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Instructions
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inlining, and table representation. Analyze potency and resilience of each implemented transformation.
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Abstrakt

Obfuskace je známá technika pro ochranu duševńıho vlastnictv́ı obsaženého
v software. Obfuskace softwaru může být prováděna ručně vývojáři, ale to je
časově náročné a omezuje to jeho udržovatelnost. Domńıváme se, že lepš́ım
př́ıstupem je provádět obfuskaci automaticky, jako součást procesu kompilace.
Modularita populárńıho kompilátoru LLVM nám dává možnost toto udělat.
Tato práce je zaměřena na implementaci několika obfuskačńıch transformaćı
do LLVM a popisuje výhody a omezeńı tohoto řešeńı.

Kĺıčová slova obfuskace, tranformace, LLVM, potency, resilience, perfor-
mance

Abstract

Obfuscation is a method for protecting intellectual property contained within
software. Obfuscation can be performed manually by developers, but that
is time consuming and it limits maintainability of the software. We assume
that it is better to perform obfuscations automatically, as a part of compi-
lation process. The modularity of popular compiler LLVM makes it possible
to implement that. This work is focused on implementing several of these
tranformations and describes the advantages and limitations of this approach.
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Introduction

For software vendors, it is essential to protect their intellectual property. They
may want to ensure that their product will be used only by legitimate users
and will not be subject to software piracy or copying. Or they may want
to protect some assets of their product, such as an innovative algorithm. In
that case, they might try to modify their software to be harder to disassemble
and reverse engineer. Various solutions to this problem exist, with different
advantages and disadvantages.

One solution that is gaining popularity nowadays is to keep the main part
of the valuable software solution on the server side and let the user use it
remotely, over the Internet. Users only need a thin client application or no
specific application at all (using an Internet browser, that is already bundled
with their system). This approach is referred to as Cloud services or as a
Software as a Service (SaaS). That significantly simplifies the need to protect
assets within the software, as the user does not have access to actual software
running on the server side.

While this may be convenient for some applications, it does not suit all
use cases. It requires users to be always online in order to use the service.
The network bandwidth might be an issue. Also, users have to fully trust
the service provider, as all the data is transferred to and processed on their
servers. In some cases, that could be a problem, so it is still common to use
software running on local machine. In that case, software developers have to
think how to protect programs they distribute to users.

Protection methods can generally be divided into hardware and software
protection. Hardware methods require the use of specialized hardware to run
the program. It might be a special trusted processor to prevent tampering or
a dongle (nowadays a special USB stick), that needs to be plugged to allow
running software. In many cases, however, the user cannot be convinced to
use a specialized hardware in order to use the program, so the developers need
to revert to software protection methods.

Software methods do not require users to have any specialized hardware.
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Introduction

They modify the program before shipping it to a user, with the aim to make
it more resistant to reverse engineering and tampering attempts. Software
protection methods are usually divided into three categories: obfuscation,
tampering resistance and watermarking. Obfuscation changes the program,
so it is harder to to understand and analyze by means of reverse engineering.
Tampering resistance is used to detect user’s attempts to modify the program.
Finally, watermarking can be used to create slightly different versions for
different customers - so when the program leaks, it is possible to identify the
source of the leak.

This work focuses on program obfuscation. It is important to note that it
is impossible to achieve perfect protection by obfuscation. Given enough time
and determination, a skilled reverse engineer can always analyze and under-
stand the program. Their task can, however, be made much more difficult.
When the difficulty exceeds a certain threshold, the belief is that they may
give up, as reverse engineering the program may not be worth the effort.

A survey of obfuscation transformation was given in the work of Collberg
et al.[1]. Obfuscations can be performed manually on the source code by
developers, but that is time-consuming, and it limits the maintainability of
the software (as we will see later, obfuscation is quite the opposite to making
program maintainable). We believe that a better approach is to obfuscate the
program automatically, as a part of the compiler toolchain.

The aim of this work is to implement an automatic obfuscator. To do
that, we will use LLVM compiler infrastructure. LLVM compiler is one of the
most popular nowadays and its modularity allows to do custom transforma-
tion as a part of the compilation process. The advantage of LLVM is also that
it supports many programming languages (C/C++, Go, Rust, Fortran) and
multiple CPU architectures. Its architecture allows the obfuscation transfor-
mations which we will create to be completely independent on source language
or target architecture.

The rest of this work is structured as follows: Chapter 1 introduces and
categorizes obfuscation transformations. Chapter 2 presents some existing ob-
fucators. Chapter 3 describes design of our obfuscator. Chapter 4 describes its
implementation and implementation issues. Chapter 5 evaluates implemented
transformations and compares our obfuscator to existing obfuscation tools.
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Chapter 1
Obfuscation transformations

In this section, we give an overview of obfuscation transformations and metrics
to evaluate them. First, we define what an obfuscation transformation is. In-
formally, we can say that obfuscation should make the program more difficult
to reverse engineer while preserving functionality. The notion of obfuscation
transformations was formalized by Collberg et al. in [1]:

Definition 1 Let P τ−→ P ′ be a transformation of a source program P into
a target program P ′. P

τ−→ P ′ is an obfuscating transformation, if P and P ′

have the same observable behavior. More precisely, in order for P τ−→ P ′ to be
a legal obfuscating transformation the following conditions must hold:

• If P fails to terminate or terminates with an error condition, then P ′

may or may not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

Collberg et al. in [1] categorized obfuscations by the kind of information
they target. They divided these transformations into 4 basic categories:

1. Layout obfuscations remove useful information from the source code,
e.g., removing debugging information or scrambling identifier names.

2. Preventive obfuscations make automatic deobfuscation more diffi-
cult, e.g., by adding bogus data dependency to obfuscated constructs
to prevent simplifying them or targetting some known weakness of a
particular deobfuscator.

3. Data obfuscations target data and data structures used in the pro-
gram, e.g., promoting variables to more general type, splitting variables,
or restructuring arrays.

4. Control flow obfuscations break the flow within the program, e.g.,
insert bogus conditional branches and unreachable or redundant code,
inlining to and outlining from functions.

3



1. Obfuscation transformations

Figure 1.1: Control flow graph example

In our work, we focus on control flow obfuscation. A detailed descrip-
tion of these obfuscations is given later in this chapter. First, we need to
explain some basic concepts important for control flow obfuscations. Then,
we describe some metrics for evaluating obfuscations. Finally, we provide a
detailed description of several control flow obfuscations.

1.1 Basic concepts

1.1.1 Control flow graph

A control flow graph (CFG) is a directed graph representing a function. CFGs
were studied extensively as a part of compiler design[2]. A CFG represents all
possible paths within a function. Each graph node (a basic block) contains
a linear sequence of instructions. Only the last instruction of a basic block
(BB) can jump to another BB or return from a function. Jumps are allowed
only to the first instruction of a BB. Thus, once the first instruction in a BB
starts execution, it’s guaranteed that all instructions in its BB will be executed
(unless an exception such as division by zero occurs).

The last instruction (called terminator instruction) defines direct succes-
sors of the BB. There can be one successor (unconditional jump), more suc-
cessors (destination depends on some condition) or no successor (BB returns
from a function) at all. All basic blocks that jump to given basic block are
predecessors of that basic block. Each function entry block may not have any
predecessor while each function terminating block never has a successor.

One important concept related to a CFG is dominance. A basic block A
is said to dominate B if any path from the entry basic block to B must go
through A.

Figure 1.1 gives a simple example of a CFG of a function. Instructions
inside each BB are not important here, so they were omitted. We can, for
example, see that (the only) successor of entry is for.cond. Predecessors of

4



1.1. Basic concepts

Table 1.1: Invariant opaque predicate examples[6]. All these expression are
always true.

Expression
∀x ∈ Z, x2 ≥ 0
∀x ∈ Z, 2|x(x+ 1)
∀x ∈ Z, 2|bx2

2 c
∀x ∈ Z, (x2 + 1)%7 6= 0
∀x ∈ Z, (x2 + x+ 7)%81 6= 0
∀x ∈ Z, (4x2 + 4)%19 6= 0
∀x, y ∈ Z, 7y2 − 1 6= x2

for.cond are entry and for.inc. Also, we can see that for.body dominates
for.inc, but does not dominate any other basic block.

1.1.2 Opaque predicates and variables

Opaque predicate is an important concept for designing obfuscations. Let us
have a variable such that its value is known at the obfuscation time, but it is
difficult to deduce for deobfuscator. This is known as an opaque variable[1].
Opaque predicate is a just a boolean opaque variable. Creating opaque vari-
ables and predicates that are difficult to guess is a major challenge of obfus-
cator design and it is the key to creating difficult-to-remove obfuscations.

A lot of research was dedicated to designing opaque predicates [3, 4, 5]
and similar research interest was dedicated to identifying them[6, 7]. The cur-
rent state-of-art tool for detecting opaque predicate is LOOP[6]. The article
identified three types of opaque predicates.

The first type is an invariant opaque predicate. An invariant opaque pred-
icate always evaluates to true or false, for all possible inputs, but only the
obfuscator knows this value at compile time. Many of them are derived from
known algebraic theorems or quadratic residues. Table 1.1 shows several ex-
amples of these. However, the invariant property is also the drawback of this
type of opaque predicates – a constraint solvers can identify that their value
is always the same[6, 7].

Article [8] proposes another opaque predicate type. It uses a formula, that
is only true under a specific precondition. But it can be false if this precon-
dition does not hold. Table 1.2 gives some examples of these predicates. The
precondition might be hidden in another parts of code or implicitly known to
the obfuscator. In article [6], they call this type contextual opaque predicate.
Constraint solvers cannot detect it by analysing individual expressions, they
have to consider also the context of those expressions.

The third and last type described in [6] is called dynamic opaque predicate.
It consists of a set of correlated predicates, meaning that all present the same

5



1. Obfuscation transformations

Table 1.2: Contextual opaque predicate examples[6]. Expressions are true, if
the precondition holds. They can be false otherwise.

Precond. Expression
∀x ∈ Z, x > 5 x ≥ 0
∀x ∈ Z, x > 3 x2 − 4x+ 3 > 0
∀x ∈ Z, x%4 = 0 x%2 = 0
∀x ∈ Z, 3|(7x− 5) 9|(28x2 − 13x− 5)

value, but this value may vary in different runs – the value of such predicates
switches dynamically. However, it should be noted that this type of predicate
is not a general-purpose predicate as the previous types. To our knowledge,
this type can be only used for inserting redundant code, as described in 1.3.1.1.

In the following sections, we will use P T to denote opaque predicate that
always evaluates to true and PF for a predicate that always evaluates to false.
Note that we can easily make P T from PF just by negating it and vice versa.

1.2 Evaluating obfuscations

To be able to assess the quality of different obfuscations, we need some met-
rics. Several those metrics were proposed by Collberg et al. in [1]. In their
work, they evaluated obfuscation transformation based on 3 criteria: (i) how
much obscurity they add to the program (potency), (ii) how hard they are
to remove/break (resilience) and (iii) how much computational overhead they
add to the program.

1.2.1 Potency

The measure of potency describes how much more difficult (for a human being)
the program is to understand than a non obfuscated program. Informally, we
can say that that the obfuscation is potent if it does a good job confusing
reverse engineers by hiding the intent of the original code. This is not easy to
measure precisely since that depends on their cognitive abilities.

Collberg et al. in [1] suggested using software complexity metrics from
software engineering field. These metrics were designed to aid keeping the
program readable and maintainable. We have chosen two of those metrics:

• program length (µ1): a number of operators and operands in a func-
tion/program

• cyclomatic complexity (µ2): a number of independent paths though
a function/program

Software engineers tries to keep these metrics low, in order to keep the
code readable and mainainable. However, the aim of obfuscation is quite the

6



1.2. Evaluating obfuscations

oposite – it aims to make the code hard to read. Thus, they are trying to
increase these metrics. Based on that, we can list some desirable properties
of obfuscation tranformation. For example, a potent transformation can:

• increase the size of the program (thus increasing µ1)

• increase the number of paths through a function (increasing µ2)

Note that the increase of those metrics by obfuscation should be reasonable.
It would be possible to increase program size unlimitedly, but the user likely
expects a program of a reasonable size.

1.2.2 Resilience

From the previous section, it may seem that it is easy to obfuscate a program –
for example just by adding a lot of dead code (a code that does not contribute
to any result) to each function. However, such a code can be easily detected
automatically. A well known optimization - dead code elimination - aims to
detect and remove such code.

Potency does not measure how difficult is to break the obfuscation for an
automatic deobfuscator. For that, another metrics is needed – it is called re-
silience. Resilience in [1] is seen as a combination of two factors: i) the amount
of time needed for a programmer to construct an automatic deobfuscator and
ii) execution time and space needed by the deobfuscator to remove the ob-
fuscation. They measure resilience on a five-point scale from trivial to weak,
strong, full, and one-way. One-way obfuscation transformations are special,
as they cannot be undone. Such transformations remove some information
from the program. Other transformations can be removed with varying level
of difficulty.

Programmer’s effort, the work to create a deobfuscator for a transforma-
tion is seen as a function of the scope of that transformation. The scope could
be:

1. local: if the transformation affects only a single BB

2. global: if it affects an entire CFG of a function

3. inter-procedural: if it affects the flow of information between functions

4. inter-process: if it affects the interaction between execution threads

Resilience of a transformation corresponds to the scope of such transforma-
tion – local transformation having trivial resilience, global transformation hav-
ing weak resilience, inter-procedural having strong resilience and inter-process
having full resilience1.

1if the created deobfuscator requires polynomial time and space

7



1. Obfuscation transformations

1.2.3 Performance impact

The obfuscated program often needs more resources than the not obfuscated
one. It is usually bigger and takes more time to execute. It is, therefore,
necessary to consider this performance penalty as well. The selection of ob-
fuscation transformations is usually a trade-off between perfrormance penalty
caused by the obfuscation and the protection gained by the obfuscation. In
[1], they measured performance cost on a four-point scale:

• free: if executing obfuscated program requiredO(1) more resources than
non obfuscated program

• cheap: if executing obfuscated program required O(n) more resources
than non obfuscated program

• costly: if executing obfuscated program required O(np), p > 1 more
resources than non obfuscated program

• dear: if executing obfuscated program required exponentially more re-
sources than non obfuscated program

1.3 Obfuscations overview

In [1], control flow obfuscations were divided into three categories:

1. Computation obfuscations: Insert new (dead or redundant) code
into the program or make changes of the algorithm.

2. Aggregation obfuscations: Break up code pieces that belong together
or merge pieces that do not.

3. Ordering obfuscations: Changes order in which the operations are
performed.

We will explore these obfuscations in bigger detail in the following sections.

1.3.1 Computation obfuscations

Computation transformations insert new code (dead or redundant) into the
program. While adding new instructions, care has to be taken to not interfere
with any existing instructions. A trivial dead code can be easily identified -
operations that write variables that do not contribute to the result are nor-
mally removed by the compiler. To make these transformations more resilient,
inserted dead code must be hard to identify and remove. This is where opaque
predicates can help.

8



1.3. Obfuscations overview

(a)

(b) (c)

(d)

Figure 1.2: Code insertion examples. (a) is the original CFG. (b) shows CFG
where bogus jump were added. (c) shows CFG where bogus jump and dead
block was added. (d) illustrates usage of dynamic opaque predicates. Grayed
edges and blocks are never taken.

1.3.1.1 Inserting dead or redundant code

Metric µ2 defined in 1.2.1 suggests that there is a strong correlation in between
the perceived code complexity and the number of possible code paths. This
obfuscation exploits that by inserting aditional braches into the CFG. The
executed instructions order is not altered. Newly introduced basic blocks are
either dead or redundant. Opaque predicates can be used to ensure that. This
obfuscation is also known as Bogus Control Flow.

There are many possible ways how code can be inserted. Figure 1.2 shows
several simple examples on a straight code line (within a basic block). As-
sume that 1.2(a) shows the original state, before the obfuscation. Basic block
entry contains three instructions and a jump to the next basic block. This
transformation has to guarantee that the correct sequence of instructions will
always be executed.

1.2(b) changes the flow by adding one opaque predicate P T . This guaran-
tees that the flow continues always in the correct direction (the false branch is
never taken). The opaque predicate should ensure that this fact is not obvious
to the deobfuscator.

1.2(c) shows another posibility with dummy instruction added to the un-
reacheable branch. Branches can be also swapped by using PF . If the analysis
cannot detect that the predicate is opaque, it needs to consider both control
paths.

9



1. Obfuscation transformations

Yet another possibility is by using dynamic opaque predicates. Dynamic
opaque predicates are two correlated predicates – they both contain the same
value, but the value may vary in different runs. 1.2(d) shows an example. In
any run, both conditions (in entry and if.cond2 ) evalue to the same value.
This ensures that the same sequence of instructions is always executed.

Potency and resilience of this transformation depends on the used opaque
predicate. If a potetial reverse engineer quickly finds out that the branch
predicate has always the same value, they will quickly see through this obfus-
cation and ignore dead branches. Otherwise, the number of code paths will
grow quickly. It is important how well the opaque predicate hides in the other
code. Resilience is entirely dependedent on the opaque predicate. The current
state-of-the-art opaque predicate detector [6] can detect many predicates we
described in 1.1.2. However, in [4], Xu et at. states that creating more ob-
scure control flow structures by using dynamic opaque predicates can counter
its detection.

1.3.1.2 Remove library calls

Programs largely depend on the usage of standard library functions. These
library functions can provide useful clues to a reverse engineer. For example,
library functions to open files may help a reverse engineers to quickly find
code parts where some files are read. It may be then traced where the read
values are stored, how the execution depends on them and so on. These clues
can be removed by simply providing own version of the standard library.

In [1], this obfuscation was said to have medium potency and strong re-
silience. Both potency and resilience might be increased by further use of in-
lining, that would break the abstraction presented by those functions. Inlining
of dynamically linked libraries is otherwise not possible (library functions are
external symbols, their bodies are not defined in the program).

1.3.1.3 Table interpretation

Table interpretation completely hides the real control flow. BBs are assigned a
number and one basic block (called a switch or dispatcher) is added. This BB
is provided a sequence of numbers and ensures that BBs are executed in the
correct order. The real control flow is not apparent anymore – every BB is a
successor of the switch and jumps to the switch again. Collberg et al. stated
in [1] that table interpretation is one of the most effective (but expensive)
transformations. In different sources, this obfuscation is also called dynamic
dispatcher [9] or control flow flattening[10, 11].

Figure 1.3 shows a very simple example. The switch basic block has been
added and the original control flow has been broken up. At the end of each
BB (except the switch), an index of the successor basic block is stored, e.g.
init stores the index of for.cond, for.cond stores either the index of for.cond
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(a)

(b)

Figure 1.3: Example of table interpretation. (a) shows the original control
flow. (b) shows the result.

or for.end (depending on the predicate value used previously for the condi-
tional branch). In switch, this index is loaded and the next block is chosen
accordingly.

This transformation will introduce some performance penalty because of
the additional branches and repeated execution of the switch block. Every
former jump to a successor of a basic block is replaced by a jump to the
dispatcher block, that is then followed by a jump to the actual successor.

The potency and resilience of this transformation depend on the method
of choosing the next block. If that would be done just by simply assigning
integers as in the figure, that would be easy to break. This can be further-
more complicated by using opaque predicates or variables to choose the next
location. Chow et al. in [10] suggested splitting the basic blocks into smaller
pieces and adding dummy states to make the analysis harder.

1.3.2 Aggregation obfuscations

The motivation behind aggregations is to break up abstractions created by the
programmer. We can find abstractions on many levels in the program – one
of them is the procedural abstraction. Developers tend to create abstractions
by grouping code that logically belongs together into functions. With that
assumption in mind, aggregation obfuscations should:

• break code aggregated in a function and scatter it over the code;

• aggregate code that does not seem to belong together into one method.

1.3.2.1 Function inlining

Function inlining is a well-known compiler optimization. Compilers try to
automatically inline some functions to improve performance.
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i n t min ( i n t a , i n t b){
i f ( a<b) re turn a ;
e l s e re turn b ;

}
i n t max( i n t a , i n t b){

i f ( a>b) re turn a ;
e l s e re turn b ;

}
i n t main ( ){

. . .
a=min (n , 1 0 0 ) ;
b=max(n , 0 ) ;
. . .

}

i n t main ( ){
. . .
i f (n<100) a=n ;
e l s e a=100;
i f (n>0) b=n ;
e l s e b=0;
. . .

}

(a) (b)

Figure 1.4: Inlining example. (a) shows the original code, (b) shows the code
after inlining. Calls to min and max are being inlined into main and the
original min and max functions removed. Note that this example is trivial
and the compiler would probably do it itself, during the compilation.

Inlining as an obfuscation is very useful because it removes the abstraction
introduced by developers. It is very resilient – ii is essentially one-way –
when a call is replaced by a function body and the function itself is removed,
there are no traces of the abstraction left in the program. Inlining is a cheap
transformation, it does not add any useless operations. There might be some
indirect performance penalty, caused by worse cache behavior, but that is
not too significant. Inlining may, on the other hand cause the code to grow
significantly and therefore it must be done reasonably.

In [1], they described function inlining as having medium potency and one-
way resilience. If the function is deleted after inlining, it cannot be recovered.

1.3.2.2 Function outlining

Outlining is another obfuscation that breaks the abstractions created by devel-
opers. Outlining extracts pieces of code grouped in one function into several
functions – it aims to scatter related pieces of code to several places. It is a
contrary transformation to inlining – once some functions are inlined into their
call sites (and their procedural abstracation is removed), it is useful to extract
some previously unrelated pieces of code into separate function to create a
false procedural abstraction.

While it is essentially possible to inline without any limitation, it is way
harder with outlining. For outlining, a region of code has to be selected. A
region is a piece of control flow graph that has the following properties:
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i n t main ( ){
. . .
i f (n<100) a=n ;
e l s e a=100;
i f (n>0) b=n ;
e l s e b=0;
. . .

}

void o u t l i n ed ( i n t a1 , i n t a2 , i n t a3 ,
i n t ∗ a4 , i n t ∗ a5 ){

i f ( a1<a2 ) ∗a4=a1 ;
e l s e ∗a4=a2 ;
i f ( a1>a3 ) ∗a5=a1 ;
e l s e ∗a5=a3 ;

}
i n t main ( ){

. . .
ou t l i n e d (n , 100 , 0 , &a , &b ) ;
. . .

}

(a) (b)

Figure 1.5: Outlining example. (a) shows the original code, (b) the code after
outlining. Some code from main is extracted into new function. Note that
values used in the outlined function needs to be passed as arguments (a1, a2
and a3 ). Also, values defined in the outlined function that are used in the
original function need to be returned (a and b from main) – they are passed
as pointers to outlined function (a4 and a5 ).

1. Has a single block dominating all the others in the region (entry block).

2. No other block then entry has a predecessor that is not a part of the
selected region.

These properties ensure that there is a single block, where the block outside
of the region may jump. Other blocks in the region may then be extracted
safely. This also ensures that the region is continuous, i.e. that there are no
blocks in the middle of the region that are not a part of the region. Figure
1.6 tries to illustrate these conditions.

In [1] this obfuscation was evauated as having medium potency and strong
resilience

1.3.2.3 Function interleaving

Function interleaving merges several functions into one. In essence, this ob-
fuscation takes several different functions, merges their bodies and arguments
and adds an argument to distinguish between those functions. Merged func-
tion then has the functionality of several functions and the actual functionality
is chosen by one argument. Calls to original functions are then replaced and
original functions are removed.

13
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(a) (b)

Figure 1.6: Outlining region example. Selected blocks are filled. In (a), the
selected blocks are eligible for outlining, since it meets both conditions. In (b)
the selected blocks cannot be outlined into a new function, as they violate the
second condition (e.g., if.end4 has a predecessor if.then2 that is not part of
the selected region).

It is advantageous if the merged functions have similar parameters, that
allow reusing them for different functionalities. The code may resemble code
handling some special cases of parameters.

Potency and resilience of interleaving depend on whether a potential re-
verse engineer would recognize that function has been created by interleaving
several functions. In [1], they suggest to use opaque predicates to protect the
argument to select functionalities and say that both potency and resilience
depend on the used opaque predicate.

1.3.2.4 Function cloning

If a function is called from multiple places in a program, we can confuse the
reverse engineer by cloning the function and replacing some of the calls by calls
to the cloned function. Then one may think that different functions (with a
different behavior) are called, when, in fact, it is actually not the case.

Potency depends on how hard it is for a potential reverse enginner to
recognize that the functions are identical. If the functions would be just cloned
without any changes, it would likely be easy. The potency can be increased
by modifying one of them in a different way or for example by changing the
order of arguments.
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i n t min ( i n t a , i n t b){
i f ( a<b) return a ;
e l s e re turn b ;

}
i n t max( i n t a , i n t b){

i f ( a>b) return a ;
e l s e re turn b ;

}
i n t main ( ){

. . .
a=min (n , 1 0 0 ) ;
b=max(n , 0 ) ;
. . .

}

i n t i n t e r l e a v e d ( i n t a1 , i n t a2 , bool a3 ){
i f ( a3 ) {

i f ( a1<a2 ) re turn a1 ;
e l s e re turn a2 ;

} e l s e {
i f ( a1>a2 ) re turn a1 ;
e l s e re turn a2 ;

}
}
i n t main ( ){

. . .
a=i n t e r l e a v e d (n , 100 , 1 ) ;
b=i n t e r l e a v e d (n , 0 , 0 ) ;
. . .

}

(a) (b)

Figure 1.7: Function interleaving example. (a) shows the original code, (b)
shows the code after interleaving. Two functions min and max are merged
together, creating a single function interleaved. Since the functions have the
same arguments, the interleaved function have the same number of arguments.
An additional argument is added to choose the requested functionality.

The same holds for resilience. If the functions would be identical, it would
be easy for a deobfuscator to detect that. Further obfuscations can make
detection of cloned functions harder.

1.3.3 Ordering obfuscations

The idea behind ordering transformations is to randomize the location of any
items in the program - wherever that is possible. The developers tend to
organize the code so that logically related things are close together. This works
on many levels too, there is locality among statements within BBs, function
arguments or functions within the module and so on. For some things, that is
easy (functions within the module, arguments of functions), but for changing
the placement of statements within BBs, the dependency analysis has to be
performed and the options for reordering may be somewhat limited. Potency
of these transformations is low, but in many cases, these transformations are
one-way.
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Chapter 2
State-of-the-art

In this chapter, we present some available obfuscation tools. We were inter-
ested in obfuscators for compiled languages, especially for languages supported
by LLVM (C/C++, Rust, Go, Fortran). We have found that obfuscators for
C/C++ are common, for the other languages they are rare. The following
sections thus present obfuscators for C/C++ languages, with one exception
that is based on LLVM and should thus support the same set of languages.

2.1 CXX-OBSUF

CXX-OBFUS2 is a commercial obfuscator for C/C++. It works on source
code level, i.e. takes source code on input and produces obfuscated source code
on output. The main feture of this tool is identifier renaming – i.e. it changes
identifiers names to a random string of characters. It can consistently rename
identifiers in several source files. It also rewrites integer constants into much
complicated form (e.g. rewriting 0 to 0x1fb1+1115−0x240c). This makes the
reading of an obfuscated source code harder, but it will not help much against
reverse engineering the compiled binary – in fact, optimizing compiler will
often simplify this expression again (in constant propagation pass). It seems
that this tool does not change the logic of the obfuscated program any further
– so it basically performs layout obfuscation.

2.2 StarForce C++ Obfuscator

StarForce C/C++ Obfuscator3 is another commercial obfuscator. We were
not able to get this obfuscator and try it, so our analysis is based on their
claims and examples of obfuscated code on their websites.

2http://stunnix.com/prod/cxxo/
3http://www.star-force.com/products/starforce-obfuscator/
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This tool works on source code level too, but unlike the previous tool,
it changes the logic of the program, e.g. it adds branches and calls. Examples
of obfuscated code show that the code was converted into a virtual machine
and the control flow is completely scrambled. It is hard to recognize what
other changes were performed on the original, but this tool claims to support
over 30 obfuscation methods, including string encryption and insertion of dead
code. The user can control the requested level of obfuscation.

Overall, this tool looks quite powerful, but it is closed source, we were not
able to try it and they do not provide much detail. Thus, we were not able to
explore this tool in a bigger detail.

2.3 Tigress C Obfuscator

Tigress[12]4 is an C diversifier/obfuscator, that started as a research project.
It is developed by Collberg (the author of [1]) and others. It works on source
code level again. This tool works only with C programming language, it does
not support any other language.

It supports many novel obfuscations against both static and dynamic re-
verse engineering. This tool protects the program by converting it to a virtual
machine, with custom instruction sets of arbitrary complexity. It can generate
a different virtual instruction set for each function and perform the virtual-
ization multiple times. It also inserts code to make dynamic analysis harder.

This obfuscator seem powerful, featuring many obfuscations that are be-
yond the scope of this project. This tool does not work automatically, it re-
quires a fine configuration by the user. The user has to specify which functions
should be obfuscated and what transformation should be applied to them.

2.4 Obfuscator-LLVM

Obfuscator-LLVM[13]5 is an open-source obfuscator project started in 2010.
It features 3 different obfuscation methods: instruction substitution, bogus
control flow, and control flow flattening.

Instruction substitution works with integer constants and replaces stan-
dard operations with more obscure versions. For example, it changes a + b
into a− (−b). Around 10 of these replacement patterns are defined. As stated
by the authors, this transformation does not add much potency and resilience
(can be easily removed by the optimizer), but it brings diversity into obfus-
cated binary.

Bogus control flow changes some unconditional branches in control flow
graph to conditional. The branch depends on opaque predicate, so one of the

4http://tigress.cs.arizona.edu/
5https://github.com/obfuscator-llvm/obfuscator/wiki
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branches is never taken (is unreachable), even though it should not be obvious.
The unreachable branch is filled with random instructions.

The opaque predicate is not described in the documentation. But after
some research of the source code, we found that they add two additional
integer global variables (x and y) and whenever they need a predicate, they
generate a sequence of instructions to load from that variable and compute
the value of x ∗ (x+ 1)%2 == 0, which is true for any x.

Control flow flattening is just as described in the previous section, with
optional basic block splitting.

The project, unfortunately, does not seem to be actively developed nowa-
days. No new feature was added since 2014, there are just occasional changes
to make existing code compatible with recent versions of LLVM. Their website
mentions project strong.codes, a commercial version of this obfuscator, that
should support more advanced features. However, at the time of writing this
work, the official website of strong.codes6 was not working and we were unable
to any additional details about this tool elsewhere.

2.5 Summary

As we may have seen in the examples above, the commercial obfuscators
usually provide either little or no details about their functionality. While
it is logical on one side to keep their effects secret to prevent developing
countermeasures, it also makes it hard or impossible to review the quality
of performed obfuscations.

Tigress performs many advanced obfuscations, many of them are beyond
the scope of this work. However, this tool does does not offer an automatic
obfuscation of the program, the user must manually configure what should be
obfuscated.

Obfuscator-LLVM is quite close to our idea of obfuscator, but that project
is not actively developed anymore. We aim to implement more advanced
obfuscations. Also, individual obfuscations are independent, so we decided to
start our implementation from scratch and not base our code on Obfuscator-
LLVM.

6http://strong.codes/
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Chapter 3
Design

In this section, we present the design of our obfuscator. First, we introduce
the LLVM framework – with a special focus on LLVM Internal Representation
(IR). That is what frames our implementation.

3.1 LLVM Framework

In this section, we present the LLVM framework, which we will use as a basis
for our implementation. LLVM[14] began as a research project, with aim
to provide a modern compilation strategy to support arbitrary programming
languages. Nowadays, it is an umbrella project consisting of LLVM core and
several other subprojects such as C/C++ frontend Clang and various tools
and libraries.

LLVM is based on a classical 3-phase compiler architecture shown in figure
3.1. The frontend parses code in a source language and builds a language-
specific Abstract Syntax Tree (AST). AST is then converted into a repre-
sentation that is (source) language and (target) architecture independent –

Figure 3.1: 3-phase compiler architecture[14]
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i n t f a c t o r i a l ( i n t n){
i f (n==1) re turn 1 ;
re turn n∗ f a c t o r i a l (n−1);

}

d e f i n e i 32 @ f a c t o r i a l ( i 32 %n) {
entry :

%cmp = icmp eq i32 %n , 1
br i 1 %cmp , l a b e l %i f . then , l a b e l %i f . end

i f . then :
r e t i 32 1

i f . end :
%sub = sub nsw i32 %n , 1
%c a l l = c a l l i 32 @ f a c t o r i a l ( i 32 %sub )
%mul = mul nsw i32 %n , %c a l l
r e t i 32 %mul

}

(a) (b)

Figure 3.2: LLVM IR example. (a) shows a C function. (b) shows the corre-
sponding function in the LLVM IR form. Labels (entry, if.then and if.end) are
basic blocks. Each BB contains a sequence of instructions. Instruction results
are stored into virtual registers. The last instruction of a BB is the terminator
instruction - i.e., it jumps to another BB or returns from the function.

LLVM IR. LLVM IR aims to be light-weight, yet capable of representing all
source languages cleanly. Optimizer performs a variety of transformations on
this representation, which usually aims to make code run faster. Finally, the
backend takes the intermediate representation and generates binary code for
the target architecture.

In the following sections, we focus mainly on the intermediate language of
LLVM, LLVM IR. Our implemented obfuscations process this language, so we
describe it here, and we also outline some challenges related to this form.

3.1.1 LLVM IR

LLVM IR[15] is a source-language-independent representation of input source
code. This representation resembles an Instruction Set Architecture (ISA) of
a real processor – it defines a set of instructions, and registers7. LLVM IR
design tries to abstract from machine-specific details such as physical register
limitations – it provides an infinite number of virtual registers that can hold
values of primitive types (integer, float, and pointer). Figure 3.2 shows a
simple example of LLVM IR.

Virtual registers are in the Single Static Assignment (SSA) form. The SSA
form requires that each virtual register is written exactly once and it cannot

7Language reference can be found at https://llvm.org/docs/LangRef.html
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be changed. This form simplifies data flow analysis, but SSA form presents
a problem in case when different values may come from multiple predecessor
basic blocks. To solve that, the SSA form introduces phi functions.

3.1.1.1 PHI function

The SSA form requires that each virtual register is written exactly once, but
in most programming languages it is allowed to change values of a variable. In
most cases, this does not present a problem, because values are overwritten,
and the variable presents the last stored value.

The problem appears when a different value of one variable may come from
several basic blocks. Consider the following code snippet:
i n t a ;
i f ( cond ( ) ) a=0;
e l s e a=1;
i n t x=a ∗2 ;

When variable a is referenced on the last line, two different values of a may
be used, depending on which branch was taken.

To overcome this issue, a special instruction is used in SSA – called the
phi function. It selects the value depending on where the control flow comes
from. This is the corresponding code in LLVM IR:
entry :

%c a l l = c a l l i 32 @cond ( )
%cmp = icmp eq i32 %c a l l , 0
br i 1 %cmp , l a b e l %i f . then , l a b e l %i f . e l s e

i f . then :
br l a b e l %i f . end

i f . e l s e :
br l a b e l %i f . end

i f . end :
%a . 0 = phi i 32 [ 0 , %i f . then ] , [ 1 , %i f . e l s e ]
%mul = mul nsw i32 %a . 0 , 2

The phi instruction has the same number of arguments as the number of
predecessor blocks. Each predecessor has to define an incoming value. Note
that phi is an instruction in the LLVM IR form, it does not correspond to any
actual machine instruction. This form is used just for analysis.

3.1.1.2 Memory operations

All operations in LLVM IR work with values in virtual registers. Virtual
registers are not suitable for some uses (e.g., for storing arrays) – thus LLVM
IR needs a way to access memory. Memory transfers between memory and a
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register are possible via explicit load and store instructions. If an operation
wants to modify a memory location, it has to load it into a virtual register,
perform the operation, and store it back. The operand of a load and store
instruction is either a constant value or a pointer stored in a virtual register.

Virtual registers themselves are not addressable (they behave like rvalues
in C/C++). All addressable objects (lvalues) have to be allocated explicitly.
It is possible to define global/static variables – their addresses can be used by
memory operations. It is also possible to allocate memory on the stack – by
the alloca instruction. Alloca returns a pointer that can be used by subsequent
load and store instructions. LLVM automatically releases memory allocated
by alloca on return from the function.

Memory operations actually provide another solution to the problem dis-
cussed in the previous section. Instead of using the phi instruction, this can
be solved by using a local variable:
entry :

%a = a l l o c a i32 , a l i g n 4
%c a l l = c a l l i 32 @cond ( )
%cmp = icmp eq i32 %c a l l , 0
br i 1 %cmp , l a b e l %i f . then , l a b e l %i f . e l s e

i f . then :
s t o r e i 32 0 , i 32 ∗ %a , a l i g n 4
br l a b e l %i f . end

i f . e l s e :
s t o r e i 32 1 , i 32 ∗ %a , a l i g n 4
br l a b e l %i f . end

i f . end :
%a . 0 = load i32 , i 32 ∗ %a , a l i g n 4
%mul = mul nsw i32 %a . 0 , 2

In fact, LLVM IR commonly uses both ways. Working with memory de-
creases the number of inter-block registers (registers that are defined in one
BB and used in other BBs). This might be desirable or even necessary for
some transformations. This way, it is possible to make all BBs self-contained
– in the sense that each BB does not use any virtual registers defined in other
BBs8. LLVM can also convert between these forms. LLVM refers converting a
virtual register into a local (stack) variable as “demoting register to memory”
and the opposite process as “promoting memory to register”.

3.1.1.3 LLVM API

LLVM offers a C++ API to create custom analysis and transformations.
LLVM IR can be represented in 3 different forms: an in-memory data struc-

8except of stack pointers defined by alloca instructions in entry block
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ture, a binary “bitcode” representation (usually a file with a .bc extension) and
a human-readable textual form. All these forms are equivalent, and LLVM
provides tools to convert between them. LLVM API works with the in-memory
form.

LLVM API offers a convenient way to access and modify LLVM IR – each
component of LLVM IR (module, functions, basic blocks, etc.) is represented
as a class. Member functions can be used to query or modify various infor-
mation. Classes are polymorphic – e.g., each instruction has a specific class,
but all of them inherits from base class Instruction. Instruction itself inherits
from Value – instructions represent their result at the same time. Subsequent
instructions can use this value.

The in-memory form has various advantages that are exhibited by the
LLVM API. Various related entities are linked together – for example, it is
possible to iterate over all users of a Value. This is convenient on one hand,
but care has to be taken to avoid breaking those links when doing various
modifications. Fortunately, LLVM API also provides various utility functions
to perform more complicated manipulations. For example, ReplaceInstWith-
Inst function – as the name suggests – replaces an instruction with another
instruction – in fact, that means that the instruction is inserted at the same
location, all users of the replaced instructions are changed to use the value of
the new instruction, and the old instruction is deleted.

The usual way how the LLVM IR is transformed is by passes run by the
optimizer. Each pass performs a specific type of analysis or transformation
(such as dead code elimination or loop unrolling9). The standard LLVM passes
usually tries to make the program faster, and they are automatically run at
various optimization levels. The optimizer can also be made to run a cus-
tom pass – creating a custom pass is recommended, and a well-documented
option10 how to extend LLVM. We will utilize that option in our implemen-
tation.

3.2 Implementation design

In this chapter, we present the design of our obfuscator. First, we describe
the general way how our obfuscations will be integrated into LLVM. Then, we
discuss individual transformations.

We will implement our obfuscator in C++, using the LLVM API (version
4.0.1). We will make our obfuscator work purely as an optimizer pass, without
modifying frontends provided by LLVM. Modifying frontends would limit the
ability to process an arbitrary language.

9The list of LLVM passes can be found at https://llvm.org/docs/Passes.html.
10Documentation can be found at http://llvm.org/docs/WritingAnLLVMPass.html.
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Each obfuscation will be implemented as a separate optimizer pass. Each
pass will be independent of the others, allowing an arbitrary combination of
passes.

3.2.1 Inlining

Inlining functionality is built-in into LLVM. LLVM automatically uses it11

with the aim to improve performance – saving the overhead of the call in-
struction and improving cache locality. It uses heuristics to decide when a
function should be inlined – generally, we can say that short functions are
more likely to be inlined. Inlining short functions can improve performance
significantly, but performance benefit gained by inlining big and complex func-
tions is small. However, our goal is not to improve performance, but to add
confusion. This pass will inline more functions than LLVM would have done
automatically.

The fact that inlining is already implemented in LLVM makes design of
this obfuscation pass significantly easier. LLVM provides a utility function
InlineFunction, that will modify the CFG for us. This function clones callee
into the caller, replaces call by a branch to the clone of the entry basic block
and replaces all return instructions by a branch to instruction that followed
the call instruction. It also takes care of remapping input arguments and
returned values.

We could implement these modifications on our own, without using this
utility function, but we assume it is much better to use it. There are many
potential issues, that need to be handled. For example, if the function is in-
lined into a loop, all alloca instructions have to be moved outside of the loop
– otherwise, they would cause stack growth with each loop iteration possibly
leading to stack overflow. Also, if the function can throw an exception, han-
dling of that in LLVM IR is not trivial. The utility function is aware of these
and many other issues and can handle them properly.

The actual work of this pass will be choosing what to inline. We have
to keep in mind that inlining may increase code size significantly. When the
function is recursive, it may grow beyond all limits. To prevent that, we will
have to set a certain size limit – specified as a certain multiply of original
program size. Until the limit is reached, the pass will choose a random call
instruction and inline it. The size limit shall be configurable by the user.

3.2.2 Split blocks

Several passes will need splitting basic blocks. We decided to implement this as
a separate helper pass. A BB can be split into several smaller BBs connected
by unconditional branch instruction, as shown in figure 3.3. Splitting blocks
itself does not add much obscurity, but it helps the following obfuscations:

11at certain optimization levels
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l 1 :
%c a l l 1 = c a l l i 32 @f1 ( )
%c a l l 2 = c a l l i 32 @f2 ( )
%c a l l 3 = c a l l i 32 @f3 ( )
br l a b e l %end

l 1 :
%c a l l 1 = c a l l i 32 @f1 ( )
br l a b e l %l 2

l 2 :
%c a l l 2 = c a l l i 32 @f2 ( )
br l a b e l %l 3

l 3 :
%c a l l 3 = c a l l i 32 @f3 ( )
br l a b e l %end

(a) (b)

Figure 3.3: Splitting basic block example. Both (a) and (b) are equivalent.

• Bogus control flow: Increases a number of possible places where a
bogus jump can be added.

• Outlining: Promotes extracting irrelevant pieces of code (smaller parts
of blocks that were previously continuous).

• Table interpretation: Increases a number of table states and number
of inter-block values.

This pass will randomly choose several splitting points. Each splitting
adds one more BB into the function. The target number of BBs shall be
configurable by the user.

3.2.3 Bogus control flow

Bogus control flow pass will make control flow graphs look more complicated.
Unconditional branch instructions are changed into conditional ones using
opaque predicates. This seemingly increases a number of possible control
paths through the code. Therefore, it increases the perceived code complexity.

This pass will look for unconditional branch instructions at the end of BBs.
With a certain probability (configurable by the user), it will replace them by
conditional branch instruction. We will implement two options how the bogus
control flow can be added. These options correspond to situation (b) and (c)
in figure 1.2.

• The conditional branch seems to jump either to the correct successor
or that successor’s successor (i.e., skipping one BB in the control flow
path). An opaque predicate is used to ensure that the correct path is
always selected.

• The successor of a BB is cloned and randomly modified, the conditional
branch seems to jump either to original or modified BB. An opaque
predicate ensure that the original BB is always selected.
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Note that we will not insert any opaque predicates in this pass. Instead,
we will just insert placeholders (special comparison instructions, that always
evaluate to true or false). We will replace them with actual opaque predicates
in the Opaque predicate pass, described in section 3.2.7.

3.2.4 Outlining

We will use another utility function provided by LLVM to implement outlining.
LLVM provides a utility class CodeExtractor to do that. CodeExtractor is
given a code region (a set of BBs, with one marked as the entry block) and it
performs basically these steps:

1. Determines values needed in the region that are defined outside of the
region. These will be the input arguments of the outlined function.

2. Determines values needed outside of the region, that are defined in the
region. These will be the output arguments of the outlined function.

3. Demotes register output arguments to stack variables - an address (a
pointer) will be passed to the outlined function, the outlined function
will store the value there, and it will be loaded before use in the original
function. After this step, no output argument remains.

4. Finds all exit BBs from the region (they will stay in the original func-
tion).

5. Extracts BBs into a new function and inserts a call instruction into the
original function.

6. Inserts an instruction to jump to the exit BBs after the call – if there
is just one exit BB, it is uncoditional; if there are more exit BBs, it
is conditional (in that case, the outlined function returns a value that
determines the next BB).

The main work of this pass will, therefore, be to choose which regions to
outline. While it is basically possible to choose any call instruction and inline
it, it is way harder here. To be able to perform outlining in general, a region
must be selected, as we described in 1.3.2.2.

Beyond these formal conditions, we will not outline too simple regions (just
one basic block or a a straight line of code). In our opinion, such a simple
function would look suspicious to a potential reverse engineer – such simple
functions would be most likely automatically inlined during the compilation,
so they may realize that the function was extracted by the obfuscator.

We will try to choose the region randomly. We will choose a random entry
block (among all function blocks), and we will try to choose its successors to
get a suitable region. If that will not be successful, selection will be repeated
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with another entry block. If it will not find a suitable region after several
attempts (configurable by user), no further attempts will be performed. The
outlining process will be repeated several times on each function, the user shall
configure it – either by specifying the maximum number of outlined functions
or a maximal reduction of function size (a certain fraction of the original
function size).

3.2.5 Function interleaving

The function interleaving pass will merge different functions into one. It will
choose two functions (with the same return types) and merge them into one.
An example of interleaved function CFG is shown in figure 3.4. In essence,
this pass will perform these steps to merge two functions:

1. Determine the arguments needed for the new function. One extra argu-
ment is needed to distinguish functionalities.

2. Create the function, clone original functions into it and remap their
arguments.

3. Insert a conditional branch instruction as the first instruction of the
function. It selects the requested functionality based on the value of the
extra argument and jumps to the corresponding entry BB.

4. Replace all calls to the original functions with a call instruction to the
new function.

5. Delete the original functions.

Interleaving functions is easy if both functions have the same arguments.
It gets more complicated if they do not. Let us consider the following two
functions:
void f1 ( i n t a1 , i n t ∗ b1 ) ;
void f2 ( f l o a t a2 , i n t ∗ b2 ) ;

f 1 (42 , p1 ) ; // c a l l to f 1
f 2 ( 0 . 1 , p2 ) ; // c a l l to f 2

The easiest way to merge these functions would be to simply join their argu-
ments (arguments in boxes are not needed for the functionality):
void i n t e r l e a v e d ( i n t a1 , i n t ∗ b1 , f l o a t a2 , i n t ∗ b2 , bool func ) ;

i n t e r l e a v e d (42 , p1 , 0 , NULL , t rue ) ; // c a l l to f 1
i n t e r l e a v e d ( 0 , NULL , 0 . 1 , p2 , f a l s e ) ; // c a l l to f 2

However, that is not optimal, we will try to improve that by reusing arguments.
Both original functions have one int* argument in common. We want the
following result:
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Figure 3.4: Interleaved function CFG example. BBs with a different color
were in different function before – they have different functionalities. The
entry BB selects the functionality and jumps to the rquested functionality.
This can become more complicated when several functions are merged into
one.

void i n t e r l e a v e d ( i n t a1 , i n t ∗ b , f l o a t a2 , bool func ) ;

i n t e r l e a v e d (42 , p1 , 0 , t rue ) ; // c a l l to f 1
i n t e r l e a v e d ( 0 , p2 , 0 . 1 , f a l s e ) ; // c a l l to f 2

We can see that this saved one argument. In both calls, there is still one useless
argument, but as they are of different types, we cannot simply reuse them. At
least, we will use them to add some more confusion – we will fill these useless
arguments with random values. Also, we want the functionality distinguishing
argument to be at an arbitrary place between other arguments (not always
the last one). In addition, the argument ditinguishing functionalities can by
protected by an opaque predicate.

We will try to choose functions with similar arguments for interleaving. We
will choose several functions randomly, and we will try to find a function with
similar arguments to interleave with. The number of interleaved functions
shall be configurable by the user. Also, the user shall be able to control the
maximum number of functionalities contained within one function.
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3.2.6 Table interpretation

This pass will break the original control flow completely, and it will make it
hard to track which block follows which. All BBs (resp. their addresses) will
be stored in a table, and they will be assigned a number (their index in the
table). BBs will not jump to their successor; they will jump to a special BB
(called dispatcher). Before jumping there, they will store an index of their
successor to a special state variable. The dispatcher will load that value and
will jump to the corresponding entry in the table.

It is easy to implement this for blocks with a single successor - we will store
a single value into state and jump to dispatcher. However, when a BB has
more successors, it branches to several BBs, depending on a condition. We
will use the Select instruction to solve this situation. That instruction chooses
a single value depending on the condition without branching (this corresponds
to a conditional move in some CPU architectures). Thus, we can also replace a
conditional branche with an unconditional one. Figure 3.5 shows an example.

3.2.6.1 Hardening

Chow et al.[10] suggest that a way to make an analysis of flattened CFG
harder is to expand the number of states (BBs). We will use that suggestion
to improve our implementation. They propose to split BBs into smaller pieces
– we do this in the Split Blocks pass. Another idea is to add dummy states.
We will utilize this idea here too – we will clone the original BBs of a function
– and we will let them jump to arbitrary BBs. We will also add BBs from
another functions. These BBs will be unreachable, but they will increase
information load for a potential reverse engineer. This increases the state
space considerably, but without additional modifications, it would be possible
to track possible values of state variable to detect states that are reachable.
We would like to prevent that, so we will implement additional modifications.

We will try to make the branches to dispatcher more obscure. These mod-
ifications are similar to what Bogus Control Flow does, but some additional
things are possible here, that were not possible before table interpretation
(e.g., replacing the conditional branch with an unconditional one was not eas-
ily possible). Recall that for table interpretation (without any modification)
we would:

• Replace an unconditional branch to a successor with an unconditional
branch to the dispatcher and store the successor’s number into state
before that.

• Replace an conditional branch to two successors with an unconditional
branch to the dispatcher and add the select instruction to choose number
of the successor (and storing it to state).
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entry :
%1 = c a l l i 32 @f1 ( )
br %1, l a b e l %l1 , l a b e l %l 2

l 1 :
c a l l i 32 @f2 ( )
br l a b e l %l 3

l 2 :
r e t i 32 0

new entry :
%s t a t e = a l l o c a i 32
s t o r e i 32 0 , i 32 ∗ %s t a t e
br l a b e l %d i spa t che r

d i spa t che r :
%1 = load i32 , i 32 ∗ %s t a t e
switch i32 %1, l a b e l %de f [

i 32 0 , l a b e l %entry
i32 1 , l a b e l %l 1
i32 2 , l a b e l %l 2

]

entry :
%2 = c a l l i 32 @f1 ( )
%3 = s e l e c t %2, i 32 1 , i 32 2
s t o r e i 32 %3, i 32 ∗ %s t a t e
br l a b e l %d i spa t che r

l 1 :
c a l l i 32 @f2 ( )
s t o r e i 32 2 , i 32 ∗ %1
br l a b e l %d i spa t che r

l 2 :
r e t i 32 0

de f :
unreachable

(a) (b)

Figure 3.5: Table interpretation - LLVM IR example. (a) shows the origi-
nal code and (b) shows the code after table interpretation obfuscation. All
branches have been replaced by a branch to dispatcher. The conditional branch
in entry has been replaced by an unconditional branch and the select instruc-
tion has been added.
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The reachable BBs never jump to a cloned (unreachable) block. We will use
opaque predicates to make them look like they do. There are several options
how to do it:

• Replace an unconditional branch with a conditional branch to the dis-
patcher and an arbitrary BB. Store the number of the successor into
state and always jump to the dispatcher.

• Replace an unconditional branch to a successor with an unconditional
branch to the dispatcher. Add a select instruction, always choose the
value of the successor and store it into state. The other value in select
may be a number of an arbitrary BB.

• Replace a conditional branch to two successors with a conditional branch
to the dispatcher and one successor. Store the number of the other
successor into state.

These modifications will rely on opaque predicates. They will make the
analysis even harder – if the opaque predicates will not be detected, one will
not be able to identify unreachable BBs just by tracking the state value (reach-
able blocks may also seem to jump to them).

Furthermore, we will use one idea from [16]. We will not store the number
of the successor BB as an absolute value at the end of each BB. Instead, we will
store the difference between the number of current BB and the number of its
successor (except of the first store in entry BB, it will have to store an absolute
value). This may make it even more difficult for a potential reverse engineer
– they will not be able to determine the successors of any BB, they will need
to start from the entry block and track the value of state variable. We will
have to be careful not to interfere with the previous described modification
though.

3.2.7 Opaque predicates pass

Some passes described earlier use opaque predicates. These passes will insert
placeholders instead of opaque predicates. These placeholders are functional
(we will use a special compare instruction that always evaluates to true or
false), but they are not resilient. This pass will replace those placeholders
with real opaque predicates that should be more resilient.

First, this pass will insert several integer global variables. Then, it will look
for placeholder instructions. It will replace them with a sequence of instruction
to load from one of those global variables and use that value to evaluate an
invariant expression (from table 1.1). Furthermore, it will also modify the
value of that global variable – it will either modify it by a random number
(fixed at compile time), or it will modify it by a random function argument (if
any is present). Since the expressions are invariant (they evaluate always to

33



3. Design

the same value, regardless of input variable values), the value of those variables
is not important – we randomly update them just to increase confusion. We
will use atomic instructions to load and store values, to ensure correct behavior
in multi-threaded environment.

3.2.7.1 Resilience

We try to evaluate resilience of such opaque predicate design. A potential
deobfuscator cannot simply evaluate the expression, since it does not know
the value of the input variable. If it would try to keep track of the global
variable value, it would need inter-procedural analysis – the value is updated
from different functions and by values that are passed between these functions.
Note also that the values of function arguments might depend on user input
(e.g., argc – the number of program arguments in the main function). Thus,
we assume that a deobfuscator might not be able to track the value of global
variable just by analysing the program itself – it would also need to know
possible program inputs.

However, some approaches for identifying opaque predicates[6, 7] do not
rely on tracking possible input value. Instead, they rely on constraint solvers
to find out if an expression is invariant. These tools would be able to identify
our opaque predicates. By reviewing the procedure of such tools, we found
out that their procedure still requires a non trivial work, even though it is
probably simpler then the previous approach. We have concluded that this
approach would need to analyse the whole program and test all expression
whether they are invariant – this will render our predicates as having weak
resilience.

We conclude that our predicates will have weak resilience (if a constraint
solver would be used to prove that our expressions are invariant). If a de-
obfuscator would try to track values contributing to opaque expression, our
predicates will have at least strong resilience.

3.2.8 Removing identifier names

For identifier renaming, we will use StripSymbol pass, that is built-in into
LLVM. This pass removes all symbols – debug symbols and global variables
and functions names. Note that it is not allowed to remove some names –
they are needed for program linking. We will discuss this limitation later in
more detail.
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Chapter 4
Implementation

In this chapter, we describe details of our implementation based on the design
from the previous parts. In the text, we also discuss some practical issues we
encountered. At the end of this chapter, we describe how our obfuscator can
be used and the limitations resulting from that.

Our primary concern when implementing obfuscation transformations was
preserving the behavior of obfuscated programs. To ensure that, we had safe-
guards on various levels. First, we run the verifier pass after our obfuscation
passes. That pass checks if LLVM IR is well-formed, e.g. if each BB has a
terminator instruction or if each use of a value is dominated by its definition.
We have many various checks in the obfuscation passes itself, that try to make
sure that the obfuscation can be performed. Finally, we also used several test
programs, we ran them through our obfuscator and checked if the resuls of
obfuscated and non obfuscated versions are the same.

4.1 Implementation details

4.1.1 Inlining pass

Implementing the inlining pass was straightforward, and we implemented it
just as planned. The only issues we had was with removing unused functions.
Most importantly, we realized it is only possible to remove functions that
are local to the module (this corresponds to C/C++ static keyword - LLVM
denotes this linkage as internal or private). Functions with common linkage
shall not be removed (not even renamed), as other modules might be using
them (and at the compilation stage, we do not have information from linking
stage). We discuss this limitation in more detail in section 4.2.1.

At first, we tried removing functions manually in this pass, but we en-
countered some problems with metadata. Some functions were referenced by
LLVM metadata and removing them produced broken LLVM IR. We solved
these issues by using built-in Global Dead Code Elimination pass for removing
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unused functions. This pass only removes functions that are legal to remove
and also handles removing of linked metadata.

4.1.2 Bogus control flow pass

Implementing the bogus control flow pass was challenging due to the SSA form
of LLVM IR. When we add a new predecessor to a BB, we also need to add
phi instructions to collect used virtual registers coming from that predecessor.
If there already were some phi instructions, they have to be modified for the
new number of predecessors. We encountered many problems when we tried
to fix phi instructions ourselves. We solved this problem by “demoting” inter-
block registers (registers used outside of the block where they were defined)
to stack variables, performing the requested modifications and “promoting”
them back. LLVM provides utility functions to do that, and we found out
that it is much easier to work with this form for the modification we do here.

4.1.3 Function outlining pass

We have designed the outlining pass to use LLVM utility functionality Code-
Extractor to extract a code region. We found out that CodeExtractor has
a bug that sometimes results in broken IR. If there were phi instructions in
exit BBs from the region, this function modified them incorrectly. We were
not able to find out the exact cause of that bug, but we managed to work
around this issue by “demoting” all phi instructions in exit blocks to stack
variables before performing the extraction. This workaround seemed to solve
this problem – after applying it, we have no further problem with this function.

4.1.4 Table interpretation pass

The table interpretation pass hides the actual flow of control – doing so also
destroys the dominance relation mandated by the SSA form of LLVM IR. All
inter-block virtual registers have to be converted to memory loads and stores.
This conversion is possible thanks to the fact that terminator instruction does
not return a value, so it is possible to insert a store instruction before termi-
nator instruction. There is one exception, however - and that is the invoke
instruction, which is used for calling functions that may throw exceptions.

The invoke instruction terminates a BB – program execution may continue
to normal destination or to unwind destination (when an exception happens).
It also returns a value – a return value of the called function. Thus, it is not
possible to store this value before jumping to another BB. We handle that by
not changing the destination of invoke and storing its result in its successor
BBs. Thus, after an invoke instruction, the flow of control does not jump
to dispatcher (as it does after any other BB), but continues to the actual
successor - and that jumps to dispatcher again. That way, we can apply table
interpretation to functions having invoke instructions as well.
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In example 3.5 we used a switch instruction in the dispatcher blocks. In our
implementation, we use an indirect branch instruction. The switch instruction
is easier to use, with the indirect branch instruction we need to take care of
creating the jump table ourselves. However, it allows us to make it more
obscure – we can, for example, add references to BBs from another functions
or invalid entries into the jump table. That confuses software used for reverse
engineering – we will see an example in the next chapter. On the other hand,
using indirect branch has one disadvantage – the function cannot be cloned
after that. Thus, it is not possible to inline or interleave function after table
interpretation.

4.1.5 Metrics pass

We have created a separate pass for computing code metrics. We will use this
for evaluating obfuscations in the next chapter. Implementing this as a pass
has the advantage that we can insert this pass in between any other passes,
and we can track how the metrics change during the obfuscation process.

We implement code complexity metrics from section 1.2.1 - code size (µ1)
and computational complexity (µ2). We compute µ1 by adding up the number
of instructions and the number of their arguments. In other words, each
instruction contributes to µ1 by 1 + argNo. To compute µ2, we first count
nodes (BBs) and edges of CFG and then we compute µ2 by using formula[17]
edges − nodes + 2. This pass computes these metrics for the whole program
and also for individual functions - and reports the maximum and the average
of their values.

4.1.6 Scheduler pass

We also implement one pass to ease scheduling of obfuscation passes. This
pass runs all the previously listed passes and optionally prints metrics.

The passes are run in this particular order:

1. Inlining pass

2. Splitting basic blocks

3. Bogus control flow

4. Outlining

5. Function interleaving

6. Table interpretation

7. Opaque predicates adding

8. Stripping identifier
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The rationale behind the order is the following: inlining, splitting basic blocks,
and bogus control flow all increases size of a function. Longer function means
a better chance for outlining. Splitting basic blocks is useful for the bogus
control flow pass, outlining and table interpretation, so it should be sched-
uled before them. Function interleaving can then interleave functions that
were outlined. Table interpretation must come after all these, because (as
discussed in 4.1.4), functions cannot be copied after this pass – inlining or
interleaving cannot process that function anymore. Finally, we schedule the
opaque predicates pass – after all passes that use opaque predicates. We
remove any names at the end.

The user may choose to change the order of passes – arbitrary order is
possible. The only limit known to us is that inlining and function interleaving
will not work after table interpretation.

4.2 Usage and limitations

All described passes form a library and they are compiled to one shared object
file (LLVMObfuscator.so). LLVM tools can load this file to run obfuscations.
The basic usage that should work for an arbitrary language (frontend) is the
following:

1. Use the language-specific frontend to obtain LLVM IR.

2. Use LLVM optimizer tool (opt) to run obfuscation passes.

3. Use linker (LLVM l ld or language-specific) to link LLVM IR into an
executable file.

For example, for C++ this in practice means the following commands:
c lang++ −c −S −emit−l lvm −o source . l l source . cpp
opt −S −load LLVMObfuscator . so −ob fu s ca to r −o s o u r c e o b f . l l < source . l l
c lang++ s o u r c e o b f . l l

Some frontends (clang, clang++) allow doing that just by one command:
c lang++ −Xclang −load −Xclang LLVMObfuscator . so source . cpp

This option allows easy integration of our obfuscator into existing compilation
workflow – just by passing several more flags to the compiler. However, not all
frontends support this option, the first method should work for any frontend.
More elegant ways can be created by modifying the specific frontend – but we
decided not to do that to keep our obfuscator language-independent.

Most of the passes offer some configuration options. Running the ob-
fuscator without any arguments uses the default configuration. The way to
override the default settings is to set an environment variable. Overview of
user-tunable parameter and their default values can be found in Appendix B.
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The described method works just with one module at a time – eg., functions
are inlined or interleaved within one module. If the program consists of several
source code files, that are compiled separately and linked together into an
executable, it may be useful to allow mixing functions from different modules.
To do that, individual modules need to be merged into a single LLVM IR.
LLVM tool l lvm-link can be used for that:
c lang++ −c −S −emit−l lvm −o a . l l a . cpp
c lang++ −c −S −emit−l lvm −o b . l l b . cpp
c lang++ −c −S −emit−l lvm −o c . l l c . cpp
llvm−l i n k −S −o comb . l l a . l l b . l l c . l l
opt −S −load LLVMObfuscator . so −ob fu s ca to r −o s o u r c e o b f . l l < comb . l l
c lang++ s o u r c e o b f . l l

This, however, does not solve the limitation that we are not able to remove
some functions and/or their names. If functions have common linkage, they
cannot be removed, because it is not clear if they will be needed in the linking
process. Our obfuscator has no information from the linking process.

4.2.1 No link-time informations

LLVM does not provide any link-time information at the stage when our obfus-
cator runs – after the compilation stage and before the linking process starts.
Lack of link-time information limits our ability to remove unused functions
and identifiers – functions with common linkage might be used by other mod-
ules, so they must be kept. A function name might help a potential reverse
engineer to quickly undestand the purpose of that function. Left function
prototypes (of functions that were inlined) might help in recognizing which
part of function was previously in a separate function.

We see three possible ways to solve this: using link-time optimization,
declaring functions as internal or using external tools to strip names.

LLVM offers link-time optimization that can remove dead function pro-
totypes. It works as a plugin into the system linker12. This cannot be done
automatically by our obfuscator, as it requires an additional configuration by
the user. Thus, it is a possible solution, but it is outside of the scope of this
project.

Users can improve obfuscation by declaring functions as having internal
linkage (static keyword in C/C++) when they are not needed from another
module. That allows to remove some function prototypes and/or their names,
but not all of them, as some functions are likely needed by other modules.

Another solution is to use an external tool to strip symbols – for example
strip tool from GNU binutils13. The disadvantage of this approach is that it
only removes function names, not function prototypes.

12https://llvm.org/docs/GoldPlugin.html
13https://www.gnu.org/software/binutils/
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Chapter 5
Evaluation

In the previous chapters, we described obfuscations and our implementation
of obfuscator. In this chapter, we evaluate obfuscation metrics – potency, re-
silience and performance impact. We conclude this chapter with a comparison
of our obfuscator with existing tools.

5.1 Obfuscation metrics

In [1], obfuscations we have implemented are described as having the following
properties:

Table 5.1: Suggested obfuscation properties

Obfuscation Potency Resilience Cost
Inlining medium one-way free
Bogus Control Flow depends on opaque predicate
Outlining medium strong free
Function interleaving depends on opaque predicate
Table interpretation high strong costly
Removing identifiers medium one-way free

Note, however, that their implementation details were not described in
that article, so the evaluation might not hold.

5.1.1 Potency

In this section, we evaluate potency of obfuscations. Article [1] defines potency
as a measure of difficulty to understand the obfuscated program compared to
the not obfuscated one (for a human). It uses a three-point scale (low, medium,
high) for measuring potency. It furthermore suggests using software complex-
ity metrics to evaluate potency. However, the article does not say how these
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Table 5.2: Program size changes (µ1) for test programs. Values indicate ratio
between metrics of obfuscated and non obfuscated program. Total metrics
refers to the whole program, max is the maximum value among functions.
(TI – table interpretation, BCF – bogus control flow)

AES QuickSort MatrixMult
Obfuscation total max total max total max
all (default) 17.37 35.37 25.34 25.56 6.94 7.83
all, no splitting 13.27 32.73 14.93 15.13 3.94 4.28
all but TI 7.73 17.87 8.85 7.90 2.72 2.30
all but TI, no splitting 6.28 11.14 6.83 5.75 1.83 1.60
inlining, size limit 2 2.24 6.13 2.26 2.84 1.13 1.78
inlining, size limit 4 5.39 17.91 4.33 4.72 1.13 1.78
inlining, size limit 8 6.20 20.54 8.35 11.70 1.13 1.78
BCF prob 0.5 1.32 1.57 1.49 1.01 2.14 1.96
BCF prob 0.5, no splitting 1.21 1.05 1.17 1.00 1.46 1.41
outlining 1.08 1.01 1.10 1.00 1.37 0.91
outlining, no splitting 1.06 1.00 1.01 1.00 1.20 0.62
interleaving 1.33 3.82 1.05 1.04 1.00 1.00
TI 2.56 2.64 2.94 1.94 3.86 3.82
TI, no splitting 2.15 2.31 2.45 1.98 2.73 2.69

metrics relate to the proposed scale for potency. We measure these metrics
for several test programs and then we discuss how implemented obfuscation
makes programs more confusing for a potential reverse engineer.

5.1.1.1 Software complexity metrics

We tested programs written in various programming languages – MatrixMult
is in C++, AES in C and QuickSort in Rust. These programs are attached
to this thesis. We tested them with various obfuscation parameters and also
individual obfuscations. Table 5.2 shows changes in code size – the size of
the whole program and also the size of the largest function. Table 5.3 shows
changes in computational complexity – for the whole program and also the
complexity of the most complex function. Unless mentioned in that tables,
obfuscation uses the default configuration, as described in Appendix B.

Inlining increases both metrics; its results vary depending on the nature of
the program. For AES and QuickSort program, the increase was significant.
In those programs, there are many possibilities for inlining – AES program
contains functions that can be inlined into multiple locations, QuickSort pro-
gram has a recursive function, that can be inlined into itself without limits.
We can also notice that the effect of inlining was even more significant when
size limit was increased. In case of MatrixMult program, the metrics change
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Table 5.3: Computational complexity changes (µ2) for test programs. Values
indicate ratio between metrics of obfuscated and non obfuscated program.
Total metrics refers to the whole program, max is the maximum value among
functions. (TI – table interpretation, BCF – bogus control flow)

AES QuickSort MatrixMult
Obfuscation total max total max total max
all (default) 11.36 19.35 29.96 63.38 5.13 6.86
all, no splitting 6.12 9.60 17.50 41.12 3.10 3.54
all but TI 3.24 5.80 5.41 14.00 1.61 2.00
all but TI, no splitting 2.54 5.25 4.65 9.12 1.22 1.25
inlining, size limit 2 1.36 2.20 1.78 3.50 0.97 1.46
inlining, size limit 4 2.04 4.70 3.19 7.25 0.97 1.46
inlining, size limit 8 2.03 4.70 6.22 22.25 0.97 1.46
BCF prob 0.5 1.43 2.00 1.33 1.88 1.57 1.89
BCF prob 0.5, no splitting 1.17 1.40 1.00 1.00 1.20 1.32
outlining 1.13 1.00 1.02 1.00 1.17 0.46
outlining, no splitting 1.13 1.00 1.00 1.00 1.14 0.50
interleaving 1.26 1.50 0.96 2.00 1.00 1.00
TI 3.74 5.75 3.87 7.88 4.17 5.86
TI, no splitting 2.18 3.25 2.02 3.88 2.35 3.14

was less significant. In that program, there are just two functions that can
be inlined. The growth can be observed mainly on the maximum of those
metrics, values for the whole program were almost changed – that is because
function bodies were “moved” into their calling function and then deleted.
We can notice that the µ2 metrics for the whole program slightly decreased
– because computation complexity of the whole program also depends on the
number of functions in the program.

The main metrics that bogus control flow affects is cyclomatic complex-
ity (µ2). We can observe, that when it was used without BBs splitting, it did
not affect the metrics very much. Splitting BBs created more locations where
bogus flow could be added. We can notice that with splitting blocks enabled,
bogus control flow affected the metrics more significantly. Still, its effects are
quite low compared to inlining.

Outlining influenced only one program – MatrixMult. We can see that
while the total of both metrics slightly increased, the maximum value in fact
decreased. This fact is caused by the way outlining works – it extracts some
code (and complexity) to a separate function. Thus, we have to conclude that
those metrics are not suitable for evaluating outlining.

Interleaving only affected AES and QuickSort programs. However, the
effects are different. In case of QuickSort program, it interleaved functions
and removed them – thus the total values of both metrics did not change,
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but the maximum values increased. In case of AES, it was not possible to
remove merged functions as they had common linkage. Thus, the total values
of metrics increased too – the code was copied into the merged function.
Overall, metrics change caused by interleaving is small.

Finally, table interpretation caused the most significant growth of both
metrics for all programs. Unlike the previous obfuscations, this obfuscation
does not seem to be very sensitive to the program’s nature – the results are
similar for all programs. We can also notice that splitting BBs helped this
pass significantly.

Overall, we can conclude that obfuscations are successful at increasing
the selected metrics. Moreover, we see that the results do not depend on
the programming language. They depend on the nature of the obfuscated
program, though. Some obfuscations themselves do not affect some of the
test programs, but when they were used together, they managed to increase
metrics of each obfuscated program.

5.1.1.2 Confusion for a reverse engineer

We have seen the way obfuscations affect software complexity metrics in the
previous section. However, we do not know how the metrics changes relate to
potency. The article [1] does not say that. Potency describes the amount of
confusion added by the obfuscations for a potential reverse engineer. To get
more insight into that, we try to discuss that here.

Inlining obfuscation causes a significant code growth. A potential reverse
engineer would need to study a lot more code after inlining obfuscation. As
discussed in 1.3.2, functions provide an abstraction for developers. This ab-
straction is removed by inlining.

Bogus control flow obfuscation adds unreacheable BBs into the program.
A potential reverse enigneer would see that as a branch instruction depending
on opaque predicate. Thus, the confusion of bogus control flow depends on
whether a reverse engineer would realize that the predicate is invariant. We
use global variables and invariant expressions to implement opaque predicates.
Even though we use several expressions to implement opaque predicates, all
opaque predicates are similar – they load a value from a global variable, per-
form some arithmetics and convert the result to bool value. The value is then
used as a predicate for a conditional jump instruction. Thus, all our opaque
predicates have a similar signature and a potential reverse engineer may re-
alise that. This could be possibly improved by a bigger variety of opaque
predicates (not only the expressions used).

Outlining is the opposite of inlining. It extracts some code from a function
into a new function and thus creates a bogus abstraction. A common reason
why developers create functions is to isolate some functionality – functions
perform one specific task. However, this is not true for functions created
by outlining obfuscation. The confusion caused by this depends on whether
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(a) (b)

Figure 5.1: Visualization of table interpetation effect in IDA (version 7.0). (a)
show the original CFG, (b) shows the resulting CFG after table interpretation.
IDA is not able to visualize the real CFG after table interpretation.

a reverse engineer would realize that an obfuscator outlined the function. In
our implementation, one clue for them might be that all outlined functions
are called from just one location. However, when outlining is combined with
interleaving, outlined functions might be called from several locations.

Interleaving creates the confusion by merging several functions into a single
one. Confusion again depends on whether a reverse engineer notices that fact.
They would need to explore instructions calling that function and the structure
of the function itself. One possible weakness of our implementation is that
functions are merged in a simple way – the first branch of the function depends
on one argument which selects the functionality. The control flows of different
functionalities never merge. This might indicate an interleaved function. We
can possibly improve that by merging functions in a more complicated way –
e.g., by using multiple arguments and branches to select the functionality.

The confusion caused by table interpretations lies mainly in the fact that
it completely hides the CFG of a function. By exploring the CFG, a reverse
engineer may quickly get an idea how complex is the function is and how it
works – e.g., if there are any loops, where the branches in the function are
or what functions are called by this function. After table interpretation, they
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are not able to do that anymore. To illustrate that, we show a visualization
of a CFG of a function in IDA (version 7.0), a popular reverse engineering
tool in figure 5.1. A reverse engineer might try to track the values of a vari-
able determining the next destination, but that is more demanding, and our
implementation makes it even more complicated, as described in 3.2.6.1.

Function names are useful for reverse engineers because they allow them
to guess a purpose of a function quickly. This may allow them to quickly skip
utility functions and focus on the relevant pieces of code. By removing names,
we prevent the distinction between relevant and irrelevant pieces of code.

5.1.1.3 Summary

We have evaluated software complexity suggested in [1] to measure potency.
We have furthermore discussed the confusion that our obfuscator creates for
a potential reverse engineer. We conclude this section by reviewing whether
the potency evaluation suggested holds for our implementation.

Inlining is described as having medium potency. Based on the significant
increase of metrics, we say that it has medium potency in our implementation
as well.

Bogus control flow does not have potency specified; it is said that it de-
pends on the opaque predicate. Based on our evaluation that the opaque
predicate is not very potent and also on the fact that bogus control flow
barely increased the metrics, we say it has low potency.

Outlining is described as having medium potency. However, we have ob-
served that the used metrics are not suitable for its evaluation. Based on the
previous discussion, we assume that potency of outlining itself is low. We can
increase potency by using outlining in conjunction with interleaving.

Function interleaving is said to depend on opaque predicates. In our im-
plementation, we do not always use opaque predicate to protect it. Based
on the low increase of metrics, we would say that interleaving has low po-
tency. Nevertheless, we discussed that it might cause significant confusion for
a potential reverse engineer.

Table interpretation is said to have high potency, but the metrics increase
we observed was comparable to inlining with medium potency. Thus, we
assume that the potency of table interpretation we implemented is medium
as well. We suppose that in [1], they meant a more complex form of table
interpretation.

Removing identifiers is described as having medium potency. Based on
the previous discussion, we agree with that.

5.1.2 Resilience

Resilience measures the difficulty of creating an automatic deobfuscator. We
are not aware of any generic deobfuscation tool. Creating a deobfuscator
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would be an entire project of its own, a potential reverse engineer would need
to design a deobfuscator for each specific obfuscation. We discuss the aspects
of each obfuscation in terms of writing a deobfuscator.

A major challenge for a deobfuscator would be opaque predicates. We
have discussed resilience of used opaque predicates in section 3.2.7.1. We have
concluded that implemented opaque predicates have weak resilience – if an
approach from [6] is used. If all opaque predicates were identified and removed,
it would be possible to simplify conditions and remove all unreachable BBs.

Removing inlining obfuscation is not possible – it is one-way. Note that this
is true only if the function prototype is removed after inlining. We discussed
in 4.2.1 that in some cases it is not possible to remove the function prototype.
In that case, a deobfuscator might be able to figure out that the function has
been inlined.

Resilience of bogus control flow obfuscation is determined by the resilience
of opaque predicates. If opaque predicates are identified, a deobfuscator would
be able to find unreachable branches and remove them. Opaque predicates
we use have weak resilience; thus resilience of bogus control flow is weak too.

It is always possible to inline outlined function, thus it is also possible to
automatically remove outlining. The problem is that the deobfuscator might
not recognize whether the function has been created by the developer (so it
presents a useful abstraction and should be kept) or whether it is bogus (and
thus should be inlined). In [1], they described outlining as having strong
resilience.

To remove interleaving, a deobfuscator would need to find out if a function
could be split into several functions. For that, it would have to analyze argu-
ments of all call instructions calling that function. Furthermore, it would need
to consider whether the function has been created this way by a developer or
by an obfuscator, a similar problem as described with outlining. Thus, we
assume that resilience is strong.

Resilience of table interpretation in our implementation depends on opaque
predicates as well. After removing opaque predicates, a deobfuscator would
be able to track the values of variable determining next BB. That would allow
the deobfuscator to reconstruct the CFG. Thus, table interpretation has weak
resilience.

Finally, resilience of identifier removing is one-way. Once the names are
removed, it is not possible to recover them. Note that it is not possible to
remove some names due to the limitation described in 4.2.1.

We have evaluated resilience of implemented obfuscations. Our evaluation
mostly agrees with evaluation in [1] – with the exception of table interpreta-
tion. Similarly, as in the evaluation of potency, we see that our implementation
of table interpretation is simpler then the one described there. We evaluated
resilience of our implementation as having weak resilience.
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5.1.3 Performance impact

In this section, we evaluate the performance impact of obfuscations. We have
noticed that the performance of obfuscated program may significantly vary.
We explain the reason for that in the following part and then we present the
measured performance impact.

5.1.3.1 Variance in results

Obfuscations are randomized, thus they may affect input program in various
ways. We have also found out that the performance of obfuscated program
varies. The same program, with the same obfuscation configuration, was in
some cases significantly slower than usual. Such behavior is undesirable, we
tried to find out why this happens.

Let us take for example one of our test programs, the matrix multiplication
program. The core of that program consists of three nested loops. Most
processor time is spent in the inner loops – the code in the inner loops is
“hot”. We hypothesized that the performance impact is dependent on the
level of obfuscation of these code parts.

We made a series of experiments to prove that and we found out that
significant performance impact is caused already by the split basic blocks
pass. This pass randomly chooses several splitting points and splits the BBs.
We found out that this itself is responsible for a large variance in performance.

When BBs in the inner loops were split into many pieces, the performance
of program decreased significantly. The code in the “hot” zone was very com-
pact, and even the unnecessary jump instructions made it significantly slower.
We have then modified splitting basic blocks to lower the chance that inner
loops are split (we made the probability of splitting to decrease exponentially
with nesting level). That helped significantly with the performance – as we
can see in figure 5.2.

A similar issue also happens in outlining pass – outlining in inner loops
causes a significant slowdown. When the outlining region was chosen ran-
domly, the results varied significantly. We have added a similar condition as
we did in splitting blocks pass.

This way, we have reduced obfuscations performed in the inner loops –
and in turn improved performance. We can see the impact of these changes in
figure 5.3. Note that while we managed to reduce slowdown caused by obfus-
cating inner loops, this does not completely solve the problem of obfuscating
“hot” code zones. A better solution might be to let the user mark the code
parts that should be less obfuscated.

5.1.3.2 Performance impact on test programs

We prepared several testing configurations for obfuscation and then we eval-
uated our test programs. All test programs were compiled with the highest
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Figure 5.2: Slowdown caused just by splitting basic blocks (split factor 2).
(a) shows results when the splitting points are selected uniformly randomly.
(b) shows results when blocks with lower nesting level are preferred for split-
ting.

Figure 5.3: Slowdown factor with all obfuscations enabled. (a) shows results
when the splitting points and outlined regions are selected uniformly ran-
domly. (b) shows results when blocks with lower nesting levels are preferred
for splitting and outlining.
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optimization level (-O3 ) and then obfuscated. We compare the performance
of obfuscated program with the performance of non obfuscated program.

In figure 5.4 we can see the resulting time for matrix multiplication pro-
gram (C++), a O(n3) algorithm. In figure 5.5 we can see the results of various
obfuscation levels related to time of non obfuscated program. It seems that
the performance impact caused by obfuscation does not grow with the matrix
dimension.

In figure 5.6 we can see the resulting time for merge sort program (C++).
Computational complexity of this algorithm is O(n.log(n)). In figure 5.7 we
can see the results of various obfuscation levels related to time of non obfus-
cated program. Our conclusion is the same – the obfuscation overhead does
not grow with problem size.

Finally, we made a test with AES program (C). This program performs
repeated encryptions using AES – the complexity grows linearly with the
number of encryption. The results are in figures 5.8 and 5.9. Once again, we
conclude that the overhead does not grow with the problem size.

The most important observation from the measurements is that the perfor-
mance impact of obfuscations does not depend on the problem size. Although
the results vary, we think that all obfuscations add just a constant overhead
to the program – meaning that all obfuscations are free in the scale in [1].

In the figures, we can also see a varying influence of obfuscations on pro-
gram performance. We can notice that the combined performance impact
of inlining, bogus control flow, interleaving and identifier stripping (without
splitting BBs) adds a very little overhead to the program – the difference be-
tween obfuscated and non obfuscated program does not exceed factor 2 in all
measurements we performed.

When outlining or splitting BBs is enabled, the results start to have a
bigger variance. In the potency evaluation, we have seen that splitting BBs
increases the potency of several obfuscations. Unfortunately, here we also
see that it makes the performance impact more unpredictable. Outlining with
basic splitting disabled causes a bigger variance too. The reason why just these
two transformations cause this variance is that they are the only obfuscations
that target a particular piece of code. The other obfuscations do not impact
just a single piece of code, but rather process the whole function in the same
manner.

We conclude that all obfuscations we implemented are free, the perfor-
mance overhead they add does not grow with the problem size. Outlining
and helper pass for splitting BBs create significant variance in different runs
of the obfuscator. The reason is that sometimes they target a performance-
critical code part, which results in bigger performance overhead. We tried to
reduce that effect by decreasing obfuscations of inner loops; however, that is
not perfect. We suggest that this could be solved by giving the user a better
control over the obfuscation process (e.g., by selecting which code should be
less obfuscated).
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Figure 5.4: Matrix multiplication performance

Figure 5.5: Matrix multiplication performance – related to non obfuscated
program

51



5. Evaluation

Figure 5.6: Merge sort performance

Figure 5.7: Merge sort performance – related to non obfuscated program
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Figure 5.8: AES performance

Figure 5.9: AES performance – related to non obfuscated program
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5.1.4 Summary

In the previous sections, we have evaluated implemented obfuscations in terms
of potency, resilience and performance impact. We assigned the following
evaluation to implemented obfuscations:

Table 5.4: Evaluated obfuscation properties

Obfuscation Potency Resilience Cost
Inlining medium one-way free
Bogus Control Flow low weak free
Outlining low strong free
Function interleaving low strong free
Table interpretation medium weak free
Removing identifiers medium one-way free

The results mostly correspond with the evaluation from [1], except of the
table interpretation. Table interpretation is described as having high potency,
strong resilience and being costly (adding a polynomial performance overhead
to the program). We assume that they meant more complex implentation of
that transformation. The obfuscation we have implemented is simpler and
corresponds more to CFG flattening, described in [18].

5.2 Comparison with other obfuscators

In chapter 2 we reviewed several available obfuscators. In this chapter, we
compare them to our obfuscator. We focus on comparison with Obfuscator-
LLVM.

CXX-OBFUS works just on lexical level, so its obfuscation will not change
the metrics. Its main feature is removing names – an obfuscation with medium
potency and one-way resilience (according to [1]). Our obfuscator implements
this obfuscation too and also implements several other transformations. We
thus say that our obfuscator is more advanced than this tool. However, we
see one advantage of this tool – it can scramble identifiers across modules. We
are not able to do that in some cases, as described in 4.2.1.

StarForce C++ Obfsucator does not provide much detail about its func-
tionality, and we were not able to test it. Its website, however, provides a
code example. The example code seems to be processed by some control flow
transformation – the control flow of the program has been completely changed.
This obfuscation is none of those we have implemented. Thus, obfuscations
performed by this tool might be more advanced than ours. We are, however,
not able to test it better.

Tigress obfuscator offers more obfuscations that have both higher potency
and resilience. It offers stronger opaque predicates as well as stronger obfusca-
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tions, such as dynamically building functions at runtime (JIT). Our obfuscator
is far behind that level. However, this tool is not intended for automatic ob-
fuscation of the whole program. It has to be fine-tuned by the user. The
user has to select which transformation should be used and where it should
be applied. Also, this tool is limited just to C programming language.

5.2.1 Obfuscator-LLVM

We are able to perform the most detailed comparison with Obfuscator-LLVM,
since it is open-source and it is based on the same principle. Obfuscator-
LLVM offers three obfuscations: bogus control flow, instruction substitution
and table interpretation (they call it CFG flattening). Let us look at the
common obfuscations – bogus control flow and table interpretation.

Bogus control flow is implemented similarly as ours – it makes a copy of one
basic block and alters it. An opaque predicate is used to guarantee that control
flow always follows the desired way. It uses global variables and invariant
expressions as well – but only one type of invariant expression (x(x+1)%2 ==
0). The value of these global variables is not updated. Our obfuscator uses
five different expressions and picks one of them randomly each time. It also
randomly updates global variables from many locations, with an aim to make
tracking their value difficult.

Obfuscator-LLVM implements table interpretation in its basic form. Our
obfuscator implements several improvements to make it more potent and re-
silient – including the use of opaque predicates and adding invalid states to
the jump table.

Our obfuscator also implements inlining, outlining, function interleaving
and identifier removing. On the other hand, it does not implement instruc-
tion substitution, that is implemented in Obfuscator-LLVM. Nevertheless, the
potency of instruction substitution obfuscation is low.

Overall, we think our implementation offers more advanced features then
Obfuscator-LLVM. Its strongest obfuscation is table interpretation, with medium
potency and strong resilience. Our obfuscator features several obfuscations
having medium potency and some transformations that have one-way re-
silience.

On the other hand, we should note that Obfuscator-LLVM is likely better
tested (as it is available for several years) and allows the user to control the
obfuscation process better – the user can annotate functions that should not
be obfuscated.
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The aim of this work was to i) design and implement an automatic obfuscator
based on LLVM compiler infrastructure, ii) evaluate potency and resilience of
implemented obfuscation transformations and iii) compare results with other
similar obfuscations tools.

We have explored and described several obfuscation transformations and
metrics to evaluate them. We have researched similar LLVM-based obfusca-
tion tool. Then, we have designed our own obfuscation transformations and
their integration into LLVM allowing obfuscations to be language-independent.

Along with obfuscation transformations, we performed analysis of the de-
signed transformations and standard obfuscation metrics, i.e., potency, re-
silience, and performance impact of implemented obfuscations on code being
obfuscated. We have evaluated our obfuscator, and our results suggest that:
i) our obfuscator manages to make the program more confusing for a potential
reverse engineer, ii) removing these obfuscations automatically would require
non-trivial work, and iii) all obfuscations only add a constant performance
overhead to the program. We have furthermore demonstrated that our obfus-
cator is language-agnostic by testing it on programs in different programming
languages such as C, C++, and Rust.

Our obfuscator was compared to other available similar obfuscation tools.
The comparison has indicated that our obfuscator was more advanced than
the tools mentioned.

Possible future work

We see several possible ways to improve or extend our obfuscator. Obfusca-
tions can be made more potent. For example, table interpretation can be made
more potent by making the selection of the next basic block more confusing –
articles [18, 16] suggest ways how this can be achieved using global pointers
or one-way functions. Resilience can be improved by using stronger opaque
predicates – for example, article [19, 5] suggest such ways. In section 5.1.3 we
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have shown that the performance impact varies and the performance penalty
is higher when obfuscations target a performance-critial code part. This per-
formance impact unpredictability would be undesirable for practical use of
our obfuscator. We suppose that it could be reduced by giving the user a
fine-grained control over the obfuscation process, e.g., by marking code parts
that should be less obfuscated by means of language pragma or attribute
statements.
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Appendix A
Acronyms

API Application Programming Interface

BB Basic Block

CFG Control Flow Graph

LLVM Low Level Virtual Machine
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Appendix B
Configuration options

Our obfuscator offers various configuration options. These options have their
default value, that can be changed by the user. The user can override default
values by setting an environment variable.

B.1 Scheduler pass

Scheduler pass is used to run other obfuscations in order described in 4.1.6.
Configuration options allow to disable some obfuscations:

• OBF DISABLE: disables all obfuscations

• OBF DISABLE INLINING: disables inlining obfuscation

• OBF DISABLE SPLIT: disables splitting blocks

• OBF DISABLE BCF: disables bogus control flow obfuscation

• OBF DISABLE OUTLINING: disables outlining obfuscation

• OBF DISABLE INTERLEAVING: disables function interleaving

• OBF DISABLE TABLE: disables table interpretation obfuscation

• OBF DISABLE OPAQUE: disables opaque predicates pass

• OBF DISABLE STRIP: disables removing identifiers

B.2 Obfuscation passes

Most of the obfuscation passes offer some configuration options. There options
are listed here:
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• OBF INLINE LIMIT: size limit for obfuscation. A multiple of the orig-
inal program size. Inlining will stop when the program size reaches that
limit. The default value is 4.

• OBF SPLIT FACTOR: split factor, sets the target number of basic
blocks. The default value is 2 (i.e., the resulting number of basic blocks
will by factor ∗ originalNum)

• OBF BOGUS FLOW PROB: probability of inserting bogus flow. Each
found unconditional branch instruction will be turned into conditional
with this probability. The default value is 0.25.

• OBF OUTLINE MAX FNS: maximum number of functions to outline
(from each function). Default value 10.

• OBF OUTLINE MIN SIZE: minimum size of function after outlining.
Specified as a fraction of original function size. The default value is 0.5
(i.e., a function may be reduced to half of its original size).

• OBF OUTLINE ATTEMPTS: number of attempts to select a suitable
region for outlining. Inlining is stopped if no suitable region is found.
The default value is 200.

• OBF INTERLEAVE PASSES: number of interleaving passes. Each
function can be interleaved at most once in each pass, so this also limits
how many functionalities can be contained within one function. The
default value is 3.

• OBF INTERLEAVE OPAQUE PROB: probability that the call to in-
terleaved function will be protected by opaque predicate. The default
value is 0.2.

• OBF INTERLEAVE MAX FNS: maximum number of functions that
can be interleaved in each pass. The default value is 10.

• OBF TABLEINTER OPAQUE PROB: probability that a jump to dis-
patcher will be protected by opaque predicate, to make tracking values
more difficult. The default value is 0.3.

• OBF OPAQUE VAR NUM: number of global variables to use for opaque
predicates. One of them is randomly chosen each time when invariant
expression is evaluated. The default value is 8.
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Appendix C
Contents of enclosed medium

DP Petracek Martin 2018

README.txt — the file with content description

SRC — the directory of source codes

OBFUSCATOR — implementation sources

THESIS — the directory of LATEX source codes of the thesis

TESTS — the directory of test programs

TEXT

thesis.pdf

thesis.ps
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