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April 15, 2018





Acknowledgements

I would like to thank my supervisor Ing. Petr Máj for all the help given
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Abstract

Non-determinism in programs often causes unwanted behaviour to appear
and disappear seemingly randomly. Record and Replay debugger is a tool
which helps programmers to isolate such behaviour by recording a program’s
execution once when the bug appears and then replaying it later multiple times
in the exact same way with the bug present while providing classic debugging
facilities. This thesis focuses on implementation and integration of such tool
into R programming language which is commonly used in mathematics, mainly
in statistics.

Keywords Record and Replay debugging, deterministic debugging, tracing,
R language
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Abstrakt

Nedeterminismus v programech často zp̊usobuje, že se v nich nežádoućı
chováńı vyskytuje zdánlivě náhodně. Record and Replay debugger je nástroj,
který umožňuje programátor̊um izolovat takové chováńı t́ım, že se běh pro-
gramu nahraje jednou ve chv́ıli, kdy k výskytu bugu dojde, a následně se
v́ıcekrát naprosto stejným zp̊usobem přehraje za neustálé př́ıtomnosti tohoto
bugu včetně možnosti použit́ı klasických debuggovaćıch nástroj̊u. Tato práce
se zaměřuje na implementaci a integraci takového nástoje do programovaćıho
jazyka R, který se běžně použ́ıvá v matematice, zejména ve statistice.

Kĺıčová slova Record and Replay debuggováńı, deterministické debuggováńı,
tracing, programovaćı jazyk R

viii



Contents

Introduction 1

1 Record and Replay debugging 3
1.1 Mozilla rr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 QIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 R programming language 7
2.1 Objects and variables . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Object oriented programming . . . . . . . . . . . . . . . . . . . 10
2.5 Metaprogramming . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Bytecode compiler . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.10 Garbage collector . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Implementation of RRnR 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Incorporation into R . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Capturing non-determinism . . . . . . . . . . . . . . . . 15
3.1.3 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.4 User interface . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 RRnR core functionality . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Core R modifications . . . . . . . . . . . . . . . . . . . . 17
3.2.2 RRnR package . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Dealing with corner cases . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Environment cloning . . . . . . . . . . . . . . . . . . . . 29

ix



3.3.3 Environment in-trace replacement . . . . . . . . . . . . 33
3.3.4 Prints and connections . . . . . . . . . . . . . . . . . . . 36
3.3.5 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.6 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.7 JIT compilation . . . . . . . . . . . . . . . . . . . . . . 45
3.3.8 Lazy loading . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.9 Error handling . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.10 Replaying C errors . . . . . . . . . . . . . . . . . . . . . 48
3.3.11 Invisible returns . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Source code of the implementation . . . . . . . . . . . . . . . . 50

4 Evaluation 51
4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Vignette testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Example usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Conclusion 65
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 67

A Implementation overview 69

B Contents of enclosed DVD 71

x



List of Figures

3.1 Overview of the project architecture . . . . . . . . . . . . . . . . . 14
3.2 Recording an external C function call . . . . . . . . . . . . . . . . 16
3.3 Replaying an external C function call . . . . . . . . . . . . . . . . 16
3.4 Overview of handler registration and invocation process . . . . . . 18
3.5 Recording the example callback . . . . . . . . . . . . . . . . . . . . 25
3.6 Replaying the example callback . . . . . . . . . . . . . . . . . . . . 25
3.7 Overview of the callback detection process . . . . . . . . . . . . . . 27
3.8 Arrangement of environments, taken from [1] . . . . . . . . . . . . 31
3.9 Overview of the situation without environment replacement . . . . 34
3.10 Overview of the situation with environment replacement . . . . . . 34

4.1 Speedup vs. plain mode in the R benchmark . . . . . . . . . . . . 54
4.2 Original results without “early-out” for primitives . . . . . . . . . . 55
4.3 Speedup vs. plain mode in the shootout benchmark . . . . . . . . 57
4.4 Running time of the tests of the shootout benchmark . . . . . . . . 58
4.5 Running time of the tests of the custom micro benchmarks suite . 60
4.6 Final results of vignette testing . . . . . . . . . . . . . . . . . . . . 61

A.1 Overview of additions and modifications made during implemen-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi





List of Tables

4.1 Overview of R-benchmark tests . . . . . . . . . . . . . . . . . . . . 53
4.2 Numbers of intercepted and recorded calls by RRnR . . . . . . . . 55
4.3 Overview of shootout benchmark tests . . . . . . . . . . . . . . . . 57
4.4 Numbers of intercepted and recorded calls by RRnR . . . . . . . . 59
4.5 Detailed results of vignette testing . . . . . . . . . . . . . . . . . . 61

xiii





Introduction

A non-deterministic bug in software is an unwanted behaviour which happens
with a low probability. Such bugs are not easily observable and thus are very
hard to fix. Usually the program works flawlessly and is seemingly perfect un-
til an error occurs under a certain set of conditions. This most likely happens
during normal usage and it is witnessed by a common user, not a developer.
It is practically impossible for the developers to find the bug with the basic
information provided by the user so the only viable option is to try to repro-
duce the problem. This might take a lot of time depending on the probability
of the bug’s occurrence.

Usually a bug can be detected by its symptoms but that is not enough to
find its origin. Developers need a way to reproduce it many times in order to
understand it properly. During normal debugging session the main symptom
and its direct cause are found first. In the second run a cause of the cause
is revealed and so on until the real source of the problem is discovered. In
each run it is possible to trace the chain of symptoms only a few steps back
because the program cannot be run backwards. This approach is tedious but
it provides the result eventually.

However, finding non-deterministic bugs this way is even more tedious and
therefore much harder. As the bug appears only with a certain probability it
is necessary to run the program n times in order to trigger it and this process
must be repeated for each of the m steps needed to get from the final symptom
to the root cause which brings the total number of runs necessary from m to
n ∗m [2].

The discovery of non-deterministic bugs may be improved if they could
be reliably reproduced. Doing so effectively transforms them into determin-
istic bugs and the standard approach may be used. This can be achieved by
recording all the varying information contained in the program which causes
the bug to appear. Typically this might be user input, network packets, filesys-
tem contents but also the state of a random number generator, etc. With this
information it is theoretically possible to re-run the program in the exact same
way every time.
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Introduction

The problem is illustrated by the following example program which calcu-
lates an average tangent value of a set of angles. Built-in tan() function in R
only works with radians so there are three helper functions implemented which
calculate the tangent manually from degrees. The input angles are generated
randomly in the range from 0 to 180 degrees but in reality they might be read
from a user input or another non-deterministic source as well, the point is
that they are different in each run.
tangent <− f unc t i on (y , x ) y/x
adjacent <− f unc t i on ( a , c ) co sp i ( a / 180 . 0 ) ∗c
oppos i t e <− f unc t i on ( a , c ) s i n p i ( a / 180 . 0 ) ∗c

s c a l e <− 100
ang l e s <− f l o o r ( r u n i f (100 , min=0, max=180∗ s c a l e ) ) / s c a l e

tangents <− c ( )
f o r ( i in 1 : l ength ( ang l e s ) ) {

adj <− adjacent ( ang l e s [ i ] , 1)
opp <− oppos i t e ( ang l e s [ i ] , 1)
tan <− tangent ( opp , adj )
tangents [ i ] <− tan

}

re turn (mean( tangents ) )

Listing 1: The program containing a non-deterministic bug

The program contains a non-deterministic bug – in rare occasions it out-
puts Inf (which stands for infinity) instead of a real number. By conventional
means it is hard to find the bug in this simple example and it is even harder
to do so in a large real-world program. This thesis presents a tool called
RRnR which allows for easier debugging of such programs and the results of
debugging this program with RRnR are shown in the last chapter.

RRnR records an execution of a program written in R and then allows the
user to replay the execution many times in the exact same way. Furthermore it
allows standard debugging tools to be used during the replaying and it provides
functions which make it more easy to detect the bug for the first time. The R
programming language is commonly used in mathematics, mainly in statistics,
and therefore the tool has a large number of potential users who might benefit
from it.

The first chapter of this thesis describes the record and replay debug-
ging in more depth and presents its existing implementations. In the second
chapter the R programming language is introduced and its main function-
ality is presented along with important details of its implementation. The
implementation details of RRnR are written in the third chapter. Also the
entire functionality of the tool is described there. In the final chapter the
functionality of the tool is evaluated in a series of benchmarks and real-world
tests.
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Chapter 1
Record and Replay debugging

Record and Replay debugging (RR) is a solution for making debugging of non-
deterministic bugs simpler. RR extends classic program debugging tools like
GDB1 by “recording the non-deterministic events of a program’s execution in a
log, and later using the log to replay the program deterministically. The typical
non-deterministic events that are logged are the inputs to the program (such as
system call return values and side effects, and signals) and the memory access
interleavings of the threads.” [3]

With RR it is possible to record the program execution once and then
replay the recorded program over and over in the exact same way while using
standard debugging tools for inspecting the code and memory. This feature
alone speeds up the debugging process significantly depending on how often
would the bug appear in a normal debugger.

Some of the RR debuggers also have the ability to reverse execute the
program which means that it is not only possible to step through the program
forwards but also a step back can be made. The reverse execution may speed
up the debugging process even more and it may also be useful for debugging
deterministic bugs as well.

There have been several implementations of RR, many of them based on
running a whole operating system inside a virtual machine (VM). Besides
QIRA [4] which uses an opensource computer emulator QEMU2, the most
notable is RR implementation in VMware Workstation3 which in combination
with Visual Studio4 allowed to run RR debugging [5].

Using virtualization in the context of RR has many advantages. In order
for the RR to work it is necessary to create a barrier between deterministic
code execution and non-deterministic outside influence. The virtual machines

1GDB – GNU Debugger, https://www.gnu.org/software/gdb/
2QEMU – Quick EMUlator, https://www.qemu.org/
3VMware Workstation – virtualization software,

https://www.vmware.com/products/workstation-pro.html
4Visual Studio – programming IDE, https://www.visualstudio.com/
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1. Record and Replay debugging

are already doing that as they are themselves completely deterministic and
all the non-determinism which comes from I/O communication is separated
by the virtualization interface. This means that when a copy of the machine’s
inner state is made and then used later the behaviour of the machine will be
exactly the same with the exception of the I/O communication which can be
relatively easily recorded as well.

However, the biggest disadvantage of such approach lies in the large run-
time overhead caused by virtualization of the entire machine. VMs are also
extremely complex and adding even more complexity in form of the RR imple-
mentation is very difficult. Mainly because of the complexity reasons VMware
decided to discontinue development of their RR [6].

There is also another approach. Mozilla developed their easy-to-use low-
overhead RR debugger which does not need to virtualize the whole OS and
is built on top of a well known debugger GDB [7]. Not using a virtualization
software is clearly an advantage, mainly because of the performance benefits.
On the other hand all the features that are recorded and replayed in the
VMs easily, like thread synchronization, OS event timing, process interaction,
etc., have to be controlled explicitly or are even impossible to control in this
method.

1.1 Mozilla rr

Developers at Mozilla were facing some difficulties with bugs appearing only
in certain situations which made them difficult to debug using standard de-
buggers [8]. They realized that they could use some form of RR debugging,
however none of the existing tools were sufficient because of their complexity
and poor performance. Finally they decided to create their own tool with a
few simple (but nontrivial) goals in mind [7]:

• Easy to deploy
It should run directly on the user’s OS and hardware. No need to change
system configuration.

• Low run-time overhead
Slowdown caused by the debugger should be as low as possible.

• Simple
Mozilla had very limited resources so they avoided building complex
solutions.

• Compatible with Firefox
The primary goal was to debug Firefox, however rr works with other
applications too.

4



1.1. Mozilla rr

All of the goals were met and especially the simplicity of use and very
low overhead puts Mozilla rr ahead of any other RR solution. Depending on
workload rr can achieve slowdown of as low as 20% and in most cases it is
much faster than any other competing technology [7].

The actual performance degradation depends mainly on the number of
system calls that the recorded application makes. More syscalls usually mean
slower recording but on the other hand the more calls are recorded the less is
left to actually execute in the replay phase. If, for instance, the application
downloads a big file from the Internet then the replay phase is much faster as
the file is not being downloaded at all.

There are naturally some limitations to the rr as well. It emulates a
single-core machine which significantly reduces performance of multithreaded
applications. It cannot record processes which share memory with other non-
recorded processes. And finally it heavily depends on features in Linux kernel
and Intel CPUs and therefore it cannot be used on other platforms.

1.1.1 Internals of Mozilla rr

This is a quick overview of how the most important parts of rr work based
on Robert O’Callahan’s talk at Linux.conf.au 2016 [8] and slides at rr’s web
page [9].

Mozilla rr records non-deterministic events during program’s execution
which are system call (syscall) results and signals. To achieve this it uses
the ptrace system call in Linux which allows inspecting child processes. With
ptrace rr is notified before and after every syscall made by the monitored
program. Using ptrace, however, causes some slowdown as it introduces several
context switches for each syscall. To avoid this unnecessary overhead the
most common syscalls are instead wrapped with a code, which performs the
recording, injected directly into the monitored program.

Multithreaded programs are run only in one thread in order to avoid tem-
poral non-determinism which cannot be properly recorded.

A normal program execution is sometimes interrupted by various signals
like SIGALARM. Source of the signals is considered to be non-deterministic as
they are generated by the OS. Therefore they must be recorded and replayed
which can be done relatively easily, but the main problem is replaying them
at the right time. For this rr uses retired conditional branches counter (where
retired basically means executed) which is one of hardware performance event
counters (HPCs).

HPCs are parts of the CPU which can count executed instructions, branches,
etc. and can be programmed to stop the execution after a certain value is
reached. When recording, the counters are programmed to stop after every k
steps. If during the elapsed time a signal has been received then it is recorded
along with the current value of the counter. Finally during replay the counter
is programmed to trigger the recorded signals after the recorded number of

5



1. Record and Replay debugging

events which replays them roughly at the right time. However, different CPUs
have different HPCs and HPCs used by the rr are only present on newer (at
least Nehalem architecture) Intel CPUs.

Another problem occurs when there is a blocking syscall waiting for an-
other thread. As rr runs only one thread at a time it needs to detect this
situation in order to avoid deadlock and switch to the other thread. The
problem is that once the blocking syscall is made the control is never returned
to rr by default. This can be solved by using DESCHED performance event
which generates a SIGSYS signal every time the OS does a context switch.
Receiving the SIGSYS signal causes an interrupt and an execution of a han-
dler which is registered by rr. Which means that rr gets the control and can
act accordingly. The DESCHED event is registered right before a blocking
syscall is made and it is unregistered right after the syscall is done so that it
does not cause any “false alarms”.

To be able to actually debug the program rr uses GDB. All features of
GDB are supported including running an arbitrary function in the program
being debugged. However, running this function was not part of the recorded
run, therefore it cannot be replayed. Because of that rr forks the process,
then runs the function, collects the output, terminates the forked process and
resumes the original process.

Another feature is the ability to reverse-execute. During forward execution
the debugger saves checkpoints. Then during backward execution the debug-
ger jumps back to the nearest checkpoint and from there continues forward
until it reaches the target place.

1.2 QIRA

As stated above, Mozilla rr is not the only RR solution. There are (or have
been) other RR debuggers, mostly based on some kind of virtualization. One
of such RR debuggers is QIRA [4] (QEMU Interactive Runtime Analyser).
This debugger is created in Python5 and works on top of QEMU virtualization
software which emulates a whole CPU architecture.

When started it first runs the program and records all instructions, regis-
ters and memory changes. Then it starts up a web server to which a user can
connect via a standard web browser. User is then served all the recorded data
– mainly assembly code of the program, contents of registers and complete
memory map.

As of now QIRA is not widely used, therefore the information sources are
quite limited. From what is available it seems that QIRA is not able to replay
the recorded run, it is only able to browse every single step of the program.

5Python – interpreted programming language, https://www.python.org/

6
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Chapter 2
R programming language

“R is a language and environment for statistical computing and graphics. It is
a GNU project which is similar to the S language and environment which was
developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by
John Chambers and colleagues.” [10] Its syntax is a little bit similar to C but
semantics are heavily influenced by functional languages like Lisp. However,
R cannot be marked as a pure functional language as it also supports proce-
dural and object-oriented paradigms. It is a dynamically typed interpreted
language.

The primary focus of R is effective data handling and storage, calculation
on arrays, data analysis and graphical display [11]. At the core there is a
real Turing complete programming language which can be used for any (even
non-statistics related) task. Programmers can use arbitrary libraries just by
linking them during runtime. These libraries can be written in any compiled
language using C or Fortran interface. Besides that R can be easily extended
with packages, many of them are available through CRAN6.

This chapter describes the most important aspects of R and some of their
implementation details used in the development of RRnR. Some of the features
are described in more detail in the next chapter but it is advised for the reader
to understand the concepts mentioned here first as their knowledge is assumed
in the rest of the thesis. The chapter was written while consulting [11], [12],
[13], [14] and [15].

2.1 Objects and variables

All data in R are stored in data structures. Instance of a data structure is
called an object. Objects are stored in variables along with the name of the
variable which is kept in a form of a symbol object. Each object is represented
in memory by a SEXPREC data structure which is not directly accessible from
6CRAN – Comprehensive R Archive Network, https://cran.r-project.org

7
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2. R programming language

user code, not even from C level user code, because the structure declaration
is in internal header files only. Instead, R provides a pointer to the SEXPREC
called SEXP and a set of functions and macros for operating on the object
through the pointer. This technique is called Opaque pointer or PIMPL7.

There are different types of objects (in R called modes or SEXPTYPEs in-
ternally) and some of them can be casted (in R coerced) to other types.

Objects have attributes which can be read (y <- attr(x, "attr"), or
getAttrib() in C) and written into (attr(x, "attr")<- 5, or setAttrib()
in C). They are basically additional data storage fields which may be used for
arbitrary purposes. Attributes might also be used to alter behaviour of an
object. For example class attribute determines behaviour of generic functions
and is the base of object oriented programming in R.

There are several types of object containers. Homogeneous containers (vec-
tors and arrays) contain only objects of the same type while heterogeneous
containers (lists and data frames) can contain objects of different types. Vec-
tors and lists are one dimensional containers (although multidimensionality
can be simulated by storing lists inside a list) whereas arrays and data frames
are multidimensional. All objects of types logical, integer, numeric, character
or complex are considered to be vectors even if they consist of only a single
element. Internally lists are treated as vectors and are referred to as generic
vectors.

There is a special object called NULL (or R_NilValue in C) which is used
to indicate that some object is missing. This object should not be confused
with NA which is a logical value (in ternary logic) and is used to indicate a
missing value. There is also a third NULL-like object in R called NaN which
is a numeric value representing Not a Number (e.g. 0/0).

2.2 Functions

In R functions are first-class values. They are represented as objects of type
CLOSXP and they consist of an argument list, a body and an environment.
Arguments can have default values defined as arbitrary expressions involving
other arguments of the function. Arguments can be passed by a name or
even a part of a name. Functions can also have variable number of arguments
represented by ... argument.

In most cases arguments are passed as promises. A promise is an object
containing unevaluated expression in form of parsed source code. A promise
is evaluated only when its value is needed, therefore if an argument is never
used then it is never evaluated. Because of that it is not recommended to use
an expression causing side effects as a function argument as it is dependent
on the function implementation whether or not the expression is evaluated.

7PIMPL – Pointer to IMPLementation
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2.3. Environments

Most of the functions in R are closures which are defined entirely by R
code. Then there is a set of C functions which are built into the core R. These
provide the basic functionality of R and are defined in an array called FunTab.
There are two independent categorizations of the built-in functions – primitive
vs. internal functions and builtin vs. special functions.

Primitive functions are very simple language elements (e.g. if, return,
operators or simple functions like abs()). They are called directly and as fast
as possible whereas internal functions are wrapped in a R closure which ensures
standard handling of arguments. The wrapper calls the C implementation by
using .Internal() primitive function.

Builtin functions evaluate all their arguments before they are passed to the
C function whereas special functions pass their arguments unevaluated and
let the C function to evaluate them if needed. Typical example of a special
function is && operator which evaluates the second operand only if the first
one evaluated to FALSE.

Functions in external libraries which are compatible with C or Fortran call-
ing conventions can be called from R using several primitive builtin functions.
The .C() and .Fortran() functions are the easiest to use but they allow only
R vectors to be passed as arguments. Then there are more advanced functions
.Call() and .External() which may be used to pass any R object to the ex-
ternal function. .Call() passes each argument as a SEXP and expects a single
SEXP as a return value. .External() passes all the arguments inside a single
LISTSXP and therefore can be used to pass variable number of arguments.

2.3 Environments

Every expression evaluation is done within an environment which consists of
a pointer to its enclosure (enclosing environment) and a set of variables (in
form of symbol-value pairs). When a variable is used it is first searched for
in the active environment. If there is no such variable found R continues to
search recursively through the enclosures including the global environment and
environments of attached packages until it reaches the top environment. This
means that local variables can shadow variables of the same name declared in
the environments above.

Each function object has also its enclosing environment which is equal to
the environment that was active during the function’s creation (this is called
lexical scoping). When a function is called a new environment is constructed
and the function’s enclosure is set as its parent, therefore the function’s code
can access symbols from the enclosing environment. Assignments in a function
are performed only within the local environment but it is possible to assign
to a variable from the enclosure using <<- operator.

9



2. R programming language

2.4 Object oriented programming

R does not have support for OO programming in its original design. However,
there are three object oriented systems built on top of the base language. The
most commonly used is the S3 system which is based on the class attribute
of objects and on generic functions. Generic functions are functions which
behave differently depending on the class of its arguments and are usually of
the form func <- function(x, ...)UseMethod("func", x). There are two
special builtin dispatching functions UseMethod() and NextMethod() which
can be used inside a generic function.

The second OO system is called S4. It is similar to S3 but is built on top
of S4 object system which enables usage of formally defined classes. Finally
there is RC (Reference Classes) system which uses references for passing S4
objects. In RC methods are stored inside objects.

2.5 Metaprogramming

R allows programmers to access parsed but non-evaluated expressions as lists
of objects and then read or alter them. For example it is possible to get the
name of a function’s argument as a character string and use it as a label in
printing or plotting. This can be done by calling substitute() which uses
expression information stored in a promise object of the argument (promise
object contains both raw expression and a value resulting from the expression).

Similarly quote() returns its argument as an unevaluated expression ob-
ject and expression() returns its arguments as a vector of unevaluated ex-
pression objects. Function deparse() can turn an unevaluated expression
into a character string whereas parse() can turn a string into an unevaluated
expression. Expression objects can be evaluated by eval() function which
exists both in R and in R’s C API. It can execute arbitrary expression in
arbitrary environment (by supplying it as an argument).

2.6 Exception handling

Exceptions in R are called conditions and they are divided into three categories
– errors, warnings and messages. Errors are meant to be unrecoverable and
they are raised by calling stop(). Issuing a warning with warning() should
point to a potential problem. And messages, emitted by calling message(),
are supposed to report some other important information.

Like other languages R is equipped with tools to properly handle raised
conditions. When wrapping an expression in try() the program will continue
to run even if there was a condition raised while evaluating the expression.
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2.7 Packages

Functions and datasets are stored in packages which can be loaded separately
with library() function. There are some standard packages and many more
can be downloaded from CRAN. There is also Bioconductor8 which is a repos-
itory containing packages related to bioinformatics.

Each package has its own namespace. Some functions can be exported
from the package namespace to the global namespace, these can be explicitly
accessed by package::func. Functions which have not been exported may
still be accessed with ::: operator.

A package is implemented as a folder with predefined structure. There
is a DESCRIPTION file which among other information contains list of de-
pendencies. NAMESPACES file specifies which dynamic libraries should be
loaded and which functions should be exported to a global namespace. Each
package has a R folder containing R code and a src folder containing native
code (C or Fortran) which will be compiled and linked. Documentation is
stored in man folder.

Contents of the src folder are compiled and linked into a dynamic library
which is linked against the core R once the package is loaded. The compiled
functions may be registered manually by calling R_registerRoutines() dur-
ing package initialization. It is also possible to let R find the functions au-
tomatically on demand (when first called) based on their name by searching
through all exported symbols in the linked libraries which is considerably
slower.

2.8 Bytecode compiler

Since R version 2.13.0 there is a compiler package included in the standard
distribution of R [16]. The following sum-up is based on Luke Tierney’s (the
author of the package) report from Nov 2016 [17].

The compiler is mostly written in R. The resulting bytecode, which consists
of an integer vector of opcodes and a generic vector serving as a constant pool,
is then interpreted by a virtual machine written in C. It can compile a single
expression, a function, a file or a whole package. Currently packages are
precompiled by default during their installation. The package also provides
JIT9 which uses the compiler to compile a function to bytecode before its first
use.

The compiler also covers some optimizations which can make the execution
much faster. Optimization of built-in function calls is very important. Some
of the primitive functions (e.g. if, for, break) are handled directly within
the virtual machine by their own instructions which avoids calling them as
8Bioconductor – https://www.bioconductor.org/
9JIT – Just In Time compilation
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functions and therefore brings some performance benefit. The .Call() func-
tion has its own instruction as well which omits argument list allocation and
pushes the arguments directly on stack instead. Arithmetic and logical oper-
ations are done directly in the virtual machine. Builtin function calls are also
optimized as evaluation of their parameters is done immediately without mak-
ing promises out of them first. Expressions in conditions are constant-folded
which in some cases may lead to omission of the inactive branch.

2.9 Debugger

R has its own simple debugger built into the language which can be activated
by calling browser() function. It pauses the execution and gives the control
to the console. Then it is possible to step through the code, print stack trace
and also to execute any R expression – for example to print objects, read and
assign values, etc.

The browser() function may be called automatically when an error oc-
curs by setting a global option options(error = recover). The browser()
call can also be inserted into a function at a specific line which simulates a
breakpoint insertion.

Among the standard debugging procedure there is also so called post-
mortem debugging. When activated, a dump is created when an error occurs
which contains all environments active at that moment. The dump can be
examined later in the browser. It is also possible to save the dump to a file
and load it later in another R session. However, it is not possible to step
through the code in this mode.

2.10 Garbage collector

R implements a generational garbage collector. All R objects created out-
side R (in an external or an internal C function) must be protected against
being removed by the GC. This can be done by a PROTECT() macro. This
macro is stack-based and for every PROTECT() there must be a corresponding
UNPROTECT(), otherwise the stack gets corrupted. This method of protection
is fast but can be used only locally because of it being stack-based.

There is an alternative in the form of R_PreserveObject() and R_Release
Object() functions which work upon a global persistent list while being
slower.

Memory protection bugs may be hard to find as they appear only in certain
conditions. gctorture is a mode which calls the garbage collector very often in
order to uncover these bugs. It, however, comes with a significant performance
penalty.

12



Chapter 3
Implementation of RRnR

While there are existing solutions for RR, they focus on debugging native
compiled applications. If they were to be used for debugging an R program
it would be necessary to record and replay the whole R interpreter running
the code. Although that is entirely possible the convenience of the solution
is degraded by the fact that the user would not be able to use it from within
the same R instance and most likely not by the default R debugging tools.
The goal of this thesis is to provide a much simpler solution working inside the
interpreter, providing interface to the user on the R level and making available
the standard debugger contained in R.

This chapter describes in detail the implementation of the R record and
replay debugger (in short RRnR) including reasons why it was implemented in
such way. The code excerpts shown in this chapter are taken from the actual
implementation but in some places they have been shortened or simplified for
better clarity.

3.1 Overview

3.1.1 Incorporation into R

The goal is to keep RRnR as much separated from the R’s source code (referred
to as core R further) as possible. This is a purely pragmatic decision because
with only a few small changes to the core source code it is much simpler to
keep RRnR unaffected by the development of R itself. The cleanest solution
would be to make RRnR as a package which can be installed at user level.
This, however, is impossible to achieve as of now because R does not provide
necessary information via its API. For instance it is not possible to be informed
of R code evaluation being initiated from C code of a package. Therefore the
most sensible approach is to do a few small changes to the core R in order to
add the necessary functionality and then keep as much code as possible in the
package.
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This decision led to a creation of a fork of R with small modifications
and one base package added which is automatically loaded at start of the
modified R. Basically the entire functionality is implemented in the package.
Some of it is implemented in R language. This is typically the user interface
and corresponding functionality which is easier to implement in R. The bigger
part of RRnR is implemented in C using R’s C API as it is often necessary to
interface with R on a deeper level.

But the package cannot work by itself as it requires some more informa-
tion which cannot be obtained using the standard R’s C API. That is why
there need to be implemented so called hooks in the core R which extract the
necessary information and pass it to the package.

Core R with RRnR modifications RRnR package

R API

+ record()
+ recordFindBug()
+ recordTrace()
+ replay()

R implementation

Mainly environment
cloning and helper functions.

Wrappers in RRnR.c

Provide interface between the
hooks and the RRnR package.

For each hook there is a wrapper
function which checks if
appropriate handler is registered
and relays the call if so.
Otherwise they return a neutral
response or do nothing.

C implementation

- do_record()
- do_replay()

Initialization, deinitialization
and support of recording
and replaying process.

Handler functions

React on events detected
by the hooks.
Store return values of
nondeterministic calls in
the trace during recording.
Load the values from the
trace during replaying.

Handler registrators in RRnR.c

Store pointer to a handler
function.
Also provide functions to remove
and restore all the pointers.

R Hooks in core R

RRnR:::lazyload_before & RRnR:::lazyload_after
- detect lazyloading start and end
- pause RRnR during this period

C Hooks in core R

RRnR_before & RRnR_after
- nondeterministic calls interception
- obtain the return value and pass it to RRnR
- get the value from RRnR and return it instead

RRnR_eval_before & RRnR_eval_after
- detect callbacks from C to R

RRnR_JIT_before & RRnR_JIT_after
- detect JIT compilation start and end
- pause RRnR during this period

RRnR_browser_before & RRnR_browser_after
- detect browser() debugger being active
- ignore calls made inside the browser

RRnR_stdout_vfprintf
- monitor printing output, so it can be recorded

RRnR_error
- detect C errors, so they can be recorded

RRnR_trace_state
- detect if code injected by trace() call is executed

Figure 3.1: Overview of the project architecture

It is also important to decide where the hooks capturing non-deterministic
calls should be placed. After careful consideration of all possible approaches
to the problem, focusing on the R’s bytecode interpreter seems as the best
solution. The compiler package is among the base packages since version
2.13.0 [16] and the JIT has been enabled by default since version 3.4.0 [18].
Therefore it is almost obligatory to implement a solution with the ability to
capture calls in the bytecode. As for capturing calls in the AST interpreter,
it may seem like just a “nice-to-have” feature as the percentage of such calls
is negligible. However, as described further, there are some situations where
R falls back to the AST interpreter and other implementation details which
make it necessary to capture at least some of the non-bytecode calls as well.
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3.1.2 Capturing non-determinism

Non-determinism cannot appear inside a plain R code because it is always
based on some sort of a non-deterministic input and all I/O communication
in R (e.g. generating a random number, reading a file or communicating over
the Internet) happens either in internal C code or in external code written in
Fortran or in any C-compatible language. There is no other way that would
allow R code to interact with external resources. The bridge between the
always deterministic R code and the possibly non-deterministic C/Fortran
code is very narrow and therefore it is the perfect place for capturing the
communication travelling through it.

There is always a possibility that an external function non-deterministically
changes the state of the R interpreter. However, such behaviour is generally
undetectable as the external function can theoretically do anything from call-
ing a simple R function to randomly overwriting memory of the process. To
capture this, some external tool like the Mozilla’s rr would have to be used
together with RRnR but that is an extreme measure beyond the reach of this
thesis.

With this in mind it is possible to describe the bare minimum of how the
capturing works. RRnR gets notified by a hook in the core R every time
there happens a call of a non-deterministic C/Fortran function. It lets the
function to execute and then stores the returned value into a data structure
called trace.

Later during replaying RRnR again gets notified when there is a non-
deterministic function being called but instead of executing the function it just
returns the original value from the trace which was stored during the recording
phase. Because the replay is deterministic it can be assumed that the contents
of the trace are always delivered in the correct order corresponding with the
functions being called.

3.1.3 Hooks

In order to achieve what has been described so far RRnR must be notified both
before and after a non-deterministic call is executed. The before is needed so
that RRnR can control whether the call is allowed to be executed and the
after is needed to save the return value during recording and to load the
return value stored in the trace during replaying.

This is achieved by inserting small pieces of code (hooks) into the core
R around (before and after) important places. There is a limited amount of
places where the hooks must be inserted, therefore RRnR can stay strongly
separated from the core R as planned.

The hooks are supposed to inform RRnR of being triggered by calling
appropriate handler functions inside the RRnR package. However, it is not
possible for a package function to be called directly from the core R as all
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packages are linked dynamically after startup. Instead, the package itself
registers its handler functions first (before recording or replaying starts). The
hooks then just call wrapper functions in RRnR.c which is a file added to the
core R.

The wrapper functions check whether there is an appropriate handler func-
tion registered and if so they relay the call to that handler function. Therefore
RRnR package can stay separate from the core R and only if needed it can
attach some of its functions as handlers.

C_res
added to trace

record_after()
handler

record_before()
handlerR function

RRnR_before()
wrapper C function

Interpreter
DO_CALL()

record_after()
handler invoked

C_res
returned

RRnR_after
hook triggered

C function result
C_res

continue C function execution

call permission
return 1

call permission
return 1

record_before()
handler invoked

.Call()
RRnR_before

hook triggered

Figure 3.2: Recording an external C function call

C_res
loaded from trace

replay_after()
handler

replay_before()
handlerR function

RRnR_before()
wrapper

Interpreter
DO_CALL()

C function is never executed
during the replaying

replay_after()
handler invoked

C_res
returned

RRnR_after
hook triggered

call permission
return 0

call permission
return 0

replay_before()
handler invoked

.Call()
RRnR_before

hook triggered

Figure 3.3: Replaying an external C function call
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3.1.4 User interface

It is very important for RRnR to be user friendly, like the original R’s debugger
is. At least the basic functionality should be minimalistic and straightforward.
If needed, it can be controlled in more detail by setting options. That is
why there are just two main functions exposed to the user: record(expr,
options) and replay(rec).

The record() function takes an expression for which the evaluation should
be recorded. The return value of this function is a list called replay structure
containing all the information necessary for the replay to work. It is possible
to call record() multiple times with different expressions, save the replay
structures arbitrarily and then supply them to the replay() function in any
order. Once called, the replay() function executes the expression contained
in the replay structure in the exact same way it was recorded.

User may store any number of replay structures though it should be noted
that they can be quite large as they contain all input including contents of
files loaded from disk. This behaviour and some others may be changed by
setting an option.

RRnR supports the standard debugging facilities in R hence the debug-
ging process and its user interface are basically the same as during normal
debugging session. Any browser() calls inserted into the recorded function
are invoked during replaying. Once the browser pauses the execution RRnR
is also temporarily disabled which allows the user to execute any expression
in the browser without affecting the replaying process.

3.2 RRnR core functionality

There are many corner cases which must be handled explicitly in order for
RRnR to work but to make the text more understandable they are described
separately in the section 3.3 while this section describes how the base concepts
of RRnR work and how they are implemented.

3.2.1 Core R modifications

R version 3.4.3 has been used as the starting point and its source code has
been modified in a few places. Firstly a new source file src/main/RRnR.c has
been added which contains handler registrators and wrapper functions. Sec-
ondly hooks have been inserted into a few files – src/main/eval.c, src/main/-
connections.c, src/main/names.c, src/main/main.c, src/main/errors.c, src/-
main/debug.c and src/library/base/R/lazyload.R. Finally there are two new
header files – src/include/RRnR.h which provides function declarations for the
hooks and include/RRnR.h providing interface used by the RRnR package.
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3.2.1.1 Handler registrators

The RRnR package uses the handler registrators to register some of its func-
tions as event handlers for certain hooks. The registrators are functions in the
core R which take pointers to the handlers as their arguments. The pointers
are stored in the core R and are later used by the wrapper functions to pass
information from the hooks in the core R to the handlers in the package. The
most important registrator is RRnR_register_handlers() function which is
used to register the main before and after handlers.

Then there are also RRnR_get_all_handlers() and RRnR_restore_all_
handlers() helper functions which can be used to make a backup of all point-
ers to the handlers and later restore them.

Finally a RRnR_remove_all_handlers() function can be used to unreg-
isters all the handlers at once. This mechanism also solves the problem of
switching between states (record, replay and inactive) as there may be dif-
ferent handlers registered for recording and replaying and the handlers are
completely removed when RRnR is inactive.

Handler pointer

Core RRRnR package

Hook triggeredInitialization Handler Registrator Wrapper
 get pointer load ptrstore ptr

pass hook info pass handler pointer

Figure 3.4: Overview of handler registration and invocation process

3.2.1.2 Wrapper functions

Wrapper functions are the means to connect the core R with the RRnR pack-
age. They are called by the hooks inside core R and then they pass the
obtained information to RRnR via an event handler. There are two main
wrapper functions needed in order to enable the basic record and replay func-
tionality – RRnR_before() and RRnR_after(). Their implementation is very
simple as they only check if there is a corresponding event handler registered
and if so they call it with the parameters acquired from the hooks.

If there is no handler registered the wrapper functions return such value
that causes R to work normally as if there were no hooks inserted. This means
a value 1 for the RRnR_before() and the original return value of the captured
call for the RRnR_after().
SEXP RRnR after (SEXP c a l l , SEXP op , SEXP args , SEXP rho , int
↪→ c a l l t y p e , SEXP val ) {

return RRnR after handler
? RRnR after handler ( c a l l , op , args , rho , c a l l t y p e , va l )
: va l ;

}

Listing 3.1: The RRnR after() wrapper function
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3.2.1.3 Basic hooks

In order for the basic record and replay functionality to work there are only
a few hooks needed in the core R code. It is sufficient to detect calls of
the R internal functions in the bytecode interpreter which is located in the
src/main/eval.c file. The most important place is in a bcEval() function,
specifically in a part which handles a CALLBUILTIN instruction.

Calls to the RRnR_before() and RRnR_after() wrapper functions are in-
serted between the actual call of the builtin and the assignment of its return
value. There are two places where the call can be made, one is used only in
rare conditions with profiling enabled but the hook is inserted into both of
them to increase robustness of the solution.
value = RRnR after ( c a l l , fun , args , rho , RRNR BUILTIN,

RRnR before ( c a l l , fun , args , rho , RRNR BUILTIN)
? PRIMFUN( fun ) ( c a l l , fun , args , rho )
: R NilValue ) ;

Listing 3.2: The CALLBUILTIN instruction hook

There is also a CALLSPECIAL instruction which calls special functions,
but because there are no special functions which could potentially be non-
deterministic it is safe to ignore this instruction.

Furthermore there is a generic CALL instruction which may be used for
calling either builtins, specials or classic closures. One of the usages of the
CALL instruction is for calling functions with variable number of arguments. It
is important to insert the hooks in this place as well in order to capture calls
of these functions. The code is the same as for the CALLBUILTIN instruction.

Then there is a DOTCALL instruction which is used just for .Call() R
function. As calling foreign functions is a typical source of non-determinism
it is necessary to insert a hook there as well. Similarly to the CALLBUILTIN
instruction there are two code paths which may be used to execute the call
and therefore both must be treated by inserting a hook.

3.2.2 RRnR package

As already mentioned, the majority of RRnR is implemented in an R base
package. Base packages differ from standard packages mainly in the fact that
they are a native part of R, meaning they are “preinstalled”. There are also
some minor differences in the implementation details regarding the way C func-
tions are exposed to R. Base packages use the most verbose way of exposing
functions by registering the native routines using the R_registerRoutines()
function. But other than that the structure of a base package is the same as
any standard R package.

The RRnR package is located in src/library/RRnR folder. Inside there
is a src directory containing all the C code, R directory containing all the R
code, DESCRIPTION and NAMESPACE files. On top of that there are tests
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and benchmarks folders which contain code used for testing RRnR. The tests
folder contains unit tests runnable by testthat tool (more in 3.4) whereas the
benchmarks folder contains a benchmarking tool and a set of benchmarks to
measure the speed impact of using RRnR.

There are two lines in the NAMESPACE file which control the way the
package functions are exposed to R. The first line says that all C functions can
be called from R with a C prefix. The second line lists all the functions which
are exported to the global namespace once the package is loaded – record(),
replay(), recordTrace() and recordFindBug().

3.2.2.1 Recording phase

The recording phase starts when a user calls the record() function in R. It
takes two arguments – the expression that is to be recorded and an optional
list with options controlling the behaviour of RRnR. The R function parses
the options and then passes all necessary information to the C part of the
package, specifically to the C do_record() function. This function mainly
initializes the trace and registers handler functions for the hooks.

Then the expression is evaluated. During this time all the hooks are ac-
tive and if a non-deterministic function is called the corresponding handler is
notified and it adds the return value of the non-deterministic function to the
trace.

Once the expression evaluation is finished all the handlers are unregistered
and the trace is returned back to the R record() function wrapped inside the
replay structure and from there it is simply returned to the user. The replay
structure is a generic vector containing all the necessary data for the replaying
to work, mainly the expression with its environment, the trace, the result of
the evaluation and the list of options.

3.2.2.2 Parsing options

The options which may be passed to the record() function are stored in a
named list in a format of option name = option value. The option list passed
by a user is merged with a default option list. It is ensured that all options
which are not set by the user are initialized to a default value and that all
additional options in the user’s list which are not known by RRnR are ignored.

The merged options are then sent to the C do_record() function where
they are parsed and their values are stored in a global structure called RRnR_
options. In there the individual options can be accessed from any C function
of the RRnR package.
int a l l o w g r = asLog i c a l ( getListElement ( opt ions , ” a l l ow graphs ” ) ) ;
i f ( a l l o w g r == 0 | | a l l o w g r == 1)

RRnR options . a l l ow graphs = a l l o w g r ;

Listing 3.3: Example of option parsing in C
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3.2.2.3 Passing the expression from R to C

The main purpose of the record() function is to pass the expression, which
a user wants to record, to the C part. This must be done in a way that does
not cause the expression to be accidentally evaluated because RRnR is not
yet prepared for recording at this point.

All function arguments in R are passed as promises without being evalu-
ated so it should be theoretically possible to just pass it along, however the
.Call() function, which is used to call the C function, always evaluates the
arguments before passing them to C. The expression must be converted to
an expression object of type EXPRSXP instead, which is basically an AST rep-
resentation of the expression. In this form it can be safely passed without
evaluation.

Besides the expression itself there is one more piece of information neces-
sary for it to get evaluated in the C code. The eval() function expects an
environment as a second argument. In this case it should be the parent frame
environment inside which the R record() function was called and in which
the user expects the expression to be evaluated. The parent frame and the
expression object can be obtained by two simple lines of code.

expr <− as . exp r e s s i on ( s u b s t i t u t e ( expr ) )
env <− parent . frame ( )

Listing 3.4: Obtaining the expression and the environment

3.2.2.4 Trace allocation and manipulation

The trace is initialized as an R list object, which in C is called a generic
vector (VECSXP). It is supposed to be filled with return values of the recorded
functions, therefore it is important that it can contain objects of different data
types. Because it is stored in a global variable it cannot be protected against
deletion by the PROTECT() macro. It must be registered as an exception in
the garbage collector via the R_PreserveObject() function instead.

t r a c e s z = 16 ;
t r a c e c n t = 0 ;
R PreserveObject ( t r a c e = a l l o c V e c t o r (VECSXP, t r a c e s z ) ) ;

Listing 3.5: Initialization of the trace object

During recording the values are stored in the trace using add_to_trace()
helper function. As the trace is dynamically allocated it is necessary to in-
crease its size when needed. There is a function in the R’s C API which can
be used to resize and reallocate a vector but it is important to keep in mind
that the pointer to the vector changes in the process and therefore the object
must be re-protected.

21



3. Implementation of RRnR

i f ( t r a c e c n t >= t r a c e s z ) {
SEXP tmp ;
t r a c e s z ∗= 2 ;
R PreserveObject (tmp = l e n g t h g e t s ( t race , t r a c e s z ) ) ;
R ReleaseObject ( t r a c e ) ;
t r a c e = tmp ;

}

Listing 3.6: Trace resizing in the add to trace() function

3.2.2.5 Event handlers for recording

There are different handler implementations for the recording and the replay-
ing phases. The recording version of the before handler is very simple and
always returns 1, which permits the call, because during recording the return
value of the call must be stored in the trace.

The record implementation of the after handler must decide whether the
call needs to be recorded or whether it is certainly deterministic and can be
ignored. This detection is factored out in a separate function which is called
detect_flags(). If the call is marked as SHOULD_BE_HANDLED then its return
value is added to the trace using the add_to_trace() function.
int f l a g s = 0 ;
. . .
i f ( i s d e v i c e o p e n i n g c a l l ( c a l l , env ) )

f l a g s = SHOULD BE HANDLED | IS DEVICE OPENING ;
else i f ( s h o u l d h a n d l e c a l l ( c a l l , args , env ) )

f l a g s = SHOULD BE HANDLED | CAN PRODUCE CALLBACK;
return f l a g s ;

Listing 3.7: Excerpt from the detect flags () function

The detect_flags() helper function uses all available information gath-
ered by the hook to detect the properties of the function call and returns
them in an easy-to-use format for further processing by the event handler.
The result is returned in a form of a bitset of flags. Mainly the function de-
tects whether a call should be recorded by setting the SHOULD_BE_HANDLED
flag. On top of that it divides calls into several categories which enables some
special treatment in the handler.

The detection is mostly based on the name of the called function. The
name is obtained in a form of a symbol object which is an unique identifier
and it is guaranteed that every time a certain function is called its symbol
is the same object. Thus it can be simply and, what is more important,
quickly compared with other symbols just by comparing their pointers. For
each category of functions that the detect_flags() function is supposed to
identify there is an array of their symbols created. When a function call is
to be categorized its symbol is simply compared with other symbols in the
arrays.
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i f ( ! s y m b o l s i n i t ) i n i t s y m b o l s ( ) ;
SEXP func symbol = CAR( c a l l ) ;
for ( i = 0 ; i < num to handle ; i++)

i f ( symbol s to hand le [ i ] == func symbol ) return 1 ;
return 0 ;

Listing 3.8: Detection of presence of a function symbol in the symbol database

It is not necessary to compare symbols of primitive functions against
the database because no primitive functions are considered non-deterministic.
Therefore the processing of primitives is made much faster by using an “early-
out” condition first. Primitive function can be recognized by a PRIMINTERNAL()
macro.

3.2.2.6 Replaying phase

The replay() function takes just a single parameter – the replay structure
created earlier by the record() function. The replay structure is passed to
the C do_replay() function which unpacks all necessary information from it.
Replaying versions of event handlers are registered and then the expression
contained in the replay structure is evaluated.

Once a possibly non-deterministic function call is detected by a hook it is
processed by the handlers. Non-deterministic functions are not called, their
return value is loaded from the trace instead. Once the expression evaluation
is finished, all the handlers are unregistered and the control is returned back
to the user.
i f (TYPEOF( r e p l a y s t r u c t ) != VECSXP)

e r r o r ( ” r ep lay s t r u c t u r e must be a g e n e r i c vec to r ” ) ;
i f (LENGTH( r e p l a y s t r u c t ) != 7)

e r r o r ( ” r ep lay s t r u c t u r e should have exac t l y seven elements ” ) ;
SEXP expr = VECTOR ELT( r e p l a y s t r u c t , 0) ;
i f (TYPEOF( expr ) != EXPRSXP)

e r r o r ( ” exp r e s s i on must be an expr e s s i on vec to r ” ) ;
i f (LENGTH( expr ) != 1)

e r r o r ( ” exac t l y one expr e s s i on expected ” ) ;

Listing 3.9: Replay structure unpacking example

3.2.2.7 Reading values from the trace

The replaying version of the after handler calls the detect_flags() function.
When the SHOULD_BE_HANDLED flag is set it means that the current call is not
permitted to be executed and its return value should be read from the trace
instead.

A variable called trace_pos is used to store the current position in the
trace. In the beginning it is set to zero and with every replayed call its value is
increased. The replay is supposed be deterministic and therefore it is expected
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that the number of replayed calls is exactly the same as the number of recorded
calls and that the currently used trace value corresponds with the currently
replayed call.

If the trace_pos variable points behind the end of the trace it is a sign
that something went wrong and therefore the execution must be terminated
by sending an error via the stop() API function.

SEXP peek t ra c e ( ) {
i f ( t r a c e p o s < t r a c e c n t ) return VECTOR ELT( trace , t r a c e p o s ) ;
else e r r o r ( ”no more recorded c a l l s ” ) ;

}
SEXP r e a d t r a c e ( ) {

SEXP r e t = peek t ra c e ( ) ;
t r a c e p o s++;
return r e t ;

}

Listing 3.10: Trace reading functions peek trace() and read trace()

3.3 Dealing with corner cases

The implementation as described in the RRnR core functionality section is
usable only for the simplest cases. There are many corner cases which have to
be handled separately. Similarly to Mozilla rr RRnR is not trying to create
an ultimate solution for every possible scenario. But by focusing on the most
common problems, which are described in this section, RRnR aims to cover
the largest possible portion of use cases while keeping the scale of the project
manageable.

The most important problems to deal with are detection and replaying
of callbacks from C to R, restoring the same environment state before each
replaying by environment cloning, avoiding invalid environment references
by environment in-trace replacement, monitoring prints in order to replay
them properly, properly replaying graphics output, making sure that debug-
ging works, ignoring one-time code evaluation like JIT compilation and lazy
loading, properly replaying errors and handling invisible returns.

3.3.1 Callbacks

When an external function call is replayed its return value is read from the
trace but the call itself is never executed again as it may contain some non-
deterministic code. A problem occurs when the external function uses the
eval() function to call back to R. If the external function is not replayed
then neither is the R code which is not optimal. Firstly the user may want
to debug the R code and in order to be able to do that the code must be
executed. And secondly there might be possible side effects caused by the
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R code which should be replicated during the replaying in order to maintain
determinism.
r e c <− record ( x <− . Ca l l ( C func ) ) # C r e t va lue added to the t r a c e
x <− r ep lay ( r ec ) # value loaded from the t r a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// C:

SEXP C func ( ) { // never rep layed
return eva l (” R func ( ) ”) ;

}
# R:

R func <− f unc t i on ( ) { # never rep layed (PROBLEM)
r u n i f ( 1 )

}

Listing 3.11: Simple example of the callback problem

To solve this problem it is necessary to detect the callbacks when record-
ing and store all the necessary information in the trace as shown in the dia-
gram 3.5. Then in the replaying phase the information is read from the trace
and the callbacks are replayed as shown in the diagram 3.6. This way the
external function is still not replayed but the eval’d R code is executed the
same way as it was during recording. The process works recursively so when
the R code makes other non-deterministic calls they are also recorded and not
replayed.

Trace

callback definition

C return value

R_func()C_func()x <- .Call(C_func)

add to trace

add to trace

.Call()
result

eval(R_func)
.Call(C_func)

Figure 3.5: Recording the example callback

Trace

callback definition

C return value

R_func()RRnRx <- .Call(C_func)

load from trace

   load from trace

.Call()
result

eval(R_func)
.Call(C_func)

Figure 3.6: Replaying the example callback
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3.3.1.1 Callback detection

The only way for an external function to make a callback is by using the
eval() function, therefore the detection is implemented by inserting two hooks
in there, one hook is inserted at the beginning (eval before) and one at the
end (eval after). The function is located in the src/main/eval.c file.

During recording the eval before hook is triggered when the eval() func-
tion is called. The arguments of the call (an expression and an environment)
are stored in the trace with a special attribute marking them as RRnR callback.

However, not all invocations of the eval() function are caused by a call-
back. In fact this function is called quite often. That is why the eval before
and eval after handlers are not permanently active. They are registered in
the basic before handler just before an external function call is made.

An external function call is simply recognized in the detect_flags()
function which sets a CAN_PRODUCE_CALLBACK flag for any of these functions:
.Call(), .Call.graphics(), .C(), .Fortran(), .External(), .External2(),
.External.graphics().

It is important that only the first eval() call triggers the eval before hook.
The other calls which might happen are irrelevant for the callback detection.
Therefore the eval before handler must be unregistered immediately after be-
ing called.

However, it is important to detect when the first eval() call ends and
returns the control back to the external function, because then the eval before
handler must be registered again in order to catch any other callbacks. This
is ensured by the eval after hook.

This means that the eval after handler cannot be unregistered unlike the
eval before one. But it must be ensured that the eval after hook is triggered
only in the first eval() call and not in the other ones invoked during the R
expression evaluation.

This is achieved by the hook_enabled variable in the eval() function. If
the eval before handler is registered than the variable is set to TRUE, otherwise
it is set to FALSE. The eval after hook is triggered only if the variable contains
TRUE. The presence of the eval before handler is signalled by the return value
of the eval before wrapper function.

There might be a situation where the callback recursively calls another
external function which executes another callback. This situation is fully
supported as the whole solution is stack based using the implicit call stack for
all the information including the hook_enabled variable.

But it is important to note that the eval after handler must never be un-
registered, not even after an external call is finished, because of the possibility
of it being called recursively.
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Resume the
external call

Resume the eval()

Subsequent eval() calls
are likely to occur

Add callback
definition to the trace

Add return value to the
trace in after_handler

Unregister eval_before
handler

Re-register
eval_before

Catch end of eval()
by eval_after

Unregister eval_before

So that subsequent
eval() calls do not

influence the
recording process

Catch start of eval()
by eval_before

Resume the
external call

Register eval_before
and eval_after handlers

Catch external call
by before handler

[another callback]

  [no more callbacks]

  [top-level eval() call]

[subsequent eval() call]

Figure 3.7: Overview of the callback detection process
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3.3.1.2 Callback replaying

The replay functionality for the callbacks is entirely based on the contents of
the trace. When a normal function call is replayed from the trace there is only
the recorded return value at the current position in the trace. However, when
there have been any callbacks then the trace also contains the parameters
given to the eval() function (an expression and an environment).

During replaying all the callbacks happen in the exact same order as
they happened during recording. Therefore it is sufficient to keep iterating
through the trace while evaluating the callbacks until there is only the re-
turn value of the external function left. The callbacks can be identified by
the RRnR callback attribute. The evaluation of a callback is done simply by
using the eval() function with the loaded expression and environment.
for ( ; ; ) {

r e t = PROTECT( r e a d t r a c e ( ) ) ;
i f (TYPEOF( r e t ) == VECSXP &&

getAtt r ib ( ret , i n s t a l l ( ” RRnR callback ” ) ) != R NilValue ) {
SEXP c a l l = VECTOR ELT( ret , 0) ;
SEXP env = VECTOR ELT( ret , 1) ;
eva l ( c a l l , env ) ;
continue ;

}
return r e t ;

}

Listing 3.12: Iterating over the trace in the after handler during replay

3.3.1.3 Suppressors

The steps described above are applied only to external function calls but
in some situations it might happen that an R code is evaluated from a C
function which is inside the core R and is being recorded because of its non-
determinism. One of such functions is print.function() which uses eval()
to call as.character() R function which is used to convert source reference
of a function to character string. Such callbacks are deliberately ignored as
they do not invoke any user code and have no side effects.

However, it is important to ignore the entire execution of the callback code,
not just the fact that there has been a callback. Otherwise the return values of
some potential calls made by the code would be stored in the trace, but these
values would never be retrieved from the trace in the replaying phase, because
in this phase the callback code would be ignored, and that would result in a
trace corruption.

Therefore there are two special event handlers for the eval before and
eval after hooks which are called the suppressors. Their purpose is to tem-
porarily suppress detection of all calls while a callback is being executed. They
are registered in the standard before handler for any call that is not explicitly
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allowed to have its callbacks captured. The implementation of the suppressors
is very simple. The eval before suppressor handler unregisters all handlers ex-
cept the eval after suppressor handler which is used to re-register the original
handlers.
void ∗ o l d h a n d l e r s b e f o r e s u p p r e s s o r [ 7 ] ;
void e v a l s u p p r e s s o r b e f o r e (SEXP c a l l , SEXP env ) {

RRnR remove al l handlers ( o l d h a n d l e r s b e f o r e s u p p r e s s o r ) ;
RRnR reg i s t e r eva l hand l e r s (NULL, e v a l s u p p r e s s o r a f t e r ) ;

}
void e v a l s u p p r e s s o r a f t e r ( ) {

RRnR re s to r e a l l hand l e r s ( o l d h a n d l e r s b e f o r e s u p p r e s s o r ) ;
}

Listing 3.13: Implementation of the suppressors

3.3.2 Environment cloning

Although R is strongly influenced by functional programming it definitely is
not purely functional itself. Many functions in R have side effects and parent
scopes are often modified using the <<- operator. This can be a problem in
the context of RRnR. If a function’s output depends on a variable declared in
its enclosing environment then the output is not guaranteed to be the same
between individual replays of the function (as shown in the following example).
a <− 5
func <− f unc t i on ( ) p r i n t ( a )
r ec <− record ( func ( ) ) # outputs 5
rep lay ( r ec ) # outputs 5
a <− 6
rep lay ( r ec ) # outputs 6 ( should output 5)

Listing 3.14: Demonstration of manual environment modification problem

The first possible solution to this problem is very simple – just pass the
problem on to the user. It can be simply stated that the user is responsible
for the consequences of all the changes in the environments he makes between
recording and replaying.

This is a valid solution for the example shown above but not so valid when
the code being recorded is itself influencing the outer environment as shown
in the example below. In this case the user would have to manually reset the
changes before every replaying which is quite impractical as the user would
have to keep track of all the changes that happen.
a <− 5
func <− f unc t i on ( ) { pr in t ( a ) ; a <<− a + 1 ; }
r e c <− record ( func ( ) ) # outputs 5
rep lay ( r ec ) # outputs 6
rep lay ( r ec ) # outputs 7

Listing 3.15: Demonstration of inherent environment modification problem
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Another possible solution leverages the already implemented recording sys-
tem. If each read from an environment was recorded and its result stored in
the trace then the real contents of the environments would not be relevant as
the values would always be read from the trace. Therefore all changes made
in the environments after the recording is done would not alter the execution
of the code in the replaying mode.

The biggest drawback of this solution is the performance and memory
overhead as every single variable access would have to be recorded which
makes the solution practically unusable.

The solution which is actually used in RRnR is based on the first one but
rather than forcing the user to reset the environments manually RRnR does
it automatically. Before the recording begins all relevant environments are
cloned and the clones are stored in the replay structure. Then before each
replaying the content of the active environments is replaced by the content of
the clones which effectively reverts it to the state before the recording.

However, this introduces another problem which is visible after the first
replaying. The environments are cloned before the record() function returns
the replay structure. Therefore the replay structure is not contained in any of
the cloned environments. When the active environments are replaced by the
clones in the replay() function the replay structure is removed which makes
it impossible to do a second replaying as shown in the example below.
a <− 5 # env{a}
r e c <− record ( func ( ) ) # env{a } , c l one <− env , env{a , r e c }
r ep lay ( r ec ) # env{a , r e c } , env <− c lone , env{a}
r ep lay ( r ec ) # Error : ob j e c t ’ rec ’ not found

Listing 3.16: Demonstration of environment replacement problem

This is solved by creating additional clones at the beginning of the replay()
function. Then at the end of the function the active environments are reverted
to the original state using this clones.

Finally there is one more problem to solve which happens when recording
is done multiple times. After the first recording there is a replay structure
stored in a variable. During the second recording this variable is cloned along
with the current environment and stored in the new replay structure.

When recording multiple times this creates a chain in which the newest
replay structure contains all the previous ones. Because a replay structure
might be quite big there is a potential memory depletion problem. Therefore
when cloning before recording all replay structures are detected by a special
attribute and ignored.

The cloning is implemented entirely in the R part of the RRnR package
as it is the most convenient way. The implementation is divided into several
functions. There are two main functions, one is called clone_environments()
(creates the clones from the active environments) and the other one is replace_
environments() (replaces the active environments by the clones). Both of
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them use a function called iterate_environments() which iterates over all
the active environments. This function gets a callback as an argument and
calls the callback on each of the active environments it iterates over.

Finally there are two functions called clone_environment() and replace_
environment() which perform the actual work (cloning or replacing) on a sin-
gle environment.

The clone_environments() function supplies a callback to the iterate_
environments() function. The callback calls the clone_environment() func-
tion and stores the result in a list. The replace_environments() function
supplies a callback which retrieves a cloned environment from the list and
passes it to the replace_environment() function.

3.3.2.1 Iterating over the environments

The iterate_environments() function iterates over environments on the
search path starting from a given environment and ascending by using the
parent.env() built-in function until a target environment is reached. It is
important to note how the environments are arranged which can be seen in
the following picture.

Figure 3.8: Arrangement of environments, taken from [1]

Typically users are recording an expression defined either inside a package
or in the global environment. In both cases there may be some local enclosing
environments (not shown in the picture) which are then enclosed by either the
namespace environment of the package or the global environment.
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In most cases the package environments, which are “above” the global
environment on the search path, are not changed between the record and
replay phases and do not have to be cloned.

However, in some rare cases it might be useful and that is why there is a
full_clone parameter (controlled by an option) which enables cloning of the
package environments. But this process takes extra time.

The namespace and imports environments cannot be cloned and are there-
fore skipped.

whi le (TRUE) { i f ( . I n t e r n a l ( isNamespaceEnv ( env ) ) ) sk ip <− TRUE
i f ( i d e n t i c a l ( env , . GlobalEnv ) ) sk ip <− FALSE
i f ( i d e n t i c a l ( env , baseenv ( ) ) ) break ( )
i f ( ! sk ip ) c a l l b a c k ( env )
i f ( ! f u l l c l o n e && i d e n t i c a l ( env , . GlobalEnv ) ) break ( )
env <− parent . env ( env ) }

Listing 3.17: The iterate environments() function

3.3.2.2 Cloning an environment

The clone_environment() function creates a complete clone of a given envi-
ronment. Environments can be locked against addition or removal of elements
and individual elements can be locked against modification. In order to make
a perfect clone it is necessary to properly set the locks in the clone.

new env <− new . env ( )
f o r (n in l s ( env i r=env , a l l . names=TRUE) ) {

obj <− get (n , env i r=env )
i f ( ! s k i p r e p l a y s t r u c t u r e s | |

! ( ” RRnR replay structure ” %in% names ( a t t r i b u t e s ( obj ) ) ) )
a s s i g n (n , obj , env i r=new env )

}
parent . env ( new env ) <− parent . env ( env )

f o r (n in l s ( env i r=env , a l l . names=TRUE) )
i f ( b indingIsLocked (n , env ) ) lockBinding (n , new env )

i f ( environmentIsLocked ( env ) ) lockEnvironment ( new env , FALSE)

Listing 3.18: The clone environment() function

3.3.2.3 Replacing an environment

The replace_environment() function replaces all contents of a given en-
vironment by contents of another given environment. This is done by first
removing contents of the destination environment. To do that it is important
to unlock the elements and the environment itself.

R, however, does not support unlocking an environment from user-level
code, therefore the unlocking is done by a custom C function which uses
internal macros.
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#define FRAME LOCK MASK (1<<14)
SEXP do unlock env (SEXP env ) {

SET ENVFLAGS( env , ENVFLAGS( env ) & (˜FRAME LOCK MASK) ) ;
return R NilValue ; }

Listing 3.19: Custom environment unlocking function

After that the contents of the source environment are copied into the
destination environment and the elements are locked if needed as is the en-
vironment itself. The two force() function calls at the beginning are used
to force the evaluation of the function’s parameters as their definition may
be dependent on the contents of the destination environment. If the promises
were not forced they would be evaluated when first used which might be after
their values have been replaced in the destination environment.

f o r c e ( s r c env )
f o r c e ( dst env )
. Ca l l ( C do unlock env , dst env )
f o r (n in l s ( env i r=dst env , a l l . names=TRUE) ) {

unlockBinding (n , dst env )
rm( l i s t=n , env i r=dst env )

}
f o r (n in l s ( env i r=src env , a l l . names=TRUE) ) {

a s s i g n (n , get (n , env i r=s r c env ) , env i r=dst env )
i f ( b indingIsLocked (n , s r c env ) ) lockBinding (n , dst env )

}
i f ( environmentIsLocked ( s r c env ) ) lockEnvironment ( dst env , FALSE)

Listing 3.20: The replace environment() function

3.3.3 Environment in-trace replacement

Environments in R have a special property. Unlike most other objects they
use reference semantics. This means that when an environment is assigned
to a variable it is not copied but only a new reference to it is created and
stored in the variable. Therefore when the same environment is assigned to
two variables A and B and a symbol is inserted into it using the first variable
A$x <- 5 then the same symbol is also visible while accessing the environment
using the second variable B$x.

# R:
env <− environment ( )
rnd <− r u n i f ( 1 )
env <− . Ca l l ( C return , env )
useEnv ( env )
// C:
SEXP C return (SEXP e ) { re turn e ; }

Listing 3.21: Example code where reference semantics cause the problem
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Regarding RRnR this poses a serious problem in some cases which is shown
in the example code. When using RRnR as described so far to record and
replay the example code the trace contains only the result of the C call which
is the return value of the environment() call.

The problem is that the environment reference returned by the function
is different in each run because the environments are newly allocated every
time. Therefore in the replaying run the current environment is different than
in the recording run. But the value which is stored in the trace remains the
same hence the return value of the .Call() is also the same. But then the
useEnv() function is called with an environment reference that is no longer
valid in the current run which will cause a completely different (most likely
erroneous) behaviour.

In the example the C function is supposed to return the value of the current
environment which is 0x123 but the original 0xABC is loaded from the trace
and returned instead, causing the useEnv() function to fail.

(uses env 0xABC which is no longer valid)(uses env 0xABC)useEnv(env)

0xABC (from trace)

0.42 (from trace)

0x123

Result when replayingResult when recordingExpression

0xABC (added to trace)

0.42 (added to trace)

0xABC

env <- .Call(C_return, env)

rnd <- runif(1)

env <- environment()

Figure 3.9: Overview of the situation without environment replacement

(uses env 0x123 which is a valid env in this run)(uses env 0xABC)useEnv(env)

0x123 (0xABC in trace recognized as ENVSXP
and searched for in the replacement table)

0.42 (value in trace is not ENVSXP, so no need
to search in the replacement table)

0x123 (0xABC in trace differs, thus 0xABC=0x123
added to the replacement table)

Result when replayingResult when recordingExpression

0xABC (added to trace)

0.42 (added to trace)

0xABC (added to trace)

env <- .Call(C_return, env)

rnd <- runif(1)

env <- environment()

Figure 3.10: Overview of the situation with environment replacement

This problem is solved by recording return values of all functions which
generate a reference to an environment, they are further referred to as the envi-
ronment generators. Examples of such functions are new.env(), environment()
or parent.frame(). Their return values are also stored in the trace. Then
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during replaying when a generator is called its new return value is compared
to the original one. If it differs then during all further uses of the original
value the new value must be used instead.

Because of that there is a replacement table created which maps all the
original values to the new ones. Every time an environment reference is being
loaded from the trace it is first looked up in the table and the correct value is
returned. The replacement is search for only if the value being loaded from the
trace is of the type ENVSXP, loads of other values are performed immediately
without any modifications.

In the example code, when the environment() function is called during
replaying, the 0xABC value is loaded from the trace and it is compared to the
new return value 0x123. Because they are different a new replacement record
is added to the replacement table. Then the replay continues normally and
when the .Call() is replayed the 0xABC value in the trace is recognized as
an environment reference, and therefore the correct value is looked up in the
table.

The replacement table is stored in a global variable similarly how the
trace is. The only difference is that the replacement table is supposed to store
keys and values and that is why it is implemented as two separate generic
vectors. The first one stores the keys and the second one the corresponding
values. Both are initialized at the beginning of the do_replay() function and
deinitialized at the end.

The addition of the replacement records is managed by a function called
add_env_replacement() which is very similar to the add_to_trace() func-
tion including the resizing code which dynamically doubles the size of the
vectors if needed. And then there is a replace_env() function which takes
an environment, searches through the keys vector for the given environment
and returns the corresponding value if found. Otherwise it returns the argu-
ment itself.

The replace_env() function is used at two places. The first one is in the
callback replaying code where the environment passed to the eval() function
must be replaced. And the second one is at the end of the after handler where
the values read from the trace are returned. In case the returned value is an
environment reference it must be replaced as well.

Because the environment generators are handled differently than other
functions which are recorded by RRnR, it is necessary to recognize them by
IS_ENV_GENERATOR flag set by the detect_flags() function.

During recording the flag is used in the after handler where the return
value of a generator is added to the trace. During replaying the flag is also
used in the after handler where a new record is added to the replacement table
via the add_env_replacement() function.
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3.3.4 Prints and connections

In the process of deciding which functions are potentially non-deterministic
and have to be captured there are some situations when the answer is not
easily determinable. One of these situations is printing. It is safe to say that
printing to a file is definitely non-deterministic, because the file system access
(and communication with the OS generally) is non-deterministic.

And then there is printing to the console. It uses a C function which is
non-deterministic by definition so it should be considered non-deterministic as
well. But without the ability to print in the replaying mode the usefulness of
RRnR would be much worse. That is the reason why printing to the console
is considered as an exception and it is allowed to be replayed.

As long as the C printing functions do not do anything non-deterministic
this decision does not have any negative consequences. However, in case of a
problem there is an option allow_prints which can disable this behaviour.

But the main problem is that it is not simple to reliably differentiate
between prints which are going to the console and the others. It is definitely
not possible just by filtering the printing functions by name because all of them
can print to different connections under certain circumstances. Connection is
an R object which binds to an output stream. It is the equivalent of the C
FILE* handle returned by the fopen() function.

There are three types of printing that must be handled separately:
• First there is a group of six internal functions which print to a con-

nection given by an argument – cat(), writeLines(), writeChar(),
writeBin(), dput() and dump().

• Then there are three internal functions which print to the currently ac-
tive connection – print.default(), print.function() and prmatrix().
The currently active connection can be changed by calling sink() func-
tion with the new connection as an argument. When called with -1
it resets the active connection to the default one which is the console
output.

• And finally there is the possibility to print from C code using Rprinf()
function.

3.3.4.1 Functions with a connection argument

The printing functions which print to a connection obtained from an argument
are internally called writing functions (because they are often called write*())
and they are marked by the detect_flags() function with a IS_WRITE flag.
In order to handle these functions it is necessary to record them and then
during replaying decide whether they should be executed by scanning their
connection argument.
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These functions are safe to execute if the connection is equal to the default
one (console output) or if it is equal to the one that was active right before the
recording started. That is useful when the output had been redirected to a file
before the record() function was called, for example capture.output(rec
<- record(...), file="out"). In this case the output is going to a file yet
the printing should still be detected as safe.

It also may happen that the output of the replaying is redirected to yet an-
other connection, for example capture.output(replay(rec), file="out2").
However, it is important to note that because of the replaying being deter-
ministic the connection argument of the printing function is the same as it
was during the recording, it does not contain the new connection.

Thus RRnR must ensure that if the connection argument is equal to the
connection that was active right before the recording (record_orig_std_out)
then it is first substituted by the connection that was active right before
the replaying (replay_orig_std_out) and after that the printing function is
executed. The two variables containing the original connections are initialized
at the start of the do_record() and do_replay() functions.
i f ( f l a g s & IS WRITE) {

int con = a s I n t e g e r (CADR( args ) ) ;
i f ( con == 1 | | con == r e c o r d o r i g s t d o u t ) {

i f ( con == r e c o r d o r i g s t d o u t )
SETCADR( args , S c a l a r I n t e g e r ( r e p l a y o r i g s t d o u t ) ) ;

return 1 ; // a l l ow the p r i n t
}

}

Listing 3.22: Substituting connection argument in the writing function calls

3.3.4.2 Functions printing to the active connection

The functions from the second group do not have the connection argument
and the output connection is chosen based on the currently active connection
set by the sink() function which is the focal point here. It is not sufficient
to capture only the three printing functions mentioned above. The reason for
this is best described in the example below.
s ink (” out . f i l e ”)
p r i n t (5 )
s ink ( )

Listing 3.23: Unwanted printing behaviour example

It must be noted that the sink() function used in the example is not the
internal function which can be captured. This is just a wrapper which R uses
around all internals. This wrapper first creates a file and only then calls the
actual sink() internal with the connection argument. The file creation, which
is done by a file() function, is captured by default which means that during
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replaying the connection returned by the function is read from the trace but it
is invalid, because it has been already closed in the recording run, and must be
ignored. Therefore the sink() internal must definitely be captured, otherwise
it would try to use the invalid connection.

But that introduces a problem during replaying. If the sink() is captured,
therefore not executed, the output of the following print in the example is
directed to the default connection which is the console. However, during
recording the output was never printed to the console as it was redirected to
a file. This inconsistency must be resolved.

The solution which is used in RRnR focuses on capturing the sink()
internal function only. If the connection passed as an argument is not a safe
one, i.e. not the default console output, neither the connection that was active
right before the recording, a dummy connection is created and passed to the
sink() function instead. Then all the following printing functions are left
untouched but their output ends up in the dummy connection which is later
discarded.

The closing sink() call is allowed as it resets the active connection to the
previous one and closes the dummy connection.

The dummy connection can be easily created by calling an R function
but it is necessary to temporarily unregister all handlers in order to avoid
interference with the trace.

i f ( f l a g s & IS SINK ) {
int con = a s I n t e g e r (CAR( args ) ) ;
i f ( con != −1 && con != 1 && con != r e c o r d o r i g s t d o u t ) {

void ∗ o l d h a n d l e r s b e f o r e [ 7 ] ;
RRnR remove al l handlers ( o l d h a n d l e r s b e f o r e ) ;

SEXP t , s ;
t = s = PROTECT( a l l o c L i s t (3 ) ) ;
SET TYPEOF( s , LANGSXP) ;
SETCAR( t , i n s t a l l ( ” textConnect ion ” ) ) ; t = CDR( t ) ;
SETCAR( t , R NilValue ) ; t = CDR( t ) ;
SETCAR( t , mkString ( ”w” ) ) ; t = CDR( t ) ;
SEXP dummy = PROTECT( eva l ( s , R GlobalEnv ) ) ;

RRnR re s to r e a l l hand l e r s ( o l d h a n d l e r s b e f o r e ) ;

// s u b s t i t u t e the o r i g i n a l connect ion wi th the dummy one
SETCAR( args , S c a l a r I n t e g e r ( a s I n t e g e r (dummy) ) ) ;
UNPROTECT(2) ;

}
else i f ( con == r e c o r d o r i g s t d o u t )

SETCAR( args , S c a l a r I n t e g e r ( r e p l a y o r i g s t d o u t ) ) ;
return 1 ; // cont inue wi th the s ink ( ) c a l l

}

Listing 3.24: Dummy connection creation and substitution in the sink() call
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3.3.4.3 Replaying prints from C functions

Sometimes there is an external function which prints using the Rprintf() C
function. As external functions are suppressed during replaying these prints
are never replayed. Which of course is a problem because the output of the
replayed code is different from the output of the recorded code.

The sufficient solution is based on inserting a hook into the printing func-
tion. When an external function is about to be called then a handler is
registered for this hook. Whenever the hook is triggered then handler stores
the printed text in the trace. During replaying all the stored texts are printed
without the need to execute the external function.

Like the print.default() function the Rprintf() function also outputs
to the currently active connection. And since only prints which are directed
to the console or to the connection active before the start of the recording
should be replayed it is necessary to know the active connection before the
print is added to the trace. But the Rprintf() function does not have this in-
formation. The printing call is forwarded through some other functions until
it finally gets to one of several vfprintf() functions in the src/main/con-
nections.c file. There are implementations of the functions for every type of
connection. Therefore it is necessary to insert the hook into each of these
functions while passing the connection number as an argument.

The vfprintf() functions receive a format string and a list of arguments
rather than the final text. Because it is more convenient to store the final
text in the trace, the handler function must assemble it from the arguments
by using a vsnprintf() C function. The final text is then stored in the trace
along with an attribute named RRnR stdout vfprintf which contains a value
equal to the connection number received from the printing function.

In the after replaying handler the RRnR stdout vfprintf attribute is de-
tected and the text with the connection number are read from the trace. Like
in the previous cases, if the connection number is equal to the connection ac-
tive right before the recording (record_orig_std_out) it is replaced by the
connection active right before the replaying (replay_orig_std_out). Then
the appropriate vfprintf() function is used to print the text.
void r e p l a y v f p r i n t f ( Rconnection con , const char ∗ format , . . . ) {

v a l i s t ( ap ) ;
v a s t a r t ( ap , format ) ;
( con−>v f p r i n t f ) ( con , format , ap ) ;
con−>f f l u s h ( con ) ;
va end ( ap ) ;

}

Listing 3.25: Replaying the vfprintf () function using a helper function

There is a little trick involved because the vfprintf() function expects a
format string and a list of variadic arguments but there is only the assembled
text in the trace. This is solved by passing a simple "%s" format string and
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the text as the only variadic argument to a helper variadic function shown in
the excerpt.

3.3.4.4 Options related to printing

There are two options which control the behaviour of RRnR when it comes
to connections and printing. By default all functions that use connections are
recorded which means that if a file() function is used to open a file and a
readLines() function is used to read from it both are never executed during
replaying and their return values are read from the trace.

In case of a very big file being read this means that all the contents are
stored in the trace which can become too large to fit into memory. For these
situations there is a allow_connections option which disables recording of
all connection related functions. This includes all printing functions as well.

And then there is the already mentioned allow_prints option which con-
trols whether prints are replayed or not.

3.3.5 Graphics

Graphics output is very similar to printing in terms of allowing it to be re-
played. R contains several functions for chart plotting and other graphics out-
put which must be handled by RRnR in order to catch all non-deterministic
actions. The generated graphics can be saved to a file which is definitely
a non-deterministic action. But then there is the possibility to display the
graphics in a window which might be wanted to be replayed and which is
similar to printing to the console in that matter.

The output target of printing is defined by connections, the output target
of graphics generation is defined by devices. Therefore RRnR must decide
whether to replay a certain graphics operation based on the device used.

The functions for graphics generation are not directly responsible for se-
lection of the device that is going to be used. Instead, there is a global state
specifying the currently active device which is also very similar to printing and
its sink() mechanism. That is why the solution for graphics output is based
on the same idea of a dummy resource. When a device other than the default
one is being opened a dummy device is initialized and activated instead. Then
all the output of the graphics functions is directed to the dummy device and
discarded later.

The implementation of the solution is based on the detection of the de-
vice opening function calls. They are exactly these C functions: C_Quartz,
C_devCairo, C_PDF, C_PostScript, C_XFig, C_PicTeX and C_X11.

The last one is capable of outputting to either a file or a window thus
it is necessary to differentiate between the two modes by scanning its ar-
gument. If it contains a string (representing a filename) then it must be
flagged otherwise it can be ignored as it outputs to a window. The argu-
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ment must be evaluated in order to get its value. The detection is done in a
is_device_opening_call() function called by the detect_flags() function
which sets a IS_DEVICE_OPENING flag.

for ( i = 0 ; i < num device opening ; i++)
i f ( symbo l s dev i ce open ing [ i ] == func symbol ) return 1 ;

i f ( func symbol == i n s t a l l ( ”C X11” ) ) {
SEXP t e s t = PROTECT( eva l (CADDR( c a l l ) , env ) ) ;
int l en = s t r l e n (CHAR( asChar ( t e s t ) ) ) ;
UNPROTECT(1) ;
i f ( l en ) return 1 ;

}

Listing 3.26: Detection of a device opening call

The easiest way to create the dummy device is by calling pdf(NULL) R
function. In order to do that RRnR must be temporarily disabled while the
function is running as it might interfere with the trace. The dummy device
is created in the before replaying handler if the IS_DEVICE_OPENING flag is
set. Unlike the dummy connection creation, which is based on argument
substitution of the sink() function, here is a completely different function
being called and the original device opening call it not replayed at all.

i f ( f l a g s & IS DEVICE OPENING) {
void ∗ o l d h a n d l e r s b e f o r e [ 7 ] ;
RRnR remove al l handlers ( o l d h a n d l e r s b e f o r e ) ;
SEXP t , s ;
t = s = PROTECT( a l l o c L i s t (2 ) ) ;
SET TYPEOF( s , LANGSXP) ;
SETCAR( t , i n s t a l l ( ” pdf ” ) ) ; t = CDR( t ) ;
SETCAR( t , R NilValue ) ; t = CDR( t ) ;
eva l ( s , R GlobalEnv ) ;
UNPROTECT(1) ;
RRnR re s to r e a l l hand l e r s ( o l d h a n d l e r s b e f o r e ) ;

}

Listing 3.27: Creation of the dummy graphics device

Finally there is one small problem which must be resolved. All the graphics
generation is done in C code which means that there is a lot of external
functions called. All of them must be replayed in order for the graphics to be
drawn, therefore the best approach is to not record any of them at all, because
recording them would mean that they are never executed during replaying.
This is secured by ignoring all external calls which belong to the grDevices
and graphics packages. Fortunately the package name can be easily retrieved
from the captured C function call.

There is a recording option added called allow_graphs which controls
whether the solution described is applied or not. The default value is TRUE. If
switched off then all graphics operations are recorded and no graphics output
is produced during replaying.
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3.3.6 Debugging

Since RRnR is meant to be used for debugging it is very important that
it allows the user to do that. The preferred way is to use the R’s built-in
debugger but in order to support it there had to be made a few modifications.

3.3.6.1 AST calls capturing

When a function is being inspected in the debugger it is not run in the bytecode
interpreter even though it has bytecode available. Instead, the instructions
are interpreted by the AST interpreter which means that RRnR must also be
able to capture function calls made inside the AST interpreter.

This can be done by inserting the before and after hooks into the eval()
function. There is code which differentiates between builtins, specials and
closures and executes the functions very similarly to how the bytecode inter-
preter in the bcEval() function does. Once again it is sufficient to capture
only the builtins so it is not necessary to insert the hooks in the other places.

However, all internal functions are called using the .Internal() function
which has its own builtin calling code. Therefore the do_internal() C func-
tion located in the src/main/names.c file must be patched as well by inserting
the before and after hooks.

3.3.6.2 Browser detection

The browser allows the user to evaluate an arbitrary expression inside the
current environment. It is a very useful feature so it should be supported
by RRnR in the replaying mode but it also introduces a problem. If a non-
deterministic function is called as a result of the expression evaluation, RRnR
detects that and tries to load corresponding return value from the trace.
That results in a trace corruption because the expression was not part of
the recorded run. The best solution is to temporarily disable RRnR while
the control is held by the browser which lets the expression to be evaluated
normally without any interference with the trace.

The browser can be opened in two different ways. The first one is the direct
call of the primitive builtin function browser(). In this case it is not sufficient
to capture this call by the standard before and after handlers because if RRnR
was disabled in the before handler, so that the user could safely execute an
expression in the browser, then the after handler would be disabled too and
it would never have the chance to re-enable RRnR. Instead, the hooks must
be inserted directly in the do_browser() C function in the src/main/main.c
file.

The browser before handler uses the RRnR_remove_all_handlers() func-
tion to temporarily remove all handlers except the browser after handler which
later restores all the handlers and re-enables RRnR.

42



3.3. Dealing with corner cases

The other way of opening the browser is by marking a function to be
debugged using the debug() function which causes a special code in the inter-
preter to be executed. It calls the browser directly in C and can be captured
by inserting the hooks mentioned above around this special code which is
located at several places in the src/main/eval.c file.

It is important to note that the browser can be called recursively (by calling
a browser() function from a browser). Only the top level browser call must
be considered by RRnR. Since the browser before handler is disabled after the
top level browser is opened there is no danger of it being invoked multiple
times. But the browser after handler remains active all the time. Therefore
if a browser was called from a browser then the browser after handler would
be called when the inner browser is closed, not the top level one.

In order to solve that the RRnR_browser_before() wrapper function re-
turns -1 when RRnR is temporarily disabled. And the browser after handler
is invoked only when the return value is not -1, which happens only in the
case of the top level browser. This is very similar to how the eval after hook
is triggered as described in 3.3.1.1.

3.3.6.3 Allowing code injection after recording

In order to efficiently debug a function users often want to inject a piece of
code into it. R supports this use case by providing the trace() function
which can do that. The user supplies the function name, the code to be
injected (called tracer) and optionally the line in the function where the code
should be injected.

If the code is injected before recording there is no problem. However, this
technique is most useful when used after the recording so that the injected
code can be modified before each replaying. In RRnR this functionality must
be explicitly supported because generally any modification between recording
and replaying is prohibited and also automatically ignored because of the
environment cloning.

This means that by calling the trace() function after the recording the
code is injected into the function which is in the active environment but during
replaying the function from the cloned environment, which does not contain
the injected code, is used instead.

This problem is solved by injecting the code into the cloned version of the
function instead. RRnR provides a custom recordTrace() function which
expects a replay structure as its first argument. recordTrace() first finds
the cloned version of the environment where the function to be modified is
located. And then it calls the original trace() function to inject the code in
there. All the other arguments of the recordTrace() function are the same
as in the original trace() function.

So the only difference from the user perspective is the different function
name and one more argument supplied. But from the RRnR perspective
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there is one more implementation detail to deal with. The injected code
might contain some non-deterministic calls which are not captured in the
trace because the code has changed between the recording and the replaying.
Therefore it is necessary to pause the RRnR while the injected code is being
evaluated and unpause it immediately after that.

R already contains a construct which monitors the execution of the code
injected by the trace() function for its own tracing purposes by unsetting
(before execution) and resetting (after execution) a trace state. This can be ex-
tended to also inform the RRnR of this by adding a hook in do_traceOnOff()
C function which handles the state changes. The handler for this hook then
unregisters and re-registers all the event handlers to pause and unpause RRnR.

3.3.6.4 Disabling browser during recording

Sometimes it might happen that the user inserts a browser() call in the code
before the recording starts. However, if the call is there during recording
it means that the browser is actually opened during recording which is an
unwanted behaviour. All debugging should happen in the replaying mode.
That is the reason why the browser() call is disabled during recording.

Implementation of this feature uses the browser before hook described ear-
lier. The browser before handler controls the execution of the browser by
returning 1 or 0. The value is received at the places of the hooks and the
browser code is encapsulated in a simple if statement.

3.3.6.5 Automated bug finding

The main property of the non-deterministic bugs is that they are very rare.
RRnR allows the user to record the bug and then replay it with 100% certainty
but there still remains the problem of capturing it for the first time. Depending
on the probability this may take hundreds, thousands or even more attempts.

RRnR is able to help with this problem by automatically recording an
expression in a loop until the bug appears. Then it returns the corresponding
replay structure and the user can start debugging. Of course the user must
provide a way to determine which run contains the bug.

There are two options. One is that the bug causes an error (an exception)
which terminates the run. In that case RRnR is able to detect that auto-
matically. The other option is that the user supplies a function which can
recognize the bug from the result of the expression.

The whole feature is implemented in R code in a recordFindBug() func-
tion. The function takes 3 arguments – the expression, the detection function
and a list of options. If the second argument is set to NULL (which is the
default) then the error detection mode is used. As a failsafe, if the bug cannot
be detected in a reasonable amount of time, the infinite loop is broken. The
maximum allowed time can be set by a max_time option.
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whi le (TRUE) {
o ld t ime <− proc . time ( ) [ [ 3 ] ]
r e c <− recordExprEnv ( as . exp r e s s i on ( s u b s t i t u t e ( code ) ) , parent .
↪→ frame ( ) , opt ions )
t o t a l t i m e <− t o t a l t i m e + ( proc . time ( ) [ [ 3 ] ] − o ld t ime )

i f ( i s . n u l l ( de t e c t ) && i s ( r e c $ r e s u l t , ” e r r o r ”) )
re turn ( r ec )

i f ( i s . f unc t i on ( de t e c t ) && detec t ( r e c $ r e s u l t ) == TRUE)
return ( r ec )

i f ( t o t a l t i m e >= max time )
re turn (NULL)

}

Listing 3.28: The automatic bug detection loop

3.3.7 JIT compilation

Another source of non-determinism in R which must be considered is Just In
Time compilation. The JIT functionality in R is enabled by default which
means that when a function is called for the first time its code is compiled
into bytecode and stored in the function’s object. All future calls are then
performed in the bytecode interpreter rather than in the AST interpreter
which is much slower. The compiler is almost entirely written in R.

From the RRnR perspective this means that when a function is first called,
which is likely to happen during recording, there is a lot of R code executed
by the compiler which can also participate in the recording process. During
development it turned out that there in fact are some non-deterministic calls
in the compiler which cause values being added to the trace. But even if there
were no such calls it is unnecessary to waste resources on processing code
which should not be recorded in the first place. The main problem is that the
compiler is not invoked during replaying as the functions have been already
compiled during recording. Therefore any elements in the trace corresponding
to the compiler’s code are never retrieved and the trace becomes misaligned.

In order to prevent the compiler’s code to be recorded it is necessary to de-
tect the beginning and the end of the JIT compilation and temporarily disable
recording in between these events. The JITing is done in the src/main/eval.c
file in R_execClosure() function. There is an if condition checking whether
the compilation should be done and a simple code in the body which essen-
tially calls the R_cmpfun() function which does the compilation of a single
function. This is the perfect place for a pair of hooks. The JIT before hook is
appended to the condition making it able to control the JITing by its return
value. And the JIT after hook is inserted at the end of the body code block.

Similarly to the standard before and after hooks there are two sets of
handlers, one set for recording and one for replaying. These handlers are
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registered at the beginning of the do_record() and do_replay() functions
and they are unregistered at the end.

Similarly to the browser before handler the JIT before recording handler
unregisters all handlers by which it effectively disables the recording. The only
handler which is kept registered is the JIT after handler which then restores
all the original handlers and thus re-enables the recording. During recording
the compiler is allowed to run by returning 1.

The only purpose of the JIT before replaying handler is to skip the JITing
by returning 0. This means that if for some reason an uncompiled function
is called during the replaying the compiler is not invoked as that would also
misalign the trace. The JIT after replaying handler is empty and does noth-
ing.

3.3.8 Lazy loading

From the RRnR perspective lazy loading is similar to JIT compilation. As
JIT compiles a function only when it is needed, lazy loading loads a package
only once used. And similarly to JIT it brings some complications for RRnR
because the loading invokes R code which must be ignored as it runs only once
for a package. However, unlike JIT lazy loading is invoked from R code which
means there cannot be a classic C hook inserted.

The problem is solved by inserting two R hooks into the src/library/base/R/
lazyload.R file inside a callback function called envhook. From this function
a lazyLoadDBfetch() C function is called which performs the main loading
operation. However, it is not possible to insert the hooks just into this func-
tion as there are some accompanying calls in the R code which might cause
problems as well.
i f (”RRnR” %in% loadedNamespaces ( ) )

i f ( e x i s t s ( ’ l a z y l o a d b e f o r e ’ , where = asNamespace ( ’RRnR’ ) ) )
RRnR : : : l a z y l o a d b e f o r e ( )

. . .
data <− lazyLoadDBfetch ( key , d a t a f i l e , compressed , envhook )
. . .
i f (”RRnR” %in% loadedNamespaces ( ) )

i f ( e x i s t s ( ’ l a z y l o a d a f t e r ’ , where = asNamespace ( ’RRnR’ ) ) )
RRnR : : : l a z y l o a d a f t e r ( )

Listing 3.29: The lazyload before and lazyload after hooks

Because the wrapper functions for the hooks are implemented in the RRnR
package’s R code it is important to check whether the RRnR package has
already been loaded before calling them.

The R wrapper functions then just call the appropriate C handlers which
temporarily disable (in case of lazyload before) and re-enable (in case of lazy-
load after) RRnR. It is safe to use the RRnR_remove_all_handlers() function
to unregister all C handlers without worrying about accidentally unregister-
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ing the lazyload after handler because the lazyload handlers are called directly
from R without participating in the register/unregister scheme.

This also means that the lazyload handlers are the only handlers which
are active all the time even when RRnR is not active at all. This, however, is
not a problem as they do not run any performance critical or otherwise harm-
ful code. There is also an exception added for the C_do_lazyload_before
and C_do_lazyload_after symbols which allows the C handlers to be called
from R without being detected as external function calls and therefore being
recorded.

3.3.9 Error handling

RRnR is supposed to be able to replay expression executions which contain
bugs. The symptoms of the bugs may be different but it is safe to assume that
some of the bugs would result in errors. Therefore it is important for RRnR
that an error triggered while recording does not disrupt the whole process.

There are two ways to throw an error – either by using the stop() function
in R or by the error() function in C. But ultimately the result is the same
in both cases. None of the C or R functions which are currently active on
the stack are finished and control is returned back to the console with the
exception of context exit handlers.

R has a facility called contexts which in a way simulates try-catch state-
ments from languages like C++. When an error is reported then exit handlers
of all active contexts are called in the order from the deepest on the stack.

For RRnR the problem is that when an error terminates the do_record()
or do_replay() functions all the handlers registered at their start are never
unregistered. Once the control returns back to R all calls are still monitored
and recorded or replayed by the handlers which results in an error very soon
and most likely destroys the whole R session. Therefore it is necessary to create
a context around the main expression evaluation in both the do_record() and
the do_replay() C functions.

The exit handler registered for the context has a simple job of unregistering
all the handlers by calling the RRnR_remove_all_handlers() function.

RCNTXT cntxt ;
beg incontext (&cntxt , CTXT CCODE, . . . ) ;
cntxt . cend = &u n r e g i s t e r a l l h a n d l e r s ;

SEXP new re su l t = PROTECT( eva l (VECTOR ELT( expr , 0) , env ) ) ;
endcontext(&cntxt ) ;

Listing 3.30: Wrapping main expression evaluation into a context

While the exit handler ensures that RRnR is properly terminated on the C
level there is still some R code which should be executed in order to properly
terminate RRnR on the R level, for instance the replay structure should be
returned from the record() function.
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R has a tryCatch() function which can be used for this. The do_record()
function call is wrapped inside a try block and in the case an error occurs a
do_get_replay_struct() C function is called which creates the replay struc-
ture from the C global variables and then returns it. This is needed because in
case of an error the do_record() function does not return the replay structure
by itself. Similarly the tryCatch() function is used in the replay() function.

r e p l a y s t r u c t <− tryCatch (
. Ca l l ( C do record , expr , env , d e f a u l t o p t i o n s ) ,
e r r o r = func t i on ( cond ) { pr in t ( cond ) ; . Ca l l (
↪→ C d o g e t r e p l a y s t r u c t , expr , env , d e f a u l t o p t i o n s ) }

)

Listing 3.31: Handling errors in the record() function

3.3.10 Replaying C errors

As mentioned before, C functions are not replayed which introduces problems
when their execution causes some side effects. A very important side effect is
calling the error() function which is shown in the following example. There
is an R function being recorded which calls a C function. In a normal situation
it returns some value which is recorded and later loaded from the trace during
replaying. However, there is an error in the C function.

# R: func <− f unc t i on ( ) . Ca l l ( C funct ion )
r ec <− record ( func )
r ep lay ( r ec )

// C: SEXP C funct ion ( ) {
e r r o r (” e r r ”)
re turn S c a l a r I n t e g e r (0 ) ;

}

Listing 3.32: Example of an error in a C function that must be replayed

When the error happens during recording the execution is terminated and
the resulting replay structure contains no return values in the trace. The
problem occurs during replaying. The C function is not replayed hence the
error never occurs. But that means that RRnR tries to load the return value
of the function from the trace which is not there. This results in an error but
in a completely different one than expected/wanted.

The problem can be resolved by inserting a hook into the error() function
which is located in the src/main/errors.c file. The handler of the hook gets the
text message of the error as an argument and it inserts it into the trace with
an attribute RRnR error. When replaying, elements of the trace with this
attribute are detected and the error() function is called with the message.
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3.4. Testing

3.3.11 Invisible returns

R supports invisible returns. When a function returns normally and is called
directly from the console then the return value is printed after the execution
is finished. When a function returns invisibly then the return value is not
printed.

In order to support this functionality even when replaying a function the
R part of RRnR must obtain the visibility state which was valid when the
replaying of the function finished and according to it use the invisible()
function or not. The return value of the do_record() function therefore
consists of not only the return value of the function being replayed but it also
contains a boolean stating the visibility. The current visibility can be obtained
from a global variable R_Visible.

SEXP r e t = PROTECT( a l l o c V e c t o r (VECSXP, 2) ) ;
SEXP nm = PROTECT( a l l o c V e c t o r (STRSXP, 2) ) ;
SET STRING ELT(nm, 0 , mkChar( ” value ” ) ) ;
SET STRING ELT(nm, 1 , mkChar( ” v i s i b l e ” ) ) ;
SET VECTOR ELT( ret , 0 , new re su l t ) ;
SET VECTOR ELT( ret , 1 , S c a l a r L o g i c a l ( R Vi s ib l e ) ) ;
s e t A t t r i b ( ret , R NamesSymbol , nm) ;
return r e t ;

Listing 3.33: Creating the two part return structure with the return value and
its visibility

3.4 Testing

Throughout the development the functionality of RRnR had been tested using
a series of tests. They range from very simple unit tests to more complex ones
but each test is focused on a single problem. The tests are located in the
src/library/RRnR/tests/testthat folder. They are divided into several files,
each file contains a series of tests which test the same problem from different
perspectives or which test several similar problems.

A tool called testthat10 can be used to run the tests. The tests are executed
by devtools::test(pkg="dir") command where the pkg argument is a path
to the RRnR source folder (.../src/library/RRnR). Currently there are 109
individual tests in 16 test files.

Typically the tests make sure that a certain R code gives the same result
in the recording mode as with RRnR disabled. Then it tests that the output
is also the same in the replaying mode. This is often done by redirecting the
text output to a file and then comparing the contents of the files. The tests use
a md5sum() function from tools package to compare the files. All temporary
files are removed after a test is finished.
10testthat – https://cran.r-project.org/web/packages/testthat/index.html
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3. Implementation of RRnR

Some of the last tests require Internet connection as they record download-
ing a webpage and there is also a test which requires date system command
to be available.

3.5 Source code of the implementation

Source code of the implementation is available on Github at https://github.com/
krystofslavik/RRnR. The repository contains the entire fork of R 3.4.3 and
can be compiled using ./configure and make commands. The compiled pro-
gram can be run by calling bin/R.

The repository also contains the source code of the thesis in LATEX and
data gathered from benchmarks and vignette testing.
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Chapter 4
Evaluation

This chapter focuses on evaluation of RRnR, testing how broadly it can be
used and analyzing its performance impact.

4.1 Benchmarks

Two sets of benchmarks have been used in order to measure the performance
influence of RRnR in a wide variety of tasks. Tests have been run in three
modes. The plain mode represents normal execution without recording or re-
playing. The record and replay modes represent execution with RRnR enabled
in the respective mode. Most of the tests were set up so that their running
time in the plain mode is approximately one second.

Data were gathered from a hundred runs of each test. Five warming runs
preceded measurement of each test. The benchmarks were run on an Intel R©
CoreTM i5-6500 CPU with 16 GB of RAM on Arch Linux OS with kernel
version 4.14.12. R was built with -O2 optimization setting using GCC version
7.2.1.

The testing program executes all the runs of a single test in the plain
mode, then executes all the runs in the record mode and then all the runs in
the replay mode. After that it continues with the next test. The replay mode
testing is preceded by a single run of the record mode which is used to obtain
the replay structure needed for the replaying.

Before each execution of a test garbage collector is explicitly run in order to
maintain similar memory conditions throughout the testing. Before running
a test in the plain and record modes random number generator is initialized
with a constant seed in order to remove as much randomness from the testing
as possible.

Running time is measured using proc.time() function, only the real time
value is taken into consideration.
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4. Evaluation

4.1.1 Expectations

It is important to mention what are the expected results of the benchmarks
as the actual results are later compared to these expectations and any abnor-
malities are described.

The record mode is expected to be slower than the plain mode because
additional work is done in order to do the recording while all the original work
is done as well. There is no reason for the record mode to gain any significant
performance although there might be some slight improvements caused by
different usage of cache in situations where there is minimal amount of calls
processed by RRnR. However, if there is some speedup measured it should
stay close to the margin of error.

The replay mode is expected to be faster than the record mode but not
necessarily faster than the plain mode. There is still some additional work
that must be done as all the calls must be processed and their return values
must be retrieved from the trace. Also the environment replacement can have
some negative performance impact.

Therefore in the worst case, when there is a lot of calls to be processed
and significant number of them is subject to the environment replacement,
the performance might be even worse than in the record mode. However, the
replaying should not be significantly slower than the recording.

On the other hand the replay mode may be much faster than the record
mode and in some cases it might be even faster than the plain mode. This
may happen when there is a small number of extremely slow non-deterministic
calls which are skipped during replaying and only their return values are im-
mediately loaded from the trace.

4.1.2 Charts

Charts in this section show average speedup for the record and replay mode
vs. the plain mode. Value of 1 means there is no speed difference. Value
of more than 1 represents a speedup. And value of less than 1 represents a
slowdown, for instance if a test has speedup of 0.8 it means that it is 1.25
(1.0/0.8) times slower.

The error bars in the chart represent 95% confidence intervals calculated
from the measured variance of the test runs. The confidence interval of a ratio
of two means is calculated using Fieller’s theorem [19].

4.1.3 R-benchmark

The R-benchmark suite [20] is a modified version of Philippe Grosjean’s set
of benchmarks from 2002, last revised in 2008. It focuses on mathematic cal-
culations, mainly on matrix manipulation, and uses mostly package functions
rather than custom defined ones. Most of the tests start by generating a
random set of data upon which the calculations are performed.
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4.1. Benchmarks

The R-benchmark consists of 15 tests in three categories, five tests in each.
For the purpose of this thesis the tests have been divided into separate files
and marked by codes consisting of one letter specifying category (A – C) and
one number specifying the test in the category. The tests have no official
names so the names have been inferred from the functionality they test.

Test code Test name Description
A1 Matrix deformation Transposing a matrix and changing its di-

mensions
A2 Matrix power Calculation of a high power of a matrix
A3 Sort Sorting a large vector of random numbers
A4 Matrix cross Cross product of a matrix
A5 Matrix lin. reg. Linear regression over a matrix
B1 FFT Fast Fourier Transform over a large vector
B2 Eigenvalues Calculation of eigenvalues of a matrix
B3 Determinant Calculation of a determinant of a matrix
B4 Cholesky Cholesky decomposition of a matrix
B5 Inverse Calculation of an inverse matrix
C1 Fibonacci Fibonacci numbers calculation
C2 Hilbert Creation of a Hilbert matrix
C3 GCD Greatest common divisors of pairs of values
C4 Toeplitz Creation of a Toeplitz matrix
C5 Escoufier Escoufier’s method

Table 4.1: Overview of R-benchmark tests

The results of the measurement can be seen in the chart 4.1. There are
five tests (A1, A5, B1, B4 and B5 ) where the speedup in the replay mode
is extreme. While in the plain mode they take approximately one second to
run in the replay mode they are completed almost immediately (less than 0.01
seconds). Although speedup in the replay mode is expected, such an extreme
speedup is worth a deeper description.

None of these five tests contain a direct implementation of an algorithm.
They use only a few package functions to do the heavy tasks instead. The
most important functions used are rnorm(), solve(), fft(), chol() and
crossprod(). All of them are either wrappers which immediately use .Call()
to call their C implementation or S4 methods of the Matrix package which
(after dispatch) also call their C implementation.

So the large performance benefit comes from the fact that all the results
are precomputed during recording and then just loaded from the trace during
replaying.
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4. Evaluation
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Figure 4.1: Speedup vs. plain mode in the R benchmark

This behaviour is, however, not common to all the tests in the benchmark
suite. Some algorithms are implemented directly in R’s C code and can be used
by calling an internal function. As these algorithms are not non-deterministic
the corresponding internal functions are not recorded and therefore the per-
formance benefit is not there. This is for example the case in the test B2
(using a eigen() function) which, as a result, does not show any significant
speedup or slowdown.

The rest of the tests show speedup between -20% and 90% which is within
expectations. The C4 test in the replay mode is slower than in the plain mode
which is also as expected, because the slowdown is influenced by the slowdown
in the record mode.

In the record mode the results are basically ideal. No significant perfor-
mance impact of the recording can be seen except for the C4 test which is
approximately 33% slower ( 1

0.75) than in the plain mode. The most likely
reason for this test to be slower is the amount of calls that must be processed
by RRnR during its execution as shown in the table 4.4.

With the amount of over 6 million intercepted calls the overhead of the call
processing becomes visible but at the same time the slowdown is not nearly as
big as it would have to be in order to make RRnR unusable in this case. The
replay mode is equally influenced by the call processing and shows basically
the same performance.
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4.1. Benchmarks

Test RRnR invokes Internal invokes Trace size
A1 31 10 1
A2 27 8 1
A3 30 10 2
A4 32 12 1
A5 493 91 173
B1 5 1 2
B2 62 21 3
B3 17 6 1
B4 553 118 186
B5 481 89 167
C1 16 1 1
C2 31 8 0
C3 102 1 2
C4 6,250,022 7 0
C5 96,996 29,281 5491

Table 4.2: Numbers of intercepted and recorded calls by RRnR
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Figure 4.2: Original results without “early-out” for primitives
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4. Evaluation

The RRnR invokes column in the table shows number of calls processed by
RRnR. Every invocation of the before handler is counted as one processed call
and the handler is invoked whenever there is a call of any builtin or external
function.

The Internal invokes column shows how many of the RRnR invokes are
caused by calls of internal functions (the rest is caused by external and prim-
itive function calls). The difference between the first two columns is very
important. External calls are all considered non-deterministic and primitive
calls are all considered deterministic, therefore they can be processed very
quickly. Processing internals, on the other hand, is much slower as their sym-
bols must be compared against the database of non-deterministic internals.

The last column shows the final size of the trace which can be also inter-
preted as an approximate number of the calls which were actually recorded.

In the C4 test out of the 6,250,022 processed calls none is actually recorded.
And in the C5 test, out of the 96,996 processed calls only 5491 are recorded.
This may seem very inefficient, however it is important to understand that
the only way to detect a non-deterministic call is by processing every single
call and make the decision to record it or not based on its properties.

During development there was not an “early-out” check for detection of
primitives which means that also the symbols of primitive functions were com-
pared against the database. That led to significantly worse performance as
shown in the chart 4.2. Especially the C4 test was negatively influenced by
the fact that for each of the 6,250,022 calls a search in the database had to be
made.

By adding the “early-out” for primitives the amount of searches was re-
duced to just 7 in this case. This optimization was created after evaluating
the results of this benchmark by using the table and the chart shown.

4.1.4 Shootout benchmark

The shootout benchmark suite [21] (officially called The Computer Language
Benchmarks Game) is a set of various computational problems which are used
to compare performance of different implementations of the algorithms in dif-
ferent programming languages. The project started in 2002 and was redesigned
several times since then. Today it officially supports over 20 languages, how-
ever R language is not one of them.

The actual implementation of the tests for R was taken from [22] which is
an unofficial port of the shootout benchmark. For each test there are multiple
implementations, the ones marked as the fastest were used for this testing.

Results of the measurement can be seen in the chart 4.3. Generally the
shootout benchmark tests showed much larger variation in running time than
the R-benchmark tests. This is probably due to the fact that the shootout
tests are more complex.

56



4.1. Benchmarks

Test name Description
binary trees Creation of a perfect binary tree
fannkuch redux Indexed-access to tiny integer-sequence
fasta native Generate and write random DNA sequences
fastaredux Generate and write random DNA sequences
k-nucleotide Use hash table to count nucleotide sequences
mandelbrot1 Generate an image of the Mandelbrot set
meteor contest Find solutions for the Meteor Puzzle
nbody Double-precision N-body simulation
pidigits List first N digits of PI
regexdna Match DNA patterns using regular expressions
revcomp1 Generate reverse complement of a DNA sequence
spectral-norm-alt Calculate spectral norm of a matrix

Table 4.3: Overview of shootout benchmark tests
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Figure 4.3: Speedup vs. plain mode in the shootout benchmark

The variation in the measured time is so consistent that even at 100 runs
per test the results do not converge to a stable value hence the confidence
interval spread is quite big, especially in the mandelbrot test.

The variation is, however, not caused by RRnR as it is also present in the
plain mode with similar spread.
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Figure 4.4: Running time of the tests of the shootout benchmark

It is also important to note that the confidence intervals in the chart 4.3
are influenced by the fact that this chart shows ratio of two means where the
intervals must be widened in order to keep the 95% confidence (as described by
the Fieller’s theorem). The scale of the variations may be better understood
when taking into account the actual test running times measured as shown in
the chart 4.4.

In most of the tests the record mode is on par with the plain mode, which
is a good result. In some of the tests the record mode shows a slowdown within
acceptable range, this is the case mainly for the fasta native, k-nucleotide and
meteor contest tests. Performance of the replay mode is generally the same
or slightly faster than the record mode.

Unlike the R-benchmark suite the tests of the shootout benchmark are
mainly implemented in R code, therefore there is also more calls to be pro-
cessed (which can be seen in the table 4.4).

The difference between the total number of processed calls (RRnR invokes)
and the number of internal calls processed (Internal invokes) can be very well
demonstrated on the shootout benchmark.

The highest number of RRnR invokes is measured in the pidigits test,
however there are other tests which showed bigger slowdown. That is caused
by the fact that these tests (meteor contest, k-nucleotide) have much higher
number of Internal invokes while the pidigits test has almost none.
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4.1. Benchmarks

Test RRnR invokes Internal invokes Trace size
binary trees 1,324,419 14 14
fannkuch redux 2 1 0
fasta native 913,386 63,350 33,342
fastaredux 1,043,968 81,543 36,674
k-nucleotide 562,382 281,029 377
mandelbrot1 43,440 15,416 2806
meteor contest 2,493,820 1,325,792 0
nbody 480,048 5 4
pidigits 3,166,771 737 108
regexdna 125 53 23
revcomp1 375,046 208,360 125,016
spect-norm-alt 85 8 2

Table 4.4: Numbers of intercepted and recorded calls by RRnR

4.1.5 Custom micro benchmarks

This benchmark suite is designed with the purpose to demonstrate the poten-
tial speed benefits of RRnR. It consists of several typical cases where a very
slow code can be run very fast during debugging. In a real world scenario
the user might benefit from these cases as it would allow him to repeatedly
debug the program without the need to wait for the exact same results to be
calculated in each run.

The first test called T1-C-sleep demonstrates a code which runs a slow
external C function. Because C functions are never called during replaying
the whole C function (sleep in this case) is skipped and its return value is
loaded from the trace immediately.

The T2-system-sleep test is a variation of the first one. This time the ex-
ternal slow code is invoked by a system call system("sleep 1"). As expected
the system call is skipped during replaying.

The T3-download test downloads a webpage. Because network communi-
cation is also a non-deterministic behaviour, it is skipped as well.

Finally there is the T4-big-file test which is a bit more realistic. It reads
a 3 MB file and counts all characters in it. During replaying the filesystem
access is completely omitted and the contents of the file are loaded from the
trace, which is already in memory, instead. The replaying is “only” two times
faster, however with bigger files the speedup would be higher.

Although it is worth mentioning that with a really big file, which would
not fit in the memory, it would be necessary to enable the allow connections
option which allows direct access to the filesystem even when replaying.
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Figure 4.5: Running time of the tests of the custom micro benchmarks suite

4.2 Vignette testing

A package in R may contain a set of vignettes. Vignettes are a form of
documentation that combines interleaved code and text describing the code.
The code is runnable and can be extracted. There are thousands of packages
available and many of them have vignettes, therefore using them to test RRnR
should provide a big picture of what percentage of use cases does RRnR cover.

864 vignettes from 456 packages were used in the following scenario – run
the vignette in the plain mode three times (to ensure that all caches are filled),
then record it once and replay it. Output of the three modes was saved to a file
and then compared based on its md5 sum. The record mode was considered
successful if it produced no error and its output was the same as in the plain
mode. The replay mode was considered successful if it produced no error and
its output was the same as in the record mode.

288 vignettes ended with an error in the plain mode so they were excluded
from the rest of the testing and also from the results. 9 other vignettes were
skipped because they took too much time to compute and two more vignettes
(dlnmTS and dlnmExtended) were skipped because they caused segmenta-
tion faults in the replay mode. The crash always happened during garbage
collection so it is a possible memory protection bug but it has not yet been
identified. However, thanks to the vignette testing another bug was discovered
and fixed which caused crashes of 10 other vignettes.
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4.2. Vignette testing

Success
19%Success with no output

48%

Replay success & record fail
3%

Record success & replay fail
26%

Fail
4%

Figure 4.6: Final results of vignette testing

Total vignettes used 864
Vignettes skipped 11 / 864 1.3%
Failed in plain mode 288 / 864 33.3%
Vignettes tested 565 / 864 65.4%
Record success 527 / 565 93.3%
Replay success 395 / 565 69.9%
Record fail, Replay fail 21 / 565 3.7%
Record success, Replay fail 149 / 565 26.4%
Record fail, Replay success 17 / 565 3.0%
Success 378 / 565 66.9%
Success with output 107 / 378 28.3%
Success with trace 378 / 378 100.0%
Success with output and trace 107 / 378 28.3%

Table 4.5: Detailed results of vignette testing
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4. Evaluation

Testing of the remaining 565 vignettes had the following outcomes:

• Success – these vignettes succeeded in both the record and the replay
modes and had some output. This means that the success of the tests
is backed by a strong evidence that the output of the replay mode was
the same as the output of the plain mode.

• Success with no output – these vignettes also succeeded in both modes
but they had no output, therefore their success is “only” backed by
the fact that there was no wrong additional output while replaying.
However, all of the successful tests generated a non-empty trace which
means that RRnR features were used during all these tests, even during
those with no output.

• Replay success & record fail – the output of the record mode was different
than the output of the plain mode but the output of the record mode
was successfully replayed in the replay mode. The failure in the record
mode can be caused by either an error in RRnR, error in the vignette
or by random output of the vignette. After investigation it turned out
that all of the vignettes in this category have random output (which
causes the output comparison to fail) except for one case. And since
the replaying worked without a problem these tests can be considered
mostly successful.

• Record success & replay fail – these vignettes were successfully recorded
(no errors, same output as the plain mode) but the replay had different
output. These failures were probably caused by unhandled corner cases
and therefore could be fixed during future development.

• Fail – these vignettes failed in both the record and the replay modes.
The failures in the record mode were in most cases (16 out of 21) caused
by a random output of the vignettes. The failures in the replay mode
were also most likely caused by unhandled corner cases.

4.3 Example usage

This section presents the usage of RRnR on an example program shown in
the Introduction (Listing 1) which computes average tangent of a given series
of angles in degrees. The program works as expected but under some rare
conditions it has an unexpected output Inf.

First it is necessary to record the program while the bug is visible. Because
the bug has a low probability of appearance, it takes a lot of runs to experience
it. Therefore the best approach is to keep recording the program in a loop
until the bug is discovered.
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4.3. Example usage

RRnR provides a function recordFindBug() which does exactly that. In
order to use it the user must provide a function which can detect the bug based
on the program’s output. In this case, fortunately, the bug can be detected
by a short function and the whole recording process looks like this:

program <− # d e f i n i t i o n o f the example program

detec t <− f unc t i on ( r e s ) i s . i n f i n i t e ( r e s )
r ec <− recordFindBug ( program ( ) , detect , opt ions=l i s t ( max time=20) )

Listing 4.1: Recording the bug in the example program

If the bug has been successfully recorded, the rec contains a valid replay
structure. Otherwise it contains NULL. It may happen that the bug is ex-
tremely rare and it would take a long time to capture. In that case it might
be necessary to manually set the timeout (as shown in the example), 20 sec-
onds is the default value.

After successfully recording the bug the user may start with the debugging.
Every time the program is replayed by calling replay(rec) the bug is there
so it can be debugged like a normal deterministic bug. In this case it might be
a good idea to insert conditional breakpoint inside the program’s loop where
the tangent is being calculated. By setting the breakpoint to be triggered only
when the tangent is Inf it should be possible to find out which angle causes
the problem.

f o r ( i in 1 : l ength ( ang l e s ) ) {
adj <− adjacent ( ang l e s [ i ] , 1)
opp <− oppos i t e ( ang l e s [ i ] , 1)
tan <− tangent ( opp , adj )

# Let ’ s i n s e r t the breakpoint here !
tangents [ i ] <− tan

}

Listing 4.2: The part of interest in the example program

Breakpoints can be inserted by using RRnR’s recordTrace() function
which is an RRnR version of the R’s trace() function. The first argument is
the replay structure, the second argument is the name of the function where
the breakpoint should be inserted, tracer contains the code of the breakpoint,
at specifies the position in the function and print=FALSE removes unnecessary
output.

After starting the replaying the browser opens once the specified condition
is.infinite(tan) is met. Then by browsing the active variables it turns out
that the value of the tangent is indeed infinite, because the 5th angle in the
input array has value of 90 degrees, therefore the calculated adjacent side of
a triangle has 0 length and the fraction of the opposite and adjacent sides is
undefined.
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4. Evaluation

> recordTrace ( rec , ”program ” , t r a c e r=quote ( browser ( expr=i s .
↪→ i n f i n i t e ( tan ) ) ) , at=l i s t ( c ( 8 , 4 , 5 ) ) , p r i n t=FALSE)
> r ep lay ( r ec )
Cal led from : eva l ( expr , p )
Browse [1] > tan
[ 1 ] I n f
Browse [1] > ang l e s [ i ]
[ 1 ] 90
Browse [1] > i
[ 1 ] 5
Browse [1] > adj
[ 1 ] 0
Browse [1] > opp
[ 1 ] 1
Browse [1] > opp/ adj
[ 1 ] I n f
Browse [1] > Q
>

Listing 4.3: Example debugging session
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Conclusion

The goal of this thesis was to create a tool which would help users of R
programming language to find non-deterministic bugs in their programs by
recording the execution of a program when the bug is visible and then replay-
ing it later multiple times with the bug always present. Also one of the main
requirements was the ability to debug from within the R session, ideally by
using the standard debugging tools provided by R.

First, the existing solutions for Record and Replay debugging were ex-
plored. Also the R language was inspected with the focus on the internals of
the interpreter in order to choose the best approach for implementation of the
solution.

Next, a basic solution was implemented by making necessary modifications
to the core R and by creating a new base package containing most of the
implementation.

After that the solution was improved, so that it could be used in more use
cases, by dealing with various corner cases like callbacks from C to R, altering
environments, printing or triggering errors.

Then the solution was evaluated using benchmarks and real world exam-
ples. Benchmarks showed that in most cases the solution has small negative
impact on performance in recording mode and often has quite big positive im-
pact on performance while replaying. Real world examples showed that even
though the solution does not currently support all possible use cases it still
can handle a significant percentage of them.

It can be clearly stated that the goal of the thesis was met as the im-
plemented tool works in many non-trivial cases. The thesis also proves that
the method used is viable and even though the tool does not yet support all
possible use cases it can be further improved to support more of them in the
future by extending the current solution.
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Conclusion

Future work

This final section briefly describes functionality that has not yet been imple-
mented and should be considered as possible future improvement of RRnR.

One of the first things to do is focusing on the vignette testing results,
especially on the reasons of the replay mode failures. Most likely these failures
were caused by corner cases which has not yet been handled. Therefore the
next step is to create a list of the problems and fix them. As of now the
following problems are known.

Recursive environment cloning

If an environment contains another environment then only the outer one is
cloned right now. Therefore when a change happens between recording and
replaying in the inner environment then the change is not reverted and it
might influence the replaying.

In order to address this issue it would be necessary to do recursive cloning
which may be very slow, memory demanding and complex as there would also
have to be a circular dependency check.

Support for S4 methods

The methods package uses class caches, method tables and other structures
which cause additional code to be executed along with the program being
recorded. It must be ensured that always the same code is executed in record-
ing and replaying runs.

Recursive in-trace replacement

The environment in-trace replacement now works only for environments which
are stored directly in the trace. But this process should work recursively even
for environments which are stored inside a data structure which is stored in
the trace.

Reverse execution

Finally there is a feature that might be implemented in order to enhance the
RRnR functionality. It is the ability to reverse-execute a program which is a
big feature of the Mozilla rr. It means that during debugging it is not only
possible to step forward but also to step backward.

Such feature can be implemented by creating snapshots of the program’s
state during its execution, then loading the latest snapshot before the current
position and stepping forward until the desired position in code is reached.

Usefulness of this function is apparent as it is beneficial to be able to step
through the code back and forth as needed in order to discover a bug.
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Appendix A
Implementation overview

Core R with RRnR modifications

Hooks in core R

RRnR package

RRnR

debug.c hooks

RRnR_trace_state in
  do_traceOnOff()

R implementation

+ record()
+ recordFindBug()
+ replay()

- clone_environments()
- replace_environments()
- clone_environment()
- replace_environment()
- iterate_environments()

connections.c hooks

RRnR_stdout_vfprintf in
  dummy_vfprintf(), file_vfprintf(),
  stdout_vfprintf(), text_vfprintf()

eval.c (AST interpreter) hooks

RRnR_before & RRnR_after in
  eval()
  
RRnR_browser_before & RRnR_browser_after in
  do_if(), do_for(), do_while(), do_begin()

RRnR.c wrapper functions

- RRnR_before()
- RRnR_after()
- RRnR_eval_before()
- RRnR_eval_after()
- RRnR_JIT_before()
- RRnR_JIT_after()
- RRnR_stdout_vfprintf()
- RRnR_browser_before()
- RRnR_browser_after()
- RRnR_error()
- RRnR_trace_state()

lazyload.R hooks

RRnR:::lazyload_before & RRnR:::lazyload_after in
  lazyLoadDBexec()

errors.c hooks

RRnR_error in
  error()

main.c hooks

RRnR_browser_before & RRnR_browser_after in
  do_browser()

names.c hooks

RRnR_before & RRnR_after in
  do_internal()

C implementation

- do_record()
- do_replay()

- do_get_replay_struct()
- parse_options()
- add_to_trace()
- peek_trace()
- read_trace()
- add_env_replacement()
- replace_env()

Handler functions

- record_before()
- record_after()
- replay_before()
- replay_after()
- eval_handler_before()
- eval_handler_after()
- eval_suppressor_before()
- eval_suppressor_after()
- record_JIT_before()
- record_JIT_after()
- replay_JIT_before()
- replay_JIT_after()
- do_lazyload_before()
- do_lazyload_after()
- record_browser_before()
- record_browser_after()
- replay_browser_before()
- replay_browser_after()
- record_stdout_vfprintf()
- error_handler()
- trace_state()

RRnR.c registrator functions

- RRnR_register_handlers()
- RRnR_register_eval_handlers()
- RRnR_register_JIT_handlers()
- RRnR_register_stdout_vfprintf_handler()
- RRnR_register_browser_handlers()
- RRnR_register_error_handler()
- RRnR_register_trace_state_handler()

- RRnR_get_all_handlers()
- RRnR_remove_all_handlers()
- RRnR_restore_all_handlers()

eval.c (bytecode intepreter) hooks

RRnR_before & RRnR_after in
  DO_DOTCALL(), CALL OP, CALLBUILTIN OP
  
RRnR_eval_before & RRnR_eval_after in
  eval()
  
RRnR_JIT_before & RRnR_JIT_after in
  R_execClosure()

Figure A.1: Overview of additions and modifications made during implemen-
tation
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Appendix B
Contents of enclosed DVD

Thesis.pdf.......................................the text of the thesis
thesis src.............................LATEX source code of the thesis

Makefile...............use make all to create PDF from the source
latex src/benchmarks.......................benchmark result data
latex src/vignettes ................... vignette testing result data

modified-R..............fork of R 3.4.3 with the RRnR implementation
configure.....................use ./configure to prepare Makefile
Makefile........................use make to compile the modified R
bin/R......................................the compiled executable
src/library/RRnR...................the RRnR package source code

results..........raw results of the benchmarks and the vignette testing
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