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Abstract

The goal of this thesis is to develop a system for autonomous interception
of a small flying target by an unmanned multirotor aircraft. The main
work lies in developing an interception strategy and a trajectory planner,
improving upon the current model predictive control scheme to allow for
aggressive maneuvers, and developing a state observer to estimate and
predict the states of the target aircraft. The functionality of the developed
system is verified in a series of simulations and outdoor experiments in
different configurations and with different target localization techniques.

Abstrakt

Ćılem této práce je vyvinout systém pro autonomńı zastaveńı let́ıćıho ćıle
pomoćı bezpilotńı helikoptéry. Hlavńı náplńı této práce je vývoj strategie a
plánováńı trajektoríı pro zastaveńı ćıle, vylepšeńı současného prediktivńıho
ř́ıd́ıćıho systému (model predictive control) aby bylo možné provádět agre-
sivńı manévry, a vývoj stavového pozorovatele, který bude odhadovat a
předpov́ıdat stavy ćıle. Funkcionalita systému bude ověřena v sérii simu-
laćı i venkovńıch experiment̊u s r̊uznými konfiguracemi a metodami pro
lokalizaci ćıle.
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1 INTRODUCTION

1 Introduction

Small unmanned aerial vehicles (UAVs), sometimes also called drones or MAVs (micro
aerial vehicles) are more and more popular and are nowadays used even by the general public.
This is mainly caused by the advances in lithium polymer batteries, small and powerful mo-
tors and control electronics. All of these components are getting cheaper and more available,
making it possible to build MAVs with a very low price tag. The most popular configura-
tion for a MAV is a multicopter, usually equipped with four or six motors with propellers.
The multicopter concept is very simple, as the only moving parts are the counter-rotating
propellers, and control of the vehicle is achieved only by changing their relative speeds. Big
advantages of the multicopter platform include the ability to perform vertical takeoff and
landing, execute agile maneuvers, or the ability to hover in place. This has made the platform
very popular for aerial photography and capturing videos, with many commercially available
models equipped with high resolution stabilized cameras, ready to fly out of the box, like the
DJI Phantom shown in figure 1.

Figure 1: DJI Phantom, a very popular quadcopter equipped with a stabilized high resolution
camera.

The boom of multicopters also has a negative side. There is an increasing number of
cases when people fly their multicopters into forbidden areas like the surroundings of airports,
where they are directly endangering landing aircraft, or high-security areas like power stations
or military installations. Multicopters equipped with cameras can also easily intrude into
ordinary people’s privacy by flying over private property and capturing photos and videos.
Multicopters can also directly cause injuries and property damage, as they can be operated
by untrained individuals or suffer breakdowns while flying over populated areas.

This led to the advent of anti-drone devices, like jammers [25], which can block the
operator’s control signal and the signal from satellite navigation [12], which is often used by
drones. Drones can also be eliminated by hand-held launchers [2], which can launch projectiles
or nets at the flying drones. Attempts have also been made to train eagles and other birds to
eliminate drones, with mixed results. Military solutions then include various guns, missiles,
and even lasers.

This thesis will approach the problem of disabling drones by other means, as goes the
famous saying: “The best way to defeat a tank is with another tank”, then surely the best way
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1 INTRODUCTION

to disable a drone is with another drone. The goal of this thesis is to develop algorithms and
strategies for autonomous intercepting and disabling of unwanted drones by an interceptor
drone. This includes control, estimation and strategic trajectory planning for the interceptor
drone, to autonomously perform the task of eliminating other drones.

Chapter 1 of this thesis gives an introduction to the stated problem and an overview of
state of the art. Chapter 2 describes a state observer, which can estimate and predict states
of the target drone based on available measurements. In chapter 3, the current MPC tracker
scheme, developed in the MRS lab at CTU in Prague, is improved to increase the performance
of the whole system and allow for easier trajectory planning. Chapter 4 describes different
possibilities of target elimination, as well as trajectory planning algorithms and interception
strategies, based on different levels of information about the position of the target. Chapter
5 then introduces the hardware and software platform used for verification, and Chapter 6
describes experimental results in simulations and the real world.

1.1 State of the art

Many publications are addressing the issue of drone security and possible threats. In
[28], the authors explore security flaws of the AR Drone, and the possibility of using them
for malicious activities, like person tracking. Similarly, [34] describes various ways in which
the commercially available multicopter can be used for criminal and terrorist acts and some
possibilities of threat mitigation.

Large amount of publications focus on drone detection and tracking by various ground-
based sensors. These systems are often paired with RF (radio frequency) jammers, to disable
the link between the operator and the drone. For the purposes of target detection, low prob-
ability of intercept radar, combined with noise detection is used in [36], and as a counter-
measure, different techniques are used to jam the remote control signal of the drone. In [10]
a 35 GHz continuous wave frequency modulating radar was used to detect small drones and
estimate their positions and velocities. Authors of [32] developed a drone detection system,
based on acoustic sensing, optical cameras and RF sensors, paired with a jammer that can
eliminate the RF link to the intruding drone. Inverse synthetic aperture radar is used to track
an image flying drones in [18]. The technique of RF jamming can be effective in disabling
or deterring some drones, but this approach is not consistent, as the drone can use various
different frequencies for communication, or it can be semi or completely autonomous, which
removes the need of the RF link and therefore make the jammer completely ineffective.

A different way of defending against an intruding drone is explored in [15], where spoof-
ing of the GPS signal is used to take control of a drone, and send it outside of the defended
area, or force it to crash. Authors of [6] are proposing a swarm of defending UAVs, with a task
to envelop the intruding UAV in a tight formation and escort it outside of the defended area.
This approach was however only tested in a simulation with simplified physics, and it would
be very difficult to execute in the real world. In [20], a methodology is presented for assess-
ing the design of an interceptor UAV, so-called “anti-drone drone”, along with interception
strategies and simulations of a scenario involving a defense of a nuclear power plant.
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1 INTRODUCTION

Most of the publications in the area of counter drone operations focus on drone detec-
tion, classification, and tracking, while the problem of incapacitation of the intruding drone is
either tackled with jammers or GPS spoofing. While some authors are proposing to use spe-
cialized interceptor drones for target elimination, most of these solutions are verified only in
simulations, not in real life. Commercially available systems for eliminating intruding drones
are available, but these systems are mostly manually controlled, or they are ground-based.
This thesis proposes an autonomous interceptor drone, with a task of capturing or eliminating
an intruding target drone.

1.2 Mathematical notation

The mathematical notation used throughout this thesis is described in table 1.

Symbol Meaning

Upper or lowercase letter (a, b,N,Q) scalar

Bold lower case letter (x,y) column vector

Bold upper case letter (A,B) matrix

xT ,QT vector and matrix transpose

x[t],x[t] x,x at a time sample t

ẋ, ẍ first and second time derivative of x

diag(a, b, ..., z) diagonal matrix with a,b,...,z on the diagonal

N, R set of natural and real numbers

Table 1: Mathematical notation used in this thesis.
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2 TARGET STATE ESTIMATION

2 Target state estimation

Information about position of the target is critical for the interception scenario. This
information can be obtained by a ground-based tracking station, or by onboard sensors. In
both cases, positional information will most likely not be continuous, due to many factors, like
drop-outs in communication or target flying out of range or out of the FOV (field of vision)
of the tracking cameras. In all those cases, we need to maintain an estimate of the target’s
position, to be able to continue with the interception, or adjust the orientation and position of
the intercepting drone to regain tracking of the target. Estimating target’s future trajectory
from the current and past states is also beneficial, as it can be directly used to optimize the
trajectory of the intercepting drone using the MPC tracker, which will be described in the
next chapter. The information about target position will also most likely contain noise, which
can be filtered by the estimator. To address all these requirements, linear Kalman filter was
implemented in this thesis, to serve as a state estimator.

2.1 Linear Kalman filter

Linear Kalman filter (LKF) is an algorithm for state estimation. It can be easily im-
plemented on digital computers, and it is recursive - it does not need to keep the whole set
of measured data. If all noise in the system is Gaussian, the LKF will minimize the mean
square error, if the noise is not Gaussian, LKF is still the best linear estimator. LKF was first
described in [14] and [13].

Calculate the Kalman gain

K[k] = P−
[k]H

T (HP−
[k]H

T + R)−1

Update with the measurement

x̂[k] = x̂−
[k] + K[k](z[k] −Hx̂−

[k])

Calculate the error covariance

P[k] = (I−K[k]H)P−
[k]

Estimate the next step

x̂−
[k+1] = Ax̂[k]

P−
[k+1] = (AP[k]A

T ) + Q

k = k + 1

initial conditions

x̂−
[0],P

−
[0]

measurement

z[k]

output

x̂[k]

Figure 2: Diagram of the linear Kalman filter loop.

LKF contains a model of the estimated system, which is used to produce an estimate of
the system state x̂[k] and an estimate of an error covariance matrix P̂[k] based on the previous
estimate and new measured data. The error covariance matrix represents the accuracy of the
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2 TARGET STATE ESTIMATION

estimated state produced by the LKF. Diagram of the LKF loop with all equations is shown
in figure 2 and all used symbols are described in table 2.

Symbol Dimension Meaning

n N Number of states.

m N Number of measured variables.

x̂[k] Rn×1 Estimate of the system state at a time sample k updated
with a measurement.

x̂−
[k] Rn×1 Prior estimate of the system state at a time sample k.

x̂−
[0] Rn×1 Initial estimate of the system state.

z[k] Rm×1 Measurement at a time sample k.

K[k] Rn×m Kalman gain at a time sample k. Kalman gain decides how
much the new measurement changes the estimated state.

P[k] Rn×n Error covariance matrix at a time sample k after the measure-
ment update. This matrix represents the estimated accuracy
of the state estimate.

P−
[k] Rn×n Prior error covariance matrix at a time sample k

P−
[0] Rn×n Initial error covariance matrix

R Rm×m Measurement noise covariance matrix

Q Rn×n Process noise covariance matrix

A Rn×n State transition matrix.

H Rm×n Observation matrix. This matrix defines a transformation be-
tween the measured values and states of the system.

I Rn×n Identity matrix.

Table 2: Meaning of symbols used in the linear Kalman filter.

In a general case, matrices R,Q,A and H can change with each iteration, but in our
case, their values remain the same.

2.2 Implementation

In the interception scenario with a camera tracking system, we can expect that only the
position of the target can be measured, as the attitude is very hard to determine just from
images, as the appearance of the target is not known apriori. With this assumption, we can
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2 TARGET STATE ESTIMATION

use a model of a point mass moving in 3-dimensional space, in our linear Kalman filter. The
estimate of the state vector x̂[k] will contain position, speed and acceleration in X, Y and Z
(n = 9), and the A matrix will contain transitional dynamics for an object in 3 dimensional
space:

x̂[k] =



x[k]

y[k]

z[k]

ẋ[k]

ẏ[k]

ż[k]

ẍ[k]

ÿ[k]

z̈[k]



, A =



1 0 0 ∆t 0 0 ∆t2

2 0 0

0 1 0 0 ∆t 0 0 ∆t2

2 0

0 0 1 0 0 ∆t 0 0 ∆t2

2

0 0 0 1 0 0 ∆t 0 0

0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (1)

Measurement vector z[k] will contain only information about position in X,Y and Z
(m = 3) directions and H represents transformation between the estimate of the state vector
x̂[k] and z[k]:

z[k] =


x[k]

y[k]

z[k]

 , H =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 . (2)

Finally, the matrices Q and R has to be set. The matrix R is the measurement noise
covariance matrix, and it represents noise in the measured data. Values in this matrix can
be determined by setting the system to a steady state and observing the noise in the mea-
surements. The Q matrix represents the noise in the process. The goal of setting the Q and
R is to get an output which is without noise but still reacts quickly to changes in states.
Value of R was in this case initially set by observing the measurement data, and Q was then
determined empirically along with adjustments to R. Following values were used in case of
using the WhyCon relative localization system (which will be described later) as a source of
measurement data:

R = diag(0.01, 0.01, 0.01), Q = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). (3)

If another source of target position measurement is used, the Q and R matrices need to be
readjusted to give proper results.

The diagram of the linear Kalman filter shown in figure 2 assumes a constant stream of
measurements and only outputs new estimates if new measurements are coming in. As stated
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before, in this application it is not expected to get a constant stream of measurements, as
the target can fly outside the range or FOV of the sensor. The frequency of the calculated
estimates should be constant, so that it can be directly used in the 100 Hz MPC control loop,
but the rate of incoming measurements is usually 30 Hz or lower, if an onboard camera is
used.

To address both of these points, the frequency of the LKF loop is set at 100 Hz, in sync
with the MPC control loop. If a new measurement from the tracking system is available, the
full LKF loop, which is shown if figure 2 is executed. If however there is no new measurement,
the whole update phase of the LKF loop is skipped and only the next step estimation is
executed. This simplified loop is shown in figure 3.

Estimate the next step

x̂[k] = Ax̂[k−1]

P[k] = (AP[k−1]A
T ) + Q

initial conditions

x̂[0],P[0]

output

x̂[k]

k=k+1

Figure 3: Diagram of the simplified LKF loop without measurement updates.

In case of the simplified loop, the current estimated state vector is only propagated
to the future by the transition matrix A, and the error covariance matrix increases, which
corresponds to increasing uncertainty of the estimated state, as there are no measurement
updates. This approach is used to bridge the gap between the 100 Hz control loop and slower
measurements from the sensors, and also to provide an estimate of the target position if there
is drop-out in measurements.

This estimate can be used to regain tracking of the target, but the accuracy of the
estimate decreases rapidly. The accuracy of the estimate can be determined by checking the
error covariance matrix. In our case, a threshold is set for values in the error covariance
matrix. If this threshold is crossed, the estimate of the target state is declared as unusable
and is ignored. The Kalman filter is then reset with the next available measurement and new
initial value for the error covariance matrix.
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3 Model Predictive Control

Model predictive control (MPC), also called the Moving or Receding Horizon Control
(MHC, RHC), is an advanced control method, which first found its use in slow industrial
processes. These processes usually operate with long time constants and thus computational
power was not a limiting factor. The main advantage of the MPC approach is that the current
control action is being optimized with regard to predicted future states of the system, and
not only the current state. This allows the system to anticipate future events, and react to
them with proper control action before they happen.

To achieve this behavior, MPC uses a dynamical model of the controlled system. Mea-
sured states of the real system are injected into the dynamical model. Series of control inputs
is then applied to the dynamical model, which produces a prediction of future system states
over a certain time horizon (often called the prediction horizon). The goal of the MPC ap-
proach is to optimize the series of control inputs with respect to a certain cost function. This
function, also called the objective function, usually penalizes the difference between predicted
and desired states, and the magnitude of the control input itself. However, it can also penalize
other aspects of control, like control input slew rate. The output of the objective function is a
scalar value, which represents how well is the system being controlled. The goal is to find the
global minimum of this function, which represents the optimal control action with regards to
our definition of the objective function. Once the optimization process is completed, the first
of the series of optimized control inputs is applied to the real system. Then the new state of
the real system is measured, and the whole process repeats.

Since we predict the system states and optimize the control action for the whole pre-
diction horizon in each control step, significant computational power is needed. But with
advancements in hardware performance, MPC started to spread to systems with faster dy-
namics, and nowadays it can be used to drive systems with control loops running at tens or
hundreds of hertz, like multirotor UAVs. Since MPC is usually implemented using computers
or embedded hardware, we will only consider the time to be discrete.

3.1 UAV Model

To produce useful predictions about the future states of the system, we need a model
that represents our system. Based on the initial state x[0] we can calculate the future states
of the system x[1],x[2], ...,x[M ], where M is the length of the prediction horizon, by applying
a series of control inputs u[0],u[1], ...,u[M−1] to the model. In general, any kind of model can
be used for the purpose of MPC, but in practice, it is best to use a linear model since its
behavior facilitates optimization. In this thesis, we assume a linear, discrete, time-invariant
system with n states, n outputs, and k inputs:

x[t+1] = Ax[t] + Bu[t],

y[t] = Cx[t] + Du[t],
(4)

where A ∈ Rn×n is the state matrix, B ∈ Rn×k is the input matrix, C ∈ Rn×n is the output
matrix, D ∈ Rn×k is the direct transition matrix and t is a discrete time sample. We also
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assume that C = I, the output states consist of all the system states, and D = 0, there is no
direct transfer from the input to the output.

3.2 Objective function

As stated before, the objective function outputs a single scalar value that represents
the quality of the found solution. During the optimization process, we are trying to minimize
the objective function with the goal of finding the global minimum, which represents optimal
control action with respect to our objective function. A quadratic objective function is often
used in MPC as it penalizes larger deviations from reference more than small deviations. By
using a quadratic objective function, the whole problem of solving MPC reduces to solving a
quadratic programming (QP) problem. There are many solvers for QP problems, for exam-
ple in MATLAB we can use the quadprog function. Solver used in our case is discussed in
section 3.4.

The objective function can penalize and evaluate any of the aspects of the system,
but for basic functionality, we penalize the difference between predicted states and reference
states, which forces the system to follow a provided reference. In addition, the magnitude of
the control input itself is also penalized, to reduce control action to a necessary minimum.
We can define the reference state as follows:

xr[t] =


xr1

xr2

...

xrn

 , (5)

where n is the number of states and xr[t] is the reference state at a time sample t. We can
then define tracking error as follows:

e[t] = x[t] − xr[t] =


x1 − xr1

x2 − xr2

...

xn − xrn

 , (6)

where e[t] is the tracking error and x[t] is predicted state at a sample time t. Since we want
to use a quadratic objective function, we need to formulate it as a sum of squares of tracking
errors and magnitudes of the control input. We define the objective function as follows:

V(x,u) =
1

2

M∑
i=1

(eT[i]Qe[i]) + uT
[i−1]Ru[i−1]), (7)
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x =


x[1]

x[2]

...

x[M ]

 ,u =


u[0]

u[1]

...

u[M−1],

 ,

where M is the length of the prediction horizon, Q ∈ Rn×n is the state weighting matrix
and R ∈ Rk×k is the input weighting matrix. Matrices Q and R are required to be positive
semi-definite.

MPC implementations also often include penalization of the final state and control input
(e[M ], u[M−1]) with higher weights, to force the system to converge faster to the reference.
This is however not needed in case of this thesis, because the prediction horizon is long enough
(8 seconds). We can also extend the objective function to penalize more aspects of the system.
As an example, if we want smoother system behavior with less stress to the actuators, we can
introduce slew rate penalization:

V(x,u) =
1

2

M∑
i=1

(eT[i]Qe[i] + uT
[i−1]Ru[i−1]) +

1

2

M−1∑
i=1

[(uT
[i] − uT

[i−1])S(u[i] − u[i−1])], (8)

where S is the slew rate weighting matrix. This new term penalizes fast changes in control
inputs, to ensure smoother system behavior, which however comes at a cost of worse reference
tracking. In the case of this thesis, we need a fast system with aggressive reactions, so this
term is omitted and only serves as an example of MPC possibilities.

3.3 Constraints

One of the main advantages of MPC is its inherent property of constraint handling.
Constraints can be imposed not only to the control input, which is a feature that most
controllers have but also to the output states, which means that solutions produced by MPC
will lie in a certain region of state variables. Control input constraints represent the maximum
(or maximum acceptable) signal that the actuator is capable of handling, this can represent for
example the maximum current flowing through a motor. Output or state constraints can limit
the states themselves, for example with multirotor UAVs, we can limit the maximum speed
and acceleration of the UAV according to its capabilities and MPC will drive it only in this
safe region. We can even limit the position of the UAV, which will create an artificial “cage”
which the UAV can’t leave. These constraints are represented as a set of linear inequalities:

umin ≤ u[t] ≤ umax,

xmin ≤ x[t] ≤ xmax.
(9)

Constraints can be changed between MPC control iterations. For example, if we need to
avoid an obstacle quickly, we can temporarily relax constraints on maximum acceleration and
velocity to allow for better maneuverability.
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3.4 Solving the quadratic programming problem

To solve the QP problem, we can either develop a custom solver or use a third party
solution. CVXGEN is a software tool developed by Jacob Mattingley and Stephen Boyd [22],
which can generate a custom solver based on a high-level description of a QP-representable
convex optimization problem. The generated solver is specifically tailored to the described
problem, it is not a general solver. The generated code is an ANSI C program, which does not
require any additional libraries. It is almost branch free and has a predictable run-time behav-
ior. All these attributes make it an ideal solution for onboard real-time applications. For this
reason, it is used for example by SpaceX for the landing of first stages of their Falcon 9 rockets
[5]. CVXGEN works best for small and medium-sized problems, up to approximately 4000 to-
tal coefficients in the constraints and the objective function (non-zero Karush–Kuhn–Tucker
(KKT) matrix entries).

CVXGEN uses a custom problem specification language, which ensures validity and
convexity of described optimization problems. First, dimensions of the problem are specified:

dimensions

m = 1 # inputs

n = 3 # states

T = 40 # length of prediction horizon

end

Then we specify the parameters, which stay constant during the optimization process:

parameters

A (n,n) {1,1 2,2 3,3 1,2 2,3} # dynamics matrix

B (n,m) {3,1} # input matrix

Q (n,n) psd # state cost

R psd # input cost

x[0] (n) # initial state

x max 2 nonnegative

x max 3 nonnegative # state constraints

x r[t] (n), t=1..T # reference

end

In vectors and matrices, we can declare only certain elements to be non zero, which is rep-
resented by the numbers in {} brackets. This helps the generator to reduce the complexity
of the problem. We can also define matrix properties (symmetric, positive semidefinite (psd),
etc.). After the parameters, we specify variables which can change during the optimization
process:

variables

x[t] (n), t=1..T # states

u[t] (m), t=0..T # inputs

end
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Then we specify our objective function, which can be either minimized or maximized. To
represent our objective function described in (7), we define the following expression:

minimize

sum[t=1..T](quad(x[t]-x r[t], Q)) + sum[t=0..T](quad(u[t], R))

Finally, we can introduce constraints to inputs, outputs or the dynamics of the system. For
example, we can define these constraints:

subject to

x[t+1] == A*x[t] + B*u[t], t=0..T-1 # dynamics constraints

abs(x[t][2]) <= x max 2, t=1..T

abs(x[t][3]) <= x max 3, t=1..T #state constraints

end

The problem is defined through an online interface at https://cvxgen.com/. A custom solver
is then generated in a matter of minutes, depending on the complexity of the problem.

Performance of the solver generated by CVXGEN was compared to other solvers in
[9], by generating 500 random QP problems from a constrained MPC controller. Generated
problems were similar in size to the problem in this thesis. The results are shown in table 3.

Solver Average

Time [ms]

QPC qpas 0.341

CVXGEN 0.463

QPC qpip 0.660

CLP 0.798

CPLEX 3.123

quadprog(MATLAB) 5.348

OOQP 6.163

IPOPT 8.665

SCIP 32.175

Table 3: Performance comparison of different QP solvers, from [9].

We can conclude from the results that performance of the solver generated by CVXGEN
is very good, it is an order of magnitude faster than MATLAB’s quadprog.
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3.5 MPC Implementation

The pipeline for UAV control used at the Multi-robot Systems group has a three-layer
structure. At the lowest level is an embedded attitude controller, which maintains desired
pitch, roll, and yaw (φd, θd, ψd) as well as total thrust (Td). This controller is part of the
PixHawk flight controller, and it directly outputs control signals which set the speeds of the
motors.

One layer above is a non-linear SO(3) state feedback controller, which was developed
at University of Pennsylvania, based on the work described in [23] and [19]. The following
model is used to represent the UAV:

ṙ = v,

mv̇ = fRez +mgez,

Ṙ = RΩ̂,

JΩ̇ + Ω× JΩ = M,

(10)

where R(φ, θ, ψ) represents attitude, r(x, y, z) is the position, g is the force of gravity, f is the
total thrust force of the propellers, m is the mass of the UAV, Ω(p, q, r) represents body-axis
angular rates, hat map ·̂ : R3 → SO(3) is defined by the condition x̂y = x×y for all x, y ∈ R3,
J is the inertia matrix and M is the total moment exerted by the propellers on the UAV.
This controller takes as an input the desired state of the UAV xd(x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈) and
outputs desired attitude (φd, θd, ψd) and total thrust (Td) for the embedded controller.

The MPC forms a third layer of the control pipeline and works in this case as a tracker.
The outputs of the MPC are not directly used for UAV control. The non-linear SO(3) con-
troller is much better suited for this task, as it allows for more aggressive maneuvers, which are
needed in the interception scenario. The outputs of the MPC tracker are instead used to drive
a virtual model with transitional dynamics that represents the UAV. The states of this model
are then sampled and used as a reference for the non-linear SO(3) controller. This approach
combines the predictive nature of the MPC with agile control from the SO(3) controller into
a package that keeps the advantages of both its subsystems. The whole control pipeline is
shown in figure 4. The MPC tracker, simulated control loop and the SO(3) controller all run
on 100 Hz.

3.5.1 Current MPC shortcomings

The MPC tracker described in this thesis is designed to replace the MPC tracker that
is currently in use on the hexacopter platform of Multi-robot Systems group. This MPC
tracker, that was developed from the work described in [8] has several shortcomings. To
improve computational performance, the X Y and Z axes of the UAV model are considered
as decoupled, and each is optimized independently. To reduce complexity even more, move
blocking technique is used. This technique reduces the size of the problem by assuming that
the control input at the end of the prediction horizon takes the form of a constant function.
With this assumption, we can, for example, define that the last five control inputs in the
prediction horizon will have the same value and optimize them together as one variable,
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Lin. MPC
controller

Lin. model
Ax + Bu

SO(3)
controller

attitude
controller

UAV
plant

State
observer

simulated
control loop

x

u

φd, θd, ψd

Td

motor
control

reference
trajectory xd

feedback

Figure 4: Diagram of the control pipeline

therefore reducing the size of the problem. Another problem are state constraints, which are
not solved optimally by the current MPC and can sometimes be exceeded. The new MPC
tracker addresses all of these issues.

Current MPC tracker solves the X, Y, and Z axes independently, which introduces a
problem with state constraints. As an example, let us consider the case for horizontal velocity.
Range of possible velocities is constrained by a box, since the constraints are simply defined
as follows:

|vx| ≤ vhmax, |vy| ≤ vhmax, (11)

where vx, vy are velocities in the X and Y directions and vhmax is the maximum horizontal
velocity constraint. With this set of constraints, the UAV can achieve maximum velocity
in both X and Y directions simultaneously. If this happens, the UAV will be traveling at√

2vhmax. This situation is visualized in figure 5. Exceeding the maximum velocity by more
than 40% while flying at the edge of the UAV capabilities, as is necessary for the interception
scenario, is unacceptable.

With the current MPC implementation, this problem is solved by either using only
a feasible reference trajectory, sampled at a reasonable velocity, or by setting the state con-
straints lower, which leaves headroom for the controller. In the interception scenario, the UAV
has to fly at the edge of its capabilities, so reducing the state constraints is not desirable.
The new MPC implementation presented in this thesis addresses the box constraint problem,
which in turn allows infeasible trajectories to be set as a reference, without exceeding the
maximal possible velocity of the UAV, which is beneficial in the interception scenario, as it
facilitates trajectory planning.

3.5.2 MPC state constraints

In an ideal case, again assuming the horizontal speed situation, the constraint should
be defined as follows: √

vx2 + vy2 ≤ vhmax, (12)

thus forming a circle in the horizontal velocity space and limiting the velocity in any direction
to exactly the same value. This is visualized in figure 5. However, this constraint is no longer
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vmax

vy

vx

vmax

vy

vx

Figure 5: Constrains in horizontal velocity - current implementation (left), ideal constrains
(right).

linearly constrained QP representable and therefore, suitable solver can’t be generated by
CVXGEN. To circumvent this problem, the ideal circular constraint can be approximated by
a set of linear constraints, as follows:

|vx| ≤ vhmax, |vy| ≤ vhmax,

∣∣∣∣∣
√

2vx
2

+

√
2vy
2

∣∣∣∣∣ ≤ vhmax,

∣∣∣∣∣
√

2vx
2
−
√

2vy
2

∣∣∣∣∣ ≤ vhmax.

(13)

Let us define this set of constraints as the first order approximation. With this approx-
imation, the maximal possible velocity is only 8.2% higher than vhmax, much less than the
original 41.4%. We can continue to add more linear constraints in a similar fashion, to better
approximate the circular constraint. With second order approximation:

|vx| ≤ vhmax,

∣∣∣∣∣
√

3vx
2

+
vy
2

∣∣∣∣∣ ≤ vhmax,

∣∣∣∣∣
√

3vx
2
− vy

2

∣∣∣∣∣ ≤ vhmax,

|vy| ≤ vhmax,

∣∣∣∣∣
√

3vy
2

+
vx
2

∣∣∣∣∣ ≤ vhmax,

∣∣∣∣∣
√

3vy
2
− vx

2

∣∣∣∣∣ ≤ vhmax,

(14)

the maximal possible velocity is only 3.5% higher than vhmax, with third order approxima-
tion, it is only 1.9% higher. First and second order approximations are visualized in figure 6.
A drawback of this approach is that it increases the size of the original problem with each
added linear constraint, and therefore a reasonable compromise between approximation ac-
curacy and computational complexity has to be made. In case of this thesis, the second-order
approximation was chosen for the case of horizontal velocity and first-order approximation
for the case of horizontal acceleration.

The model used for the horizontal situation is a linear model of a point mass in 2
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vmax

vy

vx

vy

vx

vmax

vy

vx

Figure 6: Constrains in horizontal velocity - first order circle linear approximation (left),
second order circle linear approximation (right).

dimensions. It is written in matrix form as follows:

A =



1 ∆t ∆t2

2 0 0 0

0 1 ∆t 0 0 0

0 0 1 0 0 0

0 0 0 1 ∆t ∆t2

2

0 0 0 0 1 ∆t

0 0 0 0 0 1


, B =



0 0

0 0

∆t 0

0 0

0 0

0 ∆t


, x =



x

ẋ

ẍ

y

ẏ

ÿ


, u =

u1

u2

 ,

(15)
where A is the system matrix, B is the input matrix, x is the state vector and u is the input
vector. The input vector in this case represents jerk, or

...
x and

...
y . Constraints can be imposed

on the input to limit the rate of change in acceleration.

3.5.3 Variable lateral constraints based on Z axis dynamics

So far, only X and Y axes were considered, but movements in the Z axis also significantly
affect the lateral dynamics. Especially while climbing, the UAV has to use higher thrust, which
means that there is much less thrust in reserve to sustain higher horizontal velocities. The Z
axis could be incorporated into the solver for X and Y axes with all the appropriate constraints,
but the complexity of such problem would be too high to be handled by solvers generated by
CVXGEN. Instead, separate solver just for the Z axis is run before the XY solver. The Z axis
solver will generate a prediction of the UAV states in the prediction horizon. Based on the
predicted velocities and accelerations in the Z axis, we can limit velocities and accelerations in
the X and Y axes, because we can set different state constraints for each step of the prediction
horizon. By doing this, climbing in the Z axis will take priority and limit horizontal velocity,
according to the capabilities of the UAV.
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vz

vh

Figure 7: Constrains in horizontal velocity (vh) with regard to previously calculated velocity
in the Z direction (vz).

Since we are setting these constraints outside of the optimization process, we do not
need to approximate with linear functions. Assuming vhmax is the maximal velocity in the
horizontal direction, vzmax is the maximal velocity in the Z direction, vz[t] is estimated velocity
in the Z direction at a time sample t, the horizontal velocity constraint vhmax[t]

at a time
sample t is calculated as:

vhmax[t]
= vhmax

√
1−

(
vz[t]
vzmax

)2

. (16)

This constraint is only applied when vz[t] is positive (the UAV is climbing), if the UAV
is descending, the horizontal velocity constraint is kept at maximum. The range of possible
velocities in the Z and horizontal directions is shown in figure 7. Acceleration in the horizontal
plane is not intrinsically constrained to still allow for necessary changes in velocity while
climbing, but positive acceleration in the Z axis will limit velocity in the horizontal plane as:

vhmax[t]
= vhmax

√
1−

(
az[t]
azmax

)2

. (17)

The model used for the Z axis movement follows the same principle as the model for the
horizontal situation. It is again a linear model a point mass in 1 dimension. It is written in
matrix form as follows:

A =


1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 , B =


0

0

∆t

 , x =


z

ż

z̈

 , u =
[
u1

]
, (18)

where A is the system matrix, B is the input matrix, x is the state vector and u is the input
vector, which represents jerk (

...
z ) and can be limited with an input constraint.
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3.5.4 MPC yaw tracker

Last part of the puzzle which is needed for successful interception is control of the UAV
yaw angle. This is only necessary if the UAV is carrying a tracking camera or other devices,
which has to be pointed at the target. Otherwise, no change in yaw is necessary, as the UAV is
symmetric. Current implementation on the MRS platform uses a PD (proportional-derivative)
yaw tracker, which is not ideal for the case of interception. Since an estimate of the future
trajectory of the intercepting UAV is known, thanks to the MPC tracker and estimate of the
future trajectory of the target UAV is also known thanks to the estimator, it is possible to
calculate desired yaw angle φd[t] at which the interceptor will be pointed at the target UAV,
so that the target is visible to the camera of the interceptor for each time sample t of the
prediction horizon, as follows:

φd[t] = atan2(xt[t] − xe[t] , yt[t] − ye[t]), (19)

where xt[t] and yt[t] are the estimated position of the target UAV at a time sample t, and xe[t]
and ye[t] are the estimated position of the interceptor at a time sample t. The values of φd[t]
will then serve as a reference for an MPC yaw tracker. The yaw tracker has constraints on
yaw rate and yaw acceleration, similar to the other MPC trackers, and it is used in the same
way to generate a reference for the non-linear SO(3) controller. The MPC yaw tracker allows
for predictive tracking of the target UAV with an onboard camera, improves tracking quality
and reduces the chance of losing track of the target UAV.

The model used for the yaw tracker is the same model used for the Z axis, only the
state values, in this case, represent rotational movement instead of a translational movement.
It is written in matrix form as follows:

A =


1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 , B =


0

0

∆t

 , x =


φ

φ̇

φ̈

 , u =
[
u1

]
, (20)

where A is the system matrix, B is the input matrix, x is the state vector and u is the input
vector, which represents jerk (

...
φ ) and can be limited with an input constraint.

3.5.5 Advantages and comparison of the new implementation

With all the new constraints for horizontal and vertical velocity, the new implementation
of the MPC tracker can safely operate with reference trajectories which are infeasible. This
is very important for the interception scenario, as we can easily plan infeasible trajectories
based on an estimate of the target position and trajectory and let the MPC tracker optimize
the interceptor trajectory with respect to the UAV capabilities. For example, the simplest
implementation of target interception would be just to set the estimated position of the target
as the only reference for the entire prediction horizon of the MPC. The new implementation
of the MPC tracker would then plan an optimal interception trajectory with regards to the
objective function and state and input constraints while assuring that the interceptor will not
exceed its maximal capabilities in velocity and acceleration.
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Performance of the new MPC tracker was compared with the original implementation.
It should be noted that the original MPC tracker was designed for smooth and safe flying, it is
not suitable for tracking infeasible trajectories and flying at the edge of the UAV capabilities.
This comparison was made in the Gazebo robotic simulator (which will be described later),
but it would have yielded the same results if it ran on an actual UAV, as the software
is the same. Figure 8 shows a response of the tracker outputs to a step reference in the
X direction going from 0 m to 100 m. The original MPC implementation overshoots the
maximum velocity and acceleration constraints. In the original implementation, the maximum
velocity and acceleration were considered more as safety limits, not actual state constraints,
which is one of the reasons why this tracker is not suitable for the interception scenario. Both
the original and the new MPC trackers overshoot their setpoints, which is, in fact, correct
behavior, given that the quadratic objective function penalizes larger deviations from the
setpoint more.
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Figure 8: Comparison between the velocity (left) and acceleration (right) outputs of the
new MPC tracker and the original MPC tracker, with state constraints vhmax = 10 m/s,
ahmax = 3.0 m/s2 and ȧhmax = 6.0 m/s3. The reference is a step from 0 m to 100 m in the X
position.

If this behavior is not desirable, Q matrix can be adjusted to eliminate the overshoots.
In the case with overshoots, the Q matrix is set up to only penalize the positional error.
To reduce or eliminate overshoots, another term can be added to the Q matrix, which will
penalize the magnitude of the velocity. Values in the R matrix can also be increased to penalize
the input. This will make the system behavior a little less aggressive, but the difference is
very subtle. System responses with and without overshoots are visualized in figure 9.

Figure 10 shows trajectory tracking performance comparison. The reference trajectory
is sampled at a constant velocity of 5 m/s and is infeasible, as it contains sharp turns. This
demonstrates the predictive nature of the MPC, as the UAV reacts to the sharp turns in
advance, with regards to the known dynamical limitations. The new MPC tracker shows
more accurate reference trajectory tracking than the original MPC tracker.

The effect of circular approximation in the horizontal velocity constraint, which was
discussed section 3.5.2 is demonstrated in figure 11. In this scenario, the reference was a step
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Figure 9: Comparison between the velocity (left) and position (right) overshoot behavior of
the new MPC tracker while penalizing only position error (red) and with added penalization
of the velocity (blue). All other parameters were the same as in figure 8.

in position from 0 to 100 in both the X and Y axes, with horizontal velocity constraint of
10 m/s. The original MPC tracker was not designed to operate under such conditions, which
is demonstrated by the large overshoot, but the new MPC implementation can still operate
safely even with this extremely infeasible reference.
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Figure 10: Comparison between the outputs of the new MPC tracker and the old MPC
tracker while tracking a trajectory. State constraints are vhmax = 10 m/s, ahmax = 3.0 m/s2

and ȧhmax = 10.0 m/s3.
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Figure 11: Demonstration of the circular approximation in the horizontal velocity constraint,
shown in figures 5 and 6.
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4 Interception

This chapter begins with a discussion of various methods of stopping an intruder UAV.
Trajectory planning and interception algorithms based on different situations and configura-
tions are then presented, and finally, possible solutions for target tracking are evaluated.

4.1 Target elimination

In this section, different approaches to stopping an intruder UAV will be discussed. It
is assumed that the target and the interceptor are both multirotor UAVs, also called drones.
The target can be neutralized in several different ways, three of which will be considered in
this thesis.

4.1.1 Kinetic attack

The mode of attack which requires almost no additional equipment is a kinetic attack,
during which the interceptor tries to disable the target by crashing into it at high velocity. The
interceptor can be equipped with protective elements which can cover the delicate electronics
and shield the propellers and motors, but it would be still probable that the interceptor
itself could get damaged during this scenario. If the attack is successful, the target, and in
some cases, even the interceptor, will fall from the air and might damage property on injure
somebody on the ground.

In terms of control, localization, and planning, this mode of attack is the most difficult
to implement, as it requires a direct hit of a relatively small target with a relatively small
interceptor. The interceptor needs to be able to perform agile maneuvers and preferably be
able to fly faster than the target. This mode of attack can be used as a backup if other
methods fail and the neutralization of the target is critical, the kinetic attack can be deployed
as a last resort.

4.1.2 Passive net

In this mode of attack, a large passive net is mounted to the bottom of an intercep-
tor. The interceptor then flies over the target UAV, which then tangles into the net with
its propellers, legs or arms and is captured. This scenario is easier in terms of control and
localization, as the net can cover a much larger area.

In this case, the interceptor must be able to carry a much higher payload, not only the
additional large net but also the weight of the captured target. The large net also introduces
a significant amount of aerodynamic drag, and can be susceptible to wind and will negatively
affect the maneuverability of the interceptor. There is also a risk that the net can self-tangle,
or interfere with the propellers of the interceptor, but these risks can be minimized by good
design and construction of the net. Multirotor UAV with a passive net is shown in figure 12,
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in use by the Tokyo Metropolitan Police Department.

Figure 12: Devices for capturing target UAV. A passive net (left) in use by the Tokyo
Metropolitan Police Department and a commercially available CO2 powered net launcher
(right).

4.1.3 Net/projectile launcher

The last mode of attack discussed in this section is a use of a net or projectile launcher.
Commercially available net launchers (an example is shown in figure 12) are usually powered
by a compressed CO2 cartridge, which is used to launch a large (usually 3×3 meters) net with
attached weights in the corners. These net launchers are designed for small animal capture,
but their construction is also suitable for drone capture. The effective range is up to 10 meters,
with an initial velocity of the net of 10 m/s.

In this mode of attack, the interceptor must be able to carry the net launcher it-
self, which weighs approximately 1 kg, considering the commercially available models. The
launched net can remain attached to the launcher, allowing the interceptor to carry the cap-
tured target away, for which the interceptor again needs sufficient payload capacity. The
net can also be detached after launching, leaving the target falling to the ground. A small
parachute can be attached to the net, reducing the velocity of the falling captured target.
The net launcher is much more compact than the passive net and has much less aerodynamic
drag. The disadvantage of this approach is the fact that the net launcher has only one shot,
after which the launcher needs to be reloaded manually. Instead of the commercially available
solution, a custom net launcher could be developed, with the main goal of reducing the weight
of the launcher to make it more suitable for UAVs.

The net launcher idea could be simplified, as the interceptor could just release material
like long strings, which would tangle into the propellers of the target, bringing it down. The
release could be powered by compressed gas, or the material could be simply released and
blown down on the target by the air stream coming from the propellers of the interceptor. In
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this case, the target would again hit the ground and may damage property or cause injuries.

4.2 Trajectory planning

In this section, various methods of trajectory planning for the interceptor will be dis-
cussed. These methods will later be combined to produce a robust interception trajectory
planner. At first, the kinetic attack scenario, described in section 4.1.1, will be considered, as
it is the most challenging in terms of control and trajectory planning. Trajectory planner for
kinetic attack can be later relatively easily modified for the other scenarios, and it can also
be used as a backup if other approaches fail. It is also assumed for now that the measurement
of the target position is available at all times to the interceptor.

4.2.1 Stationary target

In the simplest scenario, the target is hovering and staying in the same position. This
behavior is not uncommon with operators of camera-equipped drones who are surveying an
area. The estimator, described in section 2, produces an estimate of the position of the target

xe =


xe

ye

ze

 , (21)

which is used for interceptor trajectory planning. First, yaw angle φt at which the target is
“seen” by the interceptor is calculated as follows:

φt = atan2(ye − y, xe − x), (22)

where x and y is the position of the interceptor. The interception trajectory can be then
planned as a straight line from the position of the interceptor through the position of the
target. Let us call this the direct attack trajectory. The process for direct attack trajectory
planning is shown in algorithm 1, and visualisation of the planned trajectory is shown in
figure 13.

The trajectory planning algorithm can run at a high frequency, up to the frequency of
the MPC loop itself, to keep the planned trajectory up to date with the latest target position
estimate. Notice that the Z coordinate of every sample of the planned trajectory is the same
as the current estimated Z coordinate of the target, to force the Interceptor to fly at the same
altitude level. This not only forces the interceptor to prioritize changes in altitude, which are
more energy demanding than changes in X and Y, it will also keep the target in the FOV of a
potential onboard tracking camera. The produced trajectory will probably be infeasible, not
only because of the discontinuity in the Z coordinate but also because the current horizontal
velocity vector of the interceptor may not be in line with the planned trajectory. But since
the new implementation of the MPC tracker can safely handle infeasible trajectories, this is
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Figure 13: Direct attack trajectory planning in case of a stationary target.

not a problem, and the MPC tracker will plan an optimal trajectory given the dynamical
limitations of the interceptor and the objective function.

input : xtgt, ytgt, ztgt - position of the target
xint, yint - position of the interceptor
vint - horizontal velocity of the interceptor
vmax, amax - maximum velocity and acceleration of the interceptor
φt - yaw angle to the target
dt - trajectory sample time (equivalent to MPC horizon sample time)

output: traj - trajectory for the interceptor

1 begin
2 x← xint; y ← yint; z ← ztgt
3 i← 0
4 vel← vint
5 while i < mpc horizon length do
6 vel = vel + amax ∗ dt
7 if vel > vmax then
8 vel← vmax

9 end
10 x← x+ vel ∗ cos(φt)
11 y ← y + vel ∗ sin(φt)
12 traj.append(x, y, z)

13 end

14 end

Algorithm 1: Direct attack trajectory planning.

If the interceptor misses the target during the first attack run, there is no need to
change anything in the planning algorithm, as it will simply plan the new trajectory from the
new position of the interceptor. The interceptor will get carried away by its residual velocity
from the previous attack run. This will allow it to start the next attack run from a sufficient
distance, to pick up enough horizontal velocity to eliminate the target.
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4.2.2 Dynamic target

A similar approach in trajectory planning can be used to intercept moving targets, but
the algorithm has to be modified to plan interception trajectories not through the current
position of the target, but through an estimated future target position. The future trajectory
of the target can be estimated by taking the current estimated state of the target, produced
by the estimator, which was described in chapter 2 and applying the state transition matrix
A, shown in equation 1, to it. We can obtain estimates of the future states as follows:

xe[t+1]
= Axe[t] , (23)

where xe[t] is the estimated state of the target at a time sample t. The time interval ∆t in the
A matrix can be changed, to produce estimates at different sampling frequencies. By applying
the state transition matrix A over and over, future states can be estimated and combined into
an estimated future trajectory of the target. With this estimate, an interception point can be
calculated given the current position of the interceptor and its known dynamic limitations.
The process for calculating the estimated point of interception is shown in algorithm 2. Once
the estimated interception point is calculated, it can be used to plan a straight trajectory from
the current position of the interceptor through the estimated point of interception. To plan
this trajectory, algorithm 1 is used, only the estimated position of the target is substituted
with the estimated point of interception. The resulting interception trajectory for dynamic
target is visualized in figure 14.

4.2.3 Target following

This approach will not produce an intercepting trajectory, but it will plan a trajectory
for the interceptor to follow the flying target. The interceptor can then switch to a direct
attack, after reaching a position behind the target and matching velocities. Attacking from
behind of the target can be very beneficial, as the target might be equipped with an onboard
camera, which is used by the operator for video piloting (also called FPV - first person view).
This camera is usually pointed in the direction of the flight, and it will therefore not capture
the interceptor approaching from behind. If the interceptor is using an onboard camera to
detect the target, the position of the target in the camera picture can be measured with a
relatively good accuracy, however the distance between the interceptor and the target is much
harder to determine, mostly because the actual size of the target is not know, therefore it
cannot be compared to the size of the target in the camera picture do determine the distance.
This means that the vector from to the interceptor to the target can be measured with better
accuracy than the distance to the target. Attacking from behind of the target will reduce
the influence of the error in the distance measurement, as the planned interception trajectory
is close to being in line with the vector from the interceptor to the target and therefore
reducing the influence of the error. This is visualized in figure 15. In a similar fashion, error in
the estimated velocity of the target can also be partially compensated for by attacking from
behind.

To plan a target following trajectory, the past and the estimated future trajectory of
the target can be used. The reference trajectory for the interceptor can be then produced by
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input : xtgt[t], ytgt[t], ztgt[t] - future estimated positions of the target at time samples t
xint, yint - position of the interceptor
vint - horizontal velocity of the interceptor
vmax, amax - maximum velocity and acceleration of the interceptor
dt - time between samples of the estimated target trajectory

output: n - number of the estimation sample closest to the interception point

1 begin
2 x← xint; y ← yint; z ← ztgt
3 i← 0
4 vel← vint
5 dtarget ← distance2D(x, y, xtgt[0], ytgt[0])

6 dflown ← 0
7 while i < number of estimated samples do
8 i← i+ 1
9 vel← vel + amax ∗ dt

10 if vel > vmax then
11 vel← vmax

12 end
13 dflown ← dflown + vel ∗ dt
14 dtarget ← distance2D(x, y, xtgt[i], ytgt[i])

15 if dflown > dtarget then
16 n← i
17 break

18 end

19 end

20 end

Algorithm 2: Point of interception estimation in case of a dynamic target.

Point of interception

Interceptor

Dynamic target

y

x

Figure 14: Direct attack trajectory planning in case of a dynamic target.
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Figure 15: The uncertainty in distance measurement caused by the onboard tracking camera
is compensated for by attacking from behind. The interceptor is able to fly much closer
to the optimal point of interception, even when there is high uncertainty in the distance
measurement.

combining these trajectories:

xr =
[
xp[m], ...,xp[−1],xe[0],xe[1], ...,xe[n]

]T
, (24)

where xr is the reference trajectory for the interceptor, xp[t] is a past position of the target at
a time sample t, xe[0] is the current estimated position of the target and xe[t] is the estimated
position of the target at a time sample t. Parameter n is the length of the estimated future
trajectory and parameter m determines the time delay at which the interceptor follows the
trajectory of the target. Following the target with a constant time delay means that the
distance between the target and the interceptor is changing based on the velocity of the target.
To follow at a constant distance, the parameter m has to be dynamically changed, which is
shown in algorithm 3. The resulting trajectory is shown in figure 16. At first, this trajectory
is infeasible, as there is a discontinuity between the initial position of the interceptor and the
first sample of the reference trajectory, but this is not a problem for the new implementation
of the MPC tracker.

28/67



4 INTERCEPTION

input : xtgt, ytgt, ztgt - current estimated position of the target
xp[t], yp[t], zp[t] - past estimated positions of the target at time samples t
dist - desired distance between the target and the interceptor

output: m - number of the first sample to be used as the interceptor reference

1 begin
2 i← −1
3 tmpdist← dist3D(xtgt, ytgt, ztgt, xp[i], yp[i], zp[i])

4 while tmpdist < dist do
5 i← i− 1
6 tmpdist = tmpdist+ dist3D(xp[i+1], yp[i+1], zp[i+1], xp[i], yp[i], zp[i])

7 end
8 m← i

9 end

Algorithm 3: Determining the first sample to be used as a reference for target following.

Interceptor

Dynamic target

y

x

Figure 16: Reference trajectory for target following (red).

4.2.4 Head-on attack

Sometimes, the target is already flying towards the interceptor, which is often the case
if the interceptor misses its attack from behind and ends up in front of the target. This fact
can be used to plan a trajectory with a head-on collision. The process of planning is similar
to the target following planning, but the trajectory is planned in reverse:

xr =
[
xe[m], ...,xe[1],xe[0],xp[−1], ...,xp[m]

]T
, (25)

where xr is the reference trajectory for the interceptor, xp[t] is a past position of the target at
a time sample t, xe[0] is the current estimated position of the target and xe[t] is the estimated
position of the target at a time sample t. Parameter n is the length of the estimated past
trajectory and parameter m marks the sample of the future estimated target trajectory which
is the closest to the current position of the interceptor. The trajectory of the interceptor can
also be resampled at a particular velocity, as the estimated target velocity in reverse may not
be ideal for the interceptor. The process of head-on collision trajectory planning is described
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Figure 17: Head on attack trajectory (red).

in algorithm 4 and the resulting trajectory is visualized in figure 17.

A similar process could also be used for planning an interception trajectory from behind
the target. But compared to the head-on scenario, there are some problems. As the target is
flying away from the interceptor, the interception trajectory should be resampled at a high or
even maximum possible velocity (according to the velocity constraints of the MPC tracker),
to allow for the interceptor to catch up with the target. But if the target is maneuvering at
a slower velocity, it can turn with a sharper turn radius than the fast flying interceptor. This
can be resolved by resampling the interception trajectory dynamically, based on the turns of
the target, but it is much easier and robust to just use the direct attack approach.

4.3 Interception algorithm

In the previous section, three main flight and attack modes were presented, the direct
attack, target following, and the head-on attack. For a successful and robust interception, a
supervising algorithm is used to switch between the different modes of attack. Firstly, the
algorithm is formulated for a kinetic attack with continuous information on target position.
This algorithm is shown in figure 18. The flowchart contains green boxes, these are considered
as states, and diamonds, which mark decisions with a positive or negative outcome. The white
box is the initial state. In each iteration, the flowchart is evaluated until a state is reached.
Depending on what state is reached, different actions are taken. In the next iteration, the
flowchart is evaluated again, beginning from the last reached state.

Decision variable vt represents the total velocity of the target. If this velocity is lower
than a set threshold vs, the target is considered as stationary. The decision In front of target
signifies that the interceptor is in front of the target, and the target is flying towards the
interceptor. This is determined by finding the sample from vector xr, described in equation 24,
which is closest to the current position of the interceptor. This found sample can be either a
past position of the target, the current position of the target, or future estimated position of
the target. If it is the future estimated position, the interceptor is considered to be in front
of the target.
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input : xe[t], ye[t], ze[t] - future, past and present estimated positions of the target at a
time sample t, where t = 0 is the current position of the target
n - (negative number) number of past estimated target trajectory samples
p - (positive number) number of future estimated target trajectory samples
des vel - desired velocity at which the trajectory is resampled
dt - time between the samples of the estimated target positions
xint, yint, zint - current position of the interceptor

output: traj - reference trajectory of the interceptor

1 begin
2 dist = dist3D(xe[p], ye[p], ze[p], xint, yint, zint)

3 for i = p− 1; i == 0; i = i− 1 do
4 tmpdist = dist3D(xe[i], ye[i], ze[i], xint, yint, zint)

5 if tmpdist < dist then
6 dist← tmpdist
7 m = i

8 end

9 end
10 traj.append(xe[m], ye[m], ze[m])

11 tmpdist← 0
12 for i = m− 1; i == n+ 1; i = i− 1 do
13 tmpdist = dist3D(xe[i], ye[i], ze[i], xe[i−1], ye[i−1], ze[i−1])

14 if tmpdist > dt ∗ des vel then
15 traj.append(xe[i], ye[i], ze[i])

16 tmpdist = tmpdist− dt ∗ des vel
17 end

18 end

19 end

Algorithm 4: Head on collision trajectory planning.

The decision At follow position signifies that the interceptor has reached its following
position behind the target and it is now following with matched velocity. This condition is
met only if the interceptor is closer than a certain threshold to the desired following point
(xp[m], described in equation 24), and the velocity of the interceptor is matched with the
current velocity of the target, in a certain threshold.

The direct attack is stopped after a certain time, which is represented by the decision
Out of time. This is to prevent the interceptor from attempting successive direct attacks if the
first one fails and instead switch to the head-on attack or target following. If the previous state
was Target follow, then the attack time is calculated as the time needed for the interceptor to
reach the point of interception plus two seconds. If Direct attack state was reached because
the target is considered stationary, then the attack time is set to two seconds. The direct
attack continues after these two seconds if the target is still considered stationary.
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Figure 18: Flowchart of the kinetic attack interception algorithm.

4.3.1 Other approaches to target elimination

The above-described interception algorithm is designed for kinetic attack, but it can be
modified for the passive net or the net launcher. If the interceptor is using the passive net,
the only required change is to add an altitude offset to all the planned trajectories, depending
on the height and mounting point of the net. The yaw angle of the interceptor has to be also
considered, to ensure that the net will hit the target with its broad side. The yaw angle for
each time sample t of the trajectory is calculated as follows:

φ[t] = atan2(ye[t] − yi[t], xe[t] − xi[t]), (26)

where ye[t] and xe[t] is the estimated position of the target at a time sample t and xi[t] and yi[t]
is the planned position of the interceptor at a time sample t. If the interceptor is less than 1
meter from the estimated position of the target, the yaw angle is kept at the last calculated
value, to prevent it from jumping 180° as the interceptor flies over the target.

If the interceptor is using the net launcher, the interception algorithm has to be sig-
nificantly modified. The position of the following point (xp[m], described in equation 24) is
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Figure 19: Effective space of the launched net (green) and ideal distance from the target lnet.
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Figure 20: Interceptor equipped with a statically mounted net launcher has to compensate for
different pitch angles θ at different velocities by changing the relative altitude to the target
hnet.

adjusted so that the following point is an ideal point from which the net should be launched
at the target. The net should be launched from a sufficient distance to allow the net to unravel
itself to its full size. We can define a 3-dimensional space in front of the interceptor, where the
net can effectively hit the target. For example, the typical net launcher can fire a 3×3 meter
net at a distance of up to 10 meters, so the effective space can be defined as a cylinder with
a diameter of 2 meters, spanning from three to seven meters in front of the interceptor. In
this space, the net is fully unraveled, and it is still flying at high velocity, ensuring target hit.
Therefore, if the target is inside of this defined effective space, the net should be launched.
In the ideal case, the target should be in the center of this space, at an ideal distance lnet
from the interceptor, which is shown in figure 19 Similarly, with the passive net scenario, the
yaw angle of the interceptor has to be set to aim the launcher at the target, using the same
equation 26. Additionally, if the launcher is mounted directly to the frame of the interceptor,
the pitch angle θ has to be considered when aiming the net launcher, which is illustrated in
figure 20. To compensate for the pitch angle θ of the interceptor, the following point xp[m] has
to be offset both in altitude (hnet) and in horizontal distance (parameter dist in algorithm 3),
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to keep the 3D distance between the target and the interceptor close to the optimal lnet. The
offsets are calculated as follows:

hnet = cos(θ)dist,

distc = sin(θ)dist,
(27)

where distc is the new desired horizontal following distance behind the target, used as an
input in algorithm 3. The pitch angle of the interceptor is mainly influenced by three factors:
interceptor’s velocity, it’s air resistance and wind. Pitch angle needed to fly at a certain
velocity can be determined beforehand, by calculation or experimentation. Those values can
be stored in a look-up table, and desired offsets hnet and distc can be added to the reference
trajectory in the planning phase, based on the desired velocity of the interceptor. This allows
the MPC tracker to fly the trajectory with the offsets in mind from the start. During flight,
the actual pitch angle of the interceptor will vary from the predetermined value, because of
wind and other factors. This is compensated for by adding another correction on top of the
predetermined one, based on the current actual pitch angle. The magnitude of this correction
will be much smaller as most of the correcting is already accounted for by the predetermined
correction.

Interceptor
takeoff

vt < vs
Static
target
attack

Target
follow

Aimed

Aimed

Launch net

no

yes

no

noyes

yes

Figure 21: Flowchart of the net launcher interception algorithm.

In case of a static target, the interceptor will assume a position at the optimal distance
lnet for launching, that is closest to the current position of the interceptor. Coordinates of
this position xa and ya and the yaw angle θ of the interceptor are calculated as follows:
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xa = xe − cos(atan2(ye − yi, xe − xi))lnet,
ya = ye − sin(atan2(ye − yi, xe − xi))lnet,
θ = atan2(ye − ya, xe − xa),

(28)

where xe and ye are the estimated position of the target and xi and yi is the current position
of the interceptor. The Z coordinate is set to be either the same as the Z position of the
target or offset by a constant, depending on the offset of the net launcher mounting point.
The algorithm for attack with a launcher is visualized in figure 21.

Decision variable vt represents the total velocity of the target. If this velocity is lower
than a set threshold vs, the target is considered as stationary. The decision Aimed means that
the target is inside of the effective space of the launched net. In this case, the head-on attack
mode is not utilized. If the interceptor misses the target with the launched net, it can either
abort the attack or switch to the kinetic attack mode.

4.4 Target tracking

So far, it was assumed that the information about the position of the target was available
at all times. However, in the real world situations, target tracking is a very complex problem.
Ground-based tracking station equipped with powerful cameras, radio receiver or radars can
be used to detect and track the target. Such equipment is commercially available, as shown
in figure 22, and it can cover a much larger area then sensors onboard of the interceptor,
but the tracking information may not be precise enough to serve as the only mean of target
tracking. This tracking station can provide a rough estimate of the target’s position, and the
interceptor can then search for the target in the specified area.

Another method that can be used for initial target localization is being developed at
the Multi-robot Systems Group [7]. This method relies on a person, who can notice and
identify an intruding drone. The person then simply points a smartphone at the target drone.
The position and attitude of the phone are then determined with GPS and onboard inertial
measurement unit, which defines a line in space, on which the target is located. The interceptor
can then follow this line and search for the target with its onboard sensors. This approach
relies on a person in the loop for the initial target detection, as humans are still better in this
regard than computers.

As the interceptor is much closer to the target than the ground tracking station or
the person, it can track the target more precisely. For target localization, the interceptor
is equipped with some form of onboard tracking equipment. This equipment can consist of
radars, lidars, microphones, and cameras. The visible light camera offers a great combination
of low weight, low price, and availability of many different models. Drones can be detected in
the images from the visible light camera by using deep learning algorithms, mainly convolu-
tional neural networks (CNN). This approach was discussed and tested in [29], [3] and in [31],
showing promising results. A similar system based on the CNN approach is being developed
at the Multi-robot systems group [33]. However, it was not ready for integration at the time
of writing this thesis, so it could not be used in the experiments.
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Figure 22: Commercially available tracking station from Dedrone.

Figure 23: WhyCon marker (left). WhyCon detecting the marker in the Gazebo robotic sim-
ulator (right).

The goal of this thesis is not to develop a system for drone localization, but algorithms
for drone interception. To simulate target interception with an onboard computer vision target
localization system, a marker-based system is used as a substitute. This system is described
in [16] and [17], is also called WhyCon, and it offers fast and precise marker detection while
requiring only low computational power. The marker used by WhyCon (shown in figure 23)
was added to the target in the Gazebo robotic simulator, to test interception strategies with
visual target localization. WhyCon has similar disadvantages to other computer vision ap-
proaches, like limited range, limited field of vision, delays caused by the camera and image
processing or camera lens distortions, and therefore it serves as a good analog to a computer
vision target localization system based on CNNs.

The interception algorithm has to be modified when using any kind of visual target
localization system like WhyCon or CNNs, to account for their properties. Most notably
their limited range and field of view, which can be mitigated by using both more number of
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Figure 24: Flowchart of the target tracking algorithm.

cameras and more sophisticated cameras, but certain compromise will have to be made in
regards to the available onboard computing power and payload of the interceptor. In case of
this thesis, the interceptor will be only equipped with one statically mounted camera for the
purposes of target tracking.

In the scenario with onboard visual target localization system, the interceptor can either
obtain an initial estimate of the target’s position, or it can stay in a selected position or guard
path, and look for nearby targets. Once a target is detected with the onboard camera, the
yaw angle reference of the interceptor is set in a way that the camera is keeping the target in
the middle of the image frame, for best tracking results. The yaw angle reference is calculated
as follows:

θ[t] = atan2(ye[t] − yi[t], xe[t] − xi[t]), (29)

where θ[t] is the yaw angle reference at time sample t, xe[t] and ye[t] is the estimated position
of the target at a time sample t and xi[t] and yi[t] is the X and Y position reference of the
interceptor at time sample t. The task of keeping the target centered in the camera image
is much more difficult in case of a moving and maneuvering target. If the target tracking is
lost due to the target flying out of range or out of the field of view, the estimator can still
produce new estimates of the target’s position, as shown in figure 3. These estimates can be
used to regain target tracking, but the uncertainty of the estimate rises quickly, which means
that the estimate can be reliably used only for several seconds after the tracking is lost.

If an onboard visual target localization system is used, another algorithm, shown in
figure 24, is used to deal with target tracking. The state Patrol can include many different in-

37/67



4 INTERCEPTION

terceptor behaviors, the interceptor can, for example, hover on a defined position while slowly
rotating around its Z axis, to scan the surrounding area with its onboard camera, or it can fly
on a predefined patrol route, or if a rough initial estimate of the target’s position is available,
the interceptor can fly to this position and rotate around its Z axis to scan for the possible
target. If the state Intercept is reached, the interceptor continues with desired interception
algorithm, shown for example in figures 18 or 21. The decision Tracking available gives a
positive result if the onboard camera is currently tracking the target. The decision Timeout
reached gives a positive result if the available estimate is based on tracking information that
is older than a certain time tt, which signifies that the estimate is not accurate anymore.
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5 Tools for verification

Work presented in this thesis was verified in two phases. Initial experiments and algo-
rithm verification was done in Gazebo robotic simulator [24] and was followed by experiments
with real hardware. In this chapter, the Gazebo simulator and the software platform used will
be described, followed by a description of the Multi-robot Systems group’s hardware platform
(MRS platform), which was used for experimental verification.

5.1 Software platform

The main component of the used software platform is Robot Operating System (ROS,
[27]), as it greatly facilitates system development. ROS is in fact not an operating system,
but a framework and a set of tools designed to control robots. It enables to run and manage
multiple processes in parallel as different nodes and provides a standardized communication
link between them which works on the publisher-subscriber model. ROS also provides low-
level device control, as many sensors have their official ROS packages, with appropriate drivers
and nodes. These qualities make ROS a good link between hardware and software, while the
node structure and standardized communication also allow for parallel software development.

5.1.1 Gazebo robotic simulator

ROS can also be easily connected with the Gazebo robotic simulator, which can be used
together with firmware from the PixHawk autopilot for Simulation In The Loop (SITL). The
Gazebo simulator provides a powerful physics engine, which can simulate real-world systems,
as well as 3D visualization. The software running on the simulated UAV is the same software
that runs on the real UAV, in the same ROS environment. All sensors used on the real UAV
can be simulated as well and can have the same interface and characteristics as their real
counterparts. This is very useful for evaluation and testing of new algorithms and software,
and it allows for faster development and integration with real hardware. Visualization provided
by the Gazebo simulator is shown in figure 25.

5.2 Hardware platform

The hardware platform used for experimental verification in this thesis is the multicopter
platform developed by the Multi-robot Systems Group. It is designed for autonomous aerial
experiments, and is highly modular, with predominant use of commercially available parts and
sensors. This platform was initially developed for the MBZIRC 2017 robotic competition([21],
[4]), and it now serves for research and experimental purposes ([30], [26], [35]). The base of the
platform is a DJI F-550 hexacopter frame and 2312E motors. Six motors are used to provide
additional payload capacity over the more common four motor quadcopters of similar size.
PixHawk flight controller is used for low-level motor control, as well as a basic localization
unit. This controller includes an internal inertial measurement unit, barometer and an external
module with a magnetic compass and GNSS receiver. Based on the measured data, PixHawk
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Figure 25: Two UAVs in the Gazebo robotic simulator.

uses an Extended Kalman Filter (EKF, [11]) to estimate states of the UAV, however additional
sensors are used to increase the precision of this estimate.

5.2.1 Additional sensors

Garmin LIDAR-Lite v3 serves to determine the exact altitude over variable terrain
features, by mounting it facing directly downwards on the UAV platform. This sensor provides
measurements with frequency up to 500 Hz, at a range of 5 cm to 40 m with an accuracy of
±2.5 cm. Since the sensor is mounted firmly, the tilt of the UAV introduces cosine error into
the altitude measurement. However, this can be compensated for easily, as the attitude of the
UAV is measured by the PixHawk flight controller.

To further increase positional accuracy, Tersus BX305 RTK (real-time kinematics) dif-
ferential GNSS is used. This system requires a stationary GNSS receiver, called a base station,
which is placed at a known location. The position of this location can be obtained by aver-
aging regular GPS positions for a longer period of time. The base station then broadcasts
information about its position and data about carrier phase measurements for all visible satel-
lites to mobile rovers (the UAVs in our case). The mobile rovers can then use the information
received from the base station to compensate for errors in the GNSS solution. Using these
corrections, the rovers can obtain several different solutions, based on the number of visi-
ble satellites, their position in the sky and environmental variables like weather. Those are
DGPS, RTK Float, and RTK Fix, in order of increasing accuracy. The positional accuracy
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with the best solution, RTK Fix, is ±15 mm. Note that this is only a relative accuracy, as
the whole coordinate system is offset by the error in the defined position of the base station
versus its actual position. If this error is sufficiently reduced, the coordinates from the RTK
will correspond to absolute coordinates. The BX-305 supports GPS, GLONASS, and Beidou
satellite constellations and provides positional and velocity information on frequency up to
20 Hz. Measurements from the lidar and RTK GNSS are fused with the measurements from
Pixhawk to provide accurate state estimates for the UAV.

Figure 26: Architecture of the Multi-robot Systems group UAV platform.

Figure 27: Hardware platform used at the Multi-robot Systems group in MBZIRC configura-
tion.

The hexacopters are equipped with an Intel NUCi7RYH, which serves as the main
computer. With a fully featured Intel Core i7 dual-core x86-64 processor, it provides enough
computing performance for difficult applications like computer vision or complex planning,
to run onboard the platform. A custom board was designed by the author of this thesis
to provide a low-level interface between the main Intel NUC computer and other devices
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and sensors. This board uses an 8-bit ATxmega 128A4U microcontroller, which is running
FreeRTOS, a real-time operating system, which facilitates running of multiple tasks in parallel.
To communicate with the high-level computer, FT232RL serial to USB converter is used.

The board is fitted with a socket to accommodate an XBee Pro radio module, which
provides wireless communication between the RTK base station and the RTK receiver on the
UAV. The XBee modules offer a reliable low-speed communication link and can also be used
to relay small packets of information between different UAVs. The board also features two
additional UART interfaces with selectable voltage levels, one of which is used to relay RTK
corrections directly to the RTK receiver board, an I2C bus, which is used for communication
with the Garmin LIDAR, Two PWM pins with selectable voltage levels and four general
purpose pins with AD converters.

The platform is also fitted with two cameras, an mvBlueFOX global shutter, high fram-
erate camera and a full HD Mobius ActionCam. Image streams from both of these cameras
can be used by the main computer for purposes of computer vision, localization or others.
Diagram of the platform architecture is shown in figure 26, and the whole robotic platform
is shown in figure 27.
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6 Experimental verification

In this chapter, the experimental verification with the Gazebo robotic simulator and real
hardware is presented. The kinetic attack scenario simulated in Gazebo will be presented first,
followed by the same scenario but with the use of the WhyCon system for target localization.
Then two experiments with real hardware will be presented, the kinetic attack scenario with
static and dynamic targets, and the net launcher scenario with static and dynamic targets.

6.1 Kinetic attack scenario in simulations

The Multi-robot Systems Group platform can serve both as the interceptor and as the
target in the simulations, for the sake of not needing to implement a different multicopter
model for the simulations. As the newly implemented MPC tracker, described in this thesis,
allows for detailed settings of maximum velocities, accelerations, and jerks in all axes, the
dynamical parameters of the target can be changed as needed. The target is then set to either
stay in position in case of the static target attack or fly through randomly selected waypoints
in an assigned 3-dimensional area. The goal of the interceptor was then to disable the target
by colliding with it, using the algorithm shown in figure 18. The information about target’s
position was available to the interceptor at all times, and therefore it could be fed to the
estimator continuously. Based on the estimated position and future trajectory of the target,
the interceptor planned it’s trajectories and collided with the target.

UAV Parameter Value UAV Parameter Value

Interceptor vhmax 9 m/s Target vhmax 4 m/s

ahmax 3 m/s2 ahmax 2 m/s2

ȧhmax 6 m/s3 ȧhmax 3 m/s3

vvmax 3 m/s vvmax 2 m/s

avmax 2 m/s2 avmax 2 m/s2

ȧvmax 3 m/s3 ȧvmax 2 m/s3

Table 4: Parameters for the MPC tracker of the interceptor and the target in the kinetic
attack scenario.

One instance of this scenario is shown in figure 28. In this case, both the target and
the interceptor are starting at an altitude of 2 meters, and the interceptor is 100 meters away
from the target. The target starts following random waypoints in a 100×100×10 m area, and
the interceptor begins its attack after 10 seconds, to give the target time to pick up velocity
in a random direction. The parameters of the MPC tracker for the interceptor and the target
are shown in table 4

Reference tracking in the X and Y coordinates is shown in figure 29. The reference is
generated by the MPC tracker and it is tracked by the non-linear SO(3) controller. The gains
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Figure 28: Simulation of the kinetic attack scenario, with the horizontal trajectory (left) and
altitude in time (right).
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Figure 29: Reference tracking in the X (left) and Y (right) coordinates.

of the non-linear SO(3) controller have to be tuned accordingly, to ensure stable behavior and
good reference tracking. Figure 30 shows trajectory and altitude estimates produced by the
LKF estimator at various parts of the flight.

Snapshots from the Gazebo simulator visualization are shown in figure 31. They capture
the interceptor following the target and subsequently attacking it and colliding with it.

6.2 Required interceptor performance

To effectively eliminate the target, the interceptor should be capable of flying faster than
the target. Successful interception is possible even if the target is flying faster than the inter-
ceptor, but then the target has to fly in a favorable direction and not try to avoid interception
actively. Influence of different speeds of the target and intercepting drone was examined in
a series of simulations. The target is flying through random waypoints in a 100×100×20 m
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Figure 30: Estimates of the future position of the target. Horizontal situation (left) and
altitude in time (right).

Figure 31: Interceptor approaching the target from behind (left) and interceptor colliding
with the target (right).

area, while the interceptor is trying to catch up with the target. The interceptor is starting
at a position that is 50 meters away from the initial position of the target. The parameters
of the MPC tracker for interceptor and target are shown in table 5. The only parameter that
was changed was the target’s maximum horizontal speed vhmax. We can define interceptor’s
velocity advantage as follows:

∆v = vhmaxi
− vhmaxt , (30)

where vhmaxi
is the interceptor’s maximum horizontal velocity constraint and vhmaxt is the

target’s maximum horizontal velocity constraint.

Ten different simulations were conducted for six different values of ∆v and time to in-
terception was recorded. Time was measured from the initiation of the interception algorithm,
to the point at which the interceptor is less than 1 meter away from the target. The recorded
times are shown in table 6

As expected, if the target is flying slowly, the interceptor can reach it earlier and with
much more consistent times. If the target can fly at the same speed as the interceptor, the
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UAV Parameter Value UAV Parameter Value

Interceptor vhmax 10 m/s Target vhmax variable

ahmax 3 m/s2 ahmax 2 m/s2

ȧhmax 6 m/s3 ȧhmax 3 m/s3

vvmax 3 m/s vvmax 2 m/s

avmax 2 m/s2 avmax 2 m/s2

ȧvmax 3 m/s3 ȧvmax 2 m/s3

Table 5: Parameters for the MPC tracker of the interceptor and the target while testing the
required performance.

interceptor more or less relies on luck and needs the target to fly in a favorable direction or
to stop. Good and consistent results start to show up only when the interceptor can fly more
than 2 m/s faster than the target.

∆v (m/s) 0 1 2 3 4 5

Time of interception 21.8 39.5 35.4 10.5 24.6 14.3

for each attempt (s) 74.1 35.8 20.9 37.1 18.1 16.2

42.1 72.2 34.1 18.5 15.7 17.8

32.6 22.1 32.4 15.9 15.5 15.1

74.8 25.8 24.3 15.8 20 18.7

23.8 46.6 20.7 36.9 20.2 16.9

95.8 29.5 16.3 17.3 22.6 17.5

52.8 37.4 19.4 31.6 20.3 13.1

58.3 46.6 42.4 14.8 14.9 17.1

33.2 39 26.2 22.6 15.2 12.4

Avg. time (s) 50.9 39.5 27.2 22.1 18.7 15.9

Table 6: Time to interception with different target maximum horizontal velocities.

6.3 Visual target localization in simulation

To test the interception algorithms in simulation, a box with WhyCon markers was
placed on the target. The interceptor is equipped with a forward facing camera and can detect
the pattern at a maximum distance of 8 meters. The outer diameter of the used pattern is
122 mm, and the inner diameter is 50 mm. The size of the pattern can be increased, which also
increases the maximum detection distance, but larger patterns are not suitable for real-world
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UAV Parameter Value UAV Parameter Value

Interceptor vhmax 9 m/s Target vhmax 4 m/s

ahmax 3 m/s2 ahmax 2 m/s2

ȧhmax 6 m/s3 ȧhmax 3 m/s3

vvmax 3 m/s vvmax 2 m/s

avmax 2 m/s2 avmax 2 m/s2

ȧvmax 3 m/s3 ȧvmax 2 m/s3

Table 7: Parameters for the MPC tracker of the interceptor and the target in the kinetic
attack scenario with onboard visual target localization system.

experiments, as they can interfere with the airflow form the propellers and are susceptible to
wind. The field of view of the camera is 116 degrees, matching the field of view of the real
Mobius camera used on the MRS platform. The resolution is 1280×720 pixels, also matching
the Mobius camera.

In this case, if the interceptor was not tracking the target, it returned to its takeoff
position, at an altitude of 4.5 meters and started slowly rotating around its Z axis to scan
for the target. The target was following random waypoints in a 40×40×5 m area around the
takeoff point of the interceptor. Once the target was detected, the interceptor attempted to
collide with the target.

The parameters of the MPC tracker for the interceptor and target are shown in table 7.
The trajectories of the interceptor and the target are visualized in figure 32. The output of
the estimator is shown in figure 33. Snapshots from the simulation are shown in figure 34.

This experiment also starts to encounter delays in the positional information of the
target, which are caused by the image capture and image processing. This accounted for
about 100 ms of delay between the true position of the target and the position that was
available to the interceptor’s trajectory planning algorithm. To compensate for this delay,
the estimator produces an estimate of the target’s position 100 ms in the future, which is
then used for planning the interceptors trajectory. In the real world, this issue is even more
noticeable, as the delays caused by a real camera are even longer, as the image has to be
captured, transmitted to the computer by USB and then processed.

6.4 Kinetic attack scenario with real UAVs

Since the kinetic attack scenario is the hardest in terms of control and planning, as
described in section 4.1.1, it was tested with real hardware. The Multi-robot Systems Group’s
F550 platform served both as the interceptor and as the target. Since this platform is very
expensive and hard to replace, and there is a high probability of serious damage being inflicted
on both the target and the interceptor during the kinetic attack scenario, a long, thin wooden
bar was fitted to the target. This bar extended upwards from the body of the target, and
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Figure 32: Simulation of the kinetic attack scenario with onboard visual target localization
system. Horizontal trajectory (left) and altitude in time (right).
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Figure 33: Estimates of the target position in X and Y axes. Dark blue denotes that the
estimate was produced while a measurement was available, and light blue denotes that no
measurement was available at that time (target was not detected by the camera).

Figure 34: Detection of the WhyCon pattern (left) and interceptor moments before colliding
with the target (right).

48/67



6 EXPERIMENTAL VERIFICATION

Figure 35: The target drone fitted with a balloon (left) and the interceptor (right).

an inflated balloon was attached to the top. The balloon on the rod was approximately 1
meter higher than the actual body of the drone, to allow for the interceptor to hit it and pop
the balloon, without damaging the target drone or itself. The target fitted with the balloon
and the interceptor are shown in figure 35. The only modification to the trajectory planning
algorithm of the interceptor was offsetting all the planned trajectories by 1 meter in the Z
direction.

Since the point of this experiment was to test the trajectory planning and control at high
speeds, visual target localization system was not used. Instead, the target relayed information
about its current position directly to the interceptor through Wi-Fi. This information was
then used to produce an estimate of the states of the target by the estimator. The Multi-robot
Systems Group’s platform is equipped with an RTK capable GNSS receiver, which allows for
the positional information of the target and the interceptor to be precise enough to perform
the kinetic attack scenario. Normal GNSS receivers usually operate with an error of up to
several meters, which is not precise enough for the kinetic attack scenario. That is why the
balloon is mounted to the expensive platform equipped with the precise RTK GNSS receiver,
and not to a cheaper and smaller drone.

If a visual target localization system is used for target localization, there is no need for
the interceptor to be equipped with the expensive RTK capable GNSS receiver, as the position
of the target is calculated relatively to the position of the interceptor, therefore eliminating
problems with inaccurate localization of the interceptor itself.

6.4.1 Static target

The scenario with a static target was tested first, to verify the functionality of all parts
of the system. The target was hovering in place, as the interceptor approached it and popped
the balloon with its propellers, which is shown in figure 36 and 37. The experiment was
repeated three times with the same setup, and the balloon was successfully popped every
time. The wooden rod, which held the balloon in position, was also hit by the propellers of
the interceptor, but it did not inflict any damage to them while being cut. This experiment
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demonstrated that the system worked repeatedly with real hardware, and it validated the
static target attack part of the interception algorithm.

Figure 36: The interceptor approaching the target with the balloon (left) and the interceptor
popping the balloon (right).

Figure 37: Interceptor attacking the balloon mounted to a static target.

6.4.2 Dynamic target

The kinetic attack scenario with a dynamic target was tested in a similar fashion as the
scenario with a static target. A long wooden rod with a balloon was again attached to the
target, but this time the target was flying through randomly selected waypoints in a 50×20 m
area. For safety reasons, the altitude of the target was kept at a constant value.
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UAV Parameter Value UAV Parameter Value

Interceptor vhmax 8.33 m/s Target vhmax 4 m/s

ahmax 2.33 m/s2 ahmax 2 m/s2

ȧhmax 6 m/s3 ȧhmax 3 m/s3

vvmax 2 m/s vvmax 1 m/s

avmax 2 m/s2 avmax 1 m/s2

ȧvmax 3 m/s3 ȧvmax 2 m/s3

Table 8: Parameters for the MPC tracker of the interceptor and the target in the real-world
kinetic attack scenario with balloons.

Since the MRS platform uses lidar to measure its altitude, the Z coordinate represents
the actual altitude over terrain, which was in case of this experiment significantly uneven. As
the interceptor is tilting while flying, the lidar is not pointing directly below the interceptor,
but to the side at an angle. The difference in measured values is compensated for, as the
attitude of the interceptor is known, but the physical level of the terrain is not even, which
cannot be compensated for easily. This fact, combined with the target changing altitude while
flying, would increase the risk of the interceptor unintentionally colliding with the target
drone, causing a lot of damage. For this reason, the altitude of the target drone was kept
constant. The interceptor also started its attack run at an altitude of 9 meters, to prevent it
from crossing the flight level of the target drone.
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Figure 38: Kinetic attack scenario with real drones. Horizontal trajectory (left) and altitude
in time (right).

The target took off first and started flying through random waypoints in the designated
area. The interceptor took off second and then proceeded with intercepting the target. A
camera was mounted on the interceptor, and the interceptor controlled its yaw angle to keep
the camera pointed at the target, to simulate the usage of a visual target localization system or
the passive net mounted on the bottom of the intercepting drone, as described in section 4.1.2.
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6 EXPERIMENTAL VERIFICATION

Parameters of the MPC tracker for the target and the interceptor are shown in table 8. The
new references for the target drone are set as steps, so the target drone will reach its horizontal
velocity constraint while flying between waypoints. The initial experiments were done with a
simplified interception algorithm, omitting the Target follow state (figure 18), and replacing
it with Direct attack. One of these experiments is shown in figure 39, with the horizontal
situation and altitude in time shown in figure 38. This set of experiments is also shown in a
video https://www.youtube.com/watch?v=RTzac8PLpkY and on the enclosed DVD.

Figure 39: Interceptor approaching the target (left) and interceptor is about to hit the balloon
(right).

Another set of kinetic attack experiments was conducted with the full interception
algorithm, as shown in figure 18. The flight zone for the target was reduced to 30 × 15
meters, because the experimentation area was smaller. This led to the target changing its
direction of flight more often, making the interception task harder.
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Figure 40: Kinetic attack scenario with real drones and the full interception algorithm. Hori-
zontal trajectory (left) and altitude in time (right).

The same parameters (table 8) were used for the MPC tracker. One of these experiments
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is shown in figure 41, with the horizontal situation and altitude in time shown in figure 40.
Compilation video from this set of experiments is located on https://www.youtube.com/

watch?v=D1lygdYu0m0 and also on the enclosed DVD.

Figure 41: Interceptor approaching the target (left) and interceptor is about to hit the balloon
(right).

6.5 Net launcher scenario with real UAVs

To further validate the system capabilities, the interceptor was fitted with a net launcher.
The used launcher is originally intended for capturing wild animals, but its performance is
suitable even for capturing drones. It is powered by a single-use, 16 g CO2 cartridges, and
it launches a 3×3 m net with an initial velocity of up to 10 m/s. The construction of the
launcher is very rugged, which is not ideal for aerial use, as the mass of the loaded launcher
is 1090 g.

Figure 42: Interceptor equipped with a net launcher (left), and net launcher servo triggering
mechanism (right).
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As the net launcher is intended for hand-held usage, the triggering mechanism is a
mechanical push-button. To activate the trigger remotely, a servo motor was fitted to the
launcher on a 3D printed mount. The servo motor can push the trigger button, and it is
controlled by the custom ATxmega control board, designed by the author of this thesis,
which is mentioned in 5.2.1. The board interfaces with the main computer, meaning that the
launcher can be triggered directly from ROS (5.1). The interceptor equipped with the net
launcher and the servo triggering mechanism is shown in figure 42. If higher payload capacity
was available, the launched net could stay attached to the interceptor, allowing it to carry
the captured target away.

The MRS platform itself has a mass of approximately 3 kg, and if the launcher is
mounted, the mass exceeds 4 kg, which is much higher than the maximum recommended
takeoff mass of 2.4 kg [1]. The interceptor is still capable of flying with a payload as high as
this, but its thrust reserves are much lower, meaning that it cannot perform any aggressive
maneuvers. The current draw from the battery is also substantial in this configuration. While
hovering, the drone draws approximately 50 A of current, which is very close to the 60 A
rated current of the used XT60 connectors. Any aggressive maneuvers would require an even
higher current draw, meaning the connectors could melt, or weld together. This meant that
the maximum velocities and accelerations of the interceptor had to be lowered, to prevent
any damage. The used parameters are shown in table 9.

Figure 43: The target in flight, equipped with the WhyCon pattern (left), and size comparison
between the target and the interceptor (right).

The target for this scenario was not another MRS platform, but a simple small quad-
copter. This quadcopter was not equipped with any form of GNSS or Wi-Fi, which meant that
it could not relay any information to the interceptor. The target drone was equipped with
a WhyCon marker (figure 23), which could be detected by the interceptor’s onboard cam-
era. In this scenario, the WhyCon visual target localization system served as the only means
for target localization. The target drone and its comparison to the interceptor is shown in
figure 43.

The target was controlled manually, as it is not capable of autonomous flight. Since
the target does not possess any assistance mode, like altitude or position keeping, its flight
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UAV Parameter Value

Interceptor vhmax 5.00 m/s

ahmax 1.5 m/s2

ȧhmax 2 m/s3

vvmax 1 m/s

avmax 1 m/s2

ȧvmax 2 m/s3

Table 9: Parameters for the MPC tracker of the interceptor in the net launcher scenario.

was much more erratic than that of a standard commercially available drone, like the DJI
Phantom. This made the interception task harder, to test the system properly. The interceptor
was positioned to an initial position at an altitude of 4.5 m and waited for the target to appear.
As the WhyCon pattern was detected, the interceptor started to follow the target, and after
it reached a suitable position, the net was launched, and the target was captured.

The launching of the net was triggered only if three specific conditions were met at the
same time, defining the effective space of the net (figure 19). The conditions were specified as
follows:

Tx1 < dist3D(xint,xtgt[t]) < Tx2,

Tz1 < (zint − ztgt[t])− ow < Tz2,

TΨ1 < (Ψint − atan2(ytgt[t] − yint, xtgt[t] − xint)) < TΨ2,

(31)

where dist3D is the three dimensional distance, xint is the current position of the interceptor
(consisting of xint, yint and zint), xtgt[t] is the estimated target position at a time sample t
(consisting of xtgt[t], ytgt[t] and ztgt[t]), while the time sample t is set to correspond with the
estimated system delay caused by image processing and other factors. Ψint is the interceptor’s
yaw angle. Variables Tx1, Tx2, Tz1, Tz2, TΨ1 and TΨ2 specify the thresholds for the conditions,
and ow is the Z offset caused by camera and WhyCon pattern placement. This set of condition
defines that the target has to be at a certain distance and relative altitude to the interceptor,
while the interceptor’s front is pointed at the target. If all three conditions are met at the
same time, the net is launched. For the experiments, following values were used:

Tx1 = 3 m, Tx2 = 5 m, Tz1 = −0.3 m, Tz2 = 0.3 m,

TΨ1 = −0.06 rad, TΨ1 = 0.06 rad, o2 = 0.7 m.
(32)

Two experiments were conducted with a static target, although static, in this case,
meant that the pilot was trying to keep the target in the same position, still resulting in a
lot of movement. The target was captured in both cases, which is shown in figures 44 and 45.
In the second case, the target was not hit in an ideal way, which was caused by wrongly
estimating the delay in the system. The whole process of the camera capturing an image,
relaying it to the main computer, image processing, commanding the net launcher to launch
and the servo motor pushing the trigger takes approximately 350 milliseconds. During these
experiments, this delay was not estimated correctly, causing the interceptor to launch the net
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later and almost missing the target. The same issue caused a miss in the next scenario with
a moving target, which prompted a reevaluation of the estimated delay and correction of the
issue.

Figure 44: Target being captured by the launched net, aerial perspective.

Figure 45: The interceptor launching a net and hitting the target.
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6.5.1 Dynamic target

The final experimental scenario involved the same setup as before, with the only dif-
ference that the target was now moving away from the interceptor. The target overflew the
interceptor, entering the camera frame, and continued flying away from the interceptor at
a speed of 2-3 m/s, again with side to side movement due to manual control. In the first
instance of this scenario, the target was missed because of the mentioned delay. The delay
issue was fixed, and in the next attempt, the target was hit square on. The entire interception,
from the first detection of the WhyCon pattern to the launching of the net, took less than
five seconds. Figure 51 shows the entire scenario from the interceptor’s point of view, while
figures 46 and 47 show the position of the interceptor and the estimated position of the target
in 3D. Figures 48 and 49 show the estimated position of the target in X, Y and Z directions,
as well as the total estimated velocity. Figure 50 the shows the status of the decision variables
for net launching, and the yaw angle of the interceptor compared to the yaw angle at which
the target is “seen” by the interceptor. The experiments with the net launcher are also shown
in a video located on https://www.youtube.com/watch?v=Z4lSam-lpN8 or on the enclosed
DVD.
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Figure 46: The interceptor detects the target with its onboard camera and begins the inter-
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Figure 47: The interceptor aligns with the target and launches the net at this point.
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Figure 48: Estimated target position in X (left) and in Y directions (right).
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Figure 51: Dynamic target scenario from the point of view of the interceptor, including the
output of WhyCon. Images have been cropped for better visibility.

6.6 Real-world utilization

The experiments described in this chapter verified the performance of the system in
different scenarios. If precise and reliable target localization is available (as was the case in the
kinetic attack scenario and localization with RTK GNSS), the system is able to consistently
hit the randomly flying target. As described before, the kinetic attack scenario is the hardest
in terms of control and trajectory planning. Therefore, we can assume that if the system is
able to hit the target in a kinetic attack scenario, it will also be able to hit it with a passive
net or with a net launcher. This means that the system would be able to intercept other
drones if a good target localization information was available.

The big hurdles in a real-world deployment of this system are reliability and the target
localization. The MRS platform is intended for scientific experiments, with frequent changes
in hardware and software configuration, which sometimes leads to unexpected problems. In
a real-world application, the interceptor drone would have to be very reliable and work in a
wide range of environmental conditions. This could be achieved by selecting a reliable and
proven hardware platform, along with a lot of testing. The target localization system would
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have to be precise, with a low probability of false detections, for it to be usable in real-world
applications, which is a very hard requirement. The work presented in this thesis successfully
demonstrates techniques for target interception, but a working real-life commercially viable
system would require a large amount of further work.
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7 Conclusion

The goal of this thesis was to develop an autonomous system for intercepting small fly-
ing aircraft with an unmanned multirotor drone. The developed system consists of a strategic
trajectory planner, which plans different trajectories according to the configuration of the in-
tercepting drone and the used localization system, an improved MPC control scheme, which
relies on a custom solver generated by CVXGEN and allows for aggressive maneuvers and
usage of an infeasible reference trajectory, and a linear Kalman filter working as a state ob-
server, which estimates and predicts the states of the target, based on available measurements.
Many experiments were conducted in the Gazebo robotic simulator, as well as the real world
to verify the performance of the system in different configurations of the intercepting drone
and different target tracking approaches.

All of the tasks were successfully fulfilled, according to the assignment:

• The author familiarized himself with the Multi-robot Systems Group’s UAV platform,
along with the Robot Operating System.

• State observer was designed and implemented in chapter 2, to estimate and predict
states of the target UAV, based on measurements from a computer vision system or
other sources.

• The current model predictive control scheme was improved in chapter 3, by introducing
a new solver generated using CVXGEN, with improved state constraints. This enabled
the usage of infeasible trajectories as references, which facilitates trajectory planning
for interception.

• Various interception strategies based upon different scenarios were designed and imple-
mented in chapter 4.

• WhyCon marker based computer vision system was integrated with the system, for the
purposes of target detection.

• The system was tested in chapter 6 during various scenarios in the Gazebo robotic
simulator.

• Performance of the system was tested in the real world by hitting balloons attached to
another UAVs. An additional scenario with a net launcher was also successfully tested,
to demonstrate the flexibility of the system. This scenario was beyond the original thesis
assignment.

The improved MPC tracker designed and implemented in this thesis replaced the older
implementation on the Multi-robot Systems Group’s platform and, it is being used since as
the default tracker in most of the experiments conducted by the Multi-robot Systems Group.
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7.1 Future work

To further improve the system and make it usable in the real world by third parties, the
intercepting drone needs more payload capacity to carry the net launcher or a similar device
for target capture. If the system is to be used over a populated area, the interceptor should
also be able to carry the captured target away, without the target hitting the ground, to
prevent damage. If the passive net is used, the target will tangle into it and remain attached,
and if the net launcher is used, the launched net can remain attached to the interceptor with a
tether, or the net can be equipped with a small parachute, to reduce the velocity of the falling
target. The WhyCon computer vision system has to be replaced with another localization
system, which can detect targets without markers. A possible candidate is computer vision
system based on deep learning. To improve the coverage of the system, it should be integrated
with a form of initial localization system, either a ground-based tracking station or a human
operator, which will provide an initial estimate of the target’s position for the intercepting
drone.
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APPENDIX 8 DVD CONTENT

8 DVD Content

Table 10 lists names of all root directories on the enclosed DVD.

Directory name Description

thesis this thesis in pdf format

src/thesis LATEX source codes of this thesis

src/interception source codes for the interception ROS nodes

videos videos from the experiments

Table 10: DVD Content
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