
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering

Department of Control Engineering

Master’s Thesis

Strategies for the Forklift
Scheduling Problem

Jan Piskáček
Open Informatics, Computer Engineering

piskaja2@fel.cvut.cz

May 2018

Advisor: Ing. Antonín Novák

Acknowledgement / Declaration

I would like to thank my family
for support, encouragement and many
pieces of advice throughout my studies.
I would also like to thank my thesis su-
pervisor Antonín Novák for key insights
and commitment.

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne 24. 5. 2018

. .

v

Abstrakt / Abstract

Tato práce popisuje nový problém
rozvrhování zásobovacích vozíků. Pro-
blém rozvrhování zásobovacích vozíků
je minimalizační problém o nalezení pe-
riodického rozvrhu a plánu jízd vozíků
v továrně, za dodržení materiálových
požadavků všech strojů. V práci jsou
popsány dva způsoby řešení. První je
založen na konstruktivní heuristice.
Druhý způsob je založen na metodě ge-
nerování sloupců a modelu celočíselného
programování. Kvalita obou způsobů ře-
šení je otestována na vygenerovaných
instancích problému. Dále jsou výsledky
diskutovány z hlediska dopadu různých
vstupních parametrů na kvalitu řešení.
Výsledky ukazují, že volba vstupních
parametrů silně ovlivňuje kvalitu růz-
ných způsobů řešení a že prezentované
metody jsou schopny vyřešit instance
až s 12 stroji a 10 periodami s kvali-
tou výsledku 25% od vypočítané dolní
hranice.

Klíčová slova: problém rozvrhování
zásobovacích vozíků, konstruktivní heu-
ristiky, generování sloupců, lineární
optimalizace

Překlad titulu: Strategie pro problém
rozvrhování zásobovacích vozíků

This thesis introduces a new problem
called the Forklift Scheduling Prob-
lem. The Forklift Scheduling Problem
is a minimization problem of finding
a periodic schedule and routing plan
of forklift vehicles subject to material
demands of machines in a factory. The
thesis proposes two algorithms to solve
the Forklift Scheduling Problem, the
first is based on a constructive heuris-
tic approach and the second is based
on column generation method and an
Integer Linear Programming model.
We evaluate both algorithms on gen-
erated instances and discuss the effect
of different parameter combinations on
the quality of solutions. The results
show that the parameters of instances
heavily affect the quality of different
strategies and that our methods can
solve instances with up to 12 machines
and 10 periods within 25% from our
computed lower bound.

Keywords: forklift scheduling prob-
lem, constructive heuristics, column
generation, linear optimization

vi

Contents /

1 Introduction .1
1.1 Problem definition2
1.2 Complexity .3
1.3 Related work .5

1.3.1 Production Routing
Problem .5

1.3.2 Inventory Routing
Problem .6

1.3.3 Periodic Vehicle Rout-
ing Problem8

1.4 Key distinction between sim-
ilar problems .9

1.5 Contributions .9
1.6 Summary and outline 10

2 Instance builder 11
2.1 Implementation details 15

3 Constructive heuristics 17
3.1 Strategy . 20

3.1.1 Selection Pool Strategy . . 21
3.1.2 Selection Strategy. 21
3.1.3 Routing Strategy 23
3.1.4 Filling Strategy 24

4 Column generation method 25
4.1 Master problem 27

4.1.1 Example 30
4.2 Dual problem 33
4.3 Pricing problem - routing 34

4.3.1 Example 36
4.4 Pricing problem - charging 37
4.5 Orienteering Problem 38
4.6 Modifications and summary

of the model . 39
4.7 Assignment model 41

4.7.1 Example 43
5 Results . 45

5.1 Example demonstration 46
5.2 Set 1 . 48

5.2.1 Impact of vehicle count . . 50
5.2.2 Impact of the ratio be-

tween vehicle capacity
and machine capacity 51

5.2.3 Impact of the machine
capacity range. 51

5.2.4 Impact of the number
of periods. 53

5.3 Set 2 . 53
5.3.1 Impact of the ratio be-

tween vehicle capacity
and machine capacity 54

5.3.2 Impact of the machine
capacity range. 55

5.3.3 Impact of the number
of periods. 56

5.4 Set 3 . 56
5.4.1 Impact of the ratio be-

tween vehicle capacity
and machine capacity 57

5.4.2 Impact of the machine
capacity range. 58

5.4.3 Impact of the number
of periods. 58

5.5 Discussion . 59
6 Conclusion . 60
A Glossary . 61
B Contents of the attached CD 62

References . 63

vii

Tables /

1.1. Levels of decisions for differ-
ent problems. .7

1.2. Variants of IRP8
5.1. Parameters of set 1 46
5.2. Parameters of set 2 46
5.3. Parameters of set 3 46
5.4. Scores of strategies in set 1 49
5.5. Mean objective values for dif-

ferent vehicle counts 50
5.6. Mean objective values for dif-

ferent vehicle counts 50
5.7. Mean objective values for dif-

ferent ratios of vehicle and
machine capacity 51

5.8. Mean objective values for dif-
ferent ratios of vehicle and
machine capacity 52

5.9. Mean objective values for
different machine capacity
ranges . 52

5.10. Mean objective values for
different machine capacity
ranges . 53

5.11. Mean objective values for dif-
ferent number of periods 53

5.12. Mean objective values for dif-
ferent number of periods 54

5.13. Scores of strategies in set 2 54
5.14. Assignment model statistics

for set 2 . 55
5.15. Mean objective values for dif-

ferent ratios of vehicle and
machine capacity 55

viii

5.16. Mean objective values for
different machine capacity
ranges . 56

5.17. Mean objective values for dif-
ferent number of periods 56

5.18. Scores of strategies in set 3 57
5.19. Assignment model statistics

for set 3 . 57
5.20. Mean objective values for dif-

ferent ratios of vehicle and
machine capacity 57

5.21. Mean objective values for
different machine capacity
ranges . 58

5.22. Mean objective values for dif-
ferent number of periods 58

ix

Chapter 1
Introduction

Flexible manufacturing leads to a large number of product types with lower volume
batches. A large number of product types brings considerable challenges in material
supplying because the type and amount of materials needed is changing rapidly, as the
machines on the shop floor are continually reconfigured and supplied with new material
during production.

The objective of this work is to study and propose new strategies for supplying the
material for production machines on the shop floor with varying and periodic material
consumption. The informal problem statement could be summarized as follows: Given
a shop floor layout and the material demand profile of machines across the scheduling
horizon, build a schedule and a routing plan for the material supply with available
forklift fleet such that the required material demand of each machine is satisfied and
the forklift traveling time is minimized. It is also important to note that the problem
statement assumes electrically powered rechargeable forklifts which adds complexity to
the problem.

1 2 3 4 5 6 7 8 9 10
Period [h]

0

10

20

30

40

50

De
m

an
d

[u
ni

ts
 o

f m
at

er
ia

l]

Machine 1

Figure 1.1. Example of machine demand over a 10-period horizon. The length of the period
is one hour.

1

1. Introduction .
The travel time of forklift fleet is affected by the factory layout design. It is desirable

to minimize the travel time of forklifts to gain greater efficiency. By minimizing the
travel time, the forklift can be used for other activities in the factory or the forklift
operator can continue with other tasks sooner. Improving overall efficiency is one of
the major goals of warehouse management systems and reducing the travel time of
forklifts can help this goal.

Although we are trying to find a strategy for the problem in the context of a factory
and scheduling of forklift trucks, the context can be entirely different. In fact, the
overwhelming majority of work related to our problem is in the context of Vendor
Managed Inventory in Supply Chain Management [1]. Related work and key differences
between forklift scheduling and similar problems are discussed in chapters 1.3 and 1.4.

The Forklift Scheduling Problem (FSP) naturally includes the Traveling Salesman
Problem as a subproblem, and therefore it isNP-hard. That means that there should be
no algorithm with polynomial time complexity that can solve the problem to optimality
unless P = NP. The formal definition of the problem and proof of its NP-hardness is
given in the following chapters.

1.1 Problem definition

An input instance of FSP is defined as follows:

. Graph G = (V,E, t), where:

. V = {0, ..., n} is a set of vertices. E = {i, j} : i, j ∈ V, i 6= j} is a set of edges. t : E → R+ is a mapping from the set of edges to non-negative real numbers

Graph G is:

. complete. undirected. simple. weighted. metric - satisfies the triangle inequality

The given graph represents the layout of the machine on the shop floor. Vertex 0
represents the parking and charging station of the forklift fleet. The set V ′ = V \ {0}
represents machines that consume material periodically. The number of periods is p.
Mapping t represents the distances between vertices in meters. For every machine i ∈ V ′

a maximum storage capacity for material Wi is given and also a p-dimensional vector

2

. 1.2 Complexity

Di = (d1, ..., dp) that represents the material demands that need to be present in the
storage area of the machine i at the end of every period. There can be more material
in the storage area of a machine than is demanded; the material stays there until the
end of a period, then the amount of material demanded by the machine is consumed.

The number of forklifts is P . All forklifts have the same maximum loading capacity
C and also the same maximum battery capacity B. The battery discharge rate is
dependent on the speed of the forklift. The current battery charge state can never go
below 0 or above B. If a forklift has a low battery, it needs to be charged in the parking
station that is represented by vertex 0.

The forklift fleet delivers material to the machines. Every forklift can execute multiple
routes in a period. The routes have to start and end in the parking station, so every
route is a cycle. There can be multiple routes scheduled for a forklift during a period
but the sum of the traveling times cannot exceed the length of the period. The length
of periods is H and is set to be one hour.

The material demands, maximum storage capacity and forklift loading capacity all
have the same units.

The objective is to find a schedule and routing of the forklift fleet such that the sum
of individual traveling times is minimized and the material demands of the machines
satisfied. The output includes the set of routes for each forklift. Each route has to
specify the following information:

. time needed to execute the route. sequence of visited vertices. amount of material to unload at every visited vertex

The output also includes a set of charging sessions for each forklift. Every session
contains the time needed to complete the charging and the amount of battery capacity
that was charged.

1.2 Complexity

To prove NP-hardness of the Forklift Scheduling Problem we need to show a
polynomial-time reduction from a problem that is known to be NP-hard to our
Forklift Scheduling Problem. In other words, for every input instance of the chosen
NP-hard problem, we have to be able to construct the corresponding instance of the
Forklift Scheduling Problem in polynomial time. We will use the fact that TSP is
NP-hard, which was proven in the work of Richard M. Karp - Reducibility among
Combinatorial Problems [2].

3

1. Introduction .
Proposition:

TSP Cp FSP

Proof: Let’s take an arbitrary instance of TSP defined by an undirected weighted
graph that has the properties stated at the beginning of chapter 1.1, the goal is to
find a cycle visiting every vertex of the graph with a minimal sum of traversed edges.
We will show how to construct an instance of FSP from a TSP instance such that a
solution that is given by a black box that can solve the FSP is optimal if and only if
the solution to the corresponding instance of TSP is optimal.

For every vertex of TSP instance, we will create a corresponing vertex in the FSP,
from these vertices we arbitrarily choose one to represent the vertex number 0 (forklift
station). For every edge in the TSP instance, we add an edge between the corresponding
vertices in FSP and we will also give it the same distance ti,j . We will set the following
parameters to the FSP instance:

. Number of periods p = 1. For every machine i ∈ V ′ : Di = (1),Wi = 1. Number of forklifts P = 1. Maximum loading capacity of a forklift C = |V ′| (just enough to carry one unit of
material to every machine). Maximum battery capacity B =∞. Length of period H =

∑
i,j∈V,i 6=j

ti,j (enough time to traverse all of the edges in the

graph)

Since both graphs have the same weights on all edges and the only allowed speed is
1 m/s, the time it will take to travel between any two vertices in the FSP instance will
be equal to the corresponding weight in the TSP instance.

Now let’s take an instance of FSP constructed by the previous procedure and solve
it with a black box that can solve any instance of FSP. By definition, the solution will
be an optimal one. We know that vertex 0 has to be visited by definition and the rest
of vertices too because they have a demand for one unit of material. The travel time of
the forklift will be minimal, and that can only be achieved by taking the shortest cycle
that visits all the vertices. The shortest cycle found by FSP black box corresponds to
the optimal route of the TSP instance we began with. The time it takes to construct
the FSP instance is polynomial in the number of vertices. �

4

. 1.3 Related work

1.3 Related work

FSP is related to Production Routing Problem (PRP) [3]. PRP is described in more
detail in Chapter 1.3.1.

The Production Routing Problem has a simplified version where some aspects of the
problem are omitted, and it is called Inventory Routing Problem (IRP) [4]. IRP is the
closest problem to FSP mentioned in scientific papers that we found. We believe that it
can be considered as a modification to the IRP. The motivation behind these problems
is to minimize supply chain costs.

Supply Chain Management includes planning of all activities from producing goods
or services to transporting the produced goods from the supplier to customers (in this
context, the customers are retail stores). Traditionally, the replenishment decisions for
products are made by the customers, but in Vendor Managed Inventory (VMI) [5] prac-
tice it is the supplier that makes these decisions. VMI aims to reduce all costs involved
in the supply chain. These costs include unit production cost, fixed production setup
cost, inventory holding costs and transportation costs [4]. More detailed description
of PRP and IRP is presented in the following chapters. The last related problem we
present is Periodic Vehicle Routing Problem (PVRP) [6].

1.3.1 Production Routing Problem

The Production Routing Problem involves four layers of decision making in the supply
chain [7]:

. How many products to manufacture and when?. How many products to store, where to store them and for how long?. How many products to deliver and to whom?. Which route to take when delivering the products?

PRP combines Lot-Sizing Problem (LSP) [8] and Vehicle Routing Problem (VRP) [9].
The decisions stated were usually planned and optimized step by step. As previously
stated VMI takes all of these decisions into consideration when creating a plan to
execute. Because of that, it is possible to reduce costs even more than if those decisions
were dealt with step by step.

An instance of PRP is defined on a complete directed graph, where one node repre-
sents a plant and rest represent customers. There is also a finite set of periods. Each
customer has a demand in every period that has to be met. Each customer also has
some limited inventory space that cannot be exceeded. Products can be produced at
the plant and then at a later time distributed between customers by a set of identi-
cal vehicles, these vehicles have their own maximum capacity they can handle. The

5

1. Introduction .
production of products has a setup cost and also cost per unit produced. Holding the
products at the plant and at the customers incurs inventory holding costs. There are
also transportation costs associated with every edge of the graph.

The objective is to minimize the total production, inventory and transportation costs.
The output to an instance of the PRP has to specify the production quantity at the
plant in every period, the number of products that will be stored at the plant and
at the customers, the number of products to distribute between the customers and
also the routes the vehicles take to deliver them. Note that our description is very
condensed and states only the necessary information and details to understand what
the Production Routing Problem is about.

The Forklift Scheduling Problem has many similarities with the PRP. Both problems
are defined on a graph; both involve a set of periods and demands of some form (the
customer demand for products in PRP corresponds with the machine demands for
material in FSP). Both problems also include vehicles that can distribute the demanded
items (vehicles in PRP, forklifts in FSP).

Numerous solution approaches are mentioned in the review paper by Adulyasak,
Cordeau and Jans - The production routing problem: A review of formulations and
solution algorithms [4]. The solution approaches include a branch-and-cut algorithm,
decomposition-based heuristics, branch-and-price and mixed integer programming
heuristics and also metaheuristic approaches such as Adaptive Large Neighborhood
Search (ALNS) and memetic algorithms.

The size of solved benchmark instances introduced by Boudia et al. is 50 to 200
customers and 20 time periods [4]. Another benchmark was created by Archetti et al.
which includes instances up to 100 customers and 6 periods. Numerous papers on the
PRP used the mentioned benchmarks to compare their solution with other researchers.
The best average objective value on the Boudia et al. benchmark was achieved by
Adulyasak et al. [7]. It uses a modified Adaptive Large Neighborhood Search to solve
the problem.

Note that compared to the benchmarks introduced by Boudia et al. we generate
instances of FSP smaller in terms of vertices (interpreted as customers or machines).

1.3.2 Inventory Routing Problem

Instead of describing the Inventory Routing Problem from scratch, we will show the
differences between PRP. We end up with the IRP when we modify PRP not to involve
decisions on the production amount. It is assumed that there are just enough products
to satisfy all the customer demands in all periods.

6

. 1.3 Related work

decision level PRP IRP FSP VRP LSP

production x x

inventory and storage x x x

distribution x x x

routing plan x x x x

Table 1.1. Illustrating the various levels of decision making in different problems with FSP
added [7].

According to Coelho [1], the study of IRP is rooted in the paper of Bell et al. -
Improving the Distribution of Industrial Gases with an On-Line Computerized Routing
and Scheduling Optimizer [10].

Since the IRP is the closest problem to FSP, we will describe the work of Bell et
al. in more detail. The problem involves one central depot and multiple vehicles and
customers. The customers have fixed daily demand - each customer can have different
demand but the demand of one customer does not change from day to day, that is
a difference from FSP. The vehicle fleet is heterogeneous; every vehicle has different
capacity and operational costs. Usually, the delivery for one customer must be shipped
only by one vehicle. There are numerous additional constraints that are sometimes not
present in a typical IRP formulation, these constraints include:

. cannot let the customer supplies drop down to zero, therefore it is needed to maintain
a base level of supply at the customer. daily demand can sometimes change due to unexpected events. the delivery of products can arrive at the customer only in certain time windows. some vehicles cannot be used for delivery to certain customers

The total cost of distribution includes the salary of the drivers, toll, vehicle mainte-
nance costs, depreciation, prices of fuel and other costs independent of distance traveled.
The objective is to maximize the price of delivered goods minus the total costs.

The solution method used by Bell et al. involves Lagrangian relaxation algorithm
to solve Mixed Integer Programs (MIP). The MIP gave solutions proven to be near
optimality, i.e., 0.5 - 2.0 % from the optimum. Typical problem instance has from 150
to 400 customers and up to 30 vehicles. The size of MIPs is up to 800000 variables and
200000 constraints. Their solution also includes a module able to change the resulting
schedule if the schedule becomes undesirable due to unexpected events.

The paper also states that Mixed Integer Programs solved by their algorithm were
”apparently the largest integer programs ever solved to near optimality on a routine
basis.” and that the Lagrangian relaxation algorithm developed by them ”extended the

7

1. Introduction .
theory of optimization”. The optimization was saving between 6% - 10% of operating
costs of the company.

The paper written by Coelho, Cordeau and Laporte [1] provides a comprehensive
review of literature about IRP and presents a way to categorize different variants of
the problem. We will now summarize the categorization approach and try to describe
our Forklift Scheduling Problem with it. The variants of IRP are classified according to
two schemes: the first considers the structure of the problem and the second considers
the availability of information on the demand. There are also different modifications of
IRP with multiple types of delivered products and additional constraints to make the
results more practical in real-world applications.

The entries in bold in table 1.2 are the ones that are present in our Forklift Scheduling
Problem.

criterion

time horizon finite infinite
number of customers and plants one to one one to many many to many
routing method direct multiple

vehicle composition homogenous heterogenous
number of vehicles single many infinite
demand information deterministic stochastic dynamic

Table 1.2. Classification according to Coelho, Cordeau and Laporte in the paper Thirty
Years of Inventory Routing [1].

1.3.3 Periodic Vehicle Routing Problem

The PVRP is the last related problem we will mention. It is probably the least similar
problem presented. However, it includes the factor of periodicity and routing decisions
which makes it worth mentioning.

According to paper Forty Years of Periodic Vehicle Routing written by A. M. Camp-
bell and J. H. Wilson, which reviews the applications and solution methods of PVRP
[11], the PVRP has first appeared in 1974 in a paper focusing on garbage collection
(Beltrami and Bodin, Networks 4, 65–74). Many varieties of the problem have been
proposed; we will try to state a short informal description of the problem according to
a paper The Period Routing Problem [12] written by N. Christofides and J.E. Beasley.

We are given a central facility and a set of customers that must be supplied by
vehicles starting and ending in the central facility. There is also a set of p days, and

8

. 1.4 Key distinction between similar problems

each customer requires a certain number of visits by a vehicle during the p days. The
visits of a customer may only occur in predefined sets of k-day combinations. The goal
is to find a set of routes with the minimum cost of distribution that satisfies the number
of visits required by each customer and uses only the predefined k-day combinations for
delivery. Slightly different problem statements of the PVRP also exists, and the main
difference is in the definition of the periodicity of the deliveries.

Similarly to PRP and IRP, PVRP includes routing and it includes decisions on more
levels that heavily affect each other. The first choice in PVRP is between the available
k-day combinations, then we know which customers are we visiting on each day, then
we solve VRP in each day. Joining those decisions can lead to significant improvements
as in PRP and IRP, but the problem becomes very hard. Because of this, a number of
relaxations and heuristics of the PVRP were proposed by Christofides et al. [12].

Numerous varieties of PVRP were studied, for example, one with only one vehicle,
which makes it effectively a Periodic Travelling Salesman Problem, or other varieties
with time windows or multiple central depots.

1.4 Key distinction between similar problems

There are key differences between the Inventory Routing Problem and our Forklift
Scheduling Problem:

. the objective function

. IRP minimizes the total cost. FSP minimizes the total travel time of forklifts

. IRP includes the inventory holding costs, FSP has no corresponding element. all of the studied IRP formulations permit only one trip of a vehicle in a period,
whereas in FSP the number of trips is only limited by the constraint that all of the
trips have to be finished before the end of the current period. FSP includes a renewable resource constraining each forklift - the battery

1.5 Contributions

There are five main contributions of the thesis. We defined the Forklift Scheduling
Problem and explained the main similarities and differences from other problems such
as Production Routing Problem and Inventory Routing Problem. We also developed a
constructive heuristic algorithm with a modular design that can solve FSP. Then we
created an LP formulation of the problem and applied column generation algorithm

9

1. Introduction .
on it to obtain lower bounds. Furthermore, we created an ILP formulation that takes
a non-integer solution from the column generation algorithm and produces an integer
solution which is better than solutions given by the constructive heuristic algorithm in
approximately 50% of measured instances. Lastly, we tested the developed algorithms
on a broad set of generated problem instances and analyzed the results.

1.6 Summary and outline

So far we have defined the Forklift Scheduling Problem and presented the motivation
behind studying efficient algorithms to solve the problem. Similar problems, namely
Production Routing Problem, Inventory Routing Problem and Periodic Vehicle Routing
Problem, were described and the relation to our FSP explained and key differences
between those problems were shown. Furthermore, we classified FSP according to
scheme created by Coelho et al. [1].

In Chapter 2 we show a generator of problem instances for FSP. In Chapters 3
and 4 we present two methods to solve FSP and obtain a lower bound, namely the
constructive greedy heuristic similar to list scheduling approach and column generation
method based on LP formulation of the problem. We evaluate the methods in Chapter 5
and conclude the thesis in Chapter 6.

10

Chapter 2
Instance builder

In this chapter, we describe the main features of the software that was used to generate
problem instances. An instance of FSP is represented as a Java class. As we have seen
in chapter 1.1 the structure of the instances is fairly complicated and extensive. The
Instance class has the following members:

. vertex count. hour count. width and height (in meters). minimum vertex distance. object of class Vertex that represents the station. array of Machine objects. array of Vehicle objects

It would be very inconvenient to construct an Instance object with a constructor
because of the number of fields and also because some fields include other objects that
need to be properly instantiated too. When faced with a creation of a complex object
it is useful to use the Builder design pattern.

The Builder design pattern is creational design pattern. It is one of the patterns pre-
sented in the influential book Design Patterns: Elements of Reusable Object-Oriented
Software written by E. Gamma, R. Helm, R. Johnson and J. Vlissides. Builder pattern
is used to separate the construction of a complex object from its representation.

However, there are still problems with the pattern, because the creation steps of
the Instance object need to proceed in correct order. Fortunately, an extension of
the Builder pattern exists - the Step Builder pattern. The Step Builder enforces an
order of the builder methods, which is very convenient. If the Step Builder is set up
correctly, the programmer cannot make a mistake when creating a new instance with
it; the Java source code would not compile if there was an error in the order of steps.
Another advantage of Step Builder is being able to offer multiple alternatives for a
building step. For example, in the context of FSP , we would sometimes like to set the
coordinates of the vehicle station by hand, but sometimes generate it randomly. Step
Builder supports that option.

11

2. Instance builder .
The key to Step Builder implementation is to have a Builder, and an interface for

every step of the Builder, the enforcing of the order of steps is achieved by having the
methods return only a specific interface type and having the Builder implement all the
interfaces. To give the reader a better idea, here is a short code snippet to demonstrate
the concept. Note, that only a few steps are shown in the snippet.

private static class StepBuilder implements VertexCountStep,
HourCountStep, HeightStep, WidthStep, ..., BuildStep {
/* private fields, omitted */

@Override
public HourCountStep setVertexCount(int vertexCount) {

this.vertexCount = vertexCount;
return this;

}

@Override
public WidthStep setHourCount(int hourCount) {

this.hourCount = hourCount;
return this;

}

@Override
public HeightStep setWidth(double width) {

this.width = width;
return this;

}
}

Listing 2.1. Short code snippet showing the idea of StepBuilder.

The building steps also include options on setting a sensible default values, for ex-
ample, there is an option to set the battery capacity to 100.0 units, but if the user
wants to experiment with different capacities, there is also an option to set arbitrary
capacity. The same option is available for setting the battery charge and discharge rates
of vehicles. The is also an option to set the random coordinates of vehicle station or to
set it by hand, the same can be done with machines and their demands. Another no-
table building step is setting a minimal vertex (machine) distance between each other,
because when we let the builder generate the vertex coordinates at random, we want
to avoid the cases where the random coordinates end up clustered near each other, so
by adding that option, we can force the vertices to be more spread out.

The full list of possible building steps of the FSP instance Step Builder is:

. setVertexCount. setHourCount. setWidth

12

. .
. setHeight. setMinVertexDistance. setStation or setStationRandom. setMachines or setMachinesCapacityRange. setVehicleCapacity. setBatteryCapacity. setChargeRateFactor or setDefaultChargeRateFactor. setDischargeRateFactor or setDefaultDischargeRateFactor. setVehicleCount. build

An important thing to note that when computing the distance matrix of vertices
from the generated coordinates, we use Manhattan distance (1) rather than Euclidean
distance (2). This choice was made to better reflect the layout of factories and ware-
houses. The routes the forklifts take to deliver the material to the machines is very
likely to be rectangular due to the grid structure of factories and warehouses. A good
example of a warehouse layout showed in a paper by Davide Giglio [13] can be seen in
Figure 2.3.

dmanhattan(x, y) = |x1 − y1|+ |x2 − y2| (1)

deuclidean(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 (2)

To see how the resulting FSP instance looks like, we use Python script to plot the
factory layout and bar chart of the demand vectors of individual machines. The grey
transparent circles around the vertices on Figure 2.1 show the minimum vertex distance,
so it is easy to see that the required minimum distance is satisfied.

The Figure 2.2 shows a randomly generated vector of demands of a machine. The
storage capacity is always bigger than the periodic demand, otherwise, the instance
would be infeasible - the machine would require more material than it is physically
possible to fit into its storage area.

13

2. Instance builder .

10 20 30 40 50
x [m]

0

10

20

30

40

50
y

[m
]

number of machines = 19
width = 50.0
height = 50.0
min. machine distance = 5.0

0

1

2

3

4

5

6 7

8
9

10

11

12
13

14

15

16

1718

19

Factory layout
vehicle station
machine

Figure 2.1. Example of a factory layout with 20 vertices, the forklift station is colored in
red, the machines are colored in green. Minimum vertex distance is set to 5 meters.

1 2 3 4 5 6 7 8
Period [h]

0

10

20

30

40

50

De
m

an
d

[u
ni

ts
 o

f m
at

er
ia

l]

Machine 1

Figure 2.2. Example of machine demand over an eight period horizon. This periodic de-
mand was generated randomly between 5 and 50 units of material per period.

A full example of FSP executing all the required steps and building the instance
looks as follows:

14

. 2.1 Implementation details

Instance instance = Instance.Builder.getStepBuilder()
.setVertexCount(10)
.setHourCount(24)
.setWidth(30)
.setHeight(30)
.setMinVertexDistance(5)
.setStationRandom()
.setMachinesCapacityRange(30,50)
.setVehicleCapacity(300)
.setBatteryCapacity(100.0)
.setDefaultChargeRateFactor()
.setDefaultDischargeRateFactor()
.setVehicleCount(1)
.build();

Listing 2.2. Creating an instance of FSP with the StepBuilder.

In the next chapter, a greedy constructive heuristic algorithm will be described.

2.1 Implementation details

Initially, the implementation of both the instance builder and the algorithms was written
in Python. Python enabled faster implementation and also convenient libraries for
plotting, namely matplotlib and plotly, numpy library is also used. For easy conversion
from and to JSON, the json module is used. We decided to switch from Python to Java,
because of personal preference and strong typing of Java that is less error-prone. The
Java project uses only one external library, and it is Gson to easily convert an object
to and from JSON. Only the parts of code used for visualization remained in use in
the Python project. The solver used in both projects is Gurobi. Gurobi was chosen as
the solver because of previous experiences with it and Gurobi also offers free academic
licenses.

15

2. Instance builder .

Figure 2.3. Example of a warehouse layout with a grid structure [13].

16

Chapter 3
Constructive heuristics

The first solution method to create an algorithm to solve FSP was done through a
constructive approach. In general, a constructive approach constructs a solution step
by step, always looking at the current state of the solution and making a new decision
based on the current state. We terminate the algorithm when the solution is fully
constructed.

The constructive approach can also be a greedy one, that means that from our
current state, we are trying to make the best possible progression towards achieving
the optimal solution. However, there is no guarantee that the greedy approach always
gives the optimal solution. This fact is related to the problem of local optima, which is
one of the themes in the study of local search methods. Only problems with a certain
structure can be solved to the optimum by a greedy algorithm.

There are two main options we considered for creating a constructive algorithm to
solve FSP . The first one is to define a time quantum and update the current state
of the solution in those time quanta. The time quantum does not have to be always
the same length, but it has to be no longer than the time we could decide that a new
action should be performed, e.g., routing or charging. For example, we start in time 0,
we decide to send forklift v1 to machines m1, m2, m3, and forklift v2 to machines m4,
m5. We know how much time those trips take so that we can compute the greatest
common divisor of those times and that would be our quantum. We would update the
current state of the whole algorithm according to this time quantum until we could
make a new decision on routing or charging a vehicle. By current state, we mean the
current position of all forklifts, their battery state, and the current state of all storage
areas of machines. When we reach the point when a new decision can be made, we
take all the ongoing actions and the newly created action and again recompute the time
quantum and proceed to update the solution according to it. However, we did not take
this approach, because it seems unnecessarily complicated, so we came up with a less
complicated, yet comparably capable method.

The second method is to generate events and handle them in the correct order.
Handling of an event can produce another event, and the algorithm continues to handle
events until there are no more events to handle. To implement this algorithm, we used
a priority queue implemented with a well-known data structure called heap, we used a

17

3. Constructive heuristics .
min-heap in particular. Heap is a tree-based data structure that supports deleting the
minimum element in Θ(log n) and inserting new elements in O(log n).

The elements we insert into the heap are events. The events are extracted and
inserted into the heap with the key being their starting time. There are two types of
events. The first type is end of period event; it checks the amount of material that
is present in the storage area of all machines and makes sure that it is at least the
demanded amount for the current period and at most the maximum storage capacity.
The second is vehicle ready event, it looks at the current state of machines and computes
a new route to execute. The vehicle ready event also inserts new vehicle ready events
into the heap, because immediately after the completion of one route, the forklift is
once again ready to execute another.

The general outline of the algorithm is simple. First, we insert initial events into the
heap, which includes vehicle ready events, and for the end of every period, we add the
end of period events. The number of initial vehicle ready events, of course, depends on
the number of vehicles available in the problem instance. By handling the events, new
events get inserted into the heap. We always extract one event at a time from the heap
(the one with minimum start time) and handle it; we repeat this process until there are
no events left.

A route is defined by the path it takes and also by the amount of material it unloads
at each visited machine, all other parameters such as the time it takes to execute it,
and the battery that is drained by performing the route can be easily computed. It is
important to note, that when the algorithm decides to execute a certain route, it does
not wait for the end of the execution to update the vehicle battery or to update the
amount of material in storage areas. It simply updates those parameters immediately
after it is decided that a particular route will be taken.

This kind of ”eager” updating eliminates the problem of two forklifts being ready
at the same time. Suppose we are at the start of the algorithm and two forklifts are
now ready. So, we extract the most recent event from the heap, which is the first
forklift being ready to execute a route. We decide which route it will take and insert
new vehicle ready event to the heap, with the key being the time it takes to execute
the route plus current time. Now imagine we did not immediately update the state,
the second forklift ready would see the same state as the first forklift, and it would
try to execute the same route. This behavior is not desirable. When we immediately
update the state, the second forklift sees the current state as if the first forklift already
completed its route, which enables the second forklift to take a different, more desirable
route.

18

. .

input : An instance of FSP and a Strategy to use
output: Set of routes and charging sessions executed in every period by

every vehicle

create empty solution
initialize heap
add initial events to heap

while heap not empty do
event ← extract minimum from heap
result ← handle event with given strategy
add result to solution
if result signals a failure then

set solution as infeasible
break

end

return solution

1

Figure 3.1. Pseudocode of the main loop of the algorithm. Note that one of the inputs to
the algorithm is a Strategy, we will elaborate on Strategy in further chapters.

We already described how the end of period and vehicle ready events are handled.
The handling of end of period event is simple, so we will not describe it further, however
handling of vehicle ready event is the most important aspect of the algorithm.

When a vehicle is available to deliver material to machines, we need to make some
decisions:

. Which machines should be visited?. Which path should we take to visit all the selected machines?. How much material should we unload at each visited machine?

Most of the time, these decisions are done one by one, which means that the output
of the first one is the input to the second, etc. There are multiple possibilities how
to handle each decision. For example, when choosing machines to visit, we can only
choose the one with the biggest demand or we could choose k machines with the biggest
demand. We could also choose the set of machines to visit randomly. We call all the
different possibilities on how to handle the mentioned decisions strategies.

However, there is one general skeleton of the vehicle ready handling algorithm re-
gardless of chosen strategies. In the next chapter, we will describe the strategies for
each decision in more detail. Now, we will present the general skeleton of the algorithm:

19

3. Constructive heuristics .

input : A current state of instance of FSP and a Strategy to use
output: Route or charging session to be executed by the current vehicle

remaining time ← get remaining time to the end of the period
remaining battery ← get remaining battery capacity of the vehicle

selection pool ← strategy - get selection pool

if selection pool is empty then
charge vehicle until the end of the current period
add new vehicle ready event into the heap with time equal to the start of the
next period
return charging result

else

strategy - initialize selection strategy

while strategy - has next do

machines ← strategy - get next set of machines

tour ← strategy - get routing to selected machines

time ← get time needed for execution of the tour
battery ← get battery needed for execution of the tour
if remaining time < time or remaining battery < battery then

continue

consume the battery needed for execution of the tour

fill machines according to strategy
add new vehicle ready event into the heap with time equal to the expected
length of the tour
return routing result

end

charge vehicle to its full battery capacity
return charging result

end

return solution

Figure 3.2. Pseudocode of vehicle ready event handling method.

As we can see on Figure 3.2, there is a general skeleton of the algorithm which says
what type of decision is made when, but the concrete way in which the decisions are
made are tied to the selected strategy.

3.1 Strategy

The input to the handling method of vehicle ready event is a strategy. Strategy object
consists of four distinct strategies, the types of strategies are:

. SelectionPoolStrategy - in green. SelectionStrategy - in yellow. RoutingStrategy - in orange

20

. 3.1 Strategy

. FillingStrategy - in cyan

In Java, it is implemented with interfaces, every strategy from the list is an interface
and we can plug-in any object that implements the interface. The main Strategy object
is also created with the StepBuilder pattern. For example, if we come up with a
new way of selecting machines for delivery, we just create a class that implements the
SelectionStrategy interface, and we can easily construct a Strategy that uses our new
Selection Strategy.

By designing the Strategy in the described way, it is very modular and easy to extend.
However, not all strategies are compatible. For example, we would employ a selection
strategy that selects multiple machines to deliver the material to, but we would set
a direct routing strategy for the routing strategy. There is a direct conflict between
those strategies; one selects many machines, and the other can only create routes to one
machine. This problem has to addressed by the StepBuilder, to prevent the creation of
invalid strategy combinations.

3.1.1 Selection Pool Strategy

Selection Pool Strategy chooses the machines that will enter the selection process. It
can be thought of as a filter. We are not choosing any machines to deliver the material
to; we are only creating the set from which the next strategy, the Selection Strategy,
will choose the machines. There are two Selection Pool Strategies implemented.

Demand Sort Selection Pool sorts all the machines according to the amount they need
to satisfy their demand in the current period. It discards all machines that already have
enough material to satisfy the demands.

Random Sort Selection Pool also discards all machines that already have enough
material; then it randomly shuffles the remaining machines.

3.1.2 Selection Strategy

Selection Strategy chooses machines that will be visited during the trip. If the chosen
machines cannot be visited due to low battery or not enough time to execute the route,
the selection strategy will try another set of machines. It can be seen on figure 3.2 that
its use is very similar to an iterator, calling has next in a while loop and then getting
the next set of machines with get next.

Largest Demand Selection selects machines one by one, in the order determined by
Selection Pool Strategy.

Random Selection every time randomly selects a new subset of machines.
Subset Selection selects subsets of machines from the ones with the largest cardinal-

ity.

21

3. Constructive heuristics .
K-element Subset Selection selects only k-element subsets at maximum from the

machines, the k is set to 2 initially.
ILP Selection chooses machines according to an Integer Linear Programming (ILP)

model. It is the only strategy, which decides on more levels than one because it not only
chooses the machines but also decides how much material will be delivered to them.
The model tries to select as many machines provided that it can satisfy their demand
for the current period. It penalizes the solutions that would deliver more material than
necessary to a machine; it does so with the negative sum of ym in objective function
(1).

The model also includes a feedback mechanism that can add additional constraints
if the machines chosen in the previous iteration could not be visited due to low battery
or not enough time. When such thing occurs, the feedback ensures that the previously
selected machines cannot be selected together again.

Objective function:

max
∑
m∈M

xm − ym (1)

Subject to:

∑
m∈M

zm = C (2)

xm ≤ zm ∀m ∈M (3)

(BigM) xm ≥ zm ∀m ∈M (4)

dm − cm ≤ zm + (BigM) (1− xm) ∀m ∈M (5)

cm + zm ≤Wm ∀m ∈M (6)

cm + zm − dm ≤ (BigM) ym ∀m ∈M (7)

Variables:

. zm ∈ N0 . . . amount of material to unload at machine m. xm ∈ {0, 1} . . . indicator variable equal to one if and only if zm is enough to satisfy
the demand of machine m in current period. ym ∈ {0, 1} . . . indicator variable equal to one if and only if zm is strictly more than
enough to satisfy the demand of machine m in current period

Parameters:

. M . . . set of machines. C ∈ N0 . . . vehicle material capacity

22

. 3.1 Strategy

. dm ∈ N0 . . . the demand of machine m in current period. cm ∈ N0 . . . amount of material already present in the storage area of machine m. Wm ∈ N0 . . . maximum storage capacity of machine m. BigM ∈ R . . . sufficiently large constant

The objective function (1) rewards the model for filling a machine just enough to
satisfy the demand and penalizes the model for exceeding it. Constraint (2) ensures
that the delivered amount is equal to the vehicle capacity. However, this constraint
cannot always be satisfied, so if the model is infeasible, we solve a relaxed version
that only ensures that the delivered amount is less or equal to the vehicle capacity.
Constraints (3) and (4) tie the indicator variable xm with zm. Constraint (5) forces
zm to be at least the amount of material that is required to satisfy the demand of
machine m. Constraint (6) prevents zm from exceeding the maximum storage capacity
Wm. Constraint (7) forces the indicator variable ym to be equal to one if the demand
of machine m is exceeded.

3.1.3 Routing Strategy

Routing Strategy chooses the path to take to the selected machines. The path needs
to start and end at the forklift station, so it will always form a cycle on the underlying
graph.

Direct Routing constructs the most simple kind of path - a direct path from the
station to a machine and back.

TSP Routing constructs the shortest cycle that visits all the selected machines. It
does so by solving a TSP ILP model with lazy constraints to eliminate sub tours.

Objective function:

min
∑

(i,j)∈E

di,j xi,j (8)

Subject to:

∑
(i,j)∈E

xi,j = 1 ∀j ∈ V (9)

∑
(i,j)∈E

xi,j = 1 ∀i ∈ V (10)

∑
(i,j)∈S:i 6=j

xi,j ≤ |S| − 1 S ⊂ V, S 6= ∅ (11)

23

3. Constructive heuristics .
Variables:

. xi,j ∈ {0, 1} . . . is equal to one if and only if vertex i is in the cycle just before vertex
j

Parameters:

. V . . . set of vertices, consists of all machines and forklift station. E . . . set of edges. di,j ∈ R+ . . . the distance between vertices i and j

The objective function (8) minimizes the total distance of the cycle. Constraints (9)
and (10) ensure there is only one incoming and one outgoing edge for every vertex.
Constraints (11) require that every strict subset of vertices has at most |S| − 1 edges,
which means that there are not enough edges to form a cycle in the set S. However,
adding all constraints (11) is not practical since there are exponentially many subsets
of V . Therefore they are added lazily into the model [14]. Whenever we get a solution
from the solver, we can test the solution in a callback for any sub tours, if a sub tour
is found, the constraint (11) is added, effectively preventing the sub tour from being
included in the solution again.

3.1.4 Filling Strategy

Filling Strategy determines how much material will be unloaded at the selected ma-
chines. It needs to make sure that the maximum storage capacities of machines are not
exceeded.

Even Filling fills the machines as evenly as possible. The leftover material is then
given to the machines in the order determined by the Selection Pool Strategy

Random Filling fills the machines randomly.

24

Chapter 4
Column generation method

The second general approach for solving the FSP uses column generation. Column
generation is a method to solve large linear programs efficiently. By large, we mean
linear programs with an exponential number of variables with regard to the size of the
input. Before we start to explain our application of column generation method, we will
introduce the general notion of linear programs, their duality, dual prices and column
generation.

Linear programs model problems of minimizing a linear objective function subject to
a set of linear inequality constraints. Our description of a linear program is only one of
the possible forms of a linear program. However, the critical point is that all the forms
are equivalent, which means that they can be rewritten in any other form. The form
we present is inequality form [15].

minimize cT x (1)

subject to Ax ≥ b (2)

x ∈ Rn

Linear programming has broad application in modeling problems of routing, schedul-
ing or planning. The primary industries that utilize linear programming models are
manufacturing, transportation, and telecommunications [16]. LP is also used in opera-
tional research.

One of the essential theories of linear programming is duality theory [17]. Duality
theory states that for every LP problem, called the primal, exists a dual problem that
has a relationship with the primal. The theory gives essential insights and enables the
use of numerous algorithms for solving LP.

For example, in case of minimization problems, the solution of the dual problem gives
us a lower bound on the solution given by the primal. Another important thing is that
each constraint in the primal problem corresponds to a variable in the dual and each
variable in the primal corresponds to a constraint in the dual.

25

4. Column generation method .
When we solve the primal problem, we can compute a dual price for each constraint;

the dual price is the optimal value of the corresponding variable in the dual problem.
The dual price tells us how much improvement can we get by relaxing the associated
constraint by some small amount.

Finally, we introduce the method of column generation also known as delayed col-
umn generation; column generation helps with solving linear programs with a massive
number of variables more efficiently. The idea behind column generation is similar to
the idea of adding lazy constraints to an LP model 3.1. Lazy constraints help with the
problem of exponentially many constraints, so they are added lazily into the problem,
and column generation uses the same idea applied to variables. The FSP problem ex-
actly suffers from the problems described. It can potentially have a massive number of
variables because there are many routes to choose from, and for every route, we also
have to decide how much material will be delivered to each machine.

The method works by solving the primal problem, also called the restricted master
problem (RMP) with only a subset of variables present. After solving the RMP, we can
get the dual prices and construct a pricing problem. In our case, the pricing problem is
an ILP model. The purpose of pricing problem is to find variables (columns) with the
negative reduced cost since only those can improve the objective value of the master
problem.

We add the newly found column to the restricted master problem and resolve it, and
then again construct the pricing problem. The loop continues until no variable with
negative reduced cost is found. When there is no variable with negative reduced cost,
we know that the solution to the master problem is optimal. The optimal solution can
be found without even considering all the possible variables in the problem [18], and
that is the reason why column generation can be much more efficient than the standard
solving method. The pricing problem ensures that only the variables that have the
potential to improve the objective value of the RMP can be added. The flowchart of
the whole algorithm is in Figure 4.1

When combined with other methods such as branch-and-bound, column generation
can become a powerful tool to solve mixed integer linear programming (MILP) prob-
lems, as M. Lübbecke states in his paper [18] ”...column generation is a real winner in
the context of integer programming. This made the powerful method a must-have in the
computational mixed integer programming bag of tricks.”. Another advantage of column
generation is that it often gives much stronger bounds than the original LP relaxations
[18].

The combined method is called branch-and-price. The general outline could be sum-
marized as follows: In every node of the branch and bound tree, we perform column

26

. 4.1 Master problem

generation and then continue branching until the solution is integral. As J. Desrosiers
writes in his paper [19] ”When the linear relaxation in each node of a branch-and-bound
tree is solved by column generation, one speaks of branch-and-price.”

MASTER PROBLEM

RESTRICTED MASTER
PROBLEM

SOLVE RMP AND
OBTAIN DUAL PRICES

SOLVE PRICING
PROBLEM

NEGATIVE
REDUCED

COST?

YES

INTRODUCE NEW
VARIABLE (COLUMN)

NO

SOLVE THE RMP AND
GET THE OPTIMAL

SOLUTION

Figure 4.1. The column generation method flowchart.

4.1 Master problem

We formulated the master problem for one forklift with columns being the in-
dividual routes and with real-valued variables pk,τi that decide how many times
we use the route (column) k in period τi. A column is a vector of the form:
(tk, uk,m0 , uk,m1 , uk,m2 , . . . , vk,m1 , vk,m2 , . . .).

The tk parameter is the time it takes to execute the route, the time is always the
minimal one, and that is ensured by correctly generating the columns in the pricing
problem. The parameters uk,mi say how much material the route delivers to machine

27

4. Column generation method .
mi and their indicators vk,mi indicate, that at least one unit of material was delivered
by the column to machine mi.

One important note about our formulation is the meaning of ”machine” uk,m0 , which
represents the overall decrease in remaining battery capacity after executing the route
(column) k. By formulating the battery decrease in this way, we can think about the
battery as being a ”virtual machine” that also needs to meet specific demands in every
period. In particular, we need to ensure that the sum of all the battery contributions
of all used routes for every period does not drop below zero or exceed the maximum
battery capacity. Another implication of our formulation is that we can also use columns
to represent charging of the forklift. We do it by setting all uk,mi to zero, then setting
uk,m0 to a negative value and since the values meaning is the decrease in the battery,
we charge the forklift.

We need to be able to model the fact, that after every period, the amount of material
the machine demanded for the period is consumed and any leftover material stays in
the storage area of the machine. We considered two possibilities. The first is having a
helper variable for every machine in every period equal to the sum of delivered material
minus the demanded amount of material. If we choose this option, we can easily chain
together the material states in every period for every machine, but the downside is that
it complicates the formulation. The second possibility is to compute the cumulative
demands of each machine in every period and modify the constraints accordingly. This
formulation deals with the amount of leftover material implicitly, without the need of
any additional variables. Our formulation uses the second option.

The master problem is formulated as follows:
Objective function:

min
∑
k∈K′

∑
τi∈T

tk pk,τi (3)

Subject to:

∑
k∈K

∑
τi∈τPi

uk,mv pk,τi ≥ dτPi (−1),mv
∀mv ∈M, ∀τPi ∈ TP (4)

∑
k∈K

∑
τi∈τPi

vk,mv pk,τi ≥
⌈dτPi (−1),mv

C

⌉
∀mv ∈M \ {m0}, ∀τPi ∈ TP (5)

∑
k∈K

∑
τi∈τPi

−uk,mv pk,τi ≥ −(dτPi (−2),mv
+Wmv) ∀mv ∈M, ∀τPi ∈ TP (6)

∑
k∈K

−tk pk,τi ≥ −3600 ∀τi ∈ T (7)

28

. 4.1 Master problem

Variables:

. pk,τi ∈ R+
0 . . . the number of times route k is executed in period τi

Parameters:

. K . . . set of routes. K ′ . . . set of routes that satisfy uk,m0 > 0. T . . . set of periods. TP . . . set of sets τPi. τPi . . . set of periods from 1 to i, e.g. τP3 = {τ1, τ2, τ3}. τi . . . period i. M . . . set of machines {m0,m1,m2 . . .}, where m0 represents the battery. uk,mv ∈ N0 . . . amount of material unloaded at machine mv in route k. vk,mv ∈ {0, 1} . . . is equal to one if and only if the amount of material uk,mv is at least
one. uk,m0 ∈ R . . . amount of battery drained by route k. Wmv ∈ N . . . storage capacity of machine mv, for m0 it is battery capacity B. dτi,mv ∈ N0 . . . cumulative demand of machine mv in period τi, for m0 it is always 0
(battery cannot get negative). dτPi (−1),mv

∈ N0 . . . cumulative demand of the last period in set τPi. dτPi (−2),mv
∈ N0 . . . cumulative demand of the second last period in set τPi

The objective function minimizes the sum of traveling times of the forklift across all
routes and all periods. If the solution does not use a route, its corresponding variable
pk,τi will be equal to zero. There is only a single forklift, but in the case of multiple
forklifts the objective function would sum all the traveling times of all forklifts, that
means having multiple forklifts does not have a significant impact on the objective
value. We will discuss more on the effect of multiple forklifts on the solution in chapter
5.

The constraints (4) ensure that all cumulative demands of all machines are satisfied.
We do it by defining the sets τPi that include all periods up until the period i. We
sum the material delivered to the machine mv over all possible sets of τPi , and we
compare that to the cumulative demand of the last period in τPi . The constraints (5)
enforce the minimal number of visits to each machine that is needed to satisfy their
demand. More discussion about the reasons behind adding the constraint to the model
in Chapter 4.6. Constraints (6) are analogous to the first constraints, but instead of
enforcing a minimum amount of material they make sure the material does not exceed
the maximum storage capacity of the machine. The right-hand side of the inequality
is equal to the amount of material that had to be delivered to the machine up until

29

4. Column generation method .
the previous period dτPi (−2),mv

plus the maximum capacity Wmv . The inequality is
multiplied by minus one to make it a ”greater than” inequality. Constraints (7) ensure
that the sum of execution times of all routes in a period is less than one hour, the units
of time are seconds, hence the −3600 on the right-hand side.

The master problem needs to be initialized with some set of routes (columns). The
way we initialize our master problem is by solving the particular instance by the best
achieving constructive heuristic and then converting the result to a set of columns.
This set of columns is the initial input to the master problem. It is in our interest to
initialize the column generation master problem with columns from the best solution
we have since it can speed up the whole solution process.

4.1.1 Example

We present an example formulation for the master problem. The layout of the instance
is on the Figure 4.2. The instance has three vertices, one of them being the station.
The machine m0 represents the ”virtual machine” that is the battery. The number of
periods is two. Vehicle capacity C = 200 and battery capacity B = 100.

15 20 25 30 35
x [m]

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

y
[m

]

number of machines = 2
width = 50.0
height = 50.0
min. machine distance = 0.0

0

1

2

Factory layout
vehicle station
machine

Figure 4.2. Layout of example instance.

30

. 4.1 Master problem

The demands of the machines and battery m0 are:

. dτ1,m0 = 0, dτ2,m0 = 0. dτ1,m1 = 30, dτ2,m1 = 60. dτ1,m2 = 70, dτ2,m2 = 25

The cumulative demands of the machines and battery m0 are therefore:

. dτ1,m0 = 0, dτ2,m0 = 0. dτ1,m1 = 30, dτ2,m1 = 90. dτ1,m2 = 70, dτ2,m2 = 95

The machine capacity limits are:

. Wm0 = B = 100. Wm1 = 100. Wm2 = 100

The initial set of columns, including the charging column and an example form of
the column, are:

. (tk, uk,m0 , uk,m1 , uk,m2 , vk,m1 , vk,m2). (40, 4.44, 50, 0, 1, 0). (40, 4.44, 0, 50, 0, 1). (80,−8.88, 0, 0, 0, 0)

The first two columns are direct deliveries to machines m1 and m2, because they are
20 meters away and the speed of the forklift is one meter per second, the time it takes
to execute each of the columns is 40. The third column is the charging column, that is
why the amount of battery drained is negative.

Objective function:

The objective function (3) looks as follows in our example instance. Notice, that only
the routing columns are present in the objective function.

min 4.44 · p1,τ1 + 4.44 · p1,τ2 + 4.44 · p2,τ1 + 4.44 · p2,τ2

Subject to:

The constraints (4) from the master problem, the first two rows are for the machine
m0 (the battery), and the next four rows are for machines m1 and m2. The right-hand
sides of the inequalities are the cumulative demands.

31

4. Column generation method .

4.44 · p1,τ1 + 4.44·p2,τ1 + −8.88 · p3,τ1 ≥ 0

4.44 · p1,τ1 + 4.44 · p1,τ2 + 4.44·p2,τ1 + 4.44 · p2,τ2 − 8.88 · p3,τ1 − 8.88 · p3,τ2 ≥ 0

50 · p1,τ1 + 0·p2,τ1 + + 0 · p3,τ1 ≥ 30

50 · p1,τ1 + 50 · p1,τ2 + 0·p2,τ1 + 0 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≥ 90

0 · p1,τ1 + 50·p2,τ1 + + 0 · p3,τ1 ≥ 70

0 · p1,τ1 + 0 · p1,τ2 + 50·p2,τ1 + 50 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≥ 95

The constraints (5) for ensuring a certain number of visits to every machine. We do
not include m0 since it does not make sense for the battery.

1 · p1,τ1 + 0·p2,τ1 + +0 · p3,τ1 ≥ 1 = d 30
200e

1 · p1,τ1 + 1 · p1,τ2 + 0·p2,τ1 + 0 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≥ 1 = d 90
200e

0 · p1,τ1 + 1·p2,τ1 + +0 · p3,τ1 ≥ 1 = d 70
200e

0 · p1,τ1 + 0 · p1,τ2 + 1·p2,τ1 + 1 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≥ 1 = d 95
200e

The constraints (6) that ensure that the maximum storage capacity for every machine
is not exceeded. Logically, the ”maximum storage capacity” for the battery is equal to
the battery capacity.

4.44 · p1,τ1 + 4.44·p2,τ1 + −8.88 · p3,τ1 ≤ 100

4.44 · p1,τ1 + 4.44 · p1,τ2 + 4.44·p2,τ1 + 4.44 · p2,τ2 − 8.88 · p3,τ1 − 8.88 · p3,τ2 ≤ 100

50 · p1,τ1 + 0·p2,τ1 + + 0 · p3,τ1 ≤ 100

50 · p1,τ1 + 50 · p1,τ2 + 0·p2,τ1 + 0 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≤ 130

0 · p1,τ1 + 50·p2,τ1 + + 0 · p3,τ1 ≤ 100

0 · p1,τ1 + 0 · p1,τ2 + 50·p2,τ1 + 50 · p2,τ2 + 0 · p3,τ1 + 0 · p3,τ2 ≤ 170

The following are constraints (7) for our instance. The sum of all columns multiplied
by the number of times they are used cannot exceed the time of one hour.

40 · p1,τ1 + 40·p2,τ1 + 80 · p3,τ1 ≤ 3600

40 · p1,τ2 + 40·p2,τ2 + 80 · p3,τ2 ≤ 3600

32

. 4.2 Dual problem

4.2 Dual problem

The next step is the formulation of the dual problem from our master problem. We
need to get the dual master problem to formulate the pricing problem. After solving
the master problem, we can obtain the dual prices of the constraints which correspond
to the variables ψ, π, φ and γ in the dual. The meaning of these variables is described
below. We will not describe the dual formulation further since we directly derived it
from the master problem.

Objective function:

max
∑

τPi ∈TP

∑
mv∈M

dτPi (−1),mv
ψτPi ,mv

+
∑

τPi ∈TP

∑
mv∈M

−(dτPi (−2),mv
+Wmv) πτPi ,mv

+
∑

τPi ∈TP

∑
mv∈M

⌈dτPi (−1),mv

C

⌉
φτPi ,mv

−3600
∑
τi∈T

γτi (8)

Subject to:

∑
τPi ∈TP :τi∈τPi

∑
mv∈M

(uk,mv (ψτPi ,mv
−πτPi ,mv

) +vk,mv φτPi ,mv
)−tk γτi ≤ tk ∀k ∈ K, ∀τi ∈ T

(9)

Variables:

. ψτPi ,mv
. . . dual prices of constraints (4) from the Master problem. πτPi ,mv
. . . dual prices of constraints (6) from the Master problem. φτPi ,mv
. . . dual prices of constraints (5) from the Master problem. γτi . . . dual prices of constraints (7) from the Master problem

Parameters:

. uk,mv ∈ N0 . . . amount of material unloaded at machine mv in route k. uk,m0 ∈ R . . . amount of battery drained by route k. tk ∈ R+ . . . time needed to execute route k

33

4. Column generation method .
ψ, π, φ and γ are variables in the dual, but when we solve the master problem and

obtain the dual prices of each constraint, we get the optimal values of these dual vari-
ables. So when we introduce them to the pricing problem, they are not variables but
parameters. We distinguish the variables from dual from parameters in the pricing
problem with a hat above the letter, e.g., ψ → ψ̂.

4.3 Pricing problem - routing

The pricing problem is derived from the dual problem by taking the constraint (9) and
formulating a maximization problem on the constraint. We know that in the master
problem uk,mv were parameters, in the pricing problem, however, they are variables. The
goal of pricing problem is to find the column that has the best objective value because
that column is the one which can improve the solution from the master problem.

The pricing problem essentially solves a problem of choosing which machines to visit
and how much material to deliver to them. It remotely resembles the traveling salesman
problem. However another problem exists that is much closer to the model of our
pricing problem, and that is the Orienteering Problem [20], we explain the similarities
and differences from Orienteering Problem in Chapter 4.5.

Because of the structure of the master problem, we need to choose a period τi for
which we want to find a new column. The existential quantification on k in the objective
function (10) points out the fact we are finding the route k with the maximum objective
value.

Objective function:

max
∑

mv∈M̂\{ms}

(uk,mv λ̂mv + vk,mv φ̂τPi ,mv
)− tk(1 + γ̂τi) ∃k ∈ K, for chosen τi ∈ T

(10)
Subject to:

yinms
= 1 (11)

youtms
= 1 (12)

yinmi
= youtmi

∀mi ∈ M̂ \ {ms} (13)

yinmi
≤ 1 ∀mi ∈ M̂ \ {ms} (14)

si − sj + ti,j ≤ (BigM)(1− xi,j) ∀mi ∈ M̂, ∀mj ∈ M̂ \ {ms} (15)

ss = 0 (16)

si ≥ 0 ∀mi ∈ M̂ \ {ms} (17)

34

. 4.3 Pricing problem - routing

uk,mi ≤ (BigM) youtmi
∀mi ∈ M̂ \ {ms} (18)

uk,mi ≥ youtmi
∀mi ∈ M̂ \ {ms} (19)

vk,mi ≤ (BigM) uk,mi ∀mi ∈ M̂ \ {ms} (20)

(BigM) vk,mi ≥ uk,mi ∀mi ∈ M̂ \ {ms} (21)

uk,m0 = β tk (22)

uk,m0 ≤ B (23)

uk,mi ≤Wmv ∀mi ∈ M̂ \ {ms} (24)∑
mi∈M̂\{ms}

uk,mi ≤ C (25)

Variables:

. xi,j ∈ {0, 1} . . . indicates if machine mi is visited just before machine mj. si ∈ R+
0 . . . the imaginary time of visit of machine mi. uk,mi ∈ N0 . . . amount of material delivered to mi. uk,m0 ∈ R . . . amount of battery drained by route k

Helper variables:

. yinmi
=

∑
mj∈M̂

xj,i . . . sum of edges coming in machine mi. youtmi
=

∑
mj∈M̂

xi,j . . . sum of edges coming out of machine mi. tk =
∑

mi,mj∈M̂
xi,j ti,j . . . time needed to execute the route

Parameters:

. M . . . set of machines {ms,m0,m1,m2 . . .}, where m0 represents battery and ms is
the forklift station. M̂ = M \ {m0}. ti,j ∈ R+ . . . the time it takes to get from machine mi to machine mj. λ̂mv =

∑
τPi ∈TP :τi∈τPi

(ψ̂τPi ,mv
− π̂τPi ,mv

) . . . the score of machine mv in given period τi. φ̂τPi ,mv
. . . dual prices of constraints (5) from the Master problem. γ̂τi ∈ R . . . dual prices of constraints (7) from the Master problem. C ∈ N . . . the capacity of forklift. B ∈ R+ . . . the battery capacity of forklift. β ∈ R+ . . . the discharge rate factor. BigM . . . high valued constant used for turning off constraints and tying variables

with their corresponding indicator variables

There are three helper variables that make the formulation more comprehensible.
First, variables yinmi

and youtmi
that sum all of the incoming and outgoing edges from a

35

4. Column generation method .
vertex (machine). Second, the variable tk that sums all the weights of the edges along
the path chosen by indicators xi,j .

Constraints (11) and (12) force the route to start and end in the station ms. Con-
straints (13) and (14) ensure that when a route enters a given machine, it will also
leave the machine and that visiting all machines is not mandatory. Constraints (15),
(16) and (17) are sub-tour elimination constraints. Constraints (18) and (19) ensure
that if we visit a machine, at least one unit of material will be delivered to it and if
we do not visit that machine, no amount of material can be added to that machine. A
bit redundant constraints (20) and (21) that tie the indicator variables vk,mi to uk,mi .
Both of those variables are present in the column returned to the master problem.
Constraint (22) sets the ”virtual machine” uk,m0 that represents the battery drain to
the correct value based on how long the selected tour takes. Constraint (23) puts an
upper bound on the amount of battery that can be drained. Constraints (24) ensure
that the column cannot deliver more material than the maximum storage capacity of
the machine. Finally, constraint (25) ensures all the delivered material can fit into the
forklift.

4.3.1 Example

We will show an example of columns generated by the pricing problem when solving
the instance from Chapter 4.1.1. Only the routing columns are shown, the charging
column is the same in every iteration of the master problem, and the pricing problem
does not produce charging columns anyway, more on that fact in Chapter 4.4. We will
show the result of the master followed by the newly generated column from the pricing
problem. The column used in the master problem will have their corresponding value of
variable pk,τi . The columns are shown with their variable names to make the notation
more comprehensible. By uk vector we mean a vector of (uk,m0 , uk,m1 , uk,m2) and by vk
we mean (vk,m1 , vk,m2).

Iteration 0 - master solution with initial columns that correspond to direct deliveries:

. period = 0, pk,τi = 1.0, tk = 40.0, vector uk = (4.44, 0.0, 100.0), vector vk = (0, 1). period = 0, pk,τi = 1.0, tk = 40.0, vector uk = (4.44, 100.0, 0.0), vector vk = (1, 0)

New column found by Pricing problem:

. tk = 60.0, vector uk = (6.66, 1.0, 1.0), vector vk = (1, 1)

Iteration 1 - master solution:

. period = 0, pk,τi = 0.9494, tk = 40.0, vector uk = (4.44, 0.0, 100.0), vector vk = (0, 1). period = 0, pk,τi = 0.9494, tk = 40.0, vector uk = (4.44, 100.0, 0.0), vector vk = (1, 0)

36

. 4.4 Pricing problem - charging

. period = 0, pk,τi = 0.0505, tk = 60.0, vector uk = (6.66, 1.0, 1.0), vector vk = (1, 1)

New column found by Pricing problem:

. tk = 60.0, vector uk = (6.66, 1.0, 100.0), vector vk = (1, 1)

Iteration 2 - master solution:

. period = 0, pk,τi = 0.8989, tk = 40.0, vector uk = (4.44, 0.0, 100.0), vector vk = (0, 1). period = 0, pk,τi = 0.8989, tk = 40.0, vector uk = (4.44, 100.0, 0.0), vector vk = (1, 0). period = 0, pk,τi = 0.1010, tk = 60.0, vector uk = (6.66, 1.0, 100.0), vector vk = (1, 1)

New column found by Pricing problem:

. tk = 60.0, vector uk = (6.66, 100.0, 1.0), vector vk = (1, 1)

Iteration 3 - master solution:

. period = 0, pk,τi = 0.8484, tk = 40.0, vector uk = (4.44, 0.0, 100.0), vector vk = (0, 1). period = 0, pk,τi = 0.8484, tk = 40.0, vector uk = (4.44, 100.0, 0.0), vector vk = (1, 0). period = 0, pk,τi = 0.1010, tk = 60.0, vector uk = (6.66, 1.0, 100.0), vector vk = (1, 1). period = 0, pk,τi = 0.0505, tk = 60.0, vector uk = (6.66, 100.0, 1.0), vector vk = (1, 1)

New column found by Pricing problem:

. tk = 60.0, vector uk = (6.66, 100.0, 100.0), vector vk = (1, 1)

Iteration 4 - master solution:

. period = 0, pk,τi = 1.0, tk = 60.0, vector uk = (6.66, 100.0, 100.0), vector vk = (1, 1)

No new columns found by the Pricing problem.
The fact that the final solution to the master problem is an integer one is a coinci-

dence. The solution to the master problem does not have to be integer-valued. The
master problem solutions in iteration 1, 2 and 3 show how a common result of the
master problem looks like.

4.4 Pricing problem - charging

At first, it seems like there needs to be a separate problem for generating the charging
columns, but after careful thought process we end up realizing it is not needed. The end
goal is to have an integer-valued solution of pk,τi . It does not make sense for the number
of executions of a route to assume a fractional value. However, when the ”route” is the
charging column, it makes sense, because the master problem can tune the length of

37

4. Column generation method .
the charging session by changing its corresponding pk,τi variable. To conclude, there are
two types of columns, routing columns that drain the battery and deliver material to
machines, and charging columns that only charge the battery. For a solution to have a
physical interpretation, the first type of columns needs to be used an ”integer number
of times” but the second can be used ”a real number of times”.

4.5 Orienteering Problem

This section introduces the Orienteering Problem (OP), we study OP because of the
similarity to our Pricing problem. The Orienteering Problem is a maximization problem
on a graph. The objective is to maximize the score collected from the traversed vertices
subject to a time limit, in which the route needs to be executed. We do not have to
find a route that visits all the vertices in the graph. Consequently, the OP can be
seen as a combination of the traveling salesman problem and knapsack problem [20].
The Orienteering Problem is also known as the maximum collection problem, selective
traveling salesperson problem and the bank robber problem [20]. Other varieties such
as the team orienteering problem and version with time windows are also studied.

We present a modified formulation of the OP from a paper The orienteering problem:
A survey [20] by P. Vansteenwegen et al.

Objective function:

max
∑
i∈N

∑
j∈N

Si xi,j (26)

Subject to:

∑
i∈N

∑
j∈N

ti,jxi,j ≤ Tmax (27)

si − sj + ti,j ≤ (BigM)(1− xi,j) ∀i ∈ N, ∀j ∈ N \ 1 (28)

yin1 = 1 (29)

yout1 = 1 (30)

yini = youti ∀i ∈ N (31)

yini ≤ 1 ∀i ∈ N (32)

Variables:

. xi,j ∈ {0, 1} . . . indicates if vertex i is visited just before vertex j. yini =
∑

j∈N xj,i . . . sum of edges coming in vertex i. youti =
∑

j∈N xi,j . . . sum of edges coming out of vertex i

38

. 4.6 Modifications and summary of the model

. si ∈ R+ . . . the imaginary time of visit of vertex i

Parameters:

. N . . . number of vertices. ti,j . . . the time it takes to travel between vertex i and j. Tmax . . . maximum time a route can take. Si . . . the score for traversing vertex i

As we have already stated, objective function (26) maximizes the total ”score” of
the selected route by summing Si over the visited vertices. Constraint (27) is the limit
on the route length. Constraints (28) eliminate sub-tours. Constraints (29) and (30)
ensure the route starts and ends in the vertex number one. Constraints (31) ensure the
continuity of the route, and finally, constraints (32) make the traversing of all vertices
not mandatory.

The reason why we present the Orienteering Problem is the similarity to our pricing
problem. If we omit uk,mv λ̂mv from the objective function (10) of the pricing problem,
we end up with almost identical objective function as in OP. The only difference is that
the constraint (27) is a hard constraint in the OP but only a soft constraint in the pricing
problem in the form of tk(1 + γ̂τi) which is equivalent to

∑
mi,mj∈M̂

xi,j ti,j (1 + γ̂τi).
Also, the only problem with the term uk,mv λ̂mv in the objective function of the pricing
problem is that uk,mv is not a binary variable.

However, if we wanted the pricing problem to be as similar as it can be to the OP, we
would have to omit the constraints (4) and (6) from the master problem. That would
change the whole problem because the only enforced constraint would be on the minimal
number of visits to a machine and the aspect of the amount of needed material would
be entirely dismissed, which would make it very different from the initial problem.

4.6 Modifications and summary of the model

In this subsection, we will describe the pitfalls in developing the master problem formu-
lation and the solutions to overcome them. It is critical to realize, that by modifying
the master problem, we effectively change the dual and pricing problem as well because
they are directly related and derived from each other.

One of the first master problem formulations did not have constraints (5), and pricing
problem also did not have constraints (24). Consequently, the pricing problem did not
have the term vk,mv φ̂τPi ,mv

in the objective function. As a result, the pricing problem
generated columns that delivered the maximum possible amount of material to one
machine. The maximum possible amount was equal to the forklift capacity. After some

39

4. Column generation method .
examination on why this happens, the reason is apparent. By excluding the constraints
(24) from the pricing problem, there is only one upper limit on the amount of material
that can be delivered to a machine, and that is the vehicle capacity C. The pricing
model then simply chooses the machine with the highest value of λ̂mv and multiplies
it by the highest value, which is C. So the pricing problem generated columns in the
form:

(tk, uk,m0 , C, 0, 0, . . .)

(tk, uk,m0 , 0, C, 0, . . .)

(tk, uk,m0 , 0, 0, C, . . .)

When such columns enter the master problem, they enable the solution to minimize
the real-valued variables pk,τi which in turn minimize the overall objective value. For
example, if machine one needs 50 units of material, and the forklift capacity is 200,
the pricing problem generates a column in the form (tk, uk,m0 , 200, 0, 0, . . .) and then
sets the pk,τi to 0.25. In that way, this solution still satisfies constraints (4) because
0.25 · 200 = 50 and at the same time can minimize the corresponding term tk 0.25 in
the objective function.

The first modification to prevent this kind of undesirable behavior of the model
is to introduce the constraints (24) into the pricing problem. That forces the pricing
problem to generate more realistic columns. However, even with this change, the model
still mostly generated columns that would deliver material to only one machine.

The second idea to force the model to generate more sensible columns that would
deliver material to multiple machines is to change the constraints (4) to constraints that
would enforce a certain integer-valued number of visits to each machine. The minimum
number of visits to a machine that has a cumulative demand of dτPi (−1),mv

by a forklift

with capacity C is
⌈ d

τPi (−1),mv
C

⌉
. These constraints are exactly the constraints (5) from

the master problem. However, if we only include those constraints and not constraints
(4) and (6) we essentially end up with a type of PVRP. The solutions of this modified
version are oblivious to the concrete demands of the machines, and as a consequence,
it does not necessarily produce feasible solutions.

The final step is to merge the ideas and produce a master problem with both con-
straints (4), (6) and (5). Plus pricing problem with constraints (24). The result of that
is the formulations presented in this chapter.

Unfortunately, even the final formulation does not give an integer result. It does
not suffer from the described problems, but it still produces columns that are not very
useful in an integer solution. Sometimes, it gives a set of columns in which we can create

40

. 4.7 Assignment model

a linear combination of two columns that will result in a column that is executable in
the master problem. On the other hand, it gives us some form of recommendation on
which machines to choose when executing a route. Also, the columns are more spread
out and the problem of putting all the available forklift capacity into one machine is
gone. Another valuable information we can get is the lower bound on the quality of
any solution with one forklift. However, thanks to the objective function (3), it is also
a lower bound on solutions with multiple forklifts.

Instead of trying to apply branch-and-price on the result of our column generation
approach, we decided to take the resulting schedule and apply yet another model to
acquire an integer solution. We call the model Assignment model, since it assigns the
amounts of material that will be delivered to machines on already predetermined routes
from the column generation method.

4.7 Assignment model

The assignment model operates on the output of column generation method. The
column generation method gives us a lower bound on the quality of solutions on a
particular instance but does not give us an executable schedule, since it does not give
us an integer result. The idea behind the assignment model is to take the non-integer
schedule produced by the column generation method and try to find a schedule that is
executable.

We take all the routes scheduled by the column generation algorithm and fix them
in time. That means we already have a predefined maximum number of routes in each
period. Also, each route has already predefined set of vertices it has to visit, their
permutation, and consequently, the battery drained and the time it takes to execute
the route is already known too. The only thing that the model needs to decide is
which routes will it use and if it uses a route, how much material will it deliver to each
predefined machine it has to visit.

At first sight, the model is similar to the master problem, but there are major dif-
ferences, such as uk,mv is a variable and not a parameter. Also notice, that uk,m0 is a
parameter because the routes are already determined from the input. In this model,
the pk variables of routing columns are binary (we either execute the route or not) but
the pk variables of charging columns are real-valued.

Finally, thanks to this model, we can improve the solution given by our constructive
heuristic approach in Chapter 3. The improvement is measured and quantified in
Chapter 5.

41

4. Column generation method .
Objective function:

min
∑
k∈K′

tk pk (33)

Subject to:

∑
k∈K

τPi

uk,mv ≥ dτPi (−1),mv
∀mv ∈M, ∀τPi ∈ TP (34)

∑
k∈K

τPi

uk,m0 pk ≥ 0 ∀τPi ∈ TP (35)

∑
k∈K

τPi

−uk,mv ≥ −(dτPi (−2),mv
+Wmv) ∀mv ∈M, ∀τPi ∈ TP (36)

∑
k∈K

τPi

−uk,m0 pk ≥ −B ∀τPi ∈ TP (37)

∑
k∈Kτi

−tk pk ≥ −3600 ∀τi ∈ T (38)

∑
mv∈M

uk,mv ≤ C ∀k ∈ K (39)

uk,mv ≤ (BigM) pk ∀k ∈ K, ∀mv ∈M (40)

uk,mv ≤ (BigM) vk,mv ∀k ∈ K, ∀mv ∈M (41)

(BigM) (1− pk) + uk,mv ≥ vk,mv ∀k ∈ K, ∀mv ∈M (42)

Variables:

. pk ∈ {0, 1}, k ∈ K ′ . . . indicates if route k is executed, only the routing columns have
binary pk. pk ∈ R+, k ∈ K \K ′ . . . sets the length of charging of charging column pk. uk,mv ∈ N0 . . . amount of material unloaded at machine mv in route k

Parameters:

. K . . . set of routes. K ′ . . . set of routes that satisfy uk,m0 > 0. Kτi . . . set of routes executed in period τi. KτPi
. . . set of routes executed in periods {τ1, τ2, . . . , τi}. M . . . set of machines {m1,m2 . . .}, notice that both m0 and ms are excluded from

the set, this is a change from the notation in the pricing problem. vk,mv ∈ {0, 1} . . . is an indicator that forces the route k to visit machine mv if set to
one

42

. 4.7 Assignment model

. uk,m0 ∈ R . . . amount of battery drained by route k. tk ∈ R+ . . . time needed to execute the route k

The objective function (33) minimizes the total time spent by the forklift traveling.
Constraints (34) and (36) are very similar to the constraints (4) and (6) in the master
problem. The only difference is the missing pk,τi on the left-hand side of the inequalities.
That is because variables pk control the amount of material uk,mv through constraints
(40). Constraints (35) and (37) are preventing the battery from dropping below zero or
being above the allowed capacity B. As opposed to the master problem, they are written
separately from the constraints on the machine demands (34) and (36). Constraints
(38) serve the same purpose as in the master problem. Constraints (39) ensure the
amount of material can fit into the forklift. Constraints (41) and (42) tie the indicator
parameters vk,mv to the variables uk,mv and force the amounts of material uk,mv to be
at least one if the route k is used.

To reiterate, the assignment model takes the result of the column generation method
and solves an ILP model on it. The ILP model takes the routes, and by routes, we only
mean the permutation of machines it visits, not including the material amounts. The
goal of assignment model is to take those routes and decide how much material will
be delivered in each of the routes to the machines it visits. The assignment also has
the option to not use certain routes, provided that it can still reach a feasible solution
even without using the routes. The result we get by solving the assignment model will
always have a physical interpretation.

4.7.1 Example

To further clarify the procedure of the Assignment model, we present an example in-
stance. The instance has four machines, one period and one forklift. The forklift
capacity C is 100 units of material; the maximum machine capacities are also equal to
100. The layout of the factory is on Figure 4.3.

The demands of machines are as follows:

. dτ1,m1 = 60. dτ1,m2 = 40. dτ1,m3 = 70. dτ1,m4 = 30

The column generation method will give us the following columns as a result. The
pk,τi variables are rounded to increase readability. We can see an interesting thing in
the result. If we combine the first and fourth column, we can get another column that
could have the pk,τi set to one and deliver 60 units of material to the first machine and

43

4. Column generation method .

0 25 50 75 100 125 150
x [m]

0

20

40

60

80

100

120

140

160

y
[m

]

number of machines = 4
width = 200.0
height = 200.0
min. machine distance = 0.0

0

12

34

Factory layout
vehicle station
machine

Figure 4.3. Layout of example instance for the Assignment model.

40 to the second machine. The same could be done for the second and third column.
So the next step is to input these columns to the Assignment model.

. pk,τi = 0.60, tk = 219.43, vector uk = (24.38 , 99.0, 1.0, 0.0, 0.0), vector vk = (1, 1, 0, 0). pk,τi = 0.70, tk = 219.43, vector uk = (24.38 , 0.0, 0.0, 99.0, 1.0), vector vk = (0, 0, 1, 1). pk,τi = 0.30, tk = 219.43, vector uk = (24.38 , 0.0, 0.0, 1.0, 99.0), vector vk = (0, 0, 1, 1). pk,τi = 0.40, tk = 219.43, vector uk = (24.38 , 1.0, 99.0, 0.0, 0.0), vector vk = (1, 1, 0, 0)

When we solve the Assignment model with the previous columns as an input, we get
the following set of columns as a solution. The solution has integer-valued variables
pk,τi . It correctly used only the first two columns and also set the material deliveries
correctly to the demanded amount.

. pk,τi = 1.0, tk = 219.43, vector uk = (24.38 , 60.0, 40.0, 0.0, 0.0), vector vk = (1, 1, 0, 0). pk,τi = 1.0, tk = 219.43, vector uk = (24.38 , 0.0, 0.0, 70.0, 30.0), vector vk = (0, 0, 1, 1). pk,τi = 0.0, tk = 219.43, vector uk = (24.38 , 0.0, 0.0, 0.0, 0.0), vector vk = (0, 0, 1, 1). pk,τi = 0.0, tk = 219.43, vector uk = (24.38 , 0.0, 0.0, 0.0, 0.0), vector vk = (1, 1, 0, 0)

44

Chapter 5
Results

To analyze the quality of the developed strategies and column generation method, we
created three separate sets of instances. The main reason for doing so is the com-
putational time of the LP solver used for solving the column generation model. The
column generation model requires solving a potentially massive number of linear pro-
grams in its cycle. Given the fact that we tested 20 different combinations of strategies
from the constructive heuristics approach on a large number of instances with varying
parameters, it is not practical to test the column generation approach on the same
instances.

Instead, we measured the quality of solutions of the constructive heuristics approach,
took the strategy that was the best on average, and a basic direct routing strategy
and created another two sets of instances, which we solved with the two strategies
and also with column generation, and assignment model. That gives us the lower
bound, and potentially better objective value given by the assignment model. All time
measurements were taken on a laptop with Intel Core i5-6200U 2.30 GHz processor,
and 8 GB of RAM.

Every set of instances has a set of values for each chosen parameter. Then, we
generate all possible combinations from these values. For every combination, we create
ten different instances. When we evaluate the results, we take the mean objective value
of the ten solutions and standard deviation.

The tables 5.1, 5.2 and 5.3 show the sets of parameters from which we generate every
combination and create 10 random instances with those parameters. The coordinates
of the machines and the machine station are chosen at random; the only given value is
the total number of vertices (one more than the number of machines). Also, there is
a defined interval in which the machines have their demand. This interval is between
the machine capacity upper limit and machine capacity lower limit parameters. Other
parameters are self-explanatory. Some of the parameters are not shown because they do
not vary from instance to instance, those parameters are battery capacity, the charge
rate of vehicles, the discharge rate of vehicles and the length of one period.

45

5. Results .
parameter values

vertex count 3 6 9 12
machine capacity upper limit 50
vehicle capacity 50 100 150
vehicle count 1 3 5
machine capacity lower limit 5 50
periods 1 5 10

Table 5.1. Parameters of set 1.

parameter values

vertex count 6 12
machine capacity upper limit 50
vehicle capacity 150 300
vehicle count 1
machine capacity lower limit 5 50
periods 1 5 10

Table 5.2. Parameters of set 2.

parameter values

vertex count 5 10
machine capacity upper limit 50 100
vehicle capacity 200 350
vehicle count 1
machine capacity lower limit 5 50
periods 2 4 6

Table 5.3. Parameters of set 3.

5.1 Example demonstration

To demonstrate an interesting phenomenon, affecting the quality of solutions given by
different strategies, we will show two simple problem instances. Both instances are
almost identical; they have one period, only one forklift, four machines with demands
dτ1 = (100). The layout is in Figure 5.1. Please note, that the layout can be quite
confusing because manhattan distance is used and not euclidean. The red vertex is the
station, all the distances between the station and other machines are 10 meters, and
distances between neighboring machines are 5 meters.

46

. 5.1 Example demonstration

6 8 10 12
x [m]

6

8

10

12

14

y
[m

]

number of machines = 4
width = 20.0
height = 20.0
min. machine distance = 0.0

0

1

2

3

4

Factory layout
vehicle station
machine

Figure 5.1. Layout of example instance.

Now consider two strategies, one can only perform direct deliveries and no tours,
for example, the Largest Demand Selection strategy forces such behavior. The other
strategy can only perform tours, and no direct deliveries, one strategy that would
heavily favor tours is Subset Selection strategy, that prioritizes the largest subsets of
machines available.

Lets set vehicle capacity C = 100 and see how the two strategies behave. The direct
routing strategy will execute 4 routes, one to each machine, with each trip being 20
meters long. Each trip will deliver 100 units of material to the target machine. So the
objective value of the direct routing strategy is 80.

The tour strategy, however, will be forced to execute 4 complete tours through all
machines, each being 35 meters long. Each tour will drop 25 units of material to every
machine. The objective value will be 140.

If we set the vehicle capacity C = 400, the direct routing strategy will still achieve
the objective value of 80, because it will do the same thing as in the first instance. On
the other hand, the tour strategy will execute only one trip, that will be 35 meters long,
delivering all 100 units of material to every machine in that one trip. The objective
value will, therefore, be only 35.

47

5. Results .
The point of this simple example is to demonstrate how the choice of parameters can

dramatically impact the relative quality of solutions given by different strategies. The
only thing that we did is change the vehicle capacity from 100 to 400; everything else is
fixed. With only that change, suddenly one strategy gives much better results than the
other. The effect of different machine capacity to vehicle capacity ratios on different
strategies is shown in the following chapter.

5.2 Set 1

As we show in Section 5.1, the quality of solutions of a strategy can vary based on
the parameters of the instance. Despite that fact, we want to asses the quality of each
strategy as a whole on the entire set of different instances. We cannot directly compare
the actual objective values those strategies achieve since the larger instances would skew
the whole score in their favor.

To asses the overall score of all strategies used in a given set, we go through the
following procedure. For every combination of input parameters of the instance set,
we compute the mean objective value from the ten instances generated for the given
combination. Then we sort the strategies according to the mean and get the one with
minimal mean. Then, we compute by how much percent is each strategy worse than
the strategy with minimal mean. Finally, the overall score of a strategy is the mean
of the computed percentages. The resulting number can be interpreted as the mean
percentual distance from the best-achieving strategy.

We employ the described technique for all three sets of instances. The tables 5.4,
5.13 and 5.18 show the statistic for each set.

On the first instance set, we only evaluated the constructive heuristic approach. We
tested 20 different strategy combinations; those strategies are described in chapter 3.1.
The overall score of all the combinations is in Table 5.4. The computational time is not
included in the tables, because the running time of constructive heuristics is relatively
small, generally within 1 second. Immediately, we can draw some conclusions looking
at the table.

The best overall selection strategy is the ILP Selection strategy. We can see that the
first two entries have the same exact score, that is because the ILP Selection strategy
overrides the Filling strategy. As we have explained in chapter 3.1, ILP Selection is the
only strategy that makes decisions on more than one level, and that is on the selection
level and the filling level. The third and fourth place is also very close regarding the
score, the strategies are effectively identical, but the randomness of the sorting strategy
caused a little difference in the score.

48

. 5.2 Set 1

The second observation is that when the Filling strategy has an effect (that is when
it is not paired with ILP selection), the Even filling is overall always better than the
Random filling. The third observation is that the Selection Pool Strategy does not
have a big effect on the overall quality of the strategies. Lastly, the standard deviation
of strategies is steadily increasing among the overall score, which solidifies the relative
quality of the best strategies even more.

Selection Pool Strat. Selection Strat. Filling Strat. mean [%] stdev [%]

Demand Sort ILP Even 6.87 33.7
Demand Sort ILP Random 6.87 33.7
Random Sort ILP Random 6.90 33.5
Random Sort ILP Even 6.92 33.48
Demand Sort Largest Demand Even 43.03 47.88
Random Sort Largest Demand Even 43.03 47.88
Random Sort K-Element Subset Even 43.62 45.69
Demand Sort K-Element Subset Even 50.10 48.85
Random Sort Random Even 55.66 62.33
Demand Sort Random Even 55.87 63.35
Demand Sort Subset Even 63.50 78.18
Random Sort Subset Even 64.71 77.07
Demand Sort Subset Random 186.10 98.48
Random Sort Subset Random 187.71 96.37
Random Sort Random Random 212.67 104.27
Demand Sort Random Random 215.86 106.86
Demand Sort K-Element Subset Random 245.67 143.34
Random Sort K-Element Subset Random 254.20 147.80
Demand Sort Largest Demand Random 299.95 170.93
Random Sort Largest Demand Random 300.82 172.00

Table 5.4. Overall results on set one.

For the rest of this section, we will take the two best strategies and analyze the effect
of different instance parameters on their solution quality. The selected strategies are
Demand Sort Selection Pool + ILP Selection + Even Filling and Demand Sort Selection

Pool + Largest Demand Selection + Even Filling, referred to as ILP and LRG. In every
subsection, we present two different parameter configurations and show tables with the
average objective value and standard deviation drawn from ten measurements. The
units of the objective values are seconds.

49

5. Results .
5.2.1 Impact of vehicle count

The tables 5.5 and 5.6 show the mean objective values for different vehicles counts.
The parameters for instances in Table 5.5 are:

. vertex count = 12. machine capacity upper limit = 50. machine capacity lower limit: 50. vehicle capacity = 150. number of periods = 10

The parameters for instances in Table 5.6 are:

. vertex count = 6. machine capacity upper limit = 50. machine capacity lower limit: 50. vehicle capacity = 150. number of periods = 5

We can see that due to the objective function, having more vehicles does not neces-
sarily improve the result. In fact, we can see that sometimes it can make the objective
value even worse. This trend can be seen in Table 5.5 for the ILP strategy. On the
other hand, the standard deviation of the objective value is very high, so it is hard to
draw any definitive conclusions.

vehicle count ILP mean ILP stdev LRG mean LRG stdev

1 4254.85 880.12 6703.07 1688.03
3 4537.09 533.15 7319.77 1304.54
5 4717.20 442.40 7189.88 809.42

Table 5.5. Mean objective values for different vehicle counts with 10 periods and 12 vertices.

vehicle count ILP mean ILP stdev LRG mean LRG stdev

1 1194.69 156.86 1830.33 367.40
3 1014.88 224.52 1599.60 370.73
5 1187.47 208.16 1770.11 398.35

Table 5.6. Mean objective values for different vehicle counts with 5 periods and 6 vertices.

50

. 5.2 Set 1

5.2.2 Impact of the ratio between vehicle capacity and machine

capacity
The tables 5.7 and 5.8 show the mean objective values for different ratios of vehicle and
machine capacity.

The parameters for instances in Table 5.7 are:

. vertex count = 12. machine capacity upper limit = 50. machine capacity lower limit: 50. number of periods = 10. vehicle count = 5

The parameters for instances in Table 5.8 are:

. vertex count = 6. machine capacity upper limit = 50. machine capacity lower limit: 50. number of periods = 1. vehicle count = 1

We can see the effect described in Section 5.1. So, when the vehicle capacity is the
same as machine capacity, being able to visit multiple machines with one forklift in one
trip does not help to improve the objective function. We can see that in both tables
in the first row, ILP values are equal to LRG. However, as we see increase the forklift
capacity, being able to deliver material to multiple machines can improve the objective
value of ILP strategy. As opposed to the ILP strategy, the LRG strategy does not see
a dramatic improvement when the vehicle capacity rises.

vehicle capacity ILP mean ILP stdev LRG mean LRG stdev

50 7494.88 1110.06 7494.88 1110.06
100 5663.03 996.30 7429.87 1660.92
150 4717.20 442.40 7189.88 809.42

Table 5.7. Mean objective values for different ratios of vehicle and machine capacity with
10 periods and 12 vertices.

5.2.3 Impact of the machine capacity range

The tables 5.9 and 5.10 show the mean objective values for different machine capacity
ranges.

51

5. Results .
vehicle capacity ILP mean ILP stdev LRG mean LRG stdev

50 336.52 80.11 336.52 80.11
100 271.24 56.71 340.06 71.47
150 217.58 40.41 310.71 64.80

Table 5.8. Mean objective values for different ratios of vehicle and machine capacity with
1 period and 6 vertices.

The parameters for instances in Table 5.9 are:

. vertex count = 12. machine capacity upper limit = 50. vehicle capacity = 150. number of periods = 1. vehicle count = 5

The parameters for instances in Table 5.10 are:

. vertex count = 6. machine capacity upper limit = 50. vehicle capacity = 150. number of periods = 10. vehicle count = 5

Not surprisingly, if we allow the machines to have random demand in the range of 5
to 50 unit, the objective value is smaller than if we strictly set the demands to 50. In
Table 5.9, the difference is not so huge, because the problem instances have only one
period, but in Table 5.10 with ten periods, the difference is quite significant.

Also, in Table 5.9, the LRG strategy performs even better with a strict demand of
50 units. That is because in relatively small instances there is no difference between a
machine with 25 units of demand and 50 units of demand when we can only execute
direct deliveries. In both cases, the contribution to the objective value will be the same.

machine capacity lower limit ILP mean ILP stdev LRG mean LRG stdev

5 339.67 62.56 776.23 153.30
50 465.30 56.73 734.02 156.31

Table 5.9. Mean objective values for different machine capacity ranges.

52

. 5.3 Set 2

machine capacity lower bound ILP mean ILP stdev LRG mean LRG stdev

5 1341.08 198.64 2407.07 631.84
50 2267.13 381.65 3418.28 700.97

Table 5.10. Mean objective values for different machine capacity ranges.

5.2.4 Impact of the number of periods

The tables 5.11 and 5.12 show the mean objective values for different number of periods.
The parameters for instances in Table 5.11 are:

. vertex count = 12. machine capacity upper limit = 50. machine capacity lower limit = 50. vehicle capacity = 100. vehicle count = 3

The parameters for instances in Table 5.12 are:

. vertex count = 9. machine capacity upper limit = 50. machine capacity lower limit = 50. vehicle capacity = 150. vehicle count = 1

The impact of the number of periods is quite obvious. The average objective value
increases with the increase in periods. Both ILP and LRG strategies seem to drop in
quality at a comparable rate.

number of periods ILP mean ILP stdev LRG mean LRG stdev

1 577.15 85.38 749.03 135.07
5 2944.26 365.04 3984.18 703.97
10 5438.51 981.48 6827.16 1426.93

Table 5.11. Mean objective values for different number of periods.

5.3 Set 2

The overall score of the column generation method, assignment model, and two selected
constructive heuristic strategies for set 2 is shown in Table 5.13. The selected heuristic

53

5. Results .
number of periods ILP mean ILP stdev LRG mean LRG stdev

1 378.71 58.05 613.69 102.30
5 1757.07 313.51 2879.14 542.91
10 3620.06 348.45 5737.92 759.40

Table 5.12. Mean objective values for different number of periods.

strategies are the Demand Sort Selection Pool + ILP Selection + Even Filling and De-

mand Sort Selection Pool + Largest Demand Selection + Even Filling we will refer to
them the same as in previous chapter, ILP and LRG.

Since the column generation approach serves as a lower bound and not an actual
method of getting a feasible solution it is no surprise that it achieves the best objective
values overall. We also see that the assignment model is approximately 5% better
relative to the ILP strategy. However, it has bigger standard deviation which means
that it does not have consistent results, which is undesirable. The last strategy is the
LRG strategy, having objective value approximately 150% higher than the lower bound
on average.

method mean [%] stdev [%]

column generation 0 0
assignment model 24.73 27.85
ILP Selection 29.46 18.64
Largest Demand Selection 166.19 61.45

Table 5.13. Overall results on set two.

In Table 5.14 we can see the percentage of times the Assignment model achieves better
solutions than the ILP strategy for the set 2. We can also see the percentage in which
the Assignment model gives the optimal solution, notice that its the same percentage
the ILP strategy achieves the optimum and after examination, we discovered that the
methods are optimal on the same instances.

Unfortunately, we have not been able to find a pattern in the instances of both sets
2 and 3 that would indicate when the Assignment model performs better than the ILP
strategy. The results do not show clearly where the Assignment is better or worse.

5.3.1 Impact of the ratio between vehicle capacity and machine

capacity
The parameters for instances in Table 5.15 are:

54

. 5.3 Set 2

case percentage of instances [%]

Assignment better than ILP 54.16
Assignment equal to ILP 16.66
Assignment worse than ILP 29.16
Assigment optimal 16.66
ILP optimal 16.66
LRG optimal 0.0

Table 5.14. Assignment model statistics for set 2.

. vertex count = 12. machine capacity upper limit = 50. machine capacity lower limit: 5. number of periods = 5. vehicle count = 1

In Table 5.15 we see that as vehicle capacity rises, the objective value of both As-
signment model and ILP strategy get lower. In both cases their objective values are
comparable. The abbreviation CG means column generation, and it is the computed
lower bound of the instance. Another thing to point out is the comparison to the
computed lower bound gets worse when the vehicle capacity rises.

vehicle cap. Assig. mean time [s] ILP mean time [s] CG mean time [s]

150 1492.65 ±219.19 0.06 1561.72 ±126.26 0.08 967.08 ±107.32 23.60
300 1156.34 ±188.01 0.08 955.11 ±90.04 0.05 646.67 ±63.12 75.59

Table 5.15. Mean objective values for different ratios of vehicle and machine capacity.

5.3.2 Impact of the machine capacity range

The parameters for instances in Table 5.16 are:

. vertex count = 12. machine capacity upper limit = 50. number of periods = 10. vehicle count = 1. vehicle capacity = 150

An interesting result can be seen in Table 5.16. When the lower limit of machine
demands is 5, the objective values of Assignment and ILP are almost identical, and
they are almost two times worse than the lower bound. However, when we increase

55

5. Results .
min. mach. cap. Assig. mean time [s] ILP mean time [s] CG mean time [s]

5 3014.83 ±515.99 0.17 3014.99 ±235.03 0.18 1885.61 ±341.19 40.22
50 3936.96 ±457.22 0.05 4964.63 ±400.07 0.20 3692.55 ±358.09 11.98

Table 5.16. Mean objective values for different machine capacity ranges.

the lower limit to 50, suddenly, the ILP strategy gets much worse, but overall, both
methods are much closer to the lower bound.

5.3.3 Impact of the number of periods

The parameters for instances in Table 5.17 are:

. vertex count = 6. machine capacity upper limit = 50. machine capacity lower limit: 50. vehicle count = 1. vehicle capacity = 150

The Table 5.17 shows expected behavior. As the number of periods increases, both
Assignment and ILP strategy increase in objective value. Both methods are in all cases
relatively close to the lower bound, and the distance from the lower bound does not
change much.

periods Assig. mean time [s] ILP mean time [s] CG mean time [s]

1 173.34 ±32.47 0.004 211.07 ±39.69 0.01 166.59 ±28.41 0.46
5 912.32 ±122.90 0.01 993.71 ±124.98 0.06 856.07 ±91.58 0.59
10 1884.34 ±553.31 0.02 2173.38 ±508.46 0.10 1761.21 ±449.20 0.84

Table 5.17. Mean objective values for different number of periods.

5.4 Set 3

The overall score of the solution methods for set 3 is in Table 5.18. Again, as in set 2, we
can see the assignment model is 5% better relative to the ILP Selection strategy. The
difference from the set 2 lies in the standard deviation of the assignment model score;
it is almost the same as ILP Selection. The last strategy is again the LRG strategy,
also with a very similar score of 150% higher than the lower bound on average.

Again, in Table 5.19 we can see the percentages for the set 3. The Assignment model
is better than the ILP strategy in a lower percentage of instances than in the instances

56

. 5.4 Set 3

method mean [%] stdev [%]

column generation 0 0
assignment model 34.54 19.96
ILP Selection 37.44 18.65
Largest Demand Selection 148.09 52.52

Table 5.18. Overall results on set three.

case percentage of instances [%]

Assignment better than ILP 43.75
Assignment equal to ILP 18.75
Assignment worse than ILP 37.5
Assigment optimal 12.5
ILP optimal 12.5
LRG optimal 0.0

Table 5.19. Assignment model statistics for set 3.

of set 2. It is also the case for set 3, that when Assignment model achieves the optimum
so does the ILP strategy.

5.4.1 Impact of the ratio between vehicle capacity and machine

capacity
The parameters for instances in Table 5.20 are:

. vertex count = 10. machine capacity lower limit = 50. number of periods = 4. vehicle count = 1. vehicle capacity = 200

The Table 5.20 shows expected behavior. As the number of periods increases, both
Assignment and ILP strategy increase in objective value. The lower bound does not
change much with the increase of the maximum machine capacity.

max. mach. cap. Assig. mean time [s] ILP mean time [s] CG mean time [s]

50 1144.81 ±119.27 0.02 1436.53 ±205.74 0.07 1033.48 ±63.82 2.79
100 1562.34 ±309.18 0.02 1554.52 ±154.28 0.11 1083.34 ±151.96 1.68

Table 5.20. Mean objective values for different ratios of vehicle and machine capacity.

57

5. Results .
5.4.2 Impact of the machine capacity range

The parameters for instances in table 5.21 are:

. vertex count = 10. machine capacity upper limit = 100. number of periods = 4. vehicle count = 1. vehicle capacity = 200

We can see in Table 5.21 that the objective values of both methods are nearly the
same for both lower limits of the machine capacity.

min. mach. cap. Assig. mean time [s] ILP mean time [s] CG mean time [s]

5 1286.68 ±186.16 0.02 1248.22 ±246.73 0.08 830.52 ±140.87 3.50
50 1562.34 ±309.18 0.03 1554.52 ±154.28 0.13 1083.34 ±151.96 1.85

Table 5.21. Mean objective values for different machine capacity ranges.

5.4.3 Impact of the number of periods

The parameters for instances in Table 5.22 are:

. vertex count = 5. machine capacity upper limit = 50. machine capacity lower limit: 5. vehicle count = 1. vehicle capacity = 200

Again as in the previous section, the results in Table 5.22 show little difference
between the objective values of both methods. Obviously, the objective values increase
as the number of periods increases. However, they are closer to the lower bound when
the number of periods is lower.

periods Assig. mean time [s] ILP mean time [s] CG mean time [s]

2 254.40 ±63.22 0.007 254.40 ±63.22 0.02 184.56 ±28.35 0.11
4 507.21 ±146.32 0.02 502.02 ±148.07 0.04 346.74 ±95.10 0.44
6 730.29 ±147.95 0.02 717.71 ±157.75 0.07 505.80 ±105.39 0.65

Table 5.22. Mean objective values for different number of periods.

58

. 5.5 Discussion

5.5 Discussion

The key findings of the measurements show, that when dealing with an instance of the
problem where the capacity of the forklift is equal to all of the individual demands of
the machines, the most basic solution strategy, the LRG, can suffice. However, when
the vehicle capacity is, for example, double the size of the machine demands and above,
the ILP strategy is the clear winner. Furthermore, we can also try to initialize the
column generation algorithm with the output from the ILP strategy and then solve
the Assignment problem on it to get an even better result in approximately 50% of all
measured cases.

59

Chapter 6
Conclusion

In this thesis, we introduced new problem called Forklift Scheduling Problem (FSP). We
studied similar problems found in literature, namely the Production Routing Problem,
Inventory Routing Problem and Periodic Vehicle Routing Problem and pointed out key
differences between them and the Forklift Scheduling Problem. We also proved that
the FSP is NP-hard.

We implemented a generator of instances for the FSP and proposed two algorithms
to solve it. The first algorithm is based on constructive heuristic approach. The design
of the algorithm is modular and allows us to change different parts of the algorithm
with relative ease. The second algorithm is based on column generation method. The
algorithm is able to find a lower bound on the objective value of a given instance and
to improve the solutions given by the constructive heuristic algorithm.

Lastly, we evaluated all the developed algorithms on three sets of instances with
different input parameters and found out the effects of the input parameters on the
quality of solutions. The results show that the best overall quality of solutions from
the constructive heuristic strategies is given by the strategy that uses an ILP model
to select the machines. The result can be further improved by applying the column
generation method along with another ILP model called the Assignment model. As a
potential future work, we suggest testing different formulations of the problem including
different speed modes of forklifts. Another possible future work is to apply the Branch
and Price method.

60

Appendix A
Glossary

AGV . Automated Guided Vehicle
ALNS . Adaptive Large Neighborhood Search
FSP . Forklift Scheduling Problem
ILP . Integer Linear Programming
IRP . Inventory Routing Problem
LSP . Lot-Sizing Problem
NP . Nondeterministic Polynomial Time complexity class of problems
OP . Orienteering Problem
P . Polynomial Time complexity class of problems
PRP . Production Routing Problem
PVRP . Periodic Vehicle Routing Problem
SCM . Supply Chain Management
TSP . Traveling Salesman Problem
VMI . Vendor-managed Iinventory
VRP . Vehicle Routing Problem

61

Appendix B
Contents of the attached CD

The attached CD contains the following directory structure:

* /attachments
|-- /forklift_java
|-- /forklift_python
|-- /instances
| |---/set 1
| |---/set 2
| |---/set 3
|-- /pdf
|-- /time

The attachment includes projects implemented in java and python, the PDF file of
this thesis, and the three sets of problem instances with their time measurements.

62

References

[1] Coelho, Leandro C., Jean-Francois Cordeau, and Gilbert Laporte. Thirty
Years of Inventory Routing. Transportation Science. 2014, Vol. 48, No. 1, pp. 1-19.
ISSN 0041-1655. Available from DOI 10.1287/trsc.2013.0472.
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2013.0472.

[2] Karp, Richard M. Reducibility among Combinatorial Problems. Complexity of
Computer Computations. Boston, MA: Springer US, 1972, pp. 85-103. Available
from DOI 10.1007/978-1-4684-2001-2 9.
http://link.springer.com/10.1007/978-1-4684-2001-2 9.

[3] Mostafa, Noha A., and Amr B. Eltawil. The production-inventory-distribution-
routing problem. 2015 International Conference on Industrial Engineering and
Operations Management (IEOM). IEEE, 2015, pp. 1-10. Available from DOI
10.1109/IEOM.2015.7093751.
http://ieeexplore.ieee.org/document/7093751/.

[4] Adulyasak, Yossiri, Jean-Francois Cordeau, and Raf Jans. The production
routing problem. Computers & Operations Research. 2015, Vol. 55, pp. 141-152.
ISSN 03050548. Available from DOI 10.1016/j.cor.2014.01.011.
http://linkinghub.elsevier.com/retrieve/pii/S0305054814000240.

[5] Jung, Sungwon, Tai-Woo Chang, Eoksu Sim, and Jinwoo Park. Vendor Managed
Inventory and Its Effect in the Supply Chain. Systems Modeling and Simulation:
Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 545-552. Available from DOI 10.1007/978-3-540-30585-9 61.
http://link.springer.com/10.1007/978-3-540-30585-9 61.

[6] Francis, Peter M., Karen R. Smilowitz, and Michal Tzur. The Period Vehicle
Routing Problem and its Extensions. The Vehicle Routing Problem: Latest Ad-
vances and New Challenges. Boston, MA: Springer US, 2008, pp. 73-102. Available
from DOI 10.1007/978-0-387-77778-8 4.
http://link.springer.com/10.1007/978-0-387-77778-8 4.

[7] Adulyasak, Yossiri, Jean-Francois Cordeau, and Raf Jans. Optimization-Based
Adaptive Large Neighborhood Search for the Production Routing Problem. Avail-

63

http://dx.doi.org/10.1287/trsc.2013.0472
http://pubsonline.informs.org/doi/abs/10.1287/trsc.2013.0472
http://dx.doi.org/10.1007/978-1-4684-2001-2unhbox voidb@x kern .06em vbox {hrule width.3em}9
http://link.springer.com/10.1007/978-1-4684-2001-2unhbox voidb@x kern .06em vbox {hrule width.3em}9
http://dx.doi.org/10.1109/IEOM.2015.7093751
http://ieeexplore.ieee.org/document/7093751/
http://dx.doi.org/10.1016/j.cor.2014.01.011
http://linkinghub.elsevier.com/retrieve/pii/S0305054814000240
http://dx.doi.org/10.1007/978-3-540-30585-9unhbox voidb@x kern .06em vbox {hrule width.3em}61
http://link.springer.com/10.1007/978-3-540-30585-9unhbox voidb@x kern .06em vbox {hrule width.3em}61
http://dx.doi.org/10.1007/978-0-387-77778-8unhbox voidb@x kern .06em vbox {hrule width.3em}4
http://link.springer.com/10.1007/978-0-387-77778-8unhbox voidb@x kern .06em vbox {hrule width.3em}4

References .
able from DOI 10.1287/trsc.1120.0443.
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0443.

[8] Glock, Christoph H., Eric H. Grosse, and Jörg M. Ries. The lot sizing prob-
lem. International Journal of Production Economics. 2014, Vol. 155, pp. 39-51.
ISSN 09255273. Available from DOI 10.1016/j.ijpe.2013.12.009.
http://linkinghub.elsevier.com/retrieve/pii/S0925527313005689.

[9] Cordeau, Jean-Francois, Gilbert Laporte, Martin W.P. Savelsbergh, and
Daniele Vigo. Chapter 6 Vehicle Routing. Transportation. Elsevier, 2007,
pp. 367-428. Available from DOI 10.1016/S0927-0507(06)14006-2.
http://linkinghub.elsevier.com/retrieve/pii/S0927050706140062.

[10] Bell, Walter J., Louis M. Dalberto, Marshall L. Fisher, Arnold J. Green-
field, R. Jaikumar, Pradeep Kedia, Robert G. Mack, and Paul J. Prutzman.
Improving the Distribution of Industrial Gases with an On-Line Computerized
Routing and Scheduling Optimizer. Interfaces. 1983, Vol. 13, No. 6, pp. 4-23.
ISSN 0092-2102. Available from DOI 10.1287/inte.13.6.4.
http://pubsonline.informs.org/doi/abs/10.1287/inte.13.6.4.

[11] Campbell, Ann Melissa, and Jill Hardin Wilson. Forty years of periodic vehicle
routing. Available from DOI 10.1002/net.21527.
http://doi.wiley.com/10.1002/net.21527.

[12] Christofides, N., and J. E. Beasley. The period routing problem. Available
from DOI 10.1002/net.3230140205.
http://doi.wiley.com/10.1002/net.3230140205.

[13] Giglio, Davide. Task scheduling for multiple forklift AGVs in distribution ware-
houses. Proceedings of the 2014 IEEE Emerging Technology and Factory Automa-
tion (ETFA). IEEE, 2014, pp. 1-6. Available from DOI 10.1109/ETFA.2014.7005360.

http://ieeexplore.ieee.org/document/7005360/.

[14] The Traveling Salesman Problem with integer programming and Gurobi.
http://examples.gurobi.com/traveling-salesman-problem/.

[15] Boyd, Stephen P., and Lieven. Vandenberghe. Convex optimization. New York:
Cambridge University Press, 2004. ISBN 05-218-3378-7.

[16] Linear programming.
https://en.wikipedia.org/wiki/Linear_programming.

[17] Bertsimas, Dimitris., and John N. Tsitsiklis. Introduction to linear optimiza-
tion. Belmont, Mass.: Athena Scientific, c1997. ISBN 18-865-2919-1.

64

http://dx.doi.org/10.1287/trsc.1120.0443
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0443
http://dx.doi.org/10.1016/j.ijpe.2013.12.009
http://linkinghub.elsevier.com/retrieve/pii/S0925527313005689
http://dx.doi.org/10.1016/S0927-0507(06)14006-2
http://linkinghub.elsevier.com/retrieve/pii/S0927050706140062
http://dx.doi.org/10.1287/inte.13.6.4
http://pubsonline.informs.org/doi/abs/10.1287/inte.13.6.4
http://dx.doi.org/10.1002/net.21527
http://doi.wiley.com/10.1002/net.21527
http://dx.doi.org/10.1002/net.3230140205
http://doi.wiley.com/10.1002/net.3230140205
http://dx.doi.org/10.1109/ETFA.2014.7005360
http://ieeexplore.ieee.org/document/7005360/
http://examples.gurobi.com/traveling-salesman-problem/
https://en.wikipedia.org/wiki/Linear_programming

. .
[18] Lübbecke, Marco E. Column Generation. Wiley Encyclopedia of Operations Re-

search and Management Science. Hoboken, NJ, USA, 2010-06-15. Available from
DOI 10.1002/9780470400531.eorms0158.
http://doi.wiley.com/10.1002/9780470400531.eorms0158.

[19] Desrosiers, Jacques, and Marco E. Lübbecke. Branch-Price-and-Cut Algo-
rithms. Wiley Encyclopedia of Operations Research and Management Science.
Hoboken, NJ, USA, 2010-06-15. Available from DOI 10.1002/9780470400531.eorms0118.

http://doi.wiley.com/10.1002/9780470400531.eorms0118.

[20] Vansteenwegen, Pieter, Wouter Souffriau, and Dirk Van Oudheusden. The
orienteering problem. European Journal of Operational Research. 2011, Vol. 209,
No. 1, pp. 1-10. ISSN 03772217. Available from DOI 10.1016/j.ejor.2010.03.045.
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002973.

65

http://dx.doi.org/10.1002/9780470400531.eorms0158
http://doi.wiley.com/10.1002/9780470400531.eorms0158
http://dx.doi.org/10.1002/9780470400531.eorms0118
http://doi.wiley.com/10.1002/9780470400531.eorms0118
http://dx.doi.org/10.1016/j.ejor.2010.03.045
http://linkinghub.elsevier.com/retrieve/pii/S0377221710002973

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Problem definition
	Complexity
	Related work
	Production Routing Problem
	Inventory Routing Problem
	Periodic Vehicle Routing Problem

	Key distinction between similar problems
	Contributions
	Summary and outline

	Instance builder
	Implementation details

	Constructive heuristics
	Strategy
	Selection Pool Strategy
	Selection Strategy
	Routing Strategy
	Filling Strategy

	Column generation method
	Master problem
	Example

	Dual problem
	Pricing problem - routing
	Example

	Pricing problem - charging
	Orienteering Problem
	Modifications and summary of the model
	Assignment model
	Example

	Results
	Example demonstration
	Set 1
	Impact of vehicle count
	Impact of the ratio between vehicle capacity and machine capacity
	Impact of the machine capacity range
	Impact of the number of periods

	Set 2
	Impact of the ratio between vehicle capacity and machine capacity
	Impact of the machine capacity range
	Impact of the number of periods

	Set 3
	Impact of the ratio between vehicle capacity and machine capacity
	Impact of the machine capacity range
	Impact of the number of periods

	Discussion

	Conclusion
	Glossary
	Contents of the attached CD
	References

