . 52
3.5 Virtual Routers . 53
3.6 Virtual Routers for Project1 . 53
3.7 Namespaces . 53
3.8 Floating IPs assigned to the Instances 56
3.9 Fixed IPs assigned to the Instances 56
3.10 ecurity groups for Project . 56
3.11 Topology for Benchmarking . 57

5.1 Average TCP throughput found for all scenarios 64
5.2 Average UDP throughput found for all scenarios 65
5.3 Average packet delay for all scenarios 65
5.4 Total packet loss for all scenarios 66

xiii

Introduction

The technology is like a never-ending ladder, whenever we think we are reach-
ing to the top, something new pops-up. As soon as the IT industry was
thinking that it has everything, there came an advanced technology named
as ”Cloud computing”, which provided the best answers for all monetary and
technical issues of small and big companies. Via which companies got sat-
isfactory and desired solution regarding the issues such as the high initial
investments for infrastructure, usage of full resource capacity, etc. As even in
a middle-level company the set-up cost for infrastructure in terms of software
and hardware components that need to be installed, configured and main-
tained on a regular basis is quite high, and in case if these components are
proprietary then we should never forget the cost of licenses and updates to
use them in future as well.

These requirements gave birth to the concept of Cloud computing. As
the Internet is expanding widely and the main motivation is to connect each
other, through the Internet. Companies are remotely accessing, storing and
managing the computers/servers, sharing resources ”On-demand”, means, the
provisioning of components-both hardware and software, as and when needed,
Cloud computing takes resource-sharing to the next level.

This has contributed to companies that provide cloud computing service
such as Amazon, Google, Microsoft, Rackspace and Justcloud to generate
more revenue [1]. The main feature of cloud computing is On-demand resource
allocation, through which users are charged based on usage time and amount
of resources they utilize. For instance, a company or a user can be billed
based on the duration of the resource usage. Furthermore, consumers get
high-performance services as well as low-cost services or resources instead of
building their own highly costly infrastructure [1].

If we explicitly talk about the OpenStack, this open source platform is
supported by many IT giants including Cisco, HP, IBM, and Intel. As there
is an outstanding and significant increase in demand and evolution of cloud
environment, it is getting immensely complex. Albeit, OpenStack is an in-

1

Introduction

dustrial venture in a prospect of a worldwide joint effort of developers and
distributed computing technologists, creating the open standard distributed
computing working framework for both open and private clouds. OpenStack
was founded by NASA and Rackspace Hosting on 21 October 2010; approx
8 years ago, which quickly become a worldwide programming group of engin-
eers working together on a standard and considerably adaptable open-source
cloud framework. OpenStack fundamentally constitutes three programming
activities, named as, OpenStack Compute, OpenStack Object Storage, and
OpenStack Image Service.

OpenStack provides an arrangement concerning interrelated ventures con-
veying different segments for a cloud foundation arrangement and controls
extensive pools of capacity, register and systems administration assets all
through a data center, that all managed through a dashboard(Horizon) that
gives executives control while enabling their clients to arrangement assets
through a web interface.

In this thesis, the main focus is on the Neutron, which is responsible for
providing network performance in the OpenStack. In order to comprehend
the scalability and predictability of network performance of the OpenStack
cloud computing, the network performance will be investigated using different
projects and plugins.

Motivation and Objective

Cloud computing has become an inseparable part of the technology and in-
novation which can provide services and /or applications via the web. It can
swiftly provide the information and the data from wherever the system is
situated at any minute. Albeit, there might be conceivable interruptions or
failures to the extreme disappointment of the system because of some special-
ized issues. Hence, it ought to be remembered that there is a high prerequisite
for maintenance despite the pivotal benefits cloud computing can give [2].

Everyone who is spending money wants the best services no matter if the
amount of money is large or small, its the same case in IT industry as well, it
doesnt matter if the organization is big industry giants or small entrepreneur
they all want quality of service for what they are paying off in terms of no
latency, no packet loss, and fast speed. However, in order to provide best
quality of service for the above-mentioned points we must make our focus
more towards a good capacity of network layer (Layer3) or data link layer
(Layer2) performance, which needs depth study of network performances in
general.

Also, not to be forgotten that Virtualization is an essential part of the
cloud computing, Wikipedia provides a very sophisticated definition of Virtu-
alization ”In computing, virtualization refers to the act of creating a virtual
(rather than actual) version of something, including virtual computer hard-

2

Problem Statement

ware platforms, storage devices, and computer network resources.” [3]. It is
exploitation of a single hardware equipment in a constructive way, through
this a single physical server, sharing same physical processor, hardware, I/O
can host multiple virtual machines, there are so many companies are get-
ting benefit from it, for example, Xen Virtualization is utilized by the most
acclaimed cloud supplier Amazon EC2.

OpenStack usages this tremendous phenomenon of Virtualization, in Open-
Stack it has mainly three kinds of services such as computing services, network-
ing services and storage services named as Nova, Neutron, and Cinder respect-
ively. These services provide logical resources that can be made on-demand
by cloud clients by means of HTTP commands, these logical resources could
be virtual machines (VM), networks, routers, switches and firewalls, these
resources established and implemented by the platform using servers, VMs,
network and storage devices.

However, every organization still needs resource management, as logical
resources are mapped to the underlying physical resources that host them,
hence, we have to compromise with the computing process and connection
performance.

As cloud computing and OpenStack turn out to be more unpredictable,
resource management moves toward becoming to a greater extent of complex-
ity. This is particularly valid for OpenStack as each service is autonomous
which in turn further complicates united management. For bigger organiz-
ations and the expanded alleviation to distributed storage and computing,
resource planning turns into a critical issue.

The main objective of this thesis is to find out the unsurpassed network-
ing competence, so that the consumers can utilize OpenStack in its full extent
according to their environment requirement, that knowledge is gained regard-
ing the networking capability of Neutron by comparing it with other available
Projects.

Problem Statement

Cloud computing is a hot concern during this era and researchers include ex-
cellent concepts related to this. To the current point, various cloud computing
operating device comes to exist for cloud systems, variety of them are Open-
Stack, EC2, OpenNebula, CloudStack and so forth. Cloud computing affords
many offerings, those offerings are IaaS (Infrastructure as a Service), PaaS
(Platform as a Service), and SaaS(Software as a Service). As the demand for
cloud computing is growing in no time, its performance needs to be properly
adequate to satisfy the need of its customers’ environment, whether it’s private
or public cloud. One among the foremost important issue of cloud computing
is to reap a more robust network performance as a result of a device without

3

Introduction

good Networking performance is kind of inconceivable to be considered a high
overall performance cloud devices.

The OpenStack cloud platform carries the neutron component that con-
trols digital networking for machines created via alternative additives. It
presents an API additionally to its reference implementation using Linux ele-
ments. There are also various competitive implementations with special fea-
tures and also the use of special technologies.

This Thesis will focus principally on the analysis of the offered implement-
ation of Network nodes in OpenStack and will work intensively on Neutron
comparison with OVN, Opendylight, Calico, Project Roamana and others to
seek out out the Networking performance which can be achieved by completely
different flavors of Network component of OpenStack.The problem statements
of this studies are:-

1. To become aware of the network analysis of the various projects of the
OpenStack platform.

2. To evaluate a practical comparison of overall network performance of
neutron with alternative projects on OpenStack, conjointly to observe
HA features, if provided in Project throughout the installation.

It’s far believed that the observer can cause expect the conduct of network
customers on OpenStack and customers can perceive what network overall
performance capabilities they get the use of OpenStack cloud computing. So,
as to try and do that we need to evaluate in their features and benchmark their
performance. Document the ascertained stability throughout the benchmark
and prolonged operation.

4

Chapter 1

State-of-the-art

Before going into the practicality, through this chapter I have tried to provide
some background nitty-gritty of the main contents of this thesis. Albeit, the
main concentration of this thesis is on OpenStack, however, as its born out
of cloud computing, its necessary to cover all the aspects of cloud computing,
however, I have tried to do it cover its all-classification in brief. Later, I focused
more on the detailed description of OpenStack starting with its history and
going all the way through its architectural overview with its components,
means touching all the important parts related to this thesis.

1.1 Cloud Computing

Cloud Computing [1] is a modern computing paradigm that providing IT
infrastructure and it is very essential requirement for the IT companies, where
a distributed- computing resources are served by a network-based mechanism.
As the usage of the cloud computing increased it resolved the biggest issue
of the requirement of the gigantic storage with the ability of consolidation of
resources for better management.

Cloud computing is a model for on-demand access to a shared pool of
computing resources that can be allocated and released by the consumer.
According to The NIST definition of Cloud Computing by PeterMell and
Timothy Grance [4] a cloud has five essential characteristics.

On-demand self-service: A consumer can unilaterally provision com-
puting capabilities, such as server time and network storage, as needed auto-
matically without requiring human interaction with each service provider.

Broad network access: Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous thin
or thick client platforms (e.g., mobile phones, tablets, laptops, and worksta-
tions).

Resource pooling: The providers computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and vir-

5

1. State-of-the-art

Figure 1.1: Demand of Cloud Computing

tual resources dynamically assigned and reassigned according to consumer de-
mand. There is a sense of location independence in that the customer generally
has no control or knowledge over the exact location of the provided resources
but may be able to specify location at a higher level of abstraction (e.g., coun-
try, state, or datacenter). Examples of resources include storage, processing,
memory, and network bandwidth.

Rapid elasticity: Capabilities can be elastically provisioned and released,
in some cases automatically, to scale rapidly outward and inward commensur-
ate with demand. To the consumer, the capabilities available for provisioning
often appear to be unlimited and can be appropriated in any quantity at any
time.

Measured service: Cloud systems automatically control and optimize
resource use by leveraging a metering capability1 at some level of abstrac-
tion appropriate to the type of service (e.g., storage, processing, bandwidth,
and active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

1.1.1 Cloud Computing History

The cloud computing first time came into lime light in early 1996, when the
references to the phrase ”cloud computing” appeared, where it was just an idea
of computation may someday be organized as a public utility [1], until in year
2000 Amazon put his hands to it, however, Amazon started its data centers
using small capacity. In the below chart the rise of cloud computing can easily
be spotted even in back 2009 comparing to other computing methods.

6

1.1. Cloud Computing

In the below table the development of Open Source Cloud computing is
shown.

Name Year Description Deployment

Eucalyptus Early 2008 AWS API compatible platform AWS API-compatible plat-
form

OpenNebula Early 2008

RESERVOIR
European Com-
mission funded
project

Private and hybrid clouds,
and for the federation of
clouds

CloudStack In May 2010 Began at cloud.com Public, private and hybrid
cloud services

OpenStack 2010 By Rackspace and NASA Public, private and hybrid
cloud services

Table 1.1.1: Open Source Cloud Computing [1]

1.1.2 Cloud Computing Models

A consumer always looks for the comfort whenever he/she buys anything,
this looks like a universal truth as while providing the cloud services makers
considered the fact of consumers ease. Hence, considering this fact there are
mainly 3 kinds of cloud computing models according to the consumer’s re-
quirements: Software as a Service (SaaS), Platform as a Service (PaaS) and
Infrastructure as a Service (IaaS).

The three models for cloud computing services in a service-oriented archi-
tecture (SOA). A brief overview follows:
SaaS
SaaS, short for Software-as-a-Service, is that the most elementary kind of
cloud service, SaaS permits the users to utilize numerous applications from
the cloud instead of using applications on their own PCs/Servers. The cloud
service providers would sometimes give some variety of software development
atmosphere to permit applications to be developed to be used within the cloud.
The application programming interface (API) that the users use to access and
act with the software permits the user to use the package while not having to
fret regarding how or where the info is being keep or what proportion stor-
age space is accessible because the cloud service supplier can manage this for
them. Examples of SaaS are Google apps, Salesforce, Cisco WebEx, and so
on.
PaaS
PaaS, short for Platform-as-a-Service, provides a development platform, PaaS

7

1. State-of-the-art

Figure 1.2: Cloud Computing Models

operates at a lower level than the SaaS. it’s accountable for the management
of the storage space, bandwidth allocation and computing resources offered
for the applications. It retrieves the resources required to run the software
and dynamically scales up these resources once additional is required. This
service holds a key attribute of the cloud mentioned as self-provisioning of
resources. Examples of PaaS embody Windows Azure, Heroku, Google App
Engine, and so on.
IaaS
IaaS, short for Infrastructure-as-a-Service, Infrastructure as a Service could be
a single tenant cloud layer wherever the Cloud computing vendors dedicated
resources solely shared with narrowed consumers at a pay-per-use fee. This
greatly minimizes the necessity for large initial investment in computing hard-
ware such as servers, networking devices, and process power. They conjointly
permit variable degrees of economic and purposeful flexibility not found in
internal data centers or with collocation services, as a result of computing
resources may be added or removed rather more quickly and cost-effectively
than in an enclosed data center or with a collocation service. IaaS and altern-
ative associated services have enabled start-ups and alternative businesses
specialize in their core competencies without concern regarding the provision-
ing and management of infrastructure. IaaS utterly abstracted the hardware
at a lower place and allowed users to consume infrastructure as a service,
while not bothering something regarding the underlying complexities. The
cloud encompasses a compelling price proposition in terms of price, however
out of the box, IaaS solely provides basic security (perimeter firewall, load

8

1.2. Overview of OpenStack

balancing, etc.) and for applications going in the cloud want higher levels of
security provided at the host. Examples of IaaS embody Amazon EC2, Google
Compute Engine, and so on, OpenStack also comes in IaaS.

1.2 Overview of OpenStack

OpenStack is a briefing of programming apparatuses for building further
as managing distributed computing platforms for public and private clouds.
OpenStack cloud operating framework turns all arrangements of hypervisors
within data center or over many data centers into pools of resources, and these
pools of resources are often consumed and additionally oversaw from one ele-
ment, named as dashboard. Consumers can simply visit its dashboard to play
out with its utilities in a very straightforward and fast means, and one can
build virtual machines (VMs), tack together networks and manage volumes.
OpenStack community works along around every 6 months, for time-based
release cycle with visit improvement points of reference. OpenStack is associ-
ate open source platform for cloud computing designed to work with python
programming. It also can be outlined as computing, networking and storage,
that has a pool of services like CPU, memory and storage. As mentioned
previous it is a venture of RACKSPACE and National Aeronautics and Space
Administration and since 2010, variety of releases are out. The subsequent
table shows the progress of OpenStack and the completely different options
included in every release.

9

1. State-of-the-art

Release name Release date Included Component code names

Austin 21-Oct-10 Nova, Swift

Bexar 3-Feb-11 Nova, Glance, Swift

Cactus 15-Apr-11 Nova, Glance, Swift

Diablo 22-Sep-11 Nova, Glance, Swift

Essex 5-Apr-12 Nova, Glance, Swift, Horizon, Keystone

Folsom 27-Sep-12 Nova, Glance, Swift, Horizon, Keystone, Quantum,
Cinder

Grizzly 4-Apr-13 Nova, Glance, Swift, Horizon, Keystone, Quantum,
Cinder

Havana 17-Oct-13 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer

Icehouse 17-Apr-14 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove

Juno 16-Oct-14 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara

Kilo 30-Apr-15 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic

Liberty 16-Oct-15 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar,
Manila, Designate, Barbican, Searchlight

Mitaka 7-Apr-16 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar,
Manila, Designate, Barbican, Searchlight, Magnum

Newton 6-Oct-16 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar,
Manila, Designate, Barbican, Searchlight, Magnum,
aodh, cloudkitty, congress, freezer, mistral, monasca-
api, monasca-log-api, murano, panko, senlin, solum,
tacker, vitrage, Watcher

Ocata 22-Feb-17 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar,
Manila, Designate, Barbican, Searchlight, Magnum,
aodh, cloudkitty, congress, freezer, mistral, monasca-
api, monasca-log-api, murano, panko, senlin, solum,
tacker, vitrage, Watcher

Pike 30-Aug-17 Nova, Glance, Swift, Horizon, Keystone, Neutron,
Cinder, Heat, Ceilometer, Trove, Sahara, Ironic, Zaqar,
Manila, Designate, Barbican, Searchlight, Magnum,
aodh, cloudkitty, congress, freezer, mistral, monasca-
api, monasca-log-api, murano, panko, senlin, solum,
tacker, vitrage, Watcher

Table 1.2: OpenStack Releases [2]

10

1.2. Overview of OpenStack

1.2.1 OpenStack Architecture

OpenStack has been developing from time to time and it is been rising its
design by separating its components/nodes consistent with their use. Thus,
the design of OpenStack is in an exceedingly distributed fashion. The Open-
Stack project consists of many reticulated sub-projects that facilitate to man-
age totally different aspects of hardware resources together with computing,
storage, networking and alternative connected services, every of that offers its
own set of APIs to facilitate the combination of the full software stack.

OpenStack provides cloud managers with a web-based dashboard as a
strong and versatile Application Programmable Interface (API) to regulate
a collection of physical hosting servers with totally different varieties of Hy-
pervisors and to manage the specified storage facilities and virtual network
infrastructures. The OpenStack dashboard conjointly permits instantiating
computing and networking resources at intervals the data center infrastruc-
ture with a high level of transparency. Figure 2.1 illustrates the OpenStack
conceptual design with interactions among its software elements [5].

As an IaaS-focused cloud platform, OpenStack has VMs at its center, pro-
visioned by the Nova module. VMs units are enclosed by alternative services
together with network connectivity handled by Neutron; OS images kept by
Glance; storage services provided by Swift and Cinder. Keystone is answer-
able for the authentication of the entire OpenStack system whereas, at a high
level, Horizon provides a web-based management interface to any or all of the
services. Below is the description of its components and services.

11

1. State-of-the-art

1.2.1.1 Compute Service

OpenStack compute (Nova) is intended to manage pools of computing re-
sources and provide access to those pools via either graphical program tools
(dashboard) or command-line tools or the wealthy native API sets, in short
it is an instance management component. Although, dashboard is accessible
only by the authenticated user. Nova works with most well-liked virtualization
technologies resembling KVM (default) [7], VMware [6], Xen [8] or Hyper-V
[9] as well as Linux container technologies like LXC [10]. Nova may be thought
of the most important part in associate degrees of IaaS system, within which
cloud users have access to VMs hosted by nodes running nova service. In-
side OpenStack platform, Compute nodes use for hosting and managing cloud
computing systems.

1.2.1.2 Networking Service

The Networking service, Neutron, previously known as Quantum, there were
2 major issues with Quantum and as a resolution of which Neutron born:

1. As the Networking was sub-component of Nova, limited technology ”baked
in” to design

2. No tenant control of network topology and addressing, no way to insert
advanced network services, such as firewall.

Neutron provides an association with the abstraction of Virtual Network
Infrastructure (e.g.: network, subnets, ports, routers, etc.) and services (e.g.:
firewall, load balancer, virtual private network, etc.) inside the OpenStack
based cluster, fundamentally it is a network management component.

Neutron primarily provides VMs (created and managed by Nova) with net-
working service, that before the existence of neutron were handled by Nova
network. Being capable of providing solely basic networking service, develop-
ment and deployment of nova-network became step by step lessened in later
releases, with a long-run they arranged to remove this module from Open-
Stack code base. Neutron has accentuated because of the default networking
module for OpenStack with a lot of versatile and full-edged abstractions of
network infrastructure and services. Neutron is an API frontend that manages
the Software Defined Network (SDN).

1.2.1.3 Storage service

Besides conventional storage technology (that comes in conjunction with com-
puting resources managed by Nova), OpenStack additionally supports 2 fur-
ther varieties of storage, specifically Object Storage and Block Storage.

12

1.2. Overview of OpenStack

Figure 1.3: OpenStack conceptual architecture

13

1. State-of-the-art

Figure 1.4: OpenStack logical architecture

14

1.2. Overview of OpenStack

Object storage (Swift) is a scalable redundant storage management
component within which objects and files to keep, replicated, and distrib-
uted throughout multiple servers inside the cluster. However, files are stored
without metadata, they are simply containers and files. There are 2 layers
in swift for deployment: The Proxy (API Layer) and The Storage engine
(Software-based storage distribution/replication). GlusterFS and Ceph are
the 2 widely used software-based storage. As an example, Amazon runs its
storage service S3 via its public cloud platform at massive scale.

Block storage (cinder) manages (creates/attaches/detaches) virtualized
block storage pools and supply OpenStack users with access to those pools.
It is to be worth notice that once the volume is created and attached to the
instance, it can be used on the instance as any other block device would be
used. Block storage is absolutely integrated into compute (Nova) and dash-
board (Horizon) services via APIs, enabling users to consume these storage
resources even with none data of the technology of the underlying storage
devices. There is one more utility of Cinder it can easily handle snapshots,
also these snapshots also used by instances as a boot source. Logical Volume
Manager (LVM) is by default configured, Cinder also uses GlusterFS and for
software-based storage.

1.2.1.4 Dashboard Service

OpenStack Dashboard (Horizon) permits users to access and manage VMs,
Virtual Networks and alternative OpenStack resources via a web-based graph-
ical users interface (written in Python). The Dashboard service presenting
altogether totally different virtual machines, the virtual networks they be-
long to and virtual routers that connect these networks. Besides dashboard,
users (mainly developers) might also move and perform administrative tasks
by practice sets of native OpenStack APIs or the EC2 compatibility APIs.

1.2.1.5 Shared Services

OpenStack works with several alternative services these are utilized by the
above core projects, making it easier to implement and operate on the cloud.
These services together with identity, image management and a web interface
- integrate the OpenStack elements with one another, furthermore as external
systems to produce a unified expertise for users as they interact with totally
different cloud resources.
Identity service
OpenStack Identity service (Keystone) provides a central authentication and
authorization mechanism for various OpenStack services. Keystone put to-
gether provides a catalog of endpoints for all OpenStack services. the primary
issue that must happen whereas connecting OpenStack deployment is authen-

15

1. State-of-the-art

tication, Keystone manages tenants, users, and roles and be a catalog of the
services and endpoints for all the elements within the running cluster.

Tenant is that the cluster of objects in OpenStack, everything should reside
within a tenant, let’s say, users, instances, and networks. However, Project
and Tenant are the same, during use of web interface its known as Project
and on command line named as Tenant. From the mentioned line the differ-
ence between User, Tenant and roles would be clear Users grant a role within
tenant [11].
Image service
The OpenStack Image service (Glance) allows creating, storing and retrieving
disk images for VMs, that is used by compute service throughout the pro-
visioning of VM instances. In Cloud computing there is a requirement of a
registry of pre-installed disk images to boot, Glance is that registry inside
OpenStack deployment [11].
Telemetry service
The OpenStack telemetry service (Ceilometer) collects resource measurement
and track the services used by OpenStack users and supply billing consequently.
Initially, it was designed for the billing purposes only later on after realization
of its utilities it turned into a general-purpose telemetry system. Through
Ceilometer one can get a statistical view of the resource measurement [11].
Orchestration service
OpenStack Orchestration (Heat) provides the facility to stipulate and auto-
matize the deployment of infrastructure, services and applications using flex-
ible templates. Orchestration makes it possible to launch multiple instances in
one go, that is meant to work along. This happens by managing a file named
as Template, that contains all info concerning what ought to be launched. It
will scale up or scale down the OpenStack cluster [11].

16

1.2. Overview of OpenStack

Figure 1.5: OpenStack Services

1.2.2 Extra Services

There are additional services that OpenStack uses and are needed to possess
a operating cloud. These don’t seem to be maintained by OpenStack and a
number of other choices for every service are out there. Services used are[30]:

• Network Time Protocol (NTP) networking protocol for clock syn-
chronization. All OpenStack nodes ought to have a similar system time
and NTP servers are used for that. it’s extremely suggested that con-
troller nodes reference some different trusted NTP servers and every
one other nodes have controller as their NTP server. One advised im-
plementation that OpenStack uses is Chrony.

• SQL database Most OpenStack services store their data on SQL data-
bases. It ought to be placed within the controller node. OpenStack
supports several databases, most notably MySQL and its fork project
MariaDB and conjointly different popular ones like PostgreSQL.

• Messaging queue service (MQ) it’s utilized in distributed systems
to send and receive messages. It uses a queue as a data structure so as
to temporary store messages once destination service isn’t responding

17

1. State-of-the-art

or is presently busy. OpenStack makes use of messaging queues to co-
ordinate data about status and operations among services. usually runs
on controller node and plenty of MQ services are supported together
with RabbitMQ, Qpid and ZeroMQ. Most used and supported is the
RabbitMQ.

• Memcached distributed memory caching. OpenStack uses Memcached
to cache tokens for authentication. As this service is used in authentic-
ation, only OpenStack servers ought to have access to that. this might
be achieved with rewalls, authentication and encryption. the most prac-
ticality of Memcached is to create central authentication quicker.

1.2.3 Message exchange and Integration

OpenStack is an absolutely distributed system, which consists of multiple
smaller projects, or modules. Every module is intended with the ”Share Noth-
ing Architecture” principle in mind and is functionally autonomous from the
others. A module like Nova or Neutron is included of multiple elements that
together create its functionalities. like the other distributed systems, the prac-
ticality of OpenStack as an entire depends heavily on however its inner services
are integrated, that successively depends on the aptitude of its modules and
elements to communicate between them. There are three main mechanisms
that enable the communication and service integration of OpenStack: REST-
ful API, Remote Procedure call, and RabbitMQ.

1.2.3.1 RESTful API

Inter-process communication between clients is accomplished through Remote
Procedure call (RPC) by which implementation of subroutines during a remote
location get activated. OpenStack modules like Nova (nova-compute, nova-
api, nova-scheduler), neutron (neutron-server, neutron-openvswith-agent) or
cinder (cinder-scheduler, cinder-volume) build significant use of RPC for its
intra-module communication, to the extent that just about everything happen-
ing in these modules is triggered by RPC calls. for instance, when Neutron’s
neutron-server receives a (RESTful) request to form a brand-new network, it
asks the accessible plug-in (e.g ml2plugin) to successively send an RPC call
to the corresponding agent (e.g. neutron-openvswith-agent) [22].

1.2.3.2 Remote Procedure Call

Through Remote Procedure call (RPC) clients are allowed for inter-process
communication to trigger the execution of subroutines during a remote loca-
tion. OpenStack modules like Nova (nova-compute, nova-api, nova-scheduler),
neutron (neutron-server, neutron-openvswith-agent) or cinder (cinder-scheduler,

18

1.2. Overview of OpenStack

cinder-volume) build significant use of RPC for its intra-module communica-
tion, to the extent that just about everything happening in these modules is
triggered by RPC calls. for instance, when Neutron’s neutron-server receives a
(RESTful) request to form a brand-new network, it asks the accessible plug-in
(e.g ml2plugin) to successively send an RPC call to the corresponding agent
(e.g. neutron-openvswith-agent) [22].

1.2.3.3 RabbitMQ

RPC calls depends upon a channel or a messaging mechanism through that
they’re delivered to the intense processes (i.e. consumers). RPC requests are
packaged into messages that are sent to a message broker that then forwards
them to the customers. This is wherever a messaging broker like RabbitMQ
fits into the image. RabbitMQ [22] is an open-source implementation of the
Advanced Message Queue Protocol (AMQP) standard. AMQP is intended
to facilitate the brokering of messages between completely different processes,
applications of an equivalent system, or even between systems that communic-
ate by message passing. In OpenStack platform, AMQP is used to determine
an effective internal communication mechanism between elements of a similar
OpenStack module, for instance, Nova, neutron or cinder.

1.2.4 KVM

Kernel-based Virtual Machine, or KVM, is a full virtualisation resolution for
Linux and has been shipped with Linux kernel since kernel version 2.6.20.
KVM enabled by running QEMU-based hardware emulation with KVM-acceleration
mode enabled. KVM is a special in operation mode of QEMU that utilises
processors hardware-assisted virtualisation capability (Hardware Virtual Ma-
chine, or HVM) to perform hardware virtualisation via its processor-specific
kernel modules. KVM is among many hypervisor platforms compatible with
OpenStack. By itself, KVM doesn’t perform any emulation. Instead, it ex-
poses the /dev/kvm interface, that a userspace host will then use to[28]:

• Set up the guest VM’s address space. The host should conjointly provide
a firmware image (usually a custom BIOS once emulating PCs) that the
guest will use to bootstrap into its main OS.

• Feed the guest simulated I/O.

• Map the guest’s visual display unit back onto the host.

On Linux, QEMU versions 0.10.1 and later is one such userspace host.
QEMU uses KVM once accessible to virtualize guests at near-native speeds,
however otherwise falls back to software-only emulation.

19

1. State-of-the-art

1.3 OpenStack Networking: Neutron

As this thesis is exclusively targeted at Networking of OpenStack, thus this
section can cover thoroughly the OpenStack Networking module - neutron
and its relevant software packages that altogether construct the Neutron-based
network infrastructure.

1.3.0.1 The Neutron Project

The OpenStack neutron project, having its premiere in Havana release (Oc-
tober 2013), replaced nova-network to provide OpenStack with a full-featured
abstraction of the Virtual Network Infrastructure still as basic and advanced
network services. Thanks to Neutron, cloud users have access to essential net-
working infrastructure and resources like network, subnet and router objects.
the elements simulate functionalities of real- world corresponding physical
components: network consists of subnets connected to routers, that route
traffic between totally different subnets and networks. Besides the avail-
ability of such basic network services as NAT, DHCP or routing, neutron
conjointly allows users to create advanced virtual network topologies as well
as services like firewalls (Firewall- as-a-Service, or FWaaS), load balancers
(LoadBalancer-as-a-Service, or LBaaS), and virtual private networks (VPN-
as-a-Service, or VPNaaS).

Neutron has a component on the controller node called the neutron server
which accepts and routes API requests to the suitable OpenStack Network-
ing plug-in for action, along with a bunch of OpenStack Networking agents
and plugins that communicate with each other using a messaging queue by
plugging/unplugging ports, creating networks or subnets, and providing IP
addressing as per requirement. Depending on the type of deployment, you
can choose the different agents that you want to use. Some plugins that are
available today with Neutron are the following [13]:

• Open vSwitch Plugin

• Cisco UCS/Nexus Plugin

• Cisco Nexus1000v Plugin

• Linux Bridge Plugin

• Modular Layer 2 Plugin

• Nicira Network Virtualization Platform (NVP) Plugin

• Ryu OpenFlow Controller Plugin

• NEC OpenFlow Plugin

• Big Switch Controller Plugin

20

1.3. OpenStack Networking: Neutron

• Cloudbase Hyper-V Plugin

• MidoNet Plugin

• Brocade Neutron Plugin Brocade Neutron Plugin

• PLUMgrid Plugin

• Mellanox Neutron Plugin Mellanox Neutron Plugin

• Embrane Neutron Plugin

• IBM SDN-VE Plugin

• CPLANE NETWORKS CPLANE NETWORKS

• Nuage Networks Plugin

• OpenContrail OpenContrail Plugin

• Lenovo Networking Lenovo Networking Plugin

• Avaya Neutron Plugin Avaya Neutron Plugin

1.3.1 Architecture Overview

OpenStack Networking is a standalone service that usually deploys many pro-
cesses across the variety of nodes and works closely with other components
such as Identity, Compute, Storage, etc. The most important process of the
OpenStack Networking service is neutron-server, this is central server Python
daemon that exposes the OpenStack Networking API and passes tenant re-
quests to a collection of plug-ins for receiving, dispatching API requests.

With the help of these APIs Neutron client is able to build flexible policies
and network topologies. The Neutron server administers several agents re-
sponsible for host and network configuration. Communication between Neut-
ron server and these agents relies either on RPC (over RabbitMQ) or through
the standard Networking API. This section provides an overview on the ar-
chitecture and main components of Neutron, as illustrated in below Figure.

1.3.1.1 Neutron Server

The neutron server daemon (neutron-server) runs on the network node, it
starts up and reads the configuration files then hundreds all configured plug-ins
and extensions. It implements and provides network models and IP addressing
for every port consequently. It additionally exposes APIs to neutron clients
(via Dashboard, command line interface or API calls), and forwards requests
from the clients to configured plug-ins. These consumer requests are placed

21

1. State-of-the-art

Figure 1.6: Neutron Architecture Overview

into a message queue (using the RabbitMQ messaging system and AMQP
(Advanced Message Queuing Protocol)) and sent to corresponding agents (L2,
L3, DHCP or alternative agents for advanced services).

1.3.1.2 Plug-in architecture

Neutron’s ability to integrate with completely different underlying infrastruc-
ture and alternative networking services is enforced by a range of plug-ins.
In alternative words, whereas neutron server provides its users with sets
of capable APIs to manage and customize networks, it’s the plug-ins that
do the particular configuration tasks and enable neutron to support fast-
changing network technologies from numerous vendors additionally on with
efficiency deploy the Software-Defined Networking paradigm. the most task
of the plug-ins is to manage agents, these agents give layer 2/3 connectivity
to instances, it handles physical-virtual network transitions and additionally
handles metadata. As such, the plug-in architecture brings a robust and ver-
satile method of customizing a network’s capabilities. there’s just one neutron
plug-in running at a time named as Module Layer 2(ML2), through this frame-
work OpenStack Networking will at the same time use numerous forms of layer
2 networking technologies [14].

22

1.3. OpenStack Networking: Neutron

Figure 1.7: Plug-in architecture

Modular Layer 2
Modular Layer 2 (ML2) plug-in provides a framework to at the same time man-
age a range of Layer-2 technologies, every with a private mechanism driver.
ML2 helps to handle the problem of implementation redundancy within which
completely different switch technologies and vendors (e.g. OpenvSwitch, Linux
bridge or Cisco) herald their own monolithic plug-ins and associated agents
whereas still providing similar options and obtaining obstructed into the same
environment (Neutron stack). This leads to duplication of the database, code
base, and so on, besides development and maintenance efforts.

ML2 is meant to eliminate these duplication problems and to simplify the
scalability potential (e.g. development of new plug-in/agent for new switch
vendor). Besides, with ML2, there’s still just one single plug-in allowed how-
ever multiple switch technologies may be run at the same time thanks to ML2’s
mechanism driver. The ML2 plug-in basically consists of kind Manager and
Mechanism Manager[15].

Type manager : driver manages network state of a selected type and
additionally performs supplier and tenant network validation. OpenStacks
latest Pike version also supported type drivers include: local, flat, vlan, gre
and vxlan.

Mechanism manager : The mechanism manager manages drivers for

23

1. State-of-the-art

various underlying technologies (from completely different vendors) want to
manipulate the underlying infrastructure and makes certain that they’re ap-
plied in accordance with accessible type drivers.

1.3.1.3 Message queue

Similar to different OpenStack modules, neutron uses RabbitMQ as a mes-
saging broker for communication between its internal elements by exchanging
Remote Procedure call (RPC) over RabbitMQ message queueing mechanism
using Advanced Message Queuing Protocol (AMQP) frameworks, which offer
message queues for peer-to-peer communication. Queue implementations are
generally deployed as a centralized or decentralized pool of queue servers the
communication between neutron elements together with neutron-server, the
OVS agent and also the OVS.

1.3.1.4 L2 Agent

L2 agents run on hypervisors (Compute nodes) and perpetually communicate
with neutron server using RPC. Its main responsibility is to wire new devices
(TAP interfaces created by Nova) and to set up the software bridges on the
compute nodes. an L2 agent is answerable of monitoring its hosting hypervisor
and informing the neutron-server of events occurring with the new or removed
devices. In OpenStack, L2 property is provided using numerous mechanism
drivers. L2 agents got to be present altogether compute/network nodes to
make sure that L3 services are approachable by tenant VMs and subnets[17].
There are typically 2 bridges:

br-int (Integration bridge): Its the bridge that takes care of tagging
and untagging the traffic that coming back in or out of the VMs. To tag the
traffic, it uses local VLAN id and assigns it to the network.

br-tun (Tunneling bridge): It takes care of translating the labeled
traffic. It interprets the VLAN id into segmentation and using it then for
tunneling. If for instance, to utilize GRE tunnels, the segmentation id is used
to specify the tunnel id. The L2 agent is additionally answerable for apply-
ing security cluster rules (firewall rules) that enforced in neutron by using
IPTABLES and IP sets.

Open vSwitch Agent
As mentioned earlier, neutron needs plug-in agents (for example neutron-
openvswitch-agent) to be present altogether hypervisor and networking nodes
to provide local OpenvSwitch configuration. OVS agent provides layer-2 con-
nectivity between instances and therefore the physical network infrastructure
using VLAN (802.1q) tagging. It supports one untagged (flat) network and up
to 4095 tagged (VLAN) networks. the particular amount of VLAN networks
depends on the physical network infrastructure. After receiving a request
from neutron-server OVS agent acts accordingly to configure OVS. This prin-

24

1.3. OpenStack Networking: Neutron

cipally involves putting in the integration bridge (br-int), to that all internal
network services and tenant VMs are connected. The neutron-openvswitch-
agent significantly depends on an OVS-specific API (ovs lib) to configure OVS
and manipulate ow entries via 2 utilities ovs-vsctl and ovs-ofctl, respectively.
Despite being an OpenFlow-compatible switch, OVS operates inside neutron
networking as a regular L2 switch with each traditional and ow modes [16].

Linux operative agent
The Linux bridge agent configures Linux bridges to comprehend L2 networks
for OpenStack resources. Configuration for the Linux bridge agent is usually
done in the linuxbridge agent.ini configuration file. ensure that on agent begin
you pass this configuration file as an argument [14].

SRIOV Nic Switch agent
The sriov nic switch agent configures PCI virtual functions to understand
L2 networks for OpenStack instances. Network attachments for alternative
resources like routers, DHCP, then on aren’t supported. Configuration for the
SRIOV nic switch agent is usually done in the sriov agent.ini configuration file.
ensure that on agent begin you pass this configuration file as an argument [14].

MacVTap agent
The MacVTap agent uses kernel MacVTap devices for realizing L2 networks
for OpenStack instances. Network attachments for alternative resources like
routers, DHCP, then on aren’t supported. Configuration for the MacVTap
agent is usually done in the macvtap agent.ini configuration file. confirm that
on agent begin you pass this configuration file as an argument [14].

1.3.1.5 L3 Agent

While the L3 agent shares plenty of an equivalent architectural aspect as the
L2 agent, its utterly different. With the help of L2 agent one can connect to
the networks. Albeit, the L3 agent gets the routers connected to every different
one. It moves data from one network to a different and from your network
to the external world. Figure 2.7 captures a summary of L3 services together
with virtual elements configured by L2 agents. The L3 agent creates totally
different internal ports with prefix tap for DNS service, qr- for virtual router
or prefix qg- for gateway to the External (public) network [17]. As its name
suggests, the neutron L3 agent (neutron-l3-agent) configures its hosting a node
with totally different Layer-3 networking services together with routing, NAT,
and Floating IP. Traditionally, such L3 services run on Network node and rely
on the L2 agent to supply layer-2 connectivity to VM instances running on
compute nodes. neutron L3 agents use the Linux IP stack and iptables [18]
to perform L3 forwarding and NAT. so as to support multiple routers with
probably overlapping IP addresses, neutron-l3-agent defaults to using Linux
network namespaces to provide isolated forwarding contexts.

Routing
A network namespace is like container or VM for the network device, in other

25

1. State-of-the-art

Figure 1.8: OpenStack Neutron L3 Agents

words, network stack virtualization. Similar to conventional networking, rout-
ing is required if packets are sent from one subnet to another, including traffic
between VMs belonging to different subnets, or between VMs and hosts reach-
able via the External network. L3 depends on the L2 agent, in similar way
Nova depends on the L2 agent to plug the port and perform the L2 wiring.
Once those ports exist, whether its the ovs port or a veth pair (virtual cable),
they can be moved into a namespace, just like taking a wire and plug it into
your device. After this it’s L3 agent’s task to configures the IP addresses
on the interfaces. It configures the routing, whether its a basic routing table
or extra routes that had been configured on the router. It uses iptables to
implement the floating IP functionality and provides a floating IP to every
respective instance. Neutron has to find out the dedicated router for every
particular instance need to go through to get to the external network and
it uses NAT to implement that floating IP. Assume that there are multiple
tenant networks and one shared external network and each of the former is
connected to the latter via a Neutron-based virtual router. Such a router will
be:

• Connected to the internal (tenant) network via \ qg- \ (gateway) inter-
face on br-ex

26

1.3. OpenStack Networking: Neutron

• Connected to the external network via port via \ qr- \ (router) interface
on br-int integration bridge

• Having a namespace (\ qrouter-\ prefix) associated with router name to
avoid IP Connection between networks

On the router, there is a metadata access, shared access for instances
without floating IP and some of the advanced services are also integrated into
it (VPNaas and FWaas).

NAT
The neutron-l3-agent implements its router’s NAT or Network Address Trans-
lation, functionality using Linux kernel iptables, enabling packets from internal
(tenant) networks to succeed in an external network before going out to the
web. just like routing, NAT rules of a router ought to be executed under a
particular router’s namespace to isolate them from host’s network and altern-
ative tenants’ networks.

Floating IP
By default, server instances have a default IP assigned to them. But it is
available only internally. A floating IP needs to be assigned for outside access.
The Compute API provides several functionalities to access and use floating
IPs. The IP is created in the network where the server is launched. The API
selects the first available floating IP from a pool of IPs and associates it with
the instance. If an instance dies, its floating IP is available for reuse. The
virtual router provides Floating IP by NAT and iptables. This L3 service
allocates and associates IP addresses from an external network to internal
tenant VMs to make them directly reachable from an external network. As
explained above the neutron-l3-agent implements dedicated Floating IP also
by using iptables to perform NAT.

1.3.1.6 DHCP Agent

Neutron depends on its DHCP Agent, neutron-dhcp-agent, located within
the Network node to provide Dynamic Host Configuration Protocol (DHCP)
services to tenant networks, thus allocating IP addresses to VMs. particularly,
dnsmasq [20] is used as back-end service for this purpose. For every subnet
created, there’s a running dnsmasq daemon attached to the int-br via port
with \tap-” prefix under a DHCP namespace.

1.3.2 Network Architecture

There are 4 types of network in a standard OpenStack configuration: Man-
agement, Guest, API and External networks [21].
Management network

27

1. State-of-the-art

Used for internal communication between OpenStack elements. used for
administrative communications and OpenStack internal operations such as au-
thentication, access to internal databases (on Controller node), configurations,
and so on. When the cluster is being set up, all configurations that require
multi-node connectivity use the Management network. The IP addresses on
this network ought to be approachable solely within the data center and is
taken into account the Management Security Domain.
Guest network
Used for VM data communication inside the cloud deployment. The IP ad-
dressing necessities of this network rely on the OpenStack Networking plug-in
in use and also the network configuration selections of the virtual networks
created by the tenant. This network is taken into account the Guest Security
Domain.
External network
Any given Networking set up has a minimum of one external network. in
contrast to the other networks, the external network isn’t simply a virtually
defined network. Instead, it represents a view into a slice of the physical,
external network accessible outside the OpenStack installation. IP addresses
on the external network are accessible by anybody physically on the outside
network.

In addition to external networks, any Networking set up has one or addi-
tional internal networks. These software-defined networks connect on to the
VMs. solely the VMs on any given internal network, or those on subnets con-
nected through interfaces to an identical router, will access VMs connected
thereto network directly.

It is essentially the gateway that allows traffic from VM instances to reach
physical networks in other word, it used to offer VMs with internet access in
some deployment situations. The IP addresses on this network ought to be
approachable by anyone on the net. As such, VM traffic must go through
the node or nodes that have routing capability. This network is taken into
account to be within the public security Domain.
API network
Exposes all OpenStack APIs, as well as the OpenStack Networking API, to
tenants. The IP addresses on this network ought to be approachable by anyone
on the net. this might be identical network because the external network,
because it is feasible to form a subnet for the external network that uses IP
allocation ranges to use solely under the total range of IP addresses in an IP
block. This network is taken into account the public Security Domain.

1.4 Networks and multi-tenancy

Apart from the physical networks connecting the various nodes, in OpenStack,
there are 2 kinds of networks:The tenant network and The provider network

28

1.4. Networks and multi-tenancy

A provider network is a network that’s external to the cluster and permits
to have outside connectivity, by passing through the network node. A virtual
instance can even allot (and then deallocate, when it’s not needed) a floating
IP on this network to achieve external visibility. provider networks are created
solely by the OpenStack administrator.

Instead, the tenant network (also called self-service network) is formed by
the cloud user for connectivity inside projects. However, it lacks of connectiv-
ity to external networks like the internet, unless it’s using a virtual router that
incorporates a gateway on a provider network. By default, tenant networks
are absolutely isolated and don’t seem to be shared with alternative projects.
within the creation phase of a virtual instance, a fixed IP is taken from this
network (which won’t be modifiable once the creation, as a consequence of a
neutron abstraction regarding the port). Moreover, it’s necessary to remark
that the instance receives the IP from a DHCP server (which truly could be
a dnsmasq[20] process generated by the DHCP agent) that’s configured to
supply thereto instance always identical fixed IP.
Neutron supports different kinds of tenant networks.

• Flat tenant network: Here there’s no tenant support; each instance
resides on a similar network, which may even be shared with the hosts.

• Local tenant network: during this kind of network the instances reside
inside the local compute host and isolated from any external networks.

• VLAN tenant network: 802.1Q tags (VLAN IDs) are used in VLAN
tenant network, which is pretty almost like the VLANs used in the phys-
ical network. The benefit of this network that it permits all instances
to communicate with each other over the environment.

• VXLAN or GRE tunneling tenant network: In such networks,private
communication between instances are supported by network overlays.

Inside a node, tenant flows are perpetually separated by internally as-
signed VLAN IDs. Then, to perform communications among physical nodes,
tenant flows are separated, for example, by user-defined VLAN IDs, VXLAN
IDs or GRE IDs, depending on the chosen tenant isolation technique. it’s
necessary to remark that whichever it’s the tenant isolation mechanism used,
inside a node OpenStack can perpetually create use of automatically intern-
ally assigned VLAN IDs. Indeed, despite the fact that a tunneling technique
is used for the tenant networks, the VLAN IDs are still accustomed isolate the
tenants traffic within the node. However, though by means that of this tech-
niques (VLAN, VXLAN, GRE, etc.) the multi-tenancy is achieved, further
mechanisms are required to let different users have overlapping networks. To
do that, the virtual routers for the tenant networks, still because the processes

29

1. State-of-the-art

acting as a DHCP server, are implemented within many network namespaces.
The network namespace is a technology of the Linux kernel that enables isol-
ating multiple network domains within one host, by replicating the network
software stack. Therefore, a process executed during a namespace sees only
specific network interfaces (e.g. those of the router), their own routing and
arp tables, their own firewall and NAT rules. Namespaces are able to guar-
antee L3 isolation, creating doable for the various users to have to overlap IP
addresses. Therefore, multi-tenancy is achieved by the use of techniques as
VLAN tagging and/or tunneling (VXLAN, GRE), whereas the L3 isolation is
granted by the use of many Linux kernel network namespaces. However, it’s
necessary to know that neutron provides multiple network abstractions to let
the user be transparent to any or all these low-level details required to deliver
and enhance multitenancy in this distributed system.

30

Chapter 2

Open VSwitch

This section talks about the Search Results essence of the Open vSwitch
(OVS), that how an open-source software switch became a must choice for
implementation in the Linux kernel and designed to work in a multiserver vir-
tualization environment, how it emerged in the networking industry, became
an inseparable part of Software-Defined Networking and where it is taking
us. There are several SDN-related technologies including OpenFlow, Open
vSwitch, and OpenDaylight.However, this chapter mainly focuses on Open
vSwitch and SDN.A standout amongst the most pivotal parts of this section
is the way and where Open vSwitch fits into the OpenStack picture.

2.1 Motivation For Open vSwitch

Hypervisors would like the flexibility to bridge traffic between VMs and with
the surface world. On Linux-based hypervisors, this accustomed mean using
the inbuilt L2 switch (the Linux bridge), that is quick and reliable. So, it is
reasonable to ask why Open vSwitch is employed.

The answer is that Open vSwitch is targeted at multi-server virtualization
deployments, a landscape that the previous stack isn’t well matched. These
environments are typically identified by extremely dynamic end-points, the
maintenance of logical abstractions, and (sometimes) integration with or of-
floading to special purpose switching hardware.

Following are the features of Open vSwitch[39] which put it on the top :

• Visibility into inter-VM communication via NetFlow, sFlow(R), IPFIX,
SPAN, RSPAN, and GRE-tunneled mirrors

• LACP (IEEE 802.1AX-2008)

• Standard 802.1Q VLAN model with trunking

• Multicast snooping

31

2. Open VSwitch

• IETF Auto-Attach SPBM and rudimentary required LLDP support

• BFD and 802.1ag link monitoring

• STP (IEEE 802.1D-1998) and RSTP (IEEE 802.1D-2004)

• Fine-grained QoS control

• Support for HFSC qdisc

• Per VM interface traffic policing

• NIC bonding with source-MAC load balancing, active backup, and L4
hashing

• OpenFlow protocol support (including many extensions for virtualiza-
tion)

• IPv6 support

• Multiple tunneling protocols (GRE, VXLAN, STT, and Geneve, with
IPsec support)

• Remote configuration protocol with C and Python bindings

• Kernel and user-space forwarding engine options

• Multi-table forwarding pipeline with flow-caching engine

• Forwarding layer abstraction to ease porting to new software and hard-
ware platforms

2.2 Open vSwitch

Open vSwitch is an open-source project of a distributed virtual multi-layer
switch that permits hypervisors to virtualize the networking layer. This caters
to an oversized range of virtual machines running on one or additional physical
nodes. With the help of the virtual bridges, virtual machines are able to
communicate with each other on a similar physical node, as the connectivity
of the VMs with ports of virtual bridges works in similar fashion to a physical
server’s connection to physical ports on a Layer 2 networking switch. In order
to communicate outside the hypervisor node these bridges mutually connect
virtual machines to the physical network. In OpenStack, each the neutron
node and also the compute node (Nova) are running Open vSwitch to provide
virtualized network services [23].

OVS depends on 2 things in order to forward packets between hosts:
virtual network bridges and ow rules. OVS has 3 main elements together
with the server module (ovsdb-server), the main daemon (ovs-vswitchd)
and a kernel module.

32

2.2. Open vSwitch

• ovs-vswitchd – Open vSwitch daemon (Slow Path): this is often the
software package module sometimes running in user space to talk to a
control cluster, that often embodies network management modules and
an SDN controller, to require remote network configuration and program
that into the kernel quick path.

• ovsdb-server – Open vSwitch database server wherever OVS switch-level
configuration and policy data is stored.

• openvswitch mod.ko – kernel module (Fast Path): this is often the soft-
ware package module typically running on OS or hypervisor kernel to
really perform packet process.

33

2. Open VSwitch

Figure 2.1: Open vSwitch Architecture

OVS provides high-level interfaces together with, among the others, ovs-
vsctl and ovs-vsctl that enable OpenStack to configure and use it because
of the underlying L2 switch. Specifically, Neutron’s OVS agents (neutron-
ovs-agent) store switch-level configurations into the OVS server module. The
ovs-vswitchd daemon can browse these configurations and come upon virtual
networks accordingly. The kernel module of OVS conjointly called ”fast-path”,
plays a vital role in packet forwarding, although the forwarding choices are
mostly done by the OVS daemon, as its the kernel modules and it handles the
majority of the traffic. Once OVS experiences a new traffic ow, the first packet
of the ow, thought of a cache miss, is handled in user area by the OVS daemon,
after that, all remaining packets of the ow are forwarded by kernel module for
higher performance. As user-space process is far slower than kernel- space
process, we might commonly experience some delay with the first few packets.

2.3 Opn vSwitch Characteristics

Open vSwitch is one of the three prevalent virtual switches besides VMware
virtual switch and Cisco Nexus 1000V. Nicira, later purchased by VMware,
made Open vSwitch to address the issues of the open source community since
there was none element rich virtual switch offering intended for a Linux-based
hypervisor, for example, KVM and XEN. OVS has rapidly turned into the

34

2.4. Software Defined Networks

accepted virtual switch for XEN environments, and now it is having a vital
impact in the OpenStack project and in addition a noticeable building obstruct
in SDN environments. The following characteristics helped Open vSwitch
endure the essential requirements.

2.3.1 The mobility of state

All network state related with a network element such as virtual machine ought
to be effortlessly identifiable and migratablein an heterogeneous environment.
This may embodied with conventional ”soft state”, L3 forwarding state, ACLs,
QoS , and so forth. Open vSwitch has incorporated both configuring and
migrating network state between instances.

2.3.2 Responding to network dynamics

Virtual environments are often described by high-rates of diversification in
terms of adding/ removing VMs, making changes in Network configuration
and so on. Open vSwitch permits a network control framework to acknowledge
and adjust as environment changes.

2.3.3 Maintenance of logical tags

Distributed virtual switches for example, VMware vDS and Cisco’s Nexus
1000V regularly sustain logical context within the network through appending
or manipulating tags in network packets. This can be utilized to particularly
recognize a VM or to hold some other setting that is just relevant in the
logical domain. A significant part of the issue of building a distributed virtual
switch is to effectively and accurately deal with these tags. Open vSwitch
incorporates numerous techniques for determining and keeping up tagging
rules, which are all available to a remote process for orchestration.

2.3.4 Hardware integration

Open vSwitch’s forwarding path is intended to be managable to ”offloading”
packet handling to equipment chipsets, regardless of whether it is in a clas-
sic equipment switchchassis or in an end-host NIC. This takes into account
the Open vSwitch control path to have the capacity to both control a refined
software implementation or an equipment switch. Open vSwitch control ab-
stractions, both bare-metal and virtualized hosting environments that can be
managed using the same mechanism for automated network control.

2.4 Software Defined Networks

Many big online and cloud companies are moving their data centers towards
virtualization in order to get benefit from QoS and predictability. Likewise,

35

2. Open VSwitch

highly secure and low-cost overhead networking is highly important. There-
fore, service providers and networking companies requires an alternate solu-
tion to smartly and efficiently counter this emerging networking landscapes.
SDN which is also known as software defined networks is transpired as the
powerful technology capable of handling smart applications as well as dy-
namic landscape of the future networks while reducing the operational cost
with simply changing the hardware and software and increasing and simpli-
fying the management of the network by simplified software [36].An overview
of SDN’s architecture is shown in the figure 2.2 [40]

36

2.4. Software Defined Networks

Figure 2.2: Overview of SDN Architecture

Setting up a network involves installations and complex configuration of
routers, switches and other networking devices and requires a highly trained
and skilled engineer to deal with the complexity. This approach is the system
based and vendor based approach and this approach increases the provision-
ing cost, human resource cost in managing the multilevel and multi-vendor
networks and decreasing the revenue. This is the perfect time for the service
providers to go ahead with the alternatives like SDN that increase the network
management and reduce the provisioning overhead [1]. Software defined net-
working (SDN) is the termed emerged and coined recently but the concept of
SDN comes form 1996. Many companies start building and implementing SDN
to make this a reality and main drivers behind the SDN are Ipsilon. Internet
Engineering Task Force (IETF), OpenDaylight, Open networking foundation
(ONF), Ethane and OpenFlow to name few [36]. Sometimes people refer SDN
as OpenFlow but in reality OpenFlow is just an API for SDN [36].

Software defined networking is to allow network administrators to adapt
quickly according to the dynamic business environment and be able to con-
trol the network from a centralized location called control console without
even touching the separate console for router or switches or other network-

37

2. Open VSwitch

ing devices and can providing the quick service and support to the network
without knowing how the particular server or router is connected to other
devices [37-38].

2.5 Why SDN?

The main motivation behind SDN is to streamline the network performance,
provisioning, and deployment by separating the controller and data planes
and enabling programmability of the networking devices and enabling network
engineers to perform network operations form one console without knowing
the actual complex connectivity. Usually, configuring the network devices
requires a highly trained network engineer to perform the task and vendor
based devices require special training to perform the same task differently
on different machines which increase the cost. SDN provides open source
solution for the above problem making network operations streamlined [37-
38]. SDN was designed to bring more flexibility in the network and supports
virtualization. It segregates control engine and forwarding engine and enabled
the programmability in control engine as well as abstracted the infrastructure
from applications and other services [37-38].

Software-defined networking separates the network into three main parts,
application layer, control layer, and infrastructure layer. Every SDN has a
controller, northbound APIs, and southbound APIs.

• Controllers are also referring as the brain of the SDN network as I give
the centralized bird eye view of the whole network and allows engineers
to tell the devices in the infrastructure layer (forwarding plane) how to
manage and what to do with the network traffic.

• Northbound APIs are used to communicate with the top layer and al-
lows the network engineer to deploy the services and direct the traffic
programmatically. These APIs also integrates lower layer called control-
ler so that network developer and make change pragmatically and at the
same time provide an abstraction to the upper layer.

• Southbound APIs are used to relay the traffic to the routers and switches
in the forwarding plane (infrastructure layer). OpenFlow is considered
to be the SDN but its just a southbound API [38]. Southbound API
allows the network engineer to make changes to the SDN controller with
respect to the demand on the go. ONF develops the OpenFlow which
is the famous South bound API for SDN.

This abstraction, separation programming capabilities were not available
in vendor based hardware and network engineer cannot program the devices.
So, SDN allows us to do so in real-time without touching the device.

38

2.6. Evolution of Software Defined-Networking

Figure 2.3: Traditional vs. SDN networking

2.6 Evolution of Software Defined-Networking

SDN was initial standardized in 2011 by the Open Networking Foundation
(ONF), a user-driven organization dedicated to the promotion and adoption
of SDN, and implementing SDN through open standards, necessary to move
the networking industry forward. [25]. The ONF is that the entity behind
the standardization of the OpenFlow protocol, one in all the foremost used
approaches to perform SDN.

The scope of the SDN paradigm is to support an additional dynamic
and scalable telecommunication networks environment. this is often achieved
through the decoupling of the control plane (i.e. the routing, that decides a
way to forward packets) from the data plane (i.e. the forwarding, that re-
ceives, stores and forwards the packets) [26].

Therefore, it’s attainable to mention that SDN makes an attempt to:

• Creates flow tables controllable from the outside via a typical standard-
ized API (Application Programming Interface), not tied to any vendor
easier programmability of the network

• Affects a programming model, obligatory by the particular framework
used

39

2. Open VSwitch

• Concentrates the control (i.e. the network intelligence) in a logically
centralized entity, eventually physically distributed to avoid to own a
single point of failure, this makes attainable to take care of a global
view of the network that may seem to applications as one logical entity.

By separating the intelligence of the network from the data path, it’s at-
tainable to give to operators, developers, etc., the interface to program the
network itself. Therefore, through the a-prior installation of rules within the
switches, it is possible to implement a proactive way to implement selections
within the network, however, if the switch isn’t able to decide over an explicit
packet (in general, it is possible to mention over an explicit header), the cent-
ralized control entity (the controller) are often reactively reached to determine
what to do.

• The flow is truly a very general consideration: so, a flow could include
an explicit application flow (e.g. all BitTorrent traffic), in addition to all
the traffic associated with an explicit protocol (e.g. all ICMP traffic), in
an exceedingly additional fine-grained view, it’s doable additionally to
contemplate it because of the traffic of an explicit user.

• Then, to every flow, there may be an explicit action to be taken: for
example, this may be the redirection of traffic over an explicit node or
maybe the tagging of a packet with an explicit VLAN to isolate it.

• It is exceptional to mention that the SDN is revolutionary up to an
explicit degree: in specific, it’s doable to examine similarities in terms
of routing with Multi-Protocol Label Switching (MPLS), although the
real plus point that SDN proposes is that the standardized interface that
permits a neater programmability.

On the other hand, as a result of similarities, several operators are selecting
to deploy MPLS over SDN to require the most effective out of the 2.

• Moreover, the centralized control is truly one thing that’s not explicit
to be essentially a part of SDN: however, its introduction fosters an
additional global view of the network from the point of view of the
network applications, which is something innovative and useful.

• Finally, SDN has not to be thought as restricted simply to specific net-
works, as data centers, edge networks or cloud networks: though it’s not
assured that SDN is a guaranteed market success, the aim of operators
is to place SDN in production even in legacy networks.

2.7 SDN Controller

SDN Controller Platform widely used as SDN Controller is the ”brain” of
Software-Defined Network (SDN), as it is a logically centralized entity for the

40

2.8. SDN into OpenStack

Figure 2.4: SDN Controller

control point. It mainly manages the flow control between Southbound APIs
to Northbound APIs in order to deploy intelligent networks, in other words,
SDN controller translates requirements from the SDN Application layer down
to the SDN Datapaths and provides the SDN Applications an abstract view
of the networks, as shown in the Figure 2.7 [38]. It contains a collection of the
pluggable modules that can perform different network tasks, including some
of the basic tasks such as gathering network statistics, inventorying devices
within the network, as well as some of the high-level capabilities of running
algorithms to perform analytics and orchestration of the new rules through
the network.

OpenFlow and OVSDB are the most well-known protocols used by SDN
Controllers, the use of the protocols can influence the entire network archi-
tecture.An SDN Controller consists of one or more NBI (SDN Northbound
Interfaces) Agents, the SDN Control Logic and the CDPI driver.

2.8 SDN into OpenStack

Prior to Neutron, previously known as Quantum, OpenStack had a simple
and flat networking environment without L3 or firewall support. The network
constructs were baked into Nova which made it difficult to accommodate the
changes happening in networking. Neutron was introduced to separate the

41

2. Open VSwitch

networking part from other OpenStack service and provide different imple-
mentation choices of the abstractions in which Neutron server provides ab-
straction definition and management, while Neutron plugins do the actual
implementation. However, Neutron has been criticized for its complexity and
deficiencies on several OpenStack user surveys.

Installing and operationalizing OpenStack is still a constant struggle, espe-
cially at scale, and Neutron is a major obstacle to the scalability and resiliency
of OpenStack deployments. The reason is that Neutron does not have its own
layer 3 routing capability, but it uses a Linux kernel and Linux routing in-
stead. In a large cloud environment with a lot of virtual networks, tenants,
and applications, all traffic requiring routing and floating IP services need to
be handled by the same Neutron L3 agent. Therefore, the agent becomes
the choke point. While it is possible to deploy multiple pairs of L3 agents,
it was proven to be very complicated even at moderate scale. Furthermore,
there are two networks, physical and virtual, to manage, which makes cor-
relating issues seen in virtual networks to physical networks more perplexing
and time-consuming.

SDN solutions can distribute their own L2/L3 agents among OpenStack
nodes to help eliminate Neutron L3 agent bottleneck issue. And SDN control-
lers centralize the management of physical and virtual networks, so it helps
simplify managing and monitoring tasks. Additionally, SDN, as discussed
above, exposes a myriad of network abstractions thanks to its centralized con-
trol plane, which makes it a perfect match for OpenStack. OpenStack supports
RESTful APIs for every component. The integration of SDN into OpenStack
can result in better networking abstractions and powerful programmatic APIs.
The centralized management in SDN architecture also benefits a multi-vendor
based cloud infrastructure like OpenStack.

42

Chapter 3

Approach and Methodology

This chapter describes analysis and design of neutron and alternative projects
of OpenStack. as a result of all projects have nearly similar components, and
hence follows similar skeleton not each part, that is why software analysis is
required. These components share very similar architecture, therefore, there’s
no reason to speak regarding every component individually. we need to clarify
the common structure and focus more on the foremost necessary elements
of every sub-component. It will conjointly demonstrate however a proof-of-
concept OpenStack cloud is constructed with Open vSwitch because of the
main neutron ML2 plug-in. And then, OpenDaylight is integrated into that
OpenStack cloud to achieve an SDN-based cloud. Also, aside from these main
projects, this chapter will cover alternative projects, like Dragnflow, Calico,
OpenContral and Project Romana.

3.1 Rapid Deployment Tools

To stimulate the deployment of the OpenStack cloud, loads of tools have been
developed. The goal of these tools is to automate OpenStack deployment
while prowling some of the complexity from the user.

The most common tools are:

• Devstack: An opensource community driven, used in this thesis.

• RDO: Driven by Red Hat.

• PackStack: A utility that uses Puppet Modules to deploy various parts
of OpenStack on multiple pre-installed servers over SSH automatically.

• Fule: A rapid deployment tool which is developed by Mirantis.

43

3. Approach and Methodology

3.2 OpenStack Deployment

This part covers how the OpenStack cloud is built and how to verify Open-
Stack functionality by launching an instance. In general, an OpenStack de-
ployment may be of 2 types: a production environment or a develop-
ment environment.

The development environment is incredibly straightforward to set up,
adaptive to the users need and it’s thought for an analysis of the platform or
for the testing of the functionalities. Some acknowledge solutions are DevStack
and PackStack. However, this deployment is incredibly unstable and it’s not
thought of running complex experiments or to incline to a customer.

Instead, the production environment is a lot of complicated to set up,
but also finer-grained. Indeed, its installation needs a, typically long, planning
phase wherever it’s selected which nodes the components got to be deployed
and with which configuration.

Then, the particular deployment would possibly occur in terms of writing
configurations by-hand when installing the components, as the official Open-
Stack guide recommends for relative little environments, or by the utilization
of automation tools as Red Hat TripleO, Ansible, Chef, Puppet, Fuel, Auto-
pilot, etc. In each case, the educational curve is incredibly steep, therefore it
is up to the Cloud administrator to determine which tools to use, considering
also the dimensions of the cluster to be designed. For this thesis I am using
DevStack deployment.

3.2.1 Infrastructure

The base infrastructure used to deploy the software is a basic laptop. Its
principal features are:

• RAM: 16 GB

• Number of CPUs: 16

• Processor: Intel core i7-7600U

However, OpenStack needs a minimum of three nodes to work as desired. This
nodes are virtual machines that will run over the physical host. The virtual
infrastructure needed is the following:

• Virtual machines: Each node needed in the deployment will be a virtual
machine. In this deployment, it has been used three virtual machines,
one for each node named controller, network and compute.

• Virtual networks: This networks will be used to connect the virtual
machines. Two networks have been defined in this deployment, one for
management purpose and the other for internal information exchange
between nodes.

44

3.2. OpenStack Deployment

3.2.2 Virtual Machines

In order to run VMs I am using VMWare Workstation, internally all virtual
machines run over KVM hypervisor and I have installed a Ubuntu Server
16.04.3 LTS as base image. The technical features for each instance are the
following:

• RAM: 8GB

• Number of CPUs: 4

• Storage space: 30GB

The number of interfaces in each node will vary depending on the node.

3.2.3 Single-Node Environment

In recent OpenStack versions, the OpenStack command is taking over and
provides a generic interface to many projects, such as:

• OpenStack network: manage networking in Neutron

• OpenStack project: manage Keystone projects

• OpenStack server: manage instances in Nova

• OpenStack stack: manage stacks in Heat

• OpenStack volume: manage volumes in Cinder, etc.

However, not all the projects use it, so, occasionally, the user needs to
make use of project-specific tools as well. Although, in this thesis, we are
using Single host installation,as due to PC resources are limited and doesn’t
support multi-node environment.

OpenStack is installed on a personal PC running Windows 10 OS and
VMWare Workstation is used to form Virtual Machine as guest OS. The in-
stallation relies on the Devstack[30] script.Also, in order to understand Open-
Stack better initial lab set up as single-host installation,single-host installation
brings an initial hands-on expertise with OpenStack functionalities whereas
simplifying the installation process and remaining appropriate for a PC with
restricted hardware resources.

Under all-in-one mode of Devstack, basic OpenStack modules, and ser-
vices (Identity, Nova, Neutron, Compute, Dashboard) are installed and run
on the same host machine. While Devstack effectively provides an instant
and easy method of experiencing OpenStack, it doesn’t absolutely expose the
installation method and is a smaller amount customisable.

45

3. Approach and Methodology

This lamentably, makes it harder to understand the system, furthermore,
on debug, its components should any problems occur throughout either in-
stallation or operation stage. Moreover, DevStack is taken into account a lot
of appropriate for starters instead of a perfect resolution for a full featured
OpenStack cluster.

3.3 DevStack

DevStack is a set of scripts and utilities to quickly deploy an OpenStack cloud
environment and it is freely available on GitHub. DevStack allows developers
and system administrators to automate the process of installing OpenStack
on a server reducing it to a simple command for every installation. The ser-
vices that are configured by default are Identity (Keystone), Object Storage
(Swift), Image Storage (Glance), Block Storage (Cinder), Compute (Nova),
Network (Nova), Dashboard (Horizon) and Orchestration (Heat). The main
script is stack.sh, it does all the works, installing and configuring all the
services set by the user, however, in order to use stable version git check-
out stable/pike command used. All the required configurations, such as
the Git repositories to use, the services to enable or the OS images to use,
can be achieved overriding default environment variables (found in stackrc)
through file local.conf.This is achieved with a localrc section, as shown
below[30]:
======================================
[[local|localrc]]
ADMIN PASSWORD=Password1
DATABASE PASSWORD=$ADMIN PASSWORD
RABBIT PASSWORD=$ADMIN PASSWORD
SERVICE PASSWORD=$ADMIN PASSWORD
HOST IP=192.168.214.128
======================================

The environment variable ENABLED SERVICES is used to define the ser-
vice to run,for example the Nova services to install, in a simple compute node
installation, are nova-compute, nova-api, nova-network. By run-
ning the script tools/install prereqs.sh it is furthermore possible to
install all the dependencies required by the configured services. Other useful
scripts provided by DevStack are unstack.sh , that allows to stop everything
that was started by stack.sh, and clean.sh that tries to remove all the
traces left by the OpenStack installation performed by DevStack.

3.3.1 Networking configuration

The network node runs the Networking plug-in and a number of other agents
that give tenant networks and provide switching, NAT, DHCP and routing

46

3.3. DevStack

Figure 3.1: All-in-one architecture

services. This node conjointly handles the external connectivity for tenant
virtual machines instances.Before installing the modules, the networking con-
figuration needs to be started in every node as it is showed in figure 3.1.5.
This part is important so as to confirm the connectivity between the nodes
and to the internet.

3.3.2 Network node

Networking is a big topic in OpenStack. In the past, networking was defined
by Nova. However, as networking became more and more complex, a separate
project was created to deal with it: Neutron. Several processes can be involved
in making Neutron Networking happening in OpenStack. In order to make
successful Networking in the OpenStack, Neutron needs few default agents,
as well as some additional agents could be installed as per requirement[32]:
Default Agents

• neutron-openvswitch-agent :This agent installs the plugin for integ-
rating openvswitch with neutron.

• neutron-dhcp-agent :This agent distributes IP addresses to the VMs
using dnsmasq driver

47

3. Approach and Methodology

Figure 3.2: Neutron Default Agents

• neutron-l3-agent :This agent creates network devices that connect to
l2 networks.

• neutron-metadata-agent :The metadata agent provides configuration
information such as credentials to instances.

In order to run successful Neutron there are few additional agents/modules
are also required:

• neutron-server

• neutron-ovs-cleanup

• neutron-lbaas-agent

• neutron-plugin-ml2

• python-neutronclient

3.3.2.1 Service configuration

The behavior of neutron is organized by 5 files named as below with the path
where these files are stored:-

• neutron.conf stored in /etc/neutron/

• ml2 conf.ini stored in /etc/neutron/plugins/ml2/

• l3 agent.ini stored in /etc/neutron/

• dhcp agent.ini stored in /etc/neutron/

• metadata agent.ini stored in /etc/neutron/

As all the OpenStack configuration files, these also are distributed in many
sections [nameofthesection].

48

3.3. DevStack

neutron.conf
In order to type the configuration options.The neutron.conf which is respons-
ible for the configuration of the database, authentication mechanism, message
broker, topology change notifications, and plug-in.

Below is the default configuration of OpenStack with DevStack installa-
tion, regarding the [DEFAULT],[keystone authtoken] and [nova] sections.
In the DEFAULT section there are few default options configured, such as:-

• service plugins=neutron.services.l3 router plugin.L3RouterPlugin. It sets
router as the service plugin entry point to be loaded from the neut-
ron.service plugins.

• auth strategy = keystone: It sets Keystone service as the authentication
strategy.

• core plugin=ml2: It sets ml2 framework as the Neutron core plugin entry
point to be loaded from the neutron.core plugins namespace.

• notify nova on port status changes=True: It enables to send notifica-
tion to nova when port status changes.

• notify nova on port data changes=True: It enables to send notification
to nova when port data, such as fixed ips or floating ip, changes so nova
can update its cache.Etcs.

In the keystone authtoken section there have been defined these options:

• project name=service: It sets service as the Neutron admin tenant.

• user=neutron: It sets nova as the Neutron admin user.

• password=NEUTRON PASS(Password1): It sets the Neutron users pass-
word in order to authenticate to Keystone.

• auth url= http://IP ADDRESS/identity: It sets the complete Identity
API endpoint.

• auth typr = password : It sets the password for the Identity API end-
point.

• auth url= http://IP ADDRESS/identity: It sets the complete Identity
API endpoint.

• auth typr = password : It sets the password for the Identity API end-
point.

• username=nova: It sets the username for connecting to nova in admin
context.

49

3. Approach and Methodology

• password=NOVA PASS(Password1): It sets the password for connec-
tion to nova in admin context.

• region name=RegionOne: It sets the name of nova region to use. As
the configuration in Keystone only consider one region it is not very
important.Etc.

Also to be noted that there are few options which are deprecated since the
release of Queens version, which is used in this thesis, such as auth uri,identity uri,
etc.

ml2 conf.ini
The second configured file is ml2 conf.ini which configures the Open vSwitch
(OVS) mechanism to build the virtual networking framework for instances. In
controller node there arent OVS components because it doesnt handle instance
network traffic.

The ml2 section provides a list of network type and drivers on entrypoints:

• tenant network types=vxlan: It sets VXLAN network type as the net-
work type to allocate as tenant networks.

• extension drivers = port security:It sets port security as an extension
driver entrypoints to be loaded from the neutron.ml2.extension drivers
namespace.

• mechanism drivers=openvswitch,linuxbridge: It sets openvswitch and
linuxbridge as the networking mechanism driver entrypoint to be loaded
from the neutron.ml2.mechanis drivers namespace.

The securitygroup section there have been defined these options:

• firewall driver=iptables hybrid: It sets the OVS iptables firewall driver.

In the ml2 type * section there have been defined these options:

• flat network = public: It sets public name for physical network with
which flat networks is created.

• network vlan range = public: It sets physical network ”public” without
any VLAN range for provider and tenant.

• tunnel id ranges=1:1000: It sets from 1 to 1000 the possible GRE tunnel
IDs that are available for tenant network allocation.

• vni range = 1:1000 : It sest from 1 to 1000 the possible Geneve VNI
and VXLAN VNI IDs that are available for tenant network allocation.

50

3.4. Neutron configuration

l3 agent.ini, dhcp agent.ini, metadata agent.ini
The next configured files are l3 agent.ini,dhcp agent.ini and metadata agent.ini
these files provide routing services for virtual networks. In the DEFAULT sec-
tion there have been defined these options:

• interface driver= openvswitch: It sets openvswitch as the driver to man-
age the virtual interface[34].

• ovs use veth = false: It sets false so that it doesn’t use veth for OVS
interface.

• debug = false : It sets If set to false, so that the logging level will not
be set to DEBUG.

• interface driver= openvswitch: It sets openvswitch as the driver to man-
age the virtual interface[33].

• ovs use veth = false: It sets false so that it doesn’t use veth for OVS
interface.

• dnsmasq local resolv = True: It sest true to enable the dnsmasq service
to provide name resolution for instances via DNS resolvers on the host
running the DHCP agent.

• debug = false : It sets If set to false, so that the logging level will not
be set to DEBUG.

• metadata workers = 2: It sets 2 as the number of separate worker pro-
cesses for metadata server by default it halves the number of CPUs [35].

• nova metadata host = IP ADDRESS: It sets the IP address of the Nova
metadata server.

• debug = True : It sets If set to true, so that the logging level will be set
to DEBUG.

3.4 Neutron configuration

Once the Neutron service is properly working, now there could be modific-
ations according to the requirement and it can configure a virtual network
infrastructure to which instances will connect and be able to exchange data
among them. To do so, it has been created two type networks, the external
and the one or more internal networks which will be part of a single tenant.

51

3. Approach and Methodology

Figure 3.3: Networks with CLI

Figure 3.4: Networks with Dashboard

3.4.1 External network

External networks commonly communicate over the physical networks that
are publicly routable to the Internet. There can be one or more external
networks to Neutron according to the requirement[41]:

• VMs can route packets from the internal network to the internet

• VMs can use floating IPs and use to the publicly communicate from the
internet

The external network provides Internet access to the instances utilizing NAT(Network
Address Translation) by default, also it is exclusively connected to the network
node and can be accessed using Neutron. External network has the scope for
all tenants and can only be created by administrators. Tenants connect their
router for external access. Mostly beneficial network types are flat (untagged)
and VLAN (802.1Q tagged).

Network creation can be done from the users in a selected environment
Dashboard or by using openstack CLI[42]:

Here Net1 and Net2 are configured as an Internal/Tenant Network and
External Network is created for sending traffic over the cloud. In order to make
Internal network communicate with the external network, Virtual Routers are
used, for Project1 VR is used for routing the traffic and router1 is the default
router.

CLI provides more specific information related to the Project only.

Once the router is configured multiple qrouter and qdhcp namespaces ap-
pear on the network node, as they are the logical copy of the networking stack
which owns routers, firewall rules, and network interface devices. qrouter and

52

3.4. Neutron configuration

Figure 3.5: Virtual Routers

Figure 3.6: Virtual Routers for Project1

Figure 3.7: Namespaces

qshcp namespaces have their own proprietary tasks, qrouter namespace is re-
sponsible to represent the virtual router and routes the traffic to and from
the instances, however on the other hand qdhcp namespace is responsible for
enabling the DHCP for the network[43].

Nevertheless, for interconnecting VMs within the Network and over the
networks, OvS is utilized. Beside this Virtualization technique, all the in-
stances have TAP interfaces works on the layer 2. Moreover, br-int receives
VLAN tagged packets and recognize the network they belong to, and transfer
the packet by tagging untagging it via br-ex or not according to the packet
destination specification.

stack@openstack: /devstack$ sudo ovs-vsctl show
d24c5356-3873-4a61-b1e4-cc541bedd351

Manager "ptcp:6640:127.0.0.1"
is connected: true

Bridge br-ex
Controller "tcp:127.0.0.1:6633"

is connected: true
fail mode: secure
Port "ens33"

Interface "ens33"
Port br-ex

Interface br-ex
type: internal

Port phy-br-ex
Interface phy-br-ex

type: patch

53

3. Approach and Methodology

options: peer=int-br-ex
Bridge br-int

Controller "tcp:127.0.0.1:6633"
is connected: true

fail mode: secure
Port patch-tun

Interface patch-tun
type: patch
options: peer=patch-int

Port "qvof4f07e46-10"
tag: 3
Interface "qvof4f07e46-10"

Port "qr-9043aecb-62"
tag: 3
Interface "qr-9043aecb-62"

type: internal
Port "qr-917086e6-d3"

tag: 4
Interface "qr-917086e6-d3"

type: internal
Port "qr-e17b6cc0-04"

tag: 1
Interface "qr-e17b6cc0-04"

type: internal
Port "tap062189fe-67"

tag: 4
Interface "tap062189fe-67"

type: internal
Port "qr-c280739e-75"

tag: 1
Interface "qr-c280739e-75"

type: internal
Port br-int

Interface br-int
type: internal

Port "qvo376c4c50-fa"
tag: 4
Interface "qvo376c4c50-fa"

Port "tapbeff5a7c-d9"
tag: 1
Interface "tapbeff5a7c-d9"

type: internal
Port "tapf6ef13e0-d7"

tag: 3
Interface "tapf6ef13e0-d7"

type: internal
Port "tapbe499cd8-11"

tag: 5
Interface "tapbe499cd8-11"

type: internal
Port "qvoa0e37be4-44"

tag: 4
Interface "qvoa0e37be4-44"

Port "qg-cefb6d74-94"
tag: 2
Interface "qg-cefb6d74-94"

type: internal
Port int-br-ex

Interface int-br-ex
type: patch
options: peer=phy-br-ex

Port "qg-dd957f5c-c1"

54

3.4. Neutron configuration

tag: 5
Interface "qg-dd957f5c-c1"

type: internal
Port "qvoad441829-11"

tag: 3
Interface "qvoad441829-11"

Bridge br-tun
Controller "tcp:127.0.0.1:6633"

is connected: true
fail mode: secure
Port patch-int

Interface patch-int
type: patch
options: peer=patch-tun

Port br-tun
Interface br-tun

type: internal
ovs version: "2.6.1"

However, in order to route traffic from br-ex the below configuration com-
mands were used[44]:
$sudo ovs-vsctl add-port br-ex ens33
$sudo ifconfig ens33 0
$sudo ifconfig br-ex 192.168.214.128 netmask 255.255.255.0
$sudo route add default gw 192.168.214.2 br-ex

Although, still getting access to the instances from the outer network we
need Floating IPs and the instances have no idea regarding this Floating IP
which is provided to them via their external network[43].

55

3. Approach and Methodology

Figure 3.8: Floating IPs assigned to the Instances

Figure 3.9: Fixed IPs assigned to the Instances

Figure 3.10: ecurity groups for Project

Security groups also plays an important role while routing the traffic, as
the transfer of the packet depends on the ”allow/deny” rules, here Policy is
the assigned security group for this Project.

By default ingress and egress traffic is allowed for both IPv4 and IPv6,
although either we can customize the traffic on the same security group or
can create a new one.

For performing benchmarking the below topology would be used in this
thesis, where the test cases would be created on the traffic flow with the below
scenarios:

1. VMs in the same network and same Host

2. VMs in the different network and same Host

3. North-South traffic with Floating IPs

4. North-South traffic without Floating IP(Fixed IPs)

56

3.5. Introduction of other Networking Project

Figure 3.11: Topology for Benchmarking

3.5 Introduction of other Networking Project

As previously stated, the Neutron is in charge of the networking in OpenStack.
As Neutron is an extremely complex project which grants multiple tenants to
share physical resources that is transparent to the user still maintains isola-
tion. However, Neutron is not the only Project to handle Networking in Open-
Stack, in this Chapter will concentrate particularly on the brief introduction
of the other Networking Projects, so that the analysis of the implementation
of Network nodes in OpenStack will work intensively on Neutron comparison
Calico to investigate the Networking performance which can be accomplished
by entirely diverse flavors of Network component of OpenStack.

3.5.1 Calico

Calico is an unofficial OpenStack project and it provides Neuton driver and
DHCP agent using networking-calico project. The networking-calico is one of
the numerous potential Neutron drivers which implement connectivity between
different instances (VMs) as defined by the Neutron API. Metaswitch Net-
works is the principal company behind this project and it is maintained by
Tigera team. It is an open source, Apache licensed project for virtual net-
working in data centers mainly to provide secure network connectivity for
containers and VMs. In the early days of Networking in OpenStack, it was
quite complex as if two applications needed to talk to each other, it used to put
in an overlay and expose the virtual network concept to users and then start

57

3. Approach and Methodology

conflict isolation with network topology and as a result as the applications
grew, the number of overlays grew and hence increase in the complexity, for
the additional features of the traffic like east-west flows and north-south flows
with virtual routing between overlays[49]. With the use of the microservices,
the fundamentals of networking took a different approach and introduced the
concept of IP per Pod, which assume that world is IP. So as a result of this
new approach was to decouple isolation from networking and it allowed to
move towards much simpler fabric and example of that is Calico. It is a pure
L3 layer networking abstraction built cloud-native platforms, which creates
and manages a flat layer 3 networks and assigns each VM a fully routable
IP address to communicate without IP encapsulation or NAT for bare metal
performance. Instead of overlays, it uses IP-In-IP tunneling approach other-
wise works with other overlays for example flannel. It has flexible security
policies and simple networking as it uses intentbased policy spans for private,
public and hybrid clouds, even for heterogeneous workloads and orchestration
environment. Its simple, highly scalable, non-overlay IP networking model
with standard Linux data path and policy enforced on any underlying fabric
makes it more attractive

58

Chapter 4

Analysis and design

The thesis will be carried out in two phases. The first phase of the exper-
iment is to investigate traffic flow pattern and the second to study network
performance in terms of throughput, packet loss, and delay. The research will
be conducted by deploying virtual machines(VMs) on same and/or different
hosts and networks respectively. All VMs will be using the 64-bit CirrOS
operating system as their base OS.
Phase 1. Probing of The Network Traffic flow on OpenStack
Nowadays virtualization is a crucial function which has a huge benefaction
in a cloud computing environment. It is needed for network transport and
computing as well as storage. Network virtualization enables instances to
communicate in a secure and pliable way during migration. It also creates
virtual networks that provide an intellectual abstraction that makes easy to
deploy and manage network services and underlying network resources.

In such system, traffic segmentation is achieved using VLAN tagging or
GRE tunneling for each tenant. Thus, the different alternative of network
switching system plays a big role in the complexity of networking architecture
in cloud computing.

In the architectural setup of the experiment environment for this research
on OpenStack, VLAN-tagging is activated for network traffic isolation. By
studying different flowing pattern across the network, cloud providers will be
able to find out the nature of VLAN-tagging service with other network ser-
vices such as GRE Tunneling. To investigate traffic flow characteristics, a
number of tools will be required. Those tools will be capable of tracing the
flow of the traffic over the network. The tools that are going to be applied in
this research will be traceroute or tracepath/route and tcpdump in order to
observe the network flow.
Phase 2. Network Performance on OpenStack
The next task is to investigate is network performance in the OpenStack cloud
computing environment, which is a high-performance computing network. In
order to carry out this investigation, benchmarking tool VMTP, which is a

59

4. Analysis and design

small python application that can automatically perform ping connectivity,
round trip time measurement (latency) and TCP/UDP throughput measure-
ment for the following East/West flows on any OpenStack deployment for
both TCP and UDP traffic.

4.1 Experimental setup

This experiment is conducted on the Pike OpenStack cloud and various net-
working components to compare with Neutron, which is already deployed on
Ubuntu server 16.04. The system single node configuration with 30GB SCSI
hard disk and 1 physical network card, 8GB RAM.

Cloud computing service providers provide different virtual instances which
differ in their machine hardware, virtualization technology and hosting setup.
Instances in the lower tier have slower CPU, fewer VCPU cores, less RAM
size and less amount of disk size than instances in the higher tier. Therefore,
the experiments done should be able to show how the difference in parameters
affects network performance, as in this case, i.e. Open Stack, experiments
will be performed on customized flavour Ubuntu for virtual machines.Their
specifications are as in table:

Virtual Machine Type CPU Memory(RAM) size Total(Disk size)

Ubuntu 1 VCPU 2GB 12GB
Table 5.1: Virtual Machine Specification

4.2 Experimental Design

The detailed experimental plan for the investigation task is as follows

4.2.1 Topology Case1 Experiment: Same Host Same
Network

Experiment will be done to investigate the traffic flow between two virtual
machines located at same host and same network.

4.2.2 Topology Case2 Experiment: Same Host Different
Network

This test will be performed in order to study the traffic flow between two
virtual machines located at same compute node but different network. The
two different network can be attached to the same router or they can attached
to a router.

60

4.3. Studying the Network Performance

4.2.3 Topology Case3 Experiment: North-South traffic with
Floating IPs

In this case traffic flow goes from VMs using floating IP will leave the external
bridge gateway from the local instance via the distributed virtual router.

4.2.4 Topology Case4 Experiment: North-South traffic
without Floating IP(Fixed IPs)

In this scenario, we will look at the traffic headed towards external destination
from VM which is not using floating IP hence to get outside it will rely on
SNAT on the centralized network node traffic.

4.3 Studying the Network Performance

This section will evaluate the network behavior between instances within
OpenStack cloud. Due to the use of different type of network equipment like
switches, VLAN configuration and so forth and different networking projects,
network properties within one cloud and network between different clouds
have quite different behavior. Many providers promise high bandwidth from
Mbps to Gbps inside their cloud infrastructure. To compare the network per-
formance, matrices like throughput, latency, and loss will be measured. Both
TCP and UDP will be used to measure the throughput.

In the experiment, the network throughput, which is a major factor, will
be evaluated. It will also examine the behavior of bandwidth sharing in case
of multiple Virtual machines in one compute node. Simultaneously round-trip
packet delay and packet loss will be measured between two specified virtual
machines. In order to carry out the throughput and packet loss experiments,
Iperf which is a benchmark tool that generates TCP and UDP traffic will
be used.Iperf uses a default bandwidth of 1.05 Mbps in case of UDP traffic.
However in order to have accuracy in measuring achievable bandwidth, the
maximum available bandwidth which is 10 Gbps will be set using b option.
The default maximum transmission unit (MTU) and UDP buffer size is 1500
bytes and 224 Kbytes respectively. For TCP, default TCP window size is 23.5
Kbytes

The default the maximum transmission unit (MTU) and UDP buffer size
are 1500 bytes and 224 Kbytes respectively. For TCP, default TCP window
size is 23.5 Kbytes. To minimize complexity in measuring and evaluating the
network performance, all factors that can affect the performance are kept as
their defaults values. Factors like TCP window size, maximum transmission
unit, UDP buffer size, datagram length, and parallel transmission will keep
unchanged because the problem statement address how is the bandwidth shar-
ing between instances with their defaults. Furthermore, the experiment will
be huge if experiments are done by changing those parameters.

61

4. Analysis and design

To measure packet round-trip delay (RTT), ping tool will be used. Basic-
ally, the ping command is used to check the existence of a network connection
of a remote host by sending ICMP packets. If the host is reachable then it
tells how much time it uses until the response comes back to its source that is
the delay time of the packet. For better effectiveness, the tool will send ping
packet for 1500 times and collect the average delay time.

62

Chapter 5

Results

This chapter includes the test result found from the actual experimental set
up to address the problem statement section.To summarize the experiments
setup for Ubuntu flavoured instances and their IPs addresses for the different
scenarios are mentioned as VM1 and VM2 are in the same host that belongs to
the same network and is taken as Case1. While VM3 and VM4 have different
network address but they belong to the same host and treated as Case2. VM5
and VM6 reside on different network but using floating IP, which is Case3
where as VM7 and VM8 are on different network using Fixed IPs and is
considered as Case4.

5.1 Results for Network Traffic flow

For each case as mentioned on prior, one VM sent continuously ping packet
to its respective destination. At the same time, packets were tracked on both
internal and external bridge interfaces of compute node and network node
using tcpdump in order to see the traffic flow as in the following command:-
tcpdump -n -e -i interface host ip address
-n To display addressess by names
-e To display link-level header
-i To specify interface name

5.2 Results for Network Performance

This section explains the calculated average values of all network performance
parameters considered in this project.

5.2.1 Average TCP Throughput

To measure TCP throughput, IPERF was executed for 15 minutes and data
was collected every 5 seconds. The command was executed on the client side.

63

5. Results

Figure 5.1: Average TCP throughput found for all scenarios

While collecting data for one scenario, the other scenarios were not running.On
this experiment IPERF run for 900 seconds that collected throughput for every
5 seconds and then average value is calculated.

iperf -c server ip -i 5 -t 900
-c To starts iPerf in client mode and connects with the iPerf server
-t To set the duration of the connection in seconds (default: 10 seconds)
-i To report intervals

5.2.2 Average UDP Throughput

In order to collect throughput and loss for UDP traffic, the following com-
mand was executed for 15 minutes and it reported data every 5 seconds.
iperf -c server ip 5 -t 900 -b 10G
-c To starts iPerf in client mode and connects with the iPerf server
-t To set the duration of the connection in seconds (default: 10 seconds)
-i To report intervals
-b To set up bandwidth (default: 1.05 Gbps for UDP)

5.2.3 Average Packet Delay (Latency)

Ping command was executed on the client side for 1500 times in order to
measure round-trip delay. During collection of data, no other processes were
running on the VM.
ping -c 1500 server ip
-c To starts ping in client mode and connects with the server

64

5.2. Results for Network Performance

Figure 5.2: Average UDP throughput found for all scenarios

Figure 5.3: Average packet delay for all scenarios

65

5. Results

Figure 5.4: Total packet loss for all scenarios

5.2.4 Total Packet loss

Packet loss was obtained during the collection of UDP throughput.

5.3 Comparision between differnt Projects

As it has been illustrated by the figure 6.1 the throughput for VMs on the same
host and same network is much higher than the TCP throughput for all other
cases in both Neutron and Calico, however, Calico showed better performance
with TCP data in comparison to Neutorn.However, on the contrary for UDP
throughput Neutron gave better results and notability in Case 3 showed in
figure 6.2. In terms of Latency Calico sent packets with less latency, moreover
for case 1 it was quite less in comparison to all other cases respectively for
Neutron and Calico , showed in figure 6.3 . Although, as can be seen easily
from figure 6.4 packet loss is high in Calico project.

So from all eight scenarios, where the important parameters investigated
were:- TCP throughput UDP throughput Packet delay Datagram loss
From the network performance study, when two VMs are located on the same
host and same network, they perform better than when they are on the same
host but different network. Thus, the measurement showed that VMs on the
same host and same network achieved an average TCP throughput better
than VMs on same host but different network. On the other hand, there is no
significant difference between their average UDP throughputs. In the case of
packet delay, VMs on the same host but different network have higher values

66

5.3. Comparision between differnt Projects

than VMs that are located on the same host and same network. This result
is expected because when VMs are on different.

The measurement of packet (datagram) loss showed different results in case
of both Neutron and Calico, in case Neutron it showed higest recorded packet
loss when VMs are in same host and same Network, although for Calico it
was VMs from the differnt network but on same host communicatin with each
other. This result seems contradictory with the results of UDP throughput.
This is because, if UDP throughput is similar between the two cases, so should
their UDP loss be similar too. But, the result deviated from expectation.
Therefore, a more thorough investigation becomes necessary to find the root
cause of this deviation. First, the error may be due to defect in the VMs. For
this case, different VMs were created and tested several times, but the result
remained the same. Next, the compute node was changed several times, and
the tests done. Still, the result remained the same. Then, the VMs were
tested in a different scenario, and the results were confirming that there was
no defect on the VMs or the compute nodes. Finally, the VMs were attached
to a floating ip and the tests conducted.This is because, in this research, only
private IPs were used throughout the whole experiment. This time, i.e. using
floating ips, the loss came significantly down, even though the delay increased
as expected. But this decrease in loss does not clarify why the previous losses
were very high. More investigation is needed to conclusively explain this
result,which could not be covered in the time scope of this thesis.

67

Conclusion and Future work

Owing to its importance and impact on improving network and distributed
services, there is an ongoing research and innovation in cloud computing. As
new innovations arrive, it is tantamount to evaluate new technologies applied
on cloud computing environment, so that to enhance the correct understand-
ing about the new technology. This research investigated the possible internal
traffic flow pattern and evaluated network performance of each pattern on
OpenStack cloud computing environment. Openstack falls into this category
of new arrivals in cloud computing. Thus, this research aimed to add some
contribution towards understanding the detail workings of Openstack. To
that end, it investigated the possible internal traffic flow pattern and eval-
uated network performance of each pattern on OpenStack cloud computing
environment. From the investigation, it can be confirmed that when Virtual
machines (VMs) with private IPs are located on the same network, then they
only use switches in order to communicate with each other independent of
their location on the nodes. The results showed that the location of machines
in terms of compute node and network address matters for the network per-
formance. Thus, when VMs are on the same node and the same network ,
they perform better than other scenarios. This is because the transmission
path, for example, is shorter (in case of delay) than the other scenarios. In
OpenStack, bandwidth is unlimited in principle. What exactly is the effect of
this unlimited bandwidth on performance? Since it is intuitive that network
performance cannot be unlimited in practice, what exactly did Openstack
provide by making unlimited bandwidth available? This needed an investig-
ation to understand, and thus the investigation on network performance was
conducted. And, the results from the study of network performance showed
that, by providing unlimited network bandwidth, OpenStack didnt assure un-
limited network performance. Rather it ensured that there will be no network
bandwidth bottleneck.

Albeit the results showed that the future projects are clearly trying hard
to provide better network performance than Neutron, however, still there are

69

Conclusion and Future work

few developments needing as can easily seen in UDP throughput scenario for
Calico.

Future Work

In this research, unforeseen results have been seen and unanswered questions
were popped up. Having experienced the unknown challenges as well as con-
sidering the importance of dealing with some problems, it can be suggested
further research work on the following events:-

1. Since both Neutron and Calico gives lower performance in terms of band-
width for each VM, it would be important to study how to improve its
network performance.

2. The study can be done in more wider prospective by adding other Net-
working plugins such as OVN,ODL etc.

3. As Neutron and Calico gave higher bandwidth for different VMs, it
would be important to investigate CPU and memory usage of VMs.

70

Bibliography

[1] Cloud computing. Openstack.org [online]. 2018, 18 March 2018 [cit. 2018-
03-27]. https://en.wikipedia.org/wiki/Cloud computing[cit. 2018-03-27] .
[2]En.wikipedia.org. (2018). OpenStack. [online] Available at:
https://en.wikipedia.org/wiki/OpenStack[cit. 2018-03-27].
[3] En.wikipedia.org. (2018). Virtualization. [online] Available at:
https://en.wikipedia.org/wiki/Virtualization[cit. 2018-03-27].
[4] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing.
[online] Nvlpubs.nist.gov. Available at:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
[cit. 2018-03-27].
[5] Docs.openstack.org. (2018). OpenStack Docs: Conceptual architecture.
[online] Available at: https://docs.openstack.org/install-guide/get-started-conceptual-
architecture.html[cit. 2018-03-27].
[6] VMWare. (2018). VMware Official Site. [online] Available at: ht-
tps://www.vmware.com[cit. 2018-03-27].
[7] Linux-kvm.org. (2018). KVM. [online] Available at: https://www.linux-
kvm.org/page/Main Page[cit. 2018-03-27].
[8] Xenproject.org. (2018). VS16: Video Spotlight with Xen Project’s Lars
Kurth. [online] Available at: http://www.xenproject.org/[cit. 2018-03-27].
[9] En.wikipedia.org. (2018). Hyper-V. [online] Available at: https://en.wikipedia.org
/wiki/Hyper-V[cit. 2018-03-27].
[10] Linuxcontainers.org. (2018). Linux Containers - LXC - Introduction.
[online] Available at: https://linuxcontainers.org/lxc/introduction/[cit. 2018-
03-27].
[11] RADEZ, Dan. OpenStack Essentials [online]. 3rd. Birmingham: Packt
Publishing Limited, 2015 [cit. 2018-03-27]. ISBN 978-1-78398-708-5. Avail-
able from: https://www.amazon.com/OpenStack-Essentials-Dan-Radez/dp/1783987081
[12] Docs.openstack.org. (2018). OpenStack Docs: Networking service over-
view. [online] Available at: https://docs.openstack.org/neutron/latest/install/common/get-

71

Bibliography

started-networking.html [cit. 2018-03-27].
[13] Wiki.openstack.org. (2018). Neutron - OpenStack. [online] Available at:
https://wiki.openstack.org/wiki/Neutron [cit. 2018-03-27].
[14] Docs.openstack.org. (2018). OpenStack Docs: ML2 plug-in. [online]
Available at: https://docs.openstack.org/neutron/pike/admin/config-ml2.html
[cit. 2018-03-27].
[15] Mestery, K. and Kukura, R. (2018). Modular Layer 2 In OpenStack Neut-
ron. [online] Openstack.org. Available at: https://www.openstack.org/assets/presentation-
media/ML2-Past-Present-and-Future.pptx [cit. 2018-03-27].
[16] Docs.openstack.org. (2018). OpenStack Docs: Open vSwitch: Provider
networks. [online] Available at: https://docs.openstack.org/ocata/networking-
guide/deploy-ovs-provider.html [cit. 2018-03-27].
[17] Arie Bregman. (2018). Openstack Neutron: L2 L3 agents. [online] Avail-
able at: http://abregman.com/2016/01/03/openstack-neutron-l2-l3-agents/ [cit.
2018-03-27].
[18] En.wikipedia.org. (2018). Iptables. [online] Available at:
https://en.wikipedia.org/wiki/Iptables[cit. 2018-03-27].
[19] Docs.openstack.org. (2018). OpenStack Docs: Layer 3 Networking in
Neutron - via Layer 3 agent OpenVSwitch. [online] Available at:
https://docs.openstack.org/neutron/pike/contributor/internals/layer3.html [cit.
2018-03-27].
[20] Thekelleys.org.uk. (2018). Dnsmasq - network services for small net-
works.. [online] Available at: http://www.thekelleys.org.uk/dnsmasq/doc.html
[cit. 2018-03-27].
[21] Docs.openstack.org. (2018). OpenStack Docs: Networking architecture.
[online] Available at: https://docs.openstack.org/security-guide/networking/architecture.html
[Accessed 27 Mar. 2018].
[22] VIETSTACK TEAM. (2018). RPC in OpenStack. [online] Available at:
https://vietstack.wordpress.com/2015/09/17/rpc-in-openstack/ [cit. 2018-03-
27].
[23] Superuser. (2018). Understanding Open vSwitch, an OpenStack SDN
component - Superuser. [online] Available at: http://superuser.openstack.org/
articles/openvswitch-openstack-sdn/ [cit. 2018-03-27].
[24] Docs.ocselected.org. (2018). Tenant and provider networks - OpenStack
Networking Guide - current. [online] Available at: http://docs.ocselected.org/
openstack-manuals/kilo/networking-guide/content/tenant-provider-networks.html
[cit. 2018-03-27].
[25] Opennetworking.org. (2018). [online] Available at: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf [cit. 2018-03-27].
[26] F. Hu, Q. Hao, and K. Bao. A Survey on Software-Defined Network
and OpenFlow: From Concept to Implementation. In: IEEE Communica-
tions Surveys Tutorials 16.4 (2014), pp. 21812206. issn: 1553-877X. doi:
10.1109/COMST.2014.2326417. [online] Available at:
http://labs.xjtudlc.com/labs/wldmt/reading%20list/papers/Multimedia

72

Bibliography

%20and%20Networking/HHB14.pdf [cit. 2018-03-27].
[27] William Stallings. Foundations of Modern Networking: SDN, NFV,
QoE, IoT, and Cloud. Addison-Wesley Professional, 2016, ISBN-13: 978-
0134175393
[28] En.wikipedia.org. (2018). Kernel-based Virtual Machine. [online] Avail-
able at: https://en.wikipedia.org/wiki/Kernel-based Virtual Machine [cit. 2018-
03-27].
[29]Penguin, T. (2018). Installing DevStack on Ubuntu 16.04 - The Urban
Penguin. [online] The Urban Penguin. Available at: https://www.theurbanpenguin.com/installing-
devstack-on-ubuntu-16-04 [cit. 2018-03-27].
[30] Docs.openstack.org. (2018). OpenStack Docs: Multi-Node Lab. [online]
Available at: https://docs.openstack.org/devstack/latest/guides/multinode-
lab.html[cit. 2018-03-27].
[31] Docs.openstack.org. (2018). OpenStack Docs: Manage projects, users,
and roles. [online] Available at: https://docs.openstack.org/keystone/pike/admin/cli-
manage-projects-users-and-roles.html [cit. 2018-03-27].
[32] Docs.openstack.org. (2018). OpenStack Docs: Install and configure con-
troller node. [online] Available at: https://docs.openstack.org/mitaka/install-
guide-rdo/neutron-controller-install.html [cit. 2018-03-27].
[33] Dhcp agent.ini. Openstack.org [online]. 2018, 2018-02-08 [cit. 2018-03-
27]. Available from:
https://docs.openstack.org/ocata/config-reference/networking/samples/dhcp agent.ini.html.
[34] L3 agent.ini. Openstack.org [online]. 2018, 2018-02-08 [cit. 2018-03-27].
Available from:
https://docs.openstack.org/ocata/config-reference/networking/samples/l3 agent.ini.html
[35] Keystone.conf. Openstack.org [online]. 2018, 2018-02-08 [cit. 2018-03-
27]. Available from:
https://docs.openstack.org/ocata/config-reference/identity/samples/keystone.conf.html
[36]SEZER, Sakir, Pushpinder Kaur CHOUHAN and Sandra SCOTT-HAYWARD.
Are we ready for SDN? - Implementation Challenges for Software-Defined
Networks [online]. IEEE Communications Magazine, 2013, 36-43 [cit. 2018-
03-27]. DOI: 10.1109 / MCOM.2013.6553676. Available from:
https://pure.qub.ac.uk/portal/files/14448878/CommsMag Final.pdf
[37] ROUSE, Margaret. Software-defined networking (SDN). TechTarget [on-
line]. August 2015 [cit. 2018-03-27]. Available from:
http://searchsdn.techtarget.com/definition/software-defined-networking-SDN
[38]What is Software Defined Networking (SDN) ?. SDxCentral [online]. 2012-
2018 [cit. 2018-03-27]. Available from: https://www.sdxcentral.com/sdn/definitions/what-
the-definition-of-software-defined-networking-sdn/
[39] Features - Open vSwitch [online]. Linux Foundation Collaborative Pro-
ject, 2016 [cit. 2018-03-27]. Available from: http://www.openvswitch.org//features/
[40] BAILEY, Stuart, Deepak BANSAL and Linda DUNBAR. SDN Architec-
ture Overview [online]. December 12, 2013, 3-5 [cit. 2018-03-27]. Avail-
able from: https://www.opennetworking.org/images/stories/downloads/sdn-

73

Bibliography

resources/technical-reports/SDN-architecture-overview-1.0.pdf
[41]Wikipedia. Wikipedia [online]. [cit. 2018-04-20]. Available from: ht-
tps://en.wikipedia.org/wiki/Network address translation
[42]Openstack. Wikipedia [online]. [feeling. 2018-04-20]. Available from:
https://developer.openstack.org/firstapp-libcloud/networking.html
[43]IGBE, Damian. Identifying and Troubleshooting Neutron Namespaces
[online]. November 21, 2013 [cit. 2018-04-20]. Available from: https://www.mirantis.com/
blog/identifying-and-troubleshooting-neutron-namespaces/
[44]IGBE, Damian. How to add eth0 and wlan0 to OpenvSwitch Bridge.
Fosshelp [online]. October 30, 2014 [cit. 2018-04-20]. Dostupn z: http://fosshelp.blogspot.cz/
2014/10/add-eth0-wlan0-openvswitch-bridge.html [45]Wikipedia [online]. [cit.
2018-04-22]. Dostupn z: https://en.wikipedia.org/wiki/OpenDaylight Project
[46]Opendaylight [online]. [cit. 2018-04-22]. Dostupn z: http://docs.opendaylight.org/
en/stable-oxygen/getting-started-guide/introduction.html [47]Sdxcentral. Sdx-
central [online]. [cit. 2018-04-20]. Dostupn z: https://www.sdxcentral.com/projects/romana/
[48]Openstack. Openstack [online]. [cit. 2018-04-20]. Dostupn z: https://docs.openstack.org/
networking-ovn/latest/admin/ovn.html
[49]Projectcalico [online]. [cit. 2018-04-24]. Dostupn z:
https://docs.projectcalico.org/v3.1/introduction/

74

Appendix A

Acronyms

OVN Open Virtual Network

SDN Software-defined networking

ODL OpenDaylight

SaaS Software as a Service

NaaS Network as a Service

PaaS Platform as a Service

OVS Open vSwich

75

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

77

	Introduction
	Motivation and Objective
	Problem Statement

	State-of-the-art
	Cloud Computing
	Overview of OpenStack
	OpenStack Networking: Neutron
	Networks and multi-tenancy

	Open VSwitch
	Motivation For Open vSwitch
	Open vSwitch
	Opn vSwitch Characteristics
	Software Defined Networks
	Why SDN?
	Evolution of Software Defined-Networking
	SDN Controller
	SDN into OpenStack

	Approach and Methodology
	Rapid Deployment Tools
	OpenStack Deployment
	DevStack
	Neutron configuration
	Introduction of other Networking Project

	Analysis and design
	Experimental setup
	Experimental Design
	Studying the Network Performance

	Results
	Results for Network Traffic flow
	Results for Network Performance
	Comparision between differnt Projects

	Conclusion and Future work
	Bibliography
	Acronyms
	Contents of enclosed CD

