
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 3, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Git-based Wiki System

 Student: Bc. Jaroslav Šmolík

 Supervisor: Ing. Jakub Jirůtka

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

The goal of this thesis is to create a wiki system suitable for community (software) projects, focused on
technically oriented users. The system must meet the following requirements:
 • All data is stored in a Git repository.
 • System provides access control.
 • System supports AsciiDoc and Markdown, it is extensible for other markup languages.
 • Full-featured user access via Git and CLI is provided.
 • System includes a web interface for wiki browsing and management. Its editor works with raw markup
and offers syntax highlighting, live preview and interactive UI for selected elements (e.g. image insertion).

Proceed in the following manner:
 1. Compare and analyse the most popular F/OSS wiki systems with regard to the given criteria.
 2. Design the system, perform usability testing.
 3. Implement the system in JavaScript. Source code must be reasonably documented and covered with
automatic tests.
 4. Create a user manual and deployment instructions.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Git-based Wiki System

Bc. Jaroslav Šmolík

Supervisor: Ing. Jakub Jirůtka

10th May 2018

Acknowledgements

I would like to thank my supervisor Ing. Jakub Jirutka for his everlasting
interest in the thesis, his punctual constructive feedback and for guiding me,
when I found myself in the need for the words of wisdom and experience. My
heartfelt gratitude belongs to my brother, Ing. Jiří Šmolík for his endless
patience, dedication and reviews of the text in every stage of development. I
am also grateful to my colleagues: Peter Uhnák, Maroš Špak and Petr Chmelař
for cooperation on the project of designing the user interface of the editor, as
well as to all who took part in the usability testing. Last but not least, I would
like to profusely thank 9gag, for helping me to find joy in the troubled times
of dismay.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2018 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Jaroslav Šmolík. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Šmolík, Jaroslav. Git-based Wiki System. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Cílem práce je vyvinout wiki systém založený na Git, s podporou jednoduchých
značkovacích jazyků a řízení přístupových práv. Systém je při analýze definován
standardními prostředky. Vzhledem k jeho požadavkům jsou zhodnoceny ex-
istující open-source wiki systémy. Řešení jejich slabin je diskutováno společně s
návrhem systému, dle kterého je implementován. Závěrem je popsáno testování,
jak automatické, tak prostředky testování použitelnosti.

Klíčová slova wiki systém, webová aplikace, Git, jednoduché značkovací
jazyky, JavaScript, Node.js

Abstract

The goal of the thesis is to develop an access-controlled wiki system based on
Git, with the support of lightweight markup languages. In analysis, the system
is defined through the conventional methods. With regard to its requirements,
existing open-source wiki systems are reviewed. Solution to their weaknesses
are discussed along with the system’s design, according to which it is imple-
mented. Finally the automatic testing and the results of the usability testing
is commented on.

Keywords wiki system, web application, Git, lightweight markup languages,
JavaScript, Node.js

ix

Contents

Introduction 3

1 Thesis’ goal 5
1.1 What is a wiki? . 5
1.2 Real world usage of the system 6
1.3 Distinctive features . 6

2 Analysis 9
2.1 Business process model . 9
2.2 User analysis . 13
2.3 User access . 13
2.4 Requirements model . 20
2.5 Use case model . 21
2.6 Use case - functional requirements coverage 25

3 State-of-the-art 27
3.1 Ikiwiki . 28
3.2 Gitit . 31
3.3 Gollum . 35
3.4 Wiki.js . 37
3.5 Summary . 40

4 Design 43
4.1 Design foundations . 43
4.2 Repository providers . 44
4.3 Authentication . 46
4.4 Technologies and tools . 50
4.5 Architecture . 52
4.6 RESTful API . 54
4.7 UI . 56
4.8 Front-End . 59
4.9 Emily editor . 64
4.10 Summary . 65

5 UI testing 67

xi

5.1 Analysis . 67
5.2 Patching the wireframes . 69

6 Implementation 71
6.1 Used libraries . 72
6.2 UNIX permissions with Gitolite 73
6.3 Routes . 76
6.4 NodeGit . 81
6.5 Emily . 85

7 Testing 93
7.1 Automatic testing . 93
7.2 Usability testing . 93

Conclusion 97

Bibliography 99

A Glossary 107

B Acronyms 109

C MI-NUR project highlights 111
C.1 Acknowledgement . 111
C.2 Task graph . 111
C.3 Wireframes . 111

D Gitwiki user manual 119
D.1 Gitwiki . 119
D.2 About . 119
D.3 Install . 119
D.4 Running . 121
D.5 Usage . 121
D.6 License . 122

E Emily editor user manual 123
E.1 About Emily . 123
E.2 Install . 123
E.3 Usage . 124
E.4 Online demo . 126
E.5 License . 126

F Emily editor logo 127

G Gitwiki logo 129

H Contents of enclosed CD 131

xii

List of Figures

2.1 Business process model: Release 10
2.2 Business process model: Hotfix . 12
2.3 Gitolite two step authorization . 18
2.4 Use case model: Actors . 22
2.5 Use case model: Browsing . 23
2.6 Use case model: Content management 24
2.7 Use case model: Access control . 25
2.8 Use case - functional requirements coverage 26

3.1 Ikiwiki: Page preview . 30
3.2 Ikiwiki: Page edit . 31
3.3 Gitit: Page preview . 33
3.4 Gitit: Page edit . 34
3.5 Gollum: Page preview . 36
3.6 Gollum: Page edit . 36
3.7 Wiki.js: Page preview . 39
3.8 Wiki.js: Page edit . 40

4.1 Design: Local provider interactions 47
4.2 Design: GitHub provider interactions 48
4.3 Design: Authentication via external provider 49
4.4 Design: Flux architecture . 51
4.5 Design: Architecture of the application 52
4.6 Design: Architecture of the BE application 53
4.7 Wireframe: Repository index . 57
4.8 Wireframe: File preview . 58
4.9 Wireframe: Repository tree . 59
4.10 Wireframe: Commit screen . 60
4.11 Design: Front-end application . 61
4.12 Design: Emily editor . 66

5.1 Wireframe: Repository index after heuristic analysis 69
5.2 Wireframe: File preview after heuristic analysis 70

6.1 Implementation: Emily editor on-scroll listeners 89

xiii

6.2 Implementation: Emily editor on-scroll listeners 2 90

C.1 Emily UI: Task graph . 112
C.2 Emily UI: Wireframe: Two column preview 113
C.3 Emily UI: Wireframe: Source code 113
C.4 Emily UI: Wireframe: Preview . 114
C.5 Emily UI: Wireframe: Command palette 114
C.6 Emily UI: Wireframe: Navigation 115
C.7 Emily UI: Wireframe: Embedded 116
C.8 Emily UI: Wireframe: Fullscreen 117

F.1 Emily editor logotype . 127

G.1 Gitwiki logotype . 129

xiv

List of Listings

1 Gitolite configuration example 16
2 Gitolite git user authorized keys file 17
3 Ikiwiki: PageSpec example . 29
4 Gitit: Configuration sample . 32
5 Gitit: Page preamble example 33
6 Wiki.js: Markdown meta comments 38
7 Entity types definitions . 54
8 REST: GET Tree response . 55
9 REST: PATCH Tree request body 55
10 REST: GET Refs response . 56
11 Implementation: Gitolite log error 1 74
12 Implementation: Gitolite log error 2 74
13 Implementation: Gitolite default ACL before 75
14 Implementation: Gitolite default ACL after 76
15 Implementation: Generating routes via inline functions 77
16 Implementation: Routes module – definition 78
17 Implementation: Routes module – back-end 78
18 Implementation: Routes module – front-end 79
19 Implementation: Routes module – definition of a static route . 79
20 Implementation: Routes uniform definition module – definition 80
21 Implementation: Routes uniform definition module – back-end 80
22 Implementation: Routes uniform definition module – front-end 80
23 Implementation: NodeGit – Credentials callback 81
24 Implementation: NodeGit – Getting a repository 82
25 Implementation: NodeGit – Create local references 83
26 Implementation: NodeGit – Retrieve cached repository 84
27 Implementation: NodeGit – Update branches with remote up-

streams . 84
28 Implementation: Line ninjas – Markdown 87
29 Implementation: Line ninjas – Markdown with ninjas 87
30 Implementation: Line ninjas – HTML with ninjas 87
31 Implementation: Line ninjas – HTML with ninjas in tags . . . 88
32 Implementation: Line ninjas – CSS 88
33 Implementation: Emily – components 88
34 Implementation: Emily – editor scroll listener 91

1

List of Figures

35 Implementation: Emily – preview scroll listener 92

2

Introduction

There is a large variety of specialized tools that can be used for managing
wikis. Most of the systems however, are focused on the ease of use for the new
or unexperienced users. They lack features desired by the advanced users, such
as software developers. The thesis tackles to solve the issue by developing a
wiki system for the unexperienced and the advanced users alike, to provide an
interface for developing complex, structured documents.

The means of achieving the goals, namely the potential to satisfy the ad-
vanced users are of architectural nature. They include, but are not limited to,
the incorporation of years tested technologies used by developers, to design the
system upon. One of which is Git, which is a powerful VCS, growing in pop-
ularity amongst OSS community and even corporate development. Another
example is an emphasis on using a LML for the document notation. LMLs,
such as Markdown or AsciiDoc are favored over binary document formats for
their readability and line-oriented snapshot versioning potential; and even over
the complex and difficult to write markup languages (e.g. LATEX or HTML),
for their simplicity. A strong aspect of the system supporting efficiency and
comfort of use for the advanced users is to provide a CLI via Git, apart from a
WUI. The two interfaces provide equal access options for the users. For better
support of the collaborative development, the system features access control.

In the following chapter the assignment instructions are elaborated and it
is explained what is considered a wiki system.

A high abstraction concept of the system from the user perspective is
demonstrated on the business process model in the analysis. The following sec-
tion in the chapter (User access), resolves fundamental architectural decisions
regarding authorization, which force restrictions on the system requirements.
Finally the system is defined through the conventional means of requirements
and use case model and then the relations between the individual use cases and
the functional requirements are commented on.

With the system definition from the analysis, the existing wiki systems that
use the Git VCS are researched and reviewed from the perspective of criteria
defined in the analysis. Doing which, the defects of the systems regarding the
criteria in the summary are pointed out.

Solutions for the discovered imperfections in the systems are proposed in
the chapter Design. Apart from that, the chapter discusses the major libraries
used in the system that have impact on its design. The architecture of the

3

Introduction

system is presented and description of its core components is provided. A low
fidelity prototype of the UI is designed.

In the following chapter UI testing a static usability testing using a UI
heuristic is performed, the results and proposed corrections for the identified
issues are presented.

The implementation information is briefly summarized in the chapter Im-
plementation and selected obstacles faced during the realization are discussed
along with the applied solution.

The technologies used for the automated testing along with the materials,
process and the conclusion of the usability testing are included in the final
chapter Testing.

4

Chapter 1
Thesis’ goal

The target of the thesis is to explore the state of the art of version controlled
wiki systems, find the most appropriate solution for the design and implement
a system with the special features, which vaguely described in this section and
fully specified in the analysis.

1.1 What is a wiki?

The system is a version controlled, document oriented, text-based wiki software.
But what is a wiki? According to the Oxford dictionaries it is a “a website

that allows any user to change or add to the information it contains” [73] a
longer and certainly more entertaining description from WikiWikiWeb1 states:
“The idea of a Wiki may seem odd at first, but dive in, explore its links and
it will soon seem familiar. Wiki is a composition system; it’s a discussion
medium; it’s a repository; it’s a mail system; it’s a tool for collaboration. We
don’t know quite what it is, but we do know it’s a fun way to communicate
asynchronously across the network.”2 [92]. Those are both obviously vague
concepts, but set up a reasonable foundation of what wiki is.

The essential idea behind wiki has always been to put the users into the
role of not just mere consumers, but producers of the content, which is the
true feature of Web 2.0. Wiki is a platform for document oriented, organically
created structured content.

Documents are typically managed by moderators (who perform corrections,
topic creation etc.) and written by a community of users. The community
users have an easy access for the document editing and thus it is easy for
them to become a contributor. An in-browser solution for the article editing is
expected, for users to collaborate, because if users feel uncomfortable, or face a
steep learning curve, they might become discouraged from their participation
and then the wiki cannot thrive without content updates.

Apart from the editing interface, it is expected of a wiki to provide docu-
ments of a common topic, that binds the community of contributers. Wikipedia

1WikiWikiWeb is often considered to be the first wiki being launched in 1995. [94]
2The insecurity in the description (“We don’t know quite what it is, (…)”) is understand-

able from WikiWikiWeb, since its creator chose a name and needed to explain the concept
to visitors at the time, when it was not entirely sure, how the system is going to evolve.

5

1. Thesis’ goal

[88] is an encyclopedia, WikiWikiWeb [93] mentioned earlier, was created to dis-
cuss design patterns, or Wiktionary [90] as a community developed multilingual
open dictionary are all fine examples of such trait.

1.1.1 Side-note on wiki topic
It is convenient at this point to clarify, whether there is a topic to Gitwiki.

Gitwiki is not a wiki as Wikipedia. It is a wiki software which can be used
to create a topic oriented wikis. A great example of a wiki software is GitHub
Wikis [29], for instance. It is a part of GitHub web application that allows
users to provide e.g. user manuals for software repositories etc. GitHub Wikis
have no topic though it is expected to be used to create an elaborate software
documentation, for a specific software. The resulting product is a wiki as it
was discussed. It is bound to a specific topic by its contents.

1.2 Real world usage of the system

While the target system is potentially a universal document management plat-
form, usable for a wide variety of applications, an example archetypal usage
scenario is set. The system is considered (for the purpose of design decision
making, interface design, etc.) a platform for an API documentation (or a user
manual) collaborative creation.

This defines the special traits of the system, which make it distinguish itself
amongst others.

Having mentioned the general potential of the system, other applications
the system should satisfy with minor effort would be:

• a publishing platform,
• a collaborative maintenance of large documents that are too large for

online services such as Google Docs [39] or Microsoft Word Online [66],
• a students’ hub,
• or a university’s tool for the writing and submission of final theses.

1.3 Distinctive features

1.3.1 Emphasize lightweight markup languages
Markdown has become more or less a standard for the readme files and doc-
umentation. It is easy to learn; intuitive to read, even if you are not familiar
with the syntax; machine readable and it has many tools for comfortable writ-
ing for users familiar with RTEs. Once familiar with the basic syntax, it is not
an issue to write documents in a simple text editor.

Most of these features, though not necessarily all, are typical for most LMLs.
A form of a simpler markup language is used in almost every wiki system. The
reason to favor Markdown [40] and AsciiDoc [5] over Wikitext [89], used by
MediaWiki for example, is that the former are rooted in the developer com-
munity. LMLs bring advantage of familiar syntax to users for the archetypal
usage as well as the prioritized special syntax features for development, such
as source code snippets etc.

6

1.3. Distinctive features

1.3.2 Focus on advanced users
As already mentioned, easy to use interface is a core feature of a wiki system.
This affects the UI design of a wiki system. It must be welcoming to new
users. The UI must be fool-proof, forgiving and guide the user through editing
process.

The documentation platform is not like that. Its users write often. It is
part of their job and they know the document syntax by heart. They do not
need the system to slow them down by clicking formatting buttons for the few
formatting options e.g. Markdown has.

The system should by all means provide an intuitive interface, but not at
the cost of the use efficiency for the advanced users.3

1.3.3 Use robust non-linear VCS
The raised scenario requires to be able to track changes and their authors as well
as to be able to return to the previous revision. This feature is fairly common
and almost required for all wiki software, because the opened collaboration
might be abused by attackers or vandals.

Developing parallel versions of the content is fitting for the scenario. This
feature could be used to be able to maintain API documentation for distinct
versions of the software, for instance. The technique is usually called “feature
branch” in the software development. The developer creates new features in
separate version branches, detached from the master branch. This allows to
add the feature as a single atomic revision, when it is properly tested.

1.3.4 Provide direct access to the repository
Many wiki systems provide access only via WUI. This might be sufficient in
many cases, when the only presentation of the content is on the web in the
exactly same form. It is a common practice that the user manuals are linked
together into a single large document, that is provided as a whole in a printable
or online format. It is not important what tools are used to do so, but rather to
provide the user (or their script or plug-in) with the access to the files directly.

This access should be provided for the read as well as the write operations,
to allow users to edit the repository in their own environment.

3This does not mean that the UI should be unintuitive for new users, but rather it should
focus on advanced features allowing the experienced user a swift interaction resembling the
one they know from IDEs.

7

Chapter 2
Analysis

2.1 Business process model

In this section, abstract needs of the users in form of a business process model
are formalized. It provides necessary data for the system requirements specific-
ation.

As stated before, the system at hand has a potential to be far more than a
documentation platform. For the discussion of the users’ needs and preferences,
the mentioned referential application is used throughout the thesis.

Here in business process model. The workflow of a company using the
system is described. While taking a very specific direction, the example case
is convenient for two main reasons:

1. it portraits usage of the system by software developers, who are example
of technically oriented users, as stated in the thesis assignment instruc-
tions,

2. it is elaborate enough to demonstrate the several user types with different
needs and expectations of the system. This helps to model it and its
variability.

In the scenarios it is assumed, a part of the development team is working
on a user manual for their software product. The team consists of:

• the head of the department, who takes care of the project management
of the user manual development,

• several developers, who are familiar with their software module and each
write a manual for their code,

• a reviewer, who fixes typos, grammar, stylistics etc. and
• a publisher who takes the source codes and produces the final manual for

DTP and print purposes.

The department is using Markdown, since all the developers who are writing
the most of the texts are familiar with it and use it efficiently.

In the following two subsections the interaction of the development team
with the system from business process perspective is demonstrated.

9

2. Analysis

H
e
a
d

A
n
n
o
u
n

ce
 r

e
le

a
se

S
u
b

m
it

 t
h

e
 r

e
su

lt
s

D
e
v
e
lo

p
e
rs

A
d

d
 o

r
e
d

it
 s

e
ct

io
n

in
 m

o
d

u
le

 A

m
o
re

 w
o
rk

?

A
d

d
 o

r
e
d

it
 s

e
ct

io
n

in
 m

o
d

u
le

 B

m
o
re

 w
o
rk

?

R
e
v
ie

w
e
r

Fi
x
 e

rr
o
rs

m
o
re

 w
o
rk

?

P
u
b
lis

h
e
r

C
re

a
te

 m
a
n
u
a
l

Fi
gu

re
2.

1:
Bu

sin
es

s
pr

oc
es

s
m

od
el

:
R

el
ea

se

10

2.1. Business process model

2.1.1 Business process scenario: Release
In the diagram 2.1, there is a possible scenario of the department’s workflow
on updating user manual after software release. The head of the department
orchestrates the team to start working on the manual for the new version. The
two developers keep updating the manual pages, each for their module. The
pages are reviewed by the reviewer. When they are satisfied with the text,
it is submitted to the publisher, who bundles the pages and create a single
readable and printable document, which is submitted back to the head of the
department.

A few observations from the diagram are made:

• If a logical mistake appears in the final product, the head might want
to know who caused it. The head wants to review the content the same
way a source code can be reviewed, providing access for the individual
annotated lines, containing the revision ID, date and author information.
VCS and revision updates are required.

• The publisher needs a direct access to the files.
• The first developer only writes in pages regarding module A, while the

second for module B. The publisher only needs a read access to the files.
Potential mistakes can be avoided, if the VCS repository was divided into
namespaces and edited with access control management.

2.1.2 Business process scenario: Hotfix
The diagram 2.2 showcases the department’s flow of action, when a hotfix,
which requires an update of the user manual, is issued. The process is very
similar to the previous scenario, because the processes are discussed at a very
high level of abstraction. The notable difference however, is that multiple
maintained versions of the manual need to be accessed and updated separately.
The following observation are formed: If a hotfix that requires a change in
the user manual is created, it is demanded to patch the previous version of
the manual, without introducing the changes that are already applied to the
current version of the manual – In the same manner as changes to source code
are applied. This calls for a VCS with the parallel branch support.

2.1.3 Summary
Notable conclusions from the observations are as follows:

1. The system needs an underlaying VCS with a branching feature, as poin-
ted out by several observations. A distributed VCS is utilized in order
to allow participants to make contributions when out of the office.

2. The system needs to provide a direct access to the files. At least the read
permission for the publisher.

3. The system should provide a direct access to the files for the revision
updates as well, since the developers likely work in their own environment
most of the time, at their personalized workstations.

4. The system should provide a simple read/write interface with no setup
required for the reviewer or head of the department. Both participants

11

2. Analysis
H

e
a
d

A
n
n
o
u
n

ce
 h

o
tfi

x

S
u
b

m
it

 t
h

e
 r

e
su

lt
s

D
e
v
e
lo

p
e
rs

Fe
tc

h
 n

e
x
t

m
a
in

ta
in

e
d

 v
e
rs

io
n

U
p

d
a
te

 s
e
ct

io
n

m
o
re

 v
e
rs

io
n
s?

R
e
v
ie

w
e
r

Fi
x
 e

rr
o
rs

m
o
re

 r
e
v
is

io
n
s?

P
u
b
lis

h
e
r

C
re

a
te

 m
a
n
u
a
l

Fi
gu

re
2.

2:
Bu

sin
es

s
pr

oc
es

s
m

od
el

:
H

ot
fix

12

2.2. User analysis

are then able to preview the pages in a more familar form compared to
the Markdown source code.

5. The system should provide an in-repository access control, to prevent
unintended revisions.

2.2 User analysis

In the previous section the business processes of a small department, developing
a user manual for their software were mapped.

Hence firm decisions (with fatal impacts on the system, including its re-
quirements) are to be made, archetypal users mentioned in business process
model are discussed.

This section is a brief user persona definition. It is intentionally drawn back
from the lengthly formal persona definition from the usability testing [85], since
a detailed persona definition proves less useful for a one man team.

The users are described with regard to their role and their knowledge and
skills regarding the system. They are given names for further convenience of
the thesis, but the part of persona definition regarding their personal life and
the related features of the archetype personification is neglected.

The head of department is a lady called Hump and she just organizes the
team. Her job related to the system is very limited, but includes potential
access control setting. She is also a developer. In a scenario where Hump
manages several teams access rights, it might be useful to keep the settings in
a configuration file with the scripting potential.

The developers are programmer gentlemen called Dump and Lump. They
are working in an IDE or coding editor and they are very efficient using it. It is
best to let them work in their natural environment. Dump and Lump know the
selected LML by heart and they are skilled at reading it from the source code,
as well as writing it without additional visualization or preview tools. They
are familiar with core VCS principals and use a VCS on their daily bases, when
coding in the team.

Reviewer Rump is not a developer and just checks for readability, typos,
etc. He makes subtle changes in the manual. Rump knows the LML syntax,
but prefers an easy to use tool with a rendered preview to read the texts in a
formatted document. He knows of VCS and its basic principles, but does not
use it often.

The publisher named Pump makes no changes to the pages and just down-
loads the repository to his workstation and produces the desired outputs using
a set of maintained scripts.

2.3 User access

As mentioned in the previous section, there are issues that need to be resolved,
before approaching the rest of the analysis. Because the impact of the res-
olutions, it is required to completed even before defining the system through
standard tools, such as the requirement model. That is the way the documents
are persisted, and how the users access it.

To this moment in order to remain at the abstract conceptual level, which
was convenient for e.g. business process modeling, it has not been implied a

13

2. Analysis

specific VCS is used within the system, though it is stated in thesis assignment
instructions. Git VCS is used for wiki contents persistence, as instructed. It
has many advantages, including a branch model, a CLI repository access via
SSH and it is decentralized, which is convenient for Dump and Lump (the de-
velopers) when working out of the office, as pointed out by an observation in
the business process model. Apart from that, it is fairly popular. According
to [8] up to 50% of the existing open source projects use Git, while the second
place goes to Subversion with 42%. This applies only for the open source
projects. Most of the statistics reflecting the global usage of VCSs are thus
misleading, and in global scope, with the private projects included, Subver-
sion plausibly still rules over Git with usage statistics. From various sources,
e.g. mentioned in [64], it is apparent that Git’s popularity is increasing over
the years nevertheless, which makes Git a reasonable choice.

Using Git as an underlaying VCS layer brings two important questions to
discuss.

1. Access control gets more complicated. In a centralized VCSs, it is nat-
ural to have the feature of file locks, which is e.g. available in Subversion.
Though there are tools to simulate this in Git, it becomes far more chal-
lenging. How is the access control within a Git repository solved?

2. Git provides a useful interface for repository cloning, granting an elegant
solution for the direct file access, familiar to Dump, Lump and Pump.
Users are authenticated through an SSH authentication layer, once they
deliver their public keys to the hosting server. This is a standard practice
used by the popular Git hosting providers. How is the user authenticated
and how is the identity paired with the stored public key?

2.3.1 Authorization
A tool for an authorization layer atop the SSH to manage Git repository access
for the Git hosting is required. The possible open source options available are
discussed.

There are many Git hosting services with a swarm of supportive features,
such as the code review, issue tracking and even access control. These self-
hosted services include e.g. GitBucket [82], GitLab [33] or Gogs [36]. None of
the services are suitable, since none of them by this time offer a modular usage,
to utilize just the mere SSH authorization layer. GitLab is selected from the
group to demonstrate this.

Since none of the examples from the said group are convenient4, software
that serves only authorization purpose is discussed. There are two examples:
Gitorious [81] and Gitolite [15]. Gitorious is no longer maintained, since it
has been acquired by GitLab in 2015 [79]. The fact that Gitolite, which is still
maintained, was for a time used by GitLab as an authorization layer, renders it
even more relevant, given the GitLab’s popularity. One of the reasons for that
is that GitLab faced performance issues with an extensive count of repositories
and users. [34] This might become an issue for the massive corporations, but

4Not impossible – they can be used. They are inconvenient however, because the system
requires to be used as a whole, while only utilizing a mere fraction of it. The provided SCM
features are not to be used.

14

2.3. User access

since Gitolite performance issues with configuration parsing occurred at over
560 thousand LOC of configuration files and 42 thousand repositories reached
by Fedora, it is sufficient for the purpose. [13]

Two examples are distinguished to compare in this section as possible can-
didates for the authorization tool to use in the project. GitLab and Gitolite
are inspected for the purpose closely in the rest of the subsection.

2.3.1.1 GitLab

“GitLab is a single application with features for the whole software development
and operations (DevOps) lifecycle.” [31] It is an open source project started
in 2011 with more than 1900 contributors and used by over 100 thousand
organizations as a self hosted Git server with many development supportive
features [31].

It offers a rich, well documented GraphQL API (as well as a still maintained
RESTful API), which would become beneficial for the application control.

Using GitLab solves the issue of authentication as well, because GitLab
comes bundled with an embedded user management service, storing user data
in its own database. This is consider a great asset for the purpose.

Regarding the access control, GitLab offers standard control over Git
branches via user groups using the protected branches5[35], which is a feature
well known amongst similar services. This however remains to be the only level
of control it offers within a repository. A file locking feature exists in GitLab,
but is only available in GitLab Premium, where it is available since GitLab
Premium 8.9 [32].

GitLab is a single application, as officially stated. It cannot be used mod-
ularly for the thesis’ specific purpose.

2.3.1.2 Gitolite

“Gitolite allows you to setup git hosting on a central server, with fine-grained
access control and many more powerful features.” [15] Gitolite, presumably
developed since 20096 is an open source authorization layer atop SSH, which
controls user access to Git repositories.

The advantage over GitLab for the usage is that it manages solely author-
ization. Unlike GitLab, using it does not require to inject a large monolithic
application only to leave most of its features unused.

Gitolite unlike GitLab offers a truly powerful access control configuration.
It features a “wild card” regular-expression defined repository names [12], and
a much more advanced feature similar to protected branches from GitLab. This
offers means of controlling not only branch names, but even tags, paths within
the repository and even establish push meta rules, such as changed files count
per push. All mentioned using its vref 7 and refex8 [14] as seen in the listing 1.

The sample Gitolite configuration in the listing 1 taken from [14] showcases
the access settings for the repository foo. It grants unrestricted read-write

5Protected branches are means of restricting the user access based on Git branches. It
usually distinguishes between read, write and master permission, which allows force updates,
delete etc.

6September 17, 2009 is the first tagged release on GitHub, v0.50
7Abbreviation for virtual reference
8Neologism formed of reference and regex

15

2. Analysis

1 repo foo
2 RW+ = @alldevs
3

4 - VREF/COUNT/5 = @juniordevs
5 - VREF/NAME/Makefile = @juniordevs

Listing 1: Gitolite configuration example

access (RW+9) to all developers (group called @alldevs) and restricts access for
the junior developers (restriction using “-” symbol) to push more than 5 files
and to change the Makefile.

This configuration sample demonstrates the power of the fine grain access
control Gitolite provides, which is not only superior to GitLab in its expressive-
ness, but is also stored in simple configuration file in a Git repository available
through Gitolite itself.

Apart from that, Gitolite features a group management as does GitLab.

2.3.1.3 Summary

The stated advantages, namely rich concept of virtual references for access
control and accessible version controlled permissions configuration outweigh
the single, yet considerable drawback, which is need for custom authentication.

Thus Gitolite is preferable over GitLab.

2.3.1.4 How Gitolite works

Before resolving the second issue of user access revealed earlier, which is the
approach to unified authentication mechanism on over SSH and WUI alike,
details of Gitolite’s authentication and authorization details are discussed.

This is important because the system needs to have means of authenticating
the user on the web as well as of checking the authorization rules for the
repository access, which behaves in the exactly same fashion as the one over
SSH.

Note that these are neither an installation instructions, nor an in depth
explanation of Gitolite works inside. Just bare essential to understand its
basic concepts.

2.3.1.4.1 Install Gitolite is a program typically installed under a new user
called git. It takes over its home directory and makes necessary changes to it.
Git user’s home directory holds all repositories, including the administration
repository. The administration repository includes access control configuration,
as well as the registered public keys for the authentication. Gitolite keeps
additional files updated for a successful SSH authentication (discussed later).

The Gitolite installation requires one public key for the initialization. The
first key (its user) is granted an access to configuration repository.

9the “+” symbol means advanced access to e.g. force push branches

16

2.3. User access

2.3.1.4.2 Adding a user Users are added by changing the gitolite-admin
repository, the mentioned administration repository. It contains the folder with
the public keys and the configuration file for the authorization. A new user is
added by pushing commits, which add their public key to the gitolite-admin
repository. This repository on the Gitolite server is the single one to have a
post-update hook, which creates a record in the authorized_keys10, allowing
the new user to authenticate via git UNIX user onto the Gitolite server with
SSH key-pair authentication.

2.3.1.4.3 Authentication As is obvious from the previous paragraph, Git-
olite does not implement any form of authentication. It is relying solely on
the SSH layer to perform a secure authentication via the key-pair authentic-
ation. Gitolite must provide authentication data by cautiously managing the
authorized_keys file.

1 # gitolite start
2 command="/home/git/bin/gitolite-shell

hump",no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty
ssh-rsa AAAAB...VAQ== hump@station1

↪→

↪→

3 command="/home/git/bin/gitolite-shell
dump",no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty
ssh-rsa AAAAB...VAQ== dump@station2

↪→

↪→

4 # gitolite end

Listing 2: Gitolite git user authorized keys file

Gitolite restricts incoming users from full access via SSH configuration.
Notice the authorized_keys file with running Gitolite with several users in
the listing 2. The file authorized_keys does not only contain the public keys
authorized for access, one per line. Apart from many options irrelevant at
this moment, it contains an option command. It “specifies that the command is
executed whenever this key is used for authentication. The command supplied
by the user (if any) is ignored. (…) This option might be useful to restrict
certain public keys to perform just a specific operation. An example might be a
key that permits remote backups but nothing else.” [70]

Which means a UNIX user on a machine with running SSHD [71] can control
what command is executed for SSH key authenticated users. This can be used
to run different a shell, modify the environment or as in this case, to forbid the
users to run anything, except a specific program. In this case it is gitolite-shell
with provided username argument.

This is important for the further discussion of authentication, since it makes
other than the key based authentication impossible to use.

2.3.1.4.4 Authorization Gitolite authorization runs in two steps.
This process is depicted in the diagram 2.3. The activity diagram, though

simplifying the details to display the higher-order concepts, contains all the
essential components in the communication for the demonstration of the dis-
cussed issue. The diagram presumes that SSH authentication succeeds.

10Implicitly located in .ssh/authorized_keys

17

2. Analysis

Workstation

git push git@server:repo

ssh

Server

sshd

gitolite-shell

exit error?
no yes

git-recieve-pack

update hook

yes

exit error?

Figure 2.3: Gitolite two step authorization

The first step in the process is to run the gitolite-shell with the username
and the repository name, supplied via SSH by the remote user. At this point,
Gitolite can evaluate (and eventually deny) the access, because it already knows
the authenticated username, as well as the repository name and the action (is
it a read action, such as git fetch, or write, for instance git push). If Gitolite
does not deny access at this point, Git standard command is invoked, e.g.
git-upload-pack for cloning or pulling form a repository.

For the read operations the first step is also its final. However that is not
true for the writing operations such as push. For that, after the gitolite-shell
command passes, git-recieve-pack is invoked instead. This receives and ap-
plies the data from the initial push, which eventually triggers an update hook.
The hook performs additional checks for each updated reference and it may
partially or totally abort the update by exiting with an error.

2.3.2 Authentication

Having discussed the authorization layer and its limits, it is apparent that the
system requires the SSH key-pair authentication method.

Can the same concept be utilized in the web environment?

18

2.3. User access

Though not technically impossible, it is not definitely a standard approach
for the authentication on web. The discussion [74] contains further details on
this topic. The main problem of the issue is the access to the local files from
JS in the browser. Using a browser extension for that, as suggested in [74] is
inappropriate and a requirement of user extension an everyday authentication
is unnecessarily complicated. Using a key-pair authentication is a non-standard
approach to the problem with obvious obstacles. Thus it is not considered for
the project.

The solution of authenticating a user and binding it with a SSH key is used
by popular similar SCM services.

If the user cannot be authenticated via key-pair, yet it must be guaranteed
that the user, no matter the authentication method, is correctly paired with the
public key, then the key must be provided by the authenticated user. Binding
user and a public key is not possible in a secure way. The solution is then to
use the standard ways of authentication on the web and let the user upload
their public key via a web application, performing an authorized request under
the identity of authenticated user.

This solution is used by giants amongst the SCM services, including GitHub
[30], GitLab [33] or BitBucket [7].

2.3.2.1 The standard ways of authentication

Since the SSH key-pair authentication is impractical on the web, conventional
way of authentication are briefly discussed.

A common way of authentication on the web is providing a UID (username,
email, etc.) and password. The server then retrieves the user by UID from its
storage and compares the passwords (the results of hash functions with one of
the inputs being the password).

Users are familiar with the method, it is simple and portable – independent
of the browser, OS etc.

Implementing this authentication in a secure fashion and keeping it up to
date is challenging, and the solution has great re-usability potential. For that
reason (but not only as mentioned later) there are services that act as authen-
tication authorities. This allows other applications and services, regardless of
the platform, to communicate via HTTPS with the authority and let it authen-
ticate the user instead. This contributes to re-usability of the user’s key11 they
have – not only improving their comfort but also containment of the personal
data in applications specialized for that purpose.

A popular architecture of such service is OAuth 2.0. OAuth 2.0 is primar-
ily an authorization service. The authority manages user’s data. An existing
application can request authorization for portion of the data. User (after a
successful authentication) can grant or reject the authorization of the applic-
ation for requested portion. When the access is granted, the application can
manage the data. Requesting data about the user, the OAuth 2.0 can be used
as mere authentication provider.

This is utilized by the OpenID Connect [72], which is a standard based
on the OAuth 2.0. It is not a general authorization provider, but an identity
provider.

11Meaning means of authentication, not a asymmetric cryptography key-pair.

19

2. Analysis

Using an external provider is a viable solution for the system, since it sim-
plifies the authentication process, allows the user to use an existing identity in
the system and the application to access user data if convenient.

2.4 Requirements model

Since the system tackles both web application as well as the SSH access to the
repositories, it provides two UIs. The former is referred to as WUI and latter
as CLI throughout the text.

2.4.1 Functional requirements
Wiki system works with text files formatted in a specific markup syntax. Sys-
tem must provide support for AsciiDoc [5] and Markdown [40] and must allow
extensibility for other LMLs using modules. The set of at least two mentioned
LMLs (possibly extended by additional ones) is referred to as supported markup.

• F-1. Authentication

User authenticates via an external authority. After the successful authen-
tication, system provides means for user to upload their public SSH key to
unlock CLI. Alternatively the application retrieves the SSH public key from
the authority provider.

• F-2. Authorization

Each authenticated user accessing the system is denied or allowed access
according to the current ACL settings respectively, regardless the used inter-
face. The authentication methods may vary for the WUI and CLI access, but
the behavior of the authorization layer is consistent.

• F-3. Content management

Authorized users can manage the contents of the wiki. Users can preform
general CRUD operations on any content, based on their level of authorization.

The system uses VCS to track changes in the content. Submitted changes
create new revisions in a history log, which can be accessed to review individual
revisions or restore content from a specific point in time.

The content consists primarily of text files for the convenience of VCS,
however it might include binary (e.g. media) files as well.

The system provides convenient editing interface for document files in sup-
ported markup format. This interface is provided by a specialized editor.

It is not necessary, nor desired to cover all possible user interaction in WUI.
The paramount priority is to offer editing interface for the supported markup
documents.

• F-4. Content browsing

20

2.5. Use case model

Users can browse the published content; this action may or may not require
authorization based on the current ACL for WUI. The authorized users can
access repository directly via CLI.

The WUI provides an interface for repository file browsing relevant to the
current repository revision, as well as a file preview and a list of available
revisions with their changes. File preview of the supported markup documents
interprets the markup and displays a rendered document.

• F-5. Authorization management

With the sufficient authorization access, user can edit ACL for the selected
repositories. For each registered user and individual repository a read write
access can be explicitly allowed or disallowed.

2.4.2 Non-functional requirements
• NF-1. Storage

The system stores all the data only in a set of Git [80] repositories on single
server machine. That includes the contents of wiki itself as well as e.g. ACL.

The system may use other technologies for other data when convenient for
e.g. cache, session management etc.

• NF-2. UI

The system provides WUI as well as an SSH direct access (CLI) to the Git
repositories.

• NF-3. Platform

The system is implemented in JS (the web client interface) and Node.js
(server-side).

2.5 Use case model

2.5.1 Actors
The system in general recognizes three types of users. The role hierarchy is
illustrated in the diagram 2.4.

1. Anonymous user

The anonymous user can browse or even contribute to a public repository
if its authorization policy allows that, but only via WUI.

2. Authenticated user

The authenticated user can browse or even contribute to a public or private
repository if its authorization policy allows that, via WUI or CLI.

3. Administrator

The administrator is an authenticated user with write access to a specific
repository holding the access control policy.

21

2. Analysis

Authenticated User

Anonymous User

Administrator

Figure 2.4: Use case model: Actors

2.5.2 Browsing
The diagram 2.5 displays the use cases for the browsing section.

• UC-1 Git remote access

User remotely modifies Git repository via the SSH standard Git interface.
The power of the following editing interaction is limitless and not related to the
described system, because the changes happen at the user’s local workstation.

The interaction of the user is either of the following types:

1. Read operations (clone, fetch, pull etc.)
2. Write operations (push and its variations)

If the user is not authenticated and tries to access any repository (including
the public ones)12, operation is not permitted.

• UC-2 Sign in

The user can authenticate through external authentication authority. If the
authority provides access to the user’s public key (e.g. GitHub, GitLab, etc.),
on first sign in, the key is paired and CLI becomes available.

• UC-3 Traverse tree

User can list files in the currently selected repository. File names are visible
and recognized file types are distinguishable in the list.

If list item is a directory, user can select the item to navigate to the directory
sublist. In same manner, user can traverse the tree back to root folder.

12Necessity of this restriction has been discussed earlier in the section User access

22

2.5. Use case model

WUI

CLI

Traverse tree

Select repository

Select revision

Show file

Sign in

Git remote access

Anonymous User

Authenticated User

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

Figure 2.5: Use case model: Browsing

• UC-4 Show file

User can display contents of the text file. If the file is a supported markup
document, the rendered preview is available.

The preview of binary files is not supported.

• UC-5 Select repository

User can select a repository. This affects the Traverse tree UC.

• UC-6 Select revision

User can select a revision for the selected repository. This affects the Tra-
verse tree and Show file UC.

2.5.3 Content management
The diagram 2.6 displays the use cases for the content management section.

23

2. Analysis

WUI

CLI

Change content

Manage filesEdit contents

Create a revision

Sign in

Git remote access

Anonymous User Authenticated User

«include»

«extends» «extends»«extends»

Figure 2.6: Use case model: Content management

• UC-7 Change content

If the user is not authenticated or unauthorized to perform edits on the
selected repository, use case scenario ends.

User performs any of the Edit contents or Manage files use cases in any
order. User must perform the Create a revision use case to complete scenario.

• UC-8 Edit contents

The user is presented an interactive editor. If user is editing a supported
markup document, an editor with specialized features for the given language is
provided.

If the file is not a supported markup document yet it is a text file, user can
edit its contents in simple textarea. Otherwise, the editing is not possible.

The user edits the contents of the file. When they are done, they submit
the results.

• UC-9 Manage files

The user can rename, edit or delete files in the repository if they are given
access.

• UC-10 Create revision

The user types a descriptive short message to describe their revision. The
user confirms the revision.

2.5.4 Access control
The diagram 2.7 displays the use cases for the user access control section.

• UC-11 Manage user access permissions

24

2.6. Use case - functional requirements coverage

WUI CLI

Change content

Manage user
access permissions

Sign in

Git remote access

Manage user
access permissions

Administrator

«include»

«extends» «extends»

Figure 2.7: Use case model: Access control

The administrator can edit a special repository containing the authorization
policy. In this file they can create user groups, grant or revoke access on read
and write levels to the existing repositories and their namespaces.

2.6 Use case - functional requirements coverage

The use cases are a mere elaboration and further specification of the functional
requirements, with detailed interaction of the user and the system. Therefore
by the definition, all use cases shape at least one functional requirement, and
each functional requirement is implemented by at least one use case.

The diagram proves 2.8 proves that it is so.

25

2. Analysis

UC1 Git remote
access

UC2 Sign in

UC3 Traverse tree

UC4 Show file

UC5 Select
repository

UC6 Select
revision

UC7 Change
content

UC8 Edit
contents

UC9 Manage
files

UC10 Create
revision

UC11 Manage user
access permissions

F1 Authentication

F2 Authorization

F3 Content management

F4 Content browsing

F5 Authorization management

Figure 2.8: Use case - functional requirements coverage

26

Chapter 3
State-of-the-art

In this chapter, several existing OSS wiki systems are compared. The systems
are selected when their design and feature set most strongly resemble the traits
discussed in the previous chapter.

Since the requirements are highly restrictive, only the systems using Git
VCS for data storage are present, regardless of the satisfaction of the remaining
demands.

The remaining requirements are discussed individually with each system.
It is described where they excel and where they are inferior. The remaining
desired features, apart from Git VCS in the BE, are:

• User access control

– How powerful it is
– What security scopes are available (protected branches, namespaces

etc.)
– The integration of the configuration into the VCS

• Direct repository access

– The direct access via Git CLI available
– How the authentication is handled with the web login and the SSH

key pairing respectively

• Document format

– Variety of the supported languages
– Support for Markdown and AsciiDoc
– Extensibility for the new LMLs
– Language feature support

• Branching model

– The Git branching model support
– Parallel version development

• UI

27

3. State-of-the-art

– The incorporation of the Git VCS into the UI13

The acceptance and quality criteria is defined. Based on the former the
several popular systems that either run on the VCS Git or are able to use it
as a primary content repository are inspected. The systems Wiki.js, Gollum,
Gitit and Ikiwiki, complete the list of all major OSS projects, which are backed,
or can be in that matter, by Git.

Some items on the list are not repository hosting services per se, for instance
Gollum, which is only a WUI for managing a Git repository. Since the number
of the project passing the acceptance criterion is thin as it is, Gollum is included
as well, for its UI research value.

The list can be extended if plug-ins or extensions are considered. This way
popular platforms such as MediaWiki or DokuWiki could be included. Exten-
sions are excluded however, and only platforms which are designed to work with
a VCS repository are considered, for the reason of having a greater research
value of the design and the UI specifics regarding the Git incorporation.

3.1 Ikiwiki

Ikiwiki is a software project licensed under GNU GPL version 2 or later [46],
written in Perl and was first released in April 2006 by Joey Hess et al. “Ikiwiki
is a wiki compiler. It converts wiki pages into HTML pages suitable for pub-
lishing on a website.” [51] What is the most admirable about Ikiwiki is that
can use Subversion as well as Git, which implies a form of VCS abstraction is
used throughout the system. This can result however, in the lack of features
such as access control (because general implementation of this feature is excep-
tionally complex) or Git specific features such as branching model for parallel
development.

Ikiwiki is, as stated, primarily a wiki compiler, meaning its main goal is to
compile the document pages into the selected format (presentable format from
LML).

3.1.1 User access control
For the Git SSH access there is no form of user control when using Ikiwiki with
Git. Keys for accessing the repository via SSH must be set manually and are
not managed by the application [49].

Access control in the WUI is possible [50] through the httpauth plug-in
using the CGI configuration. This allows to create a private wiki as a whole,
as well as to pinpoint the pages that require authentication (and leaving rest
implicitly public).

The subset of pages that require authentication is defined using PageSpec
[52]. This allows to define the pages as a mere list of their names, but also
using advanced functions for matching links to the pages, date creation or
pages created by the given user. PageSpec is a surprisingly powerful tool, as
shown in the following demonstration. “For example, to match all pages in

13It is useful, to observe how the UI is affected by the fact that the system runs on
the VCS Git. UI presumably shifts slightly from a “document hub” (known from common
wiki software, e.g. MediaWiki [87] or DokuWiki [37]) to a broader perspective of a generic
repository browser.

28

3.1. Ikiwiki

a blog that link to the page about music and were written in 2005” [52] use
PageSpec displayed in the listing 3. [52]

1 blog/* and link(music) and creation_year(2005)

Listing 3: Ikiwiki: PageSpec example

The concept of authorization and authentication is intertwined, as offi-
cially stated in [53]. Though it is technically possible to somewhat differenti-
ate between the two using PageSpec functions user(username), ip(address)
etc. and distinguish read, write access for e.g. comments with functions
comment(glob) and postcomment(glob), the ACL is formed of a single logical
expression, resulting in an unmaintainable configuration, when used for sev-
eral users with a non-trivial access policy.

3.1.2 Direct repository access
The direct access via Git CLI is available, since Git repository can be hosted
on the remote machine.

Ikiwiki must be provided the SSH keys for the remote repository access.
Serving the repository over SSH is not provided by the software.

3.1.3 Document format
Ikiwiki supports primarily Markdown with extended syntax14. However, via
plug-ins it features support for HTML, WikiText [89], Textile [4] or reStruc-
turedText [38]. [45]

Extensive document editing is expected to be handled with a direct file
access in custom environment. The WUI offers only a simple textarea. Using
a RTE in the WUI has been considered and is recorded in the “todo” section
[54], however, with an outdated link to the current version 1.6 of the plug-in.

3.1.4 Branching model
It is possible to use the mentioned Markdown extension directive, to reference
a Git branch [48]. The existing branches [44] are displayed as single documents
in the WUI, forming one bug or a todo. Parallel version maintenance through
WUI is unlikely.

3.1.5 UI
On the conceptual level as described in the introduction of the chapter, the UI
of the wiki is not affected by the underlaying VCS layer, as seen on the page
preview on the image 3.1. There are tools in WUI however, such as the history
preview, that take the advantage of the VCS background. Atop of the content
of the wiki page with outline by its side, there is a toolbar with links including
Edit, History, etc. and a search form. At the bottom, there are pages linking
to this page and last edit meta-data.

14Using wiki links([[WikiLink##foo]]) and its akin directives.

29

3. State-of-the-art

Figure 3.1: Ikiwiki: Page preview

On the edit page there is a standard static preview button. This is depicted
on the image 3.2.

3.1.6 Summary

• The PageSpec tool is powerful, but very hard to use for the basic config-
uration and is maladroit to maintain.

• The SSH authorization is not handled and burdensome to sync with the
existing authorization settings.

• The Authentication is blended with the authorization.
• The usage of Git branch is unusual.
• Plain-text editing is provided.

Ikiwiki, being the oldest project in the chapter, suffers from the histor-
ical decisions, which might have been relevant at its time. Nevertheless, they

30

3.2. Gitit

Figure 3.2: Ikiwiki: Page edit

are but burdens now. This includes complex PageSpec implementation and
unfortunate fusion of the authentication and the authorization.

3.2 Gitit

Gitit [62], a software by John MacFarlane, is written in Haskell. It made its
initial release in November 2008 and brings many features compared to the
previous entry. The strongest of which is its flexibility, which can be seen in
the VCS abstraction and the document format options as well.

Gitit can use either a Git, Darcs [77] or a Mercurial [63] repository. The
rather remarkable document format options are discussed later in the appro-
priate section.

From the user experience, it is incomparable to Ikiwiki15 and can be set up
in literally few minutes with basic configuration.

3.2.1 User access control
In spite of Gitit having many revolutionary ideas, user access control is its
weakest link in the strong chain. Gitit user manual does not mention any form
of permission management within the repository.

The only tools it offers for user restriction are:

• setting a global permission level for the anonymous users and
15Ikiwiki software and its homepage and documentation wiki are maintained in a single

repository [47], with confusing user manual and installation instructions scattered in the wiki.

31

3. State-of-the-art

• requiring a correct answer for the configured access question before re-
gistering a new user.

These options are available in the configuration as seen in its sample in the
listing 4, which is a snippet from the default Gitit configuration16.

1 require-authentication: modify
2 # if 'none', login is never required, and pages can be edited

anonymously.↪→

3 # if 'modify', login is required to modify the wiki (edit, add, delete
4 # pages, upload files).
5 # if 'read', login is required to see any wiki pages.
6

7 access-question:
8 access-question-answers:
9 # specifies a question that users must answer when they attempt to create

10 # an account, along with a comma-separated list of acceptable answers.
11 # This can be used to institute a rudimentary password for signing up as
12 # a user on the wiki, or as an alternative to reCAPTCHA.
13 # Example:
14 # access-question: What is the code given to you by Ms. X?
15 # access-question-answers: RED DOG, red dog

Listing 4: Gitit: Configuration sample

Gitit provides permission control only in the global scope. It does however
let the user select, whether to use implicit user file storage for the new users,
or to allow GitHub OAuth 2.0 authentication. With this option, setting the
client’s credentials in configuration file is required.

3.2.2 Direct repository access
The direct repository access is on the same level of support as was the case with
Ikiwiki. The system does not provide the external access to the Git repository.
If user desires to permit such access, it is solely their responsibility.

3.2.3 Document format
This is where Gitit truly excels beyond its rivals. Though lacking the specialized
tools for the selected LMLs, it offers

1. a large variety of supported languages and
2. an export option of the page into a rich set of document formats, including

other LMLs (Markdown, MediaWiki, AsciiDoc, etc.), typesetting formats
(e.g. LATEX, ConTeXt), office document formats, DocBook, sideshow
formats and much more, using Pandoc [61].

The documents are implicitly written in the Pandoc’s extended version of
Markdown. In a YFM (document preamble), meta-data including format can
be set, as seen in the listing 5. The supported formats include reStructured-
Text, LaTeX, HTML, DocBook and Org [19] markup. [62]

16Which is a result of gitit --print-default-config

32

3.2. Gitit

1 ---
2 format: latex+lhs
3 categories: haskell math
4 toc: no
5 title: Haskell and
6 Category Theory
7 ...
8

9 \section{Why Category Theory?}

Listing 5: Gitit: Page preamble example

3.2.4 Branching model
Gitit WUI does not support branching model. It faces the restrains of the
premise supporting Darcs VCS which does not have [76] a branch support. Git
repository itself is not limited to use a single branch, but the application only
assumes linear development.

3.2.5 UI

Figure 3.3: Gitit: Page preview

The UI, though appearing more modern, is fairly similar to the previous
entry Ikiwiki, as seen on the page detail in the image 3.3. There are improve-
ments, that include navigation tools: for instance All pages index and Categor-
ies17. Minor, yet welcoming change, is that links atop the page contents are

17Categories can be assigned to individual pages in YFM as seen in the listing 5.

33

3. State-of-the-art

tabular. The links are semantically more akin to tab widgets, than navigation
links. This design option, known from other popular wiki software, e.g. [87]
is an appealing change, that eliminates user confusion with the navigation and
current state of the view.

Figure 3.4: Gitit: Page edit

As expected of the format variety, no tool is used for the document editing,
but plain textarea. The form UI and the component layout is in this case almost
identical to the previous entry, as seen in the image 3.4, though featuring a
Markdown cheat-sheet.

3.2.6 Summary
• Gitit can be backed by a Git, Mercurial or Darcs repository.
• System lacks any form of authorization mechanism and leaves only an

option to select private or public wiki.
• A wide variety of the supported markup is provided.
• Notable export options are offered via the Pandoc conversion tool.
• Interesting usage of YFM is used for meta-data, which is independent of

the LML from Pandoc’s perspective.

Gitit profits from its generic approach of using a Pandoc meta document
format, allowing it to store meta-data in an unified manner as well as providing

34

3.3. Gollum

extensive export abilities.

3.3 Gollum

Gollum is an OSS written in Ruby developed since 2009 that powers [91] Git-
Hub Wikis. The Gollum, though being a wiki system, is rather different from
the other systems mentioned in this chapter. While its differences make it
destined to fail in many criteria, it proves useful to review the system, not-
ably from the UI perspective, especially given the fact that it has been used in
GitHub Wikis.

While Gollum does have wrappers or extensions that do provide, e.g. user
authentication and permission control, for instance [17], the bare library is just
a WUI for the repository management with the focus on LMLs.

3.3.1 User access control
Gollum does not handle any form of user control; neither authentication, nor
authorization – every visitor can perform any operation on the repository
through the WUI.

3.3.2 Direct repository access
Direct repository access is possible, though it is handled by the user outside of
Gollum.

3.3.3 Document format
Gollum by default supports Markdown and RDoc [83]. This can be even exten-
ded to AsciiDoc, Creole [57], MediaWiki, Org [19], Pod [86], reStructuredText
and Textile. With the extensions this is the largest set of supported markup
languages.

3.3.4 Branching model
Gollum can actually work with various branches. It can be launched on any
branch using the program argument from CLI gollum --ref=dev. The default
option is master.

3.3.5 UI
Gollum is visually minimalistic, yet the user widgets and layout remains still
very same, as appereant from the image 3.5. There are navigational options
hidden under the All and the Files options in the toolbar above the page.

There is an exceptionally impressive UI for page editing. Not only there are
many document formats supported, as discussed, but Gollum also provides a
toolbar (seen in figure 3.6) customized for the given format. Apart from that,
it features a static as well as a live preview18.

18That is available when started with option --live-preview

35

3. State-of-the-art

Figure 3.5: Gollum: Page preview

Figure 3.6: Gollum: Page edit

36

3.4. Wiki.js

3.3.6 Summary
• Gollum is just a web interface for the repository editing and lacks any

form of permission control or even authentication.
• The software supports many LMLs.
• Gollum provides superior document editing UI with impressive options

including toolbars for users unfamiliar with the syntax and a live-preview.
• The direct repository access is not managed by the application.
• Gollum features inconvenient branch support, requiring multiple in-

stances to run in order to manage parallel versions.

Gollum steps out of the line amongst considered systems, being “a mere”
WUI for repository management. It has an exceptional LML support with an
admirable UI.

3.4 Wiki.js

Wiki.js is a modern capable wiki software powered by Node.js, Markdown and
Git [26], developed by Nicolas Giard et al. With the initial release in September
2016, Wiki.js is the youngest software.

Being designed with the specific technologies in mind, the specialized fea-
tures are be expected from the project. As far as the non-functional require-
ments and technological restrains reach, Wiki.js, being a Node.js application,
backed by Git only19 and favoring modern popular LML Markdown, is by far
the closest to the thesis’ project.

After the installation user is prompted to run the configuration wizard20,
where user can set the name of the wiki, configure MongoDB21, default per-
missions (e.g. is wiki public to anonymous users by default) and a remote Git
repository with its SSH authentication data.

3.4.1 User access control
Wiki.js is the first project in the chapter to offer a strong ACL mechanism.
Within the WUI, administrator can set permissions for individual users or
managed groups via settings. The permission rule, added to a user or a group
consists of the following settings:

• Permission – either Read only or Read and write
• Path

– Path starts with or Path match exactly
– Path string

• Access – either Allow or Deny

19The abstraction of used VCS can potentially be a threat, as seen with Gitit not sup-
porting branches

20Configuration can also be set in the config.yml configuration file.
21Which is used for user data, not wiki’s contents.

37

3. State-of-the-art

Though the described ACL interface is not as complex, nor as powerful as
seen among others22, it is most fitting for the created scenario – a relatively
easy way to restrict access within repository in a name-space manner.

Though not apparent from the documentation, after an examination of
the MongoDB database data of running Wiki.js, it is obvious that they are
actually stored in the database, rather than in files. This means that ACL is
not implicitly version-controlled nor available for the direct access provided by
Wiki.js.

3.4.2 Direct repository access
Contents are stored in a Git repository. This can either be a local repository,
or a repository mirrored to its remote over SSH or basic authentication.

Repository is by its nature accessible directly from the remote and Wiki.js
handles [28] the synchronization on its own. Git repository is clean, formed
solely of the Markdown documents. All meta-data are detached from the re-
pository and saved in the MongoDB.

Wiki.js however does not handle direct repository access23 and it is in the
hands of the administrator again.

3.4.3 Document format
Wiki.js only supports Markdown as the sole document format. This can be seen
as a disadvantage in form of a user restriction as well as an advantage – the
potential for Wiki.js to peruse perfection in the tools specialized for Markdown.

The same way Gitit used the Pandoc format’s YFM for meta-data, Wiki.js
uses a similar trick. Since Markdown does not support any meta-data syntax,
Wiki.js uses Markdown’s comments24 for meta-data. This syntax can be used
to define page title for instance as seen in the listing 6.

1 <!-- TITLE: Home -->
2 <!-- SUBTITLE: A quick summary of Home -->
3

4 # Header

Listing 6: Wiki.js: Markdown meta comments

3.4.4 Branching model
The branching model is not supported. Wiki.js can change the remote branch
for synchronization, but this requires the change in the configuration.

This is a similar approach to the one taken by Gollum, which effectively
requires a restart to lock onto a different branch.

22Meaning it does not provide as complex expressions as seen in Ikiwiki’s PageSpec, for
instance.

23in sense of a hosting service
24At least its “most supported” syntax of the comments. Since there is no consensual

cannon specification of the Markdown grammar, it is defined by its various implementations.
Their somewhat unexpected behavior can be compared in [60].

38

3.4. Wiki.js

This feature can be actually used for the parallel development, when run-
ning multiple Wiki.js instances and mirroring to a single repository, but onto
different branches. This strategy is useful for developing few, not-related wi-
kis, mirroring into a single repository. This approach however, is not useful for
managing several versions of the same repository of a single project, the way
it is described in the business process model.

3.4.5 UI

Figure 3.7: Wiki.js: Page preview

Wiki.js offers the UI (image 3.7) which has the same widgets as seen before,
though visually distinguished from other project. This is plausibly an effect
of the fact that Wiki.js is the youngest software. Apart from the website
navigation there is a document TOC navigation placed under it in the left
sidebar.

Wiki.js offers custom Markdown editor with features focused on the lan-
guage, as seen in figure 3.8. The editor features a hybrid live preview of the
formatted source code (using proportional sizes and font styles and colors for
the formatted markup), as well as a toolbar for the users, who are unfamiliar
with Markdown, who can use editor as a RTE.

3.4.6 Summary
• A user friendly, relatively powerful permission control is provided.
• Branch support is available, though inconvenient for the scenario.
• SSH authorization is not handled by the application and it is burdensome

to synchronize with the existing authorization settings, since FE and BE
API decoupling is in progress a scheduled [27] for the version 2.0.

• Only Markdown LML is supported.
• Hybrid advanced RTE is provided.

39

3. State-of-the-art

Figure 3.8: Wiki.js: Page edit

• Git repository mirroring is available.

Wiki.js provides convenient user permission configuration, modern UI and
specialized Markdown editor.

3.5 Summary

The selected wiki systems are discussed in this chapter with regard to estab-
lished criteria. None of the systems are ready to substitute the software product
of the thesis, as concluded in the defects (regarding the given criteria) in each
summary.

The major issue with each solution is failing the requirement F-2 Author-
ization, which states that the authorization policy is consistent, no matter the
used interface25 The only solution that has an in repository permission control
is Wiki.js, and as stated in its section, the permission rules are stored in a data-
base with no guarantee of consistent API provided by Wiki.js at the moment.
Interpreting the Wiki.js’ permission configuration is not feasible. Having said
that, even if it were possible to obtain the ACL configuration from Wiki.js,
its power is far less sophisticated than the one provided by the Gitolite config-
uration. Having Wiki.js permissions compiled into the Gitolite configuration
would degenerate the ACL expressiveness to the level of Wiki.js.

Apart from that, there are few other important, though less fundamental
issues.

Firstly is the breach of the F-3 Content management which demands sup-
port for Markdown and AsciiDoc as well as modular extensibility. Some sys-
tems, such as Wiki.js, are bound to specific formats, so extensibility is not in

25One user is bound by the same set of rules whether they use WUI or CLI.

40

3.5. Summary

question. The only system that by brief glance plausibly satisfies the require-
ment is Gollum, which alas failed at the following issue.

The issue majority of the systems fail to comply is UC-6 Select a revision.
Many systems ignore the repository’s branching model and others offered an
impractical implementation of it.

From the point of the UI that would distinguish Git backed wiki systems
from others, the main aspect is the navigation. While generally wiki uses
namespaces as a hierarchical structure of pages, said systems usually favor
directory perspective26 and provide a file browser widget for traversing the
repository directories. This is clearly seen in Gollum for instance.

VCS revision (Git commit) is in all systems considered as an atomic27

change. User cannot not create a commit via the WUI that would change the
contents of the two different files for instance. Rename, delete, create commit
messages are created automatically, without the user’s knowledge, while revi-
sions changing file contents, prompt the user to describe incorporated changes
manually.

In the next chapter, it is explained how are the stated issues resolved.

26This is the cause of the fact that the Git repositories usually contain at least some
portion of source codes, or other files that are not pages per se.

27in sense of files

41

Chapter 4
Design

In this chapter a conceptual design of the system is presented along with the
solutions for the issues raised in the summary of the previous chapter.

4.1 Design foundations

There are two conceptually different approaches to the implementation of the
unified authorization layer for both WUI and CLI:

1. allow remote repositories, while losing the control over them, or
2. keep the repositories managed exclusively by the system, allowing for

firm permission control potential.

4.1.1 Remote repository, limited permission control
This is the approach more or less taken by all the reviewed systems in the
previous chapter. The premise is to allow the users to work with their existing
repositories and remain their remote locations. The implementation is akin to
how Wiki.js tackles the issue – the application works with the local mirror of
the repository, which is kept synchronized with the remote, thanks to provided
access data, such as repository link and security configuration (either the HTTP
Basic or the SSH key-pair authentication).

The implementation possess the following attributes:

• Easy setup and installation (no need to configure the SSH server)
• Central public application instance can be used by the community, users

can drop in or out at their convenience
• Possibly larger base of users would be addressed due to the previous

attribute

4.1.2 Local repository, potentially extensive permission
control

This approach is used by the larger SCM services like GitLab. The system
is not just a web application but also a Git hosting service. This gives the
application ultimate control over the repositories. The custom Git hosting

43

4. Design

service allows to create a complex permission control layer for remote access
(or utilize an existing software for the purpose).

• More challenging for unexperienced users to setup the hosting service
• Central application instance is not feasible

– users are not likely to give away their repositories to an unknown
provider

– decentralized ACL administration is difficult to tackle, even with a
sophisticated tool as Gitolite

• Thus, few users actually get to use the system

4.1.3 Conclusion
The former design likely reaches to more users, while the latter provides power-
ful control over the repositories, allowing for a solid authorization layer.

The concept of repository providers is described in the following section,
which provides a solution to overcome the obstacle of having both: the remote
repositories and the firm control over the local ones in parallel.

4.2 Repository providers

The key to bringing the benefits of both, radically different architectural ap-
proaches, is to create a solid abstraction layer for the repository within the
application, as well as for the means of retrieving and publishing them – the
repository providers.

4.2.1 Repository provider’s API
Repository provider is a module that can:

1. Accept authentication data – Accept an API key, username etc. to
use within the module, when it is accessing private repositories.

2. List available repositories – Return a list of available repositories it
has access to, based on the authentication information.

3. Obtain a repository – Clone a repository from an existing remote
into a temporary space, likely FS28, or update its references if it already
exists. This action either returns a repository abstraction or fails due to
a network error, an unauthorized access etc.

4. Create a revision and publish – The provider can block the action
and result in an error, or pass the revision to the repository abstraction
for commit. The abstraction applies the commit and publishes selected
branch to its upstream on the remote repository. Provider can disallow
this action based on its implementation or response of the remote.

28Also remote FS or any other abstraction, which can be accessed to perform changes in
the Git working directory

44

4.2. Repository providers

4.2.2 The advantages of using repository providers

4.2.2.1 Unified approach

Using a tool, such as Gitolite, it is possible to tamper with the original reposit-
ories, which are eventually located on server’s FS. While tempting in the short
run, it is very short-sighted.

Utilizing direct FS access needlessly over-complicates the core logic, forking
it into working with an authentic original, and a mirror of a remote. This
effectively branches the behavior of the publishing process for instance, and
closes the gate to concurrency control.

Therefore, for design purposes it is far mote suitable to treat local reposit-
ories as remote, handled by an unified provider interface.

4.2.2.2 Repository abstraction

Treating the local repositories as remotes proves beneficial. Not relying on
the local repositories and always aiming for the mirror of a remote, creates a
generic abstraction, ready to be used in both scenarios.

4.2.2.3 Application access control

The repository provider module has control over every action of the repository:
access, edit and publish. It can, deny access depending on its own logic. This
is required for the local provider. The paramount objective is to offer unified
authorization mechanism over SSH and WUI.

Instead of accessing the repositories directly, with the concept of the pro-
viders, a local provider can be designed. It fetches the repositories from (and
publishes to) the local machine over SSH.

Simulating the the user’s remote control over SSH would be an ideal solu-
tion, if it was possible29. Instead, the behavior is simulated through the ap-
plication logic. Gitolite provides a CLI with a sufficient API to tell the user,
which Gitolite user has access to which repository.

Even though the Gitolite configuration is stored in text files, it is better to
use the Gitolite CLI tool to parse the permissions. The configuration can be
rather complicated, as seen the listing 1. Thus, it is better to use an existing
parser, delivered by the same system.

A security bug in application results in exposing the repository data to the
users, bypassing the Gitolite security system30. As mentioned earlier, the only
way to go through the Gitolite-standard SSH access (and not actually bypass
it) requires the users’ private keys, acquiring which is naturally not possible, as
it would compromise the core security principles of asymmetric cryptography.

Letting the repository providers perform additional authorization check,
creates a mechanism flexible enough to create even as complex provider as the
local provider, which communicates with Gitolite.

The local provider interactions are shown in detail in the diagram 4.1.

29This requires user’s SSH private key.
30The application requires the master SSH key-pair to clone any repository.

45

4. Design

4.2.3 Designed providers
To showcase the flexibility of the system, as described in the two design pillars in
the design foundations, one additional provider is designed. GitHub repository
provider is chosen for its popularity amongst the OSS community.

This brings two main advantages for Gitwiki:

• GitHub is still easily the most popular SCM service in comparison to
GitLab or BitBucket. Addressing the GitHub’s user base is more efficient
than other services’ providers.

• GitHub, being an OAuth 2.0 provider, is used in the system as an au-
thentication authority. Moreover the user’s public keys can be loaded
into Gitolite from GitHub through its API.

4.2.3.1 Local repository provider

The diagram 4.1 displays an interaction of the local provider with Gitolite for
actions:

1. List repositories,
2. Get a repository and
3. Create a commit.

The provider communicates with the application’s wrapper for Gitolite CLI.
Gitolite CLI can be requested to list repositories and answer, whether a user
can access given repository.

When anonymous user asks for repositories, Gitolite lists for repositories
accessed by user @all. This is a special user31 placeholder for all users. This
results in a query for the authorization configuration: What repositories can be
accessed by all users?

The design of the local provider solves the issue of unified authorization
raised in summary of the previous chapter, by intertwining the application
logic with Gitolite’s authorization layer through the Gitolite CLI.

4.2.3.2 GitHub repository provider

In contrast to the local provider, a GitHub repository provider is designed.
The repository provider API, allows for the providers to use any form of asyn-
chronous communication with their resources. In this case, GitHub’s RESTful
API is used.

The diagram 4.2 shows the GitHub provider performing the same tasks as
required from the local provider. For simplicity it is presumed that the user
Alice has valid access and no errors occur.

4.3 Authentication

In the previous section it is implied that GitHub OAuth 2.0 is used for the
authentication. That however does not bind the project to GitHub’s specific
needs.

31or a repository placeholder, based on the given context

46

4.3. Authentication

Alice

Alice

Application

Application

Local Provider

Local Provider

Gitolite wrapper

Gitolite wrapper

Gitolite CLI

Gitolite CLI

Localhost

Localhost

List repos

List repositories
for Alice

alt [Alice has Gitolite username]

Repos for Alice

list: Alice

[else]

Public repos

list: @all

Show Foo repository

Get Foo repo

Alice can access Foo?

access: Alice Foo

alt [Alice can access Foo]

git clone git@localhost:foo

Foo

Foo

[else]

Error

Change Foo

alt [Alice has W access to given reference]

Commit and push

Commit on Foo

git push ...

[else]

Figure 4.1: Design: Local provider interactions

47

4. Design

Alice

Alice

Application

Application

GitHub Provider

GitHub Provider

GitHub

GitHub

GitHub API

GitHub API

List repos

List repositories
for Alice

GET /list
(Alice access_token)

Show Foo repository

Get Foo repo

git clone https://github.com:foo
alice:access_token

Change Foo

Commit and push

Commit on Foo

git push ...
alice:access_token

Figure 4.2: Design: GitHub provider interactions

The GitHub authentication is used as a form of authentication, but it does
not set course of the project in any major way. The same way, any form
of external authority can be used as an authentication provider. Any SCM
service32 is more suitable for the role of the authentication provider, because
they provide the user’s SSH public keys.

In the same manner Google, Yahoo or any other service with OAuth 2.0 or
OpenID Connect protocol support could be used instead. GitHub is a reason-
able choice in the scope of OSS projects hosting statistics.

The sequence diagram 4.3 displays the authentication process of using an
external authority. Provided that the authority has the user’s public key, set-
ting up the new user for using Gitolite can be automated within the first login.
The diagram follows the basics of OAuth 2.0. After the user selects the au-
thority, e.g. GitHub, a request is sent to application’s BE, which makes an
authorization request for the given authority, doing which it provides required
scopes of the authorization. The scope names are arbitrary and specific to

32Including GitLab, BitBucket and similar

48

4.3. Authentication

Alice

Alice

Browser / Gitwiki
front-end

Browser / Gitwiki
front-end

Gitwiki
back-end

Gitwiki
back-end

Authentication
authority

Authentication
authority

Login via selected authority

Login

Authorize Alice
scopes = [userdata, public_keys]

Display form

Log in

Authorize belication

Submit

Redirect callback

Acquire access token

Get user info

alt [Is this first login?]

Acquire Alice public key

alt [Is username Alice taken?]

Store Alice, username Alice

[else]

Generate Gitolite username for Alice

Store Alice, username <generated>

Store key

Remember user

Figure 4.3: Design: Authentication via external provider

49

4. Design

each provider, thus configured in the application – the names of the scopes in
the diagram are purely illustrative. The authority redirects the user to a page
with a HTML form, where the user logs in and authorizes Gitwiki for the given
scopes. After submitting the form back to the authority, it is processed and
returned to the defined callback URI, the BE endpoint, whence the applica-
tion finishes the authentication process, acquiring the access token. The token
can be used to fetch the user data. Provided that the authority has means of
obtaining the user’s SSH keys, they are retrieved. The user info is stored with
either username from the user data, or a generated one, in the case of lack of
such data or conflict with the existing user. The user is stored with his Gitolite
username and its keys as well.

4.4 Technologies and tools

No web application nowadays is written from a scratch. There are various tools
to fasten up the development process and make it easier.

In this section, it is stated what tools and libraries are used for the project.
There are several issues that are usually solved by an existing library. It is
discussed in this chapter and not in the implementation, because in some cases,
the used tools affect the architecture or the components of the designed system.

Since there are several system components, that can be designed using
existing libraries and they have far lesser overall effect on the system33, the
details of the libraries and its alternatives are abbreviated.

4.4.1 FE framework
FE of the application is no more a trivial jQuery script with a a few user
interactions in the browser, such as it was fairly popular several years ago.
More and more tasks are expected to be performed inside the browser for
better UX and more dynamic effect.

This also calls for a solution for building complex FE applications. There
are few popular solutions for FE frameworks, such as Angular 2, React and
Vue or Ember.

React is chosen, being fairly the most popular among its alternatives and
fast and easy to use, thanks to the JSX syntax and its virtual DOM.

4.4.2 SSR
Many websites rely too much on the FE technologies, resulting in a mono-
lithic so-called single-page applications. When majority of the logic happens in
the browser and the server’s HTML response contains (more or less) only the
<script> tag, several issues arise. The hardest problems face the clients that
cannot interpret JS. This might seem banal, because generally speaking all the
users browse the web with a browser which JS engine. The issue becomes more
realistic, when non-user agents are considered, such as search engine spiders
for instance.

33Compared to the Git SSH authorization layer e.g., which required more structured
analysis

50

4.4. Technologies and tools

This issue is tacked by several libraries, from which Next.js [95] with native
support for React is selected.

4.4.3 FE State container

Facebook introduced [22] the Flux architecture in 2014 to solve complexity of
MVC’s nontransparent dependencies for complex systems with many models
and views via a linear unidirectional data flow. The main idea behind Flux
is to linearize uncontrolled flow between models and views through a single
component.

This component is called dispatcher. It consumes actions and updates the
store as a reaction. The store defines the view’s state (view renders data from
store), and can pass new actions to the dispatcher. This flow is displayed on
the diagram 4.4.

Action

Action

Dispatcher Store View

Figure 4.4: Design: Flux architecture

Flux is a general architecture concept and though having its Facebook’s
implementation of the core modules, there are many other existing options.

One of those is Redux [1], which is used in the project. There is also a
Redux-Saga [20] extension for asynchronous action consumption (synchronous
consumptions are handled by so-called reducers34) and works well with Next.js.

4.4.4 Git library

While there are also many libraries for working with Git repositories for
Node.js, NodeGit [9] is selected. NodeGit is a binding to a popular C lib-
rary libgit2 [69], an implementation of core Git methods. NodeGit is used for
repository abstraction and manipulation.

4.4.5 Node.js web application framework

Express.js is used for the BE application as routing service and HTTP server
with middle-ware management.

34Modules that produce new state based on the previous state with regard to dispatched
action

51

4. Design

4.5 Architecture

4.5.1 Top level architecture structure
A high-abstraction design of the application’s architecture is displayed in the
diagram 4.5.

Server

Client's Browser

Local SSHD
with Gitolite

Back-end
application

Front-end
application

GitHub

Alice

REST

SSH

REST HTTPS

This is used
for remote
repository
manipulation

WUI

SSH

Figure 4.5: Design: Architecture of the application

The application is decoupled into two main components, which are the FE
JS application running in the client’s browser and Node.js BE application.

FE application is served as a response in user agent’s initial request and
then communicates with the server’s BE application via RESTful API as user
navigates throughout the application or performs any actions that require data.

The server machine provides the role of a repository hosting service via the
SSH protocol using the SSHD running on the machine. BE application com-
municates with the self-hosted repository service via loop-back with configured
SSH keys, as described earlier in this chapter.

The application communicates with GitHub using RESTful API and HT-
TPS. As seen in the diagram, server’s repositories are exposed via SSH protocol.

4.5.2 BE structure
The essential BE structure is showed in the diagram 4.6.

52

4.5. Architecture

Back-end
application

Routers

Controllers

Auth

Repository providers

Common

git

Logger

Storage

Config

gitolite

NodeGit libgit2

Root Router

API Router

FE Router

Static Router

API Controller

authentication

github

GitHub Provider

Local Provider

endpoints

browse

commit

refs

transport

Figure 4.6: Design: Architecture of the BE application

4.5.2.1 Routers and controllers

Routers bind routes defined in the endpoints to the controllers and transform
known errors to HTTP codes and appropriate responses.

There is no controller for the FE requests, nor for static files. FE requests
are passed onto Next.js handlers, which responds to basic error codes and static
router is as well handled by an existing service – Express.js static router. No
further decoupling by a controller layer is necessary for the two.

The controllers always return a Promise35 and prepare response after gath-
ering the required data from the application. The data is acquired from the
repository providers or from the Auth package, when gathering user informa-
tion.

4.5.2.2 Repository providers

All the providers decorate and setup the parameters for the git module. This
includes setting the authentication callbacks, repository URLs etc. Local pro-
vider communicates with the gitolite module, which is an interface for the
Gitolite CLI wrapper.

Providers generally access shared configuration through Config module’s
API, which is an interface for easy access to required parts of the hierarchical
configuration file.

35for the convenience of uniform handling by routers

53

4. Design

4.5.2.3 Git module

The Git module is a set of high-abstraction methods over Git repositories to
suit Gitwiki needs. It uses third party library NodeGit, which provides libgit2
bindings to Node.js. The two libraries are shown in the diagram, but only for
the sake of communication. Neither is part of the implementation.

4.6 RESTful API

In this section the crucial parts of the RESTful API of the BE application are
documented.

For the type definition in this chapter, the Flow type alias [24] syntax is
used. Since some object types are reused in the data, common entity types are
described in the listing 7.

The overall overview of the API is presented in the table 4.1. The following
subsections describe the individual API endpoints. Only parts of the API that
are interesting from the perspective of either data or design are covered in the
chapter. The major logical issue is the design of a commit creation in REST
architecture, which is discussed later in the section.

1 type Entry = {
2 name: string, // "README.md"
3 path: string, // "path/to/README.md"
4 isDirectory: bool, // false
5 sha: string, // "673d6dcc58fdd8ef6530177ef90bb2c5d1748c34"
6 };
7 type Blob = Entry & {
8 content: string, // "# Hello world\n\ntodo"
9 }

10 type Reference = {
11 ref: string, // "refs/remotes/origin/master"
12 group: string, // "remotes"
13 name: string, // "master"
14 compoundName: string ,// "origin/master"
15 }
16 type Change = {
17 path: string, // "path/to/README.md"
18 content: string, // "new content"
19 remove?: bool,
20 }
21 type Repository = {
22 name: string, // "gitwiki"
23 description: string, // "\gls{Git} based wiki system"
24 provider: string, // "github"
25 }

Listing 7: Entity types definitions

4.6.1 Tree
4.6.1.1 GET /api/v1/repos/{provider}/{name}/tree/{ref}/{path}

54

4.6. RESTful API

Table 4.1: RESTful API overview

Section Method Url template
Tree GET /api/v1/repos/provider/name/tree/ref/path
Tree PATCH /api/v1/repos/provider/name/tree/ref
Tree GET /api/v1/repos/provider/name/refs
Repo GET /api/v1/repos
Auth GET /api/v1/user
Auth GET /api/v1/auth/github
Auth POST /api/v1/auth/github/personal-access-token
Auth GET /api/v1/auth/github/cb

1 {
2 tree: Array<Entry>, // Current tree
3 blob?: Blob, // Current blob entry with content
4 }

Listing 8: REST: GET Tree response

Table 4.2: REST: GET Tree response codes

Response code When
200 success
401 user not authenticated and accessing private data
403 user authenticated but unauthorized
404 provider, repository, ref or path not found

The tree defined by the relative path {path} from repository {name} from
provider {provider} at Git reference {ref} is returned. The response JSON
structure is defined in the listing 8. Its response codes are displayed in the
table 4.2

4.6.1.2 PATCH /api/v1/repos/{provider}/{name}/tree/{ref}/{path}

1 {
2 changes: Array<Change>, // Changes to commit
3 message: string, // commit message
4 }

Listing 9: REST: PATCH Tree request body

A Git commit with supplied changes and given commit message on the
repository defined by the request’s URL as in the previous example is created.
Use user’s credentials as commiter and author from Authorization header.

The PATCH36 is unusual with regard to RESTful APIs. However, there is a
very special scenario calling for special solution, which is the PATCH method. If

36The PATCH method does not have as strictly defined semantics by the conventions in
the RESTful APIs unlike methods POST, PUT or DELETE, which could be used instead.

55

4. Design

a POST method would be invoked on the tree instead, its semantics would be
creating a tree and not updating (following the RESTful conventions). Updat-
ing (and creating alike) could be achieved by using a PUT method. When using
PUT or POST however, it is expected to provide the resource, in this case the tree
(not changes). Following the conventions, the DELETE method should be used
only for the rare case of only removing a single file or subtree. This concept is
very confusing and allows only one change per commit.

Using POST on a resource /commits37 allows to perform multiple changes in
one commit. However the commit data are not available in the FE. What is
available, is a sequence of changes describing the commit. Thus using POST is
again not an ideal solution with regard to RESTful API. Instead a PATCH is
used.

The JSON structure of the request body is defined in the listing 9. Its
response codes are in the table 4.2 (ditto).

4.6.1.3 GET /api/v1/repos/{provider}/{name}/refs

1 Array<Reference>

Listing 10: REST: GET Refs response

Retrieve the available refs from the repository defined by the URL. The
JSON structure of the response is defined in the listing 10. Its response codes
are listed in the table 4.2 (ditto).

4.6.2 Repository
The repository section contains an endpoint for listing the available repositor-
ies. It has standard return codes as discussed in the previous endpoints (ex-
cluding 404) and returns JSON of Array<Repository> as defined in the listing
7.

4.6.3 Auth
Auth section provides endpoints for fetching user data, the authentication via
GitHub and uploading GitHub personal access token, which is used for cloning
GitHub repositories via HTTPS.

4.7 UI

In this section, the designed WUI of the application is presented in a form of
wireframes.

The most significant part of the UI is doubtlessly the editor. For this
reason, it has been designed separately by a team of students as a MI-NUR
term project. The project has been completed and successfully submitted and
is available [101] online. The project tackles not only design of the UI, but
also its testing, using a heuristic analysis and conducted usability testing. It

37Hypothetical idea, the resource does not exist in the API

56

4.7. UI

contains evaluation of the testing methods and fixes the encountered errors.
Therefore, since the project completed all the UI development process of the
editor, it is not considered in the design of the remaining parts of the system.
In the wireframes it is replaced by a simple box.

I have worked with a team on the UI design of the editor. My colleagues
contributed only to the project [101] referred to, but not included in the main
content of the thesis. The wireframes from the project are available in appendix.
I, the author of the thesis, am also the author of all the following UI design
regarding materials in this section. Members of the team have not contributed
to the implementation of the editor nor the system.

4.7.1 Repository index

Figure 4.7: Wireframe: Repository index

The basic layout with the navigation bar is displayed on the wireframe in
the image 4.7. The navigation bar holds few menu items, a logo with a link to
the homepage at the left and a user widget on the far right, as is conventional.
The footer holds basic license and ownership or contact info as expected. This
components form the layout and are present in all the screens.

This wireframe covers the UC-5 Select repository.

57

4. Design

Figure 4.8: Wireframe: File preview

4.7.2 File preview
The wireframe on the image 4.8, presents the file preview.

The breadcrumbs menu contains not only the repository and the fragmented
path navigation to the file, but more importantly, a fragment of the menu that
displays the Git reference. That is an interactive widget user can use to swap
branches. This solves another issue38 from the previous chapter’s summary,
which is branching model with a parallel development support.

There is a sidebar menu and the main content. The side-menu holds the
link to the commit screen and a list of the files in the current directory. The
main content is tabbed and provides an interface for switching between the
following views of the current file:

• Preview (if available)
• Source code view
• Editing form
• Rename form

This tab contents always fill the box placeholder. This wireframe covers the
following use cases: UC-4 Show file, UC-7 Change content, UC-8 Edit contents,
UC-9 Manage files, UC-11 Manage user access permissions

38From the point of UI, the logic has been discussed in the RESTful API design section.

58

4.8. Front-End

4.7.3 Repository index

Figure 4.9: Wireframe: Repository tree

In the image 4.9, there is a wireframe to the file index in the repository.
This is an expanded version of the side-menu from the previous wireframe with
additional information, such as SHA hash to better utilize the room given in
the main content section. This wireframe covers the UC-3 Traverse tree and
UC-6 Select revision.

4.7.4 Commit modal
A modal window is used for the commit screen, as seen in the image 4.10. This
way it is easily accessible, no matter the current page. The window shows a
brief summary of the accumulated changes, input for the commit message and
the Cancel, Commit and Discard changes buttons. UC-10 Create revision is
covered by this wireframe.

4.8 Front-End

The FE application is built of the following composites:

• Next.js pages39

39Next.js pages are technically React components as well, only decorated with required

59

4. Design

Figure 4.10: Wireframe: Commit screen

• React components
• Redux actions, reducers and sagas
• other utility modules

All crucial components and modules from categories above are on the dia-
gram 4.11.

4.8.1 Pages
The pages are React components representing individual web pages (HTTP
responses) served by the server for a user’s request. Simply, they are responses
for all non-API requests.

When used correctly, Next.js returns the first requested page (pre-rendered
on the server) and all the following navigation happens inside the FE applica-
tion using Fetch API managed seamlessly by Next.js.

• Index – Homepage of the application
• Repo, Index – List of available repositories. This page delegates the

rendering of the repository entries itself on the component Index.

features. Semantically however, they are distinct from simple components in a Next.js ap-
plication.

60

4.8. Front-End
F
ro

n
t-

e
n

d
 a

p
p

li
c
a
ti

o
n

R
e
a
c
tC

o
m

p
o
n

e
n

ts

P
a
g

e
s

R
e
p

o

C
o
m

p
o
n

e
n

ts

R
e
p

o R
e
v
is

io
n

In
d

e
x

B
lo

b

U
s
e
r

R
e
d

u
x

A
c
ti

o
n

s

R
e
d

u
c
e
rs

S
a
g

a
s

S
to

re

C
li
e
n

t

C
o
m

m
o
n

In
d
e
x

In
d
e
x

E
d
it

Tr
e
e

B
re
a
d
cr
u
m
b
s

La
y
o
u
t

S
id
e
M
e
n
u

R
e
fe
re
n
ce
s

M
o
d
a
l

In
d
e
x

In
d
e
x
E
n
tr
y

P
re
v
ie
w

E
d
it

Pe
rs
o
n
a
lT
o
ke
n

W
id
g
e
t

a
ct
io
n
s

ty
p
e
s

re
p
o
R
e
d
u
ce
r

u
se
rR
e
d
u
ce
r

a
p
iS
a
g
a

co
n
fi
g
u
re
S
to
re

st
o
re

a
u
th

p
ro
p
Ty
p
e
s

e
n
d
p
o
in
ts

fe
tc
h
A
p
i

Fi
gu

re
4.

11
:

D
es

ig
n:

Fr
on

t-
en

d
ap

pl
ic

at
io

n

61

4. Design

• Repo, Edit – Edit page for the selected repository, reference and path.
The editing logic is delegated to the Edit component.

• Repo, Tree – Preview of the tree or file on the path, for the given repos-
itory and reference. If the path defines a file (not a folder), its rendering
is passed to the Preview component.

The pages are wrapped in the Layout component with shared components
(user widget, navigation bar, footer, etc.). Pages can pass Breadcrumbs or
SideMenu component to the Layout.

4.8.2 Components
Components represent composite or complex UI elements wrapped in a usable
unit within the React application.

4.8.2.1 Layout

• Layout – HOC component wrapping page contents with reusable layout
widgets. It uses Widget to display logged in user data in main navigation
bar.

• SideMenu – Context-relevant secondary navigation. This includes button
triggering commit modal, thus using the related component.

• Breadcrumbs – Breadcrumbs menu uses References component.

4.8.2.2 User

• User, Widget – Displays the login button or the logged-in user’s data.
• User, PersonalToken – Form control allowing the user to publish GitHub

personal access token to access their repositories.

4.8.2.3 Repo

• Repo, References – Breadcrumb fragment widget, which loads available
references and takes care of the navigation using Git references.

• Repo, Revision, Modal – Modal window with the current changes and a
form for the commit submission.

• Repo, Index, Index – List of available repositories. Single repository
record is delegated to the IndexEntry component.

• Repo, Index, IndexEntry – Single repository entry component.
• Repo, Blob, Edit – Form component for editing a given file.
• Repo, Blob, Preview – File preview component, allowing to switch

between the source code preview and the rendered document in case
of supported markup file.

4.8.3 React components
The components and pages from the diagram 4.11 are all React components,
as stated before. The both groups are tellingly wrapped in a folder in the
diagram, hence they share some features.

62

4.8. Front-End

All react components share PropTypes40 definitions from the client pack-
age.

Pages and components alike generally access endpoints for navigation (gen-
erating links)41 and fetchApi, which is an interface for making requests to the
server. All Pages and some components are connected to the Redux store, from
which they can access data and dispatch actions.

4.8.4 Client

This package holds modules usable by the client code and not the server. There
are PropTypes definitions, which is convenient, for they are usually shared or
composited. Apart from that there is a small module for persisting user session
in the local storage, for keeping the session in the FE application.

4.8.5 Common

Common module is for code usable by both FE and BE. Endpoints module
provides definitions of the routes, which are accessed by BE router as well
as used when creating navigation links within the FE application. FetchApi is
a proxy service for making requests to the server’s API. This module in the
Common, not the Client package for the following reason: Having the proxy cap-
able of handling requests made by server to itself is a smart decision, which
eventually allows to define initialization of the pages uniformly, regardless the
fact that it is rendered in the browser or on the server due to SSR.

4.8.6 Redux

The Redux package includes codes for defining and managing the FE applica-
tion state.

The Action package defines action types constants42 as well as the action
creators, which create action objects from the given data43.

The Reducers are functions which take the dispatched action and transform
the existing state into a new one, based on the action’s type. Reducers operate
in a synchronous fashion.

The Sagas are tools for creating side effects. They can react to the triggered
actions, but they cannot create a new state. They can only dispatch new
actions. This is useful for asynchronous operations.

Store is implemented by the Redux library and only its configuration is
required.

40PropTypes [25] are a type-checking mechanism for validating React props passed onto
React components.

41Endpoints are located in the common package, allowing the server and the client to
access the identical set of path definitions.

42This is how action is identified. Every action in Redux has a type property with an
appropriate string identifier.

43Usually just setting the mentioned type property.

63

4. Design

4.9 Emily editor

The Emily editor44 is a web based document editor component for LMLs.
The UI design of the editor took place in the [101]. This required not only

the wireframe modeling, but also the definition of the editor’s functionality.

4.9.1 Editor’s features
The result of the feature brainstorming45 within the team in the early stage of
the project is as follows:

4.9.1.1 Feature bag A

• Go to line
• Auto-complete
• Search
• Syntax highlight
• Line numbers
• Text wrapping
• Section folding
• Distraction free mode

4.9.1.2 Feature bag B

• Full-screen mode
• Two-column preview (source code and rendered preview)
• Command palette
• Status bar

4.9.1.3 Feature bag C

• Live-preview of the document
• Document outline preview
• Synchronized scrolling of the editor and preview
• Reorganizing sections in document using outline

The features are divided into three groups, based on their impact on the
design and eventually implementation difficulties.

Group A are features causing the least of the problems. Though including
non-trivial features to design or implement, they represent generic problems of
source code editing, thus it is expected to be handled by an existing solution.

Feature bag B is more challenging for the implementation. The features
likely require custom implementation tailored to the editor. While existing
libraries can be used used in some cases (e.g. universal access for the Fullscreen
API), more configuration and coding is required for all the features to affect
the new editor component. Though there are not many features that are easy
to implement, they

44Formally known as markup editor, which was a provisional title later scraped for being
too generic. Emily editor name selected for (a) the acoustic resemblance to “LML editor”,
(when spoken swiftly) and (b) it is a fancy name.

45This list is taken from [101] and reduced to exclude features which have been discarded
for various reasons.

64

4.10. Summary

• have little effect on the other parts of the editor or future development
and

• they still represent (more or less) existing problems, which have been
solved in the past, though in different contexts.

The last bag is the most difficult. It contains the features that are very
specific to the domain and related problems are likely original. As an example:
the problem of the synchronized scrolling of the source code and its rendered
counterpart is complicated and highly specific of the code nature. As was
discovered in the research of the rival editors in [101], there are very few editors
that offer this feature and if so, they are fixed and specialized on a single markup
language. Emily editor tackles to provide this feature through general interface
for the LMLs.

The solution to the features is discussed in the implementation chapter.

4.9.2 Emily’s modules
The diagram 4.12 shows the main components and modules of the editor.

4.9.2.1 Components

The core component is the Editor itself, which includes the composite compon-
ents StatusBar (the bar at the bottom), the CommandPalette and the Outline
and utilizes supportive modules: commands for the CommandPalette, autosave
and lineNinja definitions.

The CommandPalette has a supportive component for the drag&drop sorting.

4.9.2.2 Modes

The modes module includes the LML modes. There are two modes in the initial
release. Since some functionality can be generated, all modes are bootstrapped
before they are ready to be used in the editor.

4.10 Summary

The chapter provides design of the system in several perspectives including
abstract concepts of core features, architecture schematics, module and com-
ponent diagrams, API definitions and UI design. Though not covering all the
components in the same level of detail, because of how vast the system is, the
design solutions for the most crucial problems and core components are offered.

In course of the chapter, solutions for all the problems pointed out in the
previous chapter State-of-the-art is provided:

• Uniform authorization is discussed in the Repository providers, where it
is explained how to bind the application to the Gitolite through its CLI
wrapper.

• Branching model support is discussed in the RESTful API section as well
as in the UI section from the user perspective.

• Modular LML solution is proposed in Emily editor, where the core fea-
tures are identified. This is further elaborated in the relevant implement-
ation section.

65

4. Design

Emily editor

Components

editor

outline

Modes

Helpers

Editor

CommandPalette

Outline

StatusBar

autosave

commands

lineNinja

SortableList

Asciidoc

Markdown

bootstrap

helpers

Figure 4.12: Design: Emily editor

66

Chapter 5
UI testing

In the chapter the wireframes designed in the previous chapter are subdued to
a static form of usability testing – the heuristic analysis.

Jakob Nielsen’s heuristics [68] is be used to analyze the existing wireframes.
The 10 points of the heuristic are individually discussed on how the design holds
up to them.

The names and brief descriptions are directly quoted from [68].

5.1 Analysis

1. Visibility of system status “The system should always keep users
informed about what is going on, through appropriate feedback within
reasonable time.” [68]

The trying part of the system status are the pending changes. Though the
system provides a summary through the commit modal, the status should be
visible even without the extra interaction. At least in form of a binary indicator
clear – no changes vs modified – some pending changes.

The repository index is missing the breadcrumbs menu. The breadcrumbs
navigation should be available in the all major screens.

2. Match between system and the real world “The system should speak
the users’ language, with words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-world conventions, making
information appear in a natural and logical order.” [68]

The system uses terminology taken from Git documentation and the users
are familiar with it through the Git CLI. The layout follows conventional guides,
utilizing an application-wide navigation bar, context related optional side-bar
menu and the main content area.

The usage of tabular menu for views of the file as well as for the actions
upon it is confusing. The tabular menu should only hold the different read-only
views of the file and have write-operations moved elsewhere.

3. User control and freedom “Users often choose system functions by
mistake and will need a clearly marked ‘emergency exit’ to leave the un-

67

5. UI testing

wanted state without having to go through an extended dialogue. Support
undo and redo.” [68]

This is achieved through the cumulative changes. The need of the user to
commit is thus reduced to the bare minimum, when they can review changes
before submitting.

4. Consistency and standards “Users should not have to wonder whether
different words, situations, or actions mean the same thing. Follow plat-
form conventions.” [68]

Terminology is brief and, as stated, its terms reflect the Git lexemes.

5. Error prevention “Even better than good error messages is a careful
design which prevents a problem from occurring in the first place. Either
eliminate error-prone conditions or check for them and present users with
a confirmation option before they commit to the action.” [68]

There is an error potential in discarding the changes in the commit modal.
Confirm prompt should be used.

6. Recognition rather than recall “Minimize the user’s memory load
by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily retrievable
whenever appropriate.” [68]

The global UI is minimalistic from the perspective of the individual ele-
ments or menu items. Most of the navigation is formed by the content of the
repository. The usage of UI elements is consistent and predictable.

The confusion arises from the repository index, which does not distinguish
the repository’s origins. As stated in design, the repositories can originate from
the server or from a remote provider. This should be visible from the index.

7. Flexibility and efficiency of use “Accelerators — unseen by the novice
user — may often speed up the interaction for the expert user such that
the system can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.” [68]

The system was designed with this feature at mind. It is mostly delivered
through the direct SSH repository access and notable in the editor UI, utilizing
the shortcuts and features seen in coding editors and IDEs.

8. Aesthetic and minimalist design “Dialogues should not contain in-
formation which is irrelevant or rarely needed. Every extra unit of in-
formation in a dialogue competes with the relevant units of information
and diminishes their relative visibility.” [68]

Only viable information is displayed. Some UI elements are compactly
composed in order to diminish distraction, such as the use of the reference
menu in breadcrumbs.

68

5.2. Patching the wireframes

9. Help users recognize, diagnose, and recover from errors “Er-
ror messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.” [68]

No error messages are present in the current design.

10. Help and documentation “Even though it is better if the system can
be used without documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search, focused
on the user’s task, list concrete steps to be carried out, and not be too
large.” [68]

No form of user documentation is present and it should not be required
since the systems UI reflects trends seen at popular services like GitHub.

5.2 Patching the wireframes

The list of the changes applied to the wireframes to mend the issues pointed
out in the previous section follows. Each item includes a number of the figure
with a corrected wireframe.

Figure 5.1: Wireframe: Repository index after heuristic analysis

• Added breadcrumbs menu to the repository index – image 5.1

69

5. UI testing

Figure 5.2: Wireframe: File preview after heuristic analysis

• Visually distinguishable (via icons) provider indication added – image 5.1
• Restructured the tabular menu and moved its items resembling actions

into side menu – image 5.2
• Added a simple indicator for pending changes for the commit46 – image

5.2
• Prompt confirm for discarding the changes in modal commit is required.

46Similar mechanism is used in Git CLI, when the CLI prompt is decorated to indicate
there are pending changes in the working directory, index or in stash.

70

Chapter 6
Implementation

The implementation of the system is in the development for seven months, since
October 2017. The source codes to this day sum up to 4 161 LOC and 770 com-
mits. The detail stats are displayed in the table 6.1. The implementation is
software, published from its early stages on GitHub.

The Emily editor source codes are separated from the main system for the
potential of being used as an independent component, because of the rich and
rather outstanding feature set mentioned in the design chapter. This lead to
splitting the project into two distinct repositories:

• grissius/gitwiki [99] and
• grissius/emily-editor [97].

The repositories are published under the MIT [98] and the BSD 2-Clause
[96] license respectively. Their user manuals and installation instructions are
in appendices, along with their designed logotypes in the images F.1 and G.1.

The repositories are public – potentially anyone can contribute to the source
code via PR. To the day of submission of the thesis however, the author is the
sole contributor of the two projects.

Both projects have been developed with good manners at heart, thus both
include:

• a readme file,
• a version file with current version of the project,
• and a changelog file following the keepachangelog [58] standard47.

47Though being perhaps the only changelog guideline (thusly it is referred to it as stand-
ard) its format is more akin to best practices and reccomendation on how to write the
changelog.

Table 6.1: Implementation repository statistics

Repository lines of code Commits Releases
grissius/gitwiki 1 820 206 10
grissius/emily-editor 2 341 564 23

71

6. Implementation

The projects also:

• adhere to Semantic Versioning 2.0.0 [75] with published releases via Git
tags on GitHub repositories,

• follow the Airbnb JS style guide [2] using ESLint and
• have been developed via a feature branch workflow.

The editor grissius/emily-editor is published on npm [100].
This introduction sums up the aggregate information about the implement-

ation source codes. In the following section the notable dependencies used in
the system are mentioned. In the rest of the chapter, instead of describing
the development process as a whole, covers some of the major difficulties that
appeared throughout the implementation process and describes the solutions
provided for each one.

6.1 Used libraries

The major, design-defining technologies are already mentioned in the section
Technologies and tools in the design chapter.

Apart from the libraries mentioned however, many other existing software
is used for the implementation.

6.1.1 Source code editor
One of the most notable is Ace editor [3], which is utilized in the Emily editor
as the underlaying, general purpose source code editor. It was used to replace
the former CodeMirror [43] used in the prototype, because it was lacking a
language mode for AsciiDoc.

Ace editor, apart from better performance, brings many advantages to the
table, from which the most notable one is richer interface for the language
modes48, which allowed combining more than two modes at once49 50, clearer
documentation and the mentioned native AsciiDoc support51.

6.1.2 Libraries for development
From the development tools, ESLint is used for the coding style control, Babel
[65] for JS compilation and Webpack [56] for the code bundling.

6.1.3 Other libraries
From the remaining notable software in the system’s dependencies the following
is used:

48Modules allowing to tag phrases in the content, typically for the purpose of syntax
highlighting.

49CodeMirror allows to define only mode and secondary backdrop mode, which is used for
e.g. spell-check.

50Ace provides context switching for modes, which works out of the box for selecting
different highlighters for embedded code in Markdown). While this feature is also available
in CodeMirror, the only example [42] demonstrates it on a XML file, using the type attribute
to define context.

51This is missing in CodeMirror. Custom mode would need to be implemented.

72

6.2. UNIX permissions with Gitolite

• utility libraries Lodash [18] (in emily-editor) and functional JS library
Ramda [55] (in gitwiki),

• Ant Design [6] React FE library and
• Pino [16] for logging.

6.2 UNIX permissions with Gitolite

As discussed in the analysis, Gitolite requires a single UNIX user to operate
with. The remote users can use this Gitolite’s user account to access the Git
repositories using SSH. To prevent configuration errors and simplify the Gitolite
setup process, it is encouraged to use a clean user account, with new UID for
Gitolite.

Since application needs to access Gitolite CLI, installed in home directory of
the user, and Gitolite recommends using a clean account, the following dilemma
is confronted:

1. Either run the application under the Gitolite’s UNIX user,
2. or run the application under any user, but solve the UNIX permissions.

The former represents the easier way – it is only required to install all
application dependencies either globally or under this user. This brings two
disadvantages:

• If the system already has another user set up to run similar applications,
the administrator is required to possibly create redundancy.

• It pollutes the user with non-Gitolite data. This might not even un-
necessarily complicate the Gitolite maintenance, but also, more import-
antly goes directly against the recommendations from Gitolite’s manual.
Disobeying the manual might discourage some users and also it would
complicate the Gitolite installation, which itself is not trivial.

The latter is more complicated. When using another UNIX user, it requires
an (executable) access to the Gitolite CLI program and also, all problems which
arise from running the program in such manner solve, because it was not clearly
designed with this scenario at mind.

The encountered issues are now discussed.

6.2.1 Run gitolite CLI under another user
With default installation, the CLI program, located at
/home/git/bin/gitolite52, is out of the box executable and lists valid
help of the program.

However, when running the Gitolite with arguments that do something,
e.g. /home/git/bin/gitolite list-repos an error occurs. The output of the
operation under user smolijar53 is in the listing 11.

52It is assumed Gitolite uses UNIX user git, as in installation manual, and its home dir-
ectory is set according to the Gitolite installation manual as well, using the default location.

53This is a placeholder username used in the log files. In this section it refers to name of
the account bound to Gitolite

73

6. Implementation

1 FATAL: errors found but logfile could not be created
2 FATAL: /home/smolijar/.gitolite/logs/gitolite-2018-04.log: No such file

or directory↪→

3 FATAL: die chdir /home/smolijar/.gitolite failed: No such file or
directory<<newline>>↪→

Listing 11: Implementation: Gitolite log error 1

The problem is seemingly banal. Gitolite plausibly utilizes the $HOME vari-
able. It is creating logs in smolijar’s home directory in a non-existent folder
and tries to access the same folder. It should operate on the user it is configured
with, in this case the git user. The output after setting the $HOME variable to
/home/git is in the listing 12.

1 FATAL: errors found but logfile could not be created
2 FATAL: /home/git/.gitolite/logs/gitolite-2018-04.log: Permission denied
3 FATAL: cli gitolite list-repos

Listing 12: Implementation: Gitolite log error 2

With the $HOME variable updated, the Gitolite is successfully convinced to
use the default directory. This however, brings another failure, which is an
unknown error and insufficient permissions to log it. The unknown error might
very possibly be caused by the same problem – the insufficient permissions to
access Gitolite’s files.

From the logs it is apparent and access to the git’s home directory is re-
quired. At least with the write access for the ~/logs/ to successfully log the
errors and the read access for the /repositories, which is most probably the
cause of the unknown error.

The desired effect is to allow the access for another user, there are two
options, setting permissions for user and for the group. Exposing any home
directory to all users is an incredible security threat, even more so, considering
the home directory holds the entrusted repositories. Thus setting permission
for the group is the remaining solution.

6.2.1.1 Setup UNIX group

A UNIX group is created and setup in the following steps:

1. Create group gitolite: sudo groupadd gitolite
2. Add Gitolite and the current user to the group: sudo usermod -a -G

gitolite git && sudo usermod -a -G gitolite smolijar
3. Change the git home repository’s group ownership recursively: sudo chgrp

-R gitolite /home/git/
4. Allow the user to write in selected folders: sudo chmod -R 2775

/home/git/.gitolite

6.2.1.2 SSH Secure mode

This is a side issue encountered when greedily setting the group’s permission
for the whole home directory /home/git/ and not just the .gitolite sub-folder.

74

6.2. UNIX permissions with Gitolite

After setting up the permissions like so, Gitolite CLI seemingly works, while
the Gitolite SSH interface stops working, rejecting all the connections with error
regarding a missing repository.

“This is the default behavior for SSH. It protects user keys by enforcing
rwx------ on $HOME/.ssh and ensuring only the owner has write permissions
to $HOME. If a user other than the respective owner has write permission on the
$HOME directory, they could maliciously modify the permissions on $HOME/.ssh,
potentially hijacking the user keys, known_hosts, or something similar. In
summary, the following permissions on $HOME will be sufficient for SSH to
work.” [84]

SSH for security reasons kills any incoming connections to a users, whose
home folder is by its standards insecure.

This can be bypassed by disabling the SSHD option strict modes54. This
of course is dangerous and should not be performed on a machine, where the
administrator does not have full control over the users, or cannot deny that
a user with a configured remote access in the authorized_keys has a write
access in their home directory. If Gitolite is set up properly and only provides
authorized access via Gitolite CLI55, it is be due its command option safe.

However, this is not required if setting the relaxed permissions only on the
sub folder, as suggested in the previous section!

6.2.1.3 Owner of log files

Even when fixing the issue with SSH, later on, after both users have been using
Gitolite for some time, yet another issue is nigh.

It is again a permission problem, and again with log files. The issue triggers
the same error, as shown in 12, but this can happen for either of the users.

The problem is that the other account, in this case smolijar, creates a new
log file, when the log files are swapped or new log is created. The log file is
created with the correct GID (thanks to the setguid bit), by the user smolijar,
but with the wrong permissions (no group access).

This is solved when the default set of permissions is set for the new files in
the log folder. A similar problem is discussed in [78]. The desired effect can be
achieved using the setfacl command:

sudo setfacl -d -m g::rwx /home/git/.gitolite/logs/56

1 # file: home/git2/.gitolite/logs/
2 # owner: git2
3 # group: gitolite
4 # flags: -s-
5 user::rwx
6 group::rwx
7 other::r-x

Listing 13: Implementation: Gitolite default ACL before

54Defining StrictModes no in sshd_config, usually located in
/etc/ssh/sshd_config.

55As described in the analysis, Gitolite authorizes new users but instead of providing them
with the full access, it only allows them to run the Gitolite program.

56The -d means use default, -m modify with argument.

75

6. Implementation

The ACL settings can be displayed using the getfacl <dir> command. The
results of before (listing 13) and after (listing 14) are present. Three new lines
with default permissions are added. Now all the newly created log files by the
user smolijar have the desired relaxed permissions for the group.

1 # file: home/git2/.gitolite/logs/
2 # owner: git2
3 # group: gitolite
4 # flags: -s-
5 user::rwx
6 group::rwx
7 other::r-x
8 default:user::rwx
9 default:group::rwx

10 default:other::r-x

Listing 14: Implementation: Gitolite default ACL after

6.3 Routes

This section tackles the problem of unified, scalable configuration of applica-
tion’s HTTP routing logic, and reusing the setup in BE and FE alike.

The routing in the application, needs to:

• bind routes on Express.js routers and
• provide navigation inside FE Next.js application.

It is a common practice to duplicate the string route definitions, which
might be feasible for a small application, or one that does not utilize formatted
URLs to this extent. Otherwise (in this case), the routing becomes unmain-
tainable as the application grows.

6.3.1 Independent routing logic
Having the BE and FE completely independent with each other is the easiest
approach. The problem appeared when more than few routes that required
formatting its arguments appeared. This required a refactor of the logic into
an in-component helper functions as seen in the listing 15.

Since this is the first time the Next.js Link syntax is mentioned, it is briefly
explained what the component does. Next.js provides implementation of the
client-side navigation, when the application runs in the browser and takes care
of the communication with the server. This is done not through a standard
<a> anchor tag, but via a HOC Link.

The Link accepts (amongst others) the following React props57:

• href

– This can be either a string, referring to the name of the page58,
57React component’s properties, are in the API documentation referred to as props.
58repo/tree loads the component in pages/repo/tree.js

76

6.3. Routes

1 import Link from 'next/link';
2

3 const link = pipe(
4 concat('/repo/'),
5 join('/'),
6 filter(identity),
7 props(['name', 'ref', 'path'])
8);
9

10 // ...
11 const query = { name, ref, path };
12 const pathname = '/repo/tree'
13 const href = { pathname, query }
14 return(
15 <Link
16 href={href}
17 as={link(query)}>
18 <a>{name}
19 </Link>
20);

Listing 15: Implementation: Generating routes via inline functions

– or an object, as seen in the listing 15. The containing the page string
under the key pathname and the query parameters in query.

• as

– When using URL parameters, they are internally handled in the
Next.js application through the query parameters. To use them in
the URL, the definition of how the URL is going to look like in as
property is required, in form of a string.

– The as property only works in the client navigation. The
Next.js application sets the document location to match the URL
alias. However, this is just a visual facade for the client. All
the communication with the server is handled via the former
property, the href. The FE prompts the server for the e.g.
repo/tree?name=foo&ref=master&path=src, no matter the alias.

This of course leads to a problem. If the user gets to the aliased
URL not via the client navigation, but for instance by opening a shared
link, the server responds with 404. The default Next.js handler, if alias
URL is requested, e.g. repo/tree/foo/master/src, looks for page located in
pages/repo/tree/foo/master/src.js by default logic and fails to find it, re-
turning a Not found error.

This common issue is solved (as written the Next.js documentation) by
creating the custom handlers, parsing the arguments from the URL and passing
them to an appropriate Next.js render handler with the correct page parameter
and query object.

This is already considered in the design, where FE router is included, which
does exactly that.

77

6. Implementation

6.3.2 Uniform route reference
Anyway, it is clear that the previous solution has some issues. Namely:

1. In-lining the link functions is not ideal for re-usability, since the same
endpoint link is probably generated in several distinct components. It
is be more appropriate to define the functions in separate module and
import them at convenience into the components in FE.

2. As mentioned, Express.js route patterns need to be defined independently
for custom BE handlers, delegating to Next.js handler. It is inconvenient
to have Express.js and Next.js routing configuration separated, since the
routes refer to the same thing.

For the stated matters the current solution is insufficient when operating
with multiple routes, and code got more and more complicated.

Since there is no appropriate solution for the issue the following design
solves the two issues.

1 const endpoints = {
2 TREE: 'TREE',
3 // ...
4 };
5

6 const routes = {
7 [endpoints.TREE]: {
8 generate: ({ name, ref, path }) => `/repo/tree/${[name, ref,

path].filter(identity).join('/')}`,↪→

9 express: '/repo/tree/:name/:ref/:path([\\S\\s]+)?',
10 },
11 // ...
12 };
13

14 exports.endpoints = endpoints;
15 exports.generate = endpoint => routes[endpoint].generate;
16 exports.expressPattern = endpoint => routes[endpoint].express;

Listing 16: Implementation: Routes module – definition

The route definition module example is in the listing 16. The user can
access the endpoint constants and the express route definition and the generate
function for the FE are side by side.

1 const { expressPattern, endpoints } = require('../../src/routes');
2

3 const router = express.Router();
4

5 router.get(expressPattern(endpoints.TREE), (req, res) => {
6 // ...
7 });

Listing 17: Implementation: Routes module – back-end

78

6.3. Routes

1 import Link from 'next/link';
2 import { endpoints, generate } from '../../src/routes';
3 // ...
4 const query = { name, ref, path };
5 const pathname = '/repo/tree'
6 const href = { pathname, query }
7 return(
8 <Link
9 href={href}

10 as={generate(endpoints.TREE)(query)}>
11 <a>{name}
12 </Link>
13);

Listing 18: Implementation: Routes module – front-end

Using the module in BE is fairly easy and readable, as seen in 17.
How the shared route definition is used in the FE is shown in the listing 18.

6.3.3 Uniform route definitions
The previous solution using constants works well for creating an abstraction
for the endpoints and places the definitions next to each other, making the
code more organized.

There is still room for improvement, however.
The listing 16 features a redundancy, though not painfully obvious. The

express pattern holds the very same information as the function generate, only
in different notation. A uniform notation of singleton record can be used to
represent the route.

The redundancy is more obvious when working with static routes, as show-
cased in the listing 19, where the two records are literally identical, apart from
one being a function the other the literal value itself.

1 const routes = {
2 [endpoints.INDEX]: {
3 generate: () => '/repo',
4 express: '/repo',
5 },
6 // ...
7 };

Listing 19: Implementation: Routes module – definition of a static route

After a research it is discovered what package is used in the Express.js
routing59. The Express.js has a function to parse the pattern and extract the
parameters. The custom generate function is just the direct inverse of the parse
function, which is provided by the same library. The package path-to-regexp is
not only used [21] by Express.js, but moreover it provides the desired function

59This is not default JS regular expressions syntax, though it resembles it. JS RegExp
does not have a support for the named capture groups.

79

6. Implementation

compile, an inverse to parse. All generate function are thus redundant, obsolete
and can be generated with help of this library.

The difference is obvious from the definition in the listing 20, where the
impact is the most drastic, removing the duplicate isomorphic definitions.

1 const endpoints = {
2 front: {
3 tree: '/repo/:provider/:name/tree/:ref/:path([\\S\\s]*)?',
4 index: '/repo',
5 // ...
6 },
7 };
8 exports = endpoints;

Listing 20: Implementation: Routes uniform definition module – definition

The usage of the new route definition in the BE is almost identical, the
wrapper function disappeared, returning the express pattern from the end-
point, as seen in the listing 21.

1 const { front } = require('../../common/endpoints');
2

3 const router = express.Router();
4

5 router.get(front.tree, (req, res) => {
6 // ...
7 });

Listing 21: Implementation: Routes uniform definition module – back-end

On the FE, all the missing generate functions are substituted with a single
compile function form the package path-to-regexp as seen in the listing 22.

1 import Link from 'next/link';
2 import { compile } from 'path-to-regexp';
3 import { front } from '../common/endpoints';
4 // ...
5 const query = { name, ref, path };
6 const pathname = '/repo/tree'
7 const href = { pathname, query }
8 return(
9 <Link

10 href={href}
11 as={compile(front.tree)(query)}>
12 <a>{name}
13 </Link>
14);

Listing 22: Implementation: Routes uniform definition module – front-end

80

6.4. NodeGit

6.4 NodeGit

Whilst building the git module in Gitwiki BE application NodeGit is used.
In this section one part of the interaction with Git repository is discussed

The interaction is retrieving a repository.

6.4.1 Get repository
In the git module, a dead simple API: Get a repository is desired. This of
course needs some parameters that are provided by the repository provider:

• URL of the repository,
• FS destination path and
• authentication data.

While the former two can surely be strings, the last is more complicated.
NodeGit has a class Cred [10] for representing the user identity.

6.4.2 Credentials
Generally Cred is used in all interactions inside a callback function which can
react to the used username and the URL. Example usage of the credential
callback, when setting options for cloning a repository, is seen in the listing 23
(the listing is taken from [11]). NodeGit thus provides an abstraction for the
last item of complex type.

1 cloneOptions.fetchOpts = {
2 callbacks: {
3 credentials: function(url, userName) {
4 return NodeGit.Cred.sshKeyFromAgent(userName);
5 }
6 }
7 };

Listing 23: Implementation: NodeGit – Credentials callback

6.4.3 Function getRepo

The implementation of the function getRepo is discussed step by step and all
the problems on the way are resolved.

The function is seen in the listing 24. It takes all the discussed parameters.
The clone options object is created from the credential callback on the second
line and setup (curried function) is created from it.

Then the cloning itself is performed, delegated to the NodeGit library, which
returns a Promise with the repository or error.

If the cloning succeeds, the repository needs to be set up with the prepared
function and createLocalRefs is called, which is discussed in a moment, and
result is returned.

If the cloning fails, the encountered error is returned, unless it is the error
code EEXISTS, which indicates that the repository could not have been cloned,

81

6. Implementation

1 const getRepo = (uri, dest, getCred) => {
2 const cloneOpts = getcloneOpts(getCred);
3 const setup = setupRepo(cloneOpts);
4 return NodeGit.Clone(uri, dest, cloneOpts)
5 .then(setup)
6 .then(createLocalRefs)
7 .catch((e) => {
8 if (e.errno === NodeGit.Error.CODE.EEXISTS) {
9 return retrieveCachedRepo(dest, setup);

10 }
11 throw e;
12 });
13 };

Listing 24: Implementation: NodeGit – Getting a repository

since the destination path points to a non-empty directory. This happens
rather often, since the repository is often cloned for the first time only and
then the cached local mirror is accessed on consecutive queries. On this error
the repository is retrieved and updated it in the function retrieveCachedRepo.

6.4.4 Function createLocalRefs

The existence of the function requires a comment, even for the people using
Git CLI on their daily bases. When cloning a remote, all remote branches are
stored in the local references60. If the remote repository has more branches,
all are correctly transfered and saved, but only the default branch (master) is
created as a local branch61. To these branches user can checkout62, but they
cannot checkout in other references cloned from the origin, since they are not
branches per se.

This is very much possible in Git CLI however. Though the local branch63

does not exist, user can indeed git checkout <branch> to a branch that only
exists in the remote references in Git CLI. This is just a syntax sugar for
creating a head reference on the same OID as the remote reference; which Git
CLI does for the user, on the first checkout into a branch that does not exist,
but has a counterpart in the remote references of the same name. That is the
reason why the line between remote references and head references is blurred
for even advanced users of Git.

To finally get to the bottom of the function createLocalRefs, it exactly
solves the discussed issue. Since there is no Git CLI behind NodeGit to cre-
ate the head references, when they are needed, it is required to create them
manually. The function is in the listing 25.

At first, all available references are retrieved from the repository, from which
are filtered only the remote references. Then for each remote reference, the
following actions must be performed:

60e.g. .git/refs/remotes/origin/master
61e.g. .git/refs/heads/master
62Checking out refers to setting the HEAD reference on a branch – not commit or tag; nor

checking out files. Git terminology might be a little confusing at times overusing this word.
63Reference in .git/refs/heads

82

6.4. NodeGit

1 async function createLocalRefs(repo) {
2 const references = await

repo.getReferences(NodeGit.Reference.TYPE.LISTALL);↪→

3 const remoteRefs = references.filter(r => r.isRemote());
4 return Promise.all(remoteRefs.map((remoteRef) => {
5 const oid = remoteRef.target();
6 const upstreamName = getRefCompoundName(remoteRef.toString());
7 const { name } = parseRefName(remoteRef.toString());
8 return getOrCreateBranch(repo, name, oid)
9 .then(b => NodeGit.Branch.setUpstream(b, upstreamName));

10 }));
11 }

Listing 25: Implementation: NodeGit – Create local references

• Find the OID, so it is known onto which commit to hook the new branch64

• Get name of the remote reference (line 6) using a custom parsing func-
tion65

• Get the name of the branch66 (line 7)
• Retrieve the branch (line 8)

– Either get an existing branch (it might already exists in case of the
second run or default branch),

– or create it on the given OID

• Setup the remote reference as an upstream branch for the new local
branch (line 9)

Setting up the remote is not necessary for using the branch locally, but
for publishing it to the remote repository. The Git CLI user is familiar with
the argument --set-upstream when pushing a branch to a remote for the first
time. If the branch is created from the remote by Git CLI the upstream is
automatically set67.

6.4.5 Function retrieveCachedRepo

This function (its implementation is in the listing 26) is called with the destin-
ation, when the cloning fails due to an existing, non-empty destination folder.
It needs to:

1. Create the repository abstraction using the NodeGit’s Repository.open
2. Apply the provided setup method, created in and passed form the getRepo

function
3. Update the head references with a set remote upstreams

64The OID is available through a synchronous method target, as seen on line 5 if listing
25.

65remoteRef.toString() returns the full path, e.g. refs/remotes/origin/master,
while the NodeGit’s API for creating a branch expects only the name of the remote, e.g.
origin/master

66Ditto, prefix must be removed, converting refs/heads/master to master
67Tested on git version 2.7.4

83

6. Implementation

1 async function retrieveCachedRepo(dest, setup) {
2 const repository = await NodeGit.Repository.open(dest);
3 return compose(updateRemoteRefs, setup)(repository);
4 }

Listing 26: Implementation: NodeGit – Retrieve cached repository

The first two require no further comment, unlike the reference update. A
repository that has been cloned some time before is being accessed. To get
the repository that is up to date, without re-cloning it, each local branch is
pulled from its configured upstream.68 This action logic is in the function
updateRemoteRefs.

6.4.6 Function updateRemoteRefs

This method pulls for each local branch with configured upstream. While pull
is indeed command in Git CLI, it is not available in libgit2 and eventually
neither in NodeGit. Pull is a user abstraction and shortcut for the two consec-
utive commands: fetch and merge.

Fetch for change is actually a command from Git core library and it updates
the remote references to match the remote. After that (to complete the pull), it
is required to update the local references to match the fresh remote references.
This is achieved through hard resetting branches. After the branches are reset,
the function is done and it returns the repository.

1 async function updateRemoteRefs(repo) {
2 await repo.fetchAll(repo.fetchOpts);
3 await createLocalRefs(repo);
4 const ups = await branchesAndUpstreams(repo);
5 await Promise.all(ups.map(([br, up]) => NodeGit.Commit.lookup(repo,

up.target())↪→

6 .then(ci => NodeGit.Reset.reset(
7 repo,
8 ci,
9 NodeGit.Reset.TYPE.HARD,

10 new NodeGit.CheckoutOptions(),
11 br.toString(),
12))));
13 return repo;
14 }

Listing 27: Implementation: NodeGit – Update branches with remote up-
streams

As seen in the listing 27 the function proceeds as follows:

68While this method (pull before you do anything) is heedlessly practiced by the majority
of the users, as satirically pointed out by [67], here the cause is justified. When applied by a
user, it is usually to minimize the risk of an update conflict when pushing to a remote. Here
on the other hand, it is to gain access to the current data, even when utilizing this form of
caching.

84

6.5. Emily

1. Fetch all remote references using NodeGit’s Repository.fetchAll
2. Create local references through a function that has already been discussed
3. Get pairs of local branches and their upstreams
4. For each pair:

• Retrieve the commit of the upstream
• Hard reset the branch to the commit

6.5 Emily

This section solves the issues from the design chapter with an additional issue
of event recursive invocation in the synchronized scrolling.

6.5.1 Solving the feature bag C
6.5.1.1 Live-preview of the document

Live preview is not an issue from the implementation perspective, but it creates
a clear restriction on the LMLs that are supported: The language needs to have
an in-browser solution for rendering the source markup into HTML. Majority,
if not all LMLs do satisfy this condition, because they usually originate from
the web domain.

6.5.1.2 Document outline preview

Displaying the TOC, based on the document headlines is a simple matter,
provided that a tool for generating HTML is available. All that is required is
to parse the HTML, select the heading tags and form a hierarchical structure.

The first issue is excluding headlines from the outline. This is required
since AsciiDoc has this feature69. This lays a second requirement on the LML
module, a function to decide for an HTML headings, whether it is excluded
from the outline. Since AsciiDoc utilizes CSS classes to propagate the generic
attributes to HTML, the function for the AsciiDoc module merely checks the
existence of a discrete CSS class in the HTML heading.

It is expected of the outline to serve as a navigation as well. Upon clicking
the heading is looked up in the source code.

The solution used relies on concept of line ninjas70, which is designed for
the synchronized scrolling. As a side effect it labels the HTML output with
elements bearing the corresponding line number in the source code. With it,
the line number can be extracted from the HTML heading and the source code
lookup is trivial.

6.5.1.3 Synchronized scrolling of the editor and preview

Line ninja71

The idea behind this is to smuggle the ninjas, into as many lines of the
source code as possible. The ninjas must comply with the following rules:

69It is achieved by adding a discrete attribute to the heading.
70Line ninja is a name for hidden elements in code that are traceable by machine, but

invisible to user.
71The name was created while developing a prototype to simplify terminology.

85

6. Implementation

1. Ninja is a string
2. Ninja contains an encoded number, representing its line number in the

source code
3. When the HTML is rendered from the LML source code containing ninjas,

each ninja is left intact by the transformation and remains the identical
string to the ninja before the transformation

4. Ninja does not alter the LML – if ninjas are removed from the HTML,
the result is identical to HTML acquired from source without including
ninjas

Number four is the most difficult to implement, and it is impossible to solve
generally for all LMLs.

Thus a function safelyInsert is required by the LML module. It takes two
arguments, a source code line of the LML and a string content. It returns a
string representing the line but including the given string. This function assures
that the markup is never altered by this change (if the content was removed
after the HTML transformation). The function is very difficult to implement
even for given LML, therefore the editor is fault tolerant towards it and works
even if the function does not cover all the cases72.

Eventually this function safelyInsert is used for smuggling ninjas into the
LML source code. This way, they can be found in the resulting HTML and
the editor can detect the breakpoints of source code lines, the only thing that
remains is hiding the ninjas in the preview, which can be achieved via CSS.

This allows for the two way synchronization and also solves the issue with
heading lookup as mentioned in issue with outline.

Since the ninjas are used in the outline, it is necessary for it to function
properly that the safelyInsert performs the insert on every heading line. This
is the only requirement for the function.

6.5.1.3.1 An example of line ninjas For illustration, an example of the
usage of line ninjas is demonstrated.

Assume a Markdown source code in the listing 28. This is the plain source.
As mentioned, before converting the document, the ninjas are inserted using the
safelyInsert function. Its result is in the listing 29. Not all ninjas are perfectly
smuggled into the code, as apparent. This depends on the implementation of
the LML module.

All inserted ninjas satisfy the stated conditions: none of the destroy the
markup, all bear the number of the source line and all of them are kept intact,
when converted into HTML. This can be verified in the resulting HTML in the
listing 30. All that remains to be done, is converting the ninjas into HTML
markup, which does not shatter the resulting document. Using regular expres-
sions is sufficient in this case. All the ninjas are converted into tags as seen in
the listing 31.

Even using hidden spans leaves tracks in the rendered result and contrived
CSS rulse must be used to clean them. Example of the CSS is in the listing 32.

72If the function fails to plant the content in the line, it return the line only.

86

6.5. Emily

1 # Header
2

3 A paragraph
4

5 Second paragraph with styles *italic*, **bold**, and `monospace`.
Itemized list follows:↪→

6

7 * ein
8 * zwo
9 * drei

Listing 28: Implementation: Line ninjas – Markdown

1 # Header @@@1@@@
2 @@@2@@@
3 A paragraph @@@3@@@
4

5 Second paragraph with styles *italic*, **bold**, and `monospace`.
Itemized list follows: @@@5@@@↪→

6 @@@6@@@
7 * ein @@@7@@@
8 * zwo @@@8@@@
9 * drei @@@9@@@

Listing 29: Implementation: Line ninjas – Markdown with ninjas

1 <div class="markdown-body">
2 <h1 id="header-1-">Header @@@1@@@</h1>
3 <p>@@@2@@@
4 A paragraph @@@3@@@
5 </p>
6 <p>Second paragraph with styles italic, bold,

and <code>monospace</code>. Itemized list follows: @@@5@@@↪→

7 @@@6@@@
8 </p>
9

10 this one @@@7@@@
11 that one @@@8@@@
12 the other one @@@9@@@
13
14 </div>

Listing 30: Implementation: Line ninjas – HTML with ninjas

6.5.1.4 Reorganizing sections in document using outline

With sufficient LML abstraction and line ninjas, line number of the selected
heading can be detected. The same applies for the previous or the following
heading. Using this technique, the sections can be moved around without
having further requirements of the LML mode.

87

6. Implementation

1 <div class="markdown-body">
2 <h1 id="header-1-">Header 1</h1>
3 <p>2
4 A paragraph 3
5 </p>
6 <p>Second paragraph with styles italic,

bold, and <code>monospace</code>. Itemized list
follows: 5

↪→

↪→

7 6
8 </p>
9

10 this one 7
11 that one 8
12 the other one 9
13
14 </div>

Listing 31: Implementation: Line ninjas – HTML with ninjas in tags

1 .ninja {
2 display: inline-flex;
3 visibility: hidden;
4 width: 0;
5 height: 0;
6 }

Listing 32: Implementation: Line ninjas – CSS

6.5.2 Synchronized scrolling loop
Imagine the editor component containing the subcomponents for the preview
and the source-code editor as in the listing 33. The listing shows a body of the
render method of the component.

1 return (
2 <Preview
3 onScroll={this.handlePreviewScroll}
4 ref={/*...*/}
5 dangerouslySetInnerHTML={__html}
6 />
7 <SourceCodeEditor
8 onScroll={this.handleEditorScroll}
9 ref={/*...*/}

10 onChange={this.handleChange}
11 defaultValue={this.state.raw}
12 />
13);

Listing 33: Implementation: Emily – components

This is a minimalistic, yet logically complete schema of the components
with regard to the discussed issue. There is the SourceCodeEditor with a default

88

6.5. Emily

value and an on-change handler; and the Preview that contains inner HTML,
since it needs to be set from a string acquired by the converting tool.

Both components are referenced by the higher component to access their
DOM elements when performing the scroll and both also have an on-scroll
handler.

The desired behavior of the on-scroll handler for SourceCodeEditor, is to
find the editor’s current line and scroll the Preview to match it. Vice versa for
the other handler.

Scrolling any element in the DOM is possible through the changing of its
attribute offsetTop. Setting it to zero scrolls on the very top and any positive
integer sets the scroll offset in pixels. Setting the offsetTop however, triggers
a scroll event, the same was as if it has been scrolled by a user.

The interactions are displayed in the diagram 6.1. It is assumed that the
user interacts with the editor but the communication is symmetric in the other
case.

Alice

Alice

Editor

Editor

onEditorScroll

onEditorScroll

Preview

Preview

onPreviewScroll

onPreviewScroll

scroll editor

ScrollEvent

find Editor's line

scroll to line Scrolling even programmatically
will trigger the ScrollEvent

ScrollEvent

find Preview's line

scroll to line

Figure 6.1: Implementation: Emily editor on-scroll listeners

1. The user scrolls the Editor, e.g. using mouse-wheel in the browser.
2. Scroll event on Editor is fired.
3. onEditorScroll is triggered.
4. onEditorScroll finds Editor’s line.
5. onEditorScroll sets Preview’s offsetTop.
6. Scroll event on Preview is fired.
7. onPreviewScroll is triggered.

89

6. Implementation

8. onPreviewScroll finds Preview’s line.
9. onPreviewScroll sets Editor’s offsetTop.

10. Repeat from point 3

The loop theoretically runs forever. In practice it causes irritating scroll
shivering momentum on the scrolled element.

The solution uses a ternary indicator with values:

• editor: Editor scrolled last. It can scroll again but the Preview cannot.
• preview: Preview scrolled last. It can scroll again but the Editor cannot.
• clear: Anyone can scroll.

The following rules apply to the listeners, regarding the indicator:

1. When the value allows you to scroll, execute and set to your name.
2. When the value forbids you to scroll, clear it and exit.
3. The default value of the indicator is clear.

An example interaction of how the circularity is broken is showed in the
diagram 6.2, when the indicator’s value is displayed in the notes.

Alice

Alice

Editor

Editor

onEditorScroll

onEditorScroll

Preview

Preview

onPreviewScroll

onPreviewScroll

scroll editor clear

ScrollEvent clear

set last scroller editor

find Editor's line editor

scroll to line editor

ScrollEvent editor

reset last scroller clear

Figure 6.2: Implementation: Emily editor on-scroll listeners 2

The listing 34 shows the authentic implementation of the
handleEditorScroll event listener. Lines 2 through 6 implement the in-
dicator logic73 After that a first visible line of the editor is computed the

73null stands for clear value

90

6.5. Emily

preview is scrolled using the method scrollPreviewToLine74. Before asking
the editor for the line, it is prompted to reconfigure its renderer, which force
updates the editor to react to the current scrolling event, allowing us to get
an un-delayed line number.

1 handleEditorScroll = () => {
2 if (this.lastScrolled === 'preview') {
3 this.lastScrolled = null;
4 return;
5 }
6 this.lastScrolled = 'editor';
7 this.ace.renderer.$computeLayerConfig();
8 const firstVisibleLine = this.ace.renderer.getFirstVisibleRow() + 1;
9 this.scrollPreviewToLine(firstVisibleLine);

10 }

Listing 34: Implementation: Emily – editor scroll listener

Its counterpart implementation is in the listing 35.
It is very similar to the previous one, though bearing some differences.

The lastScrolled indicator condition with the reset and the function’s exit is
present at the beginning of the function as in the previous case, but setting of
the indicator is delayed. This is because at this point it is not sure that the
scrolling is performed.

The editor is checked if it is scrollable in the direction. This solves the issue
of scrolling out of bounds when preview is scrolled over the generated content
beyond source, such as TOC, footnotes in appendix of the document etc. The
source code editor provides an API to ask if it is scrollable by the given offset
(line 10).

For this API it is required to know the direction of the scroll, which can be
acquired by comparing it to the editor’s current location75.

If it is the case, the editor is scrolled and lastScrolled is properly set,
otherwise the function ends.

74This function takes the line, computes the top offset in pixels and sets the appropriate
attribute in the Preview element.

75At this point an idea to use the scroll event data to get the direction instead of comparing
the lines might occur. Alas the event provides only the offset, not the delta, so the value
would need to be subtracted one way or the other.

91

6. Implementation

1 handlePreviewScroll = () => {
2 if (this.lastScrolled === 'editor') {
3 this.lastScrolled = null;
4 return;
5 }
6 const firstVisibleLine = this.getPreviewFirstVisibleLine();
7 const deltaPositive = firstVisibleLine >

this.ace.renderer.getFirstVisibleRow() + 1;↪→

8

9 // dont scroll editor if preview scroll "out of source" (e.g.
footnotes)↪→

10 if (this.ace.renderer.isScrollableBy(null, deltaPositive ? 1 : -1)) {
11 this.lastScrolled = 'preview';
12 this.scrollEditorToLine(firstVisibleLine);
13 }
14 }

Listing 35: Implementation: Emily – preview scroll listener

92

Chapter 7
Testing

7.1 Automatic testing

For automatic testing of the application the Jest [23] testing framework with
Enzyme [41], a testing utility library for React, and Chai [59], an assertion
library for Node.js is used.

The emily-editor utilizes the test suits in its Travis CI pipeline before
preforming a deploy of the demo application and publishing to npm.

7.2 Usability testing

Apart from heuristic analysis of the UI in the chapter UI testing, a live usability
testing with working prototype and real users has been conducted.

In this chapter the testing scenarios are presented and then the testing itself
and proposed solutions to UI issues are briefly summarized.

7.2.1 Testing scenarios
There are three short testing scenarios. As a whole the scenarios focus on the
innovative aspects of the UI, that are unusual or unseen in similar projects.

The first scenario tests user’s understanding of the parallel content brows-
ing, forcing the user to change the revision of the repository and to read a file
in the repository tree in a non-default branch.

The second scenario is designed to be more relaxing for the tester, inspecting
the UI of basic navigation in the tree and the file detail.

The final scenario is the most challenging. Not only it is about the content
editing but also it tests the concept of accumulating the pending changes in
the application state, which is a feature not seen in any software mentioned
in the chapter State-of-the-art nor in any other wiki software mentioned in the
text.

7.2.1.1 Scenario A: Working with references

7.2.1.1.1 Introduction for the tester You are writing a user manual for a
library, you and your team is developing. The manual is stored in the system in
the repository <repository>. The project adheres to semantic versioning. Your

93

7. Testing

colleague has just fixed a bug in the installation section of the user manual
that has caused many problems to the users and published it under the version
<version>. Before deploying, check that the version of the project in the branch
<branch> is greater than or equal to the <version>. The current version of the
project is stored in the ./VERSION file, apart from using Git tags.

7.2.1.1.2 Meta information

• Expected time of completion: 5 minutes
• Goals:

– User can find the repository index.
– User can find the desired repository in the index and open it.
– User recognizes the reference widget in the breadcrumbs menu as

means of navigation.
– User understands that they can change the browsed reference using

the widget and how it effects the view on the repository.
– User can use the file index and select an item to bring up the file

detail.

• Initial state: Homepage of the application with a logged in user
• Terminal state: Detail of the ./VERSION file in branch <branch>

7.2.1.1.3 Steps

1. Navigate to the repository index.
2. Open the repository <repository>.
3. Find the file ./VERSION.
4. What is the current branch?
5. Find the contents of the file ./VERSION in branch <branch>.

7.2.1.2 Scenario B: Working with file detail

7.2.1.2.1 Introduction for the tester Your colleague forgot a “todo”
note in a comment in one of the three document files in folder <dir>. The
comment is on the first line of the file. Find the content of this note so you
can create an issue in your tracker.

7.2.1.2.2 Meta information

• Expected time of completion: 5 minutes
• Goals:

– User can navigate through the index menu to said folder.
– User can understands that side-menu index is for switching between

the files in the same folder.
– User notices the tabular menu in the file detail, and can use it to

select the view they desire.

• Initial state: Terminal state of the previous scenario or index page of
the <repository> repository

• Terminal state: Detail of the source code of the commented file

94

7.2. Usability testing

7.2.1.2.3 Steps

1. Navigate to the <dir> in this repository
2. Browse the files in the folder to find the one with a “todo” comment

note on the first line. Remember, that comments are not visible in the
rendered document preview, but in the source code of the file.

7.2.1.3 Scenario C: Creating a revision

7.2.1.3.1 Introduction for the tester In the file you were just inspecting
it is necessary to remove the comment and change the title of the document to
<newtitle>. Apart from that, in the same revision, delete the remaining two
files in the folder, they are no longer needed. Review your changes and create
a commit with a message <message>.

7.2.1.3.2 Meta information

• Expected time of completion: 5 minutes
• Goals:

– User understands the side-menu is context-relevant and contains
actions related to the current screen.

– User can navigate to page edit and add a change.
– User realizes, that creating a change does not mean creating a revi-

sion.
– User understands how the changes are accumulated in the applica-

tion state.

• Initial state: Terminal state of the previous scenario
• Terminal state: Index of the repository <repository>

7.2.1.3.3 Steps

1. Remove the comment in the current file and change the title of the doc-
ument to <newtitle>.

2. Delete the remaining files in the folder, except the one you have just
edited.

3. Review all the pending changes.
4. Create a revision from the changes with comment <message>.

7.2.2 The course of the testing
Four UI testers participated in the testing in total.

No acceptance form inspecting the testers’ background has been submitted.
The testers were briefly introduces and thus it is known that they:

• are developers,
• know Git fairly well and use it regularly76,
• know Markdown syntax, two users are also familiar with AsciiDoc, one

of which prefers it to Markdown.
76except for one tester, who uses Subversion in their workspace, but uses Git on personal

projects

95

7. Testing

All users qualified for the UI testing of the system. The UI of the system’s
prototype testing is conducted in combination of live testing and shared screen
with voice chat. The testing provided only qualitative output in form a test
log made during and after the testing.

7.2.3 Outcome
The following issues are discovered during the testing:

• The link in the repository index has incorrect cursor. Solution: use pointer
cursor to indicate the component is a link.

• It is not apparent from the reference widget it is interactive. Its behavior
surprises users. Solution: add a caret icon to symbolize its function and
use click event instead of hover to eliminate accidental interactions.

• When browsing the repository tree and currently a folder is selected,
duplicate file listing is visible in the main content as well as in the side-
menu. Solution: remove the index from the side-menu when on a folder.

• In the side-menu, the listing of the current folder is titled index. Users
stated that using label files is more self-explanatory. Solution: change the
label.

• The users find it difficult to use the breadcrumbs menu for navigating
to the root of the repository, since the menu has links for the Repos-
itory index, the current repository, the reference and path fragments.
Solution: visually divide the repository with reference from the path in
breadcrumbs menu; remove repository index link.

• SHA hashes seem to have different lengths using a proportional font.
Solution: use mono-space font for the SHA hashes.

96

Conclusion

The goal of this thesis is to create a wiki system suitable for community software
projects.

In the first chapter the goal is elaborated and core terms used in the text are
explained. The users’s needs are analyzed in the business process model and
a viable solution for the problem of permission control with unified behavior
across the UIs is proposed. With all the necessary data available, the system
is defined through the requirements model. The functional requirements are
further elaborated into the use-case model.

Acquiring the system definition in the analyses the existing wiki systems
are reviewed. The systems are rated with regard to the raised criteria and their
disadvantages are identified in the context of the intended use of the system.

The system is designed to either avoid these issues by the its nature or a
solution is provided. The system design discusses its architecture, core com-
ponents and UI.

The implementation chapter concludes the development process results and
provides an in-depth view of selected problems faced during the implementa-
tion.

The tools used for automated testing are described in the testing chapter.
The UI is tested for usability using Jakob Nielsen’s heuristics [68] and in the
final stage via conducted usability testing with users.

In the future, the system can be extended to provide pre-rendering of the
repository’s pages into HTML. However, this requires a thorough analyses and
design of the solution to handle the current parallel development capabilities
of the system; for instance caching only a single branch or a user or heuristic
selected subset. Apart from this, the designed LML editor can be extended
by other language modes, apart from the existing support for Markdown and
AsciiDoc, or by richer user interactions inspired from IDE or coding editor
development.

97

Bibliography

[1] Abramov, D.; et al. Redux [online]. April 2018, [Cited 2018-04-25]. Avail-
able from: https://redux.js.org/

[2] Airbnb, Inc. Airbnb: JavaScript Style Guide [online]. May 2018, [Cited
2018-05-01]. Available from: https://github.com/airbnb/javascript

[3] Ajax.org B.V. Ace – The High Performance Code Editor for the Web [on-
line]. May 2018, [Cited 2018-05-01]. Available from: https://ace.c9.io/

[4] Allen, D. Textile Syntax Documentation and Sandbox [online]. April
2018, [Cited 2018-04-17]. Available from: https://txstyle.org/

[5] Allen, D.; White, S. Asciidoctor [online]. January 2018, [Cited 2018-01-
31]. Available from: http://asciidoctor.org/

[6] Ant Financial. Ant Design: A UI Design Language [online]. May 2018,
[Cited 2018-05-01]. Available from: https://ant.design/

[7] Atlassian. Bitbucket [online]. April 2018, [Cited 2018-04-05]. Available
from: https://bitbucket.org

[8] Black Duck Software, Inc. Compare Repositories - Open Hub [on-
line]. April 2018, [Cited 2018-04-04]. Available from: https://
www.openhub.net/repositories/compare

[9] Branyen, T.; Haley, J.; et al. Install NodeGit [online]. April 2018, [Cited
2018-04-25]. Available from: http://www.nodegit.org/

[10] Branyen, T.; Haley, J.; et al. NodeGit: Cred [online]. May 2018, [Cited
2018-05-01]. Available from: http://www.nodegit.org/api/cred/

[11] Branyen, T.; Haley, J.; et al. NodeGit: SSH w/ Agent Guide [online].
May 2018, [Cited 2018-05-01]. Available from: http://www.nodegit.org/
guides/cloning/ssh-with-agent/

[12] Chamarty, S.; et al. Gitolite – ad hoc user-created (”wild”) repos [online].
April 2018, [Cited 2018-04-04]. Available from: http://gitolite.com/
gitolite/wild/

99

https://redux.js.org/
https://github.com/airbnb/javascript
https://ace.c9.io/
https://txstyle.org/
http://asciidoctor.org/
https://ant.design/
https://bitbucket.org
https://www.openhub.net/repositories/compare
https://www.openhub.net/repositories/compare
http://www.nodegit.org/
http://www.nodegit.org/api/cred/
http://www.nodegit.org/guides/cloning/ssh-with-agent/
http://www.nodegit.org/guides/cloning/ssh-with-agent/
http://gitolite.com/gitolite/wild/
http://gitolite.com/gitolite/wild/

Bibliography

[13] Chamarty, S.; et al. Gitolite – Performance [online]. April 2018, [Cited
2018-04-04]. Available from: http://gitolite.com/gitolite/perf/

[14] Chamarty, S.; et al. Gitolite – virtual refs (part 1) [online]. April 2018,
[Cited 2018-04-04]. Available from: http://gitolite.com/gitolite/
vref/

[15] Chamarty, S.; et al. Gitolite [online]. April 2018, [Cited 2018-04-04].
Available from: http://gitolite.com/gitolite/

[16] Collina, M.; Clements, D. M.; et al. Pino: Super fast, all natural JSON
logger for Node.js [online]. May 2018, [Cited 2018-05-01]. Available from:
https://getpino.io/

[17] Cudbard-Bell, A.; Vogt, C.; et al. Omnigollum: Omniauth authentica-
tion for gollum [online]. April 2018, [Cited 2018-04-17]. Available from:
https://github.com/arr2036/omnigollum

[18] Dalton, J.-D.; et al. Lodash [online]. May 2018, [Cited 2018-05-01]. Avail-
able from: https://lodash.com/

[19] Dominik, C.; et al. Org Syntax (draft) [online]. April 2018, [Cited
2018-04-17]. Available from: http://orgmode.org/worg/dev/org-
syntax.html

[20] Elouafi, Y.; Burzyński, M.; et al. Redux-Saga: An alternative side effect
model for Redux apps [online]. April 2018, [Cited 2018-04-25]. Available
from: https://github.com/redux-saga/redux-saga

[21] Embrey, B.; et al. Path-to-regexp [online]. April 2018, [Cited 2018-04-30].
Available from: https://github.com/pillarjs/path-to-regexp

[22] Facebook Inc. Flux: Application Architecture for Building User Inter-
faces [online]. April 2018, [Cited 2018-04-25]. Available from: https:
//facebook.github.io/flux/docs/in-depth-overview.html#content

[23] Facebook Inc. Jest: Delightful JavaScript Testing [online]. May 2018,
[Cited 2018-05-01]. Available from: https://facebook.github.io/jest/

[24] Facebook Inc. Type Aliases | Flow [online]. April 2018, [Cited 2018-04-
25]. Available from: https://flow.org/en/docs/types/aliases/

[25] Facebook Inc. Typechecking With PropTypes – React [online]. April
2018, [Cited 2018-04-27]. Available from: https://reactjs.org/docs/
typechecking-with-proptypes.html

[26] Giard, N.; et al. Wiki.js | A modern open-source Wiki software [online].
April 2018, [Cited 2018-04-18]. Available from: https://wiki.js.org/

[27] Giard, N.; et al. Wiki.js: 2.0.0 - Dev [online]. April 2018, [Cited 2018-04-
18]. Available from: https://github.com/Requarks/wiki#200---dev

[28] Giard, N.; et al. Wiki.js: git [online]. April 2018, [Cited 2018-04-18].
Available from: https://docs.requarks.io/wiki/install/git

100

http://gitolite.com/gitolite/perf/
http://gitolite.com/gitolite/vref/
http://gitolite.com/gitolite/vref/
http://gitolite.com/gitolite/
https://getpino.io/
https://github.com/arr2036/omnigollum
https://lodash.com/
http://orgmode.org/worg/dev/org-syntax.html
http://orgmode.org/worg/dev/org-syntax.html
https://github.com/redux-saga/redux-saga
https://github.com/pillarjs/path-to-regexp
https://facebook.github.io/flux/docs/in-depth-overview.html#content
https://facebook.github.io/flux/docs/in-depth-overview.html#content
https://facebook.github.io/jest/
https://flow.org/en/docs/types/aliases/
https://reactjs.org/docs/typechecking-with-proptypes.html
https://reactjs.org/docs/typechecking-with-proptypes.html
https://wiki.js.org/
https://github.com/Requarks/wiki#200---dev
https://docs.requarks.io/wiki/install/git

Bibliography

[29] GitHub Inc. About GitHub Wikis, User Documentation [online]. April
2018, [Cited 2018-04-03]. Available from: https://help.github.com/
articles/about-github-wikis/

[30] GitHub Inc. GitHub [online]. April 2018, [Cited 2018-04-05]. Available
from: https://github.com/

[31] GitLab Inc. About Us | GitLab [online]. April 2018, [Cited 2018-04-04].
Available from: https://about.gitlab.com/about/

[32] GitLab Inc. File Locking | GitLab [online]. April 2018, [Cited 2018-
04-04]. Available from: https://docs.gitlab.com/ee/user/project/
file_lock.html

[33] GitLab Inc. GitLab CE [online]. April 2018, [Cited 2018-04-04]. Available
from: https://github.com/gitlabhq/gitlabhq

[34] GitLab Inc. GitLab without gitolite | GitLab [online]. April 2018, [Cited
2018-04-04]. Available from: https://about.gitlab.com/2013/02/12/
gitlab-without-gitolite/

[35] GitLab Inc. Protected Branches | GitLab [online]. April 2018,
[Cited 2018-04-04]. Available from: https://docs.gitlab.com/ee/user/
project/protected_branches.html

[36] Gogs. Gogs [online]. April 2018, [Cited 2018-04-04]. Available from:
https://gogs.io/

[37] Gohr, A.; et al. Dokuwiki [online]. April 2018, [Cited 2018-04-17]. Avail-
able from: https://www.dokuwiki.org/dokuwiki

[38] Goodger, D. reStructuredText [online]. April 2018, [Cited 2018-04-17].
Available from: http://docutils.sourceforge.net/rst.html

[39] Google LLC. Google Docs [online]. April 2018, [Cited 2018-04-03]. Avail-
able from: https://docs.google.com/document/u/0/

[40] Gruber, J. Daring Fireball: Markdown [online]. January 2018, [Cited
2018-01-31]. Available from: https://daringfireball.net/projects/
markdown/

[41] Harband, J.; Richardson, L.; et al. Enzyme: JavaScript Testing utilities
for React [online]. May 2018, [Cited 2018-05-01]. Available from: https:
//github.com/airbnb/enzyme

[42] Haverbeke, M.; et al. CodeMirror: HTML mixed mode [online]. May
2018, [Cited 2018-05-01]. Available from: https://codemirror.net/3/
mode/htmlmixed/index.html

[43] Haverbeke, M.; et al. CodeMirror [online]. May 2018, [Cited 2018-05-01].
Available from: https://codemirror.net/

[44] Hess, J.; et al. Ikiwiki: branches [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/branches/

101

https://help.github.com/articles/about-github-wikis/
https://help.github.com/articles/about-github-wikis/
https://github.com/
https://about.gitlab.com/about/
https://docs.gitlab.com/ee/user/project/file_lock.html
https://docs.gitlab.com/ee/user/project/file_lock.html
https://github.com/gitlabhq/gitlabhq
https://about.gitlab.com/2013/02/12/gitlab-without-gitolite/
https://about.gitlab.com/2013/02/12/gitlab-without-gitolite/
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://gogs.io/
https://www.dokuwiki.org/dokuwiki
http://docutils.sourceforge.net/rst.html
https://docs.google.com/document/u/0/
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://github.com/airbnb/enzyme
https://github.com/airbnb/enzyme
https://codemirror.net/3/mode/htmlmixed/index.html
https://codemirror.net/3/mode/htmlmixed/index.html
https://codemirror.net/
https://ikiwiki.info/branches/

Bibliography

[45] Hess, J.; et al. Ikiwiki: features [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/features/

[46] Hess, J.; et al. Ikiwiki: Free Software [online]. April 2018, [Cited 2018-
04-17]. Available from: http://ikiwiki.info/freesoftware/

[47] Hess, J.; et al. Ikiwiki: git [online]. April 2018, [Cited 2018-04-17]. Avail-
able from: https://ikiwiki.info/git/

[48] Hess, J.; et al. Ikiwiki: gitbranch [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/templates/gitbranch/

[49] Hess, J.; et al. Ikiwiki: Hosting Ikiwiki with a master git repos-
itory on a remote machine [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/tips/Hosting_Ikiwiki_and_
master_git_repository_on_different_machines/

[50] Hess, J.; et al. Ikiwiki: httpauth [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/plugins/httpauth/

[51] Hess, J.; et al. Ikiwiki [online]. April 2018, [Cited 2018-04-17]. Available
from: http://ikiwiki.info/

[52] Hess, J.; et al. Ikiwiki: pagespec [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/ikiwiki/pagespec/

[53] Hess, J.; et al. Ikiwiki: separate authentication from authoriz-
ation [online]. April 2018, [Cited 2018-04-17]. Available from:
https://ikiwiki.info/todo/separate_authentication_from_
authorization/

[54] Hess, J.; et al. Ikiwiki: wikiwyg [online]. April 2018, [Cited 2018-04-17].
Available from: https://ikiwiki.info/todo/wikiwyg/

[55] Hurley, M.; Chambers, D. Ramda Documentation [online]. May 2018,
[Cited 2018-05-01]. Available from: http://ramdajs.com/

[56] Koppers, T.; Larkin, S.; Ewald, J.; et al. Webpack [online]. May 2018,
[Cited 2018-05-01]. Available from: https://webpack.js.org/

[57] Kovitz, B. Creole: Cheat Sheet [online]. April 2018, [Cited 2018-04-17].
Available from: http://www.wikicreole.org/wiki/CheatSheet

[58] Lacan, O. Keep a Changelog [online]. April 2018, [Cited 2018-04-30].
Available from: https://keepachangelog.com/en/1.0.0/

[59] Luer, J.; et al. Chai [online]. May 2018, [Cited 2018-05-01]. Available
from: http://www.chaijs.com/

[60] MacFarlane, J. Babelmark 2: Compare markdown implementations
[online]. April 2018, [Cited 2018-04-18]. Available from: http://
johnmacfarlane.net/babelmark2/

[61] MacFarlane, J. Pandoc – About pandoc [online]. April 2018, [Cited 2018-
04-17]. Available from: https://pandoc.org/

102

https://ikiwiki.info/features/
http://ikiwiki.info/freesoftware/
https://ikiwiki.info/git/
https://ikiwiki.info/templates/gitbranch/
https://ikiwiki.info/tips/Hosting_Ikiwiki_and_master_git_repository_on_different_machines/
https://ikiwiki.info/tips/Hosting_Ikiwiki_and_master_git_repository_on_different_machines/
https://ikiwiki.info/plugins/httpauth/
http://ikiwiki.info/
https://ikiwiki.info/ikiwiki/pagespec/
https://ikiwiki.info/todo/separate_authentication_from_authorization/
https://ikiwiki.info/todo/separate_authentication_from_authorization/
https://ikiwiki.info/todo/wikiwyg/
http://ramdajs.com/
https://webpack.js.org/
http://www.wikicreole.org/wiki/CheatSheet
https://keepachangelog.com/en/1.0.0/
http://www.chaijs.com/
http://johnmacfarlane.net/babelmark2/
http://johnmacfarlane.net/babelmark2/
https://pandoc.org/

Bibliography

[62] MacFarlane, J.; et al. Gitit: A wiki using HAppS, pandoc, and
git [online]. April 2018, [Cited 2018-04-17]. Available from: https:
//github.com/jgm/gitit

[63] Mackall, M. Mercurial SCM [online]. April 2018, [Cited 2018-04-17].
Available from: https://www.mercurial-scm.org/

[64] McKay, J. Are there any statistics that show the popular-
ity of Git versus SVN? – Software Engineering Stack Ex-
change [online]. April 2018, [Cited 2018-04-04]. Available from:
https://softwareengineering.stackexchange.com/questions/
136079/are-there-any-statistics-that-show-the-popularity-
of-git-versus-svn/150791#150791

[65] McKenzie, S.; et al. Babel: The compiler for writing next generation
JavaScript [online]. May 2018, [Cited 2018-05-01]. Available from: https:
//babeljs.io/

[66] Microsoft. Microsoft Word Online [online]. April 2018, [Cited 2018-04-03].
Available from: https://office.live.com/start/Word.aspx

[67] Munroe, R. xkcd: Git [online]. May 2018, [Cited 2018-05-01]. Available
from: https://xkcd.com/1597/

[68] Nielsen, J. 10 Heuristics for User Interface Design: Article by Jakob
Nielsen [online]. April 2018, [Cited 2018-04-27]. Available from: https:
//www.nngroup.com/articles/ten-usability-heuristics/

[69] Nieto, C. M.; Belfer, R.; Thomson, E.; et al. libgit2 [online]. April 2018,
[Cited 2018-04-25]. Available from: https://libgit2.github.com/

[70] OpenBSD. sshd(8) – OpenBSD manual pages [online]. April 2018,
[Cited 2018-04-04]. Available from: http://man.openbsd.org/
sshd.8#command=%22command%22

[71] OpenBSD. sshd(8) – OpenBSD manual pages [online]. April 2018, [Cited
2018-04-04]. Available from: http://man.openbsd.org/sshd.8

[72] OpenID. OpenID Connect [online]. May 2018, [Cited 2018-05-06]. Avail-
able from: http://openid.net/connect/

[73] Oxford University Press. Word definition: wiki (noun), Oxford Ad-
vanced Learner’s Dictionary [online]. April 2018, [Cited 2018-04-
03]. Available from: https://www.oxfordlearnersdictionaries.com/
definition/english/wiki?q=wiki

[74] Pornin, T. Is it possible to use a GPG or SSH key for web based
authentication in a secure fashion? [online]. April 2018, [Cited
2018-04-05]. Available from: https://security.stackexchange.com/
questions/44004/is-it-possible-to-use-a-gpg-or-ssh-key-for-
web-based-authentication-in-a-secure/44013#44013

[75] Preston-Werner, T. Semantic Versioning 2.0.0 | Semantic Versioning
[online]. April 2018, [Cited 2018-04-30]. Available from: https://
semver.org/spec/v2.0.0.html

103

https://github.com/jgm/gitit
https://github.com/jgm/gitit
https://www.mercurial-scm.org/
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn/150791#150791
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn/150791#150791
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn/150791#150791
https://babeljs.io/
https://babeljs.io/
https://office.live.com/start/Word.aspx
https://xkcd.com/1597/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://libgit2.github.com/
http://man.openbsd.org/sshd.8#command=%22command%22
http://man.openbsd.org/sshd.8#command=%22command%22
http://man.openbsd.org/sshd.8
http://openid.net/connect/
https://www.oxfordlearnersdictionaries.com/definition/english/wiki?q=wiki
https://www.oxfordlearnersdictionaries.com/definition/english/wiki?q=wiki
https://security.stackexchange.com/questions/44004/is-it-possible-to-use-a-gpg-or-ssh-key-for-web-based-authentication-in-a-secure/44013#44013
https://security.stackexchange.com/questions/44004/is-it-possible-to-use-a-gpg-or-ssh-key-for-web-based-authentication-in-a-secure/44013#44013
https://security.stackexchange.com/questions/44004/is-it-possible-to-use-a-gpg-or-ssh-key-for-web-based-authentication-in-a-secure/44013#44013
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Bibliography

[76] Roundy, D.; et al. Darcs – Ideas/Branches [online]. April 2018, [Cited
2018-04-17]. Available from: http://darcs.net/Ideas/Branches

[77] Roundy, D.; et al. Darcs: FrontPage [online]. April 2018, [Cited 2018-04-
17]. Available from: http://darcs.net

[78] Sherman, C. How to set default file permissions for all folder-
s/files in a directory? - Unix & Linux Stack Exchange [on-
line]. April 2018, [Cited 2018-04-29]. Available from: https:
//unix.stackexchange.com/questions/1314/how-to-set-default-
file-permissions-for-all-folders-files-in-a-directory

[79] Sijbrandij, S. GitLab acquires Gitorious to bolster its on premises code
collaboration platform | GitLab [online]. April 2018, [Cited 2018-04-
04]. Available from: https://about.gitlab.com/2015/03/03/gitlab-
acquires-gitorious/

[80] Software Freedom Conservancy. Git [online]. January 2018, [Cited 2018-
01-31]. Available from: https://git-scm.com/

[81] Sørensen, J.; et al. Gitorious web interface built with Ruby on Rails
[online]. April 2018, [Cited 2018-04-04]. Available from: https://
github.com/gitorious/mainline

[82] Takezoe, N.; et al. Gitbucket [online]. April 2018, [Cited 2018-04-04].
Available from: https://github.com/gitbucket/gitbucket

[83] Thomas, D. RDoc – Document Generator for Ruby Source [on-
line]. April 2018, [Cited 2018-04-17]. Available from: http://
rdoc.sourceforge.net/

[84] Tillman, B. SSH and home directory permissions – Unix & Linux
Stack Exchange [online]. April 2018, [Cited 2018-04-29]. Available
from: https://unix.stackexchange.com/questions/37164/ssh-and-
home-directory-permissions

[85] U.S. Department of Health & Human Services. Personas | Usabil-
ity.gov [online]. April 2018, [Cited 2018-04-04]. Available from: https:
//www.usability.gov/how-to-and-tools/methods/personas.html

[86] Wall, L.; Burke, S. M. Perlpod – perldoc.perl.org [online]. April
2018, [Cited 2018-04-17]. Available from: http://perldoc.perl.org/
perlpod.html

[87] Wikimedia Foundation. MediaWiki [online]. April 2018, [Cited 2018-04-
17]. Available from: https://www.mediawiki.org/wiki/MediaWiki

[88] Wikimedia Foundation. Wikipedia [online]. April 2018, [Cited 2018-04-
03]. Available from: https://www.wikipedia.org/

[89] Wikimedia Foundation. Wikitext – MediaWiki [online]. April 2018,
[Cited 2018-04-17]. Available from: https://www.mediawiki.org/wiki/
Wikitext

104

http://darcs.net/Ideas/Branches
http://darcs.net
https://unix.stackexchange.com/questions/1314/how-to-set-default-file-permissions-for-all-folders-files-in-a-directory
https://unix.stackexchange.com/questions/1314/how-to-set-default-file-permissions-for-all-folders-files-in-a-directory
https://unix.stackexchange.com/questions/1314/how-to-set-default-file-permissions-for-all-folders-files-in-a-directory
https://about.gitlab.com/2015/03/03/gitlab-acquires-gitorious/
https://about.gitlab.com/2015/03/03/gitlab-acquires-gitorious/
https://git-scm.com/
https://github.com/gitorious/mainline
https://github.com/gitorious/mainline
https://github.com/gitbucket/gitbucket
http://rdoc.sourceforge.net/
http://rdoc.sourceforge.net/
https://unix.stackexchange.com/questions/37164/ssh-and-home-directory-permissions
https://unix.stackexchange.com/questions/37164/ssh-and-home-directory-permissions
https://www.usability.gov/how-to-and-tools/methods/personas.html
https://www.usability.gov/how-to-and-tools/methods/personas.html
http://perldoc.perl.org/perlpod.html
http://perldoc.perl.org/perlpod.html
https://www.mediawiki.org/wiki/MediaWiki
https://www.wikipedia.org/
https://www.mediawiki.org/wiki/Wikitext
https://www.mediawiki.org/wiki/Wikitext

Bibliography

[90] Wikimedia Foundation. Wiktionary [online]. April 2018, [Cited 2018-04-
03]. Available from: https://www.wiktionary.org/

[91] WikiWikiWeb. Gollum Wiki [online]. April 2018, [Cited 2018-04-17].
Available from: http://wiki.c2.com/?GollumWiki

[92] WikiWikiWeb. WikiWikiWeb: Front Page [online]. April 2018, [Cited
2018-04-03]. Available from: http://wiki.c2.com/?FrontPage

[93] WikiWikiWeb. WikiWikiWeb: Welcome Visitors [online]. April 2018,
[Cited 2018-04-03]. Available from: http://wiki.c2.com/

[94] WikiWikiWeb. WikiWikiWeb: Wiki History [online]. April 2018, [Cited
2018-04-14]. Available from: http://wiki.c2.com/?WikiHistory

[95] ZEIT, Inc. Next.js: Framework for server-rendered or statically-exported
React apps [online]. April 2018, [Cited 2018-04-25]. Available from:
https://github.com/zeit/next.js/

[96] Šmolík, J. Emily editor: license [online]. May 2018, [Cited 2018-05-9].
Available from: https://github.com/grissius/emily-editor/blob/
master/LICENSE

[97] Šmolík, J. Emily editor: React editor component for LMLs [online].
April 2018, [Cited 2018-04-30]. Available from: https://github.com/
grissius/emily-editor

[98] Šmolík, J. Gitwiki license [online]. May 2018, [Cited 2018-05-9]. Available
from: https://github.com/grissius/gitwiki/blob/master/LICENSE

[99] Šmolík, J. Gitwiki [online]. April 2018, [Cited 2018-04-30]. Available from:
https://github.com/grissius/gitwiki

[100] Šmolík, J. npm: emily-editor [online]. April 2018, [Cited 2018-04-30].
Available from: https://www.npmjs.com/package/emily-editor

[101] Šmolík, J.; Uhnák, P.; Špak, M.; et al. Markup editor: Lo-fi prototype,
Hi-fi prototype and Testing. 2018, semestral project MI-TUR. Available
from: https://github.com/grissius/markup-editor-ui

105

https://www.wiktionary.org/
http://wiki.c2.com/?GollumWiki
http://wiki.c2.com/?FrontPage
http://wiki.c2.com/
http://wiki.c2.com/?WikiHistory
https://github.com/zeit/next.js/
https://github.com/grissius/emily-editor/blob/master/LICENSE
https://github.com/grissius/emily-editor/blob/master/LICENSE
https://github.com/grissius/emily-editor
https://github.com/grissius/emily-editor
https://github.com/grissius/gitwiki/blob/master/LICENSE
https://github.com/grissius/gitwiki
https://www.npmjs.com/package/emily-editor
https://github.com/grissius/markup-editor-ui

Appendix A
Glossary

404 HTTP Not Found.

Angular 2 TypeScript-based open-source front-end web application platform.

Ember Open-source JavaScript web framework, based on the Model–view–
viewmodel (MVVM) pattern.

ESLint Pluggable and configurable linter tool for identifying and reporting on
patterns in JavaScript.

Express.js Fast, unopinionated, minimalist web framework for Node.js.

Flow Static Type Checker for JavaScript.

Flux Application architecture for building user interfaces.

Git Popular distributed VCS for non-linear workflow.

GitHub Web-based hosting service for version control using git.

local storage Window property which allows to save key/value pairs in a web
browser.

Next.js Framework for server-rendered or statically-exported React applica-
tions.

NodeGit Asynchronous native Node bindings to libgit2.

NUR Návrh uživatelského rozhraní (Design of User Interface).

Pandoc Universal document converter tool.

Promise Object representing the eventual completion (or failure) of an asyn-
chronous operation, and its resulting value.

PropTypes Type-checking definitions for React components.

107

Glossary

React JavaScript library for building user interfaces.

Redux Open-source JavaScript library for managing application state.

textarea HTML element for multi-line input.

toolbar Row of symbols (icons) on a screen that show the different things that
you can do with a particular program.

Vue Open-source JavaScript framework for building user interfaces.

wireframe Low-fidelity, simplified outline of the product’s UI.

108

Appendix B
Acronyms

ACL Access control list.

API Application programming interface.

BE Back-end.

CGI Common Gateway Interface.

CI Continuous Integration.

CLI Command Line Interface.

CRUD Create Read Update Delete.

CSS Cascading Style Sheets.

DOM Document Object Model.

DTP Desktop publishing.

FE Front-end.

FS File system.

GID Group Identifier.

GNU GNU’s Not Unix!.

GPL General Public License.

HOC Higher-Order Component.

HTML Hypertext Markup Language.

HTTP Hyper Text Transfer Protocol.

HTTPS Secure Hyper Text Transfer Protocol.

109

Acronyms

IDE Integrated Development Environment.

JS JavaScript.

JSON JavaScript Object Notation.

JSX JavaScript XML.

LML Lightweight markup language.

LOC Lines of code.

MVC Model-View-Controller.

OID Object Identifier.

OSS Open source software.

PR Pull Request.

REST Representational State Transfer.

RTE Rich text editor.

SCM Source Code Management.

SHA Secure Hash Algorithm.

SSH Secure shell.

SSHD SSH daemon.

SSR Server-Side rendering.

TOC Table of contents.

UC Use case.

UI User interface.

UID User Identifier.

UNIX Uniplexed Information Computing System.

URL Uniform Resource Locator.

UX User Experience.

VCS Version control system.

WUI Web user interface.

YFM Yaml front matter.

110

Appendix C
MI-NUR project highlights

In this chapter I shall showcase the lo-fi prototype design of the Emily editor
from the MI-NUR project [101].

C.1 Acknowledgement

Contents of this section are separated from the main content, since all figures
(diagram and wireframes) in this chapter are taken from the mentioned [101],
which is a result of a teamwork.

The diagram and wireframes have been translated to English by myself for
the purpose of the thesis.

I am the author of all texts in this chapter, which only briefly summarize or
comment on the figures. If the reader is keen for more background information
and development of the UI, they may read [101].

C.2 Task graph

The diagram C.1 displays transition of the editor states through relations
between the UI screens.

C.3 Wireframes

C.3.1 The main view modes
The editor, as apparent from the diagram C.1, offers three display modes:

• Two column preview for common usage, wireframe C.2
• Source code for focusing on the content, wireframe C.3
• Preview for document revisions, wireframe C.4

C.3.2 Editor interactions
There are two wireframes showcasing the interactions with the editor. The
first one, seen in figure C.5, demonstrates the main interface of the editor, the
command palette, while the other shows all available navigational elements as
seen in figure C.6

111

C. MI-NUR project highlights

Display help

Modální okno

Main display modes

Source code

Document preview

Two column: Source and preview

Appearance in browser

Embedded

Fullscreen

Other display options

Distraction free

Přepne hlavní zobrazovací
mód na Zdrojový kód

Line numbers Text wrapping Outline Spellcheck

Navigation

Line selection Search

Figure C.1: Emily UI: Task graph

112

C.3. Wireframes

Figure C.2: Emily UI: Wireframe: Two column preview

Figure C.3: Emily UI: Wireframe: Source code

113

C. MI-NUR project highlights

Figure C.4: Emily UI: Wireframe: Preview

Figure C.5: Emily UI: Wireframe: Command palette

114

C.3. Wireframes

Figure C.6: Emily UI: Wireframe: Navigation

C.3.3 Display in browser
The editor is assumed to be by default an embedded editor component, seen
on the figure C.7 and C.8.

115

C. MI-NUR project highlights

Figure C.7: Emily UI: Wireframe: Embedded

116

C.3. Wireframes

Figure C.8: Emily UI: Wireframe: Fullscreen

117

Appendix D
Gitwiki user manual

D.1 Gitwiki

Gitwiki is a git based wiki system with in-repository permission control, web
user interface and Git CLI over SSH access.

D.2 About

It uses Gitolite authorization layer allowing complex, in-repository access con-
trol.

Gitwiki is part of an implementation for the Git-based Wiki System.
It uses Emily editor for document editing.

D.3 Install

The installation process is complicated, because repository hosting service over
SSHd must be established.

D.3.1 Gitolite
D.3.1.1 Gitolite installation

This installation process is thoroughly explained here. Here is a step-by-step
solution for Debian-based distributions.

Generate SSH keys:

1 # install git, sshd
2 sudo apt-get install openssh-server git
3 # generate a keypair for administration
4 ssh-keygen -t rsa -b 4096 -C "gitolite-admin" -f

"$HOME/.ssh/gitolite-admin"↪→

5 # copy the "~/.ssh/gitolite-admin.pub" for gitolite setup
6 cp ~/.ssh/gitolite-admin.pub /tmp

Install Gitolite:

119

http://gitolite.com/gitolite/index.html
https://github.com/grissius/gitwiki-thesis
https://github.com/grissius/emily-editor
http://gitolite.com/gitolite/fool_proof_setup/

D. Gitwiki user manual

1 # create new `git` user with home directory and set password
2 sudo useradd -m git
3 sudo passwd git
4

5 # switch to git user
6 su - git
7

8 # download and install gitolite
9 cd $HOME

10 git clone https://github.com/sitaramc/gitolite
11 mkdir -p bin
12 gitolite/install -to $HOME/bin # use abs path in argument
13

14 # setup gitolite with copied admin key from workstation
15 $HOME/bin/gitolite setup -pk /tmp/gitolite-admin.pub

D.3.1.2 Additional Gitolite setup

Wee need gitwiki to be able to access Gitolite. If you will be running gitwiki
from a different user (assume username jack), you must perform additional
setup.

Create group, add users git, jack, allow to write in /home/git/.gitolite

1 sudo groupadd gitolite
2 sudo usermod -a -G gitolite jack
3 sudo usermod -a -G gitolite git
4 sudo chgrp -R gitolite /home/git/
5 sudo chmod -R 2775 /home/git/.gitolite

Set setgid bit

1 chmod g+s /home/git/

Set default permissions for new log files

1 sudo setfacl -d -m g::rwx /home/git/.gitolite/logs/

D.3.2 Gitwiki
D.3.2.1 Install

D.3.2.2 Setup

D.3.2.2.1 Authentication

1. Register a new OAuth application
• Set callback to <host>/api/v1/auth/github/cb

2. Remember client_id and client_secret

120

https://github.com/settings/applications/new

D.4. Running

1 npm install

D.3.2.2.2 Configuration Create a .gitwiki.config.js and fill the data as
in .gitwiki.config.example.js.

1 module.exports = {
2 auth: {
3 oauth2: {
4 github: {
5 // Information from the newly registered app
6 client_id: '...',
7 client_secret: '...',
8 }
9 }

10 },
11 gitolite: {
12 // Path to gitolite bin
13 bin: '/home/git/bin/gitolite',
14 // Home directory of the gitolite's user
15 home: '/home/git',
16 },
17 // Valid storage path for keyv(https://github.com/lukechilds/keyv)
18 storage: 'sqlite:///home/git/database.sqlite',
19 };

D.4 Running

1. Add ssh key identity ssh-add ~/.ssh/gitolite-admin (path to private key
you configured gitolite with)

2. npm run start

D.5 Usage

D.5.1 Repository providers
• Gitolite
• GitHub

To access GitHub repositories, you will be prompted to enter your personal
access token in repository index. When provided, you can access your GitHub
repositories apart from the default local (gitolite) repositories.

D.5.2 Adding SSH keys
The SSH keys are downloaded from GitHub on the first login and added to the
Gitolite configuration. Apart from that, they can be added using Gitolite.

121

D. Gitwiki user manual

D.5.3 Permission control
This option is only available for Gitolite provider, for self-hosted repos. After
a successful Gitolite setup, there is a repository gitolite-admin, where you can
add users and chagne their permissions. If you are new to Gitolite, see Basic
administration manual.

D.6 License

This project is licensed under the MIT license.

122

http://gitolite.com/gitolite/basic-admin/
http://gitolite.com/gitolite/basic-admin/

Appendix E
Emily editor user manual

Emily is a React editor component for LMLs, like Markdown or Asciidoc. The
focus of the project is to provide fluent efficient interface for advanced users,
who are familliar with using IDE or coding text editors.

E.1 About Emily

Emily is an editor for LML document formats, currently supporting few lan-
guages. Editor works with a document-format abstraction and new modules
can be added to make use of existing features:

• Syntax highlight

– Emily uses Ace editor under the hood, see supported languages

• Live document preview

– Review the result as you type in split screen view or just browse the
preview

• Outline preview

– Section lookup in source code
– Section reordering – drag & drop whole sections

• Command palette

– Make use of a command palette you know from coding editors

• Autosave

– Session is stored in localStorage, retrieved when lost.

Emily editor is part of an implementation for the Git-based Wiki System
and its UI for the prototype has been developed in cource UI Design on the
faculty.

E.2 Install

123

https://en.wikipedia.org/wiki/Lightweight_markup_language
https://ace.c9.io/
https://docs.c9.io/docs/supported-languages
https://github.com/grissius/gitwiki-thesis
https://github.com/grissius/markup-editor-ui

E. Emily editor user manual

1 npm install --save emily-editor

E.3 Usage

1. Include node_modules/emily-editor/dist/style.css
2. Include node_modules/emily-editor/dist/script.js
3. Use component:

1 import Emily from 'emily-editor'
2 // ...
3

4 ReactDOM.render(
5 <Emily />,
6 document.getElementById('container')
7);

For examples, see pages.

E.3.1 Props
E.3.1.1 content

Initial content of the editor

E.3.1.2 language

Language mode object. You can use generateMode to create a mode from
existing modules.

1 import Emily, { generateMode } from 'emily-editor'
2 // ...
3

4 ReactDOM.render(
5 <Emily language={generateMode(/*...*/)} />,
6 document.getElementById('container')
7);

E.3.1.3 listFiles(pfx)

List available relative files with path prefix pfx. Returns a Array<String> in a
Promise.

This can be used for autosuggestions by a mode.

E.3.1.4 width

Lock editor’s width and vorbid it to fill the container.

124

E.3. Usage

E.3.1.5 height

Lock editor’s height and vorbid it to fill the container.

E.3.2 Methods
E.3.2.1 getValue

Return current value of the editor.

E.3.3 generateMode(input)

Input can be either:

• name of the mode, e.g. asciidoc
• any file path, e.g. foo/bar/baz.adoc

As a result a language mode is generated.

1. If the name or the extension matches an existing LML mode, a proper
full-featured mode is generated.

2. If the name or the extension matches a mode supported by Ace editor, no
special features for LML are provided, but editor features syntax high-
light.

3. Otherwise a plaintext editor is delivered. No syntax highlight.

E.3.3.1 Examples

Here are some examples of using the editor with generateMode function.

1 // asciidoc mode
2 <Emily language={generateMode('x.adoc')}>
3 <Emily language={generateMode('asciidoc')}>
4 <Emily language={generateMode('/xxx/weee.adoc')}>
5

6 // markdown mode
7 <Emily language={generateMode('markdown')}>
8 <Emily language={generateMode('a/b/c/d/foo.md')}>
9

10 // (unsupported) js mode
11 // only syntax highlight, missing features
12 <Emily language={generateMode('javascript')}>
13 <Emily language={generateMode('test.js')}>
14

15 // unrecognized mode
16 // working in plaintext mode
17 <Emily language={generateMode('foo/bar/baz')}>
18 <Emily language={generateMode('thisisnotanameofanymode')}>

125

E. Emily editor user manual

E.3.4 Language modes
Take a look at asciidoc mode example.

name (string) - name of the mode
convert (func) - converting function to html from the raw markup
lineSafeInsert (func) - insert content in the line of markup without dis-

torting the markup - the more lines you can cover the better - it is necessary
to cover heading lines

postProcess (func) - modify preview DOM before render
renderJsxStyle (func) - add styles for preview
excludeOutlineItem (func) - exclude DOM Element from the outline
previewClassName (string) - set the CSS classname for the prevew container

E.4 Online demo

https://emily-editor.herokuapp.com/

E.5 License

Emily editor is licenced under the BSD License.

126

./src/modes/asciidoc.js

Appendix F
Emily editor logo

Figure F.1: Emily editor logotype

127

Appendix G
Gitwiki logo

Figure G.1: Gitwiki logotype

129

Appendix H
Contents of enclosed CD

emily-editor.........................the source codes of the LML editor
README.md...the readme file
CHANGELOG.md.......................................the changelog file
VERSION..the version file

gitwiki............................the source codes of the gitwiki system
README.md...the readme file
CHANGELOG.md.......................................the changelog file
VERSION..the version file

gitwiki-thesis...the thesis text
bin................................various scripts for thesis generation
src.................................the thesis Markdown source codes

listing..............................the listings used in the thesis
assets....................................static assets of the thesis

diagram plantuml source codes of used diagrams
images...bitmap images

Makefile..............make scripts for diagrams, pandoc, xelatex etc.
bibliography.bib................................the bibliography file
README.md...the readme file
CHANGELOG.md.......................................the changelog file
VERSION..the version file
DP_Smolik_Jaroslav_2018.tex..............the thesis root LATEX file
DP_Smolik_Jaroslav_2018.pdf.....the thesis text in the PDF format

131

	Introduction
	Thesis' goal
	What is a wiki?
	Real world usage of the system
	Distinctive features

	Analysis
	Business process model
	User analysis
	User access
	Requirements model
	Use case model
	Use case - functional requirements coverage

	State-of-the-art
	Ikiwiki
	Gitit
	Gollum
	Wiki.js
	Summary

	Design
	Design foundations
	Repository providers
	Authentication
	Technologies and tools
	Architecture
	RESTful API
	UI
	Front-End
	Emily editor
	Summary

	UI testing
	Analysis
	Patching the wireframes

	Implementation
	Used libraries
	UNIX permissions with Gitolite
	Routes
	NodeGit
	Emily

	Testing
	Automatic testing
	Usability testing

	Conclusion
	Bibliography
	Glossary
	Acronyms
	MI-NUR project highlights
	Acknowledgement
	Task graph
	Wireframes

	Gitwiki user manual
	Gitwiki
	About
	Install
	Running
	Usage
	License

	Emily editor user manual
	About Emily
	Install
	Usage
	Online demo
	License

	Emily editor logo
	Gitwiki logo
	Contents of enclosed CD

