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Abstract

In recent years many real-time embedded systems are being built using the Commercial-
Off-The-Shelf (COTS) components because of their price. COTS components overall perfor-
mance is often much higher than specialized custom-made systems used in real-time systems.
However, COTS components are typically designed for average case scenario, and little or no
attention is put into worst-case timing guarantees required by real-time systems. In this the-
sis, we implement various parallel and extended versions of the KCF tracker for both CPU
and GPU and try to test out the prototype HERCULES compiler, which allows converting
automatically parts of the program to conform to PRedictable Execution Model (PREM),
which should provide stronger worst-case timing guarantees.

Keywords: KCF tracker, PREM, HERCULES compiler, Real-time, Commercial-Off-
The-Shelf (COTS)
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Chapter 1

Introduction

1.1 Background

Traditionally real-time systems have strict requirements on response time, within speci-
fied time constraints, often referred to as “deadlines”. These systems are often constructed
from hardware and software components specifically designed for real-time. Development
of these components is not only costly but also lengthy and with many real-time systems
nowadays making use of media streaming also require significant performance in terms of
the bus and network bandwidth, processors, and memory [1].

These make the use of COTS hardware and software components more attractive. They
usually have higher performance than their real-time counterparts and because of their mass
production are often much cheaper. The problem with these components is that they are
built with the focus on the average performance and not worst case scenario and reliability.
One of the proposed solutions to improve the Worst-Case Execution Time (WCET) of COTS
components is PRedictable Execution Model (PREM). It introduces programming guide-
lines that allow transforming parts of the code to highly predictable versions in its memory
access behavior, improving the overall WCET. This is done by separating the program into
different phases based on their use of shared resources, e.g., system DRAM. This allows to
construct the schedules in which only single execution unit, i.e., core, is accessing a shared
resource at a time, resulting in reduced pessimism in the WCET calculation, because each
phase can be calculated in isolation, i.e., interference from parallel accesses do no longer
need to be considered [9].

In this thesis, we aim at applying the PREM to visual object tracking algorithm, i.e.,
Kernelized Correlation Filter (KCF) tracker. We first analyze the tracker’s performance and
memory access patterns. Then, as PREM is effective primarily for parallel algorithms, we
develop a parallel implementation of the tracker using various technologies: CUDA, FFTW.
Finally, we apply the PREM model by using an experimental compiler that allows automat-
ing the transformation of the code to conform to PREM requirements. This experimental
compiler is part of the European project HERCULES1 on which the Czech Technical Univer-
sity in Prague works together with ETH Zürich, Airbus, UNIMORE, Evidence srl, PITOM
and Magneti Marelli. To our knowledge, the compiler was currently only tested on smaller

1<https://hercules2020.eu/>

1

https://hercules2020.eu/


CHAPTER 1. INTRODUCTION

laboratory projects, so there is no information on performance or use with larger projects,
such as the KCF tracker.

1.2 Redefined thesis goals

During the work on the thesis, the original goals has been refined. In accordance to
adviser’s decision, the updated goals are:

1. Profile the KCF tracker to analyze the tracker’s performance and memory access
patterns.

2. Develop a parallel implementation of the tracker using various technologies: CUDA,
FFTW.

3. Use experimental HERCULES compiler to automatically transform the KCF tracker
code to comply with the PREM model.

4. Compare the benchmarking results of various versions of the KCF tracker.

1.3 Thesis structure

In chapter two we give the theoretical overview for the PREM, the HERCULES compiler,
and the KCF tracker. In chapter three we present the original version of the tracker and
its profiling results. Chapter four is dedicated to the various parallel and extended versions
that we implemented and also the use of the HERCULES compiler with the KCF tracker.
In chapter five we show the benchmarking results for all of the available version of the
KCF tracker, and in the last chapter we will sum up our work and discuss possible future
improvements.

2



Chapter 2

Background

2.1 Predictable Execution Model

2.1.1 Motivation

In recent years real-time embedded systems are being built using the Commercial-Off-
The-Shelf (COTS) components because of their price. COTS components’ overall perfor-
mance is often much higher than specialized custom-made systems used in real-time systems,
e.g., Boeing777 SAFEbus with 60Mbit/s versus PCI Express with 16Gbyte/s [15]. How-
ever, COTS components are typically designed with average case scenario and little or no
attention to worst-case timing guarantees required by real-time systems [14].

Currently, many industrial real-time systems use single-core devices, for which it is much
easier to derive solid guarantees about their timing behavior [10]. But with the increase of in-
terest in autonomous vehicles in recent years and their high computational requirements, use
of heterogeneous many-cores in these systems is being researched. In contrast to single-core
processors, the heterogeneous many-cores share main memory (DRAM) and interconnect
between several actors (e.g. CPU, GPU, Ethernet) [10]. This design can result in one core
affecting other cores, resulting in worse latencies as the shared resource has a limited amount
of requests per time unit. In this case of heavy resource sharing calculation of WCET is
significantly complicated [16], with estimations being so pessimistic that all the advantages
of parallelism are lost. PREM introduced by Pellizzoni et al. in [14], is promising a way to
overcoming all of these issues.

By separating code according to access to the shared resource, e.g., system DRAM.
PREM allows system schedules to be constructed in such a way that only one execution
unit, i.e., core, is accessing a shared resource at a time. Such a schedule allows the WCET
of each phase to be calculated in isolation, without the need to account for parallel access
interference, resulting in tighter bound and more optimistic WCET [9].

2.1.2 Execution model

PREM divides program’s tasks into sequence of non-preemptive scheduling intervals.
These intervals are divided into compatible and predictable intervals. To determine which

3



CHAPTER 2. BACKGROUND

part of the task should be the predictable or compatible interval, code profiling should be
first performed to find the parts, in which the task performs most of its memory accesses.

2.1.2.1 Compatible interval

Compatible intervals are compiled and executed normally. During these intervals, cache
misses can happen at any time. OS system calls are also allowed to be performed, with
blocking calls having bounded blocking time [14].

2.1.2.2 Predictable interval

Predictable intervals are divided into two phases: memory phase and execution phase.
During the memory phase, data required for the computation in the predictable interval
are brought to local storage from the shared resource, e.g. system DRAM. This results,
together with the fact that no system calls are allowed in the execution phase, in no memory
accesses.

Another essential property of predictable interval is fixed execution time, which is de-
termined offline by summing the maximum execution time for memory phase and execution
phase and forced at run-time. In case that interval finishes before the set execution time, it
will busy wait. Example of a predictable interval can be seen in figure 2.1.

Figure 2.1: Example of predictable interval. emem
i,j , eexec

i,j represents maximum execution
time for memory and execution phase. Source: [14]

2.1.3 HERCULES PREM compiler

The HERCULES compiler is OpenMP compiler, which compiles parts of C/C++ source
code annotated by OpenMP for accelerator offloading into separate CPU and accelerator
parts, with predictability transformation for accelerator part added to the compiling process,
for the code to conform to the requirements of the PREM. Currently, the prototype can
provide basic support for the PREM on the NVIDIA platform. Development focus of this
compiler is on predictability transformations of the accelerator part of the program and
functional prototype on NVIDIA GPUs for testing [9].

4



2.1. PREDICTABLE EXECUTION MODEL

The HERCULES compiler is built upon the Clang-YKT fork of LLVM, which focuses
on the implementation of OpenMP offloading following the OpenMP standard 4.5. Thanks
to this, HERCULES compiler has early access to OpenMP new offloading features.

2.1.3.1 OpenMP

OpenMP allows programmers to turn sequential code to parallel code, with minimal ef-
fort, through its directives, given as compiler pragmas. By annotating parts of the code with
OpenMP pragmas that programmer wishes to run in parallel. The compiler can transform
them without explicit management by the programmer. This level of abstraction allows
easy porting of the code to other platforms as long as the specific platform provides the
OpenMP runtime environment. In case the OpenMP is not supported on the platform orig-
inal sequential version of the code is used. Programmer productivity also increases because
the management of parallelism is abstracted away.

OpenMP offloading

In version 4.0 accelerator offloading was introduced to the OpenMP standard. This
enables to create a program which can automatically be parallelized for different architec-
tures. If the program executes on a system without accelerator, the CPU version of the
code executes instead.

The code specified for accelerator offloading is annotated by target directive. The com-
piler then creates both CPU and accelerator version of the annotated code. The target
directive itself does not introduce parallelism; additional OpenMP directives have to be
used together with it to express parallelism. With target directive, directives for data
movement were also introduced because the OpenMP assumes that the CPU and the ac-
celerator have two distinct memory spaces. For NVIDIA GPUs OpenMP runtime library
uses calls to CUDA’s Application Programmable Interface (API), for data movement. One
thing that should be noted is that accessing CUDA runtime environment has high impact
on performance and predictability and should be avoided if possible [9].

// Host device
# pragma omp target

# pragma omp parallel for private (i)
// Target device
for(int i = 0; i < n;++i){

y[i] += a * x[i]
}

// Host device

Figure 2.2: Example of OpenMP offloading.

The one thing programmer has to keep in mind when using OpenMP offloading directive
is that depending on the accelerator used in the system, different constructs will perform
differently well. In the case of HERCULES, which focuses on GPUs, the construct that
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maps well are loops, as the parallel execution of many loop iterations fit well with the Single
Instruction Multiple Data (SIMD) model used on GPUs [9]. GPUs use SIMD model because
they consist of multiple simple cores, which share Program Counter (PC), resulting in same
instruction on all cores but executed on different data.

2.1.3.2 Compilation process

Compiling process of OpenMP’s compiler (Clang) for code parts selected for offloading by
target directive, compiles the code both for the host and all accelerator targets specified.
Before the code generation in the LLVM backend, the remaining OpenMP directives are
expanded for both host and accelerator processes. For the host code call to OpenMP’s
runtime library target() is added, which tries to find available accelerator for offloading
during the execution of the code. If no available accelerator is found, host code version
executes instead.

For the separate device code, its compilation follows cross-compilation tool-chain specific
to the device, with the device binary being added to host ELF as data in the end. This data
is then launched by OpenMP runtime library when the host program reaches the specific
code [9].

The HERCULES adds to this compilation the PREM transformation of the accelerator
code. The transformation is implemented as LLVM passes invoked by Clang before the
device Intermediate Representation (IR) is passed to the backend compiler [9].

2.1.3.3 Supported loops

Currently, the HERCULES compiler adds PREM-enabling transformation to loops with
#pragma omp target teams distribute parallel for directive. As described in 2.1.3.1
target directive is used to specify code region for offloading. teams distribute distributes
the offload over several accelerator clusters, in the case of CUDA architecture these clus-
ters are Streaming Multiprocessors (SM). Lastly, the parallel for directive performs the
parallelization of the loop itself.

Loops specified in the way above, are marked by HERCULES’s MarkLoopsToTransform
pass and transformed by following passes according to PREM. In case that no such loops
are found remaining passes will do nothing [9].

OpenMP’s pragma mapping to CUDA

Starting with target directive, its CUDA equivalent __global__ decorator is used,
when defining a CUDA kernel. With only target, the code is not yet parallel and only
offloaded as one-threaded sequential version similar to a kernel with only one block and
one thread. To create more threads per block and blocks parallel for with teams
distribute directives are used. The number of blocks and threads in blocks are specified
with num_teams() and num_threads() clauses.

OpenMP considers host and device memory to be discrete, and as such, all data required
in offloaded code has to be explicitly copied to device memory. The required data are
specified by map() clause, which for its data movement uses cuMemcpy() function from
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2.2. VISUAL OBJECT TRACKING

Figure 2.3: A block diagram of the compilation steps for the Clang OpenMP offloading
process and HERCULES version with added PREM transformation passes. Picture was
inspired by [9]

CUDA runtime library. Calls to CUDA runtime environment and data movement from host
to device memory are unfortunately costly and should be avoided if possible. These host-
initiated data transfers with CUDA API are scheduled to be addressed by HERCULES’s
CPU PREM support [9].

2.2 Visual object tracking

The goal of visual tracking can be described as follows. Given a sequence of image frames,
that are taken from changing world, wherein the first frame is the object of interest (target)
demarcated by bounding box, approximate the trajectory of the target in the following
frames. An external source, e.g., user, creates the bounding box defining the target in
the first frame. The target position is usually denoted more generally as a target pose,
which may represent additional geometrical properties such as target’s size or rotation [28].
Image tracking algorithms also have to be able to overcome various tracking challenges, e.g.,
extreme global and local illumination changes.

The use of visual object tracking ranges from games (e.g., Kinect), augmented reality,

7
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robotics to pedestrian tracking in the airport 1 and the car industry, many examples of
visual object tracking exist 234.

Figure 2.4: Example of sequence of image frames with object of interest (person) in bounding
box (blue). Source: [17]

.

There are multiple tracking methods some of the most influential are Gradient-based
Tracking, Part-based Tracking, Tracking by Detection, Tracking by Segmentation and Deep
Neural Networks. For more information about these methods, we refer to [28]. In this thesis,
we will only focus on Correlation Filter-based trackers, which KCF tracker is part of.

2.2.1 Correlation Filter-based Trackers

Correlation Filter-based Trackers (CFTs) are a group of visual object trackers that found
a massive increase in interest over the recent years mainly thanks to the Minimum Output
Sum of Squared Error (MOSSE) tracker [4, 28]. General CFT work-flow according to the
present correlation filter-based tracking methods, as described in [4,28] can be summarized
like this:

From the first frame, where the bounding box defines the object of interest a patch is
extracted, on which the initial filter is learned. The filter should, when convolved with the
target’s location produce correlation peaks for the object of interest and low response for
the background. After this in each subsequent frame, the patch at the previous predicted
position is cropped for detection. Following this various features are extracted from the
patch’s raw input data (e.g., Histogram of Oriented Gradients (HOG) and Color Names (CN)
features). Afterward, cosine window is usually applied for smoothing the boundary effects.
After this features are transformed using the Discreate Fourier Transform (DFT) to the
frequency domain, where they are element-wise multiplied with the learned filter. The
result is then transformed back to the real domain using inverse DFT to produce spatial
confidence map (response map). The position with the max value in the response map is the
new position of the target and is then used for the update of the correlation filter. Because

1<http://www.fujitsu.com/uk/solutions/industry/transport/aviation/>
2<https://www.google.com/selfdrivingcar/>
3 <http://www.lexus.com/models/LS/safety>
4<https://www.mobileye.com/>
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only the DFT of correlation filter is required for detection, training and updating procedures
are all performed in frequency domain. This whole workflow is shown in figure 2.5.

Figure 2.5: The basic correlation tracker pipeline. Source: [4]
.

2.2.2 Kernelized Correlation Filter tracker

KCF tracker is part of CFTs and based on Circular Structure Kernel (CSK) tracker. In
this section, we briefly describe main features of the KCF tracker, followed by a description
of our used KCF tracker implementation .

2.2.2.1 Building blocks of KCF tracker

The KCF tracker itself is based on CSK tracker [12], which addresses the drawback
of the MOSSE tracker (i.e., lack of training examples and support of complex features or
multiple channels), by introducing circulant matrix structure and Ridge Regression problem
to kernelize the correlation filters and also the support for multi-channel features. For more
details on the use of Ridge Regression and circulant matrix structures in the KCF tracker,
we refer to [11, 28], especially to [29], which describes similar KCF implementations to one
used in our thesis.

2.2.2.2 Used implementation of KCF

We use C/C++ implementation of KCF tracker developed by Tomáš Vojíř5, which uses
together with multichannel features (HOG, RGB channels, and CN) also adaptive scale
tracking with the scale pool, improving the ability of tracker to respond to scale changes of
the object. In the following sections, we introduce these techniques.

5<https://github.com/vojirt/kcf>
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Histogram of oriented gradients

The following description of HOG is of the original variant proposed in [5]. The HOG
is the primary feature descriptor in our KCF tracker. The version used in our program is
Felzenszwalb’s HOG (FHOG) [8], which was shown to achieve better performance [8] over
the Dalal and Triggs version [5]. The following description of how HOG works is heavily
based on [18].

HOG is feature extraction method for images. It tries to capture the shape of structure
in the region by extracting information about the gradients. In this description, we assume
that the image is a grayscale image.

Firstly for each pixel (x, y), we calculate its gradient vector along the x-direction and y-
direction using the finite difference filters, [−1, 0,+1] and its transpose. From the resulting
gradient vector, we can calculate its angle θ(x, y) and magnitude r(x, y). The angle is
constrained between 0 and 180 degrees (In FHOG angle is not constrained.).

The image is then divided into non-overlapping cells of size C ×C pixels. For each cell,
we compute a histogram of oriented gradients with B bins. Gradient vector contribution is
equal to its magnitude. The vector contribution is split between two closest bins to reduce
aliasing. Bins are number 0 to B−1 with width of w = 180

B . Bin in position i has boundaries
[w × i, w × (i+ 1)] and center ci = w(i+ 1

2). For a pixel (x, y) with magnitude r(x, y) and
angle θ(x, y) votes to bins Bj and Bj+1 are:

Contribution to Bj = r(x, y)cj+1 − θ(x, y)
w

where j =
⌊
θ(x, y)
w

− 1
2

⌋
mod B

Contribution to Bj+1 = r(x, y)θ(x, y)− cj

w
where j + 1 = (j + 1) mod B

The resulting histogram of the cell is a vector with B nonnegative entries.
Following this cells are grouped into blocks of cells, in the case of [5] 2 × 2 are used

cells so that each block has 2C × 2C pixels. Each block overlaps with its horizontal and
vertical neighborhood block by two cells resulting in 50% overlap. We concatenate cells
histograms together resulting in a block feature vector b of size 4×B, which we normalize
by its Euclidean norm.

Resulting block features are concatenated into a single HOG feature vector h, which is
normalized in three steps:

h← h√
‖h‖2 + ε

For each entry hi ← min(hi, τ) where τ = 0.2

h← h√
‖h‖2 + ε

The second step ensures that very large gradients do not influence the resulting histogram
too much, which would destroy image detail.
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Difference between the original HOG and FHOG is that in each block vectors are not
concatenated but the four cell’s histograms are averaged together, and their norms are added
as additional entries to the feature vector, resulting in a smaller vector. For more details,
we refer to [2, 8, 18].

Color names

CN are linguistic labels which humans use to communicate color. Computational color
naming tries to learn a mapping from pixel value to color name labels. Most computer vi-
sion works consider eleven basic terms of English language: black, blue, brown, gray, green,
orange, pink, purple, red, white, and yellow. Example of this mapping can be seen 2.6. We
refer for more details to [27]

Figure 2.6: Pixelwise color name example. Source: [27]

Scale pool

Following description of scale pool was taken from [29]:
Suppose the original template size is s0, and then we define a scaling pool S = {a1, a2, · · · ,

aN} of N scale parameters. In a new frame, N windows with different sizes si = ais0, i =
1 · · ·N are cropped around the previous position; then the sample patches are resized to s0
and correlated with the learned correlation filter, thereby a maintained response vector is
used to estimate the new state. 2.7 shows this scale searching strategy.

In our case N = 7. For more details on the scale pool and its use in KCF tracker we
refer to [29].

Figure 2.7: Process of estimating object scale. When a new frame comes, windows with
different sizes are cut by scaling pool. These multi-scale image patches are resized to s0, then
feature vectors with the fixed size are extracted to compute response scores. Source: [29].

11



Chapter 3

Profiling of original KCF
implementation

3.1 Overview

In this chapter, we present the original implementation of the of the KCF tracker. Fol-
lowed by it are profiling results. We performed the profiling on Intel(R) Core(TM) i7- 2620M
CPU @ 4M cache, up to 3.4 GHz. Original single-thread implementation runs only on CPU,
so no GPU profiling was necessary. For profiling Performance Events for Linux (PERF) tool
was used, together with Hotspot1, which is visualizer for perf results. It also enables to run
perf directly from its GUI.

3.2 Original implementation

The original implementation of the KCF tracker was developed to compete in Visual
Object Tracking (VOT) challenges2. VOT challenges is a collection of datasets that allows
a precisely defined and repeatable way of comparing short-term3 trackers.

3.2.1 OpenCV

The KCF tracker implementation we used is based on OpenCV library. OpenCV is an
open source library, used for Computer Vision applications development, featuring over 2500
low- and mid-level image processing and computer vision functions [26]. Its developments
began by Intel in 1999; it was designed with a focus on computational efficiency and real-
time application [3]. OpenCV is primarily written in C/C++, but also has Python, Java
and Matlab interfaces and runs under Windows, Linux, and Mac OS X.

The primary focus of OpenCV is to process and manipulate images, which on digital
devices are stored as numerical matrices containing the pixel information of the image. It

1<https://github.com/KDAB/hotspot>
2<http://www.votchallenge.net/>
3Short-term tracking is focused on precise estimation of the object of interest over a smaller frame sequence

(usually max. 1000 frames), with no necessarily required recovery of the tracker, when it fails.
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is therefore important that we introduce the basic image container called cv::Mat that
OpenCV library uses to store and handle images [24].

The cv::Mat class is separated into two data parts: the matrix header and a pointer to
the matrix containing the pixel values. The matrix header contains the information about
the matrix, e.g., its size, the address where it is stored, the method used for storing. The
header sizes are constant. However, the size of the matrix may vary from image to image.
The cv::Mat stores the underlying data matrix as one-dimensional array pixel by pixel. For
multichannel images (e.g., RGB = three channels, grayscale = one channel)) the channel’s
pixel values are for each pixel stored behind each other. This data layout can be seen in
figure 3.1.

Figure 3.1: cv::Mat class data layout.

3.2.2 Classes

In this section, we describe the classes in the original implementation of the KCF tracker
and what they are used for. When we in the following profiling sections talk about class
functions and methods from kcf_vot binary, which is the compiled KCF tracker. We refer
to class functions and methods from the following classes.

• VOT
Class used for parsing VOT inputs and providing an interface for image loading

and storing output.

• KCF_Tracker
Primary class of the tracker, which performs the tracking itself.

• ComplexMat_
Template class used as basic image container in the frequency domain.

• FHoG
C/C++ wrapper class for FHOG from Piotr Matlab toolbox4.

• CNFeat
Class used for extracting the CN from the patch.

4<https://pdollar.github.io/toolbox/>
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3.3 Profiling

3.3.1 PERF

PERF provides a kernel SYSCALL (perf_event_open()) and tools to help analyze
program performance. The user has an option to either use perf command or implements
his tools on top of the perf_event_open() system call for profiling.

Perf supports monitoring of multiple types of measurable events. There are two cat-
egories of events: software events and hardware events. Software events are pure ker-
nel counters (e.g., context-switches), for hardware events CPU’s Performance Monitoring
Unit (PMU) is used. PMU provides a list of events measuring micro-architectural events
(e.g., cycles, cache misses). The available list of hardware events depends on the CPU type
and model.

Perf is based on event-based sampling. A sample is recorded when the sampling counter
overflows. When the counter overflows, kernel records information, i.e., a sample, about
the program execution. The information that gets recorded depends on the event specified
by the user and the tool. For all events type the instruction pointer is also recorded, i.e.,
where was the program when it was interrupted. One thing to note is that the place of the
interrupt and the place of the counter overflow can be several dozen instructions apart on
the modern processors and should be remembered when interpreting the results [20].

3.3.2 Results

Selected profiling events were CPU cycles (cycles), and cache misses. On Intel CPUs,
perf maps the cycles event to UNHALTED_CORE_CYCLES. This event in the presence of CPU
frequency scaling, as was in our case, does not maintain a constant correlation to time [20].
The cache miss event in perf is counted only if all cache levels had missed.

We ran the following command: perf record -event cycles:u,cache-misses:u
--call-graph dwarf, where event flag is used to specify which events we want to record.
cycles and cache-misses specify that we want to record CPU cycles and cache misses.
u specify that we want to record events only on user level and ignore kernel level events.
Finally, the –call-graph dwarf flag outputs the perf data in a Dwarf format, which Hotspot
needs to be able to visualize the perf data. The Dwarf is a standardized debugging format,
which was originally designed along with Executable and Linkable Format (ELF), for more
information about Dwarf we refer to [6].

Used OpenCV version in profiling was 3.4.15. Following results in tables are displayed in
a top down view, ordered by inclusive cache misses in descending order. Inclusive meaning
that the values displayed are function’s self-cost summed with the cost of children functions
called from that function. We first look at kcf_vot binary profiling results, where 60.4% of
all cycles and 87.6% of all cache misses measured happened. Later we will also present results
from OpenCV’s libopencv_core.so.3.4.1. binary, where the majority of remaining event
counts happened.

5<https://opencv.org/opencv-3-4-1.html>
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3.3.2.1 KCF_VOT binary

For kcf_vot binary we will focus on KCF_Tracker::track function, where the process
of finding a new position of the target and update of the filter takes place. The table 3.1
presents profiling results for KCF_Tracker::track function.

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::track
KCF_Tracker::gaussian_correlation
KCF_Tracker::get_features
KCF_Tracker::fft2

83.7%
42.6%
26.5%
5.37%

58 %
28.8 %
15.6 %
10.5 %

Table 3.1: Profiling results for KCF_Tracker::track. The threshold was set to 5% of total
cache misses measured.

As we can see most of the cache misses happen in KCF_Tracker::gaussian_correlation.
Here the Gaussian kernel from extracted features is cross-correlated with interpolation model
from the previous frame. This function is also called during initialization of correlation fil-
ter in KCF_Tracker::init, with the exception that autocorrelation happens and not cross-
correlation. For more information about cross-correlation and autocorrelation, we refer
to [11]. In KCF_Tracker::get_features, HOG features are calculated together with ex-
traction of CN and RGB channels from the patch that is obtained from the bounding box.
Resizing of the patch with the object of interest also takes place here depending on the cur-
rent scale. KCF_Tracker::fft2 function perform the forward DFT on extracted features
that is performed after their extraction from the sub-window. In the following sections, we
will take a closer look at profiling results for each of these functions.

Gaussian Correlation

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::gaussian_correlation
KCF_Tracker::ifft2
ComplexMat_<float>::mat_mat_operator
ComplexMat_<float>::conj

42.6%
22.1%
6.35%
2.14%

28.8 %
8.67 %
12.2 %
3.26 %

Table 3.2: Profiling results for KCF_Tracker::gaussian_correlation. The threshold was
set to 2% of total cache misses measured.

First important operation, which happens in KCF_Tracker::gaussian_correlation is
the calculation of complex conjugate of extracted features in the frequency domain, rep-
resented by ComplexMat_<float>::conj, followed by element-wise multiplication of ex-
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tracted features with interpolation model in frequency domain, which is represented by
ComplexMat_ <float>::mat_mat_operator class function. As we can see in the table 3.2,
12.2 % of all cycles were spent in ComplexMat_<float>::mat_mat_operator function. This
function implements all matrix operations for matrices with the same number of channels.
In this case, it has to perform element-wise multiplication over all feature channels (44
channels if HOG, CN, and RGB channels are used). ComplexMat_<float>::conj inter-
nally uses ComplexMat_<float>::mat_const_operator, which implements matrix opera-
tion with constants, e.g., an addition of constant to a matrix and works similarly to the
ComplexMat_<float>::mat_mat_operator. For both operator functions, a new instance of
ComplexMat_ is created, with copied data from left-hand operand. Here also most of the
cache misses were measured for both functions. This new instance is then returned as a
result of the matrix operation.

Second significant operation of KCF_Tracker::gaussian_correlation is inverse DFT,
represented by KCF_Tracker::ifft2. With its 22.1% of total cache misses it is the biggest
hotspot in the whole program. Two functions in KCF_Tracker::ifft2, where most of the
cache misses happen, are cv::dft and cv::merge. cv::dft function implements OpenCV’s
version of DFT. cv::merge is here used for merging of all feature channels after inverse
DFT into one cv::Mat.

In the KCF_Tracker::gaussian_correlation itself 8.7% of cache misses were measured,
which can be accounted to the summation of feature channels over third dimension and the
calculation of the correlation of the Gaussian kernel with the interpolation model.

Extraction of feature descriptors

Before the extraction of the features begins the subwindow is taken from the image
from the current location of the bounding box. Following this HOG is calculated on the
grayscale version of the subwindow, and depending on the options, RGB channels together
with CN are added to HOG results. The final vector of feature channels equals to 44 matri-
ces of size equal to dimensions of the subwindow divided by the size of the cell in the HOG.
The size of 44 matrices is only true if all available feature descriptors are used, i.e., HOG,
CN, and RGB. The result of profiling is in table 3.3.

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::get_features
KCF_Tracker::get_subwindow
gradMag
cv::resize
fhog

26.5%
8.09%
5.05%
3.85%
2.81%

15.6%
0.44%
1.32%
3.47%
6.57%

Table 3.3: Profiling results for KCF_Tracker::get_features. The threshold was set to 2%
of total cache misses measured.

KCF_Tracker::get_subwindow creates subwindow of image input centered around co-
ordinates from input parameters. First, the fitting of the image to target coordinates and
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setting of border extensions takes place, followed by a call to cv::copyMakeBorder, which
returns subwindow from image input. If any pixels are outside of the image, they will
replicate the values at the borders. If the input parameters are out of an image or if four
corners of calculated subwindow create zero dimension subwindow, the function will return
cv::Mat set to the desired size, with all values set to zero. Most of the cache misses in
KCF_Tracker::get_subwindow function happens, during the copying of image input to the
middle of destination image, which internally uses __memset_sse2_unaligned_erms. It
accounts for 6.23% of total cache misses measured in KCF_Tracker::get_subwindow.

fhog function computes Felzenszwalb’s HOG (FHOG) features. FHOG is fast variant of
HOG used by Felzenszwalb in [7]. Original function comes from Piotr toolbox and requires
SSE26 instruction support to compile and run. Both fhog and gradMag are called from
FHog::execute, which is C/C++ wrapper function created for Piotr toolbox. Perf has
some margin of error in its results and incorrectly showed in the call graph, that both
of these functions were directly called from KCF_Tracker::get_features. In gradMag
gradient magnitude and orientation is computed at each location. Most of the cache
misses were measured in the gradMag function itself. For fhog main hotspot was again
__memset_sse2_unaligned_erms. Here it is used in wrCalloc, which is C/C++ wrapper
function for calloc. wrCalloc is called when allocating memory for histograms.

cv::resize is OpenCV function used for resizing of the matrices. In KCF tracker
depending if either we are downsampling the frame or not, pixel area relation is used for the
former or bilinear interpolation for the latter. It is called once for both RBG and grayscale
frame. Most cache misses were measured in OpenCV library function ippcviResizeLinear,
used during the bilinear interpolation.

Forward Fast Fourier Transform

In this section, we will look at KCF_Tracker::fft2 function. This function is used
after obtaining the vector of features from KCF_Tracker::get_features. Two primary op-
erations performed in the function are matrix multiplication between each feature channel
and cosine window and forward DFT performed on the product of the multiplication. Perf
results are in the following table:

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::fft2
cv::dft

5.37%
2.52%

10.5%
7.11%

Table 3.4: Profiling results for KCF_Tracker::fft2. The threshold was set to 2% of total
cache misses measured.

cv::dft is, as already mentioned OpenCV’s function for calculation of DFT. In original
KCF tracker implementation cv::dft is used for all DFTs, it, however, does not support
execution of multiple transforms of same size together, which results in function call for

6<http://softpixel.com/~cwright/programming/simd/sse2.php>
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every feature channel. Cache misses here are mainly divided between cv::dft and for cycle
in KCF_Tracker::fft2 over feature channels in the std::vector. Matrix multiplication
between cosine window and channels has only 0.246% of total cache misses.

3.3.2.2 Libopencv core binary

In this section, we discuss profiling results for libopencv_core.so.3.4.1. binary, where
the majority of remaining event counts happened, especially Central Processing Unit (CPU)
cycles. We will present two main hotspots. During profiling, perf was able to create only
partial call-graph. This is the reason, why event counts for some OpenCV core library
functions were not part of KCF tracker functions. To create complete call-graph, to interpret
some of the results of perf, we used Valgrind’s profiling tool Callgrind7. It introduces
substantial overhead during profiling, because it uses extra instructions that record activity
and keep counters for every function [22] but it can create very precise call-graph. With it,
we checked that most of the major hotspots in OpenCV core library were part of cv::dft
function used in all DFTs in KCF tracker.

In the following table, we present the major hotspots of OpenCV core library, ordered
by CPU cycles:

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

icv_y8_ownsrDftInv_Dir_32f
icv_y8_ownsrDftFwd_Dir_32f

0.0649%
0.568%

18%
16.2%

Table 3.5: Profiling results for libopencv_core.so.3.4.1..

From table 3.5, we can see that more than third of all cpu-cycles were spent during
calculation of forward and inverse FFT in OpenCV core library. Because so much processing
time was spend in these two functions, it might be the reason why perf was not able to create
complete call graph for them.

Both of these functions are part of Intel Integrated Performance Primitives (IPP)8 free-
of-charge subset, nicknamed IPPICV. This subset is part of OpenCV (Open Computer
Vision) from version 3.0. [3]. On Intel CPUs, OpenCV uses by default IPPICV for some
functions, if it is available on the architecture. IPPICV’s Fourier Transform algorithm
depends on the magnitude of the input , if the input is of the power of 2 IPP uses Fast
Fourier Transform (FFT), for other sizes DFT is used [13], as is the case here.

3.4 Summary of the results

If we add results from table 3.5 to results we obtained from kcv_vot binary for functions
related to Fourier Transform, more than half of all CPU cycles are related to the calculation
of DFT, and almost 30% of all cache misses. As such it was selected as the primary part

7<http://valgrind.org/docs/manual/cl-manual.html>
8<https://software.intel.com/en-us/intel-ipp>
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of the program for optimization. Second spot for possible optimization is ComplexMat_
template class. Primarily its methods for matrix operations.

19



Chapter 4

Parallel and extended
implementations

In this chapter we describe our implemented parallel and extended versions of the tracker,
with a description of the used libraries (e.g., FFTW and CuFFT) and changes made to
KCF tracker to acquire as much performance as possible. The primary focus of parallel and
extended versions was on Fourier transforms in the tracker, as mentioned in section 3.4.
The source files for our modified KCF tracker can be found at: <https://github.com/
Shanigen/kcf>.

4.1 Target platform

The target platform of development was NVIDIA Jetson Tegra X21. It is NVIDIA’s
embedded System-on-Module (SoM), with focus on Computer vision and Artificial intelli-
gence. It features dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57, 8GB 128-bit
LPDDR4 and integrated 256-core Pascal GPU.

The ARM CPU introduced problem during porting of the original implementation of
KCF tracker. As described in section 3.3.2.1 functions for the computation of HOG, re-
quires SSE2 SIMD instructions to run. Most of the modern Intel and AMD processors
support SSE2. The ARM processors does not but has similar instructions set called NEON.
For compatibility SSE2NEON2 header file was used, which automatically converts SSE2
instructions to NEON instructions.

4.1.0.1 OpenCV4Tegra

The normal OpenCV library is optimized for x86 architecture. For Jetson TX2 we used
OpenCV4Tegra, which is a free library provided by NVIDIA, which contains optimization
for NVIDIA’s Tegra CPUs and NVIDIA’s GPUs. It is a closed-source binary replacement
for the public OpenCV, so the programmer can write regular OpenCV code, which will
automatically take advantage of OpenCV4Tegra’s optimization. The performance gain over

1<https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/>
2<https://github.com/jratcliff63367/sse2neon>
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regular OpenCV is typically between 2x-5x on Tegra 3, Tegra 4 or Tegra K1 [19]. Between
optimized functions, unfortunately, isn’t cv::dft, which implements DFT.

For Jetson TX2, OpenCV4Tegra is part of NVIDIA’s JetPack installer3, used for flashing
Jetson Developer Kits with the latest OS image. On our Jetson TX2, we had used Jetpack
version 3.0, which contains OpenCV4Tegra 2.4.13.

4.2 Modifications

This section contains brief overview of all of the modification made to the original version
of the KCF tracker. All of them are described in more detail in following sections.

First modification of the tracker is the creation of the FFT class which provides same
interface for all of the different implementations of the Fourier transforms (i.e., Fastest
Fourier Transform in The West (FFTW), CuFFT, OpenCV) available for the tracker.

For the CPU versions of the tracker we made modification to the ComplexMat template
class to make it compatible with the FFTW plans. Also, we added OpenMP support for
the tracker, which parallelizes the calculations of the response maps for individual scales.

For the Graphical Processing Unit (GPU) version of the tracker using the CuFFT library
we added a GPU version of ComplexMat class and KCF_Tracker::gaussian_correlation
to improve the performance. New mode for the tracker was also added, called the big batch
mode, which tries to modify the workflow of the tracker to better suit GPU. This mode is,
however, also compatible with FFTW version.

4.3 Fourier Transforms

This section is dedicated to detailed description of the different functions in the original
version of the KCF tracker that performs the DFT. The reason for this description of the
original implementation is to show the main problems with them.

4.3.1 KCF_Tracker::fft2

The first DFT that we will focus on is KCF_Tracker::fft2 function, which takes a
vector of feature channels as input and cosine window. It is used right after the extraction
of the feature descriptors from the patch to transform them into the frequency domain,
where they are then correlated with the filter. In this function on every feature channel
matrix multiplication, with cosine window is performed, followed by the forward DFT. The
result of the transform is then copied to an instance of ComplexMat, with set_channel.
This whole workflow and the code of the function can be seen in figures 4.1 and 4.2.

OpenCV’s implementation of DFT does not support transform over multiple data, so
function call has to be made every iteration. Also if the input array is not the power of 2
the performance of the transform is decreased, though for arrays, whose size is a product of
2s,3s, and 5s (e.g., 60 = 5 ∗ 3 ∗ 2 ∗ 2) are also processed quite efficiently [25]. The horizontal
and vertical dimensions of the window used for tracking in the KCF tracker, are calculated

3<https://developer.nvidia.com/embedded/jetpack>
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Figure 4.1: Diagram showing the workflow of KCF_Tracker::fft2. After cv::dft,
CompleMat’s method set_channel is used to copy data from transform result, which is
stored in cv::Mat to an instance of ComplexMat.

int n_channels = input.size ();
ComplexMat result (input [0]. rows , input [0]. cols ,

n_channels );

for (int i = 0; i < n_channels ; ++i) {
cv::Mat complex_result ;
cv::dft(input[i]. mul( m_window ), complex_result , cv::

DFT_COMPLEX_OUTPUT );
result . set_channel (i, complex_result );
}
return result ;

Figure 4.2: Source code of original KCF_Tracker::fft2 function.

by the following equation: [X ∗ (1 +padding)÷ cell size]÷ cell size. The X represents either
horizontal or vertical dimension size of the input bounding box; these dimensions will also
be downscaled by the factor of 2 if the bounding box is larger than 100 × 100. Padding
stands for additional padding added around the target and finally cell size, which is the size
of the cell in HOG, as described in section 2.2.2.2. This equation takes into account only
the size of the cell in HOG, so optimal size is not guaranteed. This was the case for all
tested datasets, where the resulting dimensions of the window were never optimal.

For forward Fourier transforms cv::DFT_COMPLEX_OUTPUT flag is passed to cv::dft, to
generates a full complex output, this allows more straightforward spectrum analysis, but
sacrifices performance [25]. This flag, however, overrides the default option, which takes
advantage of Complex-Conjugate Symmetry (CCS) that appears in complex output for real
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data input, which allows packing the complex output to the array of the same size as the real
input. As we discovered during the development of the FFTW version of the tracker the full
complex output is completely unnecessary. The tracker with modifications to indexing in the
KCF_Tracker::gaussian_correlation can work with the half complex output effectively
halving the data sizes in the frequency domain and making the tracker and the DFTs faster
as a result.

4.3.2 KCF_Tracker::ifft2

The second Fourier Transform, present in the original code is inverse DFT performed in
KCF_Tracker::ifft2. There are two usages of this function in the tracker first is during the
final step of obtaining the response map on the product of correlation filter and the result of
Gaussian correlation. The second is in the KCF_Tracker::gaussian_correlation function
when we transform the cross-correlated or autocorrelated feature channels back into the
spatial domain. The input in the former is one channel, and in the later it is multichannel
ComplexMat.

This function’s workflow is similar to KCF_Tracker::fft2 function, if the input ComplexMat
has multiple channels. The difference here is that channels from input ComplexMat are
first copied to a vector of cv::Mats, with the to_cv_mat_vector method. Following this
Fourier Transform is performed for every channel, with results saved to another vector.
After all channels are transformed back to the spatial domain, the vector of results is
merged into single cv::Mat with cv::merge function. For one channel input ComplexMat,
to_cv_mat_vector method is called first, to transform the input to cv::Mat. Following
this single cv::dft call is performed and the result cv::Mat is returned. cv::DFT_SCALE
flag is also passed to the cv::dft to scale the output of the inverse DFT, which is otherwise
multiplied by the size of the array. The workflow diagram for multichannel input is in figure
4.3 and the source code of the function in figure 4.4.

Figure 4.3: Diagram showing the workflow of KCF_Tracker::ifft2 for multichannel input.
We can see that after the input ComplexMat is transformed to a vector of cv::Mats, each
representing one channel, the Fourier Transforms are performed the same way as in the
KCF_Tracker::fft2.

Here to cv::dft, cv::DFT_INVERSE,cv::DFT_REAL_OUTPUT and cv::DFT_SCALE flags
are passed. The cv::DFT_INVERSE flag changes the default behavior of cv::dft from for-
ward Fourier Transform to inverse. The normal output of the inverse transformation is a
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cv::Mat real_result ;
if (input. n_channels == 1) {
cv::dft(input. to_cv_mat (), real_result , cv::

DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE );
} else {
std::vector <cv::Mat > mat_channels =

input. to_cv_mat_vector ();
std::vector <cv::Mat > ifft_mats (input. n_channels );
for (int i = 0; i < input. n_channels ; ++i) {
cv::dft( mat_channels [i], ifft_mats [i], cv::DFT_INVERSE

| cv::DFT_REAL_OUTPUT | cv::DFT_SCALE );
}
cv::merge(ifft_mats , real_result );
}
return real_result ;

Figure 4.4: Source code of original KCF_Tracker::ifft2 function.

complex array of the same size as the input, but if cv::DFT_REAL_OUTPUT flag is passed to
the function, it will assume that the input array has CCS and produce real output array.
This again makes it unnecessary to use the full complex output in the forward DFTs.

4.3.3 Problems

Principal problems, with both of these workflows, are that when we tried to port them
directly to GPU, it resulted in frequent data movement between GPU and CPU, which have
a negative impact on the performance. This was evident with our first GPU version of the
KCF tracker, which was performed with OpenCV’s ’gpu’ module, which allows modifying
the original OpenCV’s code with minimal changes. It internally uses calls to CUDA’s
runtime environment but shares the same API as normal CPU version OpenCV function.
It required copying data from CPU to GPU each time we wanted to perform the transform,
because both the CPU version and GPU version, which internally uses CuFFT, of OpenCV’s
DFT only support single transform execution. This resulted in a massive increase of the
execution time added to this was also the problem that the data sizes for the transforms
were too small to exploit GPU performance in the DFT properly. For these reasons not
only the ’gpu’ module version of the tracker was dropped, but the whole workflow had to
be changed to better support the GPU. These changes were performed for both the FFTW
and CuFFT implementations of the DFT.

4.4 FFT class

The first significant change to the tracker was the creation of a new class called FFT.
This class provides virtual member functions, for all versions of Fourier Transform to have
same function calls and also to improve readability of the code. Initially, we used only

24



4.4. FFT CLASS

C++ define directives in original functions (e.g., fft2) to decide, which part of the code will
compile, this however quickly made the code very bloated and unreadable.

The new interface for Fourier Transform contains following functions:

• void init(unsigned width, unsigned height, usigned num_of_feats, unsigned
num_of_scales, bool big_batch_mode)

This method performs creation of the plans for FFTW and CuFFT version. For all
versions, it also saves the dimensions of the transform. The num_of_feats stands for
the number of features. When HOG, RGB channels and CN are all used, it equals to
44. The num_of_scales represents the size of the scale pool. Its default size is seven
scales. Finally, the big_batch_mode is special mode created primarily for CuFFT
version, but with works FFTW too, which performs response map calculation for all
scales simultaneously. It is described in more detail in section 4.4.3. Depending on
whether the boolean is true or not, additional plans will be created.

• void set_window( cv::Mat &window)

set_window takes as an input result of cosine_window_function, which creates
Cosine Window used in Fourier Transformation. Same as init it is called only once
during initialization of the tracker.

• ComplexMat forward(const cv::Mat &input)

Replaces fft2(cv::Mat &input) function, that performs FFT on the single chan-
nel input. For FFTW and CuFFT version it also adds support for the big batch mode.

• ComplexMat forward_raw(float *input, bool all_scales)

Method used only in CuFFT version, It is intended to be used together with
cuda_gaussian_correlation, which is wrapper function for custom CUDA kernel
used for calculating the correlation of feature channels with a Gaussian kernel. It will
be described in more detail in CuFFT section.

• ComplexMat forward_window(const std::vector<cv::Mat> &input)

This method replaces the forward Fourier Transform fft2 function described in
section 4.3.1. It has support for the big batch mode in both FFTW and CuFFT
versions, same as in forward and takes advantage of the advanced interfaces for both
regular and big batch mode.

• cv::Mat inverse(const ComplexMat &input)

Implements the inverse Fourier transform. In the FFTW and CuFFT version
support for big batch mode is added, for current CuFFT version this method is not
used and instead is replaced by inverse_raw.

• float* inverse_raw(const ComplexMat &input)

Same as forward_raw, this is a special method used only with CuFFT version
and is intended to be used together with cuda_gaussian_correlation.
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In the following sections, we will describe the FFTW and CuFFT versions of the FFT
class and how they are used to improve the performance of the Fourier Transform. The
OpenCV version was only copied from the original version of the KCF tracker to this new
interface.

4.4.1 FFTW

4.4.1.1 Overview

The FFTW library is a comprehensive collection of fast C routines for computing the
discrete Fourier Transform and various individual cases thereof [21]. It supports DFT for
both real or complex-valued arrays and for all arbitrary sizes and dimension of the input
data it employs O(n log n) algorithms but works most efficiently if the size can be factored
into small primes (2, 3, 5 and 7). The FFTW library comes in two variants, either double
precision variant, for which all functions have fftw prefix or single precision variant with
the fftwf prefix. In the KCF tracker, we used single precision FFTW variant, because rest
of the tracker also uses only single precision arithmetics. In version 3.3.4, FFTW added
support for the NEON instruction set, improving the speed on ARM CPUs. The FFTW
also allows creating parallel plans for the shared-memory parallel hardware (e.g., multi-core
CPU). These plans support both POSIX threads and OpenMP threads.

The FFTW uses plans to perform the DFT. The reason for this is that FFTW does not
have fixed algorithm for computing the DFT, but instead it adapts the algorithm to the
underlying hardware to maximize the performance. This approach splits the FFTW into
two phases. In the first phase, the creation of the plans takes place, in which the planner
finds the fastest way to execute the transform on the current hardware. This information
is then stored in the data structure called plan. After the optimal plan is found, it can be
executed as many as needed on the input array as dictated by the plan. This approach is
reasoned by the authors [21]: In typical high-performance applications, many transforms of
the same size are computed and, consequently, a relatively expensive initialization of this
sort is acceptable. For the cases, where only single transformation is needed FFTW also
allows using only heuristics, when creating the plan, lowering the cost of initialization.

4.4.1.2 Usage in KCF tracker

In our case the KCF tracker exactly carter the many transforms of the same size case.
One problem that is however in the basic interface of the FFTW is that a plan initializes
with input and output arrays on which the transform is to be performed. In KCF tracker the
arrays on which the transforms are to be performed, are not available during the initialization
phase of FFTW. This was a problem at first because it meant, we had to copy data to right
arrays whenever we wanted to execute the corresponding plan.

FFTW thankfully has “new-array-execute” functions, which provides a way to perform
the plan on a different array, than the one used during the creation of the plan. There
are however few conditions, which have to be met to use a different array with the plan.
The size of the new array has to be the same as the old one if the plan is out-of-place the
two input arrays have to be different and for in-place, they have to be the same. Also, the
authors state that the alignment of the input/output arrays have to be the same as the
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original one, and recommends to use the fftw_malloc. Nonetheless, in the tracker, we use
only ordinary malloc without experiencing any problem on multiple different platforms.

As mentioned in section 4.3 one of the problems, with OpenCV’s algorithm for DFT, is
that it can only perform a transform on a single array at one time. In the KCF tracker, this
was primarily problem in KCF_Tracker::fft2 and KCF_Tracker::ifft2 functions. With
advanced interface of FFTW, we were able to avoid this problem altogether. This interface
allows performing a transform of multiple arrays simultaneously, resulting in better perfor-
mance than if the FFTW was called for every array separately. During the initialization of
the plan, the programmer has to specify the size of the transform, the number of transforms,
rank and the stride to indicate, where to look for another transform. For more details, we
refer to [21].

In KCF tracker we used the real data version for both the basic and advanced interface,
which saves space and computation time. It uses the fact that the output of a DFT of
real data possesses the "Hermitian" symmetry, which as a result makes half of the output
redundant (being the complex conjugate of the other half). The output size of FFTW’s
two-dimensional real data transform of size X × Y is only X × Y/2 + 1. This symmetry is
also taken into account when performing the real data inverse DFT. We will now look more
closely at how Fftw::forward_window and Fftw::inverse methods are implemented. The
Fftw::forward method will not be described in more detail because it is implemented very
similarly to Fftw::forward_window.

Fftw::forward_window

The whole method starts with the creation of a new instance of one channel cv::
Mat of size X × (Y ∗ number of channels), where X represents the width of single feature
channel, Y height of single feature channel and number of channels equals the size of the
input vector. The matrix is then filled in, with results of matrix multiplications of individual
feature channels with cosine window. This matrix is used to align the input array for the
FFTW’s plan from the advanced interface. The ComplexMat class had to be modified to be
compatible with the advanced interface. This modification will be discussed in more detail
in 4.5 section. The only important thing that has to be known now is that ComplexMat has
changed data storage from a vector of vectors to single vector, allowing it to be the output
array of the FFTW plans and so no copying is needed as is the case in OpenCV version.

After the creation of both input and output arrays, the corresponding plan is executed.
There are two plans used in forward_window both of which are part of the advanced in-
terface. The first plan called plan_fw is used for computing DFT for feature channels of
a single scale if the big batch mode is used it is executed during the initialization of the
KCF tracker and after that during the update of the correlation filter. The second plan
plan_fw_all_scales computes, as the name suggests, DFTs for all feature channels of all
scales and is used only with the big batch mode. Otherwise, this plan is not created at all
as mentioned in 4.4.

Fftw::inverse

Similar to the Fftw::forward_window this method also starts with the creation of
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Figure 4.5: A diagram of the Fftw::forward_window method. In this figure we show
the execution of the plan_fw_all_scales plan on N scales each consisting of 44 feature
channels.

cv::Mat, however, here it is not one channel matrix but has the same number of channels
as the ComplexMat from the input argument. After the creation of the output array, one
of the four different FFTW’s plans available executes, with two being available only in big
batch mode.

• plan_i_1ch

Used during the final step in calculating the response map for the scale, performs
only single DFT on the result of matrix multiplication between correlated feature
channels with the Gaussian kernel. This plan in the case of the big batch mode is not
initialized at all and plan_i_1ch_all_scales takes its place instead.

• plan_i_1ch_all_scales

The Big batch mode plan, same as the plan above, is executed during the final
step of obtaining the response map. For this plan, the number of transform equals to
the number of scales in the scale pool.

• plan_i_features

Executed during the correlation of extracted features with Gaussian kernel in
KCF_Tracker::gaussian_correlation. If the big batch mode is used it is used,
during the initialization of the tracker and after the scale with the maximal response
when updating the tracker’s filter.

• plan_i_features_all_scales

This plan is executed, when calculating the correlation of extracted features with
Gaussian kernel with all scales. The number of transforms performed equals to the
number of feature channels times number of scales in the scale pool.

After the inverse DFT is calculated the output has to be explicitly scaled back, because the
FFTW’s plans scale the output array by the size of the array on which the transform was
performed.
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Figure 4.6: A diagram, showing workflows for all plans in Fftw::inverse. The cv::Mat
stores each channel pixel by pixel after other channels unlike ComplexMat, which stores each
channels matrix by matrix after other channels.

4.4.1.3 CuFFTW

With the FFTW version, we also tested the NVIDIA’s CuFFTW library. This library
provides FFTW interface for the CuFFT library, allowing the programmer to use NVIDIA’s
GPU in FFTW with minimal modifications to program source code [23]. There are three
steps required before the interface can be used. First, the include file for FFTW (fftw3.h)
should be replaced with CuFFT include file (cufftw.h). The second modification is during
linking, where instead of linking with double/single precision libraries such as fftw3/fftw3f,
the program links with both the CuFFT and CuFFTW libraries [23]. The last requirement is
that the search path contains the directory, where cuda_runtime_api.h is located. The last
step is done because the CuFFTW library requires data to be on GPU, but also allows the
user to use data located on the CPU, which it will copy to the device memory automatically
using the CUDA runtime library. In the case of the FFTW plan from the advanced interface,
that maps to cufftPlanMany with CuFFTW, data are assumed to be in CPU memory.

The modifications to the FFTW version were indeed minimal. However, the main prob-
lem with CuFFTW library is that the programmer cannot explicitly manage data movement
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between device and host memory. Also, the CuFFT library even though based on the FFTW
library works slightly different, which results in a number of unnecessary operations (e.g.,
input and output arrays during initialization of plans). Both of these reasons is why we
moved from exploring this option in more detail and decided to use native CuFFT library
instead.

4.4.2 CuFFT

4.4.2.1 Overview

The NVIDIA’s CuFFT library is a high-performance library for computing the FFT on
NVIDIA GPUs. Its API is modeled after the FFTW library, and same as FFTW is also
based around plans, which use internal building blocks to optimize the transform for the
given configuration and the particular GPU hardware selected [23]. The main difference
between the FFTW and CuFFT is the way how they work with plans. The FFTW library
has many different types of plans, but only one execute function for all of them. The
CuFFT, on the other hand, has few plans and many execute functions, which determines
the precision and type of the input. In KCF tracker we used only the single precision execute
functions for the same reason as with FFTW4. The rest of the library is used the same way
as the FFTW. However, input and output arrays have to be located in the device memory.

The CuFFT library also supports the use of CUDA streams, which allows CUDA op-
eration in different streams to run concurrently improving the performance. The main
advantage with the use of the CUDA streams is that we can overlap kernel executions with
the data copying. However, the CuFFT does not allow to execute its kernel in different
streams until the previous plan was completed. This limitation is not a problem if the
datasets are large enough that the copying overlaps the full execution of the plan. This was
regrettably not the case in KCF tracker, where data sizes are too small and in our testing
of the CUDA streams with CuFFT, there were no performance gains, on the contrary, the
performance lowered because of the additional CUDA API calls. These testing results are
the reason why the use of streams with CuFFT was dropped.

4.4.2.2 Usage in KCF tracker

The CuFFT version of the KCF tracker is not only modification of the Fourier Trans-
forms, but of all operations in the frequency domain. A significant part of this modification
is the addition of a GPU version of ComplexMat, which will be discussed in the following
section. This together with a GPU version of KCF_tracker::gaussian correlation func-
tion and means that all operations in the frequency domain are performed on GPU. We also
took advantage of the Jetson TX2’s shared memory between CPU and GPU to minimize
the number of data movements between host and device memory. We will describe here the
whole process of the CuFFT version when it is used with the GPU version of KCF_tracker::
gaussian correlation. Normal KCF_tracker::gaussian correlation can also be used,
but in this case, the work-flow is almost the same as the FFTW version, except for the data
copying between the host and the device, so we will not describe it in more detail here. Also,

4KCF tracker performs all of its operations in single precision arithmetics.
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all used CuFFT plans work the same way as the ones described in FFTW version, so they
will not be described in detail too. Currently, the CuFFT version only supports Gaussian
kernel for filter learning and tracking.

The central GPU part of the tracker starts after the extraction of all feature descriptors
into a vector when the cuFFT::forward_window method is called. The cv::Mat used to store
the whole feature vector, uses NVIDIA’s Zero Copy memory5. It allows to entirely avoid
memory copying in the case of Jetson TX2, by allowing GPU threads to access CPU memory.
The rest of the method work-flow is the same as in the case of cuFFT::forward_window.

Following the call to KCF_tracker::gaussian correlation function, and calculation
of a complex conjugate for extracted features and their element-wise multiplication with
interpolation model in it. Call to cuFFT::inverse_raw method is performed. As already
mentioned in 4.4, the change here, over regular method, is that return value here is array
allocated in device memory, that is passed to the cuda_gaussian_correlation function. In
it is located custom CUDA kernel, that performs rest of the operations in KCF_tracker::
gaussian correlation, and stores the result in an array that is passed as one of the
input arguments. The array for the results is allocated in the device memory during the
initialization of the tracker and is stored in global pointer gauss_corr_res. The next step
is the cuFFT::forward_raw function, which unlike cuFFT::forward takes an array and
boolean as input parameters. The boolean is set to true depending on whether all scales are
currently worked on or not.

During the final step in calculating the response map in cuFFT::inverse. The output
cv::Mat uses as data array Zero Copy memory. This, however, introduced problem because
all calls to CUDA kernels are asynchronous so we have no guarantee that the cv::Mat will
contain required data when we try to perform scaling on the DFT result in CPU. This
problem does not exist in cuFFT::inverse_raw because the scaling is part of the CUDA
kernel in cuda_gaussian_correlation. For this reason after execution of the CuFFT plan
cudaDeviceSynchronize is called to block the CPU until all CUDA kernels finish. We tried
to put as many operations on the GPU as possible to avoid overusing the synchronization
call, so the next possible step is to perform the search for the maximal response also on the
GPU.

4.4.3 Big batch mode

The big batch mode is an alternative to the regular mode in KCF tracker; it was created
primarily for the CuFFT version of the tracker but also supports FFTW version. This mode
is intended to be used with scale pool of size bigger than one.

The regular mode of KCF tracker performs calculations of the response map for each
scale separately. Unfortunately, the size of the data for each scale is too small to take
advantage of GPU. The big batch mode tries to address this problem, by calculating all
scales together as one big data set. The default scale pool as mentioned in 2.2.2.2 contains
seven scales, which results in seven times larger datasets for all operations during calculation
of the response maps. There are however two parts during this mode that are performed
separately for each scale. The first one is the extraction of the feature descriptors from the

5<https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#zero-copy>
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scaled patches and the second one is the searching of the maximal response. This mode also
takes advantage of FFTW’s and CuFFT’s advanced interfaces, which allows execution of
multiple DFTs in the same time.

4.5 ComplexMat

There are two versions of ComplexMat, where one runs only on CPU and other runs only
on GPU. The CPU version of the class is like original template class, but the GPU version
is a regular class with the same name, using float precision arithmetics. Both versions share
the same interface. However, data in GPU version are stored in only the device memory, so
it is currently only compatible with the CuFFT version of the tracker.

4.5.1 CPU version

The first problem with the original implementation of ComplexMat class was its data
organization. It uses a vector of vectors of complex numbers to store data, where each
vector represented one channel. This data organization, however, was not compatible with
FFTW or CuFFTW. The new data organization is a single vector of complex numbers.
Allowing the ComplexMat to be passed as an output of FFTW and CuFFT plans.

Another change made, was an added support for big batch mode, allowing the ComplexMat
to store data from all scales. Following list contains all of the modified and the newly added
methods and class functions. Functions and methods that differ only with indexing, because
of the different storing of the data, are not listed:

• void create(int _rows, int _cols, int _n_channels)

This method was added together with its counterpart function void create(int
_rows, int _cols, int _n_channels, int _n_scales) to add support for the big
batch mode in FFTW version. Both methods perform allocation of space for the
future data. The first method is used for regular mode. The second one is used during
the big batch mode, it adds the fourth parameter, which represents the number of
scales overwriting the default value (i.e., one) representing the number of scales in
ComplexMat.

• void set_channel(int idx, const cv::Mat & mat)

Used only in OpenCV version of the tracker; it converts data from cv::Mat on
the input to the data vector of ComplexMat. The original version called class function
convert, that performed the conversion of the cv::Mat’s data to vector and this
resulting vector, representing one channel, was then stored in the primary data vector.
Because we changed the way data are stored, the call to the convert function was
unnecessary, and the conversion now happens in the set_channel method itself.

• void sqr_norm(T *sums_sqr_norms)const

A method used for calculating the sum of squared complex norms of all channels.
The original method did not have input parameters and returned value, which rep-
resented the sum of the complex squared norms. Current version takes an array as
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an input that is also used to store the result. This change was done to support big
batch mode, for which the size of the input array equals to the number of scales in the
scale pool. Before the computation, the number of channels per scales is computed to
perform the summation for each scale only on the corresponding channels. After the
sum is computed, it is stored in the input array on the index representing a position
of the current scale in the scale pool.

• ComplexMat_<T> sum_over_channels()const

Used only if the linear kernel is selected for filter learning and tracking. This
method was also modified to support big batch mode. It returns an instance of
ComplexMat, with the number of channels equal to the number of scales of the caller,
where each channel is the sum of all channels of that scale.

• std::complex<T>* get_p_data()const

Return pointer to the beginning of data stored in the data vector. This method
was created for compatibility reasons with FFTW, allowing an instance of ComplexMat
to be passed as the destination of the FFTW plan.

• ComplexMat_<T> mul2(const ComplexMat_<T> & rhs)const

Method created to support big batch mode, based on the mul method in the
ComplexMat. It calls class function matn_mat2_operator, which implements operators
overloading for matrix operations between multichannel and single channel instances
of ComplexMat. This method is used only when the linear kernel is selected.

4.5.2 GPU version

The GPU version of ComplexMat was created because CuFFT plans execute asyn-
chronously. This asynchronous execution resulted in the need to use synchronization be-
tween device and host after every execution of the plan. By moving all operations in the
Frequency domain to the GPU, we now perform the synchronization only at the end of
cuFFT::inverse, when obtaining the response maps. The GPU version of the ComplexMat
implements all functions as custom CUDA kernels, additionally move assignment operator
was implemented to avoid unnecessary copying of data in the device memory. One limita-
tion in the current GPU version of the ComplexMat is that the kernels can work only on
channels, whose product of dimensions is smaller than 1024. That is the maximal number of
threads that can be in one block on Jetson TX2. This limit could be possibly avoided if we
used different indexing in kernels. However, we were unable to come up with a solution that
would not sacrifice too much performance. For sqr_norm method, the indexing is especially
tricky, because we use parallel reduction with sequential addressing6 to minimize the calls
to atomic addition, which is required when performing parallel summation.

6<http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/
reduction/doc/reduction.pdf>
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4.5.2.1 CUDA error check

With the GPU version of the ComplexMat, we also added debugging in-line functions for
CUDA and CuFFT. There are three functions available:

• CudaSafeCall( err )

Used to check errors that are returned from CUDA API calls.

• CudaCheckError()

Used to check errors from CUDA kernel calls. cudaDeviceSynchronize() is called
every time it is used to make sure that all kernels finish, which in case that some error
happens in any of the kernels will return it.

• CufftErrorCheck(call)

Used to check errors from CuFFT API calls.

These functions are not used in default and are only available if the CUDA_DEBUG variable is
set during the compilation.

4.6 CPU parallel options

In this section, we describe the available CPU multi-threaded options of the KCF tracker.
There two primary options either C++ async directive or OpenMP. The original version
of the KCF tracker has a multi-threaded option, which uses the C++ async directive to
perform the computation of the response maps for all scales in parallel.

In the regular mode, OpenMP option does the same parallelization as the async option
but also parallelizes the search of the maximal response in the response maps obtained for
each scale. The OpenMP has alternative usage when used with the big batch mode here
it parallelizes the extraction of feature descriptors and the search of the maximal response
from the response maps of the scales. For big batch mode, the OpenMP can be used with all
of the available versions of the tracker. Additionally, with the FFTW version, it is also used
to create multi-threaded plans, where the number of threads used with each plan is obtained
from omp_get_max_threads(), which returns the maximum number of threads that can be
used in the parallel region. If neither the async directive or OpenMP is used, the FFTW
versions will use two threads as default for its plans. The parallelization of FFTW plans is
however not guaranteed, because we pass FFTW_PATIENT flag during the initialization. This
flag not only finds the fastest plan possible, in exchange for the time it takes to find the plan
but in the case that the problem size is not big enough to take advantage of parallelization,
it will only use one thread.

4.7 HERCULES compiler

As mentioned in section 2.1.3.3 the HERCULES compiler is currently only able to
perform the PREM transformation on loops specified with #pragma omp target teams
distribute parallel for. The best place of the KCF tracker that can use this pragma are
the ComplexMat methods for overloading operators, e.g., ComplexMat::mat_mat_operator.
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As discussed in section 2.1.3 allows offloading parts of the source code to GPU with
timing guarantees. For our testing, we, however, had only available the CPU version of
the compiler that performs the transformation of the source code but for the CPU. We
used HERCULES compiler version 2017.11.3. In this version, the CPU implementation has
no proper driver and instead uses a script that takes C/C++ file to be compiled as an
argument. This proved to be a problem because this script is not compatible with CMake
build system used in our KCF tracker and also requires that the source file contain the main
function. This forced us to concatenate all source files from the KCF tracker into one.

When we tested the compilation of this new source file with the regular Clang version
available from Ubuntu package repositories no errors were encountered, however, during
the HERCULES’s LLVM passes the compilation encountered errors immediately with the
first pass, which we could not resolve. We contacted the developers of the compiler and
discussed possible solutions. Here we were informed that if we would like to use test the
compiler with the CPU version of the ComplexMat we would have to change it into non-
template class. Next problem was also that the current version requires that every variable
transformed for predictability must be defined either as a static global variable or in the
entry function (main). However, making the variables global or static in ComplexMat would
be quite difficult for at least three reasons:

• The size of the matrix depends on the size of the tracked object and is different for
each video. It could be possible to make the size constant, but we will lose generality.

• The same class is used for “images” with a different number of channels and therefore
different sizes of data (all used in one tracking step). We could work around this
by having different types for different image depths, but this would probably lead to
unnecessary duplication of code.

• The tracker can run some computations in parallel threads, and each thread needs to
have its own matrices to work on. At compile time, we do not (want to) know how
many CPUs are there at runtime and how many copies of matrices will be needed.

We were also informed that there the current problems with the compilation also seem to
be related to the C++ class allocators/destructors in classes. Because of these problems,
we were unable to test out the HERCULES compiler with the KCF tracker and show its
performance in comparison to other versions of the tracker.
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Chapter 5

Results

5.1 Benchmark results

In this section, we present benchmark results for all available versions of the KCF tracker.
We tested the benchmarks on six different datasets from VOT Challenge 20161, which are
shown in figure 5.1. We tried to select datasets with different sizes of the object of interest to
better capture differences in execution time on GPU and CPU. However, we were limited by
the GPU version of ComplexMat, whose CUDA kernels are limited to dimensions of feature
channels with product smaller than 1024. The reason for this limit is described in section
4.5.2.

Each dataset was first run with default scaling, which resizes the frames and patch by
a factor of two only if the patch from initial bounding box is larger than 100 × 100. The
second run was performed with alternative scaling, which scales bounding box and input
frames by a factor, that results in a window of size 128× 128. This size of window produces
feature channels of dimensions 32×32, with default parameter of HOG, i.e., cell_size = 4.
With this sizes of feature channel, all of the different libraries used for calculating DFT can
use the most optimal algorithm, i.e., a power of two FFT. The third run was again with
alternative scaling, that scaled the window to dimensions of 256 × 120, which results in
feature channels of dimensions 64 × 30. That is the maximal size of feature channels that
CuFFT versions can work on. Also, both of these dimensions are divisible into small primes
(i.e., 64 = 26 and 30 = 5 ∗ 3 ∗ 2) on which still quite efficient algorithms for calculating the
DFT can be used.

Figures from 5.2 to 5.8 with the results of the benchmarks start from smallest data sizes
to biggest data sizes. The datasets selected for alternative scaling were those, whose window
size in the default scaling was closest to the desired size (i.e., 128 × 128 and 256 × 120).
During our testing on Jetson TX2, we also turned off the Ubuntu LighDM so that the GPU
would not be interrupted by it and influence the results. We used boxplots to show the time
for one frame, where the box is extending from the lower to upper quartile with orange line
demarcating the median. The whiskers show the lowest value of the 1.5 IQR of the lower
quartile and the highest value of the 1.5 IQR of the upper quartile.

1<http://www.votchallenge.net/vot2016/dataset.html>
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Figure 5.1: Datasets used for benchmarking, starting from the top left: Bag, Car2, Car1,
Ball1, Pedestrian2, Nature. All screenshots of the datasets were resized to 128×128 so they
fit inside one figure.
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Figure 5.2: Pedestrian2 dataset with default scaling. This dataset was not resized, because
the initial bounding box was smaller than 100× 100.
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Figure 5.3: Ball1 dataset with default scaling. This dataset was not resized, because the
initial bounding box was smaller than 100× 100.
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Figure 5.4: Car1 dataset with alternative scaling to power of two feature channels.
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Figure 5.5: Car1 dataset with default scaling to power of two feature channels.
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Figure 5.6: Bag dataset with default scaling.
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Figure 5.7: Nature dataset with default scaling.
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Figure 5.8: Nature dataset with alternative scaling to maximum allowed size of feature
channel for CuFFT versions.
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5.1.1 Interpretation of the results

Starting from the smallest data sizes, we can see that all of the CPU version of the KCF
tracker, perform much better than GPU version, which is logical as the data sizes are too
small to benefit from the GPU. However, we can see that how as the data sizes increase
the performance of the GPU versions starts to become more similar to the CPU version,
especially the CuFFT version with big batch mode and OpenMP starts to outperform CPU
versions of the tracker and also perform similarly to the FFTW version with OpenMP. The
reason for this is that the overhead introduced with the use of the GPU and CUDA API
calls starts to become much less evident because of the performance gains in the operations
(e.g., DFT, Gaussian correlation) and efficiency with which the GPU can work on bigger
data sizes. These performance gains with bigger data sizes can be best seen when comparing
cufft_big_openmp with fftw_big_openmp.

The most significant problem with the CuFFT and CuFFTW versions is with the exe-
cution time of the CUDA API calls and CUDA kernels. Especially significant fluctuation in
the execution time was seen in CuFFT kernels, where when tested on Bag dataset for one
frame they took only 16ms and in next jumped to 30ms, even though the size of the data
does not change. Big variance resulting from this fluctuations can be best seen in figures
5.3 and 5.7. Unfortunately, we were unable to find the reason for this fluctuation. For the
custom CUDA kernels that we implemented this problem was not seen.

In figure 5.2 we can see that the CuFFTW versions using the big batch mode outperform
the CuFFT versions with the big batch mode. The reason for this result is that the CuFFTW
versions, unlike CuFFT, performs the operations in the frequency domain on the CPU,
which gives it better performance for smaller data sizes, even though it performs memory
copying between host and device and vice versa. In the following figure 5.3, where the size
of data increases the performance of CuFFTW versions is worse than the CuFFT because
the overhead introduced by the data movements starts to be more evident.

Both the advanced interface in the FFTW library and the CuFFT batch executions,
introduced performance gains that we can see when compared with the original OpenCV
version on bigger data sizes 5.7. When compared only with only the FFTW this difference
can be seen in all tested data sizes.

5.2 CuFFT version profiling

In this section, we present the results of the NVIDIA’s profiling tool nvprof2 for the
CuFFT version with and without the big batch mode and also the CuFFTW version with
the big batch mode, to show the differences in the size of the kernel computations and data
movements between host and device. We used the bag dataset with default scaling for the
profiling. The images are taken from the NVIDIA Visual Profiler, which allows visualizing
the results of the nvprof. The resolution used in the visual profiler for all versions is the
same to better capture the difference.

In the figures 5.9 and 5.10, we can see how all calculation for all scales are performed
together in the big batch mode, wherein the normal mode each scale is performed indi-
vidually. This results in seven times more calls to CUDA runtime API and kernels, which

2<https://docs.nvidia.com/cuda/profiler-users-guide/index.html>
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Figure 5.9: CuFFT version without big batch mode.
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Figure 5.10: CuFFT version with big batch mode.
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Figure 5.11: CuFFTW version with big batch mode.

have a high impact on performance and predictability as mentioned resulting in significant
execution time increase. Because the big batch mode takes all the scales as one big array,
it can offset the small data sizes with which the KCF tracker works, making the data more
suitable to be executed on the GPU. As demonstrated in section 5.1 this mode significantly
improves the performance of CuFFT version, especially with bigger data sizes.

The figure 5.11 shows how in the CuFFTW version there is a considerable gap between
the forward and inverse FFT in the kernel computations, which represents the operation
in the correlation with the Gaussian kernel in the Fourier domain. The second problem is
the number of memory copies from the host to device memory and vice versa, which on
Jetson TX2, as mentioned in section 4.4.2.2, can be avoided entirely. The reason for these
memory copies is that the CuFFTW batch mode assumes the input and output arrays to
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be in the host memory and we used the regular CPU version of the ComplexMat version
with the CuFFTW. From the figure 5.10, it is apparent that both of the problems are not
present in the CuFFT version.

5.3 FFTW version profiling

The following section contains the profiling results for the FFTW version of the KCF
tracker. Specifically, the single threaded fftw version, to better see the results. We profiled
this version in the same way as we profiled the original version of the tracker, using the
Linux perf tool with profiled events being the CPU cycles and cache misses. The profiling
was also done on the same hardware so that the testing conditions are not different. The
overall number of events recorded is the same as in the profiling results from the section 3.4.

Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::track
KCF_Tracker::get_features
KCF_Tracker::gaussian_correlation
Fftw::forward_window

76.7%
38.1%
23.5%
6.81%

77.3 %
19.9 %
34.6 %
19.5 %

Table 5.1: Profiling results for KCF_Tracker::track. The threshold was set to 5% of total
cache misses measured.

As we can see from the table above one big difference happened in the number of cache
misses. In the original version of the tracker, the function with the most cache misses
in the KCF_Tracker::track was KCF_Tracker::gaussian_correlation, with 42.6%. In
the table 5.1, we can, however, see that in the FFTW version the cache misses dropped
almost by half. In its place is now KCF_Tracker::get_features, where the number of
cache misses increased from 26.5 % to 38.1%. We will look in detail only to KCF_Tracker::
gaussian_correlation and Fftw::forward_window, which contains modifications that we
made. KCF_Tracker::get_features was not modified, so its profiling results are the same
as in 3.4.

5.3.1 Gaussian correlation

The inverse DFT is still the primary hot-spot here but big change happened with the
results for the ComplexMat by changing the data layout from vector of vectors to only
single vector, we were able to reduce the number of cache misses happening in the class’s
methods all across the board. The number of cache misses for ComplexMat_<float>::
mat_mat_operator dropped from 6.35 % to only 0.0917 %. The ComplexMat_<float>::
conj was not present in the results instead the ComplexMat_<float>::sqr_norm was. We
concluded that the reason for this are inaccuracies of perf described in section 3.3.1, both
of these operation operations are close to each other, which could make the results for both
operations show only in one of them because of this we cannot say how the cache misses
changed. For the Fftw::inverse the main two hot-spots are the execution of the FFTW
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Symbol Cache misses
(inclusive)

Cycles
(inclusive)

KCF_Tracker::gaussian_correlation
Fftw::inverse
ComplexMat_<float>::sqr_norm

23.5%
10.1%
4%

34.6 %
19.3 %
0.881 %

Table 5.2: Profiling results for KCF_Tracker::gaussian_correlation. The threshold was
set to 4% of total cache misses measured. Rest of the operation was under 1 %.

plan and the cv::Mat::convertTo function, which even with Callgrind we were unable to
locate its caller. Our educated guess would be that it is the part of the creation of the
output cv::Mat. For the inverse DFT, the overall number of cache misses is now reduced
to only half it was, when using the OpenCV library. The main reason for this is that both
the ComplexMat and cv::Mat data arrays can be passed as input and output to the FFTW
plan.

5.3.2 Forward Fast Fourier Transform

For Fftw::forward_window the results show that the overall number of cache misses
is bigger than in the original version. Increasing from 5.37 % to 6.81 %. In the transform
itself under 1 % of all cache misses were measured, which is less than the original function
with 2.52 % and as such is no longer the central hot-spot here. Instead, the new problematic
section is the creation of the one channel cv::Mat used as an input for the FFTW plan. The
cache misses from the matrix multiplication between feature channels and cosine window
and iterations over the input std::vector with the channels now equal to 5.66 %. Reason
for this is that in each iteration we shift between memory location of the cv::Mat and the
input vector but their sizes are too large for both of them to be stored in the same time in
the cache resulting in the repeated eviction of one by the other.
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Conclusion

Based on the profiling we made to the original version of the KCF tracker, we modified
the most demanding sections of the tracker. These modifications resulted in 13 different
versions of the tracker using a different combination of technologies (OpenMP, CUDA),
libraries (OpenCV, FFTW, CuFFT) and data structures. We then benchmarked all of
these versions of the tracker to compare their performance and predictability. The results
showed that the acceleration of the tracker with GPU is advantageous only for larger tracking
windows and if we limit the number of data transfers between CPU and GPU.

During the implementation of the CuFFT version, we also found out that to obtain
better performance on the GPU it was not viable to convert only parts of the tracker,
because of the asynchronous execution of the CUDA kernels but to convert most of the
tracker to execute on the GPU. In all of the current GPU versions, we perform explicit
synchronization between the host thread and the device which negatively impacts the overall
performance of the tracker. For this reason, we would like to test out full GPU version of
the tracker. Also, we noticed a noticeable slowdown with larger windows which could be
accounted for the extraction of features and is one of the possible places that could show
improvement if transformed to execute on GPU, especially the HOG, which is well suited
for GPU. Another improvement that we would like to make is to change the current CUDA
kernels in the GPU ComplexMat, so they work on all sizes of feature channels and also make
the GPU ComplexMat compatible with linear kernel and not only Gaussian kernel.

As for the PREM model instead of the manual modification of the code we decided to use
the prototype compiler from HERCULES project, which should make these modifications
automatically. However, we discovered that the current version of the compiler could not
be easily used for complex codes such as the KCF tracker. In the future, we would like to
perform a manual implementation of the PREM model on the KCF tracker and see how
the performance and predictability changes compared to currently available versions. We
could see in the benchmarking results that the execution time for some datasets (e.g., Car1,
Nature) showed large differences in the maximum and minimum time per frame.
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Appendix A

Contents of CD

ROOT

Text

Text.pdf

Project

kcf
src

cn

cuda

piotr_fhog

sse2neon

README.md
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