
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 23, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Android app for meeting scheduling

 Student: Bc. David Khol

 Supervisor: Ing. Martin Půlpitel

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2019/20

Instructions

Design and implement a native, mobile app for scheduling meetings. Create an event (duration, place,
participants). With a preview of your calendar, select suitable timeslots for the meeting. Send a proposal
for the meeting. Recipients will see the meeting invitation and your proposed dates. After the date is
confirmed, an event is added to your calendars.

- Look for similar applications, e.g. Sunrise
- Study and use the iCal standard, alternatively other standards that come out of the analysis
- Design an application
- Use the existing backend to address the solution
- Implement synchronization with Google Calendar
- Pay close attention to the design of the user interface
- Program in a reactive manner
- Support for Android 4.4+
- Test the application

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Android app for meeting scheduling

Bc. David Khol

Supervisor: Ing. Martin Půlpitel

9th May 2018

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 9th May 2018 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2018 David Khol. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Khol, David. Android app for meeting scheduling. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2018.

Abstrakt

Práce zkoumá standardy iCalendar a CalDAV, které se použ́ıvaj́ı k reprezentaci
událost́ı a př́ıstupu k plánovaćım informaćım ze server̊u. Uvád́ı aktuálńı stav
platformy Android a představuje několik knihoven, které značně usnadňuj́ı
řešeńı problémů, s nimiž se vývojáři běžně potýkaj́ı. Jedná o standardu Re-
active Streams, jeho vztah k tématu reaktivńıho programováńı a představuje
jednu z jeho implementaćı, knihovnu RxJava.

Analyzuje implementaci stávaj́ıćı webové služby a navrhuje rozš́ı̌reńı jej́ı
funkčnosti. Dále analyzuje možnosti, jak přehledně vizualizovat události v
kalendáři.

Shrnuje závěrečnou podobu aplikace a popisuje, jak se Android verze lǐśı
od webové verze. Rozepisuje pokročilý algoritmus pro nalezeńı optimálńıho
rozložeńı událost́ı v kalendáři.

Na závěr hovoř́ı o testováńı aplikace provedeném s uživateli.

Kĺıčová slova Android, plánováńı sch̊uzek, kalendář, reaktivńı programováńı

Abstract

vii

The thesis researches iCalendar and CalDAV standards which are com-
monly used to represent events and access scheduling information from remote
servers. It looks into the current state of Android platform and introduces sev-
eral libraries that address common issues which Android developers have to
deal with. It goes over Reactive Streams standard, its relationship to the topic
of reactive programming and introduces one of its implementations, RxJava.

It analyses the implementation of the existing web service and proposes
extensions to its functionality. Furthermore, it analyses possible options how
to visualize schedules in a form of a calendar view.

It introduces the final implementation of the app and describes how An-
droid version of the app differs from the web version. It introduces an advanced
algorithm to display events in a calendar in an uncluttered way.

Finally talks about the testing of the app with users.

Keywords Android, meeting scheduling, calendar, reactive programming

viii

Contents

Introduction 1

1 State-of-the-art 3
1.1 iCalendar standard . 3
1.2 Android ecosystem . 6
1.3 Reactive programming . 16

2 Analysis and design 31
2.1 Web version of Ackee Planner 31
2.2 Design of Android version of Ackee Planner 34
2.3 Calendar layouts . 37

3 Realisation 43
3.1 Android . 43
3.2 Calendar . 44
3.3 Android version of Ackee Planner 56

4 Testing 65
4.1 First task . 66
4.2 Second task . 67

Conclusion 69

Bibliography 71

A List of abbreviations 75

B Contents of enclosed CD 77

ix

List of Figures

1.1 Basic lifecycle of an activity . 6

1.2 MVC pattern. 9

1.3 MVP pattern. 10

1.4 MVVM pattern. 10

1.5 Repository pattern schema for MVVM. 11

1.6 Publisher-Subscriber-Processor relation. 17

1.7 Publisher-Subscriber-Processor relation with backpressure. 18

1.8 Five basic types in RxJava . 20

1.10 Marble diagram explanation. 23

1.11 Map operator . 24

1.12 FlatMap operator . 24

1.13 SwitchMap operator . 24

1.14 Debounce operator . 25

1.15 Zip operator . 25

1.16 CombineLatest operator . 25

1.19 Items before operators . 27

1.20 Operators before items . 28

2.1 A login screen. 31

2.2 The main screen. 32

2.3 A confirmation screen. 33

2.4 An invitation email and an invitation screen without logging in. . 33

2.5 The main screen. 34

2.6 The confirmation screen. 35

2.7 Sketches of the Android version of Ackee Planner. 35

2.8 Ovelapping events in Simple Calendar and Business Calendar apps. 38

2.9 Cascading events in a web version of Ackee planner. 38

2.10 DigiCal’s column-aligned algorithm. 39

2.11 Google Calendar’s flexible width algorithm. 39

2.12 Calendar agenda. 40

xi

2.13 List of analyzed Android applications 41

3.6 Example of a Graph. 50
3.7 Process of building a Graph. 53
3.8 UI automator viewer interface . 55
3.9 Empty and filled-in meeting creation screens. 57
3.10 A calendar selection screen before and after granting permissions. . 57
3.11 Daily and weekly views of time-slot selection screens. 58
3.12 A dialog where the user can change visibility of his calendars on

the left. Textual representation of currently defined time-slots on
the right. 59

3.13 A location selection screen. 59
3.14 A sharing screen. 60
3.15 A guests selection screen. 60
3.16 An invitation in Gmail app and within Ackee Planner. 61
3.17 A sharing screen. 61
3.18 A calendar screen. 62
3.19 Main screen with two previously defined meetings and a detail

screen of one such meeting. 63
3.20 Main screen with an overview of previously received invitations

and detail screen of an accepted invitation. 64

4.1 Diminishing returns of user testing. 65

xii

Introduction

The use of calendaring and scheduling has grown considerably in the last
decade. Often times there is a situation when we want to schedule a meeting
with someone but it is difficult to settle on a date that suits both parties. We
don’t know about their schedule and they don’t know about ours.

This is especially true for people like managers and business owners. These
people usually run on a tight schedule and proper calendaring and scheduling
of events is of paramount importance for them.

It is not always possible to get in touch and talk with the other party in
person to discuss possible dates for the meeting. As a result, we have to reach
the other party via a phone call or by an email.

Phone calls have a disadvantage that we might call in an inappropriate
moment when the other party cannot or do not want to pick up the call.
Emails, on the other hand, do not have such disadvantage because email
communication is asynchronous. After sending an email we don’t have to
wait for an answer and can proceed with other tasks.

But in either of the situations, we must also refer to our schedule by
inspecting our calendar. This can be a difficult task to accomplish on mobile
devices.

Making a phone call and inspecting a calendar at the same time is difficult,
to say the least. Many people don’t even know it is possible to do these two
tasks concurrently. Writing an email is not quite user-friendly either. We must
switch between calendar and email applications when composing the email.

For that reason we decided to make an application that would help with
planning and scheduling of meetings where multiple parties are involved. The
app should remove the difficulties of finding a date and time that would fit
everyone. It should aid the user in defining available times by showing him an
overview of his schedule. Furthermore, it should allow to define other details
about the meeting, such as a location or a description, and automatically save
arranged meetings into calendars of both parties.

1

Chapter 1

State-of-the-art

1.1 iCalendar standard

iCalendar is a data format used for representing and exchanging calendar-
ing and scheduling information such as events, to-dos, journal entries, and
free/busy information. It is independent of any calendar service or transport
protocol. It is designed to only transmit calendar-based data and intentionally
does not describe what to do with that data. [1, 2]

The RFC describing the standard is composed of more than hundred of
pages and cannot be possibly explained in detail in this thesis. Instead, we
will analyze an example to get an idea of what the standard is capable of.

The listing 1.1 shows example contents of a file in the iCalendar format.
Structure of the iCalendar format is quite simple and can be read and under-
stood without any external tools as most of the properties are named in plain
English. Reading such file can be almost self-explanatory.

Every iCalendar file must start with BEGIN:VCALENDAR and must end with
END:VCALENDAR. Within these two tags, we should first specify a version of the
protocol. For iCalendar it is VERSION:2.0. VERSION:1.0 was used to specify an
old vCalendar format. Following the version property, we can include multiple
components such as:

• VEVENT for events,

• VTODO for to-do items,

• VJOURNAL for journal entries and

• VTIMEZONE for time-zone information.

Multiple components of the same type can be repeated.

Each component contains a list of properties. Some of the properties are

3

1. State-of-the-art

BEGIN:VCALENDAR
VERSION:2.0
BEGIN:VEVENT
UID:2520
LOCATION:Ackee s.r.o.
SUMMARY:Android Meeting
DESCRIPTION:A recurrent event for discussing the

latest news from the Android world.
DTSTAMP:20141210T183838Z
DTSTART:20141206T100000Z
DTEND:20141206T110000Z
ORGANIZER;CN=David Khol:mailto:david.khol@ackee.cz
RRULE:FREQ=WEEKLY

END:VEVENT
BEGIN:VTODO
UID:132456762153245
SUMMARY:Do the dishes
DUE:20180428T115600Z

END:VTODO
END:VCALENDAR

Listing 1.1: An example of an iCalendar object. The indentation
was added for the sake of clarity of the example and is not part of
the standard.

specific to certain component types while others are available for all types.
Furthermore, some properties are required (SUMMARY, UID, DTSTART), others are
optional (DESCRIPTION, LOCATION, STATUS) and some even allow to be specified
multiple times (ATTENDEE). The list includes properties such as:

• SUMMARY – defines a short summary or subject for the component

• DESCRIPTION – defines a more complete description of the component
than that provided by the SUMMARY property

• LOCATION – defines where the event takes place

• GEO – as an alternative to LOCATION, we may define latitude and longitude
of a location

• STATUS – varies depending on a type of the component. For events it can
be one of TENTATIVE, CONFIRMED or CANCELLED, while for to-dos it can be
one of NEEDS-ACTION, COMPLETED, IN-PROCESS or CANCELLED

• DTSTAMP – timestamp when the event was created

• DTSTART – timestamp when the event is scheduled to start

• DTEND – timestamp when the event is scheduled to end

4

1.1. iCalendar standard

• DURATION – we can specify duration of the event instead of DTEND

• COMPLETED – timestamp when the event actually ended

• ATTENDEE – defines information about a single guest of the event and
can be repeated in case of multiple guests. It is composed of several
subcomponents such as guest’s name, participation status of the user,
guest’s role in the event (required, optional, non-participant) etc.

• RDATE – defines a list of date or datetime values for recurring components

• RRULE – defines a rule or repeating pattern for recurring components.

There are many more properties available to define events. An overview
of all available components and list of their properties can be found in section
8.3 of RFC 5545 [2].

It is not necessary to go into details about every single property as it
would be far beyond the scope of this thesis, but one should be aware of such
a standard.

iCalendar allows us (with a software that supports the standard) to define
and propose an event, but also react and counter-propose to other people’s
invitations.

1.1.1 CalDAV

iCalendar is used and supported by many services and applications and is
utilised by other protocols as well. One of such protocols is CalDAV.

CalDAV (Calendaring Extensions to WebDAV, defined in RFC 4791 [3]), is
an Internet standard allowing a client to access scheduling information on
a remote server. It extends WebDAV specification and uses forementioned
iCalendar format for the data.

CalDAV allows us to access and modify event information on a centralized
server. This removes the need to resend a new iCalendar object containing
the event details to all participants each time someone accepts the invitation.
Many services are capable of syncing the data automatically.

WebDAV is an extension of the HTTP protocol. Its aim was to make the
web into a readable and writable medium. It provides functionality to create,
change and move documents on a remote server. [4]

5

1. State-of-the-art

1.2 Android ecosystem

There is no main() function in the Android world that starts an application.
When the user starts an application, the framework looks into the metadata
of the application and finds an activity that is labeled as the main one. Each
android application must have at least one Activity but, depending on the
complexity of the application, can have more.

To deal with scarce resources of mobile devices, Android framework uses
a concept of lifecycles to control the life span of each Activity. [5]

1.2.1 Lifecycle of Android application

Figure 1.1: Basic lifecycle of an activity

When an Activity is first started, it goes through Created, Started and
Resumed states and calls corresponding onCreate(), onStart() and onResume()
callback methods. During each of these callbacks, some resources are allocated
to be used by the Activity.

Later, when the Activity is finished, it goes through Paused, Stopped and
Destroyed states and calls corresponding onPause(), onStop() and onDes-
troy() callback methods. During each of these callback, some resources are
reclaimed by the system. Generally speaking, when something is initialized in
onCreate() (resp. onStarted(), resp. onResumed()), its resources should be
released in onDestroy() (resp. onStopped(), resp. onPaused()).

6

1.2. Android ecosystem

But it isn’t always this simple. For example when an Activity loses focus it
doesn’t go through all Paused, Stopped and Destroyed states to get completely
destroyed. Instead it just goes to the Paused state.

When the application goes to the Paused state, the Activity is still partially
visible, but the user cannot interact with it anymore. This might be a good
time to stop playing a video user has been watching or pause a game the user
has been playing.

When the application goes to the Stopped state, the Activity is no longer
visible as it is completely obstructed by another one. This might be a good
time to release handles to graphics engine or stop listening for changes in a
database.

When the application goes to the Destroyed state, the Activity is about
to be terminated and freed from the memory completely. This is the time to
close network connections and to dispose of other long-time running actions.

Imagine that a user starts our Activity, let’s say a game. Our Activity
goes through Created and Started to Resumed state. He plays the game for a
while when suddenly a dialog reminder pops up on the screen. At this moment
our Activity goes into Paused state. The user cannot interact with our game
anymore and can only interact with the dialog. If the user dismisses the dialog,
our Activity goes into Resumed state again and the user can continue playing.
On the other hand, if the user interacts with the dialog in a way that it takes
him to another Activity, our Activity would go to Stopped state. He may
resolve the task in a calendar or make a phone call, finally returning to our
game. Our Activity would again go through Started state to Resumed state.
After some time the user decides to close the game. At this moment the game
goes through Paused and Stopped and finally to Destroyed state, effectively
ending the lifecycle of the Activity.

More thorough explanation can be found at [5, 6].

1.2.2 Persisting data across configuration changes

There are situations when an Activity can get destroyed even without an
explicit action that would finish the Activity.

• One such situation arises when the device is running low on resources.
The system might decide to free up some resources by destroying inactive
Activities that were not used for a long time.

When an Activity is about to get destroyed, we are given a chance to
save a state of the Activity by overriding onSaveInstanceState(Bundle)
method and storing volatile data of the Activity into the Bundle. The
bundle is then persistently saved, all references to the Activity deleted,
running tasks stopped and the memory reclaimed by the system.

7

1. State-of-the-art

When the user returns to the Activity, it is recreated by going through
Created, Started and Resumed states as if it was its first time being
run, only with a difference that a Bundle, with the same contents as the
Bundle we have saved before, is passed as an argument to the onCreate
method. Then we can retrieve the data and restore the Activity to the
same state as before.

• Activity undergoes the same process when a configuration change occurs.
A Configuration change happens when device configurations, such as
display language, screen density, screen size or screen orientation change.
The Activity is destroyed and recreated again so it can load appropriate
resources based on the new configuration.

Persisting state this way has one big drawback. There is no way how to
persist a network call, database connection, and other unfinished processes.
In the following section, we will introduce a solution addressing the problem.

1.2.3 Android architectural patterns

Although it is not required to use any architectural patterns to build Android
applications, using one (or even several) can help us to create a modular
program that is easier to understand, maintain and also to test. Doing so, we
nicely follow Separation of Concerns design principle.

“The most important principle in Software Engineering is the Separation
of Concerns (SoC): The idea that a software system must be decomposed
into parts that overlap in functionality as little as possible. It is so central
that it appears in many different forms in the evolution of all methodologies,
programming languages and best practices.” [7]

There are plenty of architectural patterns that tackle various requirements
of software. Probably the most commonly-known pattern is Model-View-
Controller (MVC) which was embraced most notably by the web develop-
ment community. Other architectural patterns include patterns such as En-
tity–Component–System (ECS) that follows the Composition over inheritance
principle that allows greater flexibility in defining entities and is mainly used
for the game development [8, 9], Presentation–Abstraction–Control (PAC)
that further extends MVC pattern by connecting components in a hierarch-
ical fashion [10], Event-bus pattern that builds upon the publish-subscribe
pattern and enables messages to be delivered between components without
requiring the components to register themselves to others [11] and many more
[12, 13, 14].

Due to the structure and limitations imposed by the design of Android
framework itself (e.g. Activities and Fragments, the two main building blocks
of Android applications, are instantiated by the framework, not by ourselves)
some of the patterns are not feasible to be used to make Android applications.
Although it is possible to build an application based upon MVC or Event bus,

8

1.2. Android ecosystem

it might not be the best fit. In the Android development world, mainly Model-
View-Presenter (MVP) and Model-View-ViewModel (MVVM) patterns arose
in popularity.

1.2.3.1 MVC vs MVP vs MVVM

All three patterns separate the application into three main components – a
Model, a View and either a Controller, a Presenter or a ViewModel depending
on the pattern. They all share some similarities:

The View is typically responsible for displaying a GUI to the user, i.e. text-
field, buttons, styles, etc.

The Model is typically responsible for storing and retrieving data and domain
logic, i.e. domain objects, database interaction, etc.

The Controller, the Presenter and the ViewModel are responsible for sep-
aration of the View and the Model and act as mediators between the
two.

Figure 1.2: MVC pattern.

In the MVC pattern, the View is responsible for displaying data received
from the Controller and monitors the Model for changes and diplays updated
model. There is a many-to-one relationship between the View and the Con-
troller – a single Controller may select different Views based on the operation
being executed. The View and the Model interact with each other using an
Observer pattern. The Controller is responsible for processing incoming re-
quests from the user. It changes the Model and updates the View.

The MVP pattern is similar to the MVC pattern in which a Controller is
replaced by a Presenter. There is a one-to-one relationship between the View
and the Presenter and two-way communication between them. The View
should not process any data and should contain minimal amount of logic as
possible. Its sole purpose is to delegate the user’s input to the Presenter
and display data received from the Presenter. The View but does not know
anything about the Model. The Presenter retrieves data from the Model,
transforms them and updates the View through an interface.

9

1. State-of-the-art

Figure 1.3: MVP pattern.

Figure 1.4: MVVM pattern.

The MVVM pattern, instead of using a Controller or a Presenter, has a
ViewModel. This time there is a many-to-one relationship between the View
and the ViewModel – several Views can be mapped to a single ViewModel.
We can either set up a two-way data binding between them or we can prepare
observable data in the ViewModel that Views can subscribe to. Either way,
the ViewModel does not communicate with Views directly, but utilises some
form of an Observable pattern instead.

Android’s Activities and Fragments are instantiated by the framework and as
a result their testing is generally more involved than testing of other classes.
For that reason they should be kept as simple as possible. In both MVP and
MVVM patterns, Activities and Fragments represent View components.

1.2.3.2 Repository pattern

Repository pattern adds an extra layer of indirection to our MVVM (resp.
MVP) architecture by adding a Repository between the ViewModel (resp.
Presenter) and the Model, as depicted in the figure 1.5.

Imagine an application with a login screen where the user must either
register or log in before accessing application’s contents, a contents screen
where he can browse the contents and a profile screen where he can view
and edit information about his account profile.

The login screen (resp. profile screen) would be composed of a Login-
Activity (resp. ProfileActivity) as the View, a LoginViewModel (resp. Pro-

10

1.2. Android ecosystem

Figure 1.5: Repository pattern schema for MVVM.

fileViewModel) as the ViewModel, and backend server and local database as
the Model.

In the standard MVVM implementation the LoginViewModel would per-
form a network call and after receiving the response from the server, it would
save the information about the logged in user into the local database.

On the profile screen we display information about the user that we
retrieved from the local database. When the user updates his profile, we
perform a network call to update the information on the server and store the
information back into the local database.

Instead of accessing the Model layer directly (performing network calls
and storing the information into local database) in the LoginViewModel, we
may delegate this logic to a Repository. In the ViewModel we just tell the
repository to log the user in.

This works great on Android platform because repositories are not tied to
a lifecycle of a single activity. When a configuration change occurs, Activities
get recreated, but Repositories survive. This way we don’t have to restart
network calls or perform the same call from multiple ViewModels. We can
just perform the call once and observe the result in both ViewModels.

1.2.4 Android libraries

Building an application using only the API provided by the Android frame-
work can be a frustrating and tiresome task sometimes. Luckily there are tons
of libraries that facilitate the development.

In the following subsections, we will describe core libraries used in the
implementation part of the thesis that alter the structure of the code. We will
not go into details about libraries that are used by virtually every application
(such as Android Support libraries) or libraries that only add some non-critical
utilities (such as error reporting after an app crash) or libraries that are used

11

1. State-of-the-art

just to add more functionality to other libraries (such as serializing adapters
for Retrofit).

1.2.4.1 RxJava

RxJava allows us to apply reactive programming paradigm to our code and
react to and propagate changes between components of the app. It is used in
a majority of classes throughout the implementation part and integrates well
with many other libraries, including libraries introduced below.

How does RxJava work and what is its relationship to reactive program-
ming is a very deep topic and is thoroughly explained in a separate section
1.3. Those who are not familiar with reactive programming paradigm might
want to read it first in order to fully understand how RxJava interacts with
other libraries.

1.2.4.2 Retrofit

Before explaining how Retrofit works, we should describe how one performs a
network call using plain Android SDK. It is not a simple task. Since Android
3.0 we have to perform network operations on a thread other than the main
UI thread. Not doing so results in a NetworkOnMainThreadException. In plain
Android code, we would use AsyncTasks to offload network calls onto another
thread. We would use HttpsUrlConnection to handle a network connection
and notify the user about the progress through the AsyncTask. After retriev-
ing all data from the network, we must then convert received InputStream into
a more usable format such as a String or a custom domain-specific model.
On top of that, we should also handle cases when our activity is destroyed
and recreated due to a configuration change. We could cancel the request and
restart it after activity recreation or just put the network related logic into a
separate Headless fragment that survives configuration changes. By imple-
menting one simple network call this way, we might end up writing hundreds
of lines of code. More concrete description of the process with code examples
can be found at [15].

Thankfully, there are libraries that solve a lot of mentioned problems for
us. Namely, Retrofit helps us to decouple network calls from the rest of the
application by defining a simple interface. Retrofit is a type-safe HTTP client
for Android and Java. [16] We don’t have to deal with HttpUrlConnection
and transform received InputStream data ourselves.

Listing 1.2 presents an example of a simple interface defining two network
calls. One creates a meeting and the other retrieves a meeting from a server.
Retrofit uses REST (Representational State Transfer) as means of communic-
ation with a server.

We must annotate each interface method with either @GET, @POST, @PUT,
@DELETE, @PATCH, @HEAD or @OPTIONS to define which REST method should be

12

1.2. Android ecosystem

interface ApiDescription {

@POST("meetings")
fun createMeeting(@Body meeting: Meeting): Completable

@GET("meetings/{meetingId}")
fun meetingDetail(@Path("meetingId") meetingId: Int):

Single<Meeting>

}

Listing 1.2: Retrofit interface.

used to perform the network call and an address where the request should
be sent to. Depending on the REST method used, we can add annotated
parameters to methods’ signatures:

• @Path specifies variable parts of the request’s url

• @Body defines a body of a POST method

• @Query adds an optional parameter after ‘?’ sign

• @Header adds a HTTP header to the request

• @Url defines a custom dynamic url for the request

• @Field adds the parameter to a request body

By default, Retrofit can only deserialize HTTP bodies into a ResponseBody
type and it can only accept a RequestBody type for @Body-annotated paramet-
ers. We can add converters to add support for custom types as well. Moreover
we can also add custom adapters. One such adapter allows us to use RxJava’s
observable types as return types of each method.

Listing 1.3 shows the code for performing a network call using combination
of Retrofit and RxJava. Note that the whole setup required less than 20 lines
of code that is much more simple than a code we would have to write using
AsyncTasks and HttpsUrlConnections.

1.2.4.3 Anko

Many of resource files in Android are written in XML, including, but not
limited to, styles, strings, menu contents, vector drawables, colors, Android
manifest, etc.

UI in Android is usually defined in XML as well. When we want to display
a UI for our application, we can pass an XML file to a Layout Inflater which
inflates all views specified in the file and creates a view hierarchy for us. We can

13

1. State-of-the-art

val api: ApiDescription = Retrofit.Builder()
.baseUrl("https://planner.ack.ee")
.addConverterFactory(MoshiConverterFactory.create())
.addCallAdapterFactory(RxJava2CallAdapterFactory.create())
.build()
.create(ApiDescription::class.java)

api.meetingDetail(378, "xeKdIef")
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe { meeting: Meeting ->
// do something with the meeting

}

Listing 1.3: Performing a network call using retrofit and RxJava.

then access views in the hierarchy and set their attributes programmatically.
1.5 shows an example of a primitive layout written using XML.

<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
>
<EditText
android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
/>

<Button
android:text="Say hello"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:onClick="onButtonClick"
/>

</LinearLayout>

// in a code where we use the xml above
lateinit var name: EditText = findViewById(R.id.name)

fun onButtonClick(v: View) {
Toast.makeText(act, "Hello, ${name.text}!",

Toast.LENGTH_SHORT).show()
}

Listing 1.4: Layout defined in XML file.

There are some drawbacks using XML approach:

• No type safety. When we access a view in the hierarchy, we must cast
it to correct type by ourselves. We will not be notified about wrong

14

1.2. Android ecosystem

typecasts until the runtime.

• We cannot put any custom logic into XML, even if it is just a logic for
just showing and hiding of content.

• Minimal code reusability.

• XML must be parsed before displaying its contents, creating an unne-
cessary overhead.

Although it is possible to create UI programmatically, it is not a common
practice, mainly because it looks chaotic and is hard to maintain. Listing 1.5
defines the same layout as in the previous example but is written using pure
Kotlin.

val layout = LinearLayout(ctx)
layout.orientation = LinearLayout.VERTICAL
val name = EditText(ctx)
val button = Button(ctx)
button.text = "Say Hello"
button.setOnClickListener {

Toast.makeText(ctx, "Hello, ${name.text}!",
Toast.LENGTH_SHORT).show()

}
layout.addView(name)
layout.addView(button)

Listing 1.5: Layout built programmatically

Thanks to Kotlin’s extension functions, we have an ability to define cus-
tom DSLs (domain-specific languages). Anko defines a DSL for writing UI
layouts using Kotlin in a concise way without a need for parsing of XML files.
Moreover, since it is written in Kotlin, we can put custom UI-related logic
directly into layouts. 1.6 shows Anko equivalent of the examples mentioned
before.

verticalLayout {
val name = editText()
button("Say Hello") {

onClick { toast("Hello, ${name.text}!") }
}

}

Listing 1.6: Layout defined using Anko

15

1. State-of-the-art

1.2.4.4 Android Architecture Components

Android Architecture Components [17] library is relatively new compared to
other mentioned libraries. There are several components in the library:

LiveData is a lifecycle-aware observable data holder class.

ViewModel stores and manages UI-related data in a lifecycle conscious way.

Room provides an abstraction layer over SQLite.

Paging helps to gradually load information as needed from a data source.

LifeCycle helps to perform actions in response to a change in the lifecycle
status of another component.

As mentioned in the previous section about MVVM 1.2.3.1, ViewModel
uses Observable pattern to notify other components about its changes. LiveData
implements the pattern specifically tailored for Android because it is aware
of the lifecycle state of its observed view. Although these two Components
work well together, we don’t need LiveData component because we are using
RxJava already.

In addition to the ViewModel component, we will also use Room com-
ponent. Room provides an abstraction layer over SQLite that is included in
the Android SDK. SQLite is a relatively small relational database that, un-
like many other database systems, does not use client-server architecture but
is embedded into a program directly. [18] Room allows us to abstract away
from low-level SQL queries if we want to, but still supports them if needed.
Room removes a lot of boilerplate required to convert SQL queries to data
objects, gives us a compile-time checking of SQL queries and adds an option
to reactively observe changes in the database. [19, 20]

1.3 Reactive programming

Reactive programming is about the processing of asynchronous streams of data
items, where applications react to the data items as they occur. A stream of
data is essentially a sequence of data items occurring over time though. This
model is more memory efficient because the data are processed as streams, as
compared to iterating over the in-memory data.

In the Reactive Programming model, there is a Publisher and a Subscriber.
The Publisher publishes a stream of data, to which the Subscriber is asyn-
chronously subscribed.

The model also provides a mechanism to introduce higher-order functions
to operate on the stream by means of Processors. Processors transform the
data stream without any need for changing the Publisher or the Subscriber.
The Processor (or a chain of Processors) sit between the Publisher and the

16

1.3. Reactive programming

Figure 1.6: Publisher-Subscriber-Processor relation.

Subscriber to transform one stream of data to another. The Publisher and the
Subscriber are independent of the transformation that happens to the stream
of data. [21]

1.3.1 Reactive Streams

We should note that there is a difference between the terms Reactive pro-
gramming and Reactive Streams. Reactive programming is a programming
paradigm, just like object-oriented programming, procedural programming or
functional programming. Simply said, it is programming with asynchronous
data streams.

On the other hand, Reactive Streams is a specification. It gives us a
common API for Reactive programming. One does not have to follow Reactive
Streams specification to do reactive programming, although it is becoming a
widely-accepted standard (it has also been added to Java 9 as Flow API).

“Reactive Streams is an initiative to provide a standard for asyn-
chronous stream processing with non-blocking back pressure.” [22]

There is a multitude of implementations of Reactive Streams [23]. Some of
implementations include Akka Streams [24], Reactor [25], RxJava [26], Mon-
goDB [27] or Spring [28].

In this thesis we will talk about and use primarily RxJava because it has
been widely accepted as the reactive library amongst Android developers.
RxJava is a part of a group called Reactive Extensions[29], also known as
ReactiveX or just RX.

There are many other implementations [30] of Reactive Extensions for
many popular programming languages such as C++, C#, Python, PHP, Javas-
cript, Swift etc. If you wanted to use another language than Java, most of
the logic and operators used would remain the same and the only difference
would be the syntax.

1.3.2 Reactive Streams API

The API consists of the following four components that are required to be
provided by Reactive Streams implementations:

17

1. State-of-the-art

interface Publisher<T> {
fun subscribe(s: Subscriber<in T>)

}

interface Subscriber<T> {
fun onSubscribe(s: Subscription)
fun onNext(t: T)
fun onError(t: Throwable)
fun onComplete()

}

interface Subscription {
fun request(n: Long)
fun cancel()

}

interface Processor<T, R> : Subscriber<T>, Publisher<R>

Listing 1.7: Reactive Streams interfaces

Upon first glance these interfaces may look deceptively simple. But to be
Reactive Streams specification compliant, any implementation of the interfaces
must follow list of about 40 rules. [31]

Figure 1.7: Publisher-Subscriber-Processor relation with backpressure.

A Publisher is a producer of a potentially unlimited number of items,
publishing them according to the demand received from its Subscriber(s).

A Subscriber is a consumer of items produced by Publisher. To start
receiving items from the Publisher, it must first subscribe to it via a call to
Publisher.subscribe(Subscriber).

Upon the subscription the Publisher creates and passes a new Subscrip-
tion to the Subscriber via a call to Subscriber.onSubscribe(Subscription).
Through this Subscription the Subscriber may then request items from the
Publisher via calls to Subscription.request(Long).

The Publisher may starts emitting items into the stream, according to
the demand from its Subscriber, using Subscriber.onNext(T). When the Pub-
lisher is out of items to emit, it must signal Subscriber.onComplete(). If
an error occured during production of items, the Publisher must signal Sub-
scriber.onError(Throwable). If the Subscriber calls Subscription.cancel(),
the subscription should be considered cancelled and Publisher should stop sig-
nalling the Subscriber.

A Processor takes on a role of both Publisher and Subscriber. As men-

18

1.3. Reactive programming

tioned before, Processors transform the data stream without the need for
changing the Publisher or the Subscriber. All the Subscription logic remains
the same, but Processor is on the both ends of the communication. It keeps
one Subscription for its Publisher it is receiving items from and another Sub-
scription(s) for its Subscriber(s) it is emitting items to.

It should be noted that multiple Subscribers may be subscribed to a single
Publisher. In such case each Subscriber receives its own Subscription that
mediates the communication between the two.

1.3.3 Backpressure

Imagine a situation where we didn’t have a Subscription through which Sub-
scribers would request more items. Publishers would just push their data into
Subscribers when they would want.

When Publishers are producing at a much faster rate than the rate at
which the data items are consumed by the Subscribers, Subscribers must keep
a buffer where they would store unprocessed items and remove them as they
are being processed. The size of the buffer where the unprocessed items are
being buffered might be, and usually is, limited. If such system would run
for an extended amount of time, this buffer could grow and the system would
eventually run out of memory leading to a crash.

Introducing a Subscription to mediate the communication between Pub-
lisher and Subscriber solves this problem by never allowing more items to be
emitted than a Subscriber can buffer.

The Reactive Streams API does not provide any strategies to deal with
backpressure, but one could implement them by oneself. There are several
strategies how to deal with backpressure:

• Error – throw a MissingBackpressureException when the buffer over-
flows, effectively terminating the stream.

• Buffer – we can buffer items as long as we have enough memory. When
we exhaust all available memory OutOfMemoryException is thrown.

• Drop – Uses a fixed 1-item sized buffer. When more items are received,
drop them until the buffered item is removed from the buffer and pro-
cessed.

• Latest – Uses a fixed 1-item sized buffer. Add the item to the buffer (if
empty) or replace the item currently in the buffer when more items are
received.

Instead of dealing with backpressure with strategies mentioned above, we
can resolve the issue using combination of one or more operators, such as
debounce, throttle or sample. Operators are explained in the next section.

19

1. State-of-the-art

More thorough examples about dealing with backpressure can be found at
[32].

1.3.4 RxJava

Cardinality doesn’t matter in the Reactive Streams specifications. A stream
can contain a single element, ten elements or no elements at all. In RxJava we
have few extra options that are not part of the Reactive Streams specifications,
but depending on the situation, they might be more expressive. See figure 1.8
for overview of RxJava types.

Type Protocol

Observable onSubscribe onNext* (onComplete | onError)?
Flowable onSubscribe onNext* (onComplete | onError)?

Single onSubscribe (onSuccess | onError)?
Completable onSubscribe (onComplete | onError)?

Maybe onSubscribe (onSuccess | onComplete | onError)?

Figure 1.8: Five basic types in RxJava

Observable and Flowable are the same from the protocol viewpoint as
both of them can contain any number of elements but they work differently
internally. Flowable is the implementation of Reactive streams specification,
with asynchrony, backpressure and all that entails. Observable is a lightweight
counterpart of Flowable that is non-backpressured. You can think of it as a
Flowable that requested unlimited items. Observable has lower overhead than
Flowable. In situations where backpressure is not a problem, it generally
performs better.

Single, Completable and Maybe are Observables that have a limitation
imposed on the number of items they can emit. Single must complete with
exactly one item emitted otherwise signal an error. That is why Single does
not have onNext handler because the item is delivered as a part of onSuccess
handler. Completable does not emit any items at all, it just signals if it
was completed successfully or with an error. Maybe is conceptually a union of
Single and Completable. It can complete without emitting any items, emit one
item or signal an error. All of Single, Completable and Maybe are intrinsically
non-backpressured, because they may contain at most 1 element.

In many situations, we know how many items the publisher will emit and
possible time intervals between each emission. Based on this information, it
might be better to use more constrained type than Flowable. Not because we
don’t have to care about backpressure (and make our code tiny bit faster),
but because of the semantics. Later when we combine different publishers
together, it might help us decide which operators to use.

20

1.3. Reactive programming

When we observe a sensor in our phone such as gyroscope or monitor move-
ment of a finger on a screen, we don’t know how many and how fast
items will be emitted. There might be so much data that we might not
be able to process every single item as fast as we are receiving them, es-
pecially if we are doing some computation-intensive tasks on every item.
This is a good candidate for Flowable.

When we observe clicks of a button, we still don’t know how many items will
be emitted, but this time we are more confident about the intensity of
emissions. Do we need backpressure in this case? In most situations no,
but whether Flowable is more appropriate depends on whether we can
keep up. This is a good candidate for Observable.

When we do an API call to get details about a user, we know that there
will be exactly one item in the stream. But don’t get confused. Just
because the user we requested didn’t exist or because the server rejected
our authorization or because we don’t have internet access, it doesn’t
mean there can be 0 elements. In all these situations, an Error signal
should be delivered instead. This is a good candidate for Single.

When we do an API call to update information about a user, we don’t expect
any items in the stream. We just want to know if the update was
successful or not, in such case we would get an exception through onError
signal. This is a good candidate for Completable.

When we want to retrieve user’s avatar picture from the database, we might
get the bitmap data, when the picture exists, or nothing, when it doesn’t
exist, what is perfectly fine. User might not set his profile picture and
thus returning nothing is a valid option too. This is a good candidate
for Maybe.

1.3.5 Operators

If you have some experience with functional programming such as using Java
Streams introduced in Java 8 or even just functional extensions on collections
in Kotlin, you will have a much easier time understanding RxJava operators.
They use very similar naming and syntax to chain operators together. It is not
uncommon to be able to change the receiving type and get the same results.

In code example 1.8 we create a list, a stream and an observable, all of
them initialized with the same list of names. Then all three receivers are run
through chain of operators, each of them having different implementations.
If you would run this code, you would get the same output for each receiver
forEach() call.

21

1. State-of-the-art

val names = listOf("David Khol", "Martin
Pulpitel", "Dominik Vesely", "Marek Janca",
"David Bilik")

val list: List<String> = names
val stream: Stream<String> = names.stream()
val observable: Observable<String> =

Observable.fromIterable(names)

list .map { it.split(" ")[0] }
.filter { it.startsWith("D") }
.sorted()
.distinct()
.forEach { println(it) }

stream .map { it.split(" ")[0] }
.filter { it.startsWith("D") }
.sorted()
.distinct()
.forEach { println(it) }

observable.map { it.split(" ")[0] }
.filter { it.startsWith("D") }
.sorted()
.distinct()
.forEach { println(it) }

Listing (1.8) Comparison of Kotlin’s functional extensions,
Java Streams and RxJava Observables.

David
Dominik
David
Dominik
David
Dominik

Listing (1.9)
Output

1.3.6 Operator types

There are many built-in operators at our disposal in RxJava. These operators
may help us to:

• create a new Observable (create, defer, empty, just, timer, etc.),

• transform items emitted by an Observable (map, flatMap, buffer, groupBy,
etc.),

• filter items emitted by an Observable (filter, debounce, first, sample,
etc.),

• combine multiple Observables (zip, combineLatest, merge, etc.),

• handle and resolve error signals (catch, retry),

• do conditional operations (all, contains, skipUntil, etc.),

• do arithmetical operations (average, count, max, sum, etc.),

• do aggregating operations (concat, reduce),

22

1.3. Reactive programming

• deal with backpressure (buffer, sample, debounce, window),

• split an observable for use by multiple Subscribers (connect, publish,
replay, etc.),

• convert an Observable to another type (toSingle, toMaybe, toObserv-
able) and

• other operations (subscribe, subscribeOn, observeOn, delay, timeout,
etc.)

A full list of RxJava’s operators can be found at [33].

1.3.7 Operator representation

Figure 1.10: Marble diagram explanation.

Operators are often visualised using Marble Diagrams. In the figure 1.10
is an example of Marble Diagram describing a fictional operator flip. In every
Marble Diagram, the time flows from the left to the right. On the top we
have a horizontal line(s) representing an input Observable(s) and its (their)
emissions. In the middle we have a box describing function of the operator.
On the bottom we have a horizontal line representing an output Observable
and its emissions. Colourful pictures on a horizontal line represent onNext
signals, a vertical line represents onComplete signals and a cross represents
an onError signal.

The Map operator 1.11 applies a custom transformation to each item re-
ceived from the source Observable and returns an Observable that emits the
results of the transformation.

The FlatMap operator 1.12 applies a custom transformation to each item
received from the source Observable, where that transformation returns an

23

1. State-of-the-art

Figure 1.11: The Map operator.

Observable that itself emits items. FlatMap then merges the emissions of these
resulting Observables, emitting these merged results as its own sequence.
Note that FlatMap merges the emissions of these Observables, so that they
may interleave.

Figure 1.12: The FlatMap operator.
Figure 1.13: The SwitchMap operator.

The SwitchMap operator 1.13 works similarly as the FlatMap operator
and under certain circumstances it even emits the same items, given the same
input. The difference is that once a new item is received from the source
Observable, all previous inner Observables’ emission are ignored, meaning that
at any given point only one inner Observable is emitting items. It produces
the same emissions as FlatMap when inner Observables don’t overlap with
their emissions.

Imagine a user searching for some information on the internet. As he types
in his query, we might want to give him suggestions based on the current query.
With every change to the query (with every character he types) a network call
to retrieve suggestions is initiated, producing an Observable. But as he writes
more, these suggestions we just have requested become out-of-date. That
itself wouldn’t be such a big problem, because we initiated another request to
retrieve up-to-date suggestions, right? No. The real problem is that these out-
of-date suggestions may arrive later than the up-to-date suggestions due to
network latency or any other reason. SwitchMap automatically unsubscribes
from those out-of-date suggestions when a new query is received, giving a
chance only to the newest suggestions.

The Debounce operator 1.14 takes a time duration as an argument. When

24

1.3. Reactive programming

Figure 1.14: The Debounce operator.

an item is received from the source Observable, it starts a timer. If during
this period no other item is received, the last received item is emitted. On the
other hand, if another item is received during this period, the timer restarts
and again awaits whether another item arrives or not. This is one of ways
how to deal with backpressure without actually introducing any backpressure
strategies.

Figure 1.15: Zip operator. Figure 1.16: CombineLatest operator.

Zip 1.15 and CombineLatest 1.16 operators operate on two Observables
at once. Whenever Zip receives an emission from an input Observable, it
stores that item into a buffer associated with that Observable. Whenever
both buffers contains more than zero items, the Zip operator takes one item
from both buffers, combines them using provided transformation function and
emits the result; repeating until one of the buffers is not empty.

Whenever CombineLatest receives an emission from an input Observable,
it notes which Observable emitted the value and also stores the value. Every
time a new value is received, latest emission from each input Observable is
combined into a single item using provided transformation function and the
result is emitted.

The Zip operator is useful when we need to combine two streams of items
that have a one-to-one mapping and a strict order of their emissions. The
CombineLatest operator on the other hand, is useful when we need to combine
two streams of items that does not have a one-to-one mapping and a strict
order of their emissions.

25

1. State-of-the-art

1.3.8 Using operators

Let’s analyze a more complicated example. Let’s say we have a list of names
and want to print surnames of people whose first name starts with letter D.
We also want to group these surnames by first names of those people.

list
.filter {

it.startsWith("D")
}
.map {

it.split(" ")
}
.groupBy({

it[0]
}, {

it[1]
})
.map {

"${it.key}:
${it.value.joinToString()}"

}
.forEach { println(it) }

Listing (1.10) Kotlin’s functional extensions

> filter
> filter
> filter
> filter
> filter
> map
> map
> map
> groupBy
> groupBy
> groupBy
> map
> map
David: Khol, Bilik
Dominik: Vesely

Listing (1.11) Output

observable
.filter {

it.startsWith("D")
}
.map {

it.split(" ")
}
.groupBy({

it[0]
}, {

it[1]
})
.flatMapSingle { group ->

group.toList().map {
group.key to it

}
}
.map {

"${it.first}:
${it.second.joinToString()}"

}
.forEach { println(it) }

Listing (1.12) RxJava’s Observable

> filter
> map
> groupBy
> flatMapSingle
> filter
> filter
> map
> groupBy
> flatMapSingle
> filter
> filter
> map
> groupBy
> nested map
> map
David: Khol, Bilik
> nested map
> map
Dominik: Vesely

Listing (1.13) Output

26

1.3. Reactive programming

When we run Kotlin example 1.11 and RxJava example 1.12, in both cases
the final forEach() calls print identical output, as expected. But when we try
to debug the flow (by adding a println() call inside of each operator), we get
interesting outputs.

Kotlin’s operators get called one after each other in the order we defined them.

1. filter gets called five times for each person, filtering out 2 people whose
name doesn’t start with ’D’.

2. map gets called three times for each person starting with ’D’ and splits
people’s names into arrays of two items – first name and surname.

3. groupBy gets called three time for each person starting with ’D’ and
groups people based on their first name and keeps their surname.

4. map gets called twice for each unique first name starting with ’D’ and
joins the first name and surnames back together.

5. forEach prints surnames for each unique first name starting with ’D’.

DK

filter

map

David

12

forEach

1 2

6

3 4

7

5

8

9 10 11

13

14 15

MP DV MJ DB

Dominik

map

groupBy

Figure 1.19: Items before operators.

See figure 1.19 for a graphical representation. Red lines represent trans-
ition to the next item while blue lines represent transition to the next operator.
We always process all items before moving on to the next operator.

27

1. State-of-the-art

But when we look at RxJava’s output, operators get called in seemingly ran-
dom order. What is going on here?

Only one item is emitted into the stream at a time. The first person
goes through the filter, map, groupBy and finally ends up being caught by
the flatMap operator. Then the next person is emitted, but is filtered out
immediately by filter. Then the next person is emitted and goes through
the previously mentioned operators again, and so on.

When there are no more items to be emitted into the stream, a Complete
signal is emitted and propagated through filter, map and groupBy to flatMap
operator.

The reason why not all operators were processed immediately is because
of the toList() operator. toList() does not emit any items until it receives
a Complete signal. At that point, it sends a single item – a list of items it has
accumulated during its lifetime and completes.

When flatMap receives a Complete signal, it distributes the signal to all
groups (each group is actually a standalone Observable) it has created. These
groups result into two emissions – one for ’David’ and one for ’Dominik’.
Stream then continues to map these two items and print them to a output.

DK

filter

flatMap

David

nested map

map

14

15

forEach

4

5

9

6 10

7

Dominik

11

12

16

17

19

18

1

2

3 8 13

MP

map

groupBy

DV MJ DB

Figure 1.20: Operators before items.

See figure 1.20 for a graphical representation. Same as before, red lines
represent transition to the next item while blue lines represent transition to

28

1.3. Reactive programming

the next operator. We pass an item through all operators until it gets caught
by some blocking operator before moving on to the next item.

1.3.8.1 Subscription

If we removed the forEach call from both examples 1.11 and 1.12, what would
happen? Kotlin version would print everything up to the last > map, ignoring
two final lines. RxJava version would not print anyting at all. Why? Because
inside of the Observable’s forEach call is actually hidden subscribe() call
that is needed to start the observable stream.

We already explained the subscription logic in a previous section 1.3.2. An
Observable must not emit any items until it receives a Subscription.request(N)
call from a Subscriber. But there will not be any requests without a Subscriber.

What happens when we call subscribe() on our observable stream is that
the Subscriber subscribes to its Observable and ‘starts’ it up. In our case there
are several Processors, each acting both as an Observer and a Subscriber.
Each of these Processors upon being subscribed to subscribe to the previous
Transformer in the operator chain. Finally, the subscription chain reaches the
first Observable which starts emitting items into the stream.

In the previous examples if we would replace Observables with Streams, most
of the things said would still be true – outputs would be exactly the same,
figure 1.20 would look similar too (the flatMap logic would be handled differ-
ently, but the vertical to horizontal processing would remain quite the same)
and subscription works similarly too (instead of subscribing to, Streams are
‘started’ by being collected or reduced [34]).

1.3.8.2 Schedulers

One of the features that RxJava has, but Java Streams does not, is an ability
to switch the execution of a stream between processing threads.

Although the order of operations depicted in 1.20 is not wrong, it is not
absolutely right either. It is true only because we are executing all operators
on the same thread. By default, RxJava is single-threaded which implies that
all operators are executed on the same thread on which subscribe() method
is called.

To switch between the threads, we can use subscribeOn() and observeOn()
operators.

• The subscribeOn() operator designates which thread the Observable
will begin operating on, no matter at what point in the chain of operators
that operator is called.

• The observeOn() operator, on the other hand, affects the thread that
the Observable will use for operators following this operator. For this

29

1. State-of-the-art

reason, we may call observeOn() multiple times at various points during
the chain of operators in order to change on which threads certain of
those operators operate.

In RxJava we have several options how to switch the execution:

• Schedulers.newThread() – Switches the execution to a new thread every
time it is invoked. Should be used with caution because spawning too
many threads can degrade performance of the system.

• Schedulers.io() – Switches the execution to a new thread from a thread-
pool or creates a new thread if no thread is available in the pool. This
is more

• Schedulers.computation() – Similar to io() in a sense that it is backed
by a thread-pool, but the pool is limited to the number of processors in
the device.

• AndroidSchedulers.mainThread() – A special scheduler available only
on Android that switches the execution to the Android’s main Looper.
This is very important as most of the UI related methods must be called
from the main Looper’s thread.

More about the topic of schedulers available from [35, 36].

1.3.8.3 Cold vs. Hot observables

Depending on the nature of an Observable, it might be hot or cold. A hot
Observable may begin emitting items as soon as it is created, and so any
observer who later subscribes to that Observable may start observing the
sequence somewhere in the middle. Such Observables are often subjects to
backpressure. A cold Observable, on the other hand, waits until an observer
subscribes to it before it begins to emit items. Such an observer is guaranteed
to see the whole sequence from the beginning. [37]

It might seem like a small implementation detail but not knowing the
difference might cause a lot of confusion when debugging, especially to an
unexperienced programmer.

30

Chapter 2

Analysis and design

2.1 Web version of Ackee Planner

Ackee Planner already exists as a web service available at [38]. There are two
possible use cases for using the service:

• A user wants to arrange a meeting with someone else.

• A user received an invitation to a meeting from someone else.

To better understand the functionality of Ackee Planner, let’s analyze
flows through the app from the perspective of a user who wants to arrange a
meeting and another user who received an invitation.

2.1.1 Arranging a meeting

First let’s analyze a flow through the web version of Ackee Planner from the
perspective of a user who wants to arrange a meeting.

Figure 2.1: A login screen.

The user visits the application’s website and is faced with a login screen
2.1 on which he has to log in. When he logs in for the first time, a Google’s

31

2. Analysis and design

standard permission dialog appears. He must grant permissions to backend
for it to be able to access and manage calendars associated with his Google
Account. If he declines to grant the permissions, we don’t let him in and show
the login screen again. If he accepts, proceed to the main screen.

Figure 2.2: The main screen.

On the main screen 2.2, the user is presented with a large calendar view
which he can click on to define available time-slots. He can also see other
events in his calendars to make his decision easier. When he is not interested
in events from some of his calendars, he can toggle the visibility of all events
from specified calendars. Here he also defines a title and duration of the
meeting and a location where the event will take place. When typing the
location’s name, suggestions are displayed below the input box. Finally, the
user must choose to which calendar the event should be saved after being
accepted by guests.

After all details of the meeting were specified, he may click on ‘Create and
share’ button and continue to the next screen. In case he clicks on the button
before specifying all details, an error message appears.

On the last screen 2.3 the user is presented with a URL address of the
meeting created on the previous screen. The user can copy the link and
send it to whomever and however he wants or he can write email addresses of

32

2.1. Web version of Ackee Planner

Figure 2.3: A confirmation screen.

participants and the system will send an email to them containing an invitation
message and the URL address.

2.1.2 Accepting an invitation

Now let’s analyze a flow through the web version from the perspective of a
user who received an invitation to a meeting.

Figure 2.4: An invitation email and an invitation screen without logging in.

In most of the cases, he receives an invitation through an email. When
he clicks on a button in the email, he is redirected to the invitation screen.
In cases that he receives a direct link to the meeting, he is redirected to the
invitation screen as well.

33

2. Analysis and design

On the invitation screen, he has an option to log in using Google account
or to accept the invitation as an anonymous user and only to specify his name
and optionally his email address. For people who don’t have a Google account
or don’t want to give permissions to access their calendars, most commonly
due to privacy concerns, the anonymous option is added.

Figure 2.5: The main screen.

After logging in, the user is faced with the main screen. It has a similar
interface to the main screen of the meeting-arrangement flow. It contains a
large calendar view, where events proposed by the host are displayed. Details
about the meeting and list of time-slots are placed to a side of the calendar
view. The user can select an event by clicking either on an event in the calendar
view or in the list. He has then an option to choose the calendar which the
event will be saved to. The clicking on the ‘Accept time’ button takes the
user to a confirmation screen where he is presented with a confirmation screen
showing a review of what date he has chosen.

2.2 Design of Android version of Ackee Planner

When I started to design the Android version I had just a general idea about
what is Ackee Planner meant for but didn’t know details of the service. Unin-

34

2.2. Design of Android version of Ackee Planner

Figure 2.6: The confirmation screen.

fluenced by the existing implementation I tried to think of features I would like
to see in the service. I analyzed the web version and existing backend only
after a considerable time spent by brainstorming and sketching the mobile
version. An overview of all the sketches is shown in the figure 2.7.

Figure 2.7: Sketches of the Android version of Ackee Planner.

Following are some of the functional requirements I came up with.
The central entity of the whole app is a Meeting and it should be possible

to define at least the following attributes:

• Title – A short text summarizing the meeting.

• Description – An optional description that can span multiple sentences.

• Location – An optional location where the meeting will take place.

• Times – A set of potential time-slots for other people to choose from.

35

2. Analysis and design

• Duration – How long the meeting will be.

• Visibility – Whether anyone (Public) or only authorized users (Private)
may see the details of a meeting.

• Guests – A list of people invited to the meeting.

• Occupancy – How to manage time-slots in case of multiple guests. Either
allow only one person per time-slot (Single), allow several people to claim
the same time-slot (Multiple) or force all participants to agree on the
same time-slot (Group).

• Calendar – Each attendee may choose what calendar the meeting should
be saved to.

• Reminders – Each attendee may set up reminders for the event.

The user should be:

• able to list through the meetings he has created in the past

• able to view details about previously created meetings

• able to edit details of meetings that didn’t happen yet

• notified when he receives an invitation from someone else

• able to list through previous invitations

• able to select meeting’s location from a map

• able to search for a location by its name or address

• able to define guests by their email addresses or just by name

• able to cancel a meeting

• able to open the application directly from an invitation email

• able to see all events from all of his account’s calendars at the same time

• able to change between accounts

• alerted when a time-slot he has defined is conflicting with another event

• able to intuitively define time-slots

• able to intuitively choose from available time-slots

• able to change the visibility of calendars when previewing time-slots

36

2.3. Calendar layouts

After analyzing the backend it became clear that some of the ideas are not
feasible because the backend lacks certain functions. Thus it was difficult to
implement every requirement idea. Some examples include:

• It is not possible to cancel or otherwise modify an already created meet-
ing.

• The backend does not provide an endpoint for retrieval of all previously
created events of the user.

• A user is notified about an invitation only via email, there is no support
for native notifications.

• Meetings don’t support description attribute.

• Meetings are always one-to-one. It is not possible to allow multiple
people to claim the same time-slot.

• Meetings are always public to anyone who has a link to the meeting.
Malicious users can claim all available time-slots as an anonymous user
as there is no mechanism to prevent anonymous users from claiming
multiple time-slots.

2.3 Calendar layouts

Defining potential time-slots of a meeting for other users to choose from is
the central activity of the application. It is important that this action is as
user-friendly as possible. It is important to give the user a quick overview
of his schedule and enable him to find and choose an empty time-slots in his
schedule effortlesly.

I downloaded 15 popular calendar applications from Google Play Store to
analyze how various applications cope with the problem. Based on observa-
tions I defined these four tiers of how we can handle situations where two or
more events overlap in time:

• Tier 1 – Drawing events over other events.

• Tier 2 – Drawing events next to other events in a cascading manner.
Later events are always displayed to the right of previous events.

• Tier 3 – Drawing events next to other events in columns. Later events
are positioned to the left when the previous event in that column already
ended. Otherwise create a new column with the event positioned to the
right side.

• Tier 4 – Drawing events in such manner that no event is drawn over
other events and each event claims as much space possible without re-
stricting other events.

37

2. Analysis and design

A list of analyzed applications and notes on how does each application
handle the layout is described in a figure 2.13.

Tier 1 – ovelapping events

(a) Drawing over other events. (b) Drawing over other events.

Figure 2.8: Ovelapping events in Simple Calendar and Business Calendar
apps.

Figure 2.8 shows two examples of how some applications handle overlap-
ping events. The left version draws each event in full width and let following
events be drawn over previous ones. This may confuse the user because it is
not clear when does an event end. When two events start at the same time,
one of them will be completely blocked by the other one. The right version
is more sophisticated, but still suffers from the problem that we are not sure
when an event ends. Moreover, one of the events is not displayed at all.

Tier 2 – cascading events

Figure 2.9: Cascading events in a web version of Ackee planner.

Figure 2.9 shows two screenshots of the web version of Ackee Planner. Pic-
tures show the situation before and after we add an event that is overlapping
two separate groups of events. Two events at the top get positioned to the left

38

2.3. Calendar layouts

of the new event; four bottom events get positioned to the right. Although
the two groups originally didn’t overlap, they now share constraints through
the new event. Note that this situation could be resolved in much better way
if the new event was just placed to the same side of both groups.

Tier 3 – column-aligned events

Figure 2.10: DigiCal’s column-aligned algorithm.

Figure 2.10 presents column-aligned approach. This approach aligns all
horizontal space of events to columns and may horizontally constrain events
even if there is empty space next to them where they could be expanded into.
Even though there is enough space available next to the orange event, its
width is limited to the width of a single column.

Tier 4 – flexible events

Figure 2.11: Google Calendar’s flexible width algorithm.

In figure 2.11, we can see Google Calendar’s flexible algorithm. In contrast
to the column-aligned approach, this algoritm does not unnecessarily constrain
events and uses all available empty space next to them. It also comes up with
a better space management. It analyzes where an event should be positioned

39

2. Analysis and design

in relation to other events to provide it with more space, when feasible. We
will analyze how to implement a flexible algorithm in the next chapter.

Figure 2.12: Calendar agenda.

As a result of the analysis, I realized that classic calendar applications and
scheduling applications are inherently different:

When we are notified about event’s date and time, we don’t care that much
if it collides with other events because there is nothing we can do about
it. Think of an event about which we have no say in the matter such as
movie theatre projection. We cannot change the running time and our
only option is to drop the event. Although it is useful to see colliding
events at a glance, it is not critical. We are just ‘consuming’ events from
other sources.

On the other hand, when we are in charge of deciding when an event will
be held, it is important to see the context. It would be foolish to offer
other people a date we cannot participate in. We are only ‘producing’
events for others.

Many of the analyzed applications didn’t even support calendar view and
only provided agenda style list of events, such as the one depicted in figure
2.12. These applications were not designed to provide an easy way to schedule
a meeting, but rather focus on a linear representation of events that is always
easy to follow.

40

2.3. Calendar layouts

Tier Name Note
(package)

0 Cal Agenda only.
(com.anydo.cal)
0 TimeTree Agenda only.
(works.jubilee.timetree)
0 TimeBlocks Agenda only.
(com.hellowo.day2life)
0 Haroo Agenda only.
(com.yunasoft.awesomecal)

1 Calendar Drawing over each other.
(com.simplemobiletools.calendar)
1 Business calendar Drawing over each other in

unpredictable manner.(netgenius.bizcal)
1 Business calendar Looks like column approach, but

sometimes draws over each other and
can completely hide some events.

(com.appgenix.bizcal)

3 New Calendar Agenda only.
(info.kfsoft.calendar)
3 Calendar Column approach.
(com.boxer.calendar)
3 Calendar+ Column approach.
(com.joshy21.vera.free.calendarplus)
3 aCalendar Optimized column approach.
(org.withouthat.acalendar)
3 Easy Calendar Column approach.
(free.calendar.schedule.reminder.todo.agenda.note)
3 WAVE Calendar Column approach.
(com.esites.ecal)

4 Calendar More sophisticated algorithm.
(com.google.android.calendar)

Figure 2.13: List of analyzed Android applications

41

Chapter 3

Realisation

3.1 Android

We have an API endpoint where we can authenticate the user using Google
account or let him proceed as an anonymous user. When the user is logged
in with a Google account, we can retrieve his calendars and events in his
calendars. Furthermore we can create a new meeting, invite other people to
the meeting, retrieve details about a meeting and accept invitations to other
people’s meetings.

To log the user in using a Google account, we must first imple-
ment OAuth 2.0 authentication. OAuth 2.0 is the industry-
standard protocol for authorization. [39] Simply said, OAuth
allows us to access resources on behalf of the user. How to set
up OAuth authentication and how does OAuth work is beyond
the scope of this thesis.

We can leverage the fact that on Android we can retrieve user’s events locally.
This approach has several benefits compared to retrieving the data from the
endpoint:

• We don’t need internet access to retrieve events. When the user loses
network connection for a while, everything will continue to work the
same. It can also save some mobile data.

• We can retrieve all events from all calendars from all user’s accounts at
once. With the API endpoint, we are always limited to displaying events
from only one of the user’s accounts.

• We can display user’s events even if he decides not to log in using his
Google account. The user may decide to proceed to accept an invitation

43

3. Realisation

anonymously and thus not give us the access to his calendars.

3.1.1 Permissions

There is a downside to this approach though – we must ask the user for per-
mission to access his calendars. In our case, this is not a problem because the
user has to give us the permission anyway if when he wants to authenticate
with our endpoint.

All permissions are irrelevant when the user is just accepting
an invitation because the user may proceed as an anonymous
user and not allow us to access to his calendar. But to create
a meeting, we need to authenticate the user by logging him in.

To authenticate the user, we need his email address. There are two ways
how to retrieve it. Either we can use the GET ACCOUNTS permission and ask
for his account with modal dialog, or use the READ CALENDAR permission and
retrieve the user’s accounts from the calendar content provider.

The downside of the GET ACCOUNTS permission is that it is grouped together
with READ CONTACTS. [40] Whenever we ask for the GET ACCOUNTS permission,
system presents the user with a dialog asking him for an access to his contacts.
If the user would not have granted the access to all of his contacts (mostly for
privacy reasons), we could not log him in.

We used the READ CALENDAR approach mainly because in our case there are
virtually no drawbacks of using the READ CALENDAR permission.

3.1.2 Deep Links

Deep Links on Android allows us to open our app when the user clicks on a
URL. Normally, following a URL redirects the user to a web browser. Using
Deep Links we can hook into the process by defining certain attributes in the
metadata of our application. When we define a deep link to our application
and the user clicks on a URL matching our metadata, instead of redirecting
him to the web browser we can open a custom activity based on the followed
URL.

This technique is used to open the app when the user click on a link in
his email. Instead of showing the web-based form, we take him directly to the
invitation screen within our app.

3.2 Calendar

As a part of Ackee Planner, there is a screen where the user defines a list
of time-slots for guests to choose from. One could argue that this is the

44

3.2. Calendar

fundamental action of the application and that it deserves the attention the
most.

We can represent times in a textual form and let the user edit times
and dates by using input fields and/or native Android dialogs. This solution
is very easy to implement but also very user-unfriendly. It is difficult for
the users to imagine the time spans in their heads quickly. Furthermore it is
difficult to communicate the fact that their events are overlapping with each
other in their calendar.

Another option is to show times in a graphical form and let the user
edit times and dates by gestures such as clicking and swiping. This solution
is usually more user-friendly but can be difficult to implement. We can
present more information that would not otherwise fit on the screen or would
be too confusing to understand.

In the previous chapter, I researched similar applications and came up with
several options how to present calendar in a graphical form. 2.3

• Let events be drawn full-width and allow them to be drawn over each
other. This is not really useful. When they are drawn over each other,
it might become unclear when does an event end, because it is covered
by other events.

• Cascading approach. This may create a cascade of events where each
event gets smaller every time a new event is added. This solution is
currently used in the web version of Ackee Planner.

• Column aprroach. This doesn’t suffer from the cascading problem as
the previous option, but still causes wasteful or unnatural layouts.

• Flexible algorithm. Not many applications go this far to implement a
calendar view. Actually only one of the analyzed applications used this
approach.

3.2.1 Flexible calendar layout algorithm

Before introducing the actual algorithm, let’s define terminology that will be
used throughout the explanation.

• Two events overlap in time if there is a moment in time where both
events happen concurently.

• Two events share constraints when their widths are tied together.
When one event’s width changes, the other event’s widths should be
updated too. When two events overlap in time, they always share
constraints.

45

3. Realisation

The opposite statement does not always hold. It is possible for two
events to share constraints even though they do not overlap in time.
The reason will be explained later in the algorithm.

In order to develop a flexible algorithm, following rules must be satisfied:

1. Two or more events overlapping in time should not be drawn over each
other.

2. Two or more events overlapping in time should divide the avaiable width
space equally.

3. Events should claim as much avaliable width space as possible for them-
selves without limiting other events.

4. Prefer such layouts where combined width of all events is maximized
(without breaking the previous rules).

The algoritm accepts a list of events as its input. Each event defines a starting
time and an ending time.

A (start=0, end=3)
B (start=1, end=2)
C (start=1, end=2)
D (start=2, end=4)

Listing (3.1) Sample input

The algorithm returns the input list of events and defines two additional at-
tributes to each event – its width and its horizontal offset.

A (start=0, end=3, width=0.33, offset=0.0)
B (start=1, end=2, width=0.33, offset=0.33)
C (start=1, end=2, width=0.33, offset=0.67)
D (start=2, end=4, width=0.67, offset=0.33)

Listing (3.2) Sample output

We can break the algorithm down into 5 steps:

1. building Timeline Steps from input events,

2. building Concurrency Groups from Timeline Steps,

3. building an Event Graph from Timeline Steps,

4. calculating widths from Concurrency Groups and

5. calculating offsets from widths and the Event Graph.

46

3.2. Calendar

3.2.1.1 Building a Timeline

A Timeline is a series of additions and removals of events based on their
starts and ends. Each event is included in the timeline exactly twice, once for
its start and once for its end.

• For each input event create two items containing EventId, Time and
Action attributes – once for its addition (event.id, event.start, ADD)
and once for its removal (event.id, event.end, REMOVE).

• Sort all the items by their Time attribute.

Successive items from the Timeline with the same Action are merged together
into Timeline Steps that contain all IDs of the merged items.

A (start=0, end=3)
B (start=1, end=2)
C (start=1, end=2)
D (start=2, end=4)

Timeline Timeline Steps
+0A
+1B
+1C +ABC
-2B
-2C -BC
+2D +D
-3A
-4D -AD

Listing (3.3) An input of 4 events, their
Timeline and their Timeline Steps

Listing 3.3 shows an example of simple input and its Timeline and Timeline
Steps.

Now we have an oscilating list of Timeline Steps where odd-indexed groups
represent additions of events and even-indexed groups represent removals of
events.

3.2.1.2 Building Concurrency Groups

Concurrency Groups are sets of events where all the events in the group
share constraints with each other. We can greatly simplify next steps of the
algorithm if we don’t include groups that are subsets of other groups. Keep
only the maximal Groups.

1. Create an empty buffer.

47

3. Realisation

2. Retrieve next set of events from the Timeline and add the events to the
buffer. Record a set of events currently in the buffer.

3. Retrieve next set of events from the Timeline and remove the events
from the buffer.

4. Keep repeating steps 2 and 3 until the Timeline is empty.

Timeline Steps Concurrency Groups
+ABC ABC
-BC
+D AD
-AD

Listing (3.4) Timeline Steps and Concurrency
Groups

Listing 3.4 show an example of Timeline Steps and their transformation
to Concurrency Groups.

Now we have all the groups of events where each group defines a maximum
set of events that each share constrains with others.

3.2.1.3 Calculating widths

We can compute Widths using the Concurrency Groups from previous step.

When an event’s width has been set, we call it resolved. Vice versa, when an
event’s width has not been set yet, we call the event unresolved.

We assign a number between 0 to 1 to each Concurrency Group called Avail-
able space. This number tells us how much width we can split between
the events of the Group.

Space Constraint is a ratio between remaining available space and number
of unresolved events in the Group. Smaller the constraint is, bigger the
priority the Group has to resolve the sizes in the Group.

The algorithm for calculating widths is following:

1. Set Available space of all groups to 1.

2. Recompute space constraint of all groups containing any unresolved
events.

3. Find the group with the smallest space constraint.

4. Set the width of each unresolved event in the group to the group’s Space
constraint.

48

3.2. Calendar

5. Repeat steps 2, 3 and 4 until all events have been resolved.

It might be difficult to imagine what does the algorithm actually do. Listing
3.5 shows the process of the algorithm using the data from the previous step.
At the beginning we know nothing about width of any of the events. We just
know there are two Concurrency Groups ABC and AD. We set their Available
space to 1.0 and recompute space constraints. The ABC has the smallest space
constraint so we resolve it first. We set width of all A, B and C to 0.33 because
none of them has been resolved yet. Next we repeat the process – recompute
available space and space constraints. This time group AD already contains a
resolved event A whose width has to be removed from the group’s available
space. This time, the AD has the smallest space constraint so we resolve it
now. We set width of D to 0.67 and leave the A as is, because was already
resolved before.

A width = ?
B width = ?
C width = ?
D width = ?

Concurrency Groups Available space Space constraint
ABC 1.0 1.0 / 3 = 0.33
AD 1.0 1.0 / 2 = 0.5

Set width to all unresolved events in ABC group.

A width = 0.33
B width = 0.33
C width = 0.33
D width = ?

ABC 0 resolved
AD 0.67 0.67 / 1 = 0.67

Set width to all unresolved events in AD group.

A width = 0.33
B width = 0.33
C width = 0.33
D width = 0.67

Listing (3.5) Calculating widths

Note that we cannot simply sort Groups by their space constraints and skip
step 2 of the iteration, because the space constraints of Groups change every
iteration. When we resolve a Group, space constraints of other Groups may
change.

49

3. Realisation

3.2.1.4 Building an Event Graph

Building an Event Graph (Graph from now on) is the most complicated step
of the algorithm but also the most important. Using the Graph we can find
out where an event should be positioned in relation to other events.

Figure 3.6: Example of a Graph.

A Graph consists of interconnected Groups. A Group is a set of one or
more events that overlap in time. The order of events within a Group does not
matter. Figure 3.6 shows an example of a Graph that is composed of several
Groups. The leftmost and the rightmost Groups do not contain any events
and serve as sentinels. Throughout the algoritm, they are referred to as αand
ω. No Group can be connected to the left side of α, resp. to the right side
of ω. You can think of them as infinitely long events that never finish and
are always in the active state. When we choose any Group in the Graph and
traverse it to the left (resp. right), we will always reach α(resp. ω).

Groups can be connected to other Groups from the left and the right sides.
When two Groups are connected, it means that they share constraints (and
so do all of their events). Because of the shared constraints, they must be
positioned next to each other.

• This relation is reflexive. When one Group is to the left (resp. right)
side of another, the other Group must be to the right (resp. left) side of
the first one. Mutliple Groups can be connected to a single Group and
single Group can be connected to multiple Groups.

• This relation is also partially transitive. See figure 3.6. Although
groups A and CD are not directly connected to each other, they share
constraints through the group B which lies in between of them. As a
result, a Group is constrained to all other Groups that we can reach by
traversing other Groups only to the right or only to the left of the original
Group. Group E is directly constrained to α, B and F and transitively
constrainted to CD and ω, but is not constrained in any way to the
group A.

A Group can be either in an active or in a finished state. The state tells
us whether all the events in this group are over or still active at the moment

50

3.2. Calendar

when we make changes in the graph. When we add a Group to the graph, its
state is set to active. When events in the group finish, we set the state to
finished. Once set to finished, it can never be changed to active again.

A bottom line of the graph is a list of Groups in the Graph starting with
α and ending with ω where each Group is the previous Group’s last following
Group. In the example of the figure 3.6, bottom line is [α – E – F – CD – ω].

A space in the bottom line (or just a space) is one or more connected
events in the bottom line that are in finished state. In the figure 3.6, we have
just added a group F (highlighted in blue) between groups E and CD. Before the
addition the bottom line was [α – E – B – CD – ω]. Group B was in a finished
state and acted as a space in the bottom line. When we add a new group of
events into the Graph, we always connect it to two active Groups that were
separated by a space.

Each traversal across the fully-built Graph from α to ω represents a transitively-
constrained Group (TC Group from now on). In our example are three such
TC Groups:

• ABCD – composed of [α – A – B – CD – ω]

• BCDE – composed of [α – E – B – CD – ω]

• CDEF – composed of [α – E – F – CD – ω]

These groups closely match Concurrency Groups from the previous step. That
is no coincidence. Many of the Graphs built this way have exactly the same
TC Group as their Concurrency Groups. As a matter of fact, the Concurrency
Groups from the previous step are the perfect minimum of TC Groups we strive
for.

By adding a Group into the Graph we may create a new TC Group that is
not included in Concurrency Groups. To achieve a perfect layout, we should
not create any new TC Groups.

As it turns out, there are cases where it is simply not possible to organize
Groups in the Graph perfectly. Sometimes we just have no other choice than to
create a new TC Group that is not included in the Concurrency Groups. In such
cases, widths from the previous step are invalid and have to be recomputed
with all the TC Groups!

The algorithm for building a Graph is following:

1. Create two empty Groups α and ω that will be used as left and right
sentinels of the graph.

51

3. Realisation

2. Create an empty Group and add it in between α and ω. Set its state
to finished. α and ω must be part of the same graph, but cannot be
connected to each other directly, because the algorithm for finding an
empty space would fail.

3. Find a space in the bottom line of the graph. It is guaranteed that there
is at least one empty space in the bottom line.

4. Retrieve next set of events from the timeline. We want to add them to
the graph. Create a new Group in an active state with these events.
Connect the Group to two Groups separated by a space in the bottom
line.

5. Retrieve next set of events from the timeline. We want to set these
events to the finished state. Find all Groups that they are included in. If
a Group is composed only of the retrieved events, we can set the Group’s
state to finished. If the Group contains both active and finished events,
split it into two and connect them together – one that cointains only
active events and one that contains only finished events.

6. Repeat steps 3, 4 and 5 until the timeline is empty.

During the step 3, when there are multiple spaces, we may attempt to
reorganize the Groups in the Graph. If it is possible to reorganize the Graph
without removing or adding new TC Groups in such a way that two spaces
would appear right next to each other, we can combine those spaces into a
single one.

If we leave two or more spaces in the bottom line, next step will introduce
a new TC Group meaning that we add unnecessary constraints that we try to
avoid.

In some cases it is possible to rotate a group of interconnected Groups.
The rotation causes all connections within the group of interconnected Groups
to be inverted – if an A was to the left side of a B, after rotation the B would
be to the left side of A. Rotating a single Group has no effect.

This step was excluded from the final implementation of the algorithm
because it was not possible to find such rotation in every case and caused
unstable results. After closer analysis of the Google Calendar, I found out
that its algorithm also sometimes produces suboptimal results.

Figure 3.7 shows an example of full process of building a Graph. Blue
nodes represent Groups added in that step and red nodes represent Groups
finished in that step. In the second last step of the algorithm it is impossible
to reorganize the Graph in a way that would merge two spaces into one. The
last step then adds a group H that is transitively-constrained to a group F.
This introduces a new TC Group that was not included in the Concurrency
Groups. As a result, the algorithm cannot achieve the perfect layout.

52

3.2. Calendar

Figure 3.7: Process of building a Graph.

3.2.1.5 Calculating offsets

To calculate events’ offsets we need the Graph and events’ widths.

1. Calculate widths of each Group in the Graph. The width of a Group is
simply the sum of widths of its events.

2. Calculate the offset for each Group. Offsets can be calculated by per-
forming a depth-first traversal through the Graph and can be nicely
expressed as a recursive function.

53

3. Realisation

We start the traversal from the α Group and traverse the Graph to the
right. The offset of a Group is the sum of widths of the previously
traversed Groups. If we expand a Group more than once, we keep the
maximal calculated offset.

3. Calculate the offset for each event. Offset of an event is equal to the
offset of its enclosing Group plus sum of widths of previously calculated
events.

3.2.2 Calendar View

There is no built-in View for displaying a calendar in the Android SDK. It is
not very surprising because built-in Views and ViewGroups are usually meant
for simple, specific tasks such as displaying a label, a button, a slider or
grouping other Views together. Calendars can be presented in many various
forms and there isn’t a single representation that could be applied to every
calendar scenario.

There are some 3rd-party lfibraries available that give support for a cal-
endar View. In our case, none of the libraries could be used without changing
their code because we had a special requirement that none of them supported
– we need to be able to display events in multiple layers – one layer for events
already in the user’s calendar and another layer for time-slots of the meeting.

There was no other option than to create our own View. There were two
approaches we could choose from to implement the View:

• Draw everything into a bitmap and display the bitmap.

• Use a combination of built-in Views and ViewGroups.

Many of the previously mentioned libraries used the first approach. It
might be easier to organize the code using this approach but, in my opinion,
it is limiting. We have to implement all gestures by ourselves – scrolling up
and down, swiping left and right, zooming in and out, clicking etc.

The other approach offers a built-in support for scrolling, swiping, clicking
and also gives many other benefits. Examples include:

• Free animations – we can nicely animate the changes in the View with
just a few lines of code.

• Native effects – we can use native effects such as a shadow effect behind
elevated items or a ripple effect when clicking on events.

• Accessibility – a visually impaired user can still use the View through
use of accesibility tools.

54

3.2. Calendar

• View caching – the framework caches Views’ appearances. When a part
of the view changes, it does not have to redraw everything, resulting in
a potentially increased performance.

Implementation of any of the examples above would be a very time-consuming
task with uncertain results. The drawback of this approach is that we have to
understand a convoluted logic behind laying out, measurement and drawing
of custom Views in order to implement the View correctly.

3.2.2.1 UI Automator Viewer

Android Device Monitor is a set of tools in the Android SDK, not well-known
among developers, that is very useful for profiling, debugging and performance
analysis of applications. One of these tools is UI Automator Viewer that comes
handy specifically when analyzing view hierarchies of applications.

Figure 3.8: UI automator viewer interface

Starting with Android Studio 3.0, many of the tools are deprecated in favor
of built-in tools in Android Studio itself. Nevertheless, the Layout Inspector
tool (a replacement for the UI Automator View) still needs some more refine-
ment (boundaries are displayed for all views by default and boundaries for a
selected view are not properly highlighted in some cases) and, in my opinion,
it is better to use the deprecated version at this moment.

Both tools retrieve the currently displayed view hierarchy on the device
using ADB (Android Debug Bridge). We can inspect what ViewGroups were

55

3. Realisation

used to build the hierarchy including some of their attributes and IDs. It
can give us useful clues on how to implement some functionality of other
applications.

This tool was of tremendous help when building complicated layouts by
myself. Using the tool I got an insight to how the calendar view can be
implemented by analyzing view hierarchies of other applications.

More information about Hierarchy Viewer can be found at [41] and in-
formation about Layout Inspector at [42].

3.3 Android version of Ackee Planner

Android version of Ackee planner should have a flow similar to the web version.

There are two use cases same as for the Web version of Ackee Planner and
two more added:

• A user wants to arrange a meeting with someone else.

• A user received an invitation to a meeting from someone else.

• A user wants to review his previously created meetings.

• A user wants to respond to an invitation he postponed responding to
before.

Due to space restrictions on screens of mobile devices, it was necessary
to split some screens into smaller parts. Some of the original functions were
enhanced.

The user is not required to log in before using the app. Instead of requiring
all permissions from the user at the start of the app, he may use it until
reaching a point where the permission is necessary to proceed.

Granting of permissions is deferred to later stages. This follows Android
guidelines about permissions. Before SDK 23 (Android 6.0 Lollipop), users
had to accept all permissions of an application before installing it to their
devices. Users could not opt out from a particular permission if they wanted
to use the application. Nowadays users can revoke permissions selectively and
we have to check for permissions at runtime.

3.3.1 Arranging a meeting

Let’s analyze a flow through the Android version of Ackee Planner from a
perspective of a user who wants to arrange a meeting. First of all, by any
means, he needs to have the application installed on his device.

When he first opens the application, he is presented with an empty screen
and a message encouraging him to click on a Floating Action Button (FAB)
to create a new meeting. Notice that, in contrast to the web version, there is

56

3.3. Android version of Ackee Planner

no log in required at this point. Clicking on the FAB takes him to another
screen where he can define details about the meeting.

Figure 3.9: Empty and filled-in meeting creation screens.

On the meeting creation screen the user must specify details about the
meeting – including its title, potential time-slots, its location and what cal-
endar the event should be stored into when accepted. Furthermore a map of
currently defined location is displayed.

Figure 3.10: A calendar selection screen before and after granting permissions.

On a calendar selection screen the user is faced with permissions for the
first time. If the user hasn’t provided Calendar permission before, a message
will be shown asking him to grant the permission.

57

3. Realisation

The permission is used to display all calendars from all of his accounts.
This is a big difference in comparison with the web version. In the web version
the user is limited to be logged in using only one of his accounts. In the
Android version, he can switch between accounts effortlesly without losing
progress he made so far.

Figure 3.11: Daily and weekly views of time-slot selection screens.

On a time-slot selection screen the user must select at least one time-slot
to proceed. He can define time-slots by clicking on the calendar. He can scroll
horizontally to move between days (or weeks) and vertically to change diplayed
time period of the day. Moreover, he may use a pinch gesture to zoom in, to
increase precision when defining time-slots, or out, to have a better overview
of the schedule.

Similarly to the web version of Ackee Planner, the user may toggle the
visibility of his calendars in case that he is uninterested in its events. If the
calendar view is too cluttered or hard to navigate, he can display textual
agenda of time-slots defined so far.

On a location selection screen the user can define where the meeting will
take place. As he writes the location’s description, suggestions based on cur-
rent query appear below, giving the user an option to select an address without
writing the whole address by himself. In addition, next time he opens the loc-
ation screen, previously entered addresses will be shown without the need of
writing anything at all. Recent locations can be cleared by swipe gesture or

58

3.3. Android version of Ackee Planner

Figure 3.12: A dialog where the user can change visibility of his calendars on
the left. Textual representation of currently defined time-slots on the right.

Figure 3.13: A location selection screen.

by clicking the icon above them.

Originally the location selection screen featured a full screen map view in
which the user could zoom and pan around to find a desired location. It proved
to not be very useful as it was just easier to find the location by entering an
address or name. In the end, the fullscreen map was scrapped in favour of a
small map preview on the meeting creation screen.

On the following sharing screen the user can send invitations to the just
created meeting. Similarly to the web version, the user can copy the link and
send it to whomever and however he wants. A native modal dialog will appear
upon clicking on the url, where he can choose an application of his liking to
share the meeting.

On a guest selection screen the user is asked for a permission to access the
user’s contacts in a similar way as on the calendar selection screen 3.10. This
permission is not critical and the user may proceed without granting it. In
such case he must type in full email addresses. If he grants the permission,
he can choose to write either names of people or their email addresses and

59

3. Realisation

Figure 3.14: A sharing screen.

Figure 3.15: A guests selection screen.

suggestions matching the query will appear below. Similarly to the location
screen, when the user creates another meeting, previously contacted people
are remembered and shown first.

When the user is finished with sending invitations or navigates back, he is
redirected back to the main screen.

3.3.2 Accepting an invitation

Let’s analyze a flow through the Android version of Ackee Planner from a
perspective of a user who received an invitation to a meeting.

Most of the time he receives the invitation via email. When the user is
on a mobile device and clicks on the button in the email, an invitation screen
within Ackee Planner automatically opens.

60

3.3. Android version of Ackee Planner

Figure 3.16: An invitation in Gmail app and within Ackee Planner.

He may then proceed to choose a time-slot that was proposed by an owner
of the event. Most of the functionality remains the same as before – the
user can toggle between calendar view and textual list, can toggle between
displaying a single day or a week of events and can change visibility of his
calendars.

Figure 3.17: A sharing screen.

Because multiple people can claim a time-slot for themselves, we must
disallow the user to choose a time-slot already claimed by someone else. In

61

3. Realisation

both situations, claimed time-slots are grayed out and contain a name of the
claimant. Clicking on a claimed event does nothing. Clicking on an unclaimed
time-slot highlights the current selection.

Figure 3.18: A calendar screen.

Choosing a calendar which the event should be saved to works similarly
to the calendar selection screen from previous section 3.10.

But this time there is an extra option to accept the invitation without
signing in. Clicking on the button below user’s calendars replaces contents
of the screen with two input fields. User may just write down his name and
his email address. This information will be used to accept the meeting. The
owner of the meeting will be notified just the same, but because we didn’t
receive permissions to write into the user’s calendar, we cannot add the event
to his calendar. A file in a iCalendar format containing information about
the event is sent to the user instead.

3.3.3 Overview

Previous two flows were almost identical to the web version as they tried to
match the flow as closely as possible. Both cases described a use-and-forget
scenario. Once the user completes his task, he doesn’t need the application
any more because all further actions take place outside of the app.

The functionality of the main screen gives the user a reason to keep the
app installed. On the main screen, he can list through and review previously
created meetings. He may not change any details of those meetings, but he
may send out more invitations if he wishes to.

Another reason for the user to keep the app installed is that he may choose
not to respond to an invitation immediately, but postpone it for later. When

62

3.3. Android version of Ackee Planner

Figure 3.19: Main screen with two previously defined meetings and a detail
screen of one such meeting.

he does so, he can just open the app later, click on the meeting card and
fill in the details. Accepted invitations are marked with a check icon. When
he opens a detail of an already accepted invitation, the submit button is
unavailable because he should not be able to accept the same event twice.

63

3. Realisation

Figure 3.20: Main screen with an overview of previously received invitations
and detail screen of an accepted invitation.

64

Chapter 4

Testing

“Elaborate usability tests are a waste of resources. The best results come
from testing no more than 5 users and running as many small tests as you can
afford.” [43]

Figure 4.1: Diminishing returns of user testing.

Figure 4.1 shows diminishing returns of user testing. Testing with only
two people is usually enough to find 50% of usability problems and testing
with five users results in discovering of 85% of the problems.

I have prepared following testing scenarios to evaluate the usability and com-
prehensibility of the app.

The first tested user was not very proficient in using a smartphone. During
the testing, she said she has never read an email on her phone and that she
doesn’t use any digital calendar services and uses a physical calendar instead.

The other tested user was familiar with smartphones but not with Android
in particular. There was a small misunderstanging about navigation that was
unrelated to the Ackee Planner.

65

4. Testing

4.1 First task

Because most of the people get to know about the app for the first time when
they receive an invitation, first test is focused on accepting of an invitation.
For every questioned user I have created a fictional meeting called ‘Coffee
with cats’ for which I have specified multiple dates during several days. Then
I have sent the invitation via an email, told them to read the contents of the
email and let them proceed however they want.
Here is a list of observed issues:

• Invitation email and the app are not translated to Czech language.

• After being redirected from the email for the very first time the app
crashed.

• She said it makes more sense to choose calendar first and then to choose
a time-slot. In the current implementation the order is opposite.

• When she opened the screen where she should select a time-slot, she
thought she is in charge of defining time-slots and didn’t realize she
should select one. She tried to define her own time-slots by clicking on
empty spaces which, as expected, did nothing.

• I accidentaly showed her that she scroll horizontally to switch between
days. I am not sure if she would realize it by herself. It is possible that
she would think that events she saw were the only ones available.

• She tried to scroll about 10 days to see if there are any more events
available. She didn’t know there is an option to display full week at
once and another option to display list of events in a textual form.

• In general, she didn’t understand how permissions work. She success-
fully granted permission to calendar when a full-screen permission dialog
showed up. Later during the testing it turned out that she thought she
had given the permission to the host of the meeting. She didn’t realize
that the owner of the app was given the permission instead.

• I created a new meeting again and told her to accept the invitation
without granting any permissions. It turned out that the button on the
bottom of the screen 3.18 is too subtle to be noticed. When I showed
her the other screen, she didn’t understand what are the ‘Name’ and
‘Email’ fields for. She didn’t complete the task.

• The other user didn’t notice that he can change displayed day by scrolling.

• When he was supposed to choose one of his calendars he clicked on the
desired calendar twice. The first click initiated a sign in process but the

66

4.2. Second task

second click cancelled it. Although the app shows a message when the
sign in process is cancelled, it would be better if such situations didn’t
happen at all.

4.2 Second task

Second task was to create and share a meeting. User was asked to define
its title, time-slots, calendar and location and send an invitation to another
person.

Here is a list of observed issues:

• She succesfully wrote the title, logged in and defined time-slots, but
struggled with changing of the location.

• On the guest screen she ignored an inlined permission (similar style to
figure 3.10). She was confused why she has to write full email address to
send an invitation to another person. She didn’t understand we cannot
show her suggestions unless she grants the permission.

• She didn’t know she can send an invitation to multiple people.

• He though he has to attend all time-slots he had defined in the calendar
View. He didn’t realize that guest will accept only one of the time-slots.

• He asked if he can change the duration of the event.

• When he granted a permission to access his contacts an on-screen key-
board didn’t appear. He had to click in the input field again to start
writing names.

Most of the issues discovered during the testing were related to UX design of
the app. During the testing we encountered two crashes that were inspected
and fixed. How to resolve UX issues will be consulted and addressed with a
help of professional UX designers.

67

Conclusion

I have familiarized myself with iCalendar protocol, learned how it can be
used and understood its capabilities. In the end, iCalendar protocol was not
implemented in the Android version of the app because invitations to meetings
are already sent out by the backend.

During the research phase I have identified several shortcomings of the
existing backend implementation. Some of the shortcomings are simple to
address, such as a missing description of meetings, but some require more
work, such as adding new endpoints to download all events from a specific
user.

I have spent a lot of time analyzing what is the best way to display events
in a calendar view and tried to implement an advanced algorithm myself. I
concluded that an ultimate algorithm to lay views out perfectly does not exists
because it turned out there are situations where a trade-off has to be made.

Finally, I have performed user testing with several people. I have acquired
a lot of feedback as the result of the testing.

Overall, in my opinion, the app is a success. I have incorporated features
that were not originally part of the assignment as it was supposed to only
mimic the functionality of the web version. But the development of the app is
not over yet, mainly due to limitations imposed by backend and other things
beyond my expertise. Here is a list of things that could be developed next or
further improved:

• Add a support for Android Instant Apps. Such apps allow users to
run an application instantly, without prior installation. A user would
be able to click on a link in an invitation email and the app would
automatically open even if he didn’t install it before. Current solution
requires the user to download the application from the Google Play store
in advance. Ackee Planner is a perfect candidate for such functionality.
Most users will usually spend only a few minutes in the application.

69

Conclusion

Rather than undergoing a hassle of installing the app on their phones,
many users may decide just to fulfill the task on a desktop instead.

Unfortunately, adding the support is not a trivial task because it re-
quires a lot of changes to a code structure and a very small package
size. Moreover, existing web service would need to be altered as well
because of the way how navigation within Instant Apps works. Heavy
refactoring of the code would be inevitable.

• At the time when the backend API was designed, its only consumer was
the web version. A mobile version was not taken into consideration. The
current backend is designed purely for the web version and many useful
functions for the Android version are not provided.

It was not planned to retrieve a list of meetings the user has been invited
to, neither to retrieve a list of meetings the user has created. Currently,
the application stores information about meetings without any help of
the backend. But when a user reinstalls the application or changes
devices, this information is not retained. Moreover it is impossible to
retrieve a list of users we have invited to a specific meeting before. When
the user tries to send an invitation to someone who has been already
invited, the backend returns HTTP code 500 – Internal Server Error.

• Due to the restricted screen space on mobile devices, the app tried to
be as simple as possible without any unnecessary verbose explanations
of its functionality. The user testing pointed out situations in which the
app does not accurately communicate its intent. The feedback of the
user testing will be consulted and addressed with a help of professional
UX designers.

• The app’s visual design is plain and simple. It lacks any colors and visu-
ally interesting elements. My attempt to add colors to the application
ended up looking ridiculous and so I decided to let a professional graphic
designer create the design.

70

Bibliography

[1] iCalendar.org - iCalendar Resources, Specifications and Tools. Available
from: https://tools.ietf.org/html/rfc5545

[2] RFC 5545 - Internet Calendaring and Scheduling Core Object Specifica-
tion (iCalendar). Available from: https://icalendar.org/

[3] RFC 4791 - Calendaring Extensions to WebDAV (CalDAV). Available
from: https://tools.ietf.org/html/rfc4791

[4] WebDAV protocol explained. Available from: http://
nuanceimaging.custhelp.com/app/answers/detail/a_id/
12230/˜/webdav-protocol-explained

[5] The Activity Lifecycle — Android Developers. Available from:
https://developer.android.com/guide/components/
activities/activity-lifecycle.html

[6] Activity — Android Developers. Available from: https:
//developer.android.com/reference/android/app/
Activity.html

[7] Separation of Concerns — Effective Software Design. Available
from: https://effectivesoftwaredesign.com/2012/02/05/
separation-of-concerns/

[8] Understanding Component-Entity-Systems - General and Game-
play Programming - GameDev.net. Available from: https:
//www.gamedev.net/articles/programming/general-and-
gameplay-programming/understanding-component-entity-
systems-r3013/

[9] Component · Decoupling Patterns · Game Programming Pat-
terns. Available from: http://gameprogrammingpatterns.com/
component.html

71

https://tools.ietf.org/html/rfc5545
https://icalendar.org/
https://tools.ietf.org/html/rfc4791
http://nuanceimaging.custhelp.com/app/answers/detail/a_id/12230/~/webdav-protocol-explained
http://nuanceimaging.custhelp.com/app/answers/detail/a_id/12230/~/webdav-protocol-explained
http://nuanceimaging.custhelp.com/app/answers/detail/a_id/12230/~/webdav-protocol-explained
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/understanding-component-entity-systems-r3013/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/understanding-component-entity-systems-r3013/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/understanding-component-entity-systems-r3013/
https://www.gamedev.net/articles/programming/general-and-gameplay-programming/understanding-component-entity-systems-r3013/
http://gameprogrammingpatterns.com/component.html
http://gameprogrammingpatterns.com/component.html

Bibliography

[10] Presentation-Abstraction-Control. Available from: http://
www.dossier-andreas.net/software_architecture/pac.html

[11] Typical EventBus Design Patterns — ThoughtWorkshop. Avail-
able from: http://timnew.me/blog/2014/12/06/typical-
eventbus-design-patterns/

[12] Richards, M. Software Architecture Patterns. O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472, 2015.
Available from: http://www.oreilly.com/programming/free/
files/software-architecture-patterns.pdf

[13] 10 Common Software Architectural Patterns in a nutshell. Available from:
https://towardsdatascience.com/10-common-software-
architectural-patterns-in-a-nutshell-a0b47a1e9013

[14] Chapter 3: Architectural Patterns and Styles. Available from: https:
//msdn.microsoft.com/en-us/library/ee658117.aspx

[15] Connect to the network — Android Developers. Available
from: https://developer.android.com/training/basics/
network-ops/connecting

[16] Retrofit. Available from: https://square.github.io/retrofit/

[17] Android Architecture Components — Android Developers. Available
from: https://developer.android.com/topic/libraries/
architecture/

[18] About SQLite. Available from: https://www.sqlite.org/
about.html

[19] Save data using SQLite — Android Developers. Available from: https:
//developer.android.com/training/data-storage/sqlite

[20] Save data in a local database using Room — Android Developers. Avail-
able from: https://developer.android.com/training/data-
storage/room/

[21] Reactive Programming with JDK 9 Flow API — Oracle Com-
munity. Available from: https://community.oracle.com/docs/
DOC-1006738

[22] Reactive Streams. Available from: http://www.reactive-
streams.org/

[23] Reactive Streams implementations. Available from:
http://www.reactive-streams.org/announce-
1.0.0#implementations

72

http://www.dossier-andreas.net/software_architecture/pac.html
http://www.dossier-andreas.net/software_architecture/pac.html
http://timnew.me/blog/2014/12/06/typical-eventbus-design-patterns/
http://timnew.me/blog/2014/12/06/typical-eventbus-design-patterns/
http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf
http://www.oreilly.com/programming/free/files/software-architecture-patterns.pdf
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://msdn.microsoft.com/en-us/library/ee658117.aspx
https://msdn.microsoft.com/en-us/library/ee658117.aspx
https://developer.android.com/training/basics/network-ops/connecting
https://developer.android.com/training/basics/network-ops/connecting
https://square.github.io/retrofit/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/data-storage/room/
https://developer.android.com/training/data-storage/room/
https://community.oracle.com/docs/DOC-1006738
https://community.oracle.com/docs/DOC-1006738
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/announce-1.0.0#implementations
http://www.reactive-streams.org/announce-1.0.0#implementations

Bibliography

[24] Akka — Akka. Available from: https://akka.io/

[25] Project Reactor. Available from: https://projectreactor.io/

[26] ReactiveX/RxJava: RxJava – Reactive Extensions for the JVM – a
library for composing asynchronous and event-based programs using
observable sequences for the Java VM. Available from: https://
github.com/ReactiveX/RxJava

[27] MongoDB Java Driver. Available from: http://mongodb.github.io/
mongo-java-driver-reactivestreams/

[28] 23. Web Reactive Framework. Available from: https:
//docs.spring.io/spring-framework/docs/5.0.0.M1/spring-
framework-reference/html/web-reactive.html

[29] ReactiveX. Available from: http://reactivex.io/

[30] ReactiveX - Languages. Available from: http://reactivex.io/
languages.html#languages

[31] Reactive Streams Specification for the JVM. Available from: https:
//github.com/reactive-streams/reactive-streams-jvm

[32] Backpressure (2.0) · ReactiveX/RxJava Wiki. Available from: https:
//github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)

[33] ReactiveX - Operators. Available from: http://reactivex.io/
documentation/operators.html

[34] Reduction (The JavaTM Tutorials ¿ Collections ¿ Aggregate Operations).
Available from: https://docs.oracle.com/javase/tutorial/
collections/streams/reduction.html

[35] ReactiveX - Scheduler. Available from: http://reactivex.io/
documentation/scheduler.html

[36] Schedulers in RxJava — Baeldung. Available from: http://
www.baeldung.com/rxjava-schedulers

[37] ReactiveX - Observable. Available from: http://reactivex.io/
documentation/observable.html

[38] Ackee Planner. Available from: https://planner.ack.ee/

[39] OAuth 2.0 – OAuth. Available from: https://oauth.net/2/

[40] Permissions Overview — Android Developers. Available from: https:
//developer.android.com/guide/topics/permissions/
overview#permission-groups

73

https://akka.io/
https://projectreactor.io/
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
http://mongodb.github.io/mongo-java-driver-reactivestreams/
http://mongodb.github.io/mongo-java-driver-reactivestreams/
https://docs.spring.io/spring-framework/docs/5.0.0.M1/spring-framework-reference/html/web-reactive.html
https://docs.spring.io/spring-framework/docs/5.0.0.M1/spring-framework-reference/html/web-reactive.html
https://docs.spring.io/spring-framework/docs/5.0.0.M1/spring-framework-reference/html/web-reactive.html
http://reactivex.io/
http://reactivex.io/languages.html#languages
http://reactivex.io/languages.html#languages
https://github.com/reactive-streams/reactive-streams-jvm
https://github.com/reactive-streams/reactive-streams-jvm
https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)
https://github.com/ReactiveX/RxJava/wiki/Backpressure-(2.0)
http://reactivex.io/documentation/operators.html
http://reactivex.io/documentation/operators.html
https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html
https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html
http://reactivex.io/documentation/scheduler.html
http://reactivex.io/documentation/scheduler.html
http://www.baeldung.com/rxjava-schedulers
http://www.baeldung.com/rxjava-schedulers
http://reactivex.io/documentation/observable.html
http://reactivex.io/documentation/observable.html
https://planner.ack.ee/
https://oauth.net/2/
https://developer.android.com/guide/topics/permissions/overview#permission-groups
https://developer.android.com/guide/topics/permissions/overview#permission-groups
https://developer.android.com/guide/topics/permissions/overview#permission-groups

Bibliography

[41] Profile Your Layout with Hierarchy Viewer — Android Developers. Avail-
able from: https://developer.android.com/studio/profile/
hierarchy-viewer

[42] Debug Your Layout with Layout Inspector — Android Developers. Avail-
able from: https://developer.android.com/studio/debug/
layout-inspector

[43] Nielsen, J.; Landauer, T. K. A mathematical model of the finding
of usability problems. 1993: pp. 206–213, doi:https://doi.org/10.1145/
169059.169166.

74

https://developer.android.com/studio/profile/hierarchy-viewer
https://developer.android.com/studio/profile/hierarchy-viewer
https://developer.android.com/studio/debug/layout-inspector
https://developer.android.com/studio/debug/layout-inspector

Appendix A

List of abbreviations

ADB Android Debug Bridge

API Application Programming Interface

DSL Domain-Specific Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OS Operating System

REST Representational State Transfer

SDK Software Development Kit

SQL Structured Query Language

UI User Interface

UX User Experience

URL Uniform Resource Locator

XML Extensible Markup Language

75

Appendix B

Contents of enclosed CD

readme.txt.......................the file with CD contents description
apk.......................the directory with executable android package
src..the directory of source codes

ackee-planner.............................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
DP Khol David 2018.pdf........... the thesis text in PDF format

77

	Introduction
	State-of-the-art
	iCalendar standard
	Android ecosystem
	Reactive programming

	Analysis and design
	Web version of Ackee Planner
	Design of Android version of Ackee Planner
	Calendar layouts

	Realisation
	Android
	Calendar
	Android version of Ackee Planner

	Testing
	First task
	Second task

	Conclusion
	Bibliography
	List of abbreviations
	Contents of enclosed CD

