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Abstract
A method of automatic artefact detec-

tion in sleep PSG is proposed in this work.
It is based on classification of segments
with different lengths. A new multichan-
nel adaptive segmentation was proposed.
For comparison of multichannel data, Rie-
mannian distance was used. Classification
was performed with Naïve Bayes classifier.
The method was tested on open-source
the DREAMS Artefacts Database. The
detection method was evaluated by var-
ious statistical metrics. They were com-
pared with results provided by Stephanie
Devuyst, the author of the database, and
detection based on classification of seg-
ments with constant length. The results
show increase in all metrics. Mainly, F1
score is higher on 30 % in comparison
with method performed by Devuyst and
on 20 % comparing to the state of art
method.

Keywords: PSG, artefacts, adaptive
segmentation, Riemannian distance,
Naïve Bayes classifier

Supervisor: Mgr. Elizaveta Saifutdinova
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic

Abstrakt
V této práci je navržena metoda auto-
matické detekce artefaktu ve spánkovém
PSG, která je založená na klasifikaci seg-
mentů s různými délkami.V rámci ní navr-
žen nový způsob multikanálové adaptivní
segmentace. Pro porovnání multikanálo-
vých dat byla použita Riemannova vzdá-
lenost. Klasifikace byla provedena s pou-
žitím naivního bayesovského klasifikátoru.
Metoda byla testována na open-source
datech z DREAMS Artefacts Database.
Klasifikace byla hodnocena pomocí růz-
ných statistických metrik. Výsledky me-
tody byly porovnávány s výsledky, které
poskytuje autor databáze Stephanie De-
vuyst, a detekce na základě klasifikace
segmentů s konstantní délkou. Výsledky
ukazují významné zvýšení ve všech me-
trikách. Zejména F1 je vyšší o 30 % ve
srovnání s metodou prováděnou Devuyst
a o 20 % ve srovnání s nejmodernější me-
todou.

Klíčová slova: PSG, artefakty,
adaptivní segmentace, Riemannova
vzdálenost, Naivní Bayesovský
klasifikátor

Překlad názvu: Detekce artefaktů v
multikanálovém spánkovém PSG
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Chapter 1
Introduction

1.1 Motivation and aim of the thesis

Sleep is a vital part of our life. Every person spends a third of his or her
life by sleeping. Our body and brain need it as much as oxygen, water and
food. Sleep quality affects our cognitive and learning capabilities, physical
health. It is one of the most crucial items in diagnostics of mental illnesses.
Polysomnography (PSG) remains to be a gold standard method of sleep
analysis. It provides brain activity (EEG), heart rate (ECG) the oxygen
level in blood, breathing and eye or muscle movements (EOG and EMG).
Various sleep disorders are diagnosed by polysomnography test. For instance,
obstructive sleep apnea, which is characterized by repetitive episodes of
paused breathing during sleep, or different types of hypersomnia.

The importance of artefact detection in PSG is widely acknowledged.
High artefact density makes difficulties in analysis of the obtained data and,
especially, during automatic processing. Manual screening and allocation of
damaged parts is almost impossible in long-term recordings and takes a lot of
time. The non-stationary behaviour of artefacts makes automatic detection a
difficult task [4, 5].

At the moment, many methods of automatic artefact detection have been
proposed. One of them using extended Kalman filter and neural network
instead of autoregressive (AR) model was examined with achieving 65 %
of sensitivity for 90 % of specificity [6]. Devuyst et al. presented series
of algorithms for dealing with different types of artefacts with sensitivity
83.67 % and specificity 96.47 % in 2008 [7]. In 2000 was proposed a method
for removing a wide variety of artefacts from EEG records based on blind
source separation by independent component analysis (ICA)[8]. However,
this approach requires a large number of channel for good source separation.
FASTER – a fully automated statistical thresholding method for EEG artefact
rejection, which also incorporates ICA showed >90 % sensitivity and specificity
for detection of contaminated channels [9]. For artefact detection can be
applied to machine learning, for instance, support vector machine (SVM)
classifier [10].

The aim of the study is to implement automatic artefact detection method in
sleep PSG using multichannel adaptive segmentation. The proposed method
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1. Introduction .....................................
is applied to the open-source DREAMS artefacts database. Results of the
detection were compared with a widely used method based on classification
of data segments of constant length. In the study, two big ideas were
connected: multichannel approach on pre-processing stage and machine
learning for detection of contaminated data segments. New proposed adaptive
segmentation extracts stationary segments by analyzing Riemannian distance
between neighbour data windows. Such an approach allows working with
all channels at once whereas many segmentation methods are applied to
channels separately. Proposed multichannel segmentation can be applied to
PSG even with the extremely big number of channels. Obtained segments
are classified by Naïve Bayes. Classification results of the data divided into
non-overlapped segments of different length and into segments of the same
length were evaluated and compared.

1.2 Thesis organization

The thesis is organized as follows. In Chapter 2 is presented a brief theory of
PSG and artefacts. In Chapter 3 signal processing method and database are
described. Chapter 4 contains the achieved results with their analysis.

1.3 List of Abbreviations

. PSG Polysomnography. EEG Electroencephalography. ECG Electrocardiography. EMG Electromyography. EOG Electrooculography.W Wakefulness stage. N1 Non-rapid eye movement sleep stage 1. N2 Non-rapid eye movement sleep stage 2. N3 Non-rapid eye movement sleep stage 3. REM Rapid eye movement sleep. NREM Non-rapid eye movement sleep. SPD Symmetric and positive definite matrices
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Chapter 2
Theoretical framework

2.1 Polysomnography

Polysomnography is a medical test to make a continuous record during sleep
of multiple physiological variables. Usually consists of:. The EEG is obtained using electrodes placed on the surface of the head

by a standardized system 10-20 (Figure 2.1). Each electrode placed
on the scalp is identified with a letter. For example, C is central, F is
frontal, etc. Numbers define a hemisphere or the brain: even numbers
- right hemisphere, odd numbers - left, "Z" (zero) refers to the midline
sagittal plane. The system’s name refers to constant distances between
neighbouring electrodes which are either 10 % or 20 % of the total
front–back or right–left distance of the skull [11]. These electrodes are
paired to create channels and the potential difference between a pair
of electrodes is measured. Typically, there are presented 19 channels
covering the whole head. An example is showed in the Figure 2.1.

Figure 2.1: The EEG electrode placement according to the 10-20 system [1].

. The ECG consists of 12 electrodes (12-Lead ECG electrode placement
system). It is applied for detection of cardiac events and abnormalities
like tachycardia or bradycardia.

3



2. Theoretical framework.................................
. The EOG includes 2 electrodes for eye movement detection. There are

two options for the location of these electrodes. The first variant shows
vertical and lateral eye movements as waveforms of opposite polarity
or phase. The electrodes in this case placed outside each other canthus
with the left outer canthus 1cm below the horizontal midline, and the
right outer canthus 1cm above the horizontal midline and referenced to
a mastoid electrode. The second variant shows lateral movements as out-
of-phase waveforms and vertical movements as in-phase waveforms. For
this measurement, each outer canthus electrode is placed 1cm below the
horizontal midline and referenced to the midline frontal polar electrode
[12].. The EMG is used for measuring muscle activity. Chin EMG electrodes
placement by the AASM: 1cm above the inferior edge of the mandible
is placed midline electrode and two electrodes located 2 cm below the
inferior edge of the mandible (one 2 cm right and another 2 cm left of
the midline). For measuring limb movement electrodes are placed on the
anterior muscles of the lower legs [13].. Additional channels. For instance, oxyhaemoglobin saturation or oral-
nasal airflow.

There are brain rhythms and waveforms which are considered as normal
(Figure 2.2), they can be defined by frequency range, amplitude and place of
an occurrence [1]..Gamma rhythms (also called fast beta rhythm) has frequency above

20 Hz. The amplitudes of these rhythms are very low and their occurrence
is rare.. Alpha rhythms are characterized by frequency in the range 8-12 Hz and
amplitude 5-15 µV. This waves usually appear when our eyes are closed
and during relaxation.. Beta rhythms are the usual rhythm associated with active thinking,
focusing. The frequency is above 13 Hz.. Theta rhythms have amplitude between 10-50µV and frequency 4-7.5 Hz.
They usually appear during N1 and N2, the persistent occurrence of
these waves in the waking adult is abnormal..Delta rhythms lie within the range of 0.5–4 Hz. These waves usually
define deep sleep (N3) and may be present in the waking state [14].

Human sleep is divided into two classes: Rapid eye movement (REM) sleep
and non-REM (NREM). Further NREM is split into 3 stages (N1, N2 and
N3) according to the American Academy of Sleep Medicine (AASM) [13].
NREM and REM occur in alternating cycles, each lasting approximately
90-100 minutes, with a total of 4-6 cycles. In general, in the healthy young
adult NREM sleep accounts for 75-90 % of sleep time (3-5 % N1, 50-60 %

4



...................................2.1. Polysomnography

Figure 2.2: Samples of normal brain activity [2].

N2, and 10-20 % N3) [15]. REM sleep accounts for 10-25 % of sleep time.
Sleep stages are classified by processing of the EEG, EOG and EMG signals.
In the following table (Table 2.1) are presented features characterizing every
stage determined by the AASM. Figure 2.3 demonstrates examples of brain
activity during different sleep stages including their typical waveforms.

Sleep Stage EEG EOG EMG

W >50% alpha rhythm Reading or REM Activity is normal
or high

S1

>50% of alpha rhythms
replaced by Low Voltage Mixed Frequency
(LVMF) waves,
vertex sharp waves

SREM Activity is lower
than W

S2
Theta waves
with K-complexes
and/or sleep spindles

No eye movements Activity is lower
than W

S3

Slow-wave activity,
sleep spindles may be present;
amplitude must be
at least 75 µV from
peak-to-peak

No eye movements

Activity is lower
than in S2 and
sometimes as low
as in REM.

REM

Theta waves,
alpha waves present slower
than at W;
sawtooth waves
(sharply contoured, triangular;
often serrated (2-6 Hz) preceding bursts of
rapid eye movements

REM Significantly reduced
compared to NREM sleep

Table 2.1: Sleep stage characteristics.
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2. Theoretical framework.................................

Figure 2.3: Samples of sleep stages and normal waveforms [3].

2.2 Artefacts

The PSG signals contain different artefacts. In signal processing, the arte-
fact is a structure not normally presented, but produced by some external
action; something artificial [16]. All of them can be divided into two groups:
physiologic and extraphysiologic artefacts. Physiologic artefacts arise from
the patient body from sources other than the brain (heartbeat, movements),
when extraphysiologic comes from the external ones. After detection contam-
inated parts of data are removed or suppressed [4]. In this work, detection of
artefacts is in the focus of interest.

EEG artefacts are characterized by atypical waveforms amplitude or fre-
quency. For instance, slow ondulations artefact (Figure 2.4 c) has lower
frequency then delta rhythm appears during sweating and deep breathing.
The unusual increase of the EEG amplitude (Figure 2.4 a) is defined as instant
increase and recession of amplitude, it may be caused by EOG interference.
The other artefact is muscle or movement artefact (Figure 2.4 b) can be
detected by a long-term increase in the amplitude of the signal. Electrode
popping artefact also called abrupt transitions (Figure 2.4 d) is characterized
by the occurrence of spikes. Falling electrode artefact (Figure 2.4 e,f) has
amplitude close to zero[7].

The artefacts which occur in EEG channels, but can not be attributed to
the mentioned types are in the Figure 2.5 a-d.
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...................................... 2.2. Artefacts
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Figure 2.4: Typical EEG artefacts on CZ-A1 channel: unusual increase of the
EEG amplitude (a), muscle or movement artefact (b), slow ondulations artefact
(c), electrode popping artefact (d), falling electrode artefact (e,f).
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2. Theoretical framework.................................
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Figure 2.5: Other artefacts (a-d) on CZ-A1 channel.
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Chapter 3
Material and methods

3.1 Database

In this work was used The DREAMS Artefacts Database which consists
of data collected in a sleep laboratory using the 32-channel polygraph in a
sleep laboratory in Belgium [7]. From 20 polysomnographic recording from
patients with different disorders were selected those whose sampling frequency
is 200 Hz. There are data of 13 subjects in total. Every recording is 15
minutes long and contains two EOG channels (P8-A1, P18-A1), three EEG
channels (CZ-A1 or C3-A1, FP1-A1 and O1-A1) and submental EMG channel.
Artefacts in these recordings were visually detected by clinical experts. There
were detected artefacts of the following types: muscle or movement artefacts
(mvtE), an unusual increase of amplitude (highE), electrode popping (transE)
and falling (noE), slow ondulations (ondE) and other artefacts (otherE).
Details are provided in Table 3.1.

Subject highE mvtE transE otherE ondE noE Total
5 9 8 7 - 1 - 25
8 42 5 13 1 - 6 67
10 14 1 - - - - 15
11 - 9 1 - - - 10
12 18 17 19 20 - - 74
13 6 9 - - 1 - 16
14 13 11 2 - 1 - 27
15 5 5 - 2 - - 12
16 45 41 - 22 11 - 119
17 9 8 - - - - 17
18 3 1 2 - - - 6
19 12 14 - - 2 - 28
20 17 3 2 1 - - 23

Table 3.1: Artefact detailes of recordings selected for the study. First column
represents number of recording in the dataset. Last one stands for total number
of artefact for every recording. In the rest columns, there are presented numbers
of artefact of certain type.
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3. Material and methods .................................
3.2 Method overview

The applied method involves steps presented in Figure 3.1. Firstly, the data is
divided into non-overlapped segments. Then, for every segment are extracted
statistical and other features described in the section 3.4. Segmentation
methods used in the work are presented in the section 3.3. The next step
is the classification. Naive Bayes outlined in section 3.5 was chosen as a
classifier. Testing of the presented method was performed by leave-one-out
cross-validation. Various statistical metrics were calculated on each iteration.
Details of classifier evaluation are in section 3.6 .

Figure 3.1: Method overview.

3.3 Segmentation

Signals are in most cases non-stationary and segmentation allows to divide
them into sub-sections in which the signal is quasi-stationary. It is also impor-
tant in pattern recognition, for instance, for identification of the occurrence of
events in PSG recordings [4]. There are two types of segmentation: constant
and adaptive.

When the first approach divides the data into segments of constant length,
adaptive segmentation adjusts to the signal variation and obtains segments
of different length but stationary. Results of constant and adaptive seg-
mentation are presented in Figure 3.2. As it might be observed adaptive
approach returns less number of segments but each segment is highly stable
in statistical properties. On the other hand, some segments obtained with
constant segmentation contain features of both artefact and non-artefact
classes.

3.3.1 Constant segmentation

Constant segmentation is the most commonly used method. A signal is divided
into windows with constant duration. In multichannel case, every channel
signal is divided the same. The length of the segment can vary depending on
the purpose of the segmentation and the algorithm applied. Long windows
can affect lose of sensitivity [17]. However, this type of segmentation is simple
and stable and often used in the studies [18, 19].
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Figure 3.2: Results of constant (a) and adaptive (b) segmentation. Segment
borders are represented by dashed lines. Window length of size 2.5 s was used
for constant segmentation. Parameters of adaptive segmentation are window
length 2.5 s and step 10 samples.

3.3.2 Adaptive segmentation

Adaptive segmentation unlike to constant one divides data into segments
with different length. This method is more complex but more reliable. A
signal is analyzed for establishing suitable borders of segments to obtain
maximum stationary inside the segment. There are various algorithms of
adaptive segmentation [20]. However, many of them aimed at the division of a
single channel data. In the approach proposed in the work, was used a metric
which measures similarity between multichannel data pieces. This metric
is named Riemannian distance and was firstly applied in brain-computer
interface (BCI) applications [21].

It utilizes covariance matrices of the data which are symmetric positive-
definite (SPD) matrices and fall within the Riemannian geometry domain.
Then Riemannian distance between two SPD matrices P1 and P2 in P(n) is
defined as:

δR(P1,P2) = ||Log(P−1
1 P2)||F =

[ n∑
i=1

log2 λi

] 1
2

(3.1)
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3. Material and methods .................................
where P(n) is a set of all n × n SPD matrices, P1 and P2 are covariance
matrices of two adjacent segments, λi is real positive eigenvalues of matrix
P−1

1 P2, ||.||F is the Frobenius norm of the matrix and Log() is logarithm of
the matrix, which can be computed by diagonalization of P−1

1 P2 [21].
The proposed method involves the following steps:..1. The signal is divided into overlapped segments with constant length...2. For every two adjacent windows is computed a covariance matrix...3. A Riemannian distance between these two matrices is calculated. Ob-

tained function is called DIST...4. Borders of the segments are established in locations where function DIST
calculated on the previous step reaches local peaks. Minimum peak
height set at mean value of the DIST function. The minimum distance
between peaks is the quotient of segment length and step.
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Figure 3.3: Result of adaptive segmentation of EEG signal. Dashed lines
represent segments borders. There are presented two artefact free segments A
(20-34 s) and D (44-50 s). Artefact segments are B (35-40 s) and C (41-43 s).
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Figure 3.4: Covariance matrices of segments presented in Figure 3.3: a - presents
covariance matrix of segment A, b - presents covariance matrix of segment B,
c - presents covariance matrix of segment C, d - presents covariance matrix of
segment D.

In Figure 3.3 is presented part of PSG recording containing three EEG
channels: FP1-A1, CZ-A1, O1-A1. Applying adaptive segmentation algorithm
this part was divided into 4 segments labelled A-D in Figure 3.3. For
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.................................. 3.4. Feature extraction

every segment covariance matrices was computed. They are represented in
Figure 3.4. Covariance matrices B and C contain artefacts and covariance
values are significantly higher than in non-artefact data. Such, covariance
matrix of the A segment has values in the range [51.79; 83.78], while the
matrix of the B segment’s range is [20; 11435] ([6943; 8392], [24.66; 109.32]
are covariance matrices’ ranges of the C and the D segments respectively).

3.4 Feature extraction

The crucial part of the signal processing is feature extraction. Every signal can
be represented as a combination of computed features [17]. These parameters
represent the signal and directly affect the following classification. In Table 3.2
are presented features calculated in this approach.

Feature Description
Statistical features
MEAN Mean value defined as: µ = 1

N

∑N
i=1Xi

STD Standard deviation: σx =
√

1
N−1

∑N
i=1 |Xi − µ|2

MAX Maximum value of a set
MIN Minimum value of a set
MEDIAN Median value of a set

SKEWNESS
Skewness (a measure of the asymmetry of the data
around the sample mean)

s =
1
N

∑N

i=1(Xi−µ)3

σ3
x

KURTOSIS
Kurtosis (a measure of how outlier-prone a distribution is)

s =
1
N

∑N

i=1(Xi−µ)4

σ4
x

Band power of EEG spectra
BP ALPHA The average power in the alpha frequency range (8-13 Hz)
BP BETA The average power in the beta frequency range (13-30 Hz)
BP DELTA The average power in the delta frequency range (0-4 Hz)
BP THETA The average power in the theta frequency range (4-8 Hz)
Relative band power of EEG spectra
BP REL ALPHA The percentage of the alpha power in the whole frequency interval
BP REL BETA The percentage of the beta power in the whole frequency interval
BP REL DELTA The percentage of the delta power in the whole frequency interval
BP REL THETA The percentage of the theta power in the whole frequency interval

Table 3.2: Calculated features.

3.5 Classification

Binary classification is the following part of signal processing, which task is
classifying set into two groups. In this case, it predicts if current segment

13



3. Material and methods .................................
is artefact or not. There are many algorithms, for instance, support vector
machine (SVM), decision trees, neural networks etc [22]. In this approach is
applied Naïve Bayes classifier.
Naïve Bayes classifier is based on applying Bayes’ theorem with the strong
"naive" assumption of independence between every pair of the features.

Bayes theorem:

P (C|x1, ..., xn) = P (C)P (x1, ...xn|C)
P (x1, ..., xn) (3.2)

In our case, C is class, x1, ...xn are computed features. P (C) is the prior
probability (probability of belonging to class without features) , P (x1, ..., xn)
is marginal probability (probability of reaching collected values by features),
P (C|x1, ..., xn) is posterior probability (the probability of belonging to class
by given features), P (x1, ...xn|C) is called likelihood (probability of reaching
collected values by features when belong to class) [23].

3.6 Evaluation of classifier

The aim of classifier performance evaluation is to estimate the goodness
of predicted labels. In this section, there are described statistical metrics
for classifier performance evaluation commonly used in binary classification.
There are provided two classes positive (P) and negative (N). The real labels
and predicted by a classifier are compared. Four outcomes are possible. They
are listed below and visually presented in Figure 3.5:. True Positives (TP) is a number of labels correctly predicted as positive

(real label is P, predicted label is P);. True Negatives (TN) is a number of labels correctly predicted as negative
(real label is N, predicted label is N);. False Positives (FP) is a number of labels incorrectly predicted as positive
(real label is N, predicted label is P);. False Negatives (FN) is a number of labels incorrectly predicted as
negative (real label is P, predicted label is N).

3.6.1 Statistical metrics

Recall or Sensitivity is the quotient of the number of TP and the total number
of elements actually belong to the positive. High sensitivity shows the ability
of classifier to detect TP cases, but says nothing about how many other items
were incorrectly labelled as positive.

Recall = TP

TP + FN
(3.3)
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................................ 3.6. Evaluation of classifier

Figure 3.5: Confusion matrix.

Precision or Positive Predictive value is the quotient of the number of TP
and the total number of elements were labelled as positive. Metric value 1.0
means that all real positive labels were predicted as positive. However, it
doesn’t say that anything wasn’t predicted incorrectly.

Precision = TP

TP + FP
(3.4)

Specificity or True Negative Rate is the quotient of the number of TN
and the total number of elements were labelled as negative. High specificity
means that classifier predict less false positive labels.

Specificity = TN

TN + FP
(3.5)

Accuracy is another useful metric and it is a proportion of correctly classified
(both TP and TN) among all labels.

Accuracy = TP + TN

TP + FP + TN + FN
(3.6)

Metric Negative Predictive Value shows a quotient of true negative values
and all labels marked as negative.

NPV = TN

TN + FN
(3.7)

F-measure also known as F1 score is defined a harmonic mean of precision
(Equation 3.4) and recall (Equation 3.3). This metric takes into account FP
and FN labels and more useful than accuracy in case of unbalanced datasets
[24].

F1 = 2 · Precision ·Recall
Precision+Recall

(3.8)

In case of artefact detection, the non-artefact class is prevalent. For this
reason, in the assessment of performance classification, the conclusion is based
on F1 metric in this approach.
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3. Material and methods .................................
3.6.2 Cross-validation

After the predictive model is built, the prediction performance of the classifier
may be estimated. One of the most common methods is cross-validation. The
approach is based on partitioning available data into non-overlapped parts
also called folds. In the work, leave-one-out-cross-validation scheme was used.
One of the folds was used for model testing and rest of the folds were used to
build the classifier, as a training set. Testing the build model on a testing
data, statistical metrics were computed. Repeating procedure for all possible
combinations of training and testing sets returns set of statistical metrics.
Analysis of the metrics allows estimating the possible outcome for similar
but unknown data (Figure 3.6). In the work, data of every separate subject
formed a fold in order to avoid overfitting.

Figure 3.6: Leave-one-out-cross-validation scheme. Every row presents an
iteration in CV. There are 13 folds in each iteration. Folds marked as white are
from training set and blue ones from testing set.
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Chapter 4
Experimental results

The proposed method was tested on the DREAM database. Leave-one-out-
cross-validation scheme was applied. As classifier was chosen Naïve Bayes.
Classification was provided for two types of segmentation: constant and
adaptive. For evaluation of classifier performance were computed metrics
such as accuracy, precision, recall, specificity, negative predictive value (NPV)
and F1.
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Figure 4.1: Results of classification provided (a) using constant segmentation
(b) adaptive segmentation. Each bar represents average of statistical metric.
From left to right accuracy (ACC), precision (PRC), recall (REC), specificity
(SPC), NPV and F1 respectively.

Method Parameters Accuracy Precision Recall Specificity NPV F1
Detection
procedure [7] - 0.89 0.37 0.64 0.92 0.96 0.43

Constant
approach window length 3 s 0.91 0.54 0.65 0.94 0.95 0.53

Adaptive
approach

window length 2.5 s,
step 30 samples 0.89 0.84 0.72 0.95 0.92 0.72

Table 4.1: Results of classification.
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4. Experimental results..................................
Results are presented in Table 4.1 and visualized in Figure 4.1. The table

also contains the results of the method performed by S. Devuyst et.al.[7].

4.1 Constant segmentation

Classification of non-overlapped segments of length 3 seconds was performed.
Evaluation of classifier performance is in Table 4.1. All the metrics are higher
or similar to values provided in [7]. Probably, the authors were seeking for all
possible artefacts despite the provided scoring. In the [7] number of provided
detection performed in the project is much higher than in the scoring or
detection provided in the study. Accuracy value is high, although F1 is 0.53
what is low. This may be due to the big number of segments and the fact
that dataset is unbalanced: the amount of negative labels is fifty times bigger
than positive ones.
Different window size were tested: 0.3-1, 1.25, 1.5, 1.75, 2, 2.5, 3, 5, 10, 20,
30 s. The window length was chosen among the others because F1 reaches the
highest value. Achieved results for these lengths are presented in section A.1.

4.2 Adaptive segmentation

Classification of non-overlapped segments of different length was performed.
Segments’ borders were achieved applying constant segmentation algorithm
with parameters: window length 2.5 s, step 30 samples. Evaluation of classifier
performance is in Table 4.1. In this case, F1 reaches 0.72. Dataset is still
unbalanced, but the difference between the amount of positive and negative
values is lower, what provides higher values of precision and recall. Number
of segments in this classification varies depending on the subject.

For achieving best results were tested various combinations of window’s
lengths and steps values. Tested window lengths are 0.3-1, 1.25, 1.5, 1.75, 2,
2.5, 3 s; tested steps are in range [10; 100]. The graphic representation of
achieved F1 is in Figure 4.2. Detailed results of these tests are in section A.2

During the testing, there are obtained all possible outcomes and they are
demonstrated in Figure 4.3. True Positive is in the segment 460-472 s. This
area was labelled as artefact and was predicated as an artefact by a classifier.
Segments in the beginning and in the end of the figure were correctly classified
as negatives and counted as TN. False Positive outcome might be observed in
segment 457-460 s. Classifier marked this part as artefact, while experts did
not labelled it. Segment with borders 472 s and 480 s is an example of False
Negative outcome. A detailed analysis of false outcomes is discussed below.

False positives
False positives outcomes may appear for different reasons. One of the examples
is in Figure 4.4. In this sample segments from 194 s to 203 s are marked as
false positive: predicted label is positive, but visual scoring is negative. In
examining these segments, it should be acknowledged that activity in them
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Figure 4.2: Graphic representation of achieved results using adaptive segmenta-
tion. Each cell display calculated F1 for given window length and step. Color
specifies the value of metric. Row represents window length and columns are
values of step used in testing.
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Figure 4.3: Example of a recording with a visual scoring by a trained expert
(VIS) and prediction (PRED) by a proposed adaptive method. In a binary scoring,
dashed line stands for non-artefacts and bold line for artefacts. Horizontal dashed
lines present obtained adaptive segmentation.

is far from normal. However, experts hadn’t marked as artefact these parts.
The classification depends on labels achieved from visual scorings.

Another example of false positive outcome is in Figure 4.5. Segments
are marked as damaged, a possible reason is that these segments contain
k-complexes, which don’t occur in training set. The probable solution is the
detection of k-complexes using wavelet transformation.
False negatives
False negative outcomes occur more frequently than positive ones. In Fig-
ure 4.6 is sample of two small undetected artefacts in one big segment. Instead
of one segment, adaptive segmentation approach was to divide this part of
the recording into three: first: 48 - 51; 51- 61; 61-64,5. This is caused by
minimum peak height value which is used in setting borders. This height
is computed as mean value of DIST function (obtained in the 3rd step of
adaptive segmentation algorithm) which are higher in the other part of the
recording. Excluding this parameter will result a large number of segments.
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Figure 4.4: Typical false positives. There are provided recordings with a visual
scoring by a trained expert (VIS) and prediction (PRED) by a proposed adaptive
method. In a binary scoring, dashed line stands for non-artefacts and bold line
for artefacts. Horizontal dashed lines present obtained adaptive segmentation.
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Figure 4.5: Typical false positive outcome. There is provided a recording with
a visual scoring by a trained expert (VIS) and prediction (PRED) by a proposed
adaptive method. In a binary scoring, dashed line stands for non-artefacts
and bold line for artefacts. Horizontal dashed lines present obtained adaptive
segmentation.
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Figure 4.6: Typical false negative outcome. There is provided a recording with
a visual scoring by a trained expert (VIS) and prediction (PRED) by a proposed
adaptive method. In a binary scoring, dashed line stands for non-artefacts
and bold line for artefacts. Horizontal dashed lines present obtained adaptive
segmentation. DIST is a function obtained in the step 3 of algorithm. MPH
is mean value of DIST function. Borders of the segments are established in
locations where function DIST calculated on the previous step reaches local
peaks above MPH. Obtained peaks are labeled as circles.

Classifier also has not marked as artefact segments containing activity like
in Figure 4.7. Amplitude in them is close to zero. Features of the segments lies
in untypical range for this training set. It is caused by the fact that these type
of artefact (falling electrode) occurs only in this subject. Figure 4.8 shows that
standard deviation’s distribution of non-artefact segments is right-skewed.
The value of this segment standard deviation is 0.36 (on the histogram is
marked with asterisk). This can be fixed by adding more subjects with this
type of artifact to the training set.

790 795 800 805 810 815 820
time, s

O1-A1

CZ-A1

FP1-A1

  PRED

 VIS  

am
p
lit

u
d
e,

 u
V 50uV

Figure 4.7: Typical false negative outcome. There is provided a recording with
a visual scoring by a trained expert (VIS) and prediction (PRED) by a proposed
adaptive method. In a binary scoring, dashed line stands for non-artefacts
and bold line for artefacts. Horizontal dashed lines present obtained adaptive
segmentation.
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Figure 4.8: Histogram of standard deviation of training set. Yellow histogram
is standard deviation of positive labels, blue - negative. Asterisk represents a
value of standard deviation of the falling electrode artefact.

In Figure 4.9 is another example of false negative outcome: segment from
280 to 291 s isn’t pointed as positive. This can be explained as follows: the
amplitude of activity in this segment is not that high as in comparison with
adjacent ones.

Figure 4.9: Typical false negative outcome. There is provided a recording with
a visual scoring by a trained expert (VIS) and prediction (PRED) by a proposed
adaptive method. In a binary scoring, dashed line stands for non-artefacts
and bold line for artefacts. Horizontal dashed lines present obtained adaptive
segmentation.

The dependence of the classification on excerpts scoring contributes to the
occurrence not only of false positives, but also false negatives outcomes. The
example of this effect is in Figure 4.10. The activity looks similar on both
samples, but on (a) it is not counted as artefact by experts.
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(a) (b)

Figure 4.10: Comparison of normal activity marked as non-artefact (a) and
artefact (b). There is provided a recording with a visual scoring by a trained
expert (VIS) and prediction (PRED) by a proposed adaptive method. In a
binary scoring, dashed line stands for non-artefacts and bold line for artefacts.
Horizontal dashed lines present obtained adaptive segmentation.
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Chapter 5
Discussion and Conclusion

All the goals of this thesis were accomplished. A new method of artefact
detection was developed. This approach is based on classification on data
segments obtained with new proposed multichannel adaptive segmentation.
Produced segment borders are placed where the difference in a signal to the
left and to the right is maximal in local terms. This was accomplished using
Riemannian distance, a method popular in a BCI field. Classification was
provided with Naïve Bayes classifier. Testing were performed on 13 subjects
from open source The DREAMS Artifacts Database.

Various statistical metrics were calculated during leave-one-out-cross-validation
procedure. The results of developed method were compared with results of
a common method based on constant segmentation and other research per-
formed by S. Devuyst. There was shown a significant increase in comparison
with other methods. Utilizing of state of art method has brought reliable
results: F1 is 53 %. The method based on applying specific algorithms for
each type of artefact for the EEG channels used in this work has F1 equal to
43 %. The elaborated method’s F1 reaches 72 %. That was achieved due to
concentration of similar statistical properties inside a single segment.

However, there were found some challenges during the testing session. Data
used in the study contains different sleep stages and statistical properties.
It, consequently, leads to the difficulty of applying the same segmentation
parameters to all subjects in order to get better results. Besides, the results
were often spoiled by the occurrence of delta waves with large amplitude.
Possible solution of the problem is filtration of the signal before segmentation
but signals should be restored for clinical purposes. To determine the sleep
stage N3 or k-complexes in N2, delta waves are highly important. Moreover,
visual scoring provided by an expert was confusing sometimes. There were
activity visually similar but in one case labeled as an artefact and ignored in
other one. Those cases occurred rarely though.

In future, other methods of automatic classification could be applied, for
instance, SVM and neural networks. Clustering (unsupervised learning) is
another approach that can be implemented for artefact detection. Also, a
new method is possible to test on other types of artefacts or just on one;
or on other channels. For example, EOG channels. After achieving higher
results the algorithm can be extended to real-time detection.
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Appendix A
Tables of results

A.1 Constant segmentation

Window
length Accuracy Precision Recall Specificity NPV F1

0.30 0.91 0.58 0.49 0.96 0.94 0.47
0.40 0.91 0.59 0.51 0.96 0.94 0.49
0.50 0.91 0.57 0.52 0.95 0.94 0.48
0.60 0.91 0.57 0.53 0.95 0.95 0.49
0.70 0.91 0.57 0.55 0.95 0.95 0.50
0.80 0.91 0.57 0.60 0.95 0.95 0.51
0.90 0.91 0.59 0.60 0.95 0.95 0.53
1.00 0.91 0.58 0.56 0.95 0.95 0.51
1.25 0.92 0.61 0.58 0.95 0.95 0.52
1.50 0.91 0.53 0.63 0.94 0.95 0.48
1.75 0.91 0.54 0.60 0.95 0.95 0.49
2.00 0.92 0.53 0.59 0.95 0.95 0.49
2.50 0.91 0.54 0.65 0.94 0.95 0.52
3.00 0.91 0.54 0.65 0.94 0.95 0.53
5.00 0.91 0.37 0.47 0.94 0.96 0.37
10.00 0.91 0.27 0.57 0.93 0.97 0.34
20.00 0.89 0.20 0.43 0.91 0.97 0.24
30.00 0.91 0.15 0.25 0.93 0.97 0.15

Table A.1: Evaluation of classification with constant segmentation for different
window lengths
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A. Tables of results ...................................
A.2 Adaptive segmentation

Table A.2: Evaluation of classification with adaptive segmentation for different
window lengths

Win. length Step Accuracy Precision Recall Specificity NPV F1

0.30 10.00 0.90 0.34 0.46 0.94 0.95 0.34
20.00 0.90 0.30 0.48 0.93 0.95 0.33
30.00 0.90 0.34 0.56 0.93 0.95 0.38
40.00 0.90 0.34 0.47 0.93 0.95 0.34
50.00 0.90 0.41 0.52 0.93 0.95 0.40
75.00 0.90 0.31 0.67 0.93 0.95 0.37
100.00 0.90 0.44 0.60 0.93 0.95 0.44

0.40 10.00 0.90 0.39 0.53 0.93 0.95 0.39
20.00 0.90 0.32 0.49 0.94 0.95 0.35
30.00 0.90 0.31 0.51 0.93 0.95 0.35
40.00 0.90 0.35 0.50 0.93 0.95 0.37
50.00 0.90 0.36 0.51 0.93 0.94 0.38
75.00 0.90 0.40 0.52 0.94 0.95 0.42
100.00 0.90 0.47 0.63 0.93 0.95 0.49

0.50 10.00 0.90 0.41 0.48 0.94 0.94 0.40
20.00 0.89 0.38 0.49 0.93 0.94 0.39
30.00 0.90 0.38 0.48 0.94 0.94 0.38
40.00 0.90 0.43 0.49 0.93 0.94 0.41
50.00 0.90 0.39 0.49 0.93 0.94 0.39
75.00 0.89 0.40 0.51 0.93 0.94 0.40
100.00 0.90 0.46 0.58 0.93 0.95 0.47

0.60 10.00 0.90 0.41 0.50 0.93 0.94 0.41
20.00 0.89 0.39 0.49 0.93 0.94 0.40
30.00 0.89 0.40 0.51 0.93 0.94 0.41
40.00 0.89 0.39 0.51 0.93 0.94 0.40
50.00 0.89 0.42 0.48 0.93 0.93 0.40
75.00 0.89 0.39 0.46 0.93 0.93 0.38
100.00 0.90 0.48 0.54 0.93 0.94 0.45

0.70 10.00 0.89 0.40 0.48 0.93 0.93 0.40
20.00 0.89 0.42 0.50 0.93 0.93 0.42
30.00 0.89 0.45 0.51 0.93 0.93 0.43
40.00 0.88 0.42 0.49 0.92 0.93 0.40
50.00 0.89 0.46 0.51 0.93 0.93 0.43
75.00 0.88 0.45 0.61 0.93 0.93 0.45
100.00 0.89 0.44 0.54 0.93 0.94 0.43

0.80 10.00 0.89 0.46 0.52 0.93 0.93 0.43
20.00 0.89 0.50 0.53 0.93 0.93 0.44
30.00 0.88 0.50 0.50 0.93 0.93 0.44
40.00 0.89 0.49 0.54 0.93 0.93 0.45
50.00 0.88 0.50 0.52 0.93 0.93 0.44
75.00 0.89 0.57 0.64 0.93 0.93 0.55
100.00 0.89 0.48 0.54 0.93 0.93 0.46

0.90 10.00 0.89 0.50 0.55 0.93 0.93 0.46
20.00 0.89 0.50 0.55 0.93 0.93 0.47
30.00 0.89 0.49 0.54 0.93 0.93 0.46
40.00 0.89 0.52 0.52 0.94 0.92 0.45
50.00 0.89 0.51 0.52 0.93 0.93 0.46
75.00 0.88 0.46 0.50 0.93 0.92 0.41
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................................ A.2. Adaptive segmentation

Table A.2 – continued from previous page
Win. length Step Accuracy Precision Recall Specificity NPV F1

100.00 0.88 0.48 0.54 0.93 0.92 0.44
1.00 10.00 0.88 0.52 0.55 0.93 0.92 0.48

20.00 0.89 0.53 0.53 0.93 0.92 0.48
30.00 0.89 0.52 0.53 0.93 0.92 0.48
40.00 0.89 0.52 0.54 0.94 0.93 0.48
50.00 0.89 0.52 0.53 0.93 0.92 0.47
75.00 0.89 0.64 0.73 0.93 0.93 0.62
100.00 0.89 0.60 0.67 0.94 0.92 0.56

1.25 10.00 0.89 0.60 0.54 0.94 0.92 0.50
20.00 0.89 0.60 0.54 0.94 0.92 0.51
30.00 0.89 0.60 0.55 0.93 0.92 0.52
40.00 0.89 0.57 0.66 0.93 0.93 0.54
50.00 0.89 0.63 0.67 0.93 0.92 0.57
75.00 0.89 0.57 0.66 0.93 0.93 0.52
100.00 0.89 0.66 0.75 0.93 0.93 0.62

1.50 10.00 0.89 0.67 0.70 0.94 0.93 0.60
20.00 0.89 0.68 0.70 0.94 0.92 0.59
30.00 0.89 0.65 0.70 0.94 0.93 0.58
40.00 0.90 0.72 0.74 0.94 0.93 0.66
50.00 0.89 0.64 0.75 0.94 0.93 0.61
75.00 0.90 0.66 0.75 0.94 0.93 0.62
100.00 0.89 0.71 0.72 0.94 0.93 0.63

1.75 10.00 0.89 0.68 0.71 0.94 0.92 0.63
20.00 0.89 0.67 0.70 0.93 0.92 0.62
30.00 0.89 0.65 0.71 0.94 0.92 0.61
40.00 0.90 0.75 0.73 0.94 0.93 0.67
50.00 0.89 0.65 0.75 0.94 0.93 0.62
75.00 0.89 0.70 0.72 0.94 0.92 0.65
100.00 0.89 0.65 0.71 0.94 0.92 0.60

2.00 10.00 0.90 0.78 0.69 0.95 0.92 0.68
20.00 0.90 0.75 0.71 0.95 0.93 0.68
30.00 0.90 0.81 0.71 0.95 0.93 0.70
40.00 0.90 0.75 0.74 0.94 0.93 0.69
50.00 0.91 0.77 0.69 0.95 0.93 0.67
75.00 0.89 0.73 0.67 0.94 0.92 0.63
100.00 0.90 0.76 0.71 0.95 0.92 0.68

2.50 10.00 0.90 0.83 0.72 0.94 0.92 0.71
20.00 0.89 0.77 0.71 0.94 0.92 0.68
30.00 0.90 0.84 0.72 0.95 0.92 0.72
40.00 0.89 0.78 0.71 0.94 0.92 0.68
50.00 0.90 0.79 0.72 0.94 0.92 0.69
75.00 0.89 0.76 0.70 0.94 0.92 0.66
100.00 0.90 0.79 0.71 0.94 0.93 0.69

3.00 10.00 0.88 0.79 0.70 0.93 0.91 0.68
20.00 0.88 0.79 0.70 0.93 0.91 0.68
30.00 0.88 0.77 0.68 0.93 0.91 0.66
40.00 0.89 0.79 0.68 0.94 0.92 0.67
50.00 0.88 0.75 0.68 0.93 0.92 0.65
75.00 0.89 0.75 0.72 0.94 0.92 0.67
100.00 0.89 0.73 0.70 0.94 0.92 0.64

End of Table
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Appendix B
Content of the CD

CD contains three folders:. data - data with recordings and scorings; variables needed for classifica-
tion.. functions - implemented algorithms.. covariancetoolbox-master - covariance toolbox for Matlab, including
Riemannian geometry implemented by Alexandre Barachant

For running classification add to path all folders and run test_class.m in
Matlab. It is also required covariance toolbox to be activated.
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