
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 16, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: DeepRCar: An Autonomous Car Model

 Student: Bc. David Ungurean

 Supervisor: Ing. Zdeněk Buk, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of winter semester 2019/20

Instructions

Search for RC car models suitable for autonomous driving implementation. Focus on models which allow
the control software to be run onboard. The autonomous control will be based primarily on visual inputs
from an onboard camera. Other sensors such as ultrasonic distance sensors can be also used. Implement
the control algorithms using deep neural networks which use the visual information as input and produce
control signals for steering and speed control. Design and implement several experiments to test various
neural network architectures and image preprocessing methods.

References

- J. Koutnik, J. Schmidhuber, F. Gomez, Online evolution of deep convolutional network for vision-based RL, SAB 2014:
http://people.idsia.ch/ koutnik/papers/koutnik2014sab.pdf
- Zheng Wang, Self Driving RC Car: https://zhengludwig.wordpress.com/projects/self-driving-rc-car/

Master’s thesis

DeepRCar: An Autonomous Car Model

Bc. David Ungurean

Department of Applied Mathematics
Supervisor: Ing. Zdeněk Buk, Ph.d.

May 9, 2018

Acknowledgements

First of all, I would like to thank my supervisor Dr. Buk for giving me the
chance to explore such an interesting field of machine learning and for always
pointing me in the right direction, whenever I was starting to get lost. I am
also very grateful to Dr. Doina Caragea, who oversaw my writing at Kansas
State University and provided valuable insight and resources which made this
work possible.

Additionally, I thank Krǐstof Pučejdl who helped me to design the top
plastic plate for the RC car. I also o�er my heartfelt thanks to Matěj Hlaváček
for his friendship and great advice.

Finally, I want to thank my friends and family for their love and support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 9, 2018 .

Czech Technical University in Prague
Faculty of Information Technology
© 2018 David Ungurean. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ungurean, David. DeepRCar: An Autonomous Car Model. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstrakt

Tato práce se zabývá stavbou modelu autonomńıho vozu na dálkové ovládáńı
a jeho kontrolou pomoćı hlubokých neuronových śıt́ı. Vozidlo je schopno
zatáčet samo pouze na základě vizuálńıho vstupu z předńı kamery. Text práce
popisuje jeho kompletńı vývoj od výběru hardwarových komponent, návrhu
kontrolńıho systému, až po selekci a učeńı konvolučńı neuronové śıtě, která
ovládá nastaveńı kol. Model se naučil rozeznat okraje j́ızdńıho pruhu, přestože
měl během učeńı př́ıstup pouze ke dvojićım vstupńı obrázek a př́ıslušný úhel
kol pro danou situaci. Finálńı systém operuje při 20 sńımćıch za sekundu na
jednodeskovém poč́ıtači Raspberry Pi 3.

Kĺıčová slova neuronové śıtě, deep learning, konvoluce, autonomńı vozidlo,
Raspberry Pi, učeńı s učitelem, strojové viděńı

vii

Abstract

I present DeepRCar, a simplified self-driving radio controlled car platform that
is controlled by deep neural networks. This car takes images from a front facing
camera as its only input and produces steering commands as output. This
thesis describes the entire process of its creation from hardware requirements,
through the design of the control system, up to the selection and training of a
convolutional neural network that manages its driving decisions. The network
was trained in an end-to-end manner and learned to recognize useful road
features, such as lane markings, when only camera images and corresponding
steering angles were presented during training. The final system is capable of
running at 20 frames per second on a Raspberry Pi 3.

Keywords neural network, deep learning, convolution, self-driving car, Rasp-
berry Pi, end-to-end, supervised learning, computer vision

viii

Contents

Introduction 1
Motivation . 1
Goal of the Project . 2
Document Structure . 2

1 Background and Related Work 3
1.1 Levels of Autonomous Driving 3
1.2 Approaches to Steering in Autonomous Driving 4
1.3 End-To-End Deep Learning . 5
1.4 Real World Examples of Self-Driving Cars 6
1.5 Chosen Approach . 7

2 Car Design 9
2.1 Requirements on the System 9
2.2 Final Car Setup . 10
2.3 Assembling . 15

3 Controlling the Car 17
3.1 System Architecture . 17
3.2 Used Technologies . 18
3.3 Car’s Main Loop . 18
3.4 Controlling the Servo and the ESC 19
3.5 Ultrasonic Sensor . 20
3.6 Web Interface . 20
3.7 Command Line Interface . 21
3.8 Dataset Recording . 21

4 Principles of Deep Learning 23
4.1 Basics of an Artificial Neural Network 23
4.2 Feed Forward Neural Network 25

ix

4.3 Convolutional Neural Network 26

5 The Controller 31
5.1 The Goal of the Controller . 31
5.2 Fully Connected Network . 32
5.3 Convolutional Networks . 34
5.4 Model Comparison . 36
5.5 Measured Results . 38

6 Experiments and Testing 43
6.1 Collecting More Data . 43
6.2 Regularization . 44
6.3 Visualization and Interpretability 49
6.4 Testing the Pi’s Performance 54

Conclusion 57
Future work . 58

Bibliography 59

A Acronyms 65

B Contents of enclosed CD 67

x

List of Figures

1.1 Calculation of correction value in a PID loop 4
1.2 Di�erences between modularized and end-to-end approach 5
1.3 Technologies used to model surroundings of modern self-driving cars 6
1.4 Sensors and cameras on Tesla Model S [1] 7

2.1 Buggy Radio Car 1/16 2.4Ghz Exceed RC Blaze 10
2.2 SainSmart Wide Angle Fish-Eye Camera Lenses 11
2.3 Raspberry Pi 3 model B . 12
2.4 Adafruit PCA9685 16 Channel 12 Bit PWM Servo Driver 12
2.5 The powerbank (Anker Astro E1) and jumper wires used in this

project . 13
2.6 HC-SR04 Ultrasonic sensor . 13
2.7 Top plate with attachments (left) and the camera mount (right) . 14
2.8 Electronic schema of the system’s architecture 15
2.9 Assembled RC car . 16

3.1 Deployment diagram . 17
3.2 Car’s life cycle . 18
3.3 Web interface . 20

4.1 Comparison between a biological neuron (left) and a mathematical
model of an artificial neuron (right) [2] 24

4.2 Plots of common activation functions 24
4.3 Structure of a simple Feed Forward Neural Network[2] 25
4.4 Architecture of LeNet-5 [3] . 27
4.5 Example of max pooling with filter of size 3◊3 and stride 2 [4, p. 17] 28
4.6 Example of learned invariances [5, p. 4] 28

5.1 Example of image preprocessing in training dataset 32
5.2 Flow of data with example architecture FFNN2 33
5.3 Tested fully connected architectures 33

xi

5.4 PilotNet architecture . 34
5.5 Example images from training dataset 36
5.6 Sketch of routes used for training 37
5.7 Distribution of angles in the recorded dataset 37
5.8 Comparison of validation loss of fully connected architectures . . . 38
5.9 Comparison of validation loss between fully connected networks

and CNNs . 39
5.10 Compared on track performance 40
5.11 Winning CNN architecture . 40
5.12 Examples of predicted angle . 41

6.1 Augmentation examples . 45
6.2 E�ect of early stopping on car autonomy 46
6.3 E�ects of dropout on validation loss 48
6.4 Colored version without interpolation 49
6.5 Grayscale version of green channel with bilinear interpolation . . . 49
6.6 Visualization of trained filter in first convolutional layer. 49
6.7 Layer activations for steering right 50
6.8 Layer activations for steering left 50
6.9 Occlusion map examples . 51
6.10 The process of computing Grad-CAM for an image [6]. 53
6.11 Examples Grad-CAM localization maps on recorded images. 53

xii

List of Tables

2.1 List of used parts and their prices 14

5.1 List of custom CNN architectures 35

6.1 E�ects of dataset augmentation on validation loss 45
6.2 Measured times (minimum, maximum and average case) for a sin-

gle run loop. 54

xiii

Introduction

Motivation
Convolutional Neural Networks (CNNs) and other deep architectures have
achieved tremendous results in the field of computer vision. In most cases, they
surpassed previous hand-crafted feature extraction based systems and set up
a new state-of-the-art for tasks such as image classification [7], [8], [9], image
captioning [10], [11], object detection [12] or semantic segmentation [13] [14].
These networks learn automatically from training data and are able to capture
complex relationships that are otherwise very di�cult for humans to describe
by a set of hand-written rules. With the exponentially growing amount of
available data and the increasing processing power of modern computers, we
are able to train these networks to yield better and better results. Their
impact can be seen almost anywhere. Whether it is the improved quality of
automatic machine translation [15], human competitive results at malignancy
detection in radiology imagery [16], [17], or just the possibility to scan for
pictures containing our face on social media. Another field that could largely
benefit from deep neural networks is the automotive industry with self-driving
cars.

Once developed, autonomous vehicles will revolutionize transportation.
Self-driving cars will save millions of lives in situations where it is impossible
for a person to prevent a car accident. The reaction times and alertness of a
machine are much better. In addition, long distance cameras and ultrasonic
sensors further equip these cars with super-human abilities. For such rea-
sons, we see many corporations and researchers trying to develop technologies
that would allow for a fully autonomous driving experience. Companies like
Google or Udacity also try to educate the public on this topic. They provide
free courses and open-source libraries as tensorflow that enable practically
anyone to build machine learning models and participate in solving of the
puzzle.

1

Introduction

Goal of the Project
The ultimate goal of the thesis is to build a low cost prototype of an au-
tonomous RC car through end-to-end machine learning, primarily using deep
neural networks (details in Chapter 4).

This car should be able to drive itself on a flat surface that will mimic
a simplified road. The main input of the car will be real time video from a
camera, which will be mounted on the top. The system should then output
corresponding steering commands and control the car accordingly. Since the
camera will be the only input for the controller, the goal of the thesis will
be to teach the car how to steer. Avoiding obstacles is a di�erent problem
which is also possible to solve, but combining it with steering and creating a
single controller to handle both situations is beyond the scope of this thesis.
However, I will use ultrasonic sensors to detect obstacles on the road and stop
the car accordingly. This will work as a separate module that will not interfere
with the process of steering which will be managed exclusively by the neural
network.

The network will be trained on a separate machine and then transferred
to an on-board computer, that will control the car. The vehicle will then be
fully independent of other machines.

Another goal of the thesis is to make this system a�ordable and easy to
build. I will use a mainstream single board computer and an inexpensive car
chassis. The software will be written with standard machine learning libraries
and easy to extend and reproduce.

Document Structure
This thesis starts with a short summary of the background associated with
self-driving cars in Chapter 1. That is followed by a description of how to
assemble an RC car that is able to drive autonomously. Chapter 5 focuses
on the design, creation and training of a controller which operates such car.
A more thorough examination of the controller’s performance is described in
Chapter 6.

2

Chapter 1

Background and Related Work

1.1 Levels of Autonomous Driving
The National Highway and Tra�c Safety Administration (NHTSA) defines
five levels of vehicle autonomy [18].

• no automation (level 0) — The human driver does all the driving.

• driver assistance (level 1) — The car assists the driver with a single
vehicle control such as steering or braking, but not both at the same
time.
Example: lane keeping, cruise control or assisted breaking.

• partial automation (level 2) — The execution of both steering and ac-
celerating/decelerating is performed by the car. Human driver is still
expected to perform all remaining tasks associated with driving and
monitoring of the driving environment.
Example: Tesla Autopilot [1]

• conditional automation (level 3) — The driving system takes complete
control over the entire driving task under special circumstances. Human
driver is expected to intervene when required. When the circumstances
aren’t met, human driver does all the driving.
Example: Waymo (Google) self-driving car [19]

• high automation (level 4) — The driving system takes complete control
over the entire driving task under special circumstances. The human
driver does not need to pay attention or intervene in those situations.
If a change of circumstances arises, the car needs to be able to stop and
park safely in case the driver does not retake control.
Example: Waymo announced in 2017 that they are testing level 4 driving
[20].

3

1. Background and Related Work

• full automation (level 5) — The driving system takes complete control
over the entire driving task under all circumstances. The human driver
does not need to be inside the car.
Example: JohnyCab from Total Recall

This thesis aims to create a system with a level of automation between 1
and 2. Steering will be fully autonomous, decelerating will only work when
an obstacle is met.

1.2 Approaches to Steering in Autonomous
Driving

There are currently three main ways of how to deal with steering in a self-
driving vehicle.

• Non-AI Approach (manual engineering)

• AI Approach

• Combination of AI and Non-AI

1.2.1 Non-AI Approach
The non-AI approach uses control theory to calculate a steering angle to keep
the vehicle on the desired trajectory, which is usually detected through com-
puter vision algorithms. One of the most popular methods in control theory
is PID (Proportional Integral Derivative) controller [21]. The controller works
in a loop, which continuously calculates an error value e(t) as a di�erence
between the vehicle’s feedback and the next command signal. Afterwards, a
correction is calculated and applied.

The correction value u(t) consists of three parts (proportional, integral,
derivative) and can be computed from the error e(t) as shown in Figure 1.1.

Figure 1.1: Calculation of correction value in a PID loop

The whole mathematical formula is then following:

u(t) = K
p

e(t) + K
i

⁄
t

0
e(·) d· + K

d

de(t)
dt

(1.1)

4

1.3. End-To-End Deep Learning

Each term has its coe�cient (K
p

, K
i

, K
d

) which needs to be tuned. I
will not go into detail on options for parameter tuning as the approach for
autonomous driving that will be used in this project is the AI approach. For
more material on PID controllers and their use in autonomous vehicles, please
refer to [22], [23], [24].

1.2.2 AI Approach
The AI approach, in comparison to the previous, does not calculate the pre-
cise steering angle using mathematical equations, but instead relies on an
intelligent agent which chooses the best course of action.

Such agent can be trained with deep learning on large datasets of driving
data with the goal of recognizing road features and predicting the direction in
which the vehicle should travel in order to follow the road.

With the rise of deep learning and recent accomplishments of companies
like Google, Tesla or Uber in the field of machine learning, new possibilities
arise. The combination of artificial neural networks being a universal approxi-
mator [25], breakthroughs in research on CNNs and the improvements in GPU
performance [26] makes creation of an NN-based controller, which can drive
an RC car, seem like a reachable goal.

1.3 End-To-End Deep Learning
As I will discuss in Section 1.4, the standard approach in solving the task
of autonomous driving is to decompose the problem into several steps such
as pedestrian detection, lane marking detection, path/motion planning and
motor control. In recent years several attempts [27], [28], [29], [30] were made
to simplify this pipeline with end-to-end deep learning. This approach merges
all the aforementioned processing steps together, leading to a smaller, more
elegant system. Figure 1.2 shows the di�erence between the two pipelines.

STATE
ESTIMATION MODELLING PATH

PLANNING
LOW LEVEL

CONTROL (PID)
STEERING

COMMANDSOBSERVATION

(a) Standard pipeline
DEEP NEURAL

NETWORK
STATE

ESTIMATION
STEERING

COMMANDS

(b) End-to-end learning pipeline

Figure 1.2: Di�erences between modularized and end-to-end approach

The first big breakthrough in the use of end-to-end deep learning for self-
driving cars is dated to 1989 and the accomplishments of Pomerleau [27], who
built the Autonomous Land Vehicle in a Neural Network (ALVINN). He used
a simple feed forward neural network with a single hidden layer of 29 units.

5

1. Background and Related Work

This research shows that it is possible to use end-to-end neural nets to drive a
car. In 2004, the Defense Advanced Research Projects Agency (DARPA) came
up with a project known as DARPA Autonomous Vehicle (DAVE) [28], which
is a 1/10th scale autonomous RC car prototype able to drive in terrain and
avoid obstacles. DAVE served as groundwork for the most recent achievement
of NVIDIA in the field of self-driving cars – the DAVE-2. In the paper End-
To-End Learning for Self-Driving Cars [29], NVIDIA published a state-of-
the-art network architecture that benefits from the modern convolutions and
processing power of present-day GPUs. Their car prototype was able to drive
on highways and in simple tra�c on local flat roads.

1.4 Real World Examples of Self-Driving Cars
Modern self-driving car companies do not use end-to-end learning as it is
infeasible to collect enough training data, to cover all possible scenarios in
a real world driving experience. As [31] showed in 2016, in a regime where
extremely high accuracy is necessary, the amount of data required to train an
end-to-end system grows exponentially compared to a modular system. In a
modular approach, the system is broken down into sub-modules with di�erent
responsibilities as pedestrian detection or path planning. Each module is
then trained either using machine learning or manual engineering, depending
on empirical success.

Another important di�erence between real world self-driving cars and the
RC car model used in this thesis is the form and size of input. Companies like
Waymo or Tesla combine data from multiple sensors and cameras together
to create a visual model of the car’s surroundings (see Figure 1.3 for better
visualization).

Sensor fusion in Waymo SDC [19] Image segmentation with SegNet [13]

Figure 1.3: Technologies used to model surroundings of modern self-driving
cars

Expensive technologies such as LIDAR [32], radar and ultrasonic sensors
are necessary to create a realistic, 360 degree model of the environment. For
example Tesla model S uses a combination of wide, narrow, normal front

6

1.5. Chosen Approach

cameras, side, rearward looking side cameras and a single back camera. In
total there are twelve ultrasonic sensors and on top of all that, there is a front
facing RADAR used primarily to detect relative speed of objects in front of
the car.

Figure 1.4: Sensors and cameras on Tesla Model S [1]

Such cars also use variations of Bayesian Simultaneous Localization and
Mapping (SLAM) [33] algorithms which blend together the data from all sen-
sors.

1.5 Chosen Approach
The goal of this thesis is to create an autonomous RC car which will drive
on artificial flat roads without tra�c. Such task is much simpler than a real
world scenario, so it is not necessary to complicate the design with a modular
architecture. Instead, it is a good opportunity to show the strength and clarity
of an end-to-end approach applied to challenging tasks such as autonomous
driving.

7

Chapter 2

Car Design

2.1 Requirements on the System

In order to ensure successful training, we need the system to have the prop-
erties listed below.

• It needs to capture images from camera and send them in real time to
an onboard computer.

The car will have a camera mounted on top which will be connected to
the onboard computer

• The hardware needs to be able to receive and execute orders from the
agent.

The onboard computer, which will run the agent, will be connected to
a servo and, with the use of libraries, control its steering angle.

This requirement restrains us the most when choosing which RC vehicle
to buy. Some cars simply won’t allow the user to precisely control the
steering angle. Fortunately, this can be solved by using a custom servo
and a servo controlling unit.

• The onboard computer needs to either receive orders from a distant ma-
chine or be able to store large neural network models and classify images
in real time.

I chose the second approach of storing the model directly on the onboard
computer which will also perform the decision-making process. This
way the car will be truly autonomous and will not have to rely on other
machines. However, the model will be trained on a separate machine
with greater computational capabilities.

9

2. Car Design

2.2 Final Car Setup

Usually the car is attached to a remote control which sends signals to steer
the wheels depending on which buttons the user presses. In our case, we want
to control the car purely with a computer program. In order to do that, we
will need to buy several extra parts, rewire the car’s servo and connect it to
the onboard computer. We will also need a camera to collect images and a
motor controller. The final list of all required parts can be seen in Table 2.1.

2.2.1 Car Chassis

The RC car is one of the most vital components of the whole system. There
are several things that we need to consider when choosing which one to buy.
The car’s ESC (electronic speed controller) needs to be separate from its signal
receiver. We need to be able to connect the steering servo and the ESC to our
motor controller in order to fully control both. The ESC should also allow for
fine-tuning of the steering angle. Some low-end cars only grant discrete angle
steps (left, right and center). It is still possible to make such car drive, but
having the full control over steering is preferred. The last thing to consider is
the size, or more precisely the scale of the model. Scales can range from 1/32
to 1/8 and beyond. Here, the only restriction is that the car needs to be big
enough to carry all parts and batteries.

Final choice: Buggy Radio Car 1/16 2.4Ghz Exceed RC Blaze

I chose an RC car from Exceed in 1/16 scale, because its size is su�cient
to fit and carry all mandatory components and it is still compact enough that
I will not have to create an enormous driving environment for it to train. It
is a�ordable, has good servo and ESC setup and drives very well.

Figure 2.1: Buggy Radio Car 1/16 2.4Ghz Exceed RC Blaze

10

2.2. Final Car Setup

2.2.2 Servos, Motors and ESC
I did not have to opt for a custom ESC because the Exceed buggy has a
fairly good ESC, which will allow me to finely modify its speed and angle of
its wheels. Please note that a custom ESC may be required if you want to
recreate this project with a cheaper RC car. For more info on how to choose
a viable ESC, refer to [34].

2.2.3 Camera
The resolution of the camera is not very important as we will downsample the
input to reduce training time. Wider angle camera will be beneficial, as it can
capture more information about the car’s surroundings.

Final choice: SainSmart Wide Angle Fish-Eye Camera Lenses

The SainSmart Wide Angle Camera is a good trade-o� between price and
build quality. It is su�cient for this task and readily available in most online
stores.

Figure 2.2: SainSmart Wide Angle Fish-Eye Camera Lenses

2.2.4 Onboard Computer
Depending on the scale of your project, you can choose from a wide variety of
onboard computers. One can go with NVIDIA DRIVE PX Pegasus for larger
projects. Arduino, Raspbery Pi and Orange Pi stand on the other end of the
spectrum as lower cost single-board computers.

Final choice: Raspberry Pi 3 model B

This project aims to be an a�ordable do-it-yourself version of a self-driving-
car. I chose Raspberry Pi 3, because I am familiar with the device and because
it also has a built-in Wi-Fi module that will ease both manipulation and
debugging. It is also very well adopted by users and there are numerous

11

2. Car Design

materials covering its use publicly available on the worldwide web. Another
important factor that played in Pi’s favor is the availability of tensorflow for
Raspberry Pi and its relatively good processing power.

Figure 2.3: Raspberry Pi 3 model B

2.2.5 Motor and Servo Controller

To control the motor and servos, we need to send it specific PWM signals.
I decided to get a special add-on board for the Pi which will make it easier.
Adafruit Industries, LLC manufactures numerous Raspberry Pi compatible
motor controllers. Another option could be Emlid NAVIO2 [35]. It has a lot
of useful sensors like accelerometers, gyroscopes and magnetometers. Unfor-
tunately, the price of $164 makes it too expensive for this type of project.

Final choice: Adafruit PCA9685 16 Channel 12 Bit PWM Servo Driver

I was inspired by [36] and chose the Adafruit PCA9685, which can control
up to 4 servos with full PWM speed control [37]. It is relatively small, so it
will not get in the way. Lastly, it is a�ordable, relatively easy to set-up and
comes with a publicly available software library.

Figure 2.4: Adafruit PCA9685 16 Channel 12 Bit PWM Servo Driver

12

2.2. Final Car Setup

2.2.6 Cables, Battery, Screws

The ESC is powered from the RC car’s battery. All other components, mainly
the Pi, need to be connected to an external source of power. This can be
either a set of AA batteries or any 5V/2A output powerbank. The size and
capacity of the powerbank depends on the size of the car and how long does
the user want to drive it. Together with the powerbank, we will need a set of
jumper wires to connect the PCA9685 to the Raspberry Pi.

Figure 2.5: The powerbank (Anker Astro E1) and jumper wires used in this
project

2.2.7 Sensors

Sensors are optional. I decided to use HC-SR04 ultrasonic sensors to detect
obstacles in front of the car. Another useful options might be accelerometers
or gyroscopes.

Figure 2.6: HC-SR04 Ultrasonic sensor

13

2. Car Design

2.2.8 Top Plastic Plate
Fitting everything on top of the car can be tricky. To avoid using duct tape,
I designed a plastic plate that can be placed on top of the car instead of the
original cover. This plate has several supports, where it is possible to attach
both the Raspberry Pi and the motor controller. It also has a small hole in the
center through which one can reach to the power switch and lead necessary
cables from.

Together with the plate, I had also 3d printed a camera mount. This
mount can be adjusted to di�erent heights and attached under various angles.
You can see the design in Figure 2.7. All OpenSCAD source files and STLs
can be found on the enclosed CD.

Figure 2.7: Top plate with attachments (left) and the camera mount (right)

2.2.9 Parts Summary
The list of all parts can be seen in Table 2.1. Every part is available for
purchase on Amazon, from where the prices were obtained.

Part Count Cost
Buggy Radio Car 1/16 2.4Ghz Exceed RC Blaze 1x $74.95
Raspberry Pi 3 model B 1x $36.39
Adafruit PCA9685 12 Bit PWM Servo Driver 1x $20.76
SainSmart Wide Angle Fish-Eye Camera Lenses 1x $26.99
HC-SR04 Ultrasonic sensor 2x $3.49
Anker Astro E1 (power bank) 1x $17.99
Total $180.57

Table 2.1: List of used parts and their prices

By relying heavily on camera as the main input, using fewer sensors and
having a smaller scale chassis, I was able to cut down the costs to $180. The
price is much lower compared to other prototype vehicles which can cost up
to several thousand dollars [28], [32].

14

2.3. Assembling

2.3 Assembling
This section provides the reader with a brief step-by-step tutorial on how to
connect all parts together.

• Gather all parts from Section 2.2.9

• Print out the top plate and the camera mount

• Drill through the holes in top plate to fit M2.5 screws

• Assemble the camera mount

• Screw the camera mount to the top plate

• Attach the Raspberry Pi and motor controller to the top plate

• Disconnect the servo and ESC cables from the car

• Connect everything together according to the schema in Figure 2.8

Figure 2.8: Electronic schema of the system’s architecture

• Attach the camera to the camera mount and connect it to the Pi

• Attach the powerbank to the back of the car and lead a cable from it to
the Pi.

• Put the top plate with all parts on top of the RC car. It should fit
tightly.

• Optionally, connect the HC-SR04 ultrasonic sensor.

• Turn on the power switch through a small hole in the 3D printed top
plate

15

2. Car Design

If everything is in place, the ESC should beep and lights on the Raspberry
Pi and the motor controller will turn on. The finished and ready to drive
vehicle can be seen in Figure 2.9.

Figure 2.9: Assembled RC car

16

Chapter 3

Controlling the Car

This chapter describes the architecture of the software that was used to control
the autonomous vehicle. I briefly mention which technologies I used to create
every module and how the main run loop works.

3.1 System Architecture

The main application is run on the Raspberry Pi. Together with the main
program, I have also implemented a web interface through which users can
interact with the system. The vehicle itself can be either driven manually from
a web browser, or automatically using a pretrained ML model. Deployment
diagram depicting the situation can be seen in Figure 3.1. Section 3.6 then
describes the web interface in more detail.

<<device>>
Laptop / smartphone

Web browser

<<device>>
Raspberry Pi

<<execution environment>>
web server: flask 0.12.2

Web application

Car
REST API

<<storage>>

Datasets

<<storage>>

ML models

<<HTTP>>

<<SSH>>

<<execution environment>>
Python 3.6

run.py

Figure 3.1: Deployment diagram

17

3. Controlling the Car

3.2 Used Technologies

The entire software stack is written in Python 3.6 except for the view layer
of the web server, which had to be written using HTML and Javascript. I
used standard libraries for working with threads and sockets. For higher level
constructs, I tried to use widely available 3rd party libraries.

Namely, I used Flask and CherryPy for the backend part of the web.
Frontend was programmed using Bootstrap.

The low-level layer that controls hardware is built on libraries as PiCamera
and Adafruit PCA9685. The latter controls the servos and the first works as
a wrapper for the camera.

I used standard machine learning libraries to train the network. Those
were numPy, sklearn, pandas, Tensorflow and Keras.

3.3 Car’s Main Loop

The car’s main loop runs indefinitely with a defined frequency. At first, the
car finds out whether it can continue driving or if there is an obstacle in front
of it. Then it gets the latest speed and steering angle, which are provided
either by user from the web interface or from a pretrained model (based on
the most recent camera image). The speed and angle are then saved and fed
into the actuator that executes appropriate steering commands. The process
is depicted on the following diagram.

INITIALIZE CAR COMPONENTS

(camera, distance sensor, autopilot or

web pilot)

end

start

[car is off]

ACTUATOR
setSpeed(0)

SLEEP
until next

cycle

CAMERA
img = getImage()

CONTROLLER
angle = inferAngle(img)

[obstacleDistance >= 20 cm]

ACTUATOR
setSpeed(default_speed)

setAngle(angle)

[car is on]

[obstacleDistance < 20 cm]

Figure 3.2: Car’s life cycle

18

3.4. Controlling the Servo and the ESC

It is worth to mention that the camera unit, the web interface and the
distance sensor all run separately on their own threads to not stall the exe-
cution loop. On the other hand, the most computationally demanding part
of this loop is the inferring process of the neural network. A more thorough
performance breakdown can be found in Section 6.4, where I focus on the
suitability of Raspberry Pi for this task and the measured performance of the
system.

A simplified version of the main loop code can be seen in Listing 3.1.

1 while self.is_on:

2 if distance_sensor.should_stop():

3 self.throttle.drive(0)

4 continue

5
6 self.update_inputs() # get latest angle/speed from controller

7 self.propagate_changes() # reflect the changes in actuator

8
9 sleep(time_till_next_cycle) # sleep until next cycle

Listing 3.1: Simplified version of the main loop

3.4 Controlling the Servo and the ESC

To control steering and throttle of the car I had to use PCA9685 HAT, as
the Pi is not very good at generating PWM signals. The Adafruit PCA9685
library allows the user to connect to channels 0-16 on the board and send
pulses with defined frequency. As depicted in Figure 2.8, channel 0 serves for
steering and channel 1 for throttle.

It is essential to find which pulse range the servo and ESC respond to.
That can be tested with the script calibrate.py which can be found on the
enclosed CD. A short example of the script can be seen in Listing 3.2.

1 import Adafruit_PCA9685

2 # Initialise the PCA9685 using the standard address (0x40).

3 pwm = Adafruit_PCA9685.PCA9685()

4 pwm.set_pwm_freq(60) # Set frequency to 60hz, good for servos.

5 # Send pulse to channel (0 for steering, 1 for throttle)

6 pwm.set_pwm(channel, 0, pulse) # pulse range from 0-1000, usually ˜350

Listing 3.2: Example of servo control

Once the correct pulse range is found and saved in file settings.py, we
can use classes Steering and Throttle from file car parts.py to fully control
the car.

19

3. Controlling the Car

3.5 Ultrasonic Sensor
The file ultrasonic.py contains an implementation of class DistanceSensor.
To get the measurements from the ultrasonic sensor, I used a 3rd party library
named Bluetin Echo. This framework provides class Echo, which is instanti-
ated using two GPIO pins (trigger and echo) that the sensor was attached to.
The sensor then runs on a separate thread, where it continuously gets the lat-
est distance from obstacles in front of the car. This way, it does not block the
main thread. The car instance then asks the DistanceSensor asynchronously
in the main loop, whether it should stop or continue driving. See file car.py
for further implementation details.

3.6 Web Interface
The web interface was built in Python using model-view-controller architec-
ture. I used flask for the backend part of the website. For the graphical
user interface I used Bootstrap [38]. It ensures compatibility between main-
stream browsers and makes the website responsive, meaning that the layout
will adapt to fit on smaller screens.

Users can interact with almost every part of the car through the web
interface. It is possible to steer the car either using buttons and sliders on the
web page or through a remote PlayStation 3 controller. Users can also turn
on/o� dataset recording, modify speed and see the camera input in real time.
Once the car is started, the interface can be found at ip address:5000.

In case it is not possible to interact with the server in graphical inter-
face, the server also has REST API with endpoints /drive, /recording and
/video feed.

Figure 3.3: Web interface

20

3.7. Command Line Interface

3.7 Command Line Interface
The car can be run in two modes. Either in autopilot mode, where the steering
is managed by the controller (more in Chapter 5), or in manual mode, where
the user handles steering via web interface.

run.py --drive model type weights path will start the car in an autopi-
lot with model type (mlp, nvidia, custom) and pretrained model weights
saved at path weights path.

run.py --record path to store will start a dataset recording procedure,
which will snap pictures and corresponding values of speed and steering
angle at a frequency described in file config.py. The output will be
saved at path to store.

3.8 Dataset Recording
Dataset recording can be initiated either from the web interface or via com-
mand line using the command run.py --record path. Manual pilot is set
by default when the car is run through this command.

The process is governed by a single object of class Recorder. It creates a
folder hierarchy which reflects the current date and the number of records. A
single dataset entry is saved on every tick of the car’s main loop. The frequency
can be changed in file config.py. Since this is a supervised learning problem,
we need to have an input object and a corresponding output value. In this
case our input is an image and the output is a json file containing the speed
and steering angle at the time the picture was taken. These files are later used
to train the machine learning model.

21

Chapter 4

Principles of Deep Learning

This chapter aims to introduce the reader to the concept of Deep Learning and
the benefits of Convolutional Neural Networks (CNN)1. First, the basic struc-
ture of an artificial neuron is described. Next Section focuses on Feed Forward
Neural Networks and the last part talks about the theoretical foundations of
CNNs, which are heavily used in the practical part of this thesis.

4.1 Basics of an Artificial Neural Network

Much like their biological counterparts, Artificial Neural Networks consist
of independent interconnected units called neurons. These neurons compute
their activation based on activations in previous layer and weights of their
connections.

The main belief is that many simple units working together can add up to
an intelligent whole. One of the key concepts of deep learning is distributed
representation. This is the idea that each input to a system should be repre-
sented by many features, and each feature should be involved in the represen-
tation of many possible inputs [5]. For example, we want to build a classifier
that can recognize pictures of pens, pencils and rulers and each object can
be either blue, green, red or yellow. In a naive approach we would create 12
neurons where every single one of them would have to learn the concept of
object identity and color. Of course, as we increase the number of objects and
colors that we want to identify, the size of our model grows drastically. On the
other hand, with distributed representation we can narrow the requirements
down to just 7 neurons, where 3 will learn how a pen, pencil and a ruler look
like, and the remaining 4 will each learn the concept of a single color like red,
green, blue or yellow.

1Readers familiar with deep learning may skip this chapter

23

4. Principles of Deep Learning

4.1.1 Artificial Neuron
The structure of a single neuron unit by comparison to its biological counter-
part can be seen in Figure 4.1.

Figure 4.1: Comparison between a biological neuron (left) and a mathematical
model of an artificial neuron (right) [2]

Output of a single neuron unit is calculated as shown in Equation 4.1,
where x

i

is the ith input, w
i

is its weight, b refers to the bias/threshold of the
neuron and ‡ is the activation function.

y = ‡(w
i

x
i

+ b) (4.1)

4.1.1.1 Activation Functions

In order to fit nonlinear patterns in input data, we need to use nonlinear
activation functions. The most frequent these days are sigmoid, hyperbolic
tangent and ReLU. Each has di�erent drawbacks and is used for di�erent
purposes. The only restriction is that the function must be di�erentiable in
order to perform gradient descent based learning.

sigmoid : ‡(x) = 1
1+e

≠x

hyperbolic tangent : tanh(x) = e

2x≠1
e

2x+1

ReLU : ReLU(x) = max(0, x)

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

sigmoid
tanh

ReLU

Figure 4.2: Plots of common activation functions

24

4.2. Feed Forward Neural Network

4.2 Feed Forward Neural Network
A feed forward neural network is a collection of neurons organized in layers.
There is an input layer, output layer and the remaining layers are called hidden
layers. If there is more than one hidden layer, the network is called a deep
neural network.

Every neuron in each layer is connected to neurons in the following layer
creating a directional acyclic graph.

Figure 4.3: Structure of a simple Feed Forward Neural Network[2]

We denote by L, the number of layers and by N (l), the number of neurons
in layer l. Let l = 0 be the input layer and l = L ≠ 1 the output layer, we’ll
use wl

jk

to denote the weight of connection from kth neuron in (l ≠ 1)th layer
to jth neuron in lth layer. Similarly, bl

j

is the bias of jth neuron in layer l.
With this notation we can compute the activation al

j

for the jth neuron in lth

layer with the following formula

al

j

= ‡

A
ÿ

k

wl

jk

al≠1
k

+ bl

j

B

(4.2)

Similarly, we can define a weight matrix W l for weights in layer l, where
the entry in jth row and kth column will be the element wl

jk

from Equation
4.2. In the same manner we can define a bias vector bl where the values are
biases of neurons in layer l. Lastly, al will be an activation vector whose
components are activations al

j

. The equation for an activation vector al can
be then written as

al = ‡
1
W lal≠1 + bl

2
(4.3)

In each layer a non-linear transformation of the output from its previous
layer is calculated. Hornik [25] proved that with the addition of hidden lay-
ers and a right set of weights and biases, FFNNs can approximate any Borel
measurable function from one finite dimensional space to another at any de-
sired degree of accuracy. This result is known as the universal approximation
theorem. Unfortunately, finding those parameters is rather nontrivial.

25

4. Principles of Deep Learning

Although [25] states that any function can be represented by a neural
network with just one hidden layer and a su�cient number of units, [39]
showed that this approach is usually ine�cient and the same function can be
represented by a much more compact deeper architecture.

4.2.1 Learning and Cost Functions
Our goal is to find the parameters ◊ = (W, b) based on a dataset of input
and output vectors (x

n

, t
n

), which would minimize the di�erence between
the output of the trained network and the real function we are trying to
approximate. In other words, we need to minimize a cost function C(◊), that
can be defined in several ways. Equation 4.4 displays one example, the mean
squared error loss function.

C
MSE

(◊) = 1
2N

Nÿ

n=1
Îy (x

n

, ◊) ≠ t
n

Î2 (4.4)

When we use MSE as our loss function, the network can be trained using
gradient-based optimization techniques [40], because every part of the network
is constructed from di�erentiable operators. Therefore, in order to minimize
the cost function and find the optimal weights W , we need to compute the
gradient of the cost function with respect to the weights W , i.e.

ˆC
MSE

ˆW
(4.5)

and update the weights with step proportional to the negative of the gradi-
ent. This process is called backpropagation and is more thoroughly described
in [41].

4.3 Convolutional Neural Network
Convolutional networks are simply neural networks that use convolution in
place of general matrix multiplication in at least one of their layers [5].

The name convolution comes from a mathematical operation called con-
volution. Convolution of a function f with function g is described as

(f ú g)(t) =
⁄ Œ

≠Œ
f(x) · g(t ≠ x) dx (4.6)

(f ú g)(t) =
Œÿ

x=≠Œ
f(x) · g(t ≠ x) (4.7)

in continuous and discrete cases, respectively. In literature, a convolution
operation is usually denoted with an asterix. The first argument f is referred
to as input and the second argument g as kernel of the convolution.

26

4.3. Convolutional Neural Network

Often we want to use convolutions when we work with images. Then we
have to work with a 3-dimensional input, two dimensions for width and height
of the image and one dimension for the color channel. Formula 4.8 shows how
to calculate convolution of nth output channel of such input.

(I ú K)(n, x, y) =
Cÿ

c=0

k

2ÿ

p= ≠k

2

k

2ÿ

q= ≠k

2

I(c, x + p, y + q) · K(c, n, p, q) (4.8)

Where I(n, x, y) is the value of the nth channel of a pixel at location (x, y),
k is the kernel size and K(c, n, p, q) represents the weights of the network.

Convolutional neural networks have several important properties which
make them more suitable when dealing with images as compared to simple
feed forward nets. These are sparse connectivity, parameter sharing and equiv-
ariant representations.

In traditional neural networks, every neuron interacts with every unit from
its previous layer. In order to train the network, one has to perform costly
matrix multiplications between layers. This leads to long learning times. On
the other hand, convolutional networks leverage the correlation of nearby pix-
els in an image. They do so by using a kernel size k that is smaller than the
size of the input image. Thanks to this sparse connectivity, we can reduce the
model’s memory requirements and the time it takes to perform a forward pass.
Additionally, the weights of a filter applied at di�erent locations are shared.
So, instead of learning separate parameters for every part of an image, we
simply learn one set. This further reduces the total number of parameters
that we need to learn and allows the network to be equivariant to translation,
meaning that if we move an object in the input several pixels to the left, its
output will also move by the same amount. As an example, it is e�cient to
detect edges all over an image with a single set of parameters.

The first network which resembled modern CNNs was called Neocognitron
introduced by Fukushima in 1980 [42]. In 1998, LeCunn et.al [3] came up with
LeNet which was used in the field of character recognition. LeNet showed the
strength and potential of CNNs and similar architectures are still being used
at the moment.

Figure 4.4: Architecture of LeNet-5 [3]

27

4. Principles of Deep Learning

In 2014, Yamins [43] showed a similarity between the firing of neurons
in human visual cortex and activations of convolutional nets, which made
the researchers believe that we are on the right path with using CNNs for
image recognition. Further breakthroughs continued with the ILSVRC Im-
ageNet competition [44], where the main goal was to classify images with a
training dataset containing an astounding 14+ million images. The first deep
convolutional nets reached a test error of 16% [45]. Today’s state-of-the-art
convolutional network SENet has a test error 2.251% which outperforms an
average person who can only score an error of 5.1% [46].

4.3.1 Pooling

Convolutional networks usually consist of convolutional and fully connected
(FC) layers, which perform the high level reasoning. A typical convolutional
layer has three stages – convolution stage, detector stage and pooling stage.
In the first stage filters/kernels are applied in parallel to produce linear acti-
vations. These activations continue through a non-linear activation function
(usually ReLU) in the detector stage. The result proceeds into a pooling layer.
Pooling functions perform non-linear downsampling of the input. They do so
by combining values of a bigger neighborhood of neurons into a single value
that they pass to the next layer [8]. There are numerous pooling functions.
Average pooling, L2 norm pooling or max pooling, which gives the best results
in practice [47]. As the name suggests, max pooling takes the maximum of
neuron activations in its receptive field. An example can be seen in Figure
4.5.

Figure 4.5: Example of max
pooling with filter of size 3 ◊ 3
and stride 2 [4, p. 17]

Figure 4.6: Example of learned invariances
[5, p. 4]

Pooling layers allow the network to be invariant to small local translations,
leveraging the fact that the pixel-precise location of a feature is much less
important than its rough position relative to other features. For example,
when detecting a bird in an image, we want to focus on the presence of wings,
beak and other characteristics of a bird, but we care much less about the
precise size and location of the aforementioned features.

28

4.3. Convolutional Neural Network

4.3.2 Hyperparameters
Even though convolutional networks have less overall parametres to train than
feed forward neural nets, they have more hyperparameters. We can fine-tune
them to control the output size between di�erent convolutional layers.

Depth When performing convolution we usually perform several convolution
operations in parallel. Each filter learns to detect a di�erent feature like
edges or clusters of a single color.

Stride Stride is the number of pixels by which we move the filter after every
step. With stride of size 1, we move the filter by one pixel at a time,
which leads to overlapping of filters’ receptive fields. With stride of size
2 or larger, the resulting output will be downsampled, which leads to
faster training. Figure 4.5 depicts max pooling with a stride of size 2
and a kernel of size 3 ◊ 3.

Zero padding Zero padding loosely means padding of the representation
by zeroes on borders. When we do not incorporate zero padding, the
representation naturally shrinks at each layer by one pixel less than is the
size of the used filter. This can cause undesired shrinking in situations,
where it is required for the input to preserve its size.

29

Chapter 5

The Controller

This chapter talks about the choice of model for the task of autonomous driv-
ing. An approach with a fully connected feed forward neural net is compared
to convolutional networks. The last Section provides measured performance
of these models and explains which one was chosen for future improvements.

5.1 The Goal of the Controller
As seen in the diagram 3.2, the task of the controller is to control the car’s
actuator based on the input received from its onboard camera. In other words,
we try to find a mapping from camera images to steering commands. Such
relationship may seem obvious for human eye, but is di�cult to capture by a
set of rules in a traditional programming paradigm. When we see a road that
is curved, we know how much we should steer, but defining programmaticaly
what a curve is, how sharp it is, how to find it in an image and what should be
the correct driving command to drive through, is problematic. In a new case,
we might encounter a di�erent curve that was not described by our constraints
and the program which uses a hand engineered set of rules, would fall apart.
This is a good use case for using AI. Instead of describing the relationship
between features in images and driving commands manually, we use supervised
learning and let a neural network learn these features automatically.

As mentioned in Section 4.2, neural nets with at least one hidden layer
and enough units can approximate any Borel measurable function from one
finite dimensional space to another. In our case, we try to find a function that
maps matrices of size m ◊ n ◊ 3 (input image) onto interval (≠1, 1) (steering
angles, left æ right). We can see in Figure 5.5, that when there are straight
lanes on left and right side of the image, the steering angle is 0 degrees.
Similarly, when pixels in upper left corner do not display any lanes, the car
should probably steer right. I will explore several network architectures to
capture this relationship as precisely as possible. The architecture with the
best results will then be further improved in Chapter 6.

31

5. The Controller

5.2 Fully Connected Network

As [27] and [48] shown, it is possible to train a simple feed forward neural
network to perform steering based on visual input from camera images. Fully
connected neural networks tend to have a lot of connections and parameters
to tune compared to convolutional networks. We have to keep that in mind
when designing the shape of the net. The larger the input will be, the more
parameters will be required for the network to train, leading to larger datasets
and possible over/underfitting if not enough data is collected.

Pomerleau [27] used input of size 30 ◊ 32 resulting in an input layer with
960 units, although the final width of the first layer ended up having 1217
neurons, because extra data from a laser range finder was also used. On
the other hand, Wang [48] used input images of size 320 ◊ 120, which is
considerably more (38400 input neurons). In order to reduce the input size,
both authors decided to reduce the image dimensionality from 3 channels
(RGB) to 1 channel. Wang opted to use grayscale images while Pomerleau
used only the blue channel as it provides the highest contrast between road
and non-road pixels.

5.2.1 Image Preparation

For my project, I tested input of size 50◊20. Even though the GPU processing
power has increased significantly in the past couple of years, in my case,
there is enough data on the downscaled image that both the network and
human observer should correctly classify the image. A good example of similar
approach is CIFAR-100 [7], with image size of 32◊32, on which modern neural
nets can distinguish between 100 classes like dolphins, trucks or lobsters.

Each picture in my collected dataset goes through several steps of prepro-
cessing. At first, irrelevant parts of the image are removed (such as upper part
of the image that does not contain road lanes). As a second step, the image is
rescaled to fit the neural network’s input size. Lastly the image is converted
to a grayscale. The visualization of the entire process can be seen in Figure
5.1.

(a) Original image (b) Cutting edges (c) Downscaling (d) Grayscale

Figure 5.1: Example of image preprocessing in training dataset

32

5.2. Fully Connected Network

5.2.2 Network Architecture

I tried several FFNN architectures. The input layer is always the size of the
input image which is 1000 neurons. Output layer is one tanh unit which
outputs continuous values from the interval (≠1, 1), where ≠1 represents the
leftmost angle that can be set in the RC car, +1 is the rightmost angle and 0 is
for driving straight. ReLU was used as activation function for every neuron in
hidden layers because of its superior performance compared to other activation
functions [49]. Figure 5.2 depicts the flow of data from input to output.

tanh

1000 input
units

60 hidden
units

1 output
unit

size 50 x 20 px

steering angles
in interval (-1, 1)

Figure 5.2: Flow of data with example architecture FFNN2

One more thing that I experimented with was the width and number of
hidden layers. A good rule of thumb is to have fewer parameters than training
cases. I tried 4 di�erent architectures, first with a single hidden layer of
30 neurons, second with single layer of 60 neurons, third with 120 neurons
and fourth with two hidden layer of sizes 48 and 12. Diagrams of tested
architectures can be seen in Figure 5.3.

1000 input
units

30 hidden
units

1 output
unit

(a) Architecture 1

1000 input
units

60 hidden
units

1 output
unit

(b) Architecture 2

1000 input
units

48 hidden
units

12 hidden
units

1 output
unit

(c) Architecture 4

Figure 5.3: Tested fully connected architectures

33

5. The Controller

5.3 Convolutional Networks

As I described in Section 4.3, convolutional neural networks introduce several
key concepts which give them advantage in image classification. Sparse con-
nectivity, parameter sharing and equivariant representations are one of the
reasons why we have seen tremendous success in the field of image recognition
in the past couple of years [8]. In this Section, I present several convolutional
network architectures that I explored, when I was searching for an ideal model
for my problem. At first, I tested a deeper, state-of-the-art convolutional net-
work designed for autonomous steering of real cars. Then I compared its result
to other convolutional networks of di�erent structure.

5.3.1 PilotNet

Pilot net is a state-of-the-art convolutional net designed by NVIDIA and first
presented in their End to End Learning for Self Driving Cars paper [29]. The
network architecture is show in Figure 5.4. It consists of a normalization layer,
5 convolutional a 3 fully connected layers. Its input is a 3 channel RGB image
of size 200 ◊ 66. The first three convolutional layers use filters of size 5 ◊ 5
and stride 2 ◊ 2. Next two layers use stride 1 ◊ 1 and filters with size 3 ◊ 3
resulting in 64 ◊ (1 ◊ 18) output from the last convolution. The extracted
features are then fed into 3 fully connected layers. The output layer of the
network consists of one unit using tanh as activation function which maps the
output on a continuous interval (≠1, 1). Altogether, there are around 250 000
trainable parameters in the network.

Figure 5.4: PilotNet architecture

34

5.3. Convolutional Networks

With this architecture, NVIDIA was able to train its controller to drive
autonomously 98% of the time on flat roads in Monmouth County, NJ with
minimal tra�c.

5.3.2 Custom CNN

Even though PilotNet was shown to be a successful solution to steering angle
prediction in several reported cases, it is designed to work well on images
from real world roads. In my case, I drove the car in an isolated environment
using A4 papers as lane markers. These papers are in reality much bigger
than lane markers on public roads. On the other hand, the part of floor
outside of the test track has the same color as the road itself, giving me a
small disadvantage against the real world scenario, where the road is made
of asphalt and the surroundings is usually grass or at least di�ers in color, so
the network only needs to stay in center of a black/grayish looking part of an
image. The amount and variety of training data used by NVIDIA is also much
higher than my dataset, making PilotNet’s convolution structure too complex
for my particular situation.

Therefore, I decided to experiment with other CNN models which may fit
my data better. I performed an informed grid search for optimal hyperpa-
rameters using information about good convolutional net architectures ([45],
[50]) to reduce the search space. I generated over 64 di�erent models with
varying amount of convolutional / fully connected layers, and filter and stride
sizes. This space was further reduced to 11 candidates with 100000 to 1200000
parameters. The list of all explored architectures can be found in Table 5.1.

convolution filters strides FC layers param loss
16x3x3, 24x3x3, 48x3x3 2, 2, 2 500, 100, 25 860k 0.0162
16x3x3, 32x3x3, 64x3x3 2, 2, 1 100, 50, 10 730k 0.0227
16x3x3, 32x3x3, 64x3x3 3, 2, 1 100, 50, 10 300k 0.0207
16x3x3, 32x3x3, 64x3x3 3, 2, 1 200, 50, 10 570k 0.0172
16x5x5, 32x3x3, 64x2x2 2, 2, 1 100, 50, 10 860k 0.0223
16x5x5, 32x3x3, 64x2x2 3, 2, 1 100, 50, 10 290k 0.0182
24x5x5, 42x3x3, 64x2x2 2, 2, 1 100, 50, 10 870k 0.0222
16x3x3, 24x3x3, 36x2x2, 48x2x2 3, 2, 2, 1 500, 100, 25 230k 0.0134
16x3x3, 24x3x3, 36x2x2, 48x2x2 3, 2, 2, 1 1024, 256, 32 1200k 0.0115
24x3x3, 36x3x3, 48x2x2, 64x2x2 3, 2, 2, 1 200, 50, 10 130k 0.0178
24x3x3, 36x3x3, 48x2x2, 64x2x2 3, 2, 2, 1 500, 100, 25 300k 0.0142

Table 5.1: List of custom CNN architectures and their attributes - convolu-
tional filters, strides, size of fully connected layers, total number of parameters
and final validation loss. Best performing architecture highlighted (third row
from bottom).

35

5. The Controller

As the results imply, we can see that networks with larger fully connected
part tend to perform better. Another valid observations is that lower number
of filters is su�cient for good predictions. That can be explained by the fact
that we mainly try to find edges between road and lanes. We don’t try to
detect complex objects such as faces or wheels that would require a more
complex architecture. Shrinking the input with each convolutional layer and
using the remaining parameter allowance for the fully connected layers turned
out to be the best strategy for the network design, especially when bigger
dropout probabilities were used during the training to prevent overfitting.

5.4 Model Comparison
The mean square error loss function was used to train all models. This is
common for regression problems, because it punishes large deviations between
predicted and recorded results. Given a feed forward neural net function
y(x, ◊), the mean squared error function can be described by formula 5.1,
with t

n

being the recorded value.

C
MSE

(◊) = 1
2N

Nÿ

n=1
Îy (x

n

, ◊) ≠ t
n

Î2 (5.1)

Adam [40], a gradient based learning method, was used for optimization.
Equal levels of dropout (50%) were used to train each network. The only
other form of regularization was early stopping, used mainly to reduce the
extensive training times. If the network’s validation loss has not improved at
least by 0.005 in the last 20 epochs, the learning was stopped. Most networks
converged within 40 to 80 epochs.

5.4.1 Used Dataset
The dataset was recorded through car’s web interface (more in Sections 3.8,
3.6). It consists of 28 000 images that were sampled from driving video at 10
frames per second. A higher FPS would result in images that are too similar
and would not provide any additional useful information. Each image has a
corresponding steering angle saved in a separate json file.

Figure 5.5: Example images from training dataset

Before an image is fed into the network it is cropped that only the relevant
part of the image is present. Anything above horizon is not important for
the classification in any way and can instead introduce overfitting to objects

36

5.4. Model Comparison

close to the track. This height of the cropped area was chosen by hand and
can be seen as the space surrounded by red rectangles in Figure 5.5. This
image is than downscaled to 100 ◊ 33 for custom architectures. This size was
chosen to save on training parameters while still maintaining good training
possibilities as there is enough data to classify the image even through human
eyes. The images are then normalized to have RGB pixel intensities between
(0, 1) instead of (0, 255) in order to help with training.

The data was collected manually on two di�erent routes in my lab. Both
tracks measure between 15 and 20 meters. A small sketch of the routes is
depicted in Figure 5.6. I drove on them in both directions several times in
di�erent light conditions combining variations of natural light, closed window
shades, artificial yellow and white light, and combination of all mentioned
above. The floor does reflect a lot of light which makes the training much more
di�cult, especially in situations when only yellow light is present, considering
the lane markers are also yellow.

Figure 5.6: Sketch of routes used for training

The dataset also contains situations where the buggy is almost driving o�
the track. These cases are crucial for the network to learn how to recover from
bad situations when it missclassifies and drives too close to the edge.

Angles in the dataset are well distributed with a slight bias towards going
straight. The angle distributions can be seen in Figure 5.7.

Figure 5.7: Distribution of angles in the recorded dataset

37

5. The Controller

5.5 Measured Results
In this section, I briefly summarize the measured results and compare all
aforementioned approaches. I used two metrics to evaluate the performance
of an architecture. Those were validation loss and autonomy on on-track tests.

5.5.1 Validation Loss Tests
Figure 5.8 shows the evolving validation loss throughout training of all four
tested fully connected architectures.

Figure 5.8: Comparison of validation loss of fully connected architectures.
Blue, orange and green being networks with a single hidden layer of sizes 30,
60 and 120 respectively. The validation loss of network with two hidden layers
(48 units and 12 units) is drawn in red.

As it can be seen in the graph, adding more hidden units does not seem to
always increase performance. There is almost no di�erence between a single
layer architecture with 60 and 120 units. Another important thing to notice is
that spreading the neurons between two layers instead of one did not help and
actually turned out to have much worse performance than using a single hidden
layer. This proved the thesis that fully connected layers have di�culties with
feature extraction from images and cannot overcome slight changes in input
like rotations.

Finally, Figure 5.9 shows the comparison between a fully connected net-
work (blue), NVIDIA’s PilotNet (orange) and my best performing convNet
architecture (green).

38

5.5. Measured Results

Figure 5.9: Comparison of validation loss between fully connected networks
and CNNs. Blue is plain FFNN, PilotNet is in orange and my custom archi-
tecture in green.

As we can see, introducing convolutions helped to reduce the validation
loss by almost a third. Interestingly, using an architecture from Section 5.3.2
helped to reduce the loss even more. This can be explained by the fact that a
shallower network with fewer filters was used. The fully connected part was
larger, but simultaneously big dropout probabilities (50%) helped to prevent
overfitting of the decision-making part of the network.

5.5.2 On-track Tests

To measure the autonomy of the RC car, I used the same metric as was used
in [29]. This metric calculates the percentage of time the car is able to drive
without human intervention. Human intervention in this case means taking
the RC car when it crosses the lane markings and putting it back in the
middle of the track. Such intervention takes 5 seconds in my case. The overall
percentage of autonomy is then calculated by formula 5.2.

autonomy =
3

1 ≠ (number of interventions) ◊ 5
total time [second]

4
◊ 100 (5.2)

Figure 5.10 shows the results of on-track test on the 3 architectures from
previous Sections.

39

5. The Controller

Figure 5.10: Compared on track performance. Feed forward neural network
(red), NVIDIA’s architecture (yellow) and my architecture (green).

All networks were tested after 30 training epochs, using batch size of 128
images. Even though the fully connected network shown relatively low val-
idation loss, it was unable to keep on track for more than 6 seconds. Both
PilotNet and my CNN architecture performed well. In 10 minutes of driving,
PilotNet drove o� track 22 times and therefore was autonomous 82% of the
time. The best CNN architecture from Section 5.3.2 required intervention
only 14 times in 10 minutes scoring the highest on this test with the score of
88%.

5.5.3 Summary

The overall best performing architecture is presented in Figure 5.11. It has
shown the best results on both tests. In Chapter 6, I will focus on improving
its performance further via regularization and other techniques.

Figure 5.11: Winning CNN architecture

40

5.5. Measured Results

Some examples of its classification on the validation set can be seen in
Figure 5.12.

(a) p: -0.17, r: 0.00 (b) p: 0.93, r: 1.00 (c) p: 0.27, r: 0.70 (d) p: 0.12, r: -0.51

(e) p: -0.88, r: 0.01 (f) p: 0.04, r: -0.32 (g) p: 0.28, r: 1.00 (h) p: -0.87, r: -0.27

Figure 5.12: Examples of predicted angle (p, red color) vs recorded angle (r,
green color)

We can see that the network does a very good job in estimating the steering
angle. Images a and b from Figure 5.12 are very close to the recorded value.
Images c, d and e even perform a better job then I did when I was recording
the dataset. On the other hand, there are still a lot of cases like f, g or h,
when the predicted angle is not ideal. But the network’s missclassification is
not a big problem if it does not happen very often. The controller can recover
from it by classifying new images correctly. Further, it can be seen in images
b and e that the network learned how to behave in situations when the car is
very close to the edge of the track.

Additionally, I would also like to point out few reasons why this network
performed better than PilotNet and other architectures mentioned in Section
5.3.2. Arguably, the most crucial reason is the fact that my training dataset
contains a lot of implicit noise. There are infinite ways how to drive through a
curve and therefore the dataset contains a lot of similar images with di�erent
labels. This relationship is very hard to capture with a small network. One
way to solve this is to train the network in simulation with a precalculated
optimal path using trajectory planning algorithms [51]. For that I would
have to implement a simulator with graphics similar to my real life scenario
and use the mentioned planning algorithm. That would require tremendous
amount of time and work unrelated to the thesis objective. Another option
is to simply collect more training examples and use large enough network to
try to accommodate for the existing noise. This is also what the tests shown
in Section 5.3.2. Networks with larger fully connected part outperformed
smaller nets when large dropout probabilities were used. To keep the number
of parameters reasonable, it is possible to use fewer filters and convolution

41

5. The Controller

layers. For my case it is not required to detect complex objects and layering too
many convolutional layers on top of each other does not increase performance.

42

Chapter 6

Experiments and Testing

This chapter focuses on improving the chosen network’s performance. Various
approaches are tested such as collecting more data or di�erent types of regu-
larization. Section 6.3 discusses interpretability and visualizations techniques
used to debug the model’s performance. The last section 6.4 includes exper-
iments measuring how many times per second is the system able to operate
on a Raspberry Pi and what percentage of said time is actually taken by the
network’s inferring.

6.1 Collecting More Data
When trying to improve the system’s performance and generalization, one of
the best ways is to simply collect more data. In most situations, experimenting
with di�erent models and hyperparameters will lead to better results, but
these computations are very costly. With adaptive learning rate, it takes
approximately 4-6 hours to train the network on a 2013 2.6GHz i5 CPU
and around 1-2 hours on AWS p2.xlarge instance using NVIDIA Tesla K80
with tensorflow GPU acceleration. Then even a relatively small grid search
within the hyperparameter space can become very expensive. In my case,
when collecting training samples requires relatively little e�ort and time, it
is the best idea to collect as much various data as possible. Specifically, my
model had problems with sharper curves that the car has not seen before
in the training dataset. Therefore, I decided to record more data of curves
with varying curvature. I built two new tracks and created many variations
of a single curve with di�erent degrees of curvature. With the new data, the
dataset should contain all most common scenarios.

Overall, additional 22 000 images were captured. The updated dataset
now counts over 50 thousand images. The data was further enlarged through
data augmentation techniques described in Section 6.2.1.

As expected, the resulting dataset was slightly unbalanced with a lot of
angles close to 0. This could introduce bias towards driving straight. To avoid

43

6. Experiments and Testing

this, I divided steering angles into bins and performed designated random
sampling in order to make the dataset resemble normal distribution.

6.2 Regularization
Regularization is used to reduce overfitting [52] in machine learning models.
Goodfellow et al. [5] suggest that the best approach when creating a machine
learning model is to choose a large model that is capable of fitting the data
and then increase its generalization via regularization. I decided to follow this
approach and chose (in section 5.5.3) a network with a lot of parameters. This
section aims to describe popular regularization approaches and what was their
impact on training times, model performance and generalization.

6.2.1 Dataset Augmentation
One way to get more data is to generate fake examples and add them to the
training set. This may sound odd, but it is actually very helpful. Images are
high dimensional and can have many variations which are easy to simulate.
By artificially adding reflections and shadows to the training dataset, we can
simulate situations that are very hard to record manually. Enriching the
dataset with this new data is not only going to make it larger, but it will also
force the network to learn how to deal with unusual situations. We can think
of that as a form of regularization. It will lead to both increased robustness
of the model and better generalization.

For my task I have decided to use several augmentation techniques.

Flipping the image horizontally This is a very easy way to double the
size of training data. By simply flipping the images horizontally (and
multiplying the steering angle accordingly by ≠1) we get new examples
that we do not have to gather manually.

Changing brightness Slight changes in brightness and color of the image
simulate di�erent light conditions. This is implemented by randomly
increasing or decreasing V channel in the HSV color model of an image.

Adding artificial shadows Random shadows were generated and added to
the image to make the model invariant to actual shadows on the track.

Rotating the image The RC buggy has suspensions on both rear and front
wheels. The camera is connected tightly to the chassis, but it can still
wiggle. In order to simulate this behavior, slight image rotations were
added to some samples from the dataset.

Examples of augmented images can be seen in Figure 6.1. The source
code of mentioned methods is in file utils.py. The data is fed to the net-
work through a Keras generator, which computes the augmentation on CPU

44

6.2. Regularization

in real time while the GPU trains the network via backpropagation. For ev-
ery batch, data is randomly sampled from the training dataset and di�erent
augmentations are applied with certain probabilities.

(a) original image (b) increased brightness (c) decreased brightness

(d) horizontal flip (e) random shadow (f) rotation

Figure 6.1: Augmentation examples

I compared three levels of augmentation – light, moderate and heavy. For
light settings I only used image flipping and slight brightness changes. Moder-
ate augmentations included more drastic brightness adjustments and smaller
rotations. In the heavy case, I included shadows and amplified the e�ect
of previous augmentations. Table 6.1 displays the e�ect of augmentation on
validation loss during training.

epoch none light moderate heavy
10 0.0187 0.0228 0.0293 0.0325
20 0.0139 0.0176 0.0216 0.0236
50 0.0104 0.0126 0.0159 0.0177
100 0.0098 0.0106 0.0131 0.0146
200 0.0095 0.0098 0.0117 0.0116

Table 6.1: E�ects of dataset augmentation on validation loss. The numbers
in the table are the lowest recorded validation losses up to a specified epoch.

With the newly collected dataset, the lowest achievable validation loss
seems to be around 0.009. We can see that the bigger the changes in augmen-
tation, the longer it takes for the model to converge. Namely, the model which
was trained without any augmentations was able to converge within 20 - 50
epochs. The model trained with light augmentations took almost twice that
time to converge to the same validation loss. Models trained with heavy aug-
mentations took the longest to train. They also performed worse in on-track
tests than models trained with less invasive augmentation techniques. That
can be explained by the fact that heavy augmentations alter the input image
dramatically and it can be very di�cult for the model to pick up these drastic

45

6. Experiments and Testing

changes. The positive e�ect of the newly collected, rebalanced and augmented
dataset on on-track performance is further described in the following Section
6.2.2.

6.2.2 Early Stopping and its E�ect on On-track Performance

When training a neural network, one’s goal is to find a configuration of weights
that leads to the smallest possible generalization error. However, all standard
deep neural network architectures are prone to overfitting [53] given enough
time to train. Stopping the training early, before the network starts to overfit,
is a widely used method to combat this problem. Shorter training times
help to avoid modeling the noise in training data, leading to networks with
smoother decision boundaries. Besides that, early stopping heavily reduces
the required training time, making it a very e�cient and highly popular form
of regularization.

This section presents the results of early stopping on the on-track perfor-
mance of used network. One of the goals was to find approximately how long
it would take for the model to learn to drive reasonably and when would the
training start to have diminishing returns. Figure 6.2 shows the relationship
between training time (epochs) and the autonomy of two models, which were
trained using zero and light data augmentation (sec. 6.2.1), batch size of 128,
0.25 dropout probability in fully connected layers and 0 dropout probability
in convolution layers. Other forms of regularization such as L1 or L2 regular-
ization were not used, as they did not provide any extra benefits compared to
using only dropout.

Figure 6.2: E�ect of early stopping on car autonomy. Blue is the model trained
without any augmentation, orange was trained with light settings.

As we can see, both models start to drive relatively well after only 20
epochs of training. At this time, the validation loss is around 0.015-0.02
for this particular scenario. Interestingly, models, with the same validation
loss, that were trained on previous dataset performed worse by approximately
15%. That can be explained by the di�erent sizes of training datasets. It is

46

6.2. Regularization

much easier to overfit a smaller dataset than a larger one. Then even a small
validation loss may result in sub-optimal autonomy on on-track tests. We can
also see, that the model with stronger regularization measures takes longer to
converge, but once it does, it is less prone to overfitting and performs better
on average in the long run.

Around 60th epoch, the second model seems to achieve the best perfor-
mance. It is able to run indefinitely on an ellipse shaped track which it has
never seen before. It is also able drive on all test tracks in low speeds with-
out ever driving o� the track. When the speed is increased it starts to make
mistakes in very sharp curves as the network did not learn how to move to
the side of track opposite of the direction of the curve, which would give the
car extra time to drive through. On the other hand, the system is able to run
in 20Hz and has very fast reactions compared to humans. The fast reaction
times make up for the inability to plan ahead. In some sharp curves, the car
is able to get through in high speed where many drivers would fail as timing
in crucial in such situations.

With longer training times, the car starts to make more mistakes. It is
still able to run well on most tracks, but sometimes the network drastically
missclassifies. When this happens, the wheels usually flick to the other side.
Even though the next frame may be classified correctly, the time it takes for
the wheels to get from one side to the other and back is too long and causes the
car to drive o� track, especially when higher speeds are used. This behavior
starts to prevail after about 70 epochs (for the model with no augmentation),
when the validation loss approaches 0.011, which is roughly equal to 85% of
the lowest achievable loss.

One possible way to battle the unexpected wheel movement is to track
the last couple of steering angles. Then when a drastic change occurs, we
would delay steering until it is confirmed by several following classifications.
This could backfire in situations when the drastic change in steering angle is
actually required. But more importantly it would introduce hand engineered
rules into the driving process, which I was trying to avoid from the beginning.
Another possibility is to use a model with two output neurons, where one
would be trained to steer left and the other to steer right. The final steering
output would then be their arithmetic mean. This approach also helps the
network to drive straight better. My original model uses tanh for the output
unit. The problem is, that tanh is the steepest around point [0, 0], making it
very hard for the network to actually predict a perfect 0. That would become
an issue for a real car, but my RC car is not even able to drive perfectly
straight when I control it manually. Fortunately, the network knows how to
get back to the center of the track, which makes up for the slight imperfections
and makes the final motion look natural. To solve the flicking, I tried to
implement and train an identical architecture with two output neurons. It
performed equally well, but I have no exact mean to compare the driving
paths of the original and the new architecture, because the optimal path

47

6. Experiments and Testing

is not known in my situation (see the discussion about path planning and
simulator at the end of Section 5.5.3). Unfortunately, even the new model,
when trained long enough, still showed signs of undesired wheel movement.
The only remaining explanation is that both models overfit when given enough
time to train and missclassification happened, because the network made its
decision based on pixels in the image unrelated to actual steering. That could
be reflections, lights or other objects in the testing environment. Section
6.3 describes how to detect such situations and Figure 6.11 shows a concrete
example of missclassification caused by an overfitted model.

6.2.3 Dropout
Dropout [54] is one of the simplest and yet most e�ective regularization tech-
niques. The key idea is to randomly omit non-output units of the underlying
base network during training. By doing so, we train an ensemble of thinned
subnetworks which would later cooperate on the final classification, leverag-
ing the benefits of an ensemble model. The final prediction is approximated
by simply using the whole network at the test time. This process reduces
overfitting by preventing the hidden units from co-adapting.

I designed and ran a set of experiments to detect the e�ect of dropout
in convolutional layers, fully connected layers and its combination. For the
purpose of this experiment, all convolutional layers get the same dropout
probability, the same is done in fully connected layers. The results of the
experiment can be seen in Figure 6.3.

Figure 6.3: E�ects of dropout on validation loss

Adding dropout to convolutional layers always seems to worsen the vali-
dation error of the network. This can be explained by the small number of
connections between these layers. Adding more dropout then makes it dif-
ficult to learn weights that perform solid feature extraction. On the other
hand, fully connected layers are more prone to overfitting. Here we can see
that adding dropout of 0.2 probability yields the best result. Using too much
dropout lead to very slow convergence. Using no dropout on the other hand
resulted in expected overfitting.

48

6.3. Visualization and Interpretability

6.3 Visualization and Interpretability
While deep networks achieve great results on a wide variety of computer vision
tasks, the inability to decompose them into smaller, intuitive and understand-
able segments makes them very hard to interpret. One often looks at a trained
neural network like on a black box, because there are no implicitly written
rules describing how the network infers its output. By adding more layers
and using deeper models, we sacrifice interpretability for greater performance
and robustness. So when the network fails to perform well, it is often very
problematic to find out why. There could be multiple reasons — not enough
data, too much noise in the data, the network can underfit, overfit or the task
might be too complex for the specific network architecture.

This problem naturally calls for a solution as it is highly unsatisfactory
to not be able to identify, why our model performs poorly. In this section
I describe several popular visualization techniques that I used to learn more
about the inner structure of my model.

6.3.1 Visualizing Filters
The first thing that I wanted to examine were filters. They tend to be most
interpretable on the first convolution layer that interacts directly with the
input image data. Filters in this layer learn how to detect edges or changes
in color. Filters in deeper layers combine information of previous neurons to
detect corners and other more structured objects.

Figure 6.4: Colored version without
interpolation

Figure 6.5: Grayscale version of green
channel with bilinear interpolation

Figure 6.6: Visualization of trained filter in first convolutional layer.

Visualizing the weights is useful, because a properly trained network usu-
ally has smooth filters without any noisy patterns [2]. The noise could indicate

49

6. Experiments and Testing

either overfitting or a network that was not trained long enough. As Figure 6.6
shows, most of the sixteen filters of the first convolution layer look relatively
smooth. We can see both color and edge detecting filters that the network
was able to pick up during training.

6.3.2 Visualizing Activations

Another straight-forward technique is to show the layer activations during
forward pass. We can obtain them by multiplying the learned filters with
input data and applying the activation function, in this case ReLU. What we
get is a set of features that is further passed to the next layer, which repeats
the same process. During the pass we can extract these activations and display
them to see how each filter modifies the input image to extract features that
are important for correct classification.

Figures 6.7 and 6.8 display activations of first two convolutional layers on
images from the dataset.

Figure 6.7: Layer activations for steering right. Images in the first row are
activations of the first layer, the remaining rows show activations of the second
layer.

Figure 6.8: Layer activations for steering left. Images in the first row are
activations of the first layer, the remaining rows show activations of the second
layer.

The four images in the first row correspond to the first layer and are of size
16 ◊ 49. The remaining eight images are examples of second layer activations
with size 7 ◊ 24. The activations clearly show that the network learned to
detect lane marks. It does so by having larger activations (white color) for
parts of the image related to the edges of the track. The top left image was
created by a filter that probably learned to detect color transitions from yellow
to black (edge between the track and lane marks).

50

6.3. Visualization and Interpretability

6.3.3 Occlusion Maps

When evaluating a convNet, one criterion is whether the model is truly iden-
tifying the real location of important features in the image, or if it is making
decisions based on other unrelated regions. In my case, the goal is to make
the model detect mostly lane marks.

We can find the regions of an image that the model relies on the most by
systematically occluding di�erent portions of the input image by black window
and monitoring changes in the regressed angle [55]. If the output changes
dramatically, the occluded window contains information that is important for
the steering decision. Formally, we can describe such binary occlusion map O
with following equation:

O
i,j

=
I

0, if abs(ŷ
i,j

≠ y) > ‘

1, otherwise
(6.1)

Where y is the predicted angle without any occlusion and ŷ
i,j

is the re-
gressed angle when the center of the occluding rectangle is placed at location
(i, j) of the input image.

This process is relatively straight-forward and does not require any knowl-
edge of the network’s architecture. In fact, we only use the network’s output.
The major downside of this technique is its computational cost. To detect
important regions in the image we need to create numerous sliding windows
and for each window we need to perform a forward pass and record the output.
The inserted black rectangles could also introduce new unwanted features to
the image that may alter its classification.

Figure 6.9: Examples of occlusion maps. Top row contains the original images,
while the bottom row shows corresponding occlusion maps. Left two samples
utilize sliding windows of size 15 ◊ 15, the right two 7 ◊ 7.

Figure 6.9 shows occlusion maps of four images from the recorded dataset.
The top row shows original images and the bottom row displays occlusion maps
on top of the original images. The parts of an image that do not largely a�ect
the regressed angle are covered in black, while the rest is visible. We can see
that some parts of the image that contain lane marks are chosen as important
but some are not. Similarly, the network could also leverage the central part of
the image in a way, that if it contains a large continuous part of the track and
no lane marks, the probable decision is to drive straight. Another drawback

51

6. Experiments and Testing

of this method is, that it does not tell us anything about why were those parts
chosen. For more insight into that, I decided to implement grad-CAM.

6.3.4 Grad-CAM

Grad-CAM [6] is an extension of original work of Zhou et al [56], that lever-
aged global average pooling (GAP) layer proposed in [57] to enable CNNs
to have localization ability despite only being trained on image-level labels
without any localization information. Both CAM and Grad-CAM do so by
visualizing the importance of each pixel in the overall inferring process. Grad-
CAM is also class-discriminative, meaning that the map produced for class
A highlights only class A regions of the image. That cannot be said about
other visualization techniques as Deconvolution [55] or Guided Backpropaga-
tion [58].

With CAM, one would take output of the last convolutional layer, make a
spatial average of that via global average pooling and feed it into a softmax for
classification. Large weighs of the softmax imply important features, which are
then multiplied by the corresponding convolution output. Unfortunately this
process requires the network to have a specific architecture. It can only contain
conv layers followed by a global average pooling layer. Viable approach is to
remove all fully connected layers from my pretrained model, append GAP
and softmax, freeze the weights of trained convolution layers and fine-tune
just the softmax weights. But by doing so, I would completely ignore the fully
connected layers, which is not ideal.

Grad-CAM, introduced in March 2017, generalizes CAM and is applicable
to most CNN model families, because it does not require any change in the
network architecture. It does so by combining feature maps and the gradient
information that flows into the last convolution layer. As displayed in Figure
6.10, to calculate the class c discriminative localization map Lc

Grad≠CAM

œ
Rw◊h of width w and height h, we need to compute ˆy

c

ˆA

k

– the gradient score yc

(before softmax is applied) with respect to feature maps Ak of a convolutional
layer [6]. The gradients are then average-pooled to get neuron importance
weights –c

k

:

–c

k

= 1
Z

ÿ

i

ÿ

j

ˆyc

ˆAk

ij

(6.2)

The weights –c

k

represent importance of the kth feature map for the target
class c. The final localization map is then calculated as a weighted linear
combination of the weights and feature maps with following formula:

Lc

Grad≠CAM

= ReLU

A
ÿ

k

–c

k

Ak

B

(6.3)

52

6.3. Visualization and Interpretability

The ReLU is applied, because we only look for features that have a positive
impact on the class c, meaning the increase of their intensity also increases yc.

Figure 6.10: The process of computing Grad-CAM for an image [6].

To apply this procedure to steering angle regression, I had to include few
modifications. High gradients do not contribute to any class, but are instead
related to steering right and negative gradients contribute to steering left. To
capture this relation, I divided the steering angles into three brackets (-1, -
0.2), (-0.2, 0.2) and (0.2, 1) (left, straight, right) and implemented custom
loss function similar to [59]. Results of Grad-CAM localization maps can be
seen in Figure 6.11.

(a) Localization maps of second convolutional layer.

(b) Localization maps of last convolutional layer.

(c) Localization maps produced by overfitted models.

Figure 6.11: Examples Grad-CAM localization maps on recorded images.

The top two rows of images were obtained from the second and last con-
volutional layer of the best performing model, that was trained with light
data augmentations, 0.2 dropout in FC layers and stopped early at 0.0015
validation loss. We can see that parts of the image belonging to lane marks
have high activations. It is more visible in the second row, where big chunks

53

6. Experiments and Testing

of red and yellow cover most of the lanes while unrelated parts remain blue.
This network display correct behavior and we can be more sure that it is not
overfitting our data.

On the other hand, the third row consists of localization maps calculated
with a model that used no augmentation or regularization and was let to train
for over 400 epochs. We can see in the left and right images of the bottom
row, that the network made its classification based on objects that are not
related to steering. On the right image it is a floor reflection of a chair, and
on the left legs of a whiteboard. This would not be a problem, if the car was
to drive only on a single track, but if we were to move the car somewhere else,
it would not drive correctly.

6.4 Testing the Pi’s Performance
Lastly, I measured the performance of Raspberry Pi and its suitability for
the task. Since the final neural network architecture is quite complex, we
could encounter delays in reaction times of the system. Even though the Pi
is relatively small, it still has a lot of computing power. It is equipped with
Broadcom BCM2837 SoC, a quad-core ARM Cortex-A53 running at 1.2GHz,
1GB of RAM and a Broadcom VideoCore IV. Unfortunately tensorflow does
not support GPU acceleration for Raspberry Pi, so I could not leverage that
opportunity.

The tests were run on Raspbian [60] with linux kernel 4.9.5, Python 3.6
and tensorflow 1.1. The system was running for 5 minutes and the Table 6.2
displays the measured results.

min
[ms]

max
[ms]

avg
[ms]

image prep. 2.8 4.5 3.4
NN infering 11 43 21
total loop time 18 55 26

Table 6.2: Measured times (minimum, maximum and average case) for a single
run loop.

We can see, that one decision loop takes approximately 26ms to execute.
That includes everything from capturing the image from camera, preprocess-
ing it, feeding it into the network, translating the network output into car
commands and then passing them to the actuator. To reduce the loop’s ex-
ecution time, the images are captured on a separate thread in order to not
block the main thread. The web interface also runs on its own thread, so the
biggest bottleneck is the network’s inferring, which takes up around 81% of
the execution time. The system is then able to run safely on 10, 20 and 30Hz.

54

6.4. Testing the Pi’s Performance

I observed, that even at 10Hz, the car is able to run smoothly on moderate
speeds. NVIDIA’s DAVE2 [29] system runs at 30Hz, but their hardware is
much more powerful. Having equivalent performance as their system indi-
cates, that the Raspberry Pi is su�cient for this task and reducing the loop
time further is meaningless. On the other hand it is possible to run the system
on a less powerful computer, to save on costs and battery. But then we would
lose the ability to use tensorflow, so the program would have to be largely
rewritten to work without it.

55

Conclusion

In this thesis, I described how to use deep convolutional networks to control a
prototype of a simplified self-driving RC car. I built the vehicle from scratch
using custom hardware parts. Then I designed a multithreaded system that
controls it and provided a light web and command line interface which users
can use to interact with the car. Lastly, I equipped the car with autopilot
controller based on state-of-the-art convolutional neural network architecture.

• The first chapter focused on the current state of autonomous driving
and approaches that are used in the industry. I mentioned their pros
and cons and explained the reasons for choosing an end-to-end training
approach.

• Chapters two and three described how to actually create such car. What
are the hardware requirements and how to write software, that will be
able to control it.

• In the fifth chapter, the Controller, I came up with various neural net-
work architectures that could perform well on the task of autonomous
driving. I measured their performance and chose the best for additional
improvements.

• The last part of the thesis consisted of several experiments aimed to
improve and validate the car’s autonomy. Enriching the training dataset
and using proper forms of regularization turned out to yield the best
results.

The system learned to steer autonomously when running on fixed speed. It
can drive on simplified flat roads without tra�c only using camera as its input.
In the end, the car was able to drive indefinitely on a circular loop and a set
of three flat tracks that it had never seen before. The biggest challenges I had
to face were the absence of driving simulator and the problem of overfitting.

57

Conclusion

Future work
Even though the car works well in the lab and does not drive o� track, there
is still a lot of room for improvement.

• The path it sometimes takes is not ideal. That is caused mainly by
the implicit noise in the training data, because I was unable to collect
a dataset with optimal paths. Section 5.5.3 describes this problem in
more detail. One option would be to create a driving simulator and
implement path planning algorithms to gather a better driving dataset.
That would also simplify the mapping between input images and steering
angles, allowing for smaller networks with fewer parameters. Another
option might be to use evolution to force the car to take better paths
resulting in an increased average speed.

• The system cannot regulate speed, because it was only trained on steer-
ing data. When I started driving, I realized that there is no information
about the actual speed of the car. The only input I had was the list of
buttons I was pressing whilst collecting the data. Buying a speed sen-
sor, attaching it to the Pi and training a new network with two outputs
would solve this.

• Because driving is a continuous task, we could use recurrent neural net-
works like LSTM to capture the sequential relation between neighboring
images. Then in situations where the camera is saturated from looking
directly in a source of light, the system would use information from
previous frames to estimate the decision for the more di�cult frame.
Changes in speed in the preceding frames could also indicate that the
car is approaching a maneuver. The network could learn these relation-
ships and improve its driving.

• To make the system more robust, a much larger dataset of di�erent track
types and di�erent road conditions would need to be collected. This
could be an interesting use-case for generative adversarial networks [61].
The driving task could also become harder by introducing intersections,
signs, tra�c or pedestrians. That would require a modular approach
with specific parts designed for object detection. Ultrasonic sensors and
radar could then be used to gather more complex information about the
car’s surroundings.

58

Bibliography

[1] Motors, T. Tesla Autopilot. 2017, [Online]. Available from: https://
www.tesla.com/autopilot

[2] Karpathy, A. Stanford CS231n - Convolutional Neural Networks for Vi-
sual Recognition [Online]. University Lecture, January 2018. Available
from: http://cs231n.github.io/neural-networks-1/

[3] LeCun, Y.; Bottou, L.; et al. Gradient-Based Learning Applied to Docu-
ment Recognition. Proceedings of the IEEE, volume 86, no. 11, November
1998: pp. 2278–2324.

[4] Gudi, A. Recognizing Semantic Features in Faces using Deep Learning.
Master’s thesis, University of Amsterdam, 9 2014.

[5] Goodfellow, I.; Bengio, Y.; et al. Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[6] Selvaraju, R. R.; Das, A.; et al. Grad-CAM: Why did you say that?
Visual Explanations from Deep Networks via Gradient-based Localiza-
tion. CoRR, volume abs/1610.02391, 2016, 1610.02391. Available from:
http://arxiv.org/abs/1610.02391

[7] Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images.
05 2012.

[8] Krizhevsky, A.; Sutskever, I.; et al. ImageNet Classification with Deep
Convolutional Neural Networks. Commun. ACM, volume 60, no. 6, May
2017: pp. 84–90, ISSN 0001-0782, doi:10.1145/3065386. Available from:
http://doi.acm.org/10.1145/3065386

[9] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recognition.
CoRR, volume abs/1512.03385, 2015, 1512.03385. Available from: http:
//arxiv.org/abs/1512.03385

59

https://www.tesla.com/autopilot
https://www.tesla.com/autopilot
http://cs231n.github.io/neural-networks-1/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
1610.02391
http://arxiv.org/abs/1610.02391
http://doi.acm.org/10.1145/3065386
1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Bibliography

[10] Vinyals, O.; Toshev, A.; et al. Show and Tell: A Neural Image Cap-
tion Generator. CoRR, volume abs/1411.4555, 2014, 1411.4555. Available
from: http://arxiv.org/abs/1411.4555

[11] Fang, H.; Gupta, S.; et al. From Captions to Visual Concepts and Back.
CoRR, volume abs/1411.4952, 2014, 1411.4952. Available from: http:
//arxiv.org/abs/1411.4952

[12] Redmon, J.; Divvala, S. K.; et al. You Only Look Once: Uni-
fied, Real-Time Object Detection. CoRR, volume abs/1506.02640, 2015,
1506.02640. Available from: http://arxiv.org/abs/1506.02640

[13] Badrinarayanan, V.; Kendall, A.; et al. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. CoRR, volume
abs/1511.00561, 2015, 1511.00561. Available from: http://arxiv.org/
abs/1511.00561

[14] Long, J.; Shelhamer, E.; et al. Fully Convolutional Networks for Semantic
Segmentation. CoRR, volume abs/1411.4038, 2014, 1411.4038. Available
from: http://arxiv.org/abs/1411.4038

[15] Wu, Y.; Schuster, M.; et al. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation.
CoRR, volume abs/1609.08144, 2016, 1609.08144. Available from: http:
//arxiv.org/abs/1609.08144

[16] Esteva, A.; Kuprel, B.; et al. Dermatologist-level classification of skin
cancer with deep neural networks. Nature, volume 542, Jan. 2017: pp.
115–. Available from: http://dx.doi.org/10.1038/nature21056

[17] Jung, I.-S.; Thapa, D.; et al. Neural Network Based Algorithms for Di-
agnosis and Classification of Breast Cancer Tumor. In Computational
Intelligence and Security, edited by Y. Hao; J. Liu; Y. Wang; Y.-m. Che-
ung; H. Yin; L. Jiao; J. Ma; Y.-C. Jiao, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, ISBN 978-3-540-31599-5, pp. 107–114.

[18] of Transportation, U. D. Automated Driving Systems - A Vi-
sion for Safety. September 2017, [Online; posted September-2017].
Available from: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/
documents/13069a-ads2.0_090617_v9a_tag.pdf

[19] LLC, W. Waymo Self-Driving Car Project. 2017, [Online]. Available from:
https://waymo.com

[20] Waymo. Waymo’s fully self-driving vehicles are here. Novem-
ber 2017, [Online; posted 7-November-2017]. Available from:
https://medium.com/waymo/with-waymo-in-the-drivers-seat-

60

1411.4555
http://arxiv.org/abs/1411.4555
1411.4952
http://arxiv.org/abs/1411.4952
http://arxiv.org/abs/1411.4952
1506.02640
http://arxiv.org/abs/1506.02640
1511.00561
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
1411.4038
http://arxiv.org/abs/1411.4038
1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://dx.doi.org/10.1038/nature21056
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13069a-ads2.0_090617_v9a_tag.pdf
https://waymo.com
https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-can-transform-the-way-we-get-around-75e9622e829a
https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-can-transform-the-way-we-get-around-75e9622e829a

Bibliography

fully-self-driving-vehicles-can-transform-the-way-we-get-
around-75e9622e829a

[21] Levine, W. S. The Control Handbook, (Three Volume Set) (Electrical
Engineering Handbook). Boca Raton, FL, USA: CRC Press, Inc., second
edition, 2010, ISBN 1420073664, 9781420073669.

[22] Chong, G.; Li, Y. Trajectory Controller Network and Its Design Automa-
tion Through Evolutionary Computing. 01 2000: pp. 139–146.

[23] Chandni, C.; V V, S.; et al. Vision based closed loop pid controller design
and implementation for autonomous car. 09 2017.

[24] Zhao, P.; Chen, J.; et al. Design of a Control System for an Autonomous
Vehicle Based on Adaptive-PID. volume 9, 07 2012: p. 1.

[25] Hornik, K.; Stinchcombe, M.; et al. Multilayer Feedforward Networks Are
Universal Approximators. Neural Netw., volume 2, no. 5, July 1989: pp.
359–366, ISSN 0893-6080, doi:10.1016/0893-6080(89)90020-8. Available
from: http://dx.doi.org/10.1016/0893-6080(89)90020-8

[26] Lucas, S.; Kotas, G. NVidia’s GPU Microarchitectures. University
Lecture, Fall 2017. Available from: http://meseec.ce.rit.edu/551-
projects/fall2017/1-5.pdf

[27] Pomerleau, D. A. Alvinn: An autonomous land vehicle in a neural net-
work. In Advances in neural information processing systems, 1989, pp.
305–313.

[28] Muller, U.; Ben, J.; et al. O�-road obstacle avoidance through end-to-end
learning. In Advances in neural information processing systems, 2006, pp.
739–746.

[29] Bojarski, M.; Del Testa, D.; et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[30] Xu, H.; Gao, Y.; et al. End-to-end learning of driving models from large-
scale video datasets. arXiv preprint, 2017.

[31] Shalev-Shwartz, S.; Shashua, A. On the Sample Complexity of End-
to-end Training vs. Semantic Abstraction Training. CoRR, volume
abs/1604.06915, 2016, 1604.06915. Available from: http://arxiv.org/
abs/1604.06915

[32] Himmelsbach, M.; Mueller, A.; et al. LIDAR-based 3D object perception.
In Proceedings of 1st international workshop on cognition for technical
systems, volume 1, 2008.

61

https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-can-transform-the-way-we-get-around-75e9622e829a
https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-can-transform-the-way-we-get-around-75e9622e829a
https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-can-transform-the-way-we-get-around-75e9622e829a
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://meseec.ce.rit.edu/551-projects/fall2017/1-5.pdf
http://meseec.ce.rit.edu/551-projects/fall2017/1-5.pdf
1604.06915
http://arxiv.org/abs/1604.06915
http://arxiv.org/abs/1604.06915

Bibliography

[33] Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping:
part I. IEEE Robotics & Automation Magazine, volume 13, no. 2, 2006:
pp. 99–110, doi:10.1109/MRA.2006.1638022.

[34] Propwashed. ESC Buyers Guide. 2017, [Online]. Available from: https:
//www.propwashed.com/esc-buyers-guide/

[35] Ltd, E. NAVIO2 - Autopilot HAT for Raspberry Pi Powered by ArduPilot
and ROS. 2018, [Online]. Available from: https://emlid.com/navio/

[36] Community, T. D. DonkeyCar. 2018, [Online]. Available from: http:
//www.donkeycar.com

[37] SunFounder. PCA9685 16-Channel 12-Bit PWM Servo Driver.
October 2016, [Online; posted October-2016]. Available from:
https://www.sunfounder.com/pca9685-16-channel-12-bit-pwm-
servo-driver.html

[38] Otto, c. B., Mark. Bootstrap - The world’s most popular mobile-first and
responsive front-end framework. 2018, [Online, 2.2.2018]. Available from:
http://getbootstrap.com

[39] Bengio, Y.; LeCun, Y. Scaling Learning Algorithms towards
AI. In Large Scale Kernel Machines, edited by L. Bottou;
O. Chapelle; D. DeCoste; J. Weston, MIT Press, 2007. Avail-
able from: http://www.iro.umontreal.ca/˜lisa/pointeurs/bengio+
lecun_chapter2007.pdf

[40] Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization.
CoRR, volume abs/1412.6980, 2014, 1412.6980. Available from: http:
//arxiv.org/abs/1412.6980

[41] LeCun, Y.; Bottou, L.; et al. E�cient BackProp. In Neural Networks:
Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop,
London, UK, UK: Springer-Verlag, 1998, ISBN 3-540-65311-2, pp. 9–50.
Available from: http://dl.acm.org/citation.cfm?id=645754.668382

[42] Fukushima, K. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition una�ected by shift in position.
Biological Cybernetics, volume 36, no. 4, Apr 1980: pp. 193–202, ISSN
1432-0770, doi:10.1007/BF00344251. Available from: https://doi.org/
10.1007/BF00344251

[43] Yamins, D. L. K.; Hong, H.; et al. Performance-optimized hierarchical
models predict neural responses in higher visual cortex. Proceedings of the
National Academy of Sciences of the United States of America, volume
111, no. 23, 06 2014: pp. 8619–8624, doi:10.1073/pnas.1403112111. Avail-
able from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060707/

62

https://www.propwashed.com/esc-buyers-guide/
https://www.propwashed.com/esc-buyers-guide/
https://emlid.com/navio/
http://www.donkeycar.com
http://www.donkeycar.com
https://www.sunfounder.com/pca9685-16-channel-12-bit-pwm-servo-driver.html
https://www.sunfounder.com/pca9685-16-channel-12-bit-pwm-servo-driver.html
http://getbootstrap.com
http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/bengio+lecun_chapter2007.pdf
1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=645754.668382
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060707/

Bibliography

[44] Russakovsky, O.; Deng, J.; et al. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision (IJCV), vol-
ume 115, no. 3, 2015: pp. 211–252, doi:10.1007/s11263-015-0816-y.

[45] Mishkin, D.; Sergievskiy, N.; et al. Systematic Evaluation of Convolution
Neural Network Advances on the ImageNet. 05 2017.

[46] Fridman, L. MIT 6.S094 - Lecture 1: Deep Learning [Online]. January
2018. Available from: https://selfdrivingcars.mit.edu

[47] Scherer, D.; Müller, A.; et al. Evaluation of Pooling Operations in Con-
volutional Architectures for Object Recognition. In Artificial Neural Net-
works – ICANN 2010, edited by K. Diamantaras; W. Duch; L. S. Iliadis,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, ISBN 978-3-642-
15825-4, pp. 92–101.

[48] Wang, Z. Self Driving RC Car. 2016, [Online]. Available from: https:
//zhengludwig.wordpress.com/projects/self-driving-rc-car/

[49] Glorot, X.; Bordes, A.; et al. Deep Sparse Rectifier Neural Networks.
In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research,
volume 15, edited by G. Gordon; D. Dunson; M. Dud́ık, Fort Lauderdale,
FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323. Available from: http:
//proceedings.mlr.press/v15/glorot11a.html

[50] Iandola, F. N.; Moskewicz, M. W.; et al. SqueezeNet: AlexNet-level ac-
curacy with 50x fewer parameters and <1MB model size. CoRR, volume
abs/1602.07360, 2016, 1602.07360. Available from: http://arxiv.org/
abs/1602.07360

[51] Wang, D.; Qi, F. Trajectory Planning for a Four-Wheel-Steering Vehicle.
In ICRA, 2001.

[52] Lawrence, S.; Lee Giles, C.; et al. Lessons in Neural Network Training:
Overfitting May be Harder than Expected. 01 1997: pp. 540–545.

[53] Geman, S.; Bienenstock, E.; et al. Neural Networks and the Bias/Vari-
ance Dilemma. Neural Comput., volume 4, no. 1, Jan. 1992: pp. 1–
58, ISSN 0899-7667, doi:10.1162/neco.1992.4.1.1. Available from: http:
//dx.doi.org/10.1162/neco.1992.4.1.1

[54] Srivastava, N.; Hinton, G.; et al. Dropout: A Simple Way to Prevent Neu-
ral Networks from Overfitting. Journal of Machine Learning Research,
volume 15, 2014: pp. 1929–1958. Available from: http://jmlr.org/
papers/v15/srivastava14a.html

63

https://selfdrivingcars.mit.edu
https://zhengludwig.wordpress.com/projects/self-driving-rc-car/
https://zhengludwig.wordpress.com/projects/self-driving-rc-car/
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
1602.07360
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://dx.doi.org/10.1162/neco.1992.4.1.1
http://dx.doi.org/10.1162/neco.1992.4.1.1
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Bibliography

[55] Zeiler, M. D.; Fergus, R. Visualizing and Understanding Convolutional
Networks. CoRR, volume abs/1311.2901, 2013, 1311.2901. Available
from: http://arxiv.org/abs/1311.2901

[56] Zhou, B.; Khosla, A.; et al. Learning Deep Features for Discriminative
Localization. CoRR, volume abs/1512.04150, 2015, 1512.04150. Available
from: http://arxiv.org/abs/1512.04150

[57] Lin, M.; Chen, Q.; et al. Network In Network. CoRR, volume
abs/1312.4400, 2013, 1312.4400. Available from: http://arxiv.org/
abs/1312.4400

[58] Springenberg, J. T.; Dosovitskiy, A.; et al. Striving for Simplicity: The
All Convolutional Net. CoRR, volume abs/1412.6806, 2014, 1412.6806.
Available from: http://arxiv.org/abs/1412.6806

[59] Gildenblat, J. Visualizations for regressing wheel steering an-
gles in self driving cars. 2016, [Online]. Available from: https:
//jacobgil.github.io/deeplearning/vehicle-steering-angle-
visualizations

[60] Foundation, T. R. P. Raspbian. 2018, [Online]. Available from: http:
//raspbian.org/FrontPage

[61] Goodfellow, I. J.; Pouget-Abadie, J.; et al. Generative Adversarial Net-
works. ArXiv e-prints, June 2014, 1406.2661.

64

1311.2901
http://arxiv.org/abs/1311.2901
1512.04150
http://arxiv.org/abs/1512.04150
1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
1412.6806
http://arxiv.org/abs/1412.6806
https://jacobgil.github.io/deeplearning/vehicle-steering-angle-visualizations
https://jacobgil.github.io/deeplearning/vehicle-steering-angle-visualizations
https://jacobgil.github.io/deeplearning/vehicle-steering-angle-visualizations
http://raspbian.org/FrontPage
http://raspbian.org/FrontPage
1406.2661

Appendix A

Acronyms

AI Artificial Intelligence

ALVINN Autonomous Land Vehicle in a Neural Network

API Application Programming Interface

ARM Advanced RISC Machine

AWS Amazon Web Services

CAM Class Activation Maps

CNN Convolutional Neural Network

CPU Central Processing Unit

ESC Electronic Speed Controller

DAVE DARPA Autonomous Vehicle

DARPA Defense Advanced Research Projects Agency

FFNN Feed Forward Neural Network

FPS Frames Per Second

GAP Global Average Pooling

GPU Graphical Processing Unit

GUI Graphical user interface

HAT Hardware Attached on Top

HSV Hue Saturation Value

ILSVRC ImageNet Large Scale Visual Recognition Challenge

65

A. Acronyms

LSTM Long Short-term Memory

ML Machine Learning

NHTSA National Highway Tra�c Safety Administration

NN Neural Network

PID Proportional–Integral–Derivative

PWM Pulse-Width Modulation

RAM Random Access Memory

RC Radio Controlled

ReLU Rectified Linear Unit

REST Representational State Transfer

RGB Red Green Blue

SLAM Simultaneous Localization And Mapping

STL Stereolithography (file format)

66

Appendix B

Contents of enclosed CD

readme.txt....................................CD contents description
examples directory with short video examples
src

deeprcar directory with source codes
thesis...............directory with LATEX source codes of the thesis

text.....................................directory with thesis text files
DP Ungurean David.pdf...............the thesis text in PDF format

67

	Introduction
	Motivation
	Goal of the Project
	Document Structure

	Background and Related Work
	Levels of Autonomous Driving
	Approaches to Steering in Autonomous Driving
	End-To-End Deep Learning
	Real World Examples of Self-Driving Cars
	Chosen Approach

	Car Design
	Requirements on the System
	Final Car Setup
	Assembling

	Controlling the Car
	System Architecture
	Used Technologies
	Car's Main Loop
	Controlling the Servo and the ESC
	Ultrasonic Sensor
	Web Interface
	Command Line Interface
	Dataset Recording

	Principles of Deep Learning
	Basics of an Artificial Neural Network
	Feed Forward Neural Network
	Convolutional Neural Network

	The Controller
	The Goal of the Controller
	Fully Connected Network
	Convolutional Networks
	Model Comparison
	Measured Results

	Experiments and Testing
	Collecting More Data
	Regularization
	Visualization and Interpretability
	Testing the Pi's Performance

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

