
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Map Import for Mobile Robot from CAD
Drawing

Vojtěch Pánek

Supervisor: Ing. Vladimír Smutný, Ph.D.
Field of study: Cybernetics and Robotics
Subfield: Robotics
May 2018

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

457211Personal ID number:Pánek VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

RoboticsBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Map Import for Mobile Robot from CAD Drawing

Bachelor’s thesis title in Czech:

Import mapy z výkresu pro mobilního robota

Guidelines:
1. Get familiar with following topics:
a. ROS operating system,
b. CAD drawings,
c. Normal Distributions Transform (NDT) representation of the mobile robot map.
2. Choose publicly documented form of CAD 2D drawings format and implement converter from this format to the NDT
map representation.
3. Test the implemented import filter on real data.
4. Make conclusion.

Bibliography / sources:
[1] Biber Peter: The Normal Distributions Transform: A New Approach to Laser Scan Matching, Las Vegas 2003.
[2] Todor Stoyanov, Jari Saarinen, Henrik Andreasson, Achim J. Lilienthal: Normal Distributions Transform Occupancy
Map fusion: Simultaneous mapping and tracking in large scale dynamic environments, IROS 2013, Tokyo.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vladimír Smutný, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 06.12.2017

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vladimír Smutný, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to offer my special thanks to
my supervisor Vladimír Smutný for his
patient guidance and many useful sugges-
tions during the whole work. I would also
like to thank David Nováček for his advice
on NDT SLAM implementation in Jackal
robot. Finally, I wish to thank my family
and girlfriend for their support.

Declaration
I declare that the presented work was
developed independently and that I
have listed all source of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, date .

signature .

v

Abstract
This thesis aims to implement a converter
from 2D CAD drawing of a building to
NDT (Normal Distribution Transform)
representation of map used to indoor
navigation a for mobile robot. The map
should serve for initialization of lifelong
localization.

DXF (Drawing Exchange Format)
was selected as an input format for the
converter. Other common CAD formats
can be converted to DXF by CAD editor.

The thesis briefly examines few other
topics related to the conversion and use
of CAD drawing in mobile robotics. The
first one is automatic adjustment of CAD
drawing. The second is a visualization
of CAD drawing in ROS RViz. Lastly,
it examines possibilities of defining
destinations for robot motion planning in
CAD drawing.

Keywords: NDT map, DXF CAD
drawing, ROS, RViz, mobile robotics

Supervisor: Ing. Vladimír Smutný,
Ph.D.

Abstrakt
Tato bakalářská práce je zaměřena na
implementaci převodníku z 2D CAD
výkresu budovy do NDT (Normal
Distribution Transform) reprezentace
mapy, kterou využívá mobilní robot pro
navigaci ve vnitřních prostorách. Mapa
by měla sloužit jako počáteční informace
pro celoživotního určování polohy robotu.

Jako vstupní formát byl vybrán DXF
(Drawing Exchange Format), do kterého
lze pomocí CAD editoru převést ostatní
běžně užívané formáty.

Práce se dotýká několika dalších té-
mat spojených s převodem a využitím
CAD výkresů v mobilní robotice. Prvním
je strojová úprava CAD výkresů. Druhým
je zobrazení výkresu v ROS RViz. Po-
sledním zkoumaným tématem je možnost
využití CAD výkresů pro zakreslení
cílových destinací pro plánování trasy.

Klíčová slova: NDT mapa, DXF CAD
výkres, ROS, RViz, mobilní robotika

Překlad názvu: Import mapy z výkresu
pro mobilního robota

vi

Contents
1 Introduction 1
1.1 Motivation . 1
2 State of the art 3
2.1 CAD used in mobile robotics 3
2.2 NDT . 3
3 Description of used technologies 5
3.1 DXF . 5
3.1.1 The structure of ASCII DXF . 5

3.2 NDT . 8
3.3 Alpha shape 11
3.4 Axis-aligned bounding boxes . . . 13
3.5 RViz . 13
4 Converter from DXF drawing to
NDT map representation 15
4.1 Program overview 15
4.2 Implementation 15
4.2.1 Implementation of converter
from DXF CAD drawing to NDT
map representation 15

4.2.2 Implementation of station
blocks export 17

4.2.3 Implementation of RViz
visualization 17

4.3 User manual 18
4.3.1 Installation 19
4.3.2 Example of conversion 19
4.3.3 Configuration file 20
4.3.4 Output file 22
4.3.5 Stations 22
4.3.6 Visualization of CAD drawing
in RViz . 23

5 Practical observations 25
5.1 Imperfections in CAD drawings . 25
5.1.1 Hatches 25

5.2 Adjusting the drawing by Alpha
shapes . 26

5.3 Division of entities to cells 28
6 Experimental results 29
7 Conclusion 35
Bibliography 37
A Example of configuration file 39
B CD content description 43

vii

Figures
3.1 Gaussian curve with 2D domain . 9
3.2 Example of 2D map - CAD
drawing and NDT 9

3.3 Example of the Alpha shape for
different α . 11

3.4 Alpha shapes for α→ 0 and
α→∞ . 12

3.5 Relation between Delaunay
triangulation and Alpha shape. . . . 12

3.6 Axis-aligned bounding boxes . . . 13

4.1 Converter program structure . . . 16
4.2 Structure of RViz visualization
process . 18

4.3 Visualization of loaded CAD
drawing and NDT grid in RViz . . . 23

5.1 Alpha shape of wall with diagonal
hatch . 26

5.2 Calculation of sampling density for
Alpha shape 27

5.3 Alpha shape of wall with parallel
lines . 27

5.4 Alpha shape - corner distortion . 28
5.5 Bounding box of entity and cells 28

6.4 Verification - RViz 30
6.1 Verification - lab 31
6.2 Verification - stairs 32
6.3 Verification - lecture hall 33

Tables
3.1 List of sections in DXF 6
3.2 List of important DXF entities . . 7
3.3 List of DXF block general variables 8

4.1 NDT cell parameters 22

viii

Chapter 1
Introduction

Majority of mobile robots with a certain level of autonomy needs to have
information of its relative location against some points in the real world for
navigation. It also needs a position of surrounding obstacles for collision
avoidance. These challenges are often solved using SLAM (Simultaneous Lo-
calization And Mapping) algorithms. SLAM algorithms use a representation
of a map, which is being built and used for navigating the environment at
the same time [4]. Mobile robotics use various implementations of SLAM
algorithms and map representations.

We have two possible solutions for creating the map of a new environment,
where we want to use a mobile robot. The first option is to deploy the
robot and let it create the map itself. This solution has the disadvantage
of possible distortion of the map shape caused by measurement errors. The
second option is to take a precise map of the environment and convert it
to map representation used in the robot. Architectonic building plans for
indoor environments are usually available and can be used for this purpose.
Assuming that technical drawings are more accurate than robot range scans,
bigger weight can be assigned to data from drawing. This work deals with the
conversion from architectonic CAD drawing to NDT (Normal Distribution
Transform) map representation.

NDT is a relatively new method of range scans matching introduced in
[1]. Range scans matching is a part of many SLAM implementations. NDT
introduces maps based on a grid, where each grid cell contains multivariate
normal distribution, giving probabilistic information of obstacle presence and
weight, dependent on the number of measurements in the cell. This work
describes mainly theory concerned with NDT map representation, and other
parts of NDT algorithm will be explained only briefly.

1.1 Motivation

The problem of map import was encountered during development of mobile
robot (AGV - Automated Guided Vehicle) [3] used for moving material in
an indoor environment. This AGV does not use any markers or reflectors
placed in environment for navigation, and it relies only on a scanning of
surrounding obstacles and on an odometry. The scanning is done using one

1

1. Introduction
lidar with horizontal scanning plane. The NDT implementation is used as
part of SLAM.

The testing of implemented SLAM has revealed a few drawbacks. The first
one is deformation of generated maps as a result of odometry measurement
errors. The second one is false loop-closing when the robot goes through a
monotonous corridor, where consecutive lidar scans look very similar. The
CAD drawing could provide initial NDT map free of global map deformations,
which could suppress influence of measurement errors.

A potential user of AGV will most likely want to set up locations of various
points of interest (e.g. charging stations, loading and unloading stations)
and areas (restricted zones, pedestrian crossings). This information may be
inserted into the drawing and exported for path planning purposes.

Another useful feature for user could be some visualization of robot position
in environment. The used robot runs on ROS (Robot Operating System), so
the ROS RViz package can be used for the visualization.

2

Chapter 2
State of the art

Two essential items with which the thesis deals are CAD architectural drawings
and NDT maps. This chapter briefly introduces the related literature.

2.1 CAD used in mobile robotics

There are a few works related to use of CAD (Computer Aided Design)
architectural drawings for the purpose of SLAM and navigation. Murarka
and Kuipers in [9] divide building drawing to closed rooms separated by
doors and create a topological map, where rooms are nodes and doors are
edges. They describe an algorithm for room extraction based on casting an
infinite ray from the room number text position to the first wall it crosses
and subsequently following the enclosing walls until the area is watertight.
Also, the rooms are stored in the form of medial axis transform.

Borkowski et al. in [10] examine utilization of BIM (Building Information
Modeling) for mobile robots. BIM framework describes the building itself
and many built-in systems (e.g. air ventilation, security). The paper also
deals with a transfer of rooms geometry from Autodesk Revit BIM software
to occupancy maps and creation of topological maps similar to [9], but with
an addition of accessibility information. A concept of robot integration to
building BIM model is proposed.

2.2 NDT

NDT (Normal Distribution Transform) is one of the methods of map rep-
resentation and scan matching in SLAM. It divides environment map to a
grid. Each grid cell contains an approximation of the respective part of the
environment by a normal distribution.

NDT map was introduced by Biber and Straßer in [1]. They use 2D grids
with cells of uniform size. Four mutually shifted grids are used to overcome
effects of space discretization. Their approach uses computation of the cell
parameters from points acquired by one laser scan and falling into the cell.
The collinearity of all points in the cell and resulting singularity of the cell
covariance matrix are solved by setting a minimal ratio between eigenvalues of

3

2. State of the art....................................
the covariance matrix. The whole map is stored like a graph with "keyframes"
(laser scans) and their global pose estimation as nodes and relative positions
of scans as edges. This approach stores all the measured points.

Saarinen et al. in [6] come with NDT Occupancy Maps (NDT-OM),
which extend the NDT cell variables by occupancy and number of cell points
parameters. It applies ray-tracing to updating of cell occupancy values and
accordingly makes this method more appropriate for applications in dynamic
environments. The occupancy value serves mainly for planning purposes.
This approach works with 3D maps with possible resolution changes made
by cells merging and above all allows online updating of the cells. Measured
points are used for an update of their NDT-OM map and are thrown away
after the update, which saves plenty of memory. The online update approach
is used in all of the works mentioned below.

The occupancy updating is further improved by Saarinen et al. in [7]. It is
solving the problem with partly occupied cells, which can appear free and
decreases time complexity of ray-tracing.

A similar practice of occupancy values adjusting is proposed by Einhorn
and Gross in [2], but a generic beam-sensor model is used instead of the ray-
tracing. Sensor front-ends enable the use of various range scanners and moving
objects tracking algorithm enhances performance in dynamic environments.
Pruning of pose graph is done by fusing vertices of overlapping map fragments
with high reliability of stored relative position which lowers memory and
computational demands.

Lukáš Jelínek in [5] describes his implementation of NDT-OM SLAM for
ROS named ndt_gslam package. The implementation works with single-
resolution 2D NDT-OM partial maps called frames stored in pose graph.
Occupancy values are being adjusted by ray-tracing similar to [7] approach.

David Nováček adapted the SLAM implementation from [5] and used with
Jackal robot from Clearpath Robotics [8]. The whole process is comprehen-
sibly presented in [3]. SLAM uses Sick TiM361 laser scanner and built-in
odometry sensors. Experimental evaluation shows generated maps distortion.

The work on Jackal robot and the NDT implementation was integrated
into A3M99PTO (Team Work) class in summer semester 2018. The team of
graduate students worked on hardware and software updates of AGV so that
it can perform simple tasks of indoor goods transportation.

4

Chapter 3
Description of used technologies

3.1 DXF

DXF (Drawing Interchange Format) is CAD drawing file format developed
by Autodesk company for the purpose of exchange CAD drawings between
AutoCAD and other CAD editors. The format was chosen for this work due
to its publicly available specifications. Data in DXF can be represented in
binary form or in ASCII text form which is used in this work.

This thesis draws from Autodesk 2012 DXF reference [16], which should
correspond with R18.2 AutoCAD version.

3.1.1 The structure of ASCII DXF

The basic structure of any ASCII DXF is formed by group codes on odd
lines of file and values on even lines. The group code specifies the type of the
value on the following line. The file is further divided into sections. A section
always starts with group code 0 and value SECTION and ends with group
code 0 and value ENDSEC. Group code 0 means that the following value is a
string indicating the entity type, which could be section, entity, block, etc.
Type of section is marked by group code 2 (name of entity). The boundary
of HEADER section should look like this:

0
SECTION
2
HEADER
...
...
...
0
ENDSEC

There is a couple of section types, but only a few will be further described
due to their importance to the thesis.

5

3. Description of used technologies
Section name Description

HEADER General information about drawing and CAD
editor

CLASSES Definitions of application-defined classes
TABLES Various data tables (line styles, text styles, views

definitions, quotation settings etc.)
BLOCKS Definitions of blocks (entities merged under one

identifier)
ENTITIES List of entities
OBJECTS Definitions of non-graphical entities (used e.g. for

scripting)
THUMBNAILIMAGE Optional thumbnail of drawing

Table 3.1: List of sections in DXF

ENTITIES section

ENTITIES section contains the list of all entities placed in the drawing.
Single entity record starts with group code 0 and type of entity and continues
to start of another entity or end of ENTITIES section.
0
LINE
...
...
...
0
CIRCLE

The list of variables in entity description varies between different types of
entities.

Table 3.2 contains only entities and their variables which are being used in
this work. DXF format supports much more entities, e.g. texts, light sources,
3D meshes and other complex geometric objects. Listed entities have more
variables, of which we only mention two. The first is the unique hexadecimal
identifier of each entity in drawing called handle (group code 5). The second
is the name of the layer in which the entity is placed (group code 8).

All coordinates mentioned in table 3.2 are in WCS (World Coordinate
System) of the drawing.

6

.. 3.1. DXF

Entity type Group code Description

LINE 10 Start point x-coordinate
20 Start point y-coordinate
30 Start point z-coordinate
11 Endpoint x-coordinate
21 Endpoint y-coordinate
31 Endpoint z-coordinate

CIRCLE 10 Center x-coordinate
20 Center y-coordinate
30 Center z-coordinate
40 Radius

ARC 10 Center x-coordinate
20 Center y-coordinate
30 Center z-coordinate
40 Radius
50 Start angle
51 End angle

LWPOLYLINE 90 Number of vertices
10 Vertex x-coordinate (for each vertex)
20 Vertex y-coordinate (for each vertex)
42 Bulge of the line starting in the vertex

(for each vertex)

INSERT 2 Name of inserted block
10 Insertion point x-coordinate
20 Insertion point y-coordinate
30 Insertion point z-coordinate
50 Rotation angle

Table 3.2: List of important DXF entities and the selection of their variables

BLOCKS section

Blocks are groups of entities which can be inserted into the drawing by
INSERT entity. The nesting of blocks is possible by including the INSERT
entity of an inner block inside an outer block.

Blocks start with 0 and BLOCK and end with next block or end of the
section. Block definition contains some general info and definitions of block
entities. The definition also contains the ENDBLK value, which marks the end
of entities definitions, not the end of the block definition. Entities definitions
have the same form as in ENTITIES section.

Name variable is used for block specification in INSERT entity. Base point
corresponds to the insertion point of INSERT entity and creates origin of the
coordinate system of block entities.

7

3. Description of used technologies
Group code Variable

2 Block name
4 Block description
8 Layer
10 Base point x-coordinate
20 Base point y-coordinate
30 Base point z-coordinate

Table 3.3: List of DXF block general variables

Each entity inside the block definition has its layer variable defined, which
could differ from the layer of the block. Entities of the block created in layer
0 inherit settings from the layer of the INSERT entity which placed their
block to the drawing.

Turning the layer off makes disappear all entities created on the layer and
inserted entities created on the layer 0. The inserted entities created on other
layers than 0 remain visible. Turning the layer 0 off affects only entities
currently present on this layer. Freezing and locking the layer also affects the
inserted entities created on other layers than 0. Layer 0 is present in every
drawing and is used to block creating.

Properties like color or linetype of entity can be inherited from the layer
(ByLayer), from the block (ByBlock) or overridden in entity settings.

Block description is a simple character string. We use description for
storage of information concerning control blocks. Data are stored in format
similar to YAML maps (key: value). Newline symbol in AutoCAD is in
DXF coded like "ˆMˆJ" sequence.

TABLE section

The TABLE section contains, among other tables, the list of all layers present
in the drawing. Layers records contain their name, ID or bit coded standard
flags. Flags describe settings like freezing, locking or referencing of the layer.

3.2 NDT

NDT stands for Normal Distribution Transform and is fundamental for
NDT map representation. This map is very similar to occupancy grid. The
difference is that probability distribution inside each cell is normal instead
of uniform. The distribution describes the probability of measuring a point
(by some rangefinder) at certain position in the cell, so we have much more
precise information of occupancy inside the cells compared to the occupancy
grid. The dimension of normal distribution domain is the same as of the
used map, that is 2D for planar or 3D for spatial maps. The maps are being
visualized by multivariate Gaussian curves. The example of 2D Gaussian

8

.. 3.2. NDT

curve is in Figure 3.1. The examples of CAD map and an NDT map are in
Figure 3.2.

(a) : 3D view
(b) : Top view with covariance
matrix eigenvectors

Figure 3.1: Gaussian curve with 2D domain

(a) : CAD drawing (b) : NDT map

Figure 3.2: Example of 2D map with visualized NDT cells

All the maps are considered to be 2D further through this thesis. 2D
normal distribution is described by a vector of centroid

µ =
[
µx
µy

]
(3.1)

and by a covariance matrix

Σ =
[

Σxx Σxy

Σyx Σyy

]
. (3.2)

9

3. Description of used technologies
The calculation of normal distribution parameters proposed in [2] gives

bigger influence to the newest data, which makes an advantage in changing
environment. We have the positions of static walls available a priori. We
want to use the initial NDT map for correction of robot measurement errors.
The computation better suited for our application is the standardly used
unbiased parameters estimation

µ = 1
n

n∑
i=1

[
xi
yi

]
, (3.3)

Σ = 1
n− 1

n∑
i=1

[
xi − x
yi − y

] [
xi − x
yi − y

]T
. (3.4)

The covariance matrix must be positive-semidefinite. This condition is not
met if one of the eigenvalues of the matrix is zero, which happens when all
measured points in the cell are collinear. Biber and Straßer in [1] solved these
situations by setting too small eigenvalue to 0.001 times the bigger eigenvalue.
We set the smallest ratio of the eigenvalues as the variable in a configuration
file and to 0.001 by default.

NDT-OM (Normal Distribution Transform Occupancy Map) is same as
NDT map with the addition of occupancy information in each cell. While
creating the map with a robot, the occupancy values are being updated by
the ray-tracing as in [7] and [5] or by the beam-sensor model like in [2]. We
set occupancy value to -1 when the cell doesn’t contain any geometric object
from CAD drawing and to 100 otherwise. The value -1 denotes unknown
occupancy value because free space in our map can be filled with objects in
the real environment. The values for free and occupied cells were chosen to
conform with the used SLAM implementation.

In [5] cells contain weight value in addition to above mentioned NDT cell
parameters. It is incremented whenever new measurement falls into the cell
and is included in NDT parameters. We set the constant weight to every
occupied cell equivalent to the value set in configuration file.

Cells can be stored in a tree structure with different resolutions on each
layer [2]. This multi-resolution approach is not used in our robot.

Maps described above are usually stored in some type of pose graph
structure. Multiple scans are merged based on the transformation from
odometry data and create a frame, which is with its pose stored like a
graph node. The new frame is created at the moment when the reliability
of displacement estimation from odometry falls under a certain threshold.
Nodes are connected by odometry edges containing transformations between
frames. The loop closure algorithm creates new edges between the existing
nodes.

Assuming, that the CAD drawing is precise, we create only the single frame
containing the whole map. Consequently, the pose graph contains only single
node. The correctness of this statement should be experimentally validated
in future.

10

..................................... 3.3. Alpha shape

3.3 Alpha shape

Alpha shape is in this thesis used for obtaining outlines of walls from CAD
drawing and assuring that the outlines are watertight. Alpha shape of a finite
point set was introduced by Edelsbrunner et al. in [11]. It can be created by
inserting discs in 2D or spheres in 3D of the radius defined by α parameter
between the points in the way when all discs are tangential to some point,
and none of them contain any point. Connecting all pairs of points, that have
a common tangential disc to straight lines creates an Alpha shape of the set.
Nice explanation by the help of ice-cream and carving spoon is included in
[12]. The examples of an Alpha shape of some point set for two general α
values are in Figure 3.3.

(a) : smaller α (b) : larger α

Figure 3.3: Alpha shapes of the same point set for two different α parameters

The disc size is being defined variously. The original work [11] defines
radius of discs as 1

α , the Geometric algorithms class handout from Stanford
university [12] as α and CGAL (The Computational Geometry Algorithms
Library) [14] as

√
α. This thesis and the converter implementation uses the

second mentioned practice and enters the second power of stored α parameter
as input into CGAL.

Interesting is the case with value α→ 0, which leaves the point set as it is
and does not connect any points and the case with value α→∞, creating
convex shape. Both situations can be seen in Figure 3.4.

Alpha shape boundary is always a subset of Delaunay triangulation of
the same set of points. This property is used for effective Alpha shape
construction. The algorithm is clarified in [15]. Similar method uses the
CGAL library and its Alpha_shape_2 class [14]. The relation between the
Delaunay triangulation and an Alpha shape of a point set can be seen in
Figure 3.5.

11

3. Description of used technologies

(a) : Alpha shape with α→ 0 is the
point set itself

(b) : Alpha shape with α → ∞ is
convex shape of the point set

Figure 3.4: Alpha shapes of the same set of points for the corner α values

(a) : Delaunay triangulation of the
point set

(b) : Alpha shape boundary of the
point set for some α

Figure 3.5: Alpha shape boundary is always a subset of Delaunay triangulation

All the points from the set must be from the definition in general position
(none four points cocircular, none three points collinear [11]). The collinearity
of points stops us also from using the construction algorithm mentioned above,
because some triangles in Delaunay triangulation may have zero area.

12

.............................. 3.4. Axis-aligned bounding boxes

3.4 Axis-aligned bounding boxes

Original algorithm [18] creates virtual box around each object with its edges
aligned with axis of a coordinate system. This box defines minimal and max-

1

x1min x2min x1max x2max

y1min

y2min

y2max

y1max

2

x

y

Figure 3.6: Axis-aligned bounding boxes collision detection

imal values of coordinates where we can find the bounded object. Searching
for a collision between two objects is replaced by searching for a collision
between their bounding boxes, and it can be done by checking four conditions
(in 2D)

x1min <= x2max , (3.5)

x2min <= x1max , (3.6)

y1min <= y2max , (3.7)

y2min <= y1max . (3.8)

If all of these conditions are met, the objects bounding boxes collide and
must have some intersection. The situation can be seen in Figure 3.6. The
algorithm used in the converter for finding intersections between NDT grid
and geometric entities using bounding boxes is described in section 5.3.

3.5 RViz

RViz is ROS package, used for visualization of robot state, surrounding
environment and various operational data [19]. All viewable objects can be
added to 3D view like "displays." Each display can read data from ROS topics
and view them in real time. The visualization can also be used for robot
control.

13

14

Chapter 4
Converter from DXF drawing to NDT map
representation

This chapter describes the implementation of the converter from DXF CAD
drawing file to NDT map used in the SLAM algorithm. Source code of the
implemented converter is present on the attached CD.

4.1 Program overview

The main purpose of the converter is to create an NDT map representation
from given CAD architectural drawing to DXF format. The NDT map is
exported like a simple list of NDT cell parameters in a text file and has to be
further converted for usage inside some particular robot.

The converter is dependent on the initial setup by a user. The setup is done
by filling a configuration file. The user has to choose parts of the drawing
usable for conversion and give them in the form of a list of desired layers to
the converter. The user has to know the proper NDT grid settings and set
them up in the configuration file. The configuration file also contains multiple
parameters dedicated to the elimination of redundant lines inside the walls.

The converter can generate multiple visualization files. The "control views"
are CAD drawings which contain different states of conversion and serve to
inspection if the conversion goes well. Another type of visualization file is the
file with drawing geometry definitions. This file can be loaded by implemented
ROS package, and the loaded drawing can be visualized in RViz.

The destinations of robot movement can be drawn in the map as station
blocks. The converter is able to extract the station blocks from a defined
layer and export YAML format file with station definitions.

4.2 Implementation

4.2.1 Implementation of converter from DXF CAD drawing
to NDT map representation

This section deals with the implementation of the converter from DXF CAD
drawing to NDT map representation. The structure of the implementation is

15

4. Converter from DXF drawing to NDT map representation
shown in Figure 4.1. The entire converter and RViz viewer were implemented
in C++.

DXF l oadi ng

CAD dr awi ng
. dxf

conf i gur at i on
f i l e
. yaml

l ayer s f i l e
. t xt

NDT gr i d
gener at i on

cv_l oad_ent
. dxf

r vi z_cad
. t xt

r vi z_gr i d
. t xt

I NSERT
decomposi t i on

LWPOLYLI NE
decomposi t i on

dr awi ng
adj ust ement s

di vi si on t o
cel l s

cv_di v_dr awi ng
. dxf

cv_di v_gr i d
. dxf

NDT val ues
comput at i on

map_f i l e
. t xt

map_f i l e
. yaml

LWPOLYLI NE I NSERT
LI NE

CI RCLE
ARC

st at i ons
def i ni t i ons

. yaml

st at i on
bl ocks

ext r act i on

Figure 4.1: Converter program structure

The whole process starts with the loading of a configuration file according to
the path given by a user. yaml-cpp library [17] was used for all manipulation
with YAML format files. The configuration values are stored and further
used within the program.

Simple DXF reader loads selected entities and all blocks from the CAD
drawing specified in configuration file. The station blocks are separated
and exported as described in section 4.2.2. It eliminates all other entities
except INSERT entity type. Next step is decomposition of complex entities.
INSERTs are linked together with their blocks and decomposed to other
entities. LWPOLYLINESs are decomposed to LINEs and ARCs . At this

16

................................... 4.2. Implementation

moment, we have only "primitive" entities (LINE , CIRCLE , ARC). Those
are being exported to cv_load_ent.dxf and rviz_cad.txt for control and
visualization purposes.

Now the adjustments are applied. We can delete all diagonal lines, or apply
Alpha shape with use of CGAL [14] library.

Previously stored parameters of NDT grid like grid size, position, orientation
and cell size are used to initialize the grid variable. Grid lines definitions are
exported to rviz_grid.txt . Each entity is divided into grid cells. LINE
entities use adjusted axis-aligned bounding box collision detection algorithm
to improve time complexity of the division. Divided entities can be exported
to cv_div_drawing.dxf and cv_div_grid.dxf files.

Divided entities are sampled to receive equivalent to points measured by
range scanner. Each cell contains sampled points, from which the NDT
parameters can be computed according to 3.3 and 3.4. Eigendecomposition
of covariance matrix reveals ratio between eigenvalues, which is adjusted to
defined minimal value if necessary. Eigenvectors are modified to be orthogonal.
The covariance matrix is assembled again, and NDT parameters are saved
into the cell. Computed NDT values can be exported to map files.

4.2.2 Implementation of station blocks export

The stations can be inserted into drawing by a user as described in section
4.3.5. The station blocks are inserted in a drawing on a special layer defined
in a configuration file by ctrl_stations_lay key.

All INSERT entities on defined stations layer are loaded during DXF
loading, and their corresponding blocks are found. The placed INSERT entity
defines position and orientation of the station, and its block contains a visual
representation of the station. Additional information like station type or
name is stored in block description.

The loaded stations are exported in YAML format. The exact form of the
file is described in section 4.3.5.

4.2.3 Implementation of RViz visualization

The converter creates two files dedicated to visualization in RViz. The
first one’s name is rviz_cad.txt and contains definitions of geometry
objects from CAD drawing loaded by the converter. The second one is
rviz_grid.txt and contains definitions of NDT grid lines used in the con-
verter. A visualization of NDT map is not a part of this work, because it is
being developed by the students of A3M99PTO class.

All geometry objects defined in rviz_cad.txt are lines. The arcs and
circles from loaded CAD drawing have to be divided into line segments
because the rviz/DisplayTypes/Marker message used for visualization in
RViz does not support any object type for arc or circle. The division to line
segments is done in the converter.

Package view_cad containing executable view_cad_and_grid was im-
plemented. The executable loads both generated files mentioned above and

17

4. Converter from DXF drawing to NDT map representation
transfers the defined lines to Marker::LINE_LIST rviz display type. The
Grid rviz display type was not used for the grid, because it can be only square
and we need a grid with generally different number of rows and columns.

The executable creates visualization_cad_and_grid topic. RViz can
subscribe from the created topic and visualize the Marker messages. The
whole process of visualization is shown in Figure 4.2.

rviz_cad
.txt

rviz_grid
.txt

view_cad_and_grid
ROS node

visualization_cad_and_grid
ROS topic

rviz
ROS node

display

Figure 4.2: Structure of RViz visualization process

The coordinate frame of the visualized drawing is called cad_frame and
corresponds to coordinate frame of the loaded DXF drawing.

4.3 User manual

We have to use several programs from the start of the conversion process to
its end. The first one is a CAD editor. It is used for viewing the original
CAD drawing, choosing the desired layers, conversion to DXF format and
insertion of station blocks. It is also used for inspection of exported "control
view" files.

A simple text editor can be used to create a configuration file or write a
list of desired layers. Advanced text editors like Notepad++ can highlight
YAML format syntax and can prevent possible mistakes in formatting.

The converter itself is the program without any graphical interface. It runs
from a terminal and is controlled mainly by parameters in the configuration
file. It loads the defined DXF file, configuration file, and file with desired
layers. Then it creates inspection DXF files, geometry definitions files, the
NDT map files and stations definitions file.

18

.....................................4.3. User manual

ROS RViz can be used for visualization of CAD drawing loaded to converter
and NDT grid defined by a user. The data viewed in RViz are loaded from
topic published by view_cad executable. The view_cad loads geometry
definitions files (rviz_grid.txt and rviz_cad.txt) generated by the converter.

4.3.1 Installation

The converter is dependent on two libraries which are not present in the
standard C++ installation. The first library is yaml-cpp which allows to load
and export files in YAML format. It is available on GitHub [17]. The second
library is CGAL , which is in the converter used for Alpha shape creation. It
can be downloaded from the main page of the CGAL project [13]. Other
libraries have to be installed before CGAL library, namely CMake , Boost ,
Gmp and Mpfr . These CGAL dependencies may or may not be present on a
users computer. After installation of all needed libraries the converter can be
built by make command.

The RViz visualization is independent of the converter. ROS Kinetic
and RViz package have to be installed to use the view_cad package. The
view_cad package should be moved to some initialized catkin workspace
and built by catkin build command.

4.3.2 Example of conversion

First of all, we need to prepare the CAD drawing. It has to be saved as
a .dxf file, which can be done in AutoCAD by pressing "Save As," "Other
Formats," and choosing one of the .dxf formats from the drop down menu. The
converter was designed in accordance with AutoCAD 2012 DXF Reference
[16]. AutoCAD 2018 DXF was tested and works well. After we have DXF
file of our CAD drawing, we can set the dxf_file key in the configuration
file. The configuration file is described in detail in section 4.3.3.

The second step is choosing the layers we want to convert. Approved
practice is turning off all layers and then turning on one by one, looking for
valuable parts of the map, especially walls. The desired layers can be given
to the program by two different ways. The first one is writing the layers
names in a separate .txt file, each on a new line and setting layers_file
value. The second one is writing the names as YAML list directly to the
configuration file under layers_list key.

Now we have to set the parameters of the NDT grid. It is good to turn on all
desired layers and try to determine the best position, orientation and size of the
grid, so it covers whole part of the map, we want to use. We set the origin ,
rotation and grid_size configuration parameters. The cell_size value
depends on a requested level of NDT map detail. We can also set minimal
ratio between covariance matrix eigenvalues eig_ratio , weight of occupied
cell weight and sampling density for NDT values calculation spm .

If the desired layers contain some redundant entities inside the wall, we can
delete them manually in CAD editor, or use one of the conversion settings.
First is rem45 , which removes all lines angled by 45 degrees. This option

19

4. Converter from DXF drawing to NDT map representation
is handy when the only 45 degrees angled lines are diagonal wall hatches.
Otherwise, it can delete some desired parts of the map. The second option
is alpha_shapes described in 3.3. The α parameter can be controlled by
alpha_value . Sampling density (samples per meter) can be set directly by
alpha_spm , or it will be computed after setting the minimal parallel line
distance pl_distance .

The NDT map output can be stored in .txt file and .yaml file. To enable the
desired output, mapfile_txt or mapfile_yaml should be set to 1. The path
of the output file can be changed in map_path_txt and map_path_yaml .
The structure of output file is described in 4.3.4.

The correctness of drawing manipulations in the converter can be checked in
inspectional .dxf files. The file control_view_load_ent.dxf containing the
loaded drawing can be generated by control_view . The division of loaded
entities into NDT cells can be checked in control_view_div_drawing.dxf
(in .dxf drawing coordinate system) and in control_view_div_grid.dxf
(in NDT grid coordinate system) by adjusting cv_division_drawing and
cv_division_grid . If Alpha shape is used, control_view_alpha.dxf file
is generated automatically.

After we set up the configuration file, we can run the converter.
./bin/dxf2ndt

It asks for the path to the prepared configuration file and starts the conversion.
In the end, the output files defined by the configuration should be created.

4.3.3 Configuration file

The whole conversion is controlled by parameters in one YAML format
configuration file. A path and a name of the configuration file is specified
by a user at the beginning of the converter run. List of the configuration
parameters follows.. dxf_file — path and filename of the input .dxf file from a running

directory (string). layers_file — path and filename of the layers .txt file containing
names of desired layers (each on new line) (string). layers_list — YAML style list of desired layers names - overrides
layers_file if are both present (string list). origin — origin of NDT grid in CAD drawing coordinate system
([double, double, double]). rotation — rotation of NDT grid against CAD drawing coordinate
system (double). grid_size — size of the NDT grid ([double, double, double]). cell_size — length of side of square NDT cell (double)

20

.....................................4.3. User manual

. eig_ratio — the smallest possible ratio between the NDT covariance
matrix eigenvalues (double). weight — the weight to be set for the occupied cells (integer). spm — samples per meter value for sampling before NDT values calcu-
lation (double). cv_load_ent — turns on generation of .dxf file with loaded part of the
CAD drawing (1,0). cv_div_drawing — turns on generation of .dxf file with drawing divided
into NDT cells in original CAD coordinate system (1,0). cv_div_grid — turns on generation of .dxf file with drawing divided
into NDT cells in NDT grid coordinate system (1,0). mapfile_txt — turns on creation of .txt output NDT map file (1,0). map_path_txt — path to .txt output NDT map file (string). mapfile_yaml — turns on creation of .yaml output NDT map file
(1,0). map_path_yaml — path to .yaml output NDT map file (string). rem45 — removes all lines angled by 45 degrees against original CAD
drawing coordinate system (1,0). alpha_shapes — apply the Alpha shape on the drawing (1,0). alpha_value — α value for the Alpha shape (double). pl_distance — the smallest distance between any parallel line in the
wall and wall line — serves to computation of Alpha shape sampling
density 5.2 (double). alpha_spm — directly sets the Alpha shape sampling density (instead
of computation) (double). gen_rviz — generates .txt files containing definition of loaded CAD
drawing and defined NDT grid for visualization in RViz (1,0). ctrl_station_lay — name of CAD layer containing stations for robot
control (string)

Both LF and CR+LF newline characters should work in the configuration
file.

21

4. Converter from DXF drawing to NDT map representation
4.3.4 Output file

The output file can be generated like simple .txt file or .yaml file. Files are
nearly identical, only the cell values in the .yaml file are stored in YAML
style array. Each cell is on one line, defined by 14 numbers. All generated
files use LF newline character.

Parameter Data type

mean vector 3× double
covariance matrix 9× double
occupancy double
weight integer

Table 4.1: Parameters describing each NDT cell in output file

4.3.5 Stations

A user can place some destinations of robot motion into drawing in the form
of stations. Each station must be defined by new drawing block to have a
unique name. A user draws a visual representation of station in CAD editor
and creates a new block from the drawing. A type and name of the station
are defined during the block creation in the block description. The description
form was chosen to be similar to YAML key-value format as shown in the
following example.
type: charging station
name: lab 33

A user should pay attention to the position of the block base point in
the drawn visual representation because the base point corresponds to the
exported position of the station.

A separate layer for the stations has to be created in the drawing. Name
of the station layer has to be specified in the converter configuration file
as a value to the ctrl_stations_lay key. All the blocks placed in the
layer are identified as stations. This approach can be used in the future for
other objects used for planning purposes. Each type of objects like corridor,
preferred path or various zones can have own layer.

When we have defined the station block and created a station layer, we
can place the block into the drawing to the defined layer by INSERT entity.
The INSERT defines position and orientation of the station.

After placing all the stations, we can run the converter and the stations_export.yaml
file is generated. The file contains the definitions of all placed stations as
shown below.
- control_entity: station

station_number: 4
type: charging station
type_number: 1

22

.....................................4.3. User manual

name: lab 33
position: [57.012, 12.704, 0]
rotation: [0, -1, 0, 1, 0, 0, 0, 0, 1]

. control_entity — a type of control entity (now only station). station_number — a serial number unique between all the stations. type — a user-defined type of the station, e.g. charging station, mate-
rials loading, printer. type_number — a serial number unique between all stations of the same
type. name — a user-defined name of the station. position — the position of the station (position of the INSERT entity)
in the coordinate system of the drawing. rotation — the rotation matrix defining station orientation (orientation
of the INSERT entity) in the coordinate system of the drawing

A user can parse the generated file and use it in a motion planning software.

4.3.6 Visualization of CAD drawing in RViz

By enabling generation of files for visualization in RViz, the converter makes
one file with line definitions of loaded CAD and one file with created NDT
grid. Both can be viewed using implemented ROS package. The executable
asks for generated files and publishes Marker::LINE_LIST ROS messages,
which can be added in RViz like new Marker display. An example of the
visualization is in Figure 4.3.

Figure 4.3: Visualization of loaded CAD drawing and NDT grid in RViz

23

4. Converter from DXF drawing to NDT map representation
To use the viewer, the package should be built in some catkin workspace

and launched.
catkin build
rosrun view_cad view_cad_and_grid

24

Chapter 5
Practical observations

5.1 Imperfections in CAD drawings

The CAD drawing needs multiple adjustments before it can be processed by
a parser. Mainly, we need to choose parts of the map important for SLAM.
These parts have to be static and physically present in the environment so
that the robot can scan them. This requirement leads to an elimination of
all non-stationary objects like furniture and doors and all invisible or virtual
objects like wirings, texts, and various architectonic signs. The major part
of these objects can be simply removed at once thanks to their division to
drawing layers or by selection of chosen drawing entities. But some undesired
objects can be in the same layer as the needed and can be represented by one
of the requested entity types.

The selection of desired layers is done by a user, who has to search the
drawing for elements usable for SLAM and deliver their layers to the converter.
This process is described in section 4.3.2. It is good to mention that we
cannot select the layers just by their name, because the designer could make
mistakes.

The extraction of certain drawing entities is done by the converter. It takes
from the drawing only LINE , CIRCLE , ARC and LWPOLYLINE entities. It
also extracts preceding entities from blocks, placed in the drawing by INSERT
entity.

5.1.1 Hatches

The objects, which are the most difficult to eliminate, are those on the
desired layers and sketched by the several extracted entities. The encountered
example is wall hatches composed of individual lines. The whole hatch
inside a wall can be saved under one HATCH entity in DXF format, so the
problem can be prevented in the stage of drawing. The decomposition of
hatch objects into individual LINE entities can happen during conversions
between different CAD editors. When we obtain the drawing with already
"decomposed" hatches, we can delete them manually, or use some automation.

The simplest criteria common to all encountered hatch lines was their
diagonality in the sense of rotation by pi/4 radians against the world coor-

25

5. Practical observations
dinate system (WCS) base. The elimination of all the diagonal lines was
implemented and can be turned on by rem45 key in the configuration file.
But the usage is strictly limited to the situations when none LINE entity
from desired layers is diagonal, and moreover, it does not register any of the
non-diagonal hatches.

More universal is the algorithm mentioned in [9]. It finds the first wall by
casting a ray from a position of room number text and then continues around
the room and saves the walls. The similar algorithms are called boundary
tracing. This algorithm wasn’t implemented, because of a few disadvantages.
Mainly, it can’t handle the room with any objects inside and not connected
to the walls, e.g. pillars. The initial ray can intersect a pillar earlier than a
wall, which results in a failure. Furthermore, it should need some adaptation
to non-watertight (can have gaps between lines) drawings.

The most promising treatment of hatches seems to be the use of Alpha
shapes, further described in 3.3 and 5.2.

Defects like misplacement or absence of some walls can always appear in
the drawing. These defects have to be corrected by a user in a CAD editor
because there is no way of recognizing them as errors automatically without
knowledge of the real environment.

5.2 Adjusting the drawing by Alpha shapes

Using Alpha shape, presented in 3.3, to extract only wall outlines is one of
the solutions of the "decomposed" hatches elimination.

The constraint of the general position of points in a point set mentioned
in 3.3 are critical for use on straight walls because all points on one side of
a wall are collinear. We are adding negligible (e.g. units of micrometers)
random noise to every sample point, so it does not influence the precision of
a drawing too much, but moves all points to general positions.

The selection of α value for use on the CAD drawing depends on several
factors. Firstly, it should not be bigger than half of the robot width, or the
shape will close the gaps usable for robot motion. Secondly, it should be so
large that the shape eliminates the wall hatches. The second condition is
very dependent on the density of lines sampling. An example of correct use
of Alpha shape on diagonal hatches is shown in Figure 5.1.

Figure 5.1: Application of Alpha shape on a diagonal line hatch inside a wall
- original CAD drawing is shown in black, remaining part of the drawing after
application of Alpha shape is shown in blue

26

......................... 5.2. Adjusting the drawing by Alpha shapes

We can encounter a hatch or a line inside a wall and parallel to the wall
line in the distance of d. The worst possible case is, when the samples of the
hatch are shifted by half a sampling distance c from the samples of the wall
as shown in Figure 5.2. To prevent integration of the hatch samples to the
Alpha shape boundary, the sampling distance must meet the equation

c <

√
8d
(
α− d

2

)
. (5.1)

This requirement is based on the relation of parameters of a circular segment

α = d

2 + c2

8d, (5.2)

which can be seen in Figure 5.2.

wall line

hatch line

�

c

d

.
Figure 5.2: Calculation of sampling density for Alpha shape use - sampling
distance c, spacing of lines d and parameter of Alpha shape α

An example of Alpha shape usage on undersampled parallel lines is shown
in Figure 5.3.

Figure 5.3: Application of Alpha shape on parallel lines inside a wall (undersam-
pled) - original CAD drawing is shown in black, remaining part of the drawing
after application of Alpha shape is shown in blue

To prevent cutting of the outer wall corners, the end points of each line
are inserted to the point set.

Besides the elimination of redundant entities inside the walls, Alpha shape
distorts the inner wall corners as shown in Figure 5.4. The distortion increases
with α value.

27

5. Practical observations

Figure 5.4: Corner distortion as result of Alpha shape application - original
CAD drawing is shown in black, remaining part of the drawing after application
of Alpha shape is shown in blue

5.3 Division of entities to cells

We need to divide entities into cells before the NDT values computation. The
division is done by searching for intersections between NDT cells outlines and
entities. The simplest approach is trying to find the intersection between each
entity and each cell. This practice was machine time consuming, therefore,
was replaced by another method inspired by axis-aligned bounding boxes
algorithm 3.4.

We want to check the collision of entities with square cells. We have the
advantage of easy calculation of the position of each cell and edges from the
NDT grid definition parameters, and the cells can be iterated over rows and
columns of the grid. We create the bounding box of an entity transformed to
NDT grid coordinate system and simply compute the cells, which contain
corner points of the bounding box [xmin; ymin], [xmax; ymax]. These cells are
in rows rmin and rmax and columns cmin and cmax respectively as shown
in Figure 5.5. Then we search for intersection only between the entity and
cells with row number in the interval 〈rmin, rmax〉 and column number in
〈cmin, cmax〉.

cmin cmax

rmax

rmin
[xmin; ymin]

[xmax; ymax]

Figure 5.5: Axis-aligned bounding box of an entity and the grid - intersection is
checked only between the entity and cells with rows in the interval 〈rmin, rmax〉
and columns in the interval 〈cmin, cmax〉

28

Chapter 6
Experimental results

All the implemented software was tested on architectonic drawings of CIIRC
building in Prague. This chapter proceeds one of the conversions of the
drawings and results of the conversion.

The Figures 6.1a 6.2a 6.3a contain original drawing with all layers turned
on. Desired layers can be seen in Figures 6.1b 6.2b 6.3b. The list of desired
layers was written into individual text file.

The configuration file was filled as shown below.
dxf_file: user/CIIRC/6/ciirc_6.dxf

layers_file: user/CIIRC/6/layers_ciirc_6.txt

origin: [80000, -15000, 0]
rotation: 0
cell_size: 250
grid_size: [125000, 20000, 0]
eig_ratio: 0.001
weight: 20
spm: 10

alpha_shapes: 1
alpha_value: 150
pl_distance: 20

mapfile_txt: 1
map_path_txt: user/CIIRC/6/mapfile_ciirc_6.txt

gen_rviz: 1

ctrl_stations_lay: jackal_stations

The drawing contains the hatches divided into individual lines as a conse-
quence of some format conversions. The line hatches were eliminated using
Alpha shape algorithm. All unwanted lines in walls were eliminated, but
corner cutting effect appeared. It can be seen on corners in Figure 6.2c and
on corners and right column in Figure 6.3c.

29

6. Experimental results..................................
The Figures 6.1c 6.2c 6.3c contain generated NDT representation of the

environment. We can see that some NDT cells contain both sides of one wall
as middle wall and walls around the elevator in Figure 6.2c. This case can be
eliminated by better placement of the grid and decrease of the cells size.

Some stations were created and placed on new jackal_stations layer.
The stations can be seen in Figures 6.1a 6.1b. Their description was written
in form shown in section 4.3.5. The converter successfully generated YAML
file with stations definitions.
- control_entity: station

station_number: 3
type: stop
type_number: 3
name: lab
position: [57.546, 10.509, 0]
rotation: [0, -1, 0, 1, 0, 0, 0, 0, 1]

- control_entity: station
station_number: 4
type: charging station
type_number: 1
name: in lab
position: [57.012, 12.704, 0]
rotation: [0, -1, 0, 1, 0, 0, 0, 0, 1]

The export files for RViz were generated. The files were processed by
view_cad_and_grid ROS node and viewed in RVIz. The RViz display can
be seen in Figure 6.4.

Figure 6.4: Verification of RViz drawing visualization

Experimental evaluation of the generated NDT maps using Jackal robot
was not possible, because we are not able to import the NDT maps to the
robot. Problems with positioning of the map in the robot coordinate system,
importing data into the graph representation and starting the mapping
algorithm have to be solved.

30

.................................. 6. Experimental results

(a) : Original architectonic drawing

(b) : Drawing with desired layers

(c) : Generated NDT map

Figure 6.1: Cut of the map: laboratory

31

6. Experimental results..................................

(a) : Original architectonic drawing

(b) : Drawing with desired layers

(c) : Generated NDT map

Figure 6.2: Cut of the map: stairs

32

.................................. 6. Experimental results

(a) : Original architectonic drawing

(b) : Drawing with desired layers

(c) : Generated NDT map

Figure 6.3: Cut of the map: lecture hall

33

34

Chapter 7
Conclusion

This thesis has dealt with a conversion of CAD architectonic drawings to NDT
map representation. Publicly documented DXF format of CAD drawing has
been chosen and the converter from this format to the NDTmap representation
has been implemented.

The CAD drawings can be visualized in RViz by the implemented ROS
node. The converter contains the possibility of diagonal lines elimination or
wall outlines extraction by Alpha shape algorithm. The converter can export
definitions of user-defined movement destinations in simple YAML format
file. The main output of the converter is a simple text file with definitions of
NDT cells.

The conversion has been tested on the architectonic drawings of CTU
CIIRC building. The results of conversion have been evaluated only visually
because the present state of Jackal robot software does not provide a functional
NDT map import. Once the map import to the Jackal robot is operational,
the generated maps will need to be tested, and we will have to find proper
parameters of NDT grid.

The elimination of undesired parts of the map could be improved in
the future. The elimination of diagonal lines works only on special cases,
and Alpha shape algorithm cuts corners and connects near objects. Using
Alpha shape only for a selection of boundary lines or some boundary tracing
algorithm should satisfy our demands. Elimination of outdoor wall lines,
which indoor robot cannot scan, could also be implemented.

35

36

Bibliography

[1] Peter Biber, Wolfgang Straßer, The Normal Distributions Transform: A
New Approach to Laser Scan Matching, IEEE IROS, Las Vegas, USA,
2003

[2] Erik Einhorn, Horst-Michael Gross, Generic NDT mapping in dynamic
environments and its application for lifelong SLAM, Robotics and Au-
tonomous Systems, vol. 69, pp. 28–39, July 2015

[3] David Nováček, Celoživotní určování polohy mobilního robotu, Bc. thesis,
Dept. of Cybernetics, Fac. of Elect. Eng., Czech Tech. Univ. in Prague,
2017

[4] Søren Riisgaard, Morten Blas, Slam for Dummies (A Tutorial Ap-
proach to Simultaneous Localization and Mapping), 2005, available:
https://ocw.mit.edu/courses/aeronautics-and-astronautics/
16-412j-cognitive-robotics-spring-2005/projects/1aslam_
blas_repo.pdf

[5] Lukáš Jelínek, Graph-based SLAM on Normal Distributions Transform
Occupancy Map, Bc. thesis, Dept. of Theor. Comp. Sci. and Math. Logic,
Fac. of Math. and Phys., Charles Univ., Prague, 2016

[6] Jari Saarinen, Henrik Andreasson, Todor Stoyanov, Juha Ala-Luhtala
and Achim J. Lilienthal, Normal Distributions Transform Occupancy
Maps: Application to Large-Scale Online 3D Mapping, IEEE ICRA,
Karlsruhe, Germany, 2013

[7] Jari Saarinen, Todor Stoyanov, Henrik Andreasson and Achim J. Lilien-
thal, Fast 3D Mapping in Highly Dynamic Environments using Normal
Distributions Transform Occupancy Maps, IEEE/RSJ IROS, Tokyo,
Japan, 2013

[8] Clearpath Robotics - Jackal data sheet, 2014,
available: https://www.clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/

[9] Aniket Murarka, Benjamin Kuipers, Using CAD Drawings for Robot
Navigation, IEEE SMC, 2001

37

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://www.clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

Bibliography
[10] Adam Borkowski, Barbara Siemiatkowska, Jacek Szklarski, Towards

Semantic Navigation in Mobile Robotics, Graph Transformations and
Model-Driven Engineering - Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday, 2010

[11] Herbert Edelsbrunner, David G. Kirkpatrick, Raimund Seidel, On the
Shape of a Set of Points in the Plane, IEEE TIT, vol. 29, pp. 551-559,
July 1983

[12] Kaspar Fischer, Introduction to Alpha Shapes, Geometric algorithms class
handout, Stanford Univ., 2000, available: graphics.stanford.edu/
courses/cs268-16-fall/Handouts/AlphaShapes/as_fisher.pdf

[13] CGAL - main page, available: https://www.cgal.org/

[14] CGAL - 2D Alpha Shapes, available: https://doc.cgal.org/latest/
Alpha_shapes_2/index.html

[15] Marjan Celikik, Alpha shapes, Computational Topology seminar pre-
sentation, Max-Planck-Institut für Informatik, available: http://www.
mpi-inf.mpg.de/~jgiesen/tch/sem06/Celikik.pdf

[16] Autodesk AutoCAD 2012 DXF Reference, available: http://images.
autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.
pdf

[17] yaml-cpp YAML parser and emitter in C++, available: https://github.
com/jbeder/yaml-cpp

[18] 3D collision detection - Axis-aligned bounding boxes, available:
https://developer.mozilla.org/en-US/docs/Games/Techniques/
3D_collision_detection

[19] ROS.org Wiki - rviz package, available: http://wiki.ros.org/rviz

[20] Marc Vigo, Núria Pla, Dolors Ayala, Jonàs Martínez, Efficient algo-
rithms for boundary extraction of 2D and 3D orthogonal pseudomanifolds,
Graphical Models, vol. 74, pp. 61-74, March 2012

38

graphics.stanford.edu/courses/cs268-16-fall/Handouts/AlphaShapes/as_fisher.pdf
graphics.stanford.edu/courses/cs268-16-fall/Handouts/AlphaShapes/as_fisher.pdf
https://www.cgal.org/
https://doc.cgal.org/latest/Alpha_shapes_2/index.html
https://doc.cgal.org/latest/Alpha_shapes_2/index.html
http://www.mpi-inf.mpg.de/~jgiesen/tch/sem06/Celikik.pdf
http://www.mpi-inf.mpg.de/~jgiesen/tch/sem06/Celikik.pdf
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf
https://github.com/jbeder/yaml-cpp
https://github.com/jbeder/yaml-cpp
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection
https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_collision_detection
http://wiki.ros.org/rviz

Appendix A
Example of configuration file

This appendix contains an example of the configuration file in YAML format.
Symbol ’#’ marks comment beginning. Not all keys have to be present in the
configuration file. Absent keys are automatically set to some default values.
Description of all the keys is present in section 4.3.3.

DXF file path:
dxf_file: arcs_control.dxf

List of layers:
Path and name of layers file
layers_file: layers.txt

YAML style list of desired layers - overrides layers
from layers_file
layers_list:
- Layer01
- Layer02
- Layer03

NDT configuration values:
Origin of NDT grid in DXF coordinate system
origin: [-50, 670, 0]
Rotation of NDT grid against DXF coordinate system in
degrees
rotation: 45
Length of cell side
cell_size: 500
Grid size [x,y,z]
grid_size: [20000, 24000, 0]
Minimal ratio between eigenvalues of covariance matrices
eig_ratio: 0.001
Weight of cells occupied by some entity
weight: 20

39

A. Example of configuration file..............................
Samples per meter - for sampling for computation of normal
distribution parameters
spm: 10

Export of control DXF files:
creates file with loaded and decomposed entities (lines,
circles and arcs)
cv_load_ent: 0
creates file with entities divided to cells - in original
drawing coordinate system
cv_div_drawing: 1
creates file with entities divided to cells - in NDT grid
coordinate system
cv_div_grid: 0

Removes all lines angled by pi/4 from DXF coordinate system
axes
rem45: 1

Alpha shapes:
Turns on the usage of Alpha shape
alpha_shapes: 1
Value of alpha parameter
alpha_value: 100
Distance between wall line and parallel line inside
the wall (the smallest in the drawing) - for calculation
of sampling density for Alpha shape
pl_distance: 50
Direct input of sampling density for Alpha shape - parameter
active when not equal to 0 - overrides calculation from
pl_distance parameter
alpha_spm: 0

Turns on the generation of files for RViz visualization
gen_rviz: 1

Creation of NDT map files:
Turns the creation of .txt file on
mapfile_txt: 1
Specification of path and name of .txt NDT map file
map_path_txt: mapfile01.txt

40

.............................. A. Example of configuration file

Turns the creation of .yaml file on
mapfile_yaml: 0
Specification of path and name of .yaml NDT map file
map_path_yaml: mapfile01.yaml

Name of DXF file layer containing stations (motion
destinations) for robot motion planning
ctrl_stations_lay: robot_stations

41

42

Appendix B
CD content description

dxf2ndt - converter directory

bin - built binary

control_views - exported inspection DXF files
...

include - header .h files
...

input_files - example DXF and configuration files
...

rviz_files - exported files for view_cad
...

src - source .cpp files
...

example_output_mapfile.txt - generated example NDT map

makefile

stations_export.yaml - generated example station definition file

tmplt.dxf - template DXF used by converter

view_cad - directory of view_cad ROS package

include - header .h files
...

src - source .cpp files
...

CMakeLists.txt

package.xml

43

	Introduction
	Motivation

	State of the art
	CAD used in mobile robotics
	NDT

	Description of used technologies
	DXF
	The structure of ASCII DXF

	NDT
	Alpha shape
	Axis-aligned bounding boxes
	RViz

	Converter from DXF drawing to NDT map representation
	Program overview
	Implementation
	Implementation of converter from DXF CAD drawing to NDT map representation
	Implementation of station blocks export
	Implementation of RViz visualization

	User manual
	Installation
	Example of conversion
	Configuration file
	Output file
	Stations
	Visualization of CAD drawing in RViz

	Practical observations
	Imperfections in CAD drawings
	Hatches

	Adjusting the drawing by Alpha shapes
	Division of entities to cells

	Experimental results
	Conclusion
	Bibliography
	Example of configuration file
	CD content description

