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supervisor, Ing. Josef Kokeš, for his guidance, engagement, extensive know-
ledge, and willingness to meet at our countless consultations. I would also
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Abstrakt

Tato diplomová práce se zabývá studiem protokolu Signal. Zaměřuje se pře-
devš́ım na použitou kryptografii, funkcionalitu a strukturu protokolu. Práce
dále obsahuje analýzu zdrojových kód̊u oficiálńı implementace a porovnává
stav protokolu s jeho dokumentaćı. Práce také diskutuje potenciálńı bezpeč-
nostńı slabiny protokolu a formuluje jejich zmı́rněńı či odstraněńı.

Kĺıčová slova protokol Signal, bezpečnostńı analýza, instant messaging,
bezpečná komunikace, Double Ratchet, forward secrecy, výměna kĺıč̊u

Abstract

This thesis provides a security analysis of the Signal Protocol. The protocol’s
cryptography, functionality, and structure are discussed. The source codes of
the official implementation are analyzed and the protocol’s state is compared
with the documentation. Finally, the protocol’s potential security vulnerabil-
ities are examined and their mitigation or removal is formulated.

Keywords Signal protocol, security analysis, instant messaging, secure com-
munication, Double Ratchet, forward secrecy, key exchange
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Introduction

Instant messaging (IM) is a very popular form of online communication. It
allows people from all over the world to connect with each other in real-
time, drawing inspiration from the written word. It is an alternative to the
well-known email communication which provides a more formal method of
correspondence.

The first IM applications started to emerge in the mid-1960s and were
originally limited to the local area networks. When the Internet began to
grow, IM applications expanded to the global scope and IM communication
evolved significantly.

However, with the spread of this trend, people started to realize that
not every communication platform is secure. This privacy awareness star-
ted to grow since many cases of mass surveillance and communication inter-
ceptions from government organizations were published. Edward Snowden,
a former NSA employee, exposed one of the biggest mass surveillance cases
which caused an increase in privacy awareness among internet users.

In this thesis, we provide a brief overview of the IM protocols which are
frequently used or which were very popular during their era. We focus on both
unsecured protocols and very robust security solutions, providing an insight
into the commonly used cryptographic principles, such as the forward secrecy,
the asymmetric cryptography, the Diffie-Hellman key exchange or both the
client-server and the end-to-end encryption schemes.

In the second chapter, we analyze the supposedly most secure IM protocol
on the planet – the Signal Protocol – in detail. We provide an in-depth
description of the protocol, the theoretical understanding of its functionality
along with the mathematical background. We explain how these prelimi-
naries improve the security of the cryptographic operations and we describe
the ideas behind the protocol which can be actually used separately in other
implementations as well.

In the third chapter, we analyze the official implementation of the Signal
Protocol libraries which are used in the Signal for Android application. The
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Introduction

analysis is based on the theoretical knowledge of the protocol, inspecting the
particular implementation and its specifications. We compare the Signal Pro-
tocol implementation to the official documentation and we discuss any present
discrepancies and undocumented specifications.

Finally, we formulate security considerations regarding the protocol’s de-
sign and we describe how to mitigate the vulnerabilities or how to remove
them completely.
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Chapter 1
Security Status of IM Protocols

During the growth of the Internet, many developers worked hard on new in-
stant messaging (IM) protocols which would connect people over the network.

Currently, countless IM protocols are used all over the world which can
transmit data from one side to another over the network – either safely using
the cryptography methods, or by unsecured communication mostly in a plain
text form.

To provide a general perspective, we decided to present a few diametrically
different protocols from less secure ones (e.g. the IRC protocol in its original
design) to the very robust security solutions (e.g. the Signal Protocol). Fur-
thermore, we decided to select some frequently used protocols for the security
inspection.

The OTR was one of the first protocols which supported end-to-end en-
cryption and it also popularized the concept of the forward secrecy, as opposed
to the Pretty Good Privacy protocol (PGP). Its design allowed it to be used
as a plugin to other IM clients as well.

Jabber was very popular during the spread of the IM communication. It
provided a free and open alternative to the proprietary IM services of the day,
such as ICQ or AOL Instant Messenger [1].

On the other hand, the MTProto is a very robust protocol which is cur-
rently used in the Telegram instant messenger. It has its own cipher sys-
tem design which is partly based on well known cryptographic standards. It
presents two types of encryption approaches – client-server and end-to-end
encryption.

1.1 IRC

Internet Relay Chat (IRC) is a client-server protocol which supports real-time
communication with people from all over the world.

IRC was created by Jarkko Oikarinen in August 1988. In cooperation with
Darren Reed, he proposed a Request for Comments (RFC) 1459 [2] from May
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1. Security Status of IM Protocols

1993 regarding this protocol. Even though this RFC presents the IRC as an
experimental protocol, it became more popular every year and it is active to
this day. It is designed to mainly provide a group communication in so called
channels, but it can be used for one-to-one communication as well. However,
all the communication always goes through a server.

The typical setup involves a server forming the central point for the clients
(or other servers) to connect to [3]. Each server has to have a copy of the global
state information. This is a limiting factor for the maximum reachable size of
the network and it is heavily hardware dependent.

In comparison to the Simple Mail Transfer Protocol (SMTP) or the Ex-
tensible Messaging and Presence Protocol (XMPP), IRC uses a multicast when
sending a message. This means the message travels to the server only once
and it is then redistributed to all recipients.

1.1.1 Security Considerations

The communication over the IRC protocol was originaly unencrypted [2]. In
addition, client can be a very simple socket program capable of connecting to
the server [4]. This means that the original design is very simple with almost
no restrictions on the client side.

Because the IRC protocol is centralized, it can be more vulnerable to
denial-of-service attacks (DoS), sometimes called “nukes”. The typical result
of the DoS attack made network computers disconnect or crash [5].

TLS/SSL connection support was later implemented. The server should
listen on port 6697 for any incomming secured communications [6]. If the client
connects to this port, a standard TLS/SSL handshake should take place. The
tunnel secures the communication between the client and the server.

However, any client connected to the same channel can see all the messages.
If the channel is not TLS/SSL restricted, any client who does not use a secured
tunnel exposes the plaintext communication from server to her, effectively
invalidating all the encryption.

1.1.1.1 Malicious Servers

The standard structure of the network (which is containted of the IRC servers)
is a spanning tree [3]. Each server acts as a central node for the rest of the
network. Every message is routed only through necessary branches, but the
network state is sent to every server. This results in a very limited scalability
of the IRC network. In addition, every connection between two servers is
a serious single point of failure [3].

There is generally a high degree of trust between servers. Furthermore,
every server assumes a neighbor server is in the correct state, e.g. its database
is consistent [2].
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1.2. OTR

If a server is buggy, misbehaving or malicious, it can cause serious damage
to the IRC network. For example, if the connection between the two servers is
interrupted, additional network traffic is generated because a network split and
a network join is performed. This can result in a complete network congestion
or a temorary loss of communication between the users [3].

1.2 OTR

Off-the-Record (OTR) was one of the first protocols supporting end-to-end
encryption. It was designed to provide the perfect forward secrecy along with
encryption of the contents [7].

The name “Off-the-Record” originates in journalism. Sometimes, a journ-
alist wanted to know more in-depth information about a topic which was con-
sidered confidential and thus the source of the information was not published.
Following this idea, the OTR was designed to provide private communication
with a deniable authentication, digital signatures, and more.

The design of the OTR protocol allows it to be used as a plugin to the
already existing IM clients, such as GAIM1 [7]. Although the OTR was de-
signed mainly for the IM communication, it can be actually used in the email
communication as well – using so called ring signatures.

1.2.1 Cryptography

The OTR significantly improves a previously unsecured IM communication.
In order to do so, it presents a few cryptographic approaches.

To ensure communication is secured, a message has to be encrypted. AES
is used for a symmetric encryption/decryption with 128-bit keys. The key
is a shared secret which is established using the standard Diffie-Hellman key
agreement.

As previously mentioned, OTR presents perfect forward secrecy. Thus,
the symmetric keys which are used for encryption and decryption have to be
deleted as soon as possible, i.e. immediately after the client is sure that they
will not be used at any time in the future. After the old key was deleted,
a new key is established using the Diffie-Hellman agreement. The client has
to handle out-of-order messages, too, because the messages could be lost or
delayed in transit. This potentially weakens the forward secrecy, but the risk
is not too high with a proper balance of storage capacity and timeouts to
reflect a common traffic loss.

Both parties have to be authenticated. A message authentication code
(MAC) is used for authenticating each message. To generate a MAC key,
a one-way hash function is applied to the decryption key [7]. This makes it
impossible for Eve (an eavesdropper) to convince anyone else that it was Alice

1GAIM was a Linux client which is currently called Pidgin.
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or Bob and not her who wrote the message (if we assume that Eve could
somehow decrypt the message in the first place). SHA-1 is used as a hash
function for HMAC (hash-based MAC).

The initial Diffie-Hellman exchange is authenticated as well. For this pur-
pose, digital signatures are created using a standard RSA with long-lived
private and public signature keys [7].

Note that the public keys should be verified out-of-band using another
communication channel (e.g. in person with a fingerprint written on a piece
of paper). Without it, there is absolutely no cryptographic guarantee of the
authenticity of both parties because the communication could already be in-
tercepted using a man-in-the-middle attack.

1.3 Jabber

The Extensible Messaging and Presence Protocol (XMPP), which was previ-
ously called Jabber, is the communication protocol based on the XML (Ex-
tensible Markup Language). Jabber was invented by Jeremie Miller in 1998
and it was later formalized as the XMPP by the Internet Engineering Task
Force (IETF) as an Internet Standard for messaging and presence [8]. It
supports both one-on-one communication and multi-party messaging [1].

Unlike most of IM protocols, the XMPP is an open standard. This means
that anyone can implement an XMPP service with the usage of an arbitrary
software license. Thus, it can be used for example in the internal communic-
ation in a wide organization.

The XMPP is the client-server protocol with a decentralized network
model. This means that there is no central (master) server and anyone can
run their own server that can be isolated from the public network. This is
a very effective solution, e.g. for a company intranet [9].

On the Jabber network, every client is identified by the Jabber ID (JID).
This ID is structured as a username and a domain name (i.e. similar to the
email addresses) [8].

1.3.1 Cryptography

The XMPP had not been secured for many years. In the original implementa-
tion, the XMPP communication used open-ended XML streams over long-lived
TCP connections and all messages were in an unencrypted text form. This
also meant that the communication had a higher network overhead compared
to purely binary solutions. The overhead was later mitigated by serialization
methods [10].
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1.4. MTProto

1.3.1.1 Signing and Encrypting Messages

Later on, the standard TLS/SSL encryption was introduced to the XMPP
which allows to encrypt the communication between hops, i.e. the client-server
or the server-server communication [11]. Thus, the communication is not
end-to-end encrypted. However, the XMPP developer community is actively
working on end-to-end encryption to raise the security bar even further [9].

The XML messages can be digitally signed and/or encrypted. In order
for the message to be sent, the encrypted contents have to be encapsulated in
a XML CDATA section [12]. Thus, the recipient’s address (JID) is visible to
everyone but the contents of the message are secured by the encryption. In
the XMPP, standard AES-128 in CBC mode is used for encryption and the
RSA is used for key transport [12].

The signing process is performed using the standard S/MIME which pro-
vides the authentication, message integrity and non-repudiation [13]. For
example, Jabber.org uses the Let’s Encrypt certification authority [14, 8].
Because the Let’s Encrypt issuing certificate is bundled with many platforms
and applications, Jabber can be used on many devices. The RSA with SHA-1
signature algorithm is used for signing the data [12].

Furthermore, every message should contain a timestamp as a counter-
measure to possible replay attacks. A client application must verify that
the received timestamp is within five minutes of the current time and the
timestamp should be also greater than any previously received timestamp in
the last ten minutes (which passed the previous check) [12].

1.3.1.2 Signing and Encrypting Presence Information

As mentioned, the XMPP is also the presence2 protocol. However, the att-
acker could take advantage of this information. Thus, the presence information
should be signed and/or encrypted as well [12]. Because the presence inform-
ation is also the XML object, the process is very similar to the one described
in section 1.3.1.1.

1.4 MTProto

MTProto protocol allows end-to-end encryption of the IM communication.
It is currently used in the Telegram Messenger which is available for mobile
phones and desktops alike. Users can transmit messages, files and other data
such as audio and video calls.

The Telegram team decided to create a brand new IM protocol which uses
some of well known cryptography standards (e.g. encryption using AES), but
it also represents a new encryption scheme as a whole. The reasoning behind

2The presence is the ability to see if the other participant is online.
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this is based on supposedly better reliability on weak mobile connections as
well as better delivery times [15].

Even though the client-side code is open-source, all codes are not published
and the server side is closed-source (i.e. proprietary) [16]. However, the
Telegram team says that all source codes will eventually be published.

The MTProto contains two types of encryption layers. The first is a client-
server encryption and the second is a client-client encryption. The second one
is end-to-end encrypted. However, the first one, which is a default choice of
communication, is not.

1.4.1 Initialization

Before the encryption/decryption starts, a client must be initialized. Initial-
ization usually occurs during the installation time or at the first start-up of
the application. In the Telegram application, initialization is performed after
the user registers her phone number [17].

During this process, the client creates a random nonce (128-bit) which
serves as a request to the server. The server then responds with a random
server nonce (128-bit) and the fingerprint of a RSA public key and a number
n = pq (64-bit), where p and q are odd primes. The factorization of the
number n must be performed on the client side [17].

During installation, a list of RSA public keys was stored in the Telegram
application as well. The client finds the correct RSA public key which matches
the fingerprint provided by the server and uses it to encrypt a payload which
contains:

• A new random nonce N (256-bit) and all previously used nonces

• Number n and its factors p and q

After this, the client and the server both perform the Diffie-Hellman key
agreement (DH). Parameters of the DH exchange are not fixed. Thus, they
are sent from the server encrypted by AES-256 in IGE mode3 where the AES
key and the AES initial vector are derived from the nonce N and the original
server nonce. Thus, the client has all the information needed and can perform
the DH calculation for establishing the shared secret.

1.4.2 Client-Server Encryption

The client-server encryption (so called cloud chats or regular chats) is a solu-
tion for encrypting the communication between the Telegram application and
the server. It uses the shared secret which was established in section 1.4.1.
This key is called an auth key [19].

3Description of the IGE block cipher mode (Infinite Garble Extension) is outside of the
scope of this thesis. An interested reader can find the details in the documentation [18].
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1.5. Signal Protocol

However, the auth key is not the only key which is used during the en-
cryption. With every message, a msg key is computed as a SHA-1 hash of the
message. These two keys are then used as inputs to the Key derivation func-
tion (KDF) which generates the AES key and the AES initialization vector.

In order for the server to decrypt the message, msg key is appended to the
encrypted message along with the auth key fingerprint (64-bit hash of this
key) [19].

It is important to say that MTProto establishes a new auth key after
100 messages or after one week since the key establishment. After one of
these thresholds occurs, a new auth key is established and the old one is
destroyed [17]. This mechanism increases the forward secrecy.

1.4.3 Client-Client Encryption

Client-client encryption (so called secret chats) is used in end-to-end commu-
nication between the two parties. In this case, server is an intermediary point
for establishing a master secret between Alice’s and Bob’s devices. This step
is important, because the secret chats are device exclusive and they cannot be
shared between multiple devices [16].

The master secret is established as an additional DH calculation to the
initialization part (see section 1.4.1). This means that both parties exchange
their public Diffie-Hellman values through the server and use them to establish
the master secret.

In addition, a DH private key s is calculated as a XOR of two values:

s = rclient ⊕ rserver (1.1)

where rclient is a random integer generated by the client, rserver is a random
integer generated by the server and operator ⊕ denotes the XOR operation.
This mechanism mitigates weak random number generators on some mobile
phones [17].

1.5 Signal Protocol

Previously known as the TextSecure Protocol or Axolotl, the Signal Protocol is
one of the most secure IM communication protocols in the world [20]. Edward
Snowden recommended the Signal (application/protocol) on many occasions.
His words ”Use anything by Open Whisper Systems” are currently present on
the signal.org homepage and many other sources present Snowden as a fan of
the application, for example The Verge [21] or New York Times [22].

The Signal Protocol is a non-federated and completely open-source pro-
tocol which uses an end-to-end encryption for every message, voice call, video
call, attachments, etc. It is based on commonly used security standards (e.g.
AES and Diffie-Hellman over elliptic curves) which the protocol extends with
several brand new cryptographic approaches.

9
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Moxie Marlinspike and Trevor Perrin started to develop the Signal Protocol
in 2013. The first version was based on the OTR (see section 1.2 for details)
and it was called TextSecure v1. Later on, TextSecure v2 was released which
also included the combination of the OTR ratchet and the SCIMP4 ratchet
(synchronous KDF forward ratcheting) [23]. This version of the ratchet was
later migrated to the Axolotl Ratchet and the protocol as a whole was called
Axolotl5.

In the meantime, TextSecure v3 was published and a research team from
the Ruhr-University Bochum provided a security analysis of this protocol ver-
sion [24]. They presented an unknown key-share attack and they also proposed
a correction of the vulnerability. This vulnerability was later fixed and because
researchers haven’t found any other major issues, the protocol was pronounced
secure.

Later on (mostly for clarification purposes), the Axolotl Ratchet was re-
named to the Double Ratchet and the protocol as a whole (Axolotl) was
renamed to the Signal Protocol [25].

1.5.1 Acceptance in Other Applications

For many years of development, the protocol became more and more crypto-
graphically robust. Due to its open-source implementation and strong crypto-
graphic approaches, many developers of IM clients started to think of including
this protocol into their applications. And many of them did.

The Signal Protocol is currently used in several IM applications such
as WhatsApp [26], Google Allo [27], Facebook Messenger [28], Skype [29],
Wire [30], and many more. Unfortunately, some of these applications support
this protocol only in private communication (e.g. Messenger with the “secret
conversations”, Google Allo with the “incognito mode” and Skype with the
“private conversations”), which still makes secured communication somewhat
optional.

1.5.2 Cryptography

Even though a security analysis of the Signal Protocol is presented in chap-
ters 2 and 3, we introduce a brief overview of the protocol’s cryptography
approaches here as well.

The Signal Protocol uses standard cryptography algorithms such as AES-
256, Diffie-Hellman calculations over elliptic curve Curve25519 or HMAC-
SHA256. These algorithms are well known and they are constantly reviewed
by researchers and specialists all over the world.

4Silent Circle Instant Messaging Protocol
5The name Axolotl referred to a salamander with remarkable self-healing capabilities –

same as the protocol could “heal itself” by disabling the attacker from accessing the plaintext
of later messages if she compromised the private keys at some point in time
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1.5. Signal Protocol

Furthermore, these algorithms are used in the brand new cryptographic
mechanisms to ensure (almost) absolute forward secrecy, resilience and break-
in recovery, along with digital signatures, authentication, and more.

The essential cryptography approach which is used in the Signal Protocol
is called Double Ratchet. It ensures the derivation of the symmetric cryp-
tographic keys for the message encryption in an asynchronous environment.
These keys are derived from the shared secret between the two parties which
was established using the Extended Triple Diffie-Hellman (X3DH) key agree-
ment protocol. Digital signatures are based on the XEdDSA and VXEdDSA
signature schemes.

11





Chapter 2
Protocol Analysis

The authors of the Signal Protocol from Open Whisper Systems (OWS) de-
cided to create a brand new cryptography protocol which would provide the
best security for instant messaging communication over the internet. Their
goal was to make the security available for everyone, even to those without an
understanding of cryptography [31].

In order to achieve this goal, they had invented several new ideas on how
to make communication over the internet more secure with a minimum risk
of an intrusion. These new ideas are built on well-known standards and cryp-
tographic methods. This approach ensures community-based feedback on the
overall security as well.

2.1 Protocol Overview

The Signal Protocol is used for IM communication of two or more parties in
a conversation. All data transmitted between the parties is encrypted using
end-to-end encryption. The protocol supports text conversations and voice
conversations as well, although the voice calls are restricted only to one-to-
one communication.

Signal Protocol is an open-source project. The OWS team presents three
libraries of the Signal Protocol implemented in C, Java and JavaScript. A deep-
er description of the Signal libraries can be found in chapter 3.

The OWS team also presents four technical documents which specify a gen-
eral functionality and recommendations regarding the Signal Protocol [32].
They represent separate ideas which can be added independently to any other
protocol or a security system, if needed.

The first document describes functionality and recommendations for a cor-
rect usage of the XEdDSA and the VXEdDSA signature schemes, ensuring
valid digital signatures. The second document describes the Extended Triple
Diffie-Hellman (X3DH) key agreement protocol for establishing a shared secret
key between the two parties.
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2. Protocol Analysis

The Double Ratchet algorithm is specified in the third document. It de-
scribes an exchange of the encrypted messages based on the previously accept-
ed shared key. Both parties derive new keys for every message. Thus, earlier
keys cannot be calculated (with the present computational power) from the
later ones. In addition, every Double Ratchet message also carries the Diffie-
Hellman public values which are mixed into the newly derived keys. This
also ensures that the later keys cannot be calculated from the earlier ones.
This procedure brings an additional protection in case of a compromise of the
party’s keys.

The Signal Protocol is used in many applications on many devices. For ex-
ample, Alice may wish to use the Signal application on her mobile phone and
on a desktop computer as well. This is provided by the session management
of multiple clients or devices communicating in an asynchronous communic-
ation, called the Sesame algorithm. It is described in the fourth document.
The session management and the Sesame algorithm are outside of the scope
of this thesis. An interested reader can find more information in the docu-
mentation [33].

2.2 Mathematical Notations

To better relay an understanding of the mathematical expressions used in this
thesis, we define a set of notations which are respected across the whole thesis.
If there is an exception in some expression, it is noted explicitly.

2.2.1 Basic Operations

We assume standard notation for operators. The addition and subtraction of
two arbitrary elements is given by A + B and A − B. The multiplication of
two arbitrary elements is given by either A ∗B or AB.

Elements in a form of numbers (i.e. integers or scalars) are denoted as
lowercase letters. Integer a modulo integer b is denoted as a (mod b). The
division of two integers a/b (mod p) where p is a prime number is calculated
as ab−1 (mod p). Number b−1 is called the multiplicative inversion of the
number b and can be calculated using the Extended Euclidean Algorithm in
a polynomial time.

2.2.2 Elliptic Curve Parameters

Elliptic curves are used widely in the Signal Protocol. Hence we assume
the same notation from [34] to preserve consistency with these documents.
Parameters of an elliptic curve can be found in table 2.1.
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Table 2.1: Elliptic curve parameters notation

Name Definition
B Base point
I Identity point
p Field prime
q Order of the base point
c Cofactor
d Twisted Edwards curve constant
A Montgomery curve constant
n Nonsquare integer modulo p
|x| dlog2(x)e
b 8 ∗ (d(|p|+ 1)/8e) (= Bit-length for encoded point or integer)

The product of any scalar a with the point P is denoted as aP . The sum
of two points P and Q is denoted as P + Q. The coordinates of the point P
are given in brackets, i.e. (x, y).

2.3 XEdDSA and VXEdDSA Signature Schemes

In an asymmetric cryptography, we use a private key to digitally sign a message
and a public key to verify the sender. The public key is advertised publicly and
the private key never leaves the user’s device. Digital signing can be achieved
by using DSA (”Digital Signature Algorithm”) and its other mathematical
schemes, e.g. using the elliptic curves.

In the Signal Protocol, two specific elliptic curves are used for crypto-
graphic calculations – Curve25519 and Curve448 [34]. The parametres of both
of these curves are briefly specified in section 2.3.2. They are used for both
Elliptic Curve DSA (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) cal-
culations. The Curve448 is more secure than Curve25519 but sacrifices some
performance.

For their proper usage, an Edwards curve representation of these curves is
specified (see section 2.3.1 below), called Ed25519 and Ed448 respectively [35].
The design of these elliptic curves provides faster mathematical computations
without sacrificing the security [36].

ECDSA with the usage of either of these curves is called the EdDSA.
Names X25519 and X448 denote functions used in the ECDH calculation with
Curve25519 and Curve448 respectively.

An abbreviation XEdDSA denotes a signature scheme which enables the
use of a single key pair format for both ECDH and ECDSA [34], used with
either the Ed25519 or the Ed448. It is also possible use the XEd25519 or
XEd448 names, if a closer specification of the used elliptic curve is needed.

VXEdDSA is an abbreviation for the “Verifiable XEdDSA” which is an
extension to the XEdDSA scheme and provides a verifiable random function
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(VRF [37]). If a signature was successfully verified, this function returns
a unique value for the message and the public key and it is indistinguishable
from a random value.

Both XEdDSA and VXEdDSA require a cryptographic hash function. The
standard SHA-512 is the default choice in the Signal Protocol.

2.3.1 Curves Overview

The Edwards curve is an alternate form of elliptic curves. In comparison
to the Weierstrass form6 the Edwards curves have better general perform-
ance [36]. The following equation is called the Edwards curve:

x2 + y2 = 1 + dx2y2 (2.1)

where K is a (finite) field, d ∈ K, d 6∈ {0, 1} and x, y ∈ K. In addition to (2.1),
twisted Edwards curve is given in [38] as:

ax2 + y2 = 1 + dx2y2 (2.2)

where a, d 6∈ {0, 1}. The Edwards curve is a twisted Edwards curve with a = 1.
When we take a neutral element7 of the twisted Edwards curve as the point

(0, 1), the sum of the points (x1, y1) and (x2, y2) is given by formula (2.3):

(x1, y1) + (x2, y2) =
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2
1− dx1x2y1y2

)
(2.3)

The equation (2.3) is called the Edwards addition law [39, 40, 38] which gives
an explicit formula for computing the addition of any two points8. The inverse
of an arbitrary point (x1, y1) is (−x1, y1). Other forms (like Weierstrass) need
more equations for this calculation. As stated in [39], this provides a significant
computational advantage because while calculating, there are no exceptions for
doubling, no exceptions for the neutral element, no exceptions for negatives,
etc. This results in a good protection against side-channel attacks, because
doubling a point takes no extra cost.

Another form of the curves used in the Signal Protocol is the Mont-
gomery curve which is defined by equation (2.4):

By2 = x3 + Ax2 + x (2.4)

where K is a (finite) field, A, B ∈ K and B(A2 − 4) 6= 0 [42].
6Weierstrass equation: y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
7Neutral element O of the elliptic curve E is a point where P + O = O + P = P for

every point P ∈ E.
8If the neutral element (i.e. identity point) is (0, 1) and d is not square in K. See [41]

for details.
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Edwards form is birationally equivalent9 to an elliptic curve in the Mont-
gomery form [42, 35].

Furthermore, the Montgomery form allows to use only a u-coordinate from
the point (u, v) for the use of a Montgomery ladder for calculations. These
calculations are frequently needed in the ECDH. This results in smaller public
keys without the expense of a point decompression [34].

However, the EdDSA signatures are defined on twisted Edwards curves.
Thus, we need to be able to convert both forms to each other. To achieve this,
a slightly different representation of the twisted Edwards point is created.
Instead of using a point with two coordinates P = (x, y), we only use the
y-coordinate and a sign bit s [43]. The x-coordinate can be computed later
using the equation (2.5):

x = ±
√

(y2 − 1)/(dy2 + 1) (2.5)

where ± depends on the sign bit s ∈ {0, 1}. The sign bit is 1 if and only if x
is negative.

For converting the Montgomery u-coordinate of the point (u, v) to a twis-
ted Edwards point P containing the y-coordinate and the sign bit s, we can
apply the birational map to compute the y-coordinate. The sign bit s is im-
plicitly chosen as zero [34]. How to construct this birational map is outside
of the scope of this thesis. An interested reader can find more information in
the documentation [35].

This conversion can be represented by the pseudo-code10 below:

convert_mont(u):
u_masked = u (mod 2|p|)
P.y = u_to_y(u_masked)
P.s = 0
return P

Firstly, the u-coordinate has to be masked by specification of the particular
elliptic curve which is also described in [35]. Function u to y applies the
birational map. Then, the sign bit is set for the twisted Edwards point P .

We define the twisted Edwards private key as a scalar a. The public key A
is then computed as A = aB where B is the base point of the twisted Edwards
elliptic curve. Morover, in accord with the previous paragraph, this public key
has a zero sign bit [34].

The Montgomery private key is a scalar k. We can convert this private
key to the twisted Edwards public key and private key (i.e. both A and a).

9Curves E1 and E2 are birationally equivalent when there is a map φ : E1 → E2 defined
at every point of E1 with a small set of exceptions and an inverse map φ−1 : E2 → E1
defined at every point of E2 with a small set of exceptions. In other words, we can say that
the curves are almost the same.

10P.y denotes the y-coordinate of the point P . P.s is the sign bit of the point P .
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To achieve this, we need to multiply the twisted Edwards curve base point
B with the Montgomery private key k. The y-coordinate of the result is the
y-coordinate of the public key A. In accordance with the previous paragraphs,
we set the the sign bit to zero once again.

The problem is that the multiplication of the Montgomery private key k
with the Edwards curve base point B as described above does not always put
the sign bit to zero (we force it to be zero every time), making the private
key invalid in these cases. Thus, the private key value has to be adjusted to
reflect the sign bit [44] (see the pseudo-code below).

The pseudo-code [34] of the conversion (called calculate key pair) of
the Montgomery private key k to the twisted Edwards public and the private
keys with the notation preserved form the paragraphs above can look like this:

calculate_key_pair(k):
E = kB
A.y = E.y
A.s = 0
if E.s == 1:

a = -k (mod q)
else:

a = k (mod q)
return A, a

It is important to mention that this function works with private keys directly.
Due to conditional branching, it is crucial to implement it in a constant time
so it will be resistant against side-channel attacks.

2.3.2 Curve25519 and Curve448

As previously mentioned, both Curve25519 and Curve448 can be used in the
Signal Protocol as they provide a very good cryptographic security and a great
performance as well. According to the SafeCurves [45], both curves are con-
sidered Safe in every tested aspect. Both curves are also designed so that
fast, constant-time implementations are easier to produce. Thus, they are
resistant to a wide range of side-channel attacks, including timing and cache
attacks [35].

The definition of the Curve25519 can be found in table 2.2 below. Math-
ematical notations regarding the curves can be found in section 2.2.2.

Function convert mont is defined in section 2.3.1 which takes the Mont-
gomery u-coordinate (= 9) and converts it to the twisted Edwards point, i.e.
the base point in this case.

The Curve448 (sometimes called the Ed448-Goldilocks) is a more secure
curve than the Curve25519 [46]. Its security is estimated at around 224 bits,
rather than 128 bits of Curve25519.
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Table 2.2: Curve25519 parameters [34]

Name Definition
Equation −x2 + y2 = 1 + dx2y2

B convert mont(9)
I (x = 0, y = 1)
p 2255 − 19
q 2252 + 27742317777372353535851937790883648493
c 8
d −121665/121666 (mod p)
A 486662
n 2
|p| 255
|q| 253
b 256

A definition of the Curve448 can be found in the table 2.3. The backslash
in the definition of the order q denotes a continuity of the number on the next
line so it fits the page – it is too large.

Table 2.3: Curve448 parameters [34]

Name Definition
Equation x2 + y2 = 1 + dx2y2

B convert mont(5)
I (x = 0, y = 1)
p 2448 − 2224 − 1

q
2446 − 1381806680989511535200738674851\
5426880336692474882178609894547503885

c 4
d 39082/39081 (mod p)
A 156326
n −1
|p| 448
|q| 446
b 456

As mentioned, the Curve448 is more secure than the Curve25519. This is
the consequence of sacrificing some performance over security. However, it is
expected that large quantum computers will be able to crack both Curve25519
and Curve448. It is also expected that classic computers will never be able to
crack neither of these curves, so usage of the Curve25519 is recommended [35].
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2.3.3 Hash Functions

Both XEdDSA and VXEdDSA require a cryptographic hash function. The
standard SHA-512 is the default choice in the Signal Protocol [34]. This
cryptographic hash takes a byte sequence as an input and returns an integer
(in the hexadecimal form) as the output [34].

For the cryptographic domain separation, hashes are indexed by a non-
negative integer i such that 2|p| − 1− i > p, where p is the field prime of the
elliptic curve. The indexed hash is then computed by:

hashi(X):
return hash(2b - 1 - i ‖ X)

where X is an input byte sequence, the ‖ symbol is a concatenation of two
byte sequences and b is a number of bits needed for encoding a point or an
integer:

b = 8 ∗ (d(|p|+ 1)/8e) (2.6)

This procedure of the cryptographic domain separation provides a great
diversification of hash outputs to the separate domain [34].

Let’s say we need to hash the bytes sequence ThisIsMyPrivateKey which
is our private key. If we hash it using e.g. SHA-256, we get this output:

04dd970aa9189e3100a0efb72547e1fadf6f6ce45b6be8f478ba4e9524a9426d

Now, we would like to use our private key for two different security functions.
Since we trust our selected SHA-256, we do not want to use any other hash
function. How to pass a different hash with the same private key to both
security functions? The cryptographic domain separation above solves this
problem, because it diversifies the output for the same input (i.e. the private
key).

If we choose the indexed hash hash0 with the b = 8, we actually hash
a private key FFThisIsMyPrivateKey. If we hash using the hash1, we actually
hash a private key FEThisIsMyPrivateKey11, etc. Then the actual result is:

hash0 FFThisIsMyPrivateKey 318d750b9c82...69fbe5d4e650
hash1 FEThisIsMyPrivateKey 9143f5521b4f...8df421bc711b

which gives the different hash outputs for a single private key and a single
hash function.

2.3.4 Signing and Verification with XEdDSA

Signing and verification is performed similarly to the standard ECDSA. In
XEdDSA signing, Alice has to have these values:

• Montgomery private key k (integer mod q)
11If we use a little-endian.
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• Message M to sign (byte sequence)

• Secure random data Z (64 bytes)

and uses this algorithm [34] written in pseudo-code:

xeddsa_sign(k, M, Z):
A, a = calculate_key_pair(k)
r = hash1(a ‖ M ‖ Z) (mod q)
R = rB
h = hash(R ‖ A ‖ M) (mod q)
s = r + ha (mod q)
return R ‖ s

Function calculate key pair is used for converting the Montgomery private
key to the twisted Edwards public key A and the private key a (see section 2.3.1
for details). Function hash1 is an indexed hash function defined in section 2.3.3
with i = 1. The ‖ symbol is a concatenation of two byte sequences.

The r value is a nonce calculated from the private key, the message and
the random sequence. It is critical to create a new random sequence for every
new signature. If the nonce r is used twice due to signing the same message
repeatedly while not generating a unique Z, we can solve a simple system of
equations in a constant time:

s1 = r + h1a (mod q) (2.7a)
s2 = r + h2a (mod q) (2.7b)

The private key can be calculated as a = (s1 − s2)/(h1 − h2) (mod q). How-
ever, if done properly, adding this random sequence Z improves the security
resilience in comparison to the standard deterministic signing schemes, i.e. in
comparison when only the private key a and the message M is used while
hashing.

In XEdDSA verification, Bob has to have these values:

• Montgomery public key u

• Message M to verify (byte sequence)

• Digital signature (R ‖ s) to verify (concatenated byte sequence of 2b
bits)

and uses the algorithm [34] written in pseudo-code below.
Function convert mont is a function defined in section 2.3.1 which takes

the Montgomery u-coordinate and converts it to the twisted Edwards point A.
The function on curve checks if the converted point lies on the curve. Values
true or false are returned depending on the validity of the signature.
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xeddsa_verify(u, M, (R ‖ s)):
if u >= p or R.y >= 2|p| or s >= 2|q|:

return false
A = convert_mont(u)
if not on_curve(A):

return false
h = hash(R ‖ A ‖ M) (mod q)
R_check = sB - hA
if bytes_equal(R, R_check):

return true
return false

2.3.5 VXEdDSA

As stated in [37], the VRF is a (pseudo)random generator which will allow
other parties to verify a random value without compromising its unpredict-
ability. In other words, a seed owner can generate a value which can then
be verified by another party, i.e. that the value is truly generated from the
(unknown) seed.

The VXEdDSA signing algorithm takes the same inputs as XEdDSA [34].
The difference is that the digital signature consists of three values (V, h, s),
where V is a twisted Edwards point, h and s are integers modulo q. In
addition, value v is returned with the signature which is the output of the
VRF.

The verification of VXEdDSA is the same as XEdDSA. If the signature is
valid, v value is returned and it equals the value that was created during the
signing process.

2.4 X3DH Key Agreement Protocol

The X3DH (”Extended Triple Diffie-Hellman”) is an asynchronous key agree-
ment protocol which establishes a shared secret key between the two parties
who mutually authenticate each other based on the public keys [47]. This
means that one party can be offline while the other party tries to establish a
shared secret key. To achieve this, a server is used for storing the information
between the two parties. Thus, there are 3 parties in X3DH protocol:

• Alice sends an encrypted initial message to Bob so she can establish
a shared secret which may be used later for further communication.

• Bob wants to establish a shared secret with Alice as well by receiving
the initial data from her. He can use the shared secret later for further
communication.
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• Server stores the initial message from Alice to Bob, so it can be later
received by Bob asynchronously. Because of the server, Bob can be
offline when Alice sends the initial message. Security considerations
about a server trust can be found separately in section 2.4.6.

The X3DH can use both the Curve25519 and the Curve448 curves which
were described in section 2.3.2. When we talk about these curves in the
context of the X3DH, we call them X25519 and X448 respectively.

The hash functions which are used in the X3DH are 256 or 512 bit func-
tions. The strongly recommended functions are SHA-256 or SHA-512.

In addition to that, the X3DH needs one additional parameter (informa-
tion) – an ASCII string which identifies the application. This string is later
used as the associated data.

2.4.1 Keys

Both parties have several keys for a specific purpose at their disposal [47].
These keys are used for the asymmetric cryptography, so every key pair is
comprised of a private key and a corresponding public key:

• Identity key pair (IKP ) – Long term keys which are tied up with
a device.

• Ephemeral key pair (EKP ) – A random key pair which is used in
a single X3DH run.

• Signed prekey pair (SPKP ) – Keys which are signed with a private
key from the IKP . Public key from SPKP is periodically uploaded on
the server. “Prekey” denotes that it is the key which was published to the
server before any communication with the other party was performed
(i.e. before Alice contacted Bob or vice versa).

• One-time prekey pair (OPKP ) – Public keys from OPKP are a set
of one-time prekeys which can be published to the server as well. Only
a single one-time prekey pair can be used in one X3DH protocol run,
and only optionally.

To summarize the keys, we use the key pairs according to the table 2.4 in
a single X3DH protocol run. In this table, we consider that Alice initializes
the communication with Bob.

Thus, there are five key pairs used for establishing a shared secret. From
now on, we denote the public keys by capital letters (e.g. IKA is Alice’s public
identity key) and private keys with the priv designation (e.g. privIKA is
Alice’s private key).
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Table 2.4: X3DH keys [47]

Name Definition
IKPA Alice’s identity key pair
EKPA Alice’s ephemeral key pair
IKPB Bob’s identity key pair
SPKPB Bob’s signed prekey pair
OPKPB Bobs’s one-time prekey pair (optional)

2.4.2 Elliptic Curve Diffie-Hellman Function

The elliptic curve Diffie-Hellman Function (ECDH) used in the Signal Protocol
is one of the two X25519 or X448 functions using the Curve25519 or the
Curve448 respectively [35].

These functions take two parameters – a private key and a public key.
The private key is a scalar k and the public key is a point P . However, for
the ECDH calculation, we use a Montgomery form of the elliptic curve (see
section 2.3.1 for details). Thus, we considered a u-coordinate from the (public)
point P as the value of the public key. All calculations are performed over the
Galois field GF (p), where p is a prime number.

Let’s say Alice has a private key a and Bob has a private key b and they
decide to use the Curve25519 for DH calculation. Both of them know the
public point P which has the u-coordinate equal to a number 9 (denoted
as a public string). Figure 2.1 demonstrates how the shared secret can be
established:

Figure 2.1: The shared secret establishment using Curve25519 [48].

2.4.3 Key Derivation Function

A Key Derivation Function (KDF) is a function which derives one or more
secret keys from the secret values given as an input (so called “input keying
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material”). One of its common usages is to convert the result of a Diffie-
Hellman key exchange into a symmetric key which is then used in a symmetric
cryptography.

A few security measures should be considered with the KDF usage:

• KDF gives the same output length for any input length.

• All bits of the input are processed to the output.

• A salt has to be used for deriving different outputs for the same input.

• KDF should be slow as a countermeasure to the brute-force attacks.

• KDF should use a lot of memory.

The Signal Protocol uses a HMAC-based Key Derivation Function (HKDF)
with the “extract-then-expand” paradigm [49]. The first stage takes the in-
put and “extracts” a fixed-length pseudorandom key K from it. The second
stage “expands” the key K into the several additional pseudorandom keys as
outputs of the KDF. These outputs also have a desired length.

The “extract” stage is important in those cases when Eve (an eavesdrop-
per) may have some partial knowledge about the input. This is typically
a Diffie-Hellman value computed by the key exchange protocol. If Eve does
not have any information about the input, the “extract” stage can be skipped.

HKDF allows to optionally include an additional information in the KDF
output. It serves a very practical purpose [49], as it allows to carry a protocol
number, algorithm identifiers, etc.

In the Signal Protocol, the KDF function takes these inputs [47]:

• HKDF input keying material which is created as a concatenation of
a byte sequence F and a keying material KM. The byte sequence F
is used as a cryptographic domain separation which was explained in
section 2.3.3.

• HKDF salt.

• HKDF additional information.

2.4.4 Authenticated Encryption with Associated Data

Authenticated Encryption with Associated Data (AEAD) is a solution to the
problem of sending an associated data (AD) bound to the encrypted message.
Even though AD is in a plaintext form, it is authenticated along with the
message [50]. For example, AD can be a packet header or an additional
information in the security protocol which does not have to be encrypted (or
must not be encrypted) but is still covered by the authenticity protection.
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For authenticated-encryption (AE), the OCB scheme (“Offset Codebook
scheme”) is used. This block cipher mode provides confidentiality and authen-
ticity for the message and authenticity for the associated data. I.e. the OCB
scheme is the AEAD scheme [51]. However, AD can be zero-length, so the
OCB can be used to only authenticate-encrypt the message, too.

Generally, there are two methods how to create the AEAD. The first
method is called a nonce stealing, but it is limited by the length of the AD.
The second method is called a ciphertext translation which is less restrictive.
How to implement these schemes is outside of the scope of this thesis. An
interested reader can find more information in the documentation [50].

2.4.5 The X3DH Protocol

The X3DH protocol has three phases:

1. Bob publishes his IKB and prekeys to a server (see the table 2.4) along
with the SPKB signed e.g. using the XEdDSA

2. Alice fetches the prekeys from the server and uses them to send an initial
message to Bob

3. Bob receives the initial message and uses it to calculate a shared secret

Bob’s IKB is uploaded to the server only once. However, Bob can re-
upload the other keys at any time. A typical situation is when the server
is out of Bob’s OPKB keys or Bob wants to refresh his SPKB for a better
security (e.g. once a month). If Bob changes his signed key, he may keep his
corresponding privSPKB for some period of time, because some messages can
be delayed in a transit. Moreover, Bob must delete the old keys to achieve
a forward secrecy12. The privOPKB has to be deleted immediately after
a message with the corresponding public key is received.

After Alice contacts the server and fetches the keys from Bob, she verifies
the the prekey signature and she aborts the communication immediately if the
verification fails. If the verification is successful, Alice performs three Diffie-
Hellman calculations13. How a single ECDH calculation is performed can be
found in section 2.4.2:

DH1 = DH(privIKA, SPKB)
DH2 = DH(privEKA, IKB)
DH3 = DH(privEKA, SPKB)

The DH function is either the X25519 or the X448 elliptic Diffie-Hellman func-
tion with implementation details described in [35].

12If Bob’s device is compromised by Trudy (an intruder), she cannot read the older
messages – keys do not exist anymore.

13The X3DH protocol is named after this step.
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Additionally, if the (optional) OKBB key was fetched from the server, the
fourth ECDH calculation is performed as well:

DH4 = DH(EKA, OPKB)

If the OKBB key is not present on the server, it is not fetched by Alice
and this step is not performed. Note that DH1 and DH2 are used for au-
thentication and DH3 and DH4 are used to provide the forward secrecy [47].
Thus, the OKBB is used as an additional security measure.

The shared secret SK can be then calculated as follows:

SK = KDF(DH1 ‖ DH2 ‖ DH3 [‖ DH4])

Where ‖ is a concatenation of the results and KDF is a Key Derivation Func-
tion (see section 2.4.3). After the shared secret SK is computed, Alice deletes
all the DH outputs and the ephemeral private key.

As the last step, Alice creates associated data AD that contains identity
information about both parties. Another information can be added as well,
such as usernames, certificates, etc.

AD = IKA ‖ IKB ‖ ...

Now Alice has all the information needed to create the initial message con-
taining:

• Alice’s identity public key IKA

• Alice’s ephemeral public key EKA

• Information about which of Bob’s prekeys were used for calculating the
SK

• An initial ciphertext encrypted with the AEAD encryption scheme (see
section 2.4.4 for details) using AD as the associated data. SK can be
used as an encryption key

Initial ciphertext is usually the very first real message which Alice sends to
Bob and it carries the initial message with all the needed information for
establishing the shared secret, too [47].

Upon receiving the initial message from Alice, Bob computes the SK using
all the private keys corresponding to the public keys which Alice used:

DH1 = DH(privSPKB, IKA)
DH2 = DH(privIKB, EKA)
DH3 = DH(privSPKB, EKA)
[DH4 = DH(privOPKB, EKA)]
SK = KDF(DH1 ‖ DH2 ‖ DH3 [‖ DH4])
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After this, Bob tries to decrypt the initial ciphertext using SK and AD.
If Bob fails to decrypt the initial ciphertext, he immediately aborts the com-
munication and deletes the SK.

If Bob is successful with the decryption, Bob deletes any privOPKB he
used to ensure the forward secrecy and X3DH is complete [47].

2.4.6 Security Considerations

The role of the server can be decentralized – the stored information can be
located on many different servers. This achieves a better security against
compromising the server, but for simplicity, we describe the server side as
a one instance.

It is advised to use a separate authentication channel for verification of
the public keys IKA and IKB [47]. This can be done by a visual comparison
of the two public key fingerprints, or by scanning a QR code – both provided
by the Signal application. If this comparison is not performed, the two parties
have no cryptographic guarantee as to who they are communicating with.

As mentioned in section 2.4.5, the OPKB is used to provide a better for-
ward secrecy. Another reason to distribute the OPKB to the server is to pro-
tect Bob against a replay attack [47]. Assume that Mallory (a malicious man-
in-the-middle attacker) can capture the encrypted messages between Alice and
Bob. Without the OPKB key (which is used only once per X3DH run), she
would be able to send the same message to Bob repeatedly. If the OPKB

cannot be used, other solutions could mitigate this problem. For example,
Bob could change his SPKB more rapidly or some post-X3DH protocol (see
section 2.5) should negotiate a new SK for Alice based on Bob’s new keys.

A malicious server could cause the communication between Alice and Bob
to fail for several reasons. It could refuse to hand out OPKB, so the forward
secrecy would depend only on the SPKB and its lifetime [47]. The same
problem could also occur if Mallory would drain all the OPKB keys from the
server. In this case, server should set rate limits on fetching OPK keys for
every communicating party.

2.5 Double Ratchet

The Double Ratchet algorithm is an essential approach of the Signal Protocol.
It is used by two parties to exchange encrypted messages based on a shared
secret key [52]. This shared secret key can be obtained by some key agreement
protocol, e.g. the X3DH protocol described in the previous section 2.4.

Every party derives new keys for every Double Ratchet message from the
shared secret key. Also, they send a Diffie-Hellman public values attached
to the message. This Diffie-Hellman calculation is mixed into the derived
keys [52]. Thus, the Double Ratchet provides a forward security and protection
against deciphering old messages as well.
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2.5.1 KDF Chains

The Key Derivation Function (KDF, see section 2.4.3) used in the Double
Ratchet algorithm takes an input and the KDF key as the input keying ma-
terial. If the KDF key is unknown to the attacker, the KDF output should
be indistinguishable from a random string. If the KDF key is not secret and
random, the KDF should still provide a secure cryptographic hash of its KDF
key and the input data [52].

The KDF chain is created when the KDF output is used as the KDF key
to another KDF:

Figure 2.2: The KDF chain containing two ratchet steps [52].

The KDF chain has following properties:

• Resilience – If the KDF key is secret, the KDF output appears random.

• Forward security – If the KDF key is revealed at some point in time,
the previous KDF outputs appear random.

• Break-in recovery – If the KDF key is revealed at some point in time,
the future KDF keys appear random, provided the future KDF inputs
have added a sufficient entropy.

Each party has three chains [52]:

• Root chain

• Sending chain

• Receiving chain
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Alice’s sending chain equals to Bob’s receiving chain and vice versa. These
chains are used for a symmetric cryptography – in the so called symmetric-key
ratchet – deriving a key which is called a message key. This key is used for
encrypting messages. The KDF keys are called the chain keys. Lastly, inputs
for sending and receiving chains are constants and they do not provide the
break-in recovery [52].

Following this terminology, we can modify the labels of the chain 2.2 to
figure 2.3:

Figure 2.3: The symmetric-key ratchet – the KDF chain containing two ratchet
steps. Every step derives new chain and message keys [52].

In other words, calculating the next chain key and the next message key
for a given chain key is called a ratchet step in the symmetric-key ratchet.

2.5.2 Diffie-Hellman Ratchet

The KDF chains (section 2.5.1) do not provide the break-in recovery on their
own. Thus, if an attacker could steal Alice’s sending and receiving chain keys,
she could read all the future incoming messages, because she can compute all
the future message keys. To prevent this, additional information is mixed into
the chain keys – Diffie-Hellman outputs.

Assume that Alice has a DH public key A and a DH private key a, Bob
has a DH public key B and a DH private key b. Then, the Diffie-Hellman
ratchet follows these steps:

1. Bob publishes his DH public key B to Alice14.
14The public keys are sent in a header of every message which Alice and Bob sends.
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2. Alice uses her DH private key a and Bob’s DH public key B to compute
a new DH output DHA.

3. Alice publishes her DH public key A to Bob.

4. Bob uses his DH private key b and Alice’s DH public key A to compute
a new DH output DHB.

Values DHA and DHB from the above approach are equal to each other.
Thus, both Alice and Bob have the same shared secret, as in the standard
Diffie-Hellman. Additionally, the following DH ratchet step is performed:

5. Bob generates a new DH key pair.

6. Bob computes a new DHB from Alice’s public key A and his new DH
private key.

7. Bob sends his new DH public key to Alice.

These two processes can be seen in figure 2.4 below, numbered according
to the steps above.

Figure 2.4: The Diffie-Hellman ratchet numbered according to the steps which
both Alice and Bob have to perform [52].

After this, Alice can perform the same DH ratchet step as Bob did above.
If Trudy (an intruder) could somehow compromise Alice’s (or Bob’s) DH

private key, it will be eventually replaced with an uncompromised one [52].
Now, if we look a little bit closer at figure 2.4, we can see that “DH outputs”

are actually the chain keys described in section 2.5.1. So, to be precise, we
can change labels to correspond the notation. The Diffie-Hellman ratchet with
renamed labels is illustrated by figure 2.5.
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Figure 2.5: The Diffie-Hellman ratchet (figure 2.4) with renamed labels [52].

However, the figures above are a simplification. In the Diffie-Hellman
ratchet, the chain keys are not used directly, but they are used as the KDF
inputs to the root chain, and KDF outputs are used as the sending and the
receiving chain keys. This improves the resilience and break-in recovery [52].
The (initial) root key is a shared secret between Alice and Bob, so it is the same
for both parties. The X3DH can be used for the shared secret establishment
(see section 2.4 for details). In the illustration 2.6 below, a single Diffie-
Hellman ratchet step updates the root chain twice.

Figure 2.6: A single Diffie-Hellman ratchet step with the root chain [52].
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2.5.3 The Double Ratchet

Combining the symmetric-key ratchet (section 2.5.1) and the Diffie-Hellman
ratchet (section 2.5.2) gives us the Double Ratchet [52] with these rules:

• When a message is sent or received, a symmetric-key ratchet step is
applied to the sending or receiving chain to derive the message key.

• When a new Diffie-Hellman ratchet public key is received from the other
party, a DH ratchet step is performed prior to the symmetric-key ratchet
to replace the chain keys.

Consider that Alice wants to send a message to Bob. Both parties estab-
lished a shared secret beforehand, which is used as a root key for the root
chain. Alice also obtained Bob’s Diffie-Hellman ratchet public key.

Before Alice can send her first message, her communication needs to be
initialized. The initialization is comprised of three steps:

1. Alice generates her own Diffie-Hellman ratchet key pair.

2. Alice performs a Diffie-Hellman calculation, using Bob’s DH ratchet pub-
lic key and her DH ratchet private key she just generated.

3. DH output is then used to calculate a new root key (RK) and a new
sending chain key (CK). Now, Alice should remove her original root key
for the forward secrecy.

Alice’s initialization process can be seen in figure 2.7. Colors are preserved
according to the previous illustrations:

Figure 2.7: Alice’s Double Ratchet initialization with colors preserved accord-
ing to the previous illustrations. Alice can delete the old key RK immediately
after it was used [52].

Now that Alice’s communication is initialized, she can send a message A1
to Bob. To be able to do so, she needs to perform an additional calculation:

4. Alice performs a symmetric-key ratchet step using the CK calculated in
the step 3. This will generate a new CK and a message key A1, which
is used for encrypting the message A1.
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Note that step 4 does not include the second parameter for the symmetric-key
ratchet KDF. This input is only a constant, so for simplicity, we skip this
value. Now, Alice should remove her old sending chain key for the forward
secrecy as well. After the message was sent, she should also delete the A1
message key.

Sending a message can be illustrated by figure 2.8:

Figure 2.8: Alice sends the Double Ratchet message, deriving new keys during
the process. She can delete old keys immediately after they were used [52].

When Alice receives the message B1 from Bob which carries a new Diffie-
Hellman ratchet public key, she needs to perform these steps:

5. Alice calculates a Diffie-Hellman ratchet step with her DH ratchet pri-
vate key (from the step 1.) and Bob’s new DH ratchet public key B1.
Bob performed this step himself, so this is a synchronization of both
parties.

6. Output of the root chain from the step 5 is used in the receiving chain.
The symmetric-key ratchet is performed over this chain key.

7. Alice generates a new Diffie-Hellman ratchet key pair.

8. Alice uses the new ratchet private key to calculate a new root key and
a new sending chain key.

Note that the steps 5, 7 and 8 are performed simultaneously, creating a single
Diffie-Hellman ratchet step. The separation is just for a better illustration.
Receiving a message can be illustrated by figure 2.9, following the steps above.

If Alice next sends a message A2, receives a message B2 with Bob’s old
DH ratchet public key and then sends the messages A3 and A4, Alice’s sending
chain will ratchet three steps, and her receiving chain will ratchet once (fol-
lowing Alice sent three messages and received one message). Thus, Alice only
performs the symmetric-key ratchets. This process is illustrated by figure 2.10.
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Figure 2.9: Alice receives the Double Ratchet message with a new DH ratchet
public key. She performs both Diffie-Hellman and symmetric-key ratchets [52].

Figure 2.10: Alice sends three more messages and receives one message from
Bob with the old DH ratchet public key. Alice’s sending chain ratchets three
steps, and her receiving chain ratchets once [52].
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However, the situation is different when Bob sends a new DH ratchet
public key with the messages B3 and B4. In this case, Alice has to perform
the Diffie-Hellman ratchet step before the symmetric-key ratchet. DH ratchet
step generates a new sending chain key and a new message key A5. Alice can
use this key if she wants to send a new (fifth) message.

Figure 2.11: Alice performs the DH ratchet step with Bob’s new DH ratchet
public key before the symmetric-key ratchet [52].

Note that in figure 2.11, Alice has three sending chains and two receiving
chains. New sending and receiving chain is created after every Diffie-Hellman
ratchet step (except the first one).
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2.5.4 Lost and Out-of-Order Messages

The Double Ratchet also handles lost or out-of-order messages [52] due to the
additional information which is sent in the message header. When Alice sends
a message, this additional information includes:

• Index of the message in the current sending chain N .

• Number of messages in the previous sending chain PN .

With this information, Bob can store the message keys of the skipped messages
in case they arrive later by this approach15:

• If a new Alice’s DH public ratchet key is included in the message header,
number of skipped messages can be calculated as:

S = PNA −RCB (2.8)

where RCB is a number of messages in the Bob’s current receiving chain.
The received NA is a number of skipped messages in Bob’s new receiving
chain (which he has to create due to the new Alice’s DH ratchet public
key).

• If Alice does not provide a new DH public ratchet key in the message
header (i.e. the current one is provided), the number of skipped messages
can be calculated as:

S = NA −RCB (2.9)

where RCB is a number of messages in the Bob’s current receiving chain.

A constant identifying the maximum tolerated limit for skipped messages
should be set. This constant should be high enough to reflect a common
message loss or a traffic delay. However, it should also be low enough that
a malicious sender cannot trigger excessive recipient computation [52] with
the possibility of causing a denial-of-service attack.

Additionally, both parties should set a timeout for the skipped messages
as well. The attacker could eavesdrop these messages (even though they did
not reach the intended recipient). If she would later compromise one party’s
device, she would be able to read these skipped messages.

2.5.5 Header Encryption in the Double Ratchet

As described in the previous sections (2.5.3 and 2.5.4), every transmitted
message has a header which contains a DH ratchet public key and integers N
and PN . From these values, Eve could deduce some information about the

15Lower indexes determine the party from which the information comes from.
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communicating parties – e.g. which message belongs to which session, or the
ordering of messages [52].

To prevent this, the Double Ratchet allows to encrypt headers using two
additional keys:

• Header key (HK )

• Next header key (NHK )

These keys are initialized as a shared secret between Alice and Bob (the same
way the root chain key is established).

The header key is used for encrypting or decrypting the message header
of the current sending or receiving chain. The next header key is used for
encrypting or decrypting the message header from a new sending or receiving
chain which is created because one party sent a new Diffie-Hellman public key
(see section 2.5.3 for details) [52].

With this approach, figure 2.7 can be modified to contain the additional
HK and NHK keys:

Figure 2.12: Alice’s Double Ratchet initialization with the header keys. These
keys are established as the shared secret between Alice and Bob [52].

Note that the sending chain NHK and the receiving chain NHK are not
the same keys. The sending chain NHK is calculated from the root chain key
and the DH values, while the receiving chain NHK is negotiated directly as
a shared secret.

However, both Alice and Bob have to initialize these values following two
rules:

• Alice’s sending HK has to be equal to the Bob’s receiving NHK, so that
Alice’s first message triggers a DH ratchet step for Bob

• Alice’s receiving NHK has to be equal to the Bob’s (initial) sending
NHK, so that after Bob’s first DH ratchet step, Bob’s next message
triggers a DH ratchet step for Alice

If Alice wants to send a new message with the encrypted header, she
performs a symmetric-key ratchet (as in figure 2.8) and encrypts the header
using the sending chain HK which is illustrated in figure 2.13.
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Figure 2.13: Alice sends the Double Ratchet message with the encrypted
header. The HK key is used for the header encryption [52].

Now assume that Bob sent a message to Alice. Because the header of that
message is encrypted, she does not know which header key she needs to use.
Thus, she needs to try decrypting the header with every receiving header key
at her disposal:

• Header key HK – in case Bob sent the old Diffie-Hellman ratchet public
key

• New header key NHK – in case Bob sent a new Diffie-Hellman ratchet
public key

• All stored header keys corresponding to previously skipped messages, if
available

If the header was successfully decrypted using the new header key, Alice has to
perform the Diffie-Hellman ratchet step. During this step, Alice has to replace
the current header keys with the next header keys and the next header keys
with the new header keys which were created during the DH ratchet step.
This approach can be seen in figure 2.14.

If the header was successfully decrypted using a receiving header key, Alice
only performs the symmetric-ratchet and decrypts with the current header
key. If Bob did not send a new DH ratchet public key, Alice only performs the
symmetric-ratchet with the current sending header key as well. This approach
is illustrated by figure 2.15.
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Figure 2.14: When Alice receives the message with the new header key, she
performs the DH ratchet step which also derives new header keys [52].

Figure 2.15: When Alice does not receive a new header key from Bob, she only
performs the symmetric-key ratchets with the current sending and receiving
header keys [52].
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Chapter 3
Implementation Analysis

The Signal Protocol is implemented as an open-source code under the GNU
General Public License (GPLv3). Three variants of the Signal Protocol library
are available on GitHub [53] along with the Signal application for Android
phones, iOS, desktops, and more. Anyone can contribute their own code
and ideas if they are tested first and approved by the OWS team (via a pull
request).

In the Signal Protocol, libraries are implemented in three programming
languages – C [54], Java [55] and JavaScript [56], because the Signal Protocol
is used on different platforms, e.g. Android mobile phones (Java) or the
Electron desktop application (JavaScript), etc.

In this chapter, we will discuss our findings regarding to the Double Ratch-
et algorithm and several aspects which are closely related to it. The Double
Ratchet algorithm is used for deriving new encrypting/decrypting keys from
the shared secret. These keys are used for symmetric cryptography between
the two parties. It is an essential approach of the Signal Protocol and it
provides a better resilience, forward security and break-in recovery than other
standard solutions. Theoretical details about the Double Ratchet can be found
in section 2.5.

3.1 Code

In this analysis, we focus on the Java library which is used in the Signal
Android application, specifically the commit 4f5e1ff299 which represents
the most recent Signal Protocol version 2.6.2 (July 12, 2017).

To be able to analyze the Signal Protocol properly, we need to clone the
curve25519-java [57] repository as well. It contains functions which provide
generation of the elliptic curve public and private keys and other operations
with the Curve25519 (see section 2.3.2 for details about this topic). In this
analysis, we address the commit 0e7a6a1b2b which represents version 0.4.1 of
the Curve25519 library implementation (June 23, 2017).
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The Signal Protocol libraries have some interfaces and callback functions
which are supposed to be implemented on the client side of an application.
For example, the storage functions which decide how and where exactly the
client stores data are left unimplemented. The greatest emphasis is to store
all private keys (and most importantly the Identity private key) somewhere
durable and safe. A developer of the client application should take a great care
about these particular parts, because underestimating these security aspects
would most certainly lead to fatal security failures.

To cover some of these aspects, we decided to install the Android Stu-
dio [58] and compile our own Signal for Android application [59] (commit
9fb67b9f03, version v4.17.0). Gradle [60] (which is used in this repository)
ensures all the dependencies are downloaded properly and even though the
client analysis is outside of the scope of this thesis, it provided a helpful in-
sight about the interconnection between the Signal Protocol and the client
application.

3.2 Keys

In the Signal Protocol, both parties use a set of elliptic curve key pairs for
establishing a secured communication. The purpose of the particular keys can
be found in sections 2.4 and 2.5.

3.2.1 Key Definitions and Key Generation

First of all, let’s see how the keys are represented. Three java classes represent
keys in the Signal Protocol Java library:

• ECPrivateKey.java – Contains a byte sequence representing the private
key

• ECPublicKey.java – Contains a byte sequence representing the public
key

• ECKeyPair.java – Contains both private and public key from the defin-
itions above

However, other definitions of the keys and the cryptographic functions are
available in the library curve25519-java. It has two sub-directories16. The
first one is used for the key definitions and the second one is used for the key
generators, hash function definitions, etc.

16

1. ./curve25519-java/common/src/main/java/org/whispersystems/curve25519

2. ./curve25519-java/java/src/main/java/org/whispersystems/curve25519
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Now, let’s focus on how the keys are created in the first place. The ab-
stract class BaseJavaCurve25519Provider.java contains a few definitions of
the security providers. These providers (Sha512 and SecureRandomProvider)
are only interfaces, so in this abstract class, we can only find the general ap-
proaches of how to generate a new key pair.

The private key (i.e. the byte sequence which is 32 bytes long) is first filled
with random data. This is done in JCESecureRandomProvider.java. This
provider imports standard java library java.security.SecureRandom and
uses a SHA-1-based pseudo-random number generator (PRNG) to generate
the byte sequence. As stated in the official Java documentation [61], PRNGs
are statistically tested and they are considered cryptographically strong (see
FIPS 140-2 [62] for details).

After the byte sequence has been generated, masks are used to modify the
private key:
privateKey [0] &= 248;
privateKey [31] &= 127;
privateKey [31] |= 64;

where &= is a bitwise and operator and |= is a bitwise or operator. The
constants represent masks:

• (248)10 = (1111 1000)2

• (127)10 = (0111 1111)2

• (64)10 = (0100 0000)2

These masks correspond to the official RFC 7748 documentation [35] and
they allow to decode the byte sequence as an integer scalar. Without it,
the private key would not have the proper format for calculations. However,
this modification of the private key results in a lower security, because the
resulting integer is of the form 2254 plus eight times a value between 0 and
2251 − 1 (inclusive) [35].

Now, when the private key is created, the Signal Protocol calculates a cor-
responding public key as a twisted Edwards point in the Montgomery form (see
section 2.3.1 for details). This calculation is performed in curve sigs.java
and it takes an Ed25519 base point (which is standard and commonly agreed
to) and multiplies17 it with the private key (which is a scalar represented as
a byte sequence). If we mark the result as P , the conversion to the Mont-
gomery x-coordinate is computed using this equation:

x = (P.y + 1)/(1− P.y) (3.1)

where P.y is the y-coordinate of the point P . So, the resulting public key is
represented as the x-coordinate, thus it is a byte sequence as well.

17Multiplication of the base point is fast, because Signal Protocol uses precalculated
tables.
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3.2.2 Key Security

As we could see in the previous section 3.2.1, the keys are 32 bytes long. Since
the keys are used for the elliptic curve cryptography, we have to consider a pos-
sibility of attacks using the Baby-step giant-step (BSGS) [63] or the Pollard’s
Rho algorithm [64]. These algorithms effectively reduce the number of steps
which a standard brute-force attack would have to calculate in attempts to
solve the Discrete logarithm problem (DLP).

This effectively means that the overall security of the elliptic curve keys is
actually the square root of all the possibilities:

O(
√

2256) = O(2128) (3.2)

Furthermore, five bits of the private key are deterministically pre-defined,
decreasing the overall security even further. Nevertheless, this key length is
still sufficient for cryptographic purposes (if we omit the possibility of quantum
computers).

3.3 Initialization

Before the actual communication begins, both parties have to be initialized.
Two classes represent the initial parameters for Alice and Bob:

• AliceSignalProtocolParameters.java

• BobSignalProtocolParameters.java

The only difference between the two parties is who is trying to send the mes-
sage first. If one party decides to send a message, she needs to be initialized
beforehand by the second party (and thus she is marked as Alice) and vice
versa. All initialization parameters can be found in the table 3.1:

Table 3.1: Initialization parameters of Alice and Bob

Alice Bob
Alice’s Identity key pair Bob’s Identity key pair
Alice’s Base key pair Bob’s Signed prekey pair
Bob’s Identity public key Bob’s Ratchet key
Bob’s Signed public prekey Bob’s One-time prekey pair
Bob’s Ratchet key Alice’s Identity public key
Bob’s One-time public prekey Alice’s Base public key

Note that the one-time prekeys are optional and they do not have to be
included during the initialization.

In addition, Alice’s Base key pair is an undocumented name. We studied
the usage of this key pair in some detail and it is actually the ephemeral
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key pair which is later used in the X3DH key agreement protocol (EKPA,
see table 2.4). In the old documentation of the TextSecure ProtocolV2 [65]
(last edited on July 1, 2015) which contained so called Axolotl ratchet, we
have found some mentions of another purpose of the Base key. There were
actually two ways to determine which party is Alice or Bob – the first one
was described in the paragraphs above, but the second one was based on the
comparison of the ephemeral (Base) keys of both parties which they exchanged
beforehand. Whoever had a smaller Base key would become Alice and the
other party would become Bob. This was called the KeyExchangeMessage
case. The approach which was described in the official documentations [32]
was previously called the PreKeyWhisperMessage case.

According to the Java library README [55], every party has to generate
these key pairs at the installation time:

• Identity key pair

• Prekeys

• Signed prekeys

Alongside these keys, one additional value has to be generated as well:

• Registration ID

The registration ID is a random number generated by the SHA1-PRNG con-
tained in the KeyHelper.java file. The actual purpose of this value is un-
docummented, but it is most likely used as an additional information about
the client. The server stores this value which is bound to the device ID (used
in the Sesame algorithm [33]) as well. The analysis of the server side is out-
side of the scope of this thesis. However, the open-source repository of the
Signal-Server implementation can be found here [66].

It is also advised to generate more prekeys at the initialization time. These
prekeys are sent to the server afterwards. In the Signal Protocol Java li-
brary [55], the count 100 is stated as the recommended value. However, the
decision of how many prekeys will be generated is left only to the developer
who creates the client application and it is not restricted in any way.

3.4 Ratcheting

As stated in section 2.5, the Double Ratchet algorithm contains two types of
ratchets:

• Symmetric-ratchet

• Diffie-Hellman Ratchet
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Both of these principles used together form the Double Ratchet. However, to
explain the ratchet implementation in detail, we have to inspect some other
aspects as well.

3.4.1 HKDF

HMAC-based Key Derivation Function (HKDF) is a function which derives
one or more secret keys from the secret values given as an input. This function
is used for deriving new cryptography keys in the Double Ratchet algorithm.
For more detailed information, see section 2.4.3 and section 2.5.1.

In the Signal Protocol Java library, HKDF implementation can be found
in the HKDF.java file. It uses a standard HMAC-SHA256 algorithm from the
javax.crypto.Mac library.

Two methods are present in the HKDF implementation as well:

• Extract

• Expand

This corresponds to the HKDF “extract-then-expand” paradigm (see sec-
tion 2.4.3) [49].

The extract phase takes a salt and an input keying material as parame-
ters. Standard HMAC-SHA256 from the javax.crypto.Mac library is used
for generating the PRK (a pseudo-random key [49]) as a KDF output.

The PRK is then used as an input to the expand phase, along with an ad-
ditional information info (e.g. the protocol number, algorithm identifier, etc.)
and a desired output length L. Additionally, the constant HL (hash-length) is
defined which denotes the length of the hash function output in octets [49]. In
the Signal Protocol, this constant is equal to 32 bytes. Furthermore, according
to the RFC specification, the expand phase should perform these calculations
in an attempt to generate the output material OKM :
N =

⌈
L/HL

⌉
T = T(1) ‖ T(2) ‖ . . . ‖ T(N)
OKM = first L octets of T

The T function returns a HMAC output as:
T(0) = empty string with zero length
T(1) = HMAC(PRK, T(0) ‖ info ‖ 0x01)
T(2) = HMAC(PRK, T(1) ‖ info ‖ 0x02)
...
T(N) = HMAC(PRK, T(N-1) ‖ info ‖ 0xN)

where ‖ is a concatenation of strings. Thus, in the expand phase, the PRK is
used as the “salt” and additional information is mixed in directly as the input
keying material, along with the previous hash outputs and an incremental
byte counter.
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In the Signal Protocol, HKDF is implemented exactly according to this
specification, with a single exception – it allows to additionally set an offset to
the byte counter. Thus, the T (1) function can start with a different arbitrary
value. Other values are then incremented as expected.

Both of these phases are encapsulated by the deriveSecrets function,
which takes the input keying material, additional information and output
length as parameters. In this definition, the salt is an optional value and by
default it is a zero byte sequence of the length of HL. Even though the salt is
an optional value and by default it does not have to be provided18, it is highly
recommended.

As we can later see in the chain key implementation (section 3.4.2) and
the root key implementation (section 3.4.3), the salt is used while creating the
root key. However, no salt is used while creating the message key – only seed
and the previous chain key is used while creating a new input keying material,
but no salt is provided to the HKDF.

The output length of the HKDF can be set separately. This allows different
byte sequences for different purposes. For example, the HKDF output while
creating a new chain key and root chain key (section 3.4.2 and section 3.4.3
below) is 64 bytes long. However, the actual output is split into two 32 byte
sequences. The reason for doing so is to achieve a better performance while
preserving the security.

3.4.2 Chains and Chain Keys

Chain keys are defined in the file called ChainKey.java. Every chain key
contains several attributes:

• Message key seed – Equals to a byte 0x01 and it is a constant.

• Chain key seed – Equals to a byte 0x02 and it is a constant.

• KDF – Key derivation function which was definded in section 3.4.1.

• Key – Current chain key represented as a byte sequence.

• Index – Index of the current chain key N . After deriving a new chain key,
this number is increased by 1. This information helps to deal with lost
or out-of-order messages (see section 2.5.4 for details) and in cases when
an excessive number of messages is pending from the sender (messages
to-be-received), e.g. due to a possible denial-of-service attack19.

The ChainKey.java also has three methods:

1. getBaseMaterial()
18The zero byte sequence is explicitly allowed by the specification [49].
19In the Signal Protocol, the limit is set to 2000 messages (SessionCipher.java).
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2. getNextChainKey()

3. getMessageKey()

The first method takes a seed (message key seed or chain key seed) as
a constant and performs a KDF (HMAC-SHA256) over a current chain key.
This process will create a new input keying material. Note that this (H)KDF is
simpler than the one mentioned in section 3.4.1, because it only takes a current
key and a seed as the inputs and generates the output which is used either as
a new key or as an input keying material (see paragraphs below).

The second method uses the first method. It derives a new chain key and
replaces the current one. The chain key seed is used for the KDF.

The third method also uses the first method. It uses the message key seed
to generate the input keying material for a second additional HKDF. This
second HKDF is the same as the function described in section 3.4.1. However,
no salt is used in this step, so this HKDF takes a zero byte sequence instead.
Even though the salt is optional, it is highly recommended to use it. How
much security would the additional salting bring to the overall security while
generating the message keys should be inspected closer in future work.

The additional information which is passed to the HKDF as well is a string
WhisperMessageKeys represented as a byte sequence.

The output of the (second) HKDF is then used to create the Message
secrets (MessageKeys.java and DerivedMessageSecrets.java):

• Cipher key (32 bytes)

• MAC key (32 bytes)

• Initialization vector (16 bytes)

Thus, the HKDF output has 80 bytes and is split into three subsequences.
Cipher key is a 32 bytes long AES key (a standard SecretKeySpec library).

MAC key is a standard 32 bytes long HMAC-SHA256 key. The initialization
vector is 16 bytes long (IvParameterSpec library) which supports a CBC
mode.

To clarify the difference between the chain keys (CK) and the message
keys (MK), see figure 3.1 below. For even more details about this topic, see
section 2.5.3.

3.4.3 Root Chain and X3DH Agreement

As we can see in figure 3.1, the only thing we do not know how to generate is
the root key (RK). The root key is covered by the RootKey.java file and is
very similar to the chain key. However, the root key does not have the index
number and it does not use the predefined seeds.
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Figure 3.1: An illustration of the difference between the chain keys and the
message keys [52].

However, the root chain has to be initialized first. Thus, a shared secret
has to be established between Alice and Bob to initialize the root chain as
the first step. The X3DH protocol (see section 2.4 for details) is the preferred
choice and exactly this algorithm can be found in the RatchetSession.java
file.

In this class, the initalizeSession() method calculates the shared secret
for Alice by three or (optionally) four calculations:

• DH calculation between privIKA and SPKB

• DH calculation between privBKA and IKB

• DH calculation between privBKA and SPKB

• DH calculation between privBKA and OPKB (optional)

where SPK is the Signed prekey, IK is the Identity key, OPK is the One-time
prekey and the BK is the Base key which is actually the ephemeral key (see
section 3.3). The priv denotes the private key, otherwise we mean the public
key (see sections 2.4.1 and 2.4.5 for more details).

Similarly, the initializeSession() method calculates the shared secret
for Bob:

• DH calculation between privSPKB and IKA

• DH calculation between privIKB and BKA

• DH calculation between privSPKB and BKA

• DH calculation between privOPKB and BKA (optional)

As we can see, this perfectly corresponds to the shared secret establishment
in the X3DH agreement protocol which was described in section 2.4.

The DH calculation from the lists above is a simple Diffie-Hellman calcu-
lation, i.e. a multiplication of Alice’s private key (scalar) and Bob’s public
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key (elliptic curve point) and vice versa. This calculation can be found in the
BaseJavaCurve25519Provider.java file using the calculateAgreement()
method.

The shared secret is 64 bytes long. After it is established, it is then split
into two 32 byte sequences. The first one is used as an initial root key and the
second one is used as an initial receiving chain key which is used to decrypt
the very first initial message.

After the initial root key is created, we can derive a new sending chain key
by a simple additional DH calculation and a HKDF calculation (see figure 2.7).
The algorithm takes the other party’s DH ratchet public key and multiplies it
with our party’s private key. This shared secret is then used as the input keying
material for the HKDF (section 3.4.1). Unlike the chain keys (section 3.4.2),
this HKDF uses a salt – the current root key. The additional information is
a string WhisperRatchet represented as a bytes sequence. The output of this
HKDF (64 bytes) is then split and used as a new root key and a new sending
chain key (both 32 bytes).

3.5 Encryption and Decryption of Messages

In the Signal Protocol implementation, encrypting and decrypting messages
is based on working with sessions. Even though a session management and
the Sesame algorithm [33] are outside of the scope of this thesis, we can still
inspect some cryptographic practices.

The javax.crypto.Cipher is a standard library which allows to encrypt
and decrypt messages with a usage of the standard cryptography algorithms.
It is used in the SessionCipher.java class.

3.5.1 Encryption

Before the encryption or the decryption starts, a cipher must be created. In the
Signal Protocol, the standard AES in CBC mode with PKCS5 padding is used.
According to the official Java documentation [67], this standard AES uses 128-
bit keys. However, Java allows to use the Java Cryptography Extension (JCE)
which adds the possibility to have longer keys and use more secure variants
of the standard algorithms, e.g. AES with a support for 256 bits key length.
Thus, the AES-256 is used for the symmetric encryption.

The cipher has to be initialized with a message key and an initialization
vector, too. These values are known from the chain key ratchet (see sec-
tion 3.4.2 for details).

When the cipher is ready, plaintext can be encrypted using freshly derived
message keys. After every encryption, a chain key ratchet is performed. Thus,
with another encryption, new message keys will be derived from a new chain
key.
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3.5.2 MAC Calculation

While encrypting the message, a MAC has to be calculated as well. While
deriving new message secrets from the chain key, a MAC key is created along
with a message key and an initialization vector (see section 3.4.2 for details).

The SignalMessage.java file contains both the MAC calculation method
and the MAC verification method. They both use a standard HMAC-SHA256.

In the MAC calculation method, HMAC takes four values as an input. All
of these values are already available – they are either contained in the derived
secrets, or they are provided by the server, or they are present on the client
side:

• MAC key (32 bytes)

• Sender’s Identity public key (32 bytes)

• Receiver’s Identity private key (32 bytes)

• Ciphertext message and a message version number as a concatenated
byte sequence

From these values, an 8 byte MAC sequence is generated20.

3.5.3 Decryption

The decryption is a little more complicated. It differs depending on the state
in which the algorithm currently is, i.e. if the party is initializing the commu-
nication with the first message, or the session is in an ongoing communication.

In the Signal Protocol, a message can take up two forms, represented by
two files:

• PreKeySignalMessage.java

• SignalMessage.java

The first form contains all the necessary information for establishing the se-
cured communication, e.g. the registration ID, the prekeys and the signed
prekeys, the identity public key, the base key, etc. So, this is the initial mes-
sage which also carries a ciphertext along with the parameters.

The second form only contains a Diffie-Hellman ratchet public key, cipher-
text and counters (the numbers N and PN from the section 2.5.4).

These parameters are stored into a session. This session can be later
recreated, stored and modified according to the incoming values.

Before the message can be decrypted, new message keys and chain keys
have to be created (derived) first. The SessionCipher.java file contains two
methods for deriving the new keys if necessary. If the received Signal message

20Only first 8 bytes are taken from the HKDF output.
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carries a new DH public ratchet key, root chain ratchet is performed on the
recipient side as well. Otherwise, the recipient uses her current receiving chain.
In either case, the recipient has to derive new message keys or she uses some
of the keys from the previously skipped messages.

Note that the DH ratchet step creates a new DH ratchet key pair on the
recipient side as well, resulting in sending a new DH ratchet public key to the
original sender, if the recipient decides to send her own message.

3.5.3.1 Skipped Messages

The client must check all of the previously stored (skipped) chain keys, if
there are any available, because the received message could be delayed in
transit. This is done by finding the correct receiving chain (using the sender’s
DH ratchet public key) and performing a maximum of N iterations over the
stored message keys, comparing their indexes with the value N which arrived
with the incoming message. If the correct message key is found, it is then
used for decryption and deleted.

Note that the index N denotes a position in the current sending chain.
This number is the same for both parties, i.e. for Alice’s receiving chain and
Bob’s sending chain and vice versa.

A maximum of 2000 skipped messages (message keys) is set as a limit on
the message loss. It also serves as a precaution against possible denial-of-
service attacks.

A greater number N can arrive with the message as well. To be able to
decrypt this message, a client has to perform (N−RC) derivations of the new
message keys, storing them in the process; RC is an index of the last message
key in the receiving chain.

3.5.3.2 Unsuccessful Decryption and Archived Sessions

Unsuccessful decryption can be caused by several factors. For example, the
message can be somehow damaged (i.e. incomplete), or the MAC verification
is not valid (see section 3.5.4 below for details). To identify all the causes of
the unsuccessful decryption is outside of the scope of this thesis.

In addition, the Signal Protocol counts a number of archived sessions
(a supplement to the active session) with the maximum threshold of 40 ses-
sions (SessionRecord.java). If the number of stored sessions is exceeded, the
last used session is deleted and a new one is created (and marked as active).

3.5.4 MAC Verification

Before the decryption of the ciphertext, a MAC verification must be per-
formed. To be able to do so, the chain key and the message key which were
derived during the decryption process are used. MAC verification then takes
the message (ciphertext and message version) and calculates the MAC using
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the approach which was described in section 3.5.2. If the calculated MAC is
equal to the one that arrived with the message, the Signal Protocol marks
the message as verified and the message can be decrypted. If not, the Double
Ratchet terminates the message and reverts all changes.

3.6 Header Encryption

In the official documentation regarding the Double Ratchet algorithm [52]
(section 2.5.5), a header encryption variant of the Double Ratchet can be
found. However, we did not find any trace of this algorithm in the code.
We have tried to contact the developers from the OWS team regarding the
implementation of this variant, but unfortunately, without success.

We suspect that this more secured variant of the Double Ratchet is not
implemented yet. Thus, we would expect a disclaimer in the official docu-
mentation.

3.7 Cleanup

In the section 2.5.3, we have described which keys should be deleted in the
Double Ratchet algorithm for the forward secrecy. Keys should be deleted
when they are not used anymore and when they will not be required in the
future.

Furthermore, as mentioned in the Code section 3.1, storing (and cleaning)
data is left to the developer of the particular application which uses the Signal
Protocol. For example, in the Signal for Android client application, a protobuf
by Google is used as a solution for storing the keys and other particular data.
However, the exact functionality of the so called ”Protocol Buffers” is outside
of the scope of this thesis and we discuss the implemented general security
principles instead.

Due to the importance of storing the data, we would expect some guidelines
regarding this topic in the protocol documentation. However, we couldn’t find
any. A developer of the client application should use caution when implement-
ing these parts.

3.7.1 Root Key Deletion

When a new DH ratchet public key is received with the incoming message,
a DH ratchet step is performed. This step will derive a new root key. The
previous root key will not be used ever again, thus it is obsolete and should
be deleted.

Effectively, only one root key is saved at any given time, effectively replac-
ing the old key with a new one after every DH ratchet step.
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3.7.2 Chain Key Deletion

As was described before, the client uses two chains for communication – the
sending chain and the receiving chain.

Similarly to the root key, only one sending chain key is stored at any given
time. This means the old sending chain key is replaced by a new one after
every key derivation.

On the other hand, the receiving chain key is deleted after every suc-
cessful decryption. The cases of a successful decryption were discussed in
section 3.5.3.

3.7.3 Message Key Deletion

All message keys are derived from the chain keys, either from the sending
chain or the receiving chain.

The sending message keys are only used to encrypt an outgoing message
and to calculate the MAC. Thus, they are not stored in any way and they are
discarded immediately after they were used. This means they are only stored
in-memory for a very short period of time.

As previously mentioned, when a new message is received, the client has
to iterate over all the skipped message keys in her receiving chain. She stores
this information in the sessions by keeping the (non-empty) receiving chains
with relevant message keys.

The client firstly finds the correct receiving chain (using the sender’s DH
ratchet public key) and then it iterates through all the message keys in this
chain, until the index N is found. If the correct message key is found and the
received message is successfully decrypted, the message key is deleted. Note
that the client’s receiving chains have that many message keys equal to the
number of skipped messages in that particular receiving chain.
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The Signal Protocol uses only well known cryptographic standards which are
continuously review by the community and security researchers. This ensures
the protocol is based on standard and recommended cryptographic solutions
and we did not find any discrepancies regarding this matter.

The standard AES-256 is used for the message encryption. Asymmet-
ric cryptography is based on the elliptic curve calculations. The standard
Curve25519 is used in the Signal Protocol. The OWS team also proposes the
possibility to use the Curve448 (Ed448-Goldilocks) which sacrifices some per-
formance over security. However, a quantum computer will be able to crack
both of these curves. Thus, the Curve25519 is recommended and is used in
the Signal Protocol for the X3DH agreement protocol and the (V)XEdDSA
signature scheme.

Because of both the BSGS and the Pollard’s Rho algorithms, the overall
security of the elliptic curve keys is the square root of all the possibilities.
Thus, only 128 bits key length limits the elliptic curve security (instead of 256
bits). Nevertheless, this key length is still sufficient for cryptography used in
the classic computers.

Two forms of elliptic curves are defined for the calculations and storing
data – the Edwards curve and the Montgomery curve. These forms allow to
store only one coordinate of the curve’s point resulting in a point compression
along with the resistance against side-channel attacks. This is useful for the
mobile devices (for which the protocol is originally designed) because they
often lack of a large storage space and they could be under a wide range of
(side-channel) attacks.

The cryptographic standards are combined into a very robust cryptosystem
with XEdDSA, X3DH, and Double Ratchet algorithms at its heart. These al-
gorithms can be also used separately. The XEdDSA and the X3DH algorithms
provide a well secured and digitally signed establishment of the shared secret.
The shared secret is derived by the Double Ratchet to new symmetric keys
forming the perfect forward secrecy.
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If an attacker could sacrifice enough resources for cracking the symmetric
key, she would only obtain information about one message. The cracked key
does not contain any information about previous and future keys because new
Diffie-Hellman values are exchanged continuously during the communication
and the derivation of keys ensures random-looking outputs. This could be
praised as “as good as it gets” for the cryptographic security, because the
attacker would have to expend a tremendous effort in order to decrypt the
whole communication.

The Signal Protocol is completely open-source which allows anyone to
perform a security analysis. In general, we highly recommend to use the open-
source solutions for security systems like this. First of all, it shows that the
authors have “nothing to hide”. Of course, it does not provide any information
about the security of such a solution, but it mitigates the phenomenon of
security by obscurity which should have no place in cryptography.

4.1 Security Considerations

We conclude that the Signal Protocol exhibits strong security features. How-
ever, we found a few discrepancies and undocumented specifications which the
reader should carefully consider along with a few other security concerns.

The stated remarks do not affect security of the Signal Protocol as it exists
now. However, they could be significant in the future and/or the alternative
implementations could be affected.

4.1.1 Header Encryption

The header encryption variant of the Double Ratchet algorithm represents
a more secure approach of distributing an additional information along with
the message. The header information is encrypted using a set of additional
header keys.

This process is described in the official Double Ratchet documentation [52]
and section 2.5.5. However, we did not find any trace of this variant in the
code. We have tried to contact the developers of the OWS team regarding
this issue, but unfortunately, without success.

We suspect that this more secured variant of the Double Ratchet algorithm
is not implemented. Thus, we would expect a disclaimer in the official docu-
mentation and/or the OWS team should provide more information regarding
this topic.

4.1.2 Storing Data

The protocol is used on several platforms and countless devices. Thus, it is
understandable that some implementation details are left to the developer of
the particular application which uses the Signal Protocol.
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In our thesis, we covered only the Java implementation of the protocol.
This implementation uses a protobuf by Google in the official Signal for An-
droid application as a solution for storing the keys and other particular data.
However, we found only few general suggestions in the official protocol repos-
itory [55] regarding how the developer should implement the data storage in
her own client application.

Because of the importance of storing the sensitive data (such as the user’s
private keys), we would expect to see further information or guidelines regard-
ing this topic.

4.1.3 Authentication

The Signal Protocol does not provide any cryptographic guarantee of the
authenticity of communicating parties. Public keys should be verified out-of-
band using another communication channel (e.g. in person with a fingerprint
written on a piece of paper). Without it, the communication could already be
intercepted using a man-in-the-middle attack.

In the Signal for Android application, users can compare their fingerprints
in person (e.g. in the form of the QR code). This procedure is highly recom-
mended and the developer who wants to use the Signal Protocol in her own
application should also implement a similar solution.

4.1.4 Post-Quantum Cryptography

As mentioned, the design of the Signal Protocol is heavily secured against
attacks using the classic computers. However, another concern is the possible
uprising of the quantum computers.

From the security perspective, we can only assume that all our commu-
nication is being recorded. Even though the communication is (or should be)
encrypted and it cannot be decrypted at the moment, the quantum computers
will be able to crack all commonly used asymmetric systems like RSA, Diffie-
Hellman, and ECDH – i.e. including the cryptography used in the Signal
Protocol.

Solution for securing the future messages is to use a post-quantum cryp-
tography which could be deployed into the existing cryptosystems. However,
the already recorded messages would still be decrypted.
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Conclusion

In this thesis we described a selection of the currently used instant messaging
protocols with a particular focus on their security. In the selection, we included
utterly unsecured protocols (the IRC in its original design) as well as very
robust security solutions (the Signal Protocol).

We analyzed the Signal Protocol in detail. In this thesis, mathematical as-
pects of the protocol’s functionality were outlined and we explained how these
preliminaries improve the security of the cryptographic operations. Moreover,
we covered the essential approaches of the Signal Protocol such as the Double
Ratchet algorithm, the Extended Triple Diffie-Hellman key agreement pro-
tocol or the XEdDSA and the VXEdDSA signature schemes.

Furthermore, we analyzed the Java implementation of the open-source
Signal libraries which are currently used in the official Signal for Android
application. We validated the theoretical security considerations against the
particular solution from the Open Whisper Systems team. Hence we conclude
that the Signal Protocol exhibits strong security features.

Moreover, we clarified the security aspects regarding the cryptographic
operations which are used in the Signal Protocol implementation, such as the
HKDF, the elliptic curve calculations, the key derivation (ratcheting), and
more.

We also found a few discrepancies and undocumented operations in the
protocol’s implementation compared to the official documentations, such as
the header encryption variant of the Double Ratchet algorithm. We evaluated
such concerns and raised several recommendations.

Finally, we brought up many security considerations which emerged from
the protocol’s design, such as the server trust or the need for separated authen-
tication channels. Even though a majority of them cannot be simply avoided
by the protocol’s implementation, we described the security recommendations
that a user should take if she would wish to include the Signal Protocol in her
own application.

Our work is focused mainly on the protocol’s functionality, design and
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its Java implementation. However, there are still many aspects which might
be addressed by additional research in the future. This research might focus
on the Sesame algorithm and a session management between multiple devices.
Since this thesis only analyzed the Java implementation of the Signal Protocol
libraries, other research might target the C and JavaScript implementations,
too.
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Appendix A
Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AOL America Online

BSGS Baby-Step Giant-Step

DLP Discrete Logarithm Problem

DSA Digital Signature Algorithm

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards-curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

HKDF HMAC-based Key Derivation Function

HMAC Hash-based Message Authentication Code

IETF Internet Engineering Task Force

IGE Infinite Garble Extension

IM Instant Messaging

IRC Internet Relay Chat

JCE Java Cryptography Extension

KDF Key Derivation Function

NIST National Institute of Standards and Technology
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A. Acronyms

OTR Off-the-Record

OWS Open Whisper Systems

PRNG Pseudo-random Number Generator

RFC Requests for Comments

RSA Rivest–Shamir–Adleman

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer

XMPP Extensible Messaging and Presence Protocol
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Appendix B
Contents of the enclosed CD

readme.txt ....................... the file with CD contents description
repositories.zip...................the copy of the Signal repositories

curve25519-java .................... the curve25519-java repository
libsignal-protocol-java ..... the libsignal-protocol-java repository
Signal-Android...................... the Signal-Android repository

src.......................................the directory of source codes
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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