
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Planning for a Team of Cooperating Mobile
Robots

Tomáš Rybecký

Supervisor: RNDr. Miroslav Kulich Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics
May 2018

ii

Acknowledgements Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 25. May 2018

............................
signature

iii

Abstract

This thesis aims at the topic of route
planning for groups of cooperating agents.
Several approaches were discussed, and
experiments were performed to compare
their attributes. For that purpose, all al-
gorithms were implemented in C++ and
provided the same set of randomly gen-
erated maps and assignments. Following
that, the benefits of all presented algo-
rithms are discussed introducing possible
practical usage and future development.

Keywords: route planning, cooperative
robots

Supervisor: RNDr. Miroslav Kulich
Ph.D.
CIIRC,
Jugoslávských partyzánů 1580/3
Praha 6

Abstrakt

Tato bakalářská práce se zaměřuje na
téma plánování trajektorií pro skupiny
kooperujících agentů. Obsahuje popis ně-
kolika postupů doplněných o experimenty
srovnávající jejich vlastnosti. Za tím úče-
lem byly všechny algoritmy implemento-
vány v jazyce C++ a testovány na řadě
náhodně vygenerovaných map a zadání.
Následně byl rozebrán přínos všch pre-
zentovaných algoritmů společně s jejich
možným praktickým využitím i budoucím
vývojem.

Klíčová slova: plánování trajektorií,
kooperace robotů

Překlad názvu: Plánování pro tým
kooperujících mobilních robotů

iv

Contents

1 Introduction 1

2 Context-aware route planning 3

2.1 Model . 3

2.2 Algorithm . 6

2.3 Characteristics 8

3 Proposed algorithm 9

3.1 Agents influence 9

3.1.1 Theory 10

3.1.2 Distance matrix 10

3.2 Algorithms 12

3.2.1 Direct group 13

3.2.2 Growing Group 14

3.3 Optimalization 16

4 Experiments 17

4.1 Motivation 17

4.2 Experiment setup 17

4.3 Compared algorithms 18

4.4 Measuring 19

4.5 Results . 20

4.5.1 Failure rate 20

4.5.2 Joint plan cost 20

4.5.3 Makespan 21

4.5.4 Time . 21

4.6 Summary . 22

5 Conclusions 27

A Bibliography 29

B Enclosed CD contents 31

C Project Specification 33

v

Figures

2.1 Warehouse example illustration
with a resource graph. 4

2.2 Example of a corridor problem as
presented in [1]. 5

3.1 Possible time windows relations
(without identity) with marked
intersections or needed shift. 12

3.2 One agent taken to group. 14

3.3 Preserving partial plans in
permutations. 16

4.1 Generated map with 1350 edges. 18

4.2 Failure rate. 20

4.3 Joint cost, DG in the left column
and GG in the right column. 24

4.5 Makespan, DG in the left column
and GG in the right column. 25

4.7 Time. 26

4.8 Time to plan each assignment
when received. 26

vi

Chapter 1

Introduction

In the recent years and in the years to follow, automatization of the industry is
one of the most important tasks for robotic sciences. Automated warehouses,
automatic airport departure systems and other applications as well allow
higher traffic combined with the better effectivity of work needed in the thick-
ening field of e-commerce [2] [3]. The other contribution of automatization
is releasing human resources from lower qualified jobs and bringing more
prospective employers to fields dependent on humans.

One of the main tasks in automated warehouses or airports development
is the cooperation of robots used for manipulation of goods or managing
planes traffic respectively [4] [1]. Several solutions were presented during the
previous decades attempting to find the near-optimal algorithm [5].

This thesis develops an approach presented by A. W. ter Mors in [1],
that views the map as a three-dimensional matrix of time windows and
uses a variation of a basic A∗ algorithm to find a path through the empty
time windows. The development aims at increasing the effectiveness of the
algorithm by lowering the susceptibility to order of planned assignments. With
that, an algorithm for adding one agent to a situation of already running
tasks is presented.

In Chapter 2, the Context-aware route planning algorithm is presented and
described. Several improvements are addressed with both their advantages
and disadvantages. Chapter 3 then introduces the main idea of this thesis,
clarifies the theoretical background and describes algorithms presented in
this thesis.

1

1. Introduction
Experiments and their aims are presented in Chapter 4 with a discussion

of their results among all compared algorithms. Chapter 5, finally, contains a
conclusion of the tested approaches and their possible future development.

2

Chapter 2

Context-aware route planning

Context-aware route planning (CARP) is an approach to solving the problem
of a set of agents (vehicles in Automated Guided Vehicle Systems) each
attempting to finish its task with the lowest possible time cost. This task
is combined with the demand for avoiding collisions and deadlocks by con-
structing a set of conflict-free plans.

2.1 Model

The problem is modeled on a resource graph G = {V,E} representing the
working area. It is formed by resources, matching for example intersections
in a warehouse, forming the vertices V of the graph. Each resource r ∈ V
holds information of its use during the time and has its defined duration
d(r), a minimal time it takes the agent to pass through the resource. Usage
during time creates time windows in resources saying whether their capacity
is reached or they are free in any time interval. These time windows narrow
the set of physical connections to edges E standing only for the available
paths. A simplification is made by assuming unit edges length.

An illustration of the graph G displayed over a simple warehouse scheme is
in the Figure 2.1. The graph is shown from the point of view of a newcomer
at one moment in time. Grey bordered lines are the physical lanes, while
in blue, the actual edges E of graph G at the exact time are displayed with
vertices V as their intersections. The lighter parts show that the vertices

3

2. Context-aware route planning..............................

Figure 2.1: Warehouse example illustration with a resource graph.

marked red, which they lead to, have reached their capacity and cannot be
accessed by anyone else. The result for the newcomer is that it cannot use
these edges, because its time window in the resource marked red would collide
with the previous reservation. In other words, at the time the agent would
reach the resource, it would still not be empty.

The algorithm is given a set of assignments A = {a1, a2, ..., an}, where
aj = {rs, rg, t}. Each assignment contains a start and goal resource, rs and
rg respectively, and the time t at which the assignment starts. The set A
is assumed as finite, but in the following Chapter, an approach allowing
repeated joining of new assignments is presented. The desired output is a
set of plans with each agent specifying the resources it will visit and at what
time it will occupy them.

The CARP algorithm, as presented in [1], gets the resource graph G and
the set of assignments A as an input. After the reduction of edges to free time
windows, these are used as additional constraints for a modified A∗ algorithm
finding a path through both the real plan and the empty windows for each of
the assignments. A resource is therefore added to the plan only when all the
following conditions are met:..1. current and considered resource are in successor relation..2. cost of the route is minimized..3. at the time agent enters the considered resource; it is not used (or its

usage is lower than its capacity)

4

....................................... 2.1. Model

Figure 2.2: Example of a corridor problem as presented in [1]...4. the free time window in the considered resource is long enough for the
agent to traverse

The last two conditions ensure the ability of the CARP to find a collision-free
plan, as they only allow an agent to enter a resource if its desired time window
in the resource does not intersect with time windows of previously planned
agents. That can be illustrated on the following example showing that the
simply cheapest path cannot always be expanded. Let us assume a situation
in a corridor of unit capacity resources with one sideway illustrated in the
Figure 2.2. Agent A1 wants to go from r1 to r5 and the agent A2 is heading
from r5 to r3. A2 enters first and plans its route without problems. Then A1
makes its plans. However, if A1 would expand the cheapest path by going
directly to r2, it would collide with A2. CARP prevents that by reserving
the time window of A2 passing through r2 and letting A1 wait in r1.

Another important attribute can be shown in the example. The situation
was solved with the order of agents taking A2 first, followed by A1. However,
if A1 would make its plans and reservations first, planning for A2 would not
be possible causing a deadlock as it would have nowhere to move aside from
already set route of A1. This importance of agents’ order is one of the main
points of this work and will be further addressed.

As more assignments are planned, and agents add their plans, the status
of resources in a graph is updated providing a new situation for the newly
planned ones. To ensure the ability of the latter planed agents to find a
path and not be blocked by some of the previous agents in their finishing
resources, some of the possible precautions have to be considered. That is
either providing these locations with sufficient capacity or supposing that
after fulfilling their task, agents depart from the infrastructure like airplanes
from an airport. For automated warehouses applications, it can be assumed
that agents either directly receive a new task or return to their waiting stand.
Both would be considered as a new assignment to be planned.

In the algorithm presented in [1], multiple capacity of one resource is

5

2. Context-aware route planning..............................
considered. However, in this thesis, only one agent per resource is assumed.
In applications allowing such solutions, large intersections with non-unit agent
capacity can be divided into smaller, unit capacity resources forming, e.g., a
roundabout allowing more predictable and effective behavior [6].

2.2 Algorithm

The algorithm takes agents sequentially finding optimal and collision-free
routes for all of them. For each agent it runs a modified A∗ search, which is
described in Algorithm 1.

Algorithm 1 CARP - Plan route from [1]
Input: a = {rs, rg, t} − assignment; start and goal position, start time

G = {V,E} − a resource graph; vertices (free time windows) and edges
Output: shortest-time conflict-free route plan for a

G = {V,E} − an updated resource graph
__

1: if ∃ w [w ∈ V | t ∈ τentry(w) ∧ rs = resource(w)] then
2: add(w, open)
3: entryT ime(w)← t

4: while open 6= ∅ do
5: w ← argminw′∈openf(w)
6: add(w, closed)
7: r ← resource(w)
8: if r = rg then return followBackPointers(w)
9: texit ← g(w) = entryT ime(w) + d(resource(w))

10: for w′ ∈ {ρ(r, τexit)\closed} do
11: tentry ← max(τexit, start(w′))
12: if tentry < entryT ime(w′) then
13: backpointer(w′)
14: entryT ime(w′)← tentry

15: add(w′, open)
return null

The first line of Algorithm 1 ensures that the starting resource rs carries a
free time window in the time t. If so, the time window is marked as entry as
it is shortened by the duration of the resource to ensure the fourth condition
mentioned in section 2.1. Therefore, τentry = [t1, t2 − d(rs)] where t1 and t2
are the starting and ending times of the time window respectively and d(rs)
is the duration of rs. If such time window exists, it is added to the open list
and the entry time t is recorded.

6

...................................... 2.2. Algorithm

While there are available free time windows in the open list or a plan was
not found yet, the following process continues. A time window with the
lowest heuristic cost f(w) is taken from the open list at line 5 and is added
to a closed list afterward. The heuristic is the same as in the standard A∗
algorithm with the function f(w) = g(w)+h(w), where g(w) is the cost of the
partial plan to w and h(w) stands for a heuristic estimate to the goal. That
can either be the Euclidean distance between the resource associated to w and
rg minimizing the total plan cost in an obstacle-free graph, or optimization
of another aspect, e.g., makespan.

If the resource r of this time window is the goal resource, a set of back-
pointers is followed and returned as the final plan. The plan will be expanded
otherwise at line 9, where the first possible exit time is found by adding the
resource duration to the entry time, marking the total partial plan cost to
this resource. With ρ(r, τexit), where τexit = [t1 + d(r), t2], standing for the
set of all reachable time windows from r, the loop starting at line 10 iterates
over all of these that are not closed. The entry time to the new time window
w′ is then set as the maximum of the earliest exit time from r and the earliest
entry time to w′. At line 12, the expansion is only performed if w′ was not
already reached with an earlier entry time assuming the time windows’ entry
times are initially set to infinity. Then the backpointer is set between w′ and
w, the entry time of w′ is recorded and w′ is added to open list.

If the goal resource is found, it is returned at line 8. Otherwise, the time
windows in open list run out and the assignment cannot be planned, returning
null at the end.

As was mentioned in the algorithm description, the fourth condition from
2.1 is met at line 1. Cost from the second condition is minimized at lines 5
and 12. Finally, the first and third conditions are ensured by selecting from
reachable neighbors carrying free time windows at the desired time at line 10.

In [1], the CARP algorithm with the time complexity of one A∗ equal to
O(|A||R|log(|A||R|)+|A||R|2), where A is the set of agents that already have a
plan andR is a set of roads and intersections in graph, was presented. The time
complexity was proved correct in [4]. For this work, a C++ implementation
of this algorithm from [7] by Jakub Hvězda is used.

7

2. Context-aware route planning..............................
2.3 Characteristics

The standard CARP algorithm works with a set order of agents and in this
order it attempts to plan their routes with the modified A∗. The disadvantage
of this approach, therefore, comes from the inability to change the order of
agents. As it was shown in the example in Figure 2.2, this has a major impact
on the ability of the algorithm to either find a set of routes with lower cost
or even to find some plans at all.

This issue was addressed for example by the author himself in [6]. Apart
from already mentioned reduction of resource capacity, two simple heuristics
were presented in that paper. The Longest first heuristic has a significantly
lower failure rate and optimizes plan’s makespan. However, the total cost is
much higher. The second heuristic, on the other hand, is even more effective
regarding failure rate and plan cost, but the time complexity of finding a
solution is unbearable [6].

Another simpler solution is trying several (10, 100, 1000) random orders
and attempting to plan each of them while finding the cheapest as well.
This solution has a stable time complexity, and even ten shuffles provide
significantly lower fail rate1.

For all these solutions, however, it is essential to already have all of the
assignments before planning any of them to find the best order, which can be
inconvenient for some applications. It is possible to run CARP with random
shuffling for each added agent, but the time complexity is steeply growing1.

1The experimental results of Longest first heuristic and the CARP with random orders
are presented in Chapter 4.

8

Chapter 3

Proposed algorithm

It was described in the previous chapter, that all improvements of the CARP
algorithm require the knowledge of all assignments at the beginning of the
planning process. However, a more convenient approach for real automated
warehouse use is to consider assignments coming sequentially as requests, for
example for goods, do. From its specification, only basic low effective version
of the CARP is capable of addressing this task. According to that, several
solutions are presented to improve the ability of the basic CARP to find a
cheaper or at least some plan.

3.1 Agents influence

As was presented in the CARP description and proven by its simple improve-
ments, the key to better efficiency regarding fail rate is choosing the right
order in which agents are planned. Combined with a sequential mechanism
of adding assignments to the process, a tool is needed to pick a relatively
small group of agents which would change their plans to allow newcomers
find theirs. Replanning of a large group of agents while finding their best
order (for all combinations of n agents that is n ∗ n! calls to one A∗ search of
the CARP) would be time costly.

9

3. Proposed algorithm
3.1.1 Theory

Selection of the group of agents comes from the idea that agents’ paths
influence each other. If minimization of this influence is achieved by finding a
proper group of the most influencing agents, the overall results of the algorithm
might improve. The first task is, therefore, to quantify the influence.

The definition of influence in this thesis is based on the Euclidean distance
of resources among agents’ routes. The closer agents get, the more they
influence each other in the way that the latter planned one has to adapt to
the previous. As this happens, the order of agents gains significance as was
shown in an example in the previous chapter. Once such pair or group of
influencing agents is found, several variants of their order can be examined.

3.1.2 Distance matrix

To find a specific group of agents based on their routes distance, a distance
matrix has to be computed. Agents’ paths are represented by sets of resources
with time windows stating the time and duration of resource usage. Measuring
the distance of these paths, therefore, has to work not only with distance but
with time as well. The process of going through plans and calculating the
distance matrix is presented in Algorithm 2.

At the first line of Algorithm 2, a temporary matrix is prepared with the
desired size, as it represents relations between every two plans in the set.
The plans are then taken in the for loops while omitting a comparison of a
plan with itself. The loop starting at line 7 then iterates through both of the
picked plans finding all pairs of resources in the closest moments.

Finally, between lines 9 and 20, the plans are compared. First, the time
window of each current step is taken. These time windows are compared and
if they intersect, resources from that moment are saved at lines 13 and 14.
Five possible relations of time windows can appear, and apart from identity,
all are illustrated in Figure 3.1. If the time windows do not intersect, one
of them is moved forward concerning the position of the other one. This
movement is marked in Figure 3.1 as well. The loop iterates through the
plans until it finds a pair of steps from both plans that happen at the same
time.

10

................................... 3.1. Agents influence

Algorithm 2 Distance matrix
Input: P = {plani}ni=1 − a set of n planned routes
Output: M − a square matrix representing average distances between routes

__
1: N(n)
2: for planA ∈ P do
3: for planB ∈ P do
4: N [planA][planB] = ∅
5: if planA == planB then
6: continue
7: for stepA, stepB ∈ planA, planB do
8: notSet = true
9: while notSet do

10: twA = planA[stepA].timeWindow
11: twB = planB[stepB].timeWindow
12: if tw1 ∩ tw2 then
13: resourceA = planA[stepA].resource
14: resourceB = planB[stepB].resource
15: notSet = false
16: else
17: if twA.start < twB.start then
18: stepA+ +
19: else
20: stepB + +
21: M [planA][planB] ∪ dist(resourceA, resourceB)
22: for planA ∈ P do
23: for planB ∈ P do
24: M [planA][planB] = Φ(N [planA][planB])

return M

The Euclidean distance of the two found resources is counted, represented
as dist(), at line 21 and added to the appropriate column in the distance
matrix. At lines 22-24, the matrix is finalized to the output matrix M by the
function Φ, representing, e.g., average. Another possible representation is
to emphasize closer parts of paths over the further by taking the average of
the square value of their distances. The third approach used in this thesis
is to consider only the closest moment of the plans and therefore return the
minimum of the plans’ distances.

11

3. Proposed algorithm

Figure 3.1: Possible time windows relations (without identity) with marked
intersections or needed shift.

3.2 Algorithms

With the tools from section 3.1, the CARP algorithm can be adjusted to take
each j-th assignment at a time and attempt to find its solution not only based
on but also adjusting the previous process according to j-th agent’s influence
with the previously planned ones. The ability to work with an incomplete
set of assignments is preserved, as in any moment of already ongoing task
completion the path can be changed.

Two possible usages are presented. Both start their j-th step by finding an
optimal route for the new agent with A∗ algorithm adapted to the resource
graph. It does not consider the occupancy of resources, but it notes down
the time windows of its path to make algorithm from 3.1.2 possible.

12

..................................... 3.2. Algorithms

3.2.1 Direct group

The principle of this approach is to directly find a group of l agents whose
routes have the largest influence on the ideal route of the j-th agent. This
group is taken out of the plans and attempted to be added the most effective
way. j-th step of the adding process is presented in Algorithm 3.

Algorithm 3 Direct group

Input: P = {plani}j−1
i=1 − a set of j-1 planned routes

A = {ai}j−1
i=1 − a set of j-1 planned assignments

aj = {rs, rg, t} − j-th assignment; start and goal position, start time
l − size of a group
G = {V,E} − a resource graph; vertices (with free time windows) and
edges

Output: P = {plani}ji=1 − a set of j updated routes
__

1: planj = A∗(rs, rg, G)
2: P ← P ∪ planj

3: A← A ∪ aj

4: M = count distance matrix of P
5: C ← aj

6: C ← take l closest from A based on M
7: newP
8: for a ∈ A do
9: if a /∈ C then

10: plan← CARP (a,G)
11: newP ← newP ∪ plan
12: best =∞
13: for π ∈ Π(C) do
14: for a ∈ π do
15: plan← CARP (a,G)
16: thisP ← thisP ∪ plan
17: value = cost(newP ∪ thisP)
18: if value < best then
19: P ← newP ∪ thisP
20: best← valuereturn P

At the first line of code, j-th assignment is planned and then added to the
group of plans P although it may cause collisions. That is possible because
P will not be returned at this state. If the algorithm would fail at any
point, however, j-th agent would attempt to find a correct collision-free route
with the CARP, and if successful, this would replace the A∗ version. The
assignment is added to A as well.

13

3. Proposed algorithm

Figure 3.2: One agent taken to group.

Based on P , at line 4, a distance matrix is processed according to Algorithm
2 in 3.1.2, providing a numeric representation of influence between agent’s
routes. C is the group of replanned agents firstly joined by j-th. At line 6,
the closest agent is added to C, based on the distance matrix. This process is
repeated until the group has the desired size l or until all present (j) agents
are in it. Each new agent to be chosen is compared to all members of the
group, so it is the closest to the whole group.

At that moment, two groups of agents are distinguished. The order of
those not taken to the cluster is preserved in A, and they go through CARP
again for a new set of plans no longer considering routes of agents present
in C (lines 8-11). Otherwise, new planning would expect the map resources
to be occupied by agents that are no longer present and the plans would
therefore not be optimal.

Finally, in the for loop starting at line 13, all permutations of the order
of assignments in the group C are planned, each based on the context of
the updated staying agents’ plans in newP . Out of these, the one with
the shortest overall Euclidean distance is chosen at line 18 and attached to
the rest. If any better plan is found, it substitutes the previous best. This
selection implements optimization of the time cost in the set of plans which
is the target of this work.

3.2.2 Growing Group

The approach with Growing Group is mostly similar to the Direct Group
version with the only difference in attempting to find plans for each state
during the addition of agents to the cluster. It is shown in Algorithm 4.

In each iteration of the for loop starting at line 6, one agent is taken out

14

..................................... 3.2. Algorithms

Algorithm 4 Growing group

Input: P = {plani}j−1
i=1 − a set of j-1 planned routes

A = {ai}j−1
i=1 − a set of j-1 planned assignments

aj = {rs, rg, t} − j-th assignment; start and goal position
l − size of a group
G = {V,E} − a resource graph; vertices (with free time windows) and
edges

Output: P = {plani}ji=1 − a set of j updated routes
__

1: planj = A∗(rs, rg, G)
2: P ← P ∪ planj

3: A← A ∪ aj

4: C ← aj

5: best =∞
6: for k ∈ l do
7: M = count distance matrix of P
8: C ← take 1 closest from A based on M
9: newP

10: for a ∈ A do
11: if a /∈ C then
12: plan← CARP (a,G)
13: newP ← newP ∪ plan
14: for π ∈ Π(C) do
15: for a ∈ π do
16: plan← CARP (a,G)
17: thisP ← thisP ∪ plan
18: value = cost(newP ∪ thisP)
19: if value < best then
20: P ← newP ∪ thisP
21: best← valuereturn P

of A based on the same distance matrix as was presented earlier. Taking an
agent to the group is illustrated in Figure 3.2, also showing that the rest of
A preserves its order. Then the process is the same as in the Direct Group
adding, as agents in A are replanned and finding the best permutation of C
follows. This process is then repeated until the group has size l.

The main difference is that the total Euclidean distance of the final plan is
compared among all phases of the for loop at line 6. The cheapest one is
therefore picked from l − 1 times larger range. The ability to use a lower size
group from during the process also gives a higher probability of finding some
solution, as shown in Chapter 4.

15

3. Proposed algorithm

Figure 3.3: Preserving partial plans in permutations.

3.3 Optimalization

To reduce the number of times the CARP A∗ is called, which increases the
total time to find all plans, several steps can be taken. Firstly, when planning
the agents that don’t belong to the group C, as many plans from the past as
possible are preserved. That is possible because their context stays the same
which is illustrated in Figure 3.2, showing that three agents can keep their
plans. The first to be replanned comes after a5 which left A, and its route
should no longer be considered.

The second simplification is quite similar. During the planning of the
permutations, there is always a variable group of plans that can stay the same
as in the previous permutation, as visualized in Figure 3.3. Assignments on
indexes marked yellow don’t need to be planned again. This requires the
permutations of agents in C to be in lexicographic order. The number of
times the CARP A∗ search is called is reduced significantly, as for l = 4,
instead of 4 ∗ 4! = 96 it is only 64 calls. For l = 5 that is 325 instead of 600
calls and for l = 6 only 1956 instead of 4320 calls are needed.

16

Chapter 4

Experiments

4.1 Motivation

Several characteristics of planning algorithms are significant for their eval-
uation. Firstly, for practical use, algorithms should generate plans in a
reasonable time. From the tenet of this work, not only overall time to plan
all agents is significant, but also the time to plan each agent in the group has
important value. The second part of the characteristics should describe the
plans themselves. That includes failure rate, the ability of an algorithm to
find any plan, and several quality characteristics, such as makespan or plan
cost.

4.2 Experiment setup

For the purpose of the experiments, a set of 21 maps was created. Firstly, a
random complete square graph was generated with the size 20*20 vertices.
The graph was then simplified to a spanning tree and, finally, approximately
50 random edges were added 20 times, to create the set of 21 maps of density
ranging from 800 to 1500 edges in the graph. An example of a generated map
with 1350 edges is in the Figure 4.1.

17

4. Experiments
All characteristics were then measured on the planning of 500 random

assignments for 100 agents on each of the 21 maps. That provides a set of
10 500 results from each algorithm. The experiments were performed on a
computer equipped with Intel Xeon E5-2690.

Figure 4.1: Generated map with 1350 edges.

4.3 Compared algorithms

Four versions of CARP algorithm were taken for comparison. Firstly, the
original algorithm from [1] as CARP. The second group consists of the adjusted
CARP algorithm taking 10 or 100 random orders of given assignments and
attempting to find the cheapest among them (CARP10, CARP100). Finally, it
is the CARP with Longest path first heuristic presented in [6] as LF.

More variations of the proposed algorithm (DG for Direct group and GG
for Growing group) were tested as well. One differentiation can be made in
the choice of the Φ function bringing different distance matrices as defined
in section 3.1.2. Another way is considering the distance matrix not based
on the actual context-aware plans, but on optimal plans from A∗. After
each agent joins the process, its A∗ plan is saved, and the distance matrix is
always only updated with one row and one column for the j-th agent. That
is represented by DGA∗ and GGA∗ in the following figures.

The main difference is, however, made in the setting of l, which defines
the maximal size of the group C. That was chosen in the range between 4
and 6 based on initial tests to achieve sufficient quality in a sustainable time.
The size of the group is marked for each algorithm, e.g., DG_4, standing for
Direct group with group C consisting of four assignments.

Special versions with the size of up to 10 were tested as well. For these,
the process was adjusted by directly planning the first ten assignments to

18

......................................4.4. Measuring

ensure a group C of ten in each adding. The other adjustment aiming at
time cost reduction was taking only 150 (less than 6! in DG_6 and GG_6)
random permutations of the group C sorted lexicographically for partial plans
memory. For the Growing group version, this is only used when the size of
C grows over 6 members.

4.4 Measuring

The failure rate is counted as an average proportional inability to find a plan.
Fail, for the proposed approaches, means, that the method itself was not able
to find the j-th plan and it cannot be simply attached with the CARP A∗ to
the previous set of plans as well. For the compared CARP algorithms that is
at the point when none of the random orders was possible to be planned.

Makespan determines the number of steps that are needed for all agents
to reach their target. In fact, it describes how long it takes the last agent
to finish its assignment. Joint plan cost shows, on the other hand, is the
combined price of all routes in the final plan. Unitary length of edges is
assumed. The cost of one plan is then the sum of all edges traveled plus 1
per each time agent waits in one node.

For the results of makespan and joint plan cost, only assignments, where
all algorithms were successful are considered. This narrows the set of results
but ensures the comparison among an appropriate group of values.

Time was measured from the point where algorithm receives the set of
assignments to the moment where it plans all agents or when it fails to plan
some of them and is not able to continue. The other time characteristic
measures the time the algorithm takes to plan one agent on a map with 1350
edges. For the proposed algorithms, it is the time of one iteration of the loop
to add j-th agent.

For the second time characteristic, CARP algorithms were modified to
present a set of plans for each j-th agent as well to have a proper comparison.
That means that for each agent, the algorithm creates all n random orders
of agents and attempts to plan them. This not only significantly affects the
duration of algorithms − with j agents and p random orders, the CARP A∗

is called j! ∗ p times instead of j ∗ p times − but failure rate as well. That
is because the algorithm has more chances to make a mistake, as it has to
succeed in each of the j iterations and not only in one as in standard version.

19

4. Experiments
4.5 Results

4.5.1 Failure rate

An improvement of about 10% - 20% can be seen in both proposed approaches
regarding failure rate when compared to CARP. All of their versions bring
a higher probability of finding a set of plans then the standard CARP
algorithm. For both DG and GG none of the variants of the distance matrix
differed distinctively, so the results are grouped for better readability of the
Figure 4.2. The most successful combination out of all proposed versions is
GG_10 with the distance matrix based on context-aware plans and counting
average path distances.

The heuristic behind LF shows that a simple sorting of assignments ac-
cording to their ideal length pulls the failure rate down significantly, but the
difference from the proposed algorithm is under 10% for most of the maps.
Trying 10 or 100 random orders appears as the most efficient, but the need
for the knowledge of all assignments has to be noted.

800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

Number of edges in the graph

Fa
ile

d
as

si
gn

m
en

ts
 [%

]

CARP
CARP10
CARP100
LF
DG_4
DG_5
DG_6
DG_10

(a) : Direct group.

800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

Number of edges in the graph

Fa
ile

d
as

si
gn

m
en

ts
 [%

]

CARP
CARP10
CARP100
LF
GG_4
GG_5
GG_6
GG_10

(b) : Growing group.

Figure 4.2: Failure rate.

4.5.2 Joint plan cost

Optimization of a joint plan cost is the target of the proposed algorithm, and
the results correspond to that. The experiments show that the size of the
group has minor influence and even with four members the cost is similar

20

....................................... 4.5. Results

to the best application of the CARP in CARP100. With no surprise, the LF
performs much worse as it aims at optimization of makespan at the expense
of joint plan cost. The different results of the CARP algorithms in the Figure
4.3 are caused by the method of data processing, where only successful plans
among all algorithms were taken for each Φ. That is also the cause of the
large changes of the values in the first maps, as the failure rate is more
significant in these maps and the number of results that passed through is
lower. Sufficient credibility is, therefore, achieved in the latter maps.

With the growing number of edges, not only failure rate decreases, but
it also allows the algorithms to achieve better results. The DG performs
best with the distance matrix counted from the ideal A∗ plans and a larger
group C, although it matches the quality of the standard CARP in many
of the maps. The choice of the distance matrix has a low influence on the
performance of GG, which gives better results than all CARP versions in all
of the maps even with the group C of 4 assignments at most. The best GG_10
has an average of 40 actions less than the CARP.

4.5.3 Makespan

Out of all algorithms compared in this thesis, only the Longest first heuristic
aims at the optimization of makespan. Therefore, for the rest of algorithms,
it is mostly an informative characteristic showing the side effects of each
approach. That is also the reason for CARP10 and CARP100 being even worse
than CARP on some of the maps in the Figure 4.5. However, all versions of
the presented algorithm perform better than CARP altogether, with mostly
similar results in all versions.

4.5.4 Time

The last attributes to be discussed are the time characteristics, which simply
reflect how many times the CARP A∗ is called. For standard CARP with
n = 500 agents that is 500 times. The LF adds just the time to plan agents
with a standard A∗ to sort them, so it lasts less then a double time of CARP,
while CARP10 and CARP100 multiple n by 10 or 100 respectively. Regarding
the proposed algorithms, the time complexity grows with the number of
agents in the group. Considering the optimization steps as presented, the
number of times CARP A∗ is called can vary with the worst case of replanning
all agents taking (j − l)! ∗ l! and (j − l)! ∗ (l!)2 for DG and GG respectively.

21

4. Experiments
For the test of the time that each algorithm takes to plan one assignment

when it is added to the process, it is important to note again that the CARP
algorithms were modified to present a complete set of plans each time new
agent assignment is added.

The proposed algorithm among all methods of counting the distance matrix
performed very similarly in these characteristics, so the results are grouped
again in Figures 4.7 and 4.8. In this case, that is expected, as the number of
actions is generally the same and is changed only by the choice of the group
C and a possible moment of failure. In the set of experiments, both have a
low statistical influence.

Regarding the time to plan all assignments directly, all versions of the
standard CARP overperform the proposed algorithms unsurprisingly. Their
results correspond to the size of the group C and the repeated process in GG.

It can be seen that although groups of 6 or 10 increase the duration of
planning strongly, the total time for 500 agents stays under 105 s and during
the process it is under 1.3 s per assignment. Lower time cost is achieved by
DG thanks to (l − 1)! times less attempts to attach the best permutation of
the group C than in GG. Similar or even better results of DG_10 then DG_6
are caused by the fact that it works with only 150 permutations instead of
720 in DG_6. The same applies for the times from during the process in the
Figure 4.8 as well. This phenomenon is suppressed in GG_10, which shows
that for such size of the group C, the repetition of the adding process has a
higher influence on the time cost than the planning of the permutations itself.

The second figure also shows that the time cost of DG_10 and GG_10 starts
to grow later. That is caused by directly planning the first 10 agents and
starting the process at assignment 10. The main outcome of this test, however,
is the radically growing duration of planning in CARP100. That shows the
main contribution of selective picking of the replanned assignments.

4.6 Summary

The experiments’ results show that the way the distance matrix is computed
has a low influence. What really affects the quality of the results is the size
and method of adding to the group C. The more successful solution is giving
the algorithm the ability to compare partial plans among all running sizes

22

...................................... 4.6. Summary

of the group C, which provides the best solution out of a larger set. This,
however, has an increasing time cost, so the size of the group is limited.

Out of all tested approaches, both GG_6 and GG_10 reached the best quality
results with the GG_10 having the better at the expense of a higher time
cost. On the other hand, a thing worth noticing is that increasing of the size
l brings only a limited improvement and the affordable time cost is upon
consideration, as even GG_4 reaches the success rate of GG_10 in some cases
and overperforms CARP100 in plan quality. In the overall time characteristic,
it is slightly better than CARP100 and about 40 times faster than GG_10.

23

4. Experiments

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

1600

Number of edges in the graph

Jo
in

t p
la

n
co

st

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

Number of edges in the graph

Jo
in

t p
la

n
co

st

GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(a) : Φ as average

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

1600

Number of edges in the graph

Jo
in

t p
la

n
co

st

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

Number of edges in the graph

Jo
in

t p
la

n
co

st
GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(b) : Φ as square average

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

1600

Number of edges in the graph

Jo
in

t p
la

n
co

st

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

1400

1450

1500

1550

Number of edges in the graph

Jo
in

t p
la

n
co

st

GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(c) : Φ as a minimum

Figure 4.3: Joint cost, DG in the left column and GG in the right column.

24

...................................... 4.6. Summary

1150 1200 1250 1300 1350 1400 1450 1500

28

30

32

34

36

38

40

Number of edges in the graph

M
ak

es
pa

n

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

28

30

32

34

36

38

Number of edges in the graph
M

ak
es

pa
n

GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(a) : Φ as average

1150 1200 1250 1300 1350 1400 1450 1500

30

35

40

Number of edges in the graph

M
ak

es
pa

n

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

28

30

32

34

36

38

40

Number of edges in the graph

M
ak

es
pa

n

GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(b) : Φ as square average

1150 1200 1250 1300 1350 1400 1450 1500

32

34

36

38

40

Number of edges in the graph

M
ak

es
pa

n

DG_4
DG_5
DG_6
DG_10

DGA*_4
DGA*_5
DGA*_6
DGA*_10

1150 1200 1250 1300 1350 1400 1450 1500

31

32

33

34

35

36

37

38

Number of edges in the graph

M
ak

es
pa

n

GG_4
GG_5
GG_6
GG_10

GGA*_4
GGA*_5
GGA*_6
GGA*_10

(c) : Φ as a minimum

Figure 4.5: Makespan, DG in the left column and GG in the right column.

25

4. Experiments

800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

Number of edges in the graph

T
im

e
[s

]

CARP
CARP10
CARP100
LF
DG_4
DG_5
DG_6
DG_10

(a) : Direct group.

800 900 1000 1100 1200 1300 1400 1500

0

20

40

60

80

100

Number of edges in the graph

T
im

e
[s

]

CARP
CARP10
CARP100
LF
GG_4
GG_5
GG_6
GG_10

(b) : Growing group.

Figure 4.7: Time.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

j−th agent

T
im

e
[s

]

CARP
CARP10
CARP100
LF
GG_4
GG_5

GG_6
GG_10
DG_4
DG_5
DG_6
DG_10

Figure 4.8: Time to plan each assignment when received.

26

Chapter 5

Conclusions

In this thesis, the task of route planning in automated warehouses was
presented with the aim at a sequential assignment income. The Context-
aware route planning algorithm was described in Chapter 2 with all its main
attributes regarding the needs of the task. Based on the CARP specifications,
an approach of partial changes in plans during adding of assignments was
suggested with several possible modifications.

The proposed approach was then compared to the CARP and it’s older
improvements in a set of experiments aimed at several important characteris-
tics of all algorithms. Out of these, the main success is in improving both
fail rate and joint plan cost, which was the initial task, in comparison to the
original CARP algorithm that is able of sequential adding of assignments.
After modification to be capable of this, the least failing versions of the CARP
with random orders are overperformed in the duration of planning for one
agent, while it still trails regarding plan cost.

The results in makespan show that it can be pulled down by the op-
timization of joint plan cost, but for an application with such need, the
proposed algorithm can be easily modified to minimize this characteristic
more significantly.

The main quality of the proposed approach, in any of its versions, during
the target process is the ability to preserve most of the previous setting,
while being able to update it to better final quality. With the testing set
of 100 agents, the used sizes of the group C work with just around 5% of
the total number of agents, yet they are able to find a better solution. The

27

5. Conclusions
versions with C of the size ten performed at the same or better level while
trying fewer permutations, than with the groups of six. This shows that the
number of assignments moved has higher influence than the number of tested
orders leading back to the CARP versions with a random shuffling of all
assignments. On the other hand, it was shown that even when replanning
only four assignments, the results can improve at a significantly lower time
cost.

For practical use, a combination of discussed algorithms can be suggested.
If the cheapest performing algorithm fails at any time of a process, it can
be substituted by, e.g., CARP10, to find a solution in the situation, and then
continue as before. The process of Growing group could also be modified to
grow the C group only until a solution is found, which would save time for
having a higher size limit for the cases requiring a larger correction. Adding
more than one agent in each iteration in Growing group is another possible
adjustment.

An important weakness of the performed experiments has to be pointed
out as well. In an actual warehouse, agents usually reach the target rack, load
goods and head to a picking station to repeat the process. This contributes
to a natural flow of agents joining the queues at the picking stations, which
makes the overall planning more effective [6]. In the experiments, however,
all assignments were generated randomly, possibly creating senseless situa-
tions. The future work should, therefore, include a better testing approaches’
development to provide real-life conditions, as well as a larger scale of testing
with more assignments in larger graphs.

Further research into the aspects optimizing the joint plan cost will also be
contributive. As was proved by the Longest first heuristic from [6], ordering
assignments according to their optimal plan length optimizes makespan
effectively. Such ordering heuristic leading to lowering of joint plan cost would
help the sequential algorithm as well. Another approach worth developing is
extending the grouping methods from this thesis to create several groups of
agents moving in the same direction to simplify their movement, similarly
as the third heuristic presented in [6]. Reduction of plan cost by organizing
agents to such flows was observed by research in [4].

The approaches and methods presented in this thesis were used in an
article appointed for the 21st IEEE International Conference on Intelligent
Transportation Systems (ITSC 2018) held in Maui, Hawaii, USA on November
4-7, 2018 [8].

28

Appendix A

Bibliography

[1] Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt, and Fernando A.
Kuipers. Context-aware route planning. Delft University of Technology,
The Netherlands, 2011.

[2] W. Matthews and S. Dawson. The shed of the future e-
commerce: its impact on warehouses. Online, available:
http://www2.deloitte.com/uk/en/pages/real-estate/articles/shed-of-
the-future.html, 2014.

[3] Sebastian Trüg, Jörg Hoffmann, and Bernhard Nebel. Applying automatic
planning systems to airport ground-traffic control - a feasibility study. KI,
pages 183-197, 2004.

[4] A.W. ter Mors. The world according to marp: multi-agent route planning.
Delft University of Technology, PhD thesis, 3 2010.

[5] L. E. Parker. Path planning and motion coordination in multiple mobile
robot teams. Encyclopedia of Complexity and System Science, 2009.

[6] Adriaan W. ter Mors. Evaluating heuristics for prioritizing context-aware
route planning agents. Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, The Netherlands,
4 2011.

[7] J. Hvezda. Comparison of path planning methods for a multi-robot team.
CTU in Prague, Master thesis, 2017.

[8] J. Hvezda, T. Rybecky, M. Kulich, and L. Preucil. Context-aware route
planning for automated warehouses. 21st IEEE International Conference
on Intelligent Transportation Systems (ITSC 2018), in review, 2018.

29

30

Appendix B

Enclosed CD contents

The root directory of the enclosed CD contains the following items

. thesis.pdf: This thesis. figures: A directory containing all presented figures. source: A C++ project containing the implementation of all mentioned
algorithms. tex: A LATEXproject of this thesis. stats: Source codes in R for the statistics processing. readme.txt: Instructions to running the C++ project and the R statistics,
list of CD contents

31

32

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

457220Personal ID number:Rybecký TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Planning for a Team of Cooperating Mobile Robots

Bachelor’s thesis title in Czech:

Plánování pro tým kooperujících mobilních robotů

Guidelines:
1. Get acquainted with current approaches to collision-free path planning for a team of cooperating robots.
2. Design a method for selection of a fixed-size subset of most dependent trajectories.
3. Design a method which sequentially plans a trajectory for particular robots in a team. To do that, use a method developed
in step 2.
4. Design and create a set of testing scenarios.
5. Experimentally evaluate properties of the implemented algorithm. Describe and discuss obtained results.

Bibliography / sources:
[1] A. W. ter Mors, Conflict-free route planning in dynamic environments, 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, 2011, pp. 2166-2171.
[2] K. Solovey, O. Salzman, O. and D. Halperin, Finding a needle in an exponential haystack: Discrete RRT for exploration
of implicit roadmaps in multi-robot motion planning. Algorithmic Foundations of Robotics XI , 2013, pp. 591-607.
[3] J. Hvězda, Comparison of path planning methods for a multi-robot team, CTU in Prague, Master thesis, 2017

Name and workplace of bachelor’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D., Intelligent and Mobile Robotics, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 11.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
RNDr. Miroslav Kulich, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction
	Context-aware route planning
	Model
	Algorithm
	Characteristics

	Proposed algorithm
	Agents influence
	Theory
	Distance matrix

	Algorithms
	Direct group
	Growing Group

	Optimalization

	Experiments
	Motivation
	Experiment setup
	Compared algorithms
	Measuring
	Results
	Failure rate
	Joint plan cost
	Makespan
	Time

	Summary

	Conclusions
	Bibliography
	Enclosed CD contents
	Project Specification

