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Abstrakt / Abstract
V posledních letech se zvýšila míra

používání dronů a také jejich přístup-
nost veřejnosti. Tudíž se drony staly
problémem pro celou řadu lidí, jelikož
mohou být jednoduše využity k ilegál-
ním aktivitám. Tyto aktivity zahrnují
pašování, sabotáž, špionáž a používání
dronů v místech, kde je veliká pravdě-
podobnost nehod. Kvůli tomu je nyní
zvětšující se potřeba drony detekovat a
bránit se před nimi. V této práci bude
navrženo simulační prostředí, které
bude použito pro simulaci vícesenzo-
rového systému pro detekci dronů ve
snaze pokrýt navrženou oblast senzory,
aby došlo k detektci všech dronů, které
skrz ni letí.

Klíčová slova: UAV, UAS, Drony,
Detekce Dronů, Protekce Infrastruk-
tury, Simulace, Prostředí

In recent years, the use of drones has
increased in popularity and so has their
availability to the public. Consequently,
drones have become a problem for many
people, as they can be easily used for
certain illegal activities. These activities
include smuggling, sabotage, espionage,
or usage in places where accidents are
highly probable. As a result, there is an
increasing need for detection of drones
and protection from them. In this pa-
per, a simulation environment will be
designed and used to simulate a multi-
sensor system for drone detection in an
attempt to fully cover an area with sen-
sors, to detect any UAV passing through
it.

Keywords: UAV, UAS, Drones,
Drone detection, Infrastructure Protec-
tion, Simulation, Environment
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Chapter 1
Introduction

In recent years, drones have become available for purchase worldwide. In this paper, the
term drone is interchangeable with the term LSS-UAS(low, small and slow unmanned
aerial systems). There are several reasons for using drones for malicious purposes [1].

• Simple attack preparation
• Difficulty to detect
• Can carry cameras/weapons
• Can be smuggled into a protected area and then used to carry out an object or data

The US Department of Homeland Security categorises drone-related threats as [2]:

• Weaponized or Smuggling Payloads
• Prohibited Surveillance and Reconnaissance
• Intellectual Property Theft
• Intentional Disruption or Harassment

It can be seen that drones are a very versatile tool for malevolent activity. It is
therefore needed to find a sufficient means of detection to neutralise these threats.
Drones can have various aspects, that need to be faced to correctly detect them. They
can be very small hence very hard to detect. They can use camouflage to hide from
cameras. They are not always very loud therefore they are hard to detect acoustically
- some drones can ascend into high altitudes and then silently glide towards their
destination. Some drones are made of materials that isolate heat and have a very
small radar cross-section. These challenges can be overcome only by using a very well
designed and thoroughly examined system.

1.1 Drone threats in detail
The weaponized payloads in the first category of threats imply the use of drones to
carry guns or explosives with added triggering mechanisms to make them usable for
hurting people or damaging infrastructure. There have been many occasions at which
terrorists, armies, civilians or defence companies put guns on drones [5–7]. Smuggling
payloads in the same category mean drones can be used for transportation of drugs or
other items. This is becoming very common all across the world [8–9].

Prohibited surveillance means drones have been used for surveilling infrasctructure
or people’s activities. This could include industrial espionage, terrorists using drones
to gather intelligence about military activity or simple spying on people by civilians
for various purposes. Many countries have already taken steps to regulate drone usage,
because of surveillance. A list of countries and restrictions, which is updated by the
public, can be found at [10]. Surveillance drones can also be used to steal intellectual
property for example by getting information about company secrets.
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drones are also being used for intentional disruption or harassment. This means op-

erators are using drones to follow people around or intentionally fly over other person’s
property.

Some of the biggest threats of drone usage are also the unintentional ones. Some
drone operators use drones in irresponsible ways or in restricted areas without their
knowledge. These areas include airports, military infrastructure and areas susceptible
to damage such as areas around monuments and old buildings.

This thesis is organised as follows. In Chapter 2, the state of the art of drone detec-
tion is studied as well as drone characteristics that are important for their detection.
In Chapter 3, the architectural structure of the simulation system will be discussed.
Chapter 4 talks about essential algorithms and data structures used in the simulation
environment. Chapter 5 follows up on Chapter 4 and specifies the use of the ray tracing
algorithm in sensor modelling. The implementation and optimalisation of the system
is discussed in Chapter 6. It is then tested in Chapter 7 where drone detectability
by acoustic sensors and cameras is also examined. The thesis is finally concluded in
Chapter 8.

2



Chapter 2
State of the Art

This chapter provides a summary of the research done on the topic of drones, drone
threats, current options for drone detection and already applied solutions to the detec-
tion problem.

2.1 Drone types
It is important to understand the different characteristics of drones in order to properly
deal with them when detecting drones [4].

2.1.1 Flying technology
The first characteristic of a drone is the technology it is using to stay in flight. There
are only two notable categories; rotary-wing and fixed-wing based drones.

Drones in the first category use rotary wings or ’rotors’ to generate lift. Most drones
use 3 or more of these rotors. Heavier drones tend to either have bigger wings or to have
more of them as they require bigger upthrust to stay in the air. This flying technology
is the most used one, especially by the public. These drones can be easily stabilized
and do not need to keep moving in order to stay in the air. Drones with fixed-wings
use forward airspeed to generate lift force. The source of their speed is the conversion
from potential energy to kinetic energy by using gliders sometimes combined with a jet
engine.

If a drone is in the first category, there is sure to be a certain minimal constant noise
level from the rotors, because if the rotors are turned off the drone is not going to be
able to stay in the air. The second category implies the drone’s ability to glide and stay
silent for some time. Gliding drones, on the other hand, have wings which make them
larger and easier to spot by certain sensors.

Examples of drones with these technologies can be seen in Figure 2.1. and Figure
2.2.

2.1.2 Size and weight
Another important characteristic is the size and weight of a drone. It is generally easier
to detect larger and heavier objects as they have larger radar cross section, are easier to
detect using cameras and produce more noise and heat. This thesis focuses on drones
that are small and light and are therefore a challenge to detect. In the sensor section
it will be discussed how the size and weight of the drone affect their detectability.

2.1.3 Power source
The last main characteristic of drones mentioned in [4] is their power source. These are
mainly battery cells, fuel cells or solar cells. Solar cells are not used very commonly.
Their use would require the drone to be larger but also lighter. Battery cells are used by
most small drones, produce little heat and therefore do not make it easier to detect the

3



2. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
drone. Fuel cells are heavier than battery cells and are therefore used on heavier drones
or ones with fixed-wing technology. Most of these cells should also produce detectable
heat.

Figure 2.1. Rotor-based drone example: CyPhy - Rotor Drone Magazine 1

Figure 2.2. Fixed-wing drone example: Sentera Phoenix 2 - PrecisionAg 2

2.1 Means of detection
Different sensor types can be used to detect drones [3]:

• Acoustic sensors
• Passive cameras (UV and visible light cameras)

1 Reid, John. Drone with rotor based technology. Rotor drone magazine, May 2015,
www.rotordronemag.com/wp-content/uploads/2015/05/cyphy-level-one-drone-640x300.jpg.
2 Hopkins, Matt. Drone with fixed-wing technology. PrecisionAg, June 2016, www.precisionag.com/
systems-management/sentera-debuts-fixed-wing-precision-agriculture-focused-drone.
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• Passive thermal cameras
• RF emission sensors
• Radars
• Magnetic detection systems

For this thesis 3 sensor types have been selected - radars, acoustic sensors and cameras
operating in the visible spectrum. A system consisting of these 3 types should be able
to detect many different types of drones. The reasons behind this decision are:

1. Most LSS drones do not produce enough heat for the use of thermal cameras. [3]
2. RF emission sensors are not sufficient as only remotely controlled drones emit RF

energy.
3. Most LSS drones do not use enough metal parts to be detected at an adequate range

by magnetic detection systems. [3]
4. It is assumed that drones that are designed to specifically avoid cameras, acoustic

sensors or radars will be detected by other sensors from this group.

2.3 Radars
Radar is a system for detecting the presence, direction, distance and speed of objects.
The radar works by first radiating electromagnetic energy from an antenna. Some of
this radiated energy hits the object (target) and is reflected. A fraction of this reflected
energy is then picked up by the receiving antenna. After amplifying the received signal
and processing it, it is decided whether the object is present [11]. An example of a
radar can be seen in Figure 2.3.

Radars are active sensors that can operate during both day and night. The main
challenge with a radar is the small radar cross-section of small drones [20]. In order to
detect an object by a radar, the reflected signal from the object must be strong enough.
The signal needs to be stronger the stronger the background noise is. Therefore SNR
(Signal to noise ratio) is an adequate parameter that determines if the simulated radar
is detecting a drone. The SNR of the signal needs to be higher than 15 dB for a radar
to detect a drone [12]. The equation for calculating SNR is:

SNR = PtGtGrλ
2σ

(4π)3r4kTBn

where
Pt transmitter power
Gt gain of the transmitting antenna
Gr gain of the receiving antenna
λ wavelength of radio wave
σ radar cross section of an object
k Boltzmann’s constant
T receiver noise equivalent temperature
Bn processing noise bandwidth
r distance from the transmitter to the target

From the required SNR a maximum distance of detection rmax can be calculated.
Another condition for detecting is that the drone’s velocity must be lower than a certain
velocity vmax. This velocity can be calculated as [13]:

vmax = c

2Bτ

5
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where

c speed of light
τ radar’s integration time
B radar’s bandwidth

Figure 2.3. Radar example: SQUIRE - Thales 1

2.4 Acoustic sensors

Acoustic sensors, in general, are sensors that detect acoustic waves (sound) emitted
by an object. The main source of these waves for drones are propellers and engines.
Usually, if a drone is heavier it also makes more noise when flying, because the propellers
need to move faster or be larger. Acoustic sensors are passive sensors and like radars
can operate during both day and night. An example of an acoustic sensor can be seen
in Figure 2.4.

The main issue with acoustic sensors is the background noise. Acoustic sensors have
extreme trouble detecting anything in noisy areas (mainly cities) [19]. Acoustic sensors
are very dependent on the implementation of a signal analyzer. It has been shown that

1 SQUIRE radar by THALES. Thales, https://www.thalesgroup.com/sites/default/files/squire/images/
image-3.jpg
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good implementations show up to 99.5% chance of detection with only 3% false alarm
probability [21].

Figure 2.4. Acoustic sensor example: Orelia - DroneBouncer 1

2.5 Cameras

Camera-based sensors consist of real-time recording and image analysis. Cameras can
either be completely static or mobile, such as PTZ (pan, tilt, zoom) cameras, which
have means of tracking the detected objects. Such a camera can be seen in Figure 2.5.
With the improvements to computer vision [22] and camera image resolution [23] in
recent years, cameras have become a viable means of detecting and classifying objects.
Their main downsides are their dependency on light conditions and false positives when

1 Orelia acoustic radar. Drone bouncer, http://dronebouncer.com/uploads/images/Orelia/ORELIA-
0.jpg
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detecting [24]. It has been concluded that combining cameras with other sensors can
drastically increase their precision rate [24].

Figure 2.5. Camera example: M7 Camera - Tactical Imaging Systems 1

2.6 Current solutions
Many companies have come up with solutions to the drone threat with their own de-
tection systems.

2.6.1 Liteye
The company Liteye is using a multisensor system for detecting drones consisting of a
radar and a video tracker. Its specifications are [14]:

Blighter A400 Series Air Security Radar
• Detection range: 8 km
• Minimum target size (RCS): 0.01 m2

• Frequency band: Ku-band
• Radar type: E-scan Frequency Modulated Continuous Wave (FMCW) Doppler
Surveillance Radar

• Power output: 4 Watt
• Azimuth coverage: 180◦ (standard) or 360◦ (optional)
• Elevation coverage: 10◦ (M10S antennas) or 20◦ (W20S antennas)
• Elevation adjustment: +/-40◦ using optional Blighter Radar Tilting System (BRTS)

Viper Dynamic Positioner:
• Azimuth: Continuous
• Elevation: -50◦ to +60◦

1 M7 Pan Tilt zoom LWIR Uncooled / MWIR Cooled Long Range Thermal PTZ FLIR Imaging cam-
era for mobile EOIR Defense, UAV/Drone Detection, security & Surveillance. Tactical Imaging Sys-
tems, http://tacticalimaging.com/long-range-flir-thermal-ptz-pan-tilt-zoom-radar-night-vision-stabilized-
gimbal-for-security-surveillance/
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• Max speed: 60◦ per second

Piranha 46 HR Camera:
• Type: Colour HD 2.3 MP
• Optical zoom: x30
• Digital zoom: x12
• Focus: Auto

Thermal Camera:
• Type: Gen 3 Cooled
• Resolution: 640 x 512 pixel
• Wavelength: 3 to 5 µm
• Zoom: 24◦ to 1.8◦ FOV

EO Video Tracker:
• Type: Vision4ce digital video tracker and detector

2.6.2 Anti-Drone
The company Anti-Drone offers many different solutions, with multiple radars, cameras
and acoustic sensors. One sensor in each category will be described here:

SpotterRF C550/C550EXT [15]
• Maximum Detection Range: 1500 m Vehicle, 1050 m Walker
• Coverage Area: 81.3 ha
• Effective FoV: Vertical: 20◦, Horizontal: 90◦
• Scan Rate: Up to 7 times per second
• Transmit Frequency: 10-10.6 GHz
• System Power: 8-13 Watts

Long-range acoustic sensor DroneShield v2 [16]
• Maximum Detection Range: 500 m Suburban, 1000 m Rural

Infrared and Video Surveillance Systems

2.6.3 Droneshield
The company Droneshield only shares its sensors’ maximum detection ranges for their
drone detection system Sentry, which are [17]:

• RadarOne: 1.5 km
• WideAlert: 100 m
• RFOne: 1 km
• DroneHeat/DroneOpt: 600 m for small drones and 2 km for large drones
• DroneCannon Engagement Range: 1 km

There are many other companies with their own solutions to the detection problem,
but only those which have comprehensive and accessible data sheets of their sensors
have been described. The ones which were not included are for example SRC, DeTect,
Torrey Pines Logic, IEC Systems, Dedrone, Orelia and CellAntenna.
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Chapter 3
System Design

One of the main goals of this work is to design a simulation environment. Several
demands have been set when designing this environment:

• Precision
• Easy setup
• Real-time simulation
• Visualisation
• Swappable models of real sensors
• Integrability into the AgentFly framework

A system design is proposed in this chapter, which was devised to meet the above
listed criteria.

3.1 The simulation world representation
For the world representation, something precise and easy to visualise needed to be cho-
sen. The AgentFly framework already includes multiple .obj and .mtl files of closed and
open spaces therefore triangle meshes derived from these files have been chosen. Tri-
angle meshes provide an accurate world representation that is well fit for visualisation.

3.2 Sensor models
It has been decided to only model acoustic sensors and cameras at this stage. Sensors
should be easily swappable and fast to set up therefore they are represented as a position
in space with additional attributes, such as the FOV, direction and up vector for the
camera. This allows the user to set up or swap out a real sensor by looking up its basic
specifications and inserting them into the framework. The modelling of the sensors will
be described in detail in the next chapters. All the sensors will use the triangle mesh
to detect objects in it.

3.3 Visualisation
One of the criteria for the system is the possibility of visualisation of the sensors in it.
Camera detection works by visualising the environment therefore it already meets this
requirement. As far as the acoustic sensors are concerned, the AgentFly framework
already has a powerful tool to visualise vectors and points in an environment, so the
acoustic rays and their reflections in the environment should be visualised quite easily
as well.

10
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3.4 Detectable objects
The objects of the environemnt that are to be detected in it should also consist of a
triangle mesh. This makes the detection by the camera very precise, as it can easily
tell which triangle is the closest to it. For acoustic detection, a sound level attribute
should be also added to the object.

3.5 Design summary
The simulation environment therefore consists of the main triangle mesh which repre-
sents the world, sensors which generate data about detection, visualisation frameworks
that the data is sent to, and objects with their own triangle meshes and other attributes
that are necessary. The environment is connected using principles discussed in Chapter
4 and the sensor modelling is discussed in Chapter 5.

11



Chapter 4
Essential algorithms, structures and
principles

After designing a detection system and the environment, essential algorithms need to
be examined. These algorithms include work with rays for visibility determination,
building and tracing of related data structures and intersections with geometrical prim-
itives.

4.1 Ray tracing
To successfully tell if an object is detected by a sensor, it is necessary to sufficiently
test an object’s visibility to the sensor. The ray tracing algorithm has been chosen for
this in this paper.

As the name suggests, the ray tracing algorithm traces rays along their paths looking
for the nearest intersection with an object. This is mostly used for high-quality ren-
dering of images, as the rays can also be traced further with reflections creating very
real-looking images [25]. In its basic form, ray tracing can be used to precisely tell if an
object is visible from a sensor. All that needs to be done is to determine if the object
is the closest object to the sensor (camera) or the point of reflection (acoustic sensor).
This can be done as [27]:

for each object in scene do
if ray intersects object and intersection is nearest so far then

record intersection distance and object
return nearest object

This approach is very simple and easy to implement, it is ,however, very computationally
demanding and therefore extremely slow [26]. Most objects will never be intersected
by the algorithm, yet the intersection will still be computed. In more complex scenes,
where there is a large number of objects, a data structure designed to cut down on
the number of computations needs to be implemented. The data structure used in this
environment is the KD-tree.

4.2 KD-Tree data structure
Many data structures that are fit for ray tracing have been introduced in the recent
years, but KD-Trees have become one of the most used ones [28].

4.2.1 Structure
A KD-Tree is a data structure based on partitioning data and recursively dividing it over
a splitting hyperplane. Each division splits the tree into two subtrees. Data is sorted
according to the dimension of the split. Each object with a lower value on the splitting
dimension’s axis than the splitting plane becomes a part of the left subtree, the objects

12
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with a higher value become parts of the right subtree [29]. In this implementation,
the data that is being split consists of geometrical primitives - triangles. Sometimes, a
triangle is split into two parts by the chosen splitting plane. This triangle will be added
to both the left and right subtree.

In this work, the fast tracing of the KD-Tree is preferred over fast building. The
tree will be built only once before the simulation begins therefore it is unnecessary for
the building algorithm to be optimal. The tree will be implemented according to [28],
which suggests an effective way of building KD-Trees. The main issue with KD-Tree
building is the choice of the best splitting plane for data partitioning. Several heuristics
can be chosen for this, but a surface area heuristic seems to be the best approach for
splitting a space of geometrical primitives [30] .

4.2.2 Surface Area Heuristic
The surface area heuristic, or SAH, estimates the cost of a split by considering the
probability of a ray passing through the two sub-voxels A and B, created by splitting a
voxel by the plane, and the number of triangles that are in the newly created sub-voxels.
The cost is calculated as:

C(A,B) = KT + p[VA|V ]

NA∑
i=1

KI(ai) + p[VB |V ]

NB∑
i=1

KI(bi)

where

KT cost of traversal
KI cost of calculating intersection

p[Vsub|V ] The probability of hitting a sub-voxel Vsub if the voxel V is hit

The constants KT and KI vary depending on the scene.

The probability of hitting a sub-voxel, when the parent voxel is hit is assumed to be:

p[Vsub|V ] = SurfaceArea(Vsub)
SurfaceArea(V )

With the heuristic set up in this way, it is also easy to determine, when to stop splitting.
This happens when the cost of the split is higher than simply intersecting all the
triangles:

Term = Cbest > KI |T |

A last modification to the cost calculation is proposed in [28]. By artificially further
reducing the cost of splits with empty voxels we can get rid of empty space. The cost
of these splits will, therefore, be multiplied by 0.8.

4.2.3 Plane sweeping
For better performance, a plane sweeping algorithm is implemented. The algorithm
uses the fact that SAH only changes when the value is increased enough, so that a
triangle begins or ends. This means there is a finite number of potential splits. These
changes are called event, and by sorting these events and only going from event to
event it is possible to sweep through the possible planes and count their SAH values.

13
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Afterwards, the plane with the lowest cost is selected. An example of event distribution
can be seen in Figure 4.1.

Figure 4.1. 2D Plane sweeping example on the x-axis. Points e0-e7 represent events.

4.2.3 Building algorithm
With the means of finding the best split set up, the KD-Tree can be built from the
triangles that the environment consists of. The basic building algorithm uses recursion
to build the tree, finding best splits and splitting until termination term becomes true.
The algorithm is implemented as:

recBuildKDTree(Triangle[] triangles, AABB vox, int depth)
begin

index = treeList.size();
p = findPlaneWithSweep(triangles, vox);
term = terminate(p,triangles);
if term then

leafIndex = leafList.size();
treeList.add(leafIndex);
leafList.add(triangles);

else
treeList.add(Long.valueOf(p.coordinate << 29));
AABB vl, vr = split(vox,p)
Triangle[] tl,tr
tl = trianglesInVoxel(triangles, vl, p);
tr = trianglesInVoxel(triangles, vr, p);
recBuildKDTree(tl, vl, ++depth);
int rightIndex = recBuildKDTree(tr, vr, depth);
treeList.set(index, dataValue(rightIndex,p);

end

14
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return index;
end

AABB, in this algorithm, means the axis-aligned bounding box - the box that is getting
split by the splitting plane. As far as the triangles that lie right on the splitting plane
are concerned, they are first added to one sub-voxel then the other and the lower cost
solution is taken as the best.

4.2.5 KD-Tree traversal
In order to use the KD-Tree more efficiently, a strong traversal algorithm must also be
implemented. M. Hapala and V. Havran in their Review: KD-Tree Traversal Algorithm
for Ray Tracing [31] suggest the use of three different methods used in the traversal
algorithm: sequential, recursive and using neighbour-links. It has been decided to
use the sequential traversal algorithm from their work, as it is well fit for parallel
implementations, which might be necessary if a substantial amount of sensors is used
at once in the simulation. The algorithm is described as follows:

Locate Leaf (node, point)
begin

current node = node;
if point lies outside node’s AABB then

return no leaf exists;
end
while current node is not a leaf do

if point is to the left then
current node = cn’s left child;

else
current node = cn’s right child;

end
end
return current node;

end
Tree Traversal (ray)
begin

(entry distance, exit distance) =
intersect ray with root’s AABB;
if ray does not intersect AABB then

return no object intersected;
end
if ray has origin in AABB then

point = ray origin;
else

point = ray origin + ray direction *
(entry distance + eps);

end
/* this will locate first leaf */
current node = Locate Leaf ( tree root node, point);
while current node is leaf do

/* current node is a leaf while
point is inside tree root node’s AABB */
(entry distance, exit distance) =
intersect ray with current node’s AABB;
if current node is not empty leaf then
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intersect ray with each object;
if any intersection exists inside the leaf then

return closest object to the ray origin;
end

end
/* point just a bit outside the current node */
point = ray origin + ray direction *
(exit distance + eps);
current node = Locate Leaf (
tree root node, point);

end
return no object intersected;

end

4.3 Intersection algorithms
It is compulsory for ray tracing to implement several intersection algorithms with ge-
ometrical primitives. These include ray-triangle intersection and ray-box intersection
which are used for tree traversal and ray-sphere intersection, which will be used later
to tell whether an acoustic ray passes through the microphone.

4.3.1 Ray-triangle intersection
For the ray-triangle intersection algorithm, an algorithm introduced by Tomas Möller
and Ben Trumbore [32] is used. This algorithm is fast and uses minimum storage. It is
generally implemented as:

rayTriangleIntersection(Triangle triangle, Ray ray) {
begin

EPS = 0.000001f;
double a, f, u, v;
Vector3f s,h;
Vector3f vertex0 = triangle.A;
h.cross(ray.direction, triangle.edgeCA);
a = triangle.edgeBA.dot(h);
if (a < EPS)

return -1;
end
if (Math.abs(a) < EPS)

return -1;
end
f = 1 / a;
s.set(ray.origin.x - vertex0.x,
ray.origin.y - vertex0.y, ray.origin.z - vertex0.z);
u = f * (s.dot(h));
if (u < 0.0 || u > 1.0)

return -1;
end
q.cross(s, triangle.edgeBA);
v = f * ray.direction.dot(q);
if (v < 0.0 || u + v > 1.0)

return -1;
end
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double t = f * triangle.edgeCA.dot(q);
if (t > EPS)

return (float) t;
else

return -1;
end

end

4.3.2 Ray-box intersection
The ray-box intersection algorithm used in this work is an algorithm proposed by Smits
[34] and implemented by Amy Williams, Steve Barrus, R. Keith Morley and Peter
Shirley from University of Utah [33]. Inverse direction vector ought to be precalculated
for each ray, as division is a computationally difficult operation.

rayAABBIntersection(Ray ray, AABB box)
begin

double tmin, tmax, tymin, tymax, tzmin, tzmax;
if (ray.direction.x >= 0)

tmin = (box.xmin - ray.origin.x) * ray.dirDivision.x;
tmax = (box.xmax - ray.origin.x) * ray.dirDivision.x;

else
tmin = (box.xmax - ray.origin.x) * ray.dirDivision.x;
tmax = (box.xmin - ray.origin.x) * ray.dirDivision.x;

end
if (ray.direction.y >= 0)

tymin = (box.ymin - ray.origin.y) * ray.dirDivision.y;
tymax = (box.ymax - ray.origin.y) * ray.dirDivision.y;

else
tymin = (box.ymax - ray.origin.y) * ray.dirDivision.y;
tymax = (box.ymin - ray.origin.y) * ray.dirDivision.y;

end
if ((tmin > tymax) || (tymin > tmax))

ray.sect.x = 0;
ray.sect.y = 0;
return;

end
if (tymin > tmin)

tmin = tymin;
end
if (tymax < tmax)

tmax = tymax;
end
if (ray.direction.z >= 0)

tzmin = (box.zmin - ray.origin.z) * ray.dirDivision.z;
tzmax = (box.zmax - ray.origin.z) * ray.dirDivision.z;

else
tzmin = (box.zmax - ray.origin.z) * ray.dirDivision.z;
tzmax = (box.zmin - ray.origin.z) * ray.dirDivision.z;

end
if ((tmin > tzmax) || (tzmin > tmax))

ray.sect.x = 0;
ray.sect.y = 0;
return;
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end
if (tzmin > tmin)

tmin = tzmin;
end
if (tzmax < tmax)

tmax = tzmax;
end
ray.sect.x = (float) tmin;
ray.sect.y = (float) tmax;

end

4.3.3 Ray-sphere intersection
The last intersection algorithm that needs to be implemented is the ray-sphere intersec-
tion. This algorithm can easily be deduced using simple linear algebra and Pythagoras’
theorem:

raySphereIntersection(Ray ray, Vector3d sphereOrigin, double r)
begin

Vector3d connection;
connection.sub(sphereOrigin, ray.origin);
double tc = connection.dot(ray.direction);

//check if sphere is in the direction of the ray
if (tc < 0)

return -1;
end

//ray-sphere intersection
double dis = Math.sqrt(Math.abs(Math.pow(tc, 2) -
Math.pow(connection.length(), 2)));
/* distance can’t be more than radius
if it is there is no intersection */

if (dis > r)
return -1;

end
// returns the closest intersection to the ray origin
return (tc - Math.sqrt(Math.pow(r, 2) - Math.pow(dis, 2)));

end
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Chapter 5
Sensor modelling with ray-tracing

This chapter provides information about how cameras and acoustic sensors are modelled
using ray tracing.

5.1 Camera
Modelling cameras with ray tracing is a very simple concept. We must create one ray
for each pixel, which returns the object intersected by it and its distance or colour.
Combined with the basic ray tracing algorithm we get:

for i = 0:cameraLength
for j = 0:cameraWidth

Ray ray = new ray from camera through pixelframe(j,i)
for each object in scene do

if ray intersects object
and intersection is nearest so far then

record intersection distance and object
end

camImg(j,i) = nearest object’s color
j++
end

i++
end

The only problem is finding the direction and origin of the ray in world coordinates.
In order to correctly determine it, several transformation matrices have to be defined
first. These transformations are necessary because a model space needs to be traced
with a ray created in the image space (pixel positions).

5.1.1 Model Matrix
The first matrix is the Model Matrix. This matrix transforms model coordinates into
the world space. It can be easily derived since it combines rotation, translation and
scale. One rotation matrix is necessary for each axis the model was rotated over.

Rx =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


where θ is the angle of rotation over the x axis.

Ry =


cos θ 0 − sin θ 0

0 1 0 0
sin θ 0 cos θ 0

0 0 0 1


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where θ is the angle of rotation over the y axis.

Rz =


cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1


where θ is the angle of rotation over the z axis.

T =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


where x, y and z are the model coordinates in the world space.

M = STRxRyRz

5.1.2 View Matrix
The second important camera matrix is the view matrix. This matrix transforms coor-
dinates from the world-space to the camera view space - it’s the inverse of the combined
camera rotation and translation matrix. It can be derived from rotation and translation
of the camera as:

V = (TRxRyRz)−1

5.1.3 Projection Matrix
The third matrix is the projection matrix. This matrix transforms the view space
into the projection space. This is a transformation from 3D space to 2D and uses
the homogenous coordinates to work properly. The projection matrix depends on the
projection type of the camera. There are several types of projections with two being
used the most often: the perspective projection and the ortographic projection. The
perspective projection is used in this work.

The perspective projection matrix is not trivial to derive. The whole derivation can
be found at [36]. The resulting matrix is:

P =

 2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n over0 0 −1 0


where l,r,t,b,f and n are the 6 camera parameters left, right, top, bottom, far and

near.

5.1.4 Projection Space to Image Space
Finally, the projection space (which has coordinates from (-1,-1) in the bottom-left
corner to (1,1) in the top-right corner) needs to be transformed into the Image space
with (0,0) in the top-left corner and (camera pixel width,camera pixel height) in the
bottom-right corner. This can be done easily as:

(px, py) = ((x+ 1)w
2 , h− (y + 1)h

2 )

where
w is the image’s width in pixels
h is the image’s height in pixels

(x, y) are the coordinates of a point in the projection space
(px, py) are the coordinates of a point in the image space
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5.1.5 Image to world space transformation
By taking the inverse of these matrices, we can easily transform the direction vector
from image space to world space. When we have the ray set properly, ray tracing can
begin.

5.2 Acoustic sensor modelling
In this work, the acoustics are represented as rays travelling through the environment.
In order to successfully model an acoustic sensor, several principles need to be consid-
ered:

5.2.1 Sound absorption while travelling
Firstly, the energy of the sound is partially absorbed by the medium, when sound travels
through it. This attenuation can be expressed as [35]:

W (L) = Winie
−mL

where

L distance travelled
m attenuation coefficient of the material

Wini initial power of the sound

or
W (L) = Wini −mL

in decibels.

The attenuation coefficient depends upon the frequency of the sound. For air, this
coefficient varies from 0 dB/m at 10 Hz and lower and roughly 0.1 dB/m at 10000 Hz
[35]. These values were determined at an air temperature of 20◦C and 60% humidity.

5.2.2 Surface-related sound absorption
Secondly, sound energy is absorbed when sound reaches a surface. Only a portion of
the sound is reflected back, some of it is absorbed by the object that was hit. The
degree of absorption depends on the angle at which the sound hits the surface (angle
of incidence) [35].

W (L) = Wini(1− α)

α = α(θ)

where

α absorption coefficient of the surface
θ angle of incidence

Wini initial power of the sound
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5.2.3 Sound reflection and refraction. Energy distribution
functions.

Lastly, when sound hits a surface, it is necessary to calculate the angle of reflection and
refraction and determine the distribution function from them.

For the reflected part of the sound, the law of reflection says that the angle of inci-
dence is equal to the angle of reflection.

For the refracted part of the sound, we will need to determine the angle of refraction
using Snell’s law. This law states can be written as formula:

sin θrefraction
sin θincidence

= vrefracted
vincidence

Consequently, we only need to determine the velocities and the angle of incidence.

With these angles we can determine an estimation of the real distribution function.
The distribution function consists of the specular part (when the angle is close to
the precise reflection angle) and the diffraction part (the scattering of sound in all
directions).

In the end, the distribution function is only dependent on the angle of incidence,
absorption coefficient, the velocities in the media and the ratio of diffraction.
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Chapter 6
Implementation

This chapter provides information about the implementation of the program with em-
phasis on the optimalisation that had to be done after implementing the program for
the first time. It also talks about the architecture chosen for this program.

6.1 Architecture
The system has been implemented according to the following design:

Figure 6.1. Architectural design

The design does not include geometrical primitives such as vectors, matrices, trian-
gles, boxes and spheres, used by multiple classes, as this would make the design unclear.
The implementation works with vectors and matrices to represent all the positions, di-
rections and transformations. For this, it is recommended to use the vecmath library.
All the algorithms have been implemented as proposed in the last two chapters, how-
ever, some improvements had to be introduced in the implementation to significantly
speed up the computations and to make real-time detection possible.

6.2 Implemented classes and improvements
With the heavy use of objects, especially vectors, it is necessary to avoid overusing
the Java garvage collector. To save memory, objects that are of no further use to the
program are collected and destroyed. To avoid overloading the collector, fields have
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been widely used in the implementation. With their addition, a lot of the objects need
to be created only once and instead of recreating them a new value is set to them when
necessary. The downside to them is that they make the classes unsafe to use in parallel
computing. This can be avoided by synchronizing the classes.

6.2.1 KD-Tree
The designed building and tracing algorithms in the previous chapter are very effective.
They do not, however, talk about the data representation of the tree. In this imple-
mentation, nodes are represented as 64-bit integers. This makes the memory load very
fast, which results in fast tracing. To make this possible, the data in the node needs to
be compressed and written using bit shifting. To cut down on stored data, each node’s
left child is stored right after it in the array. Therefore:

indexleft = indexparent + 1
Thanks to this rule, only the index of the right child has to be stored in the node. For
tracing, we must also store the coordinate that was used to split and the value of the
splitting plane on said coordinate.

2 bits are used to store the coordinate, 31 bits are stored for the right child node
index and 30 bits for the dimension value of the splitting plane. For scenes that consist
of fewer triangles, and with lower desired precision, 32-bit integers could be used for
performance enhancement.

6.2.2 CameraSensor, CameraObject and CameraVisual
The CameraObject class is only used to generate matrices necessary for scene viewing.
The class is a part of the AgentFly visualisation framework.

The CameraSensor is the main class that handles detection. It computes views and
passes the data to the CameraVisual object. CameraVisual uses the JFrame to visualise
the data.

The main improvement to the Camera was the addition of significant pixels. These
pixels are calculated from the bounding box of the drone, and only these pixels need to
be recomputed on each frame. The cameras therefore work as follows:

Firstly, the static view is computed by tracing the world (its KD-tree) with a ray for
each pixel. The direction of this ray is provided by the CameraObject through vector
transformation.

for (int i = 0; i < dim.height; i++) {
for (int j = 0; j < dim.width; j++) {

pixelPos.set(j, i);
camera.getRay(pixelPos,
camera.getPosition(), direction);

Ray r = new Ray(camera.getPosition(), direction);
float inter = tree.treeTraversal(r).x;
staticView[j][i] = inter;
if (max < inter) {

max = inter;
}
if (min > inter) {

min = inter;
}

}
}
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This view needs to be computed only once, unless the objects in the environment are
moved or the camera is moved.

Next, the maximum and minimum significant pixels are derived by transforming the
corners of the drone’s bounding box to the projection space of the camera. To achieve
this, we must transform each corner with the MVP matrix. This matrix combines the
projection, view and model matrices. The core of this algorithm is therefore:

for (Vector4d cor : box.corners) {
corner.set(cor);
MVP.transform(corner);
corner.scale(1 / corner.w);
minC.x = Math.min(minC.x, corner.x);
maxC.x = Math.max(maxC.x, corner.x);
minC.y = Math.min(minC.y, corner.y);
maxC.y = Math.max(maxC.y, corner.y);
minC.z = Math.min(minC.z, corner.z);
maxC.z = Math.max(maxC.z, corner.z);

}

In case the drone is not in the frame, an outOfFrame field is set to true and the function
is returned. After dealing with this case, the maximum and minimum pixel indices are
found as:

wmax = (float) (maxC.x + 1) * dim.width / 2;
hmax = (float) (dim.height - (minC.y + 1) * dim.height / 2);
wmin = (float) (minC.x + 1) * dim.width / 2;
hmin = (float) (dim.height - (maxC.y + 1) * dim.height / 2);

These pixels are derived on each frame of the camera’s video. Now for each of these
significant pixels a ray traces the drone’s inner tree and the distance to the intersection
with the drone is returned. For this to work, the position and direction of the ray
need to be transformed into the drone’s model space. This distance is compared to
the distance stored in the static view, and the shorter is chosen. If the drone is closer,
a hit is recorded. These values are stored in the dynamic view and passed on to
the CameraVisual, which handles visualisation through the JFrame class as an icon.
The pixel values are directly converted from the distance of the object, therefore more
distant objects are a lighter blue. With enough hits recorded, it is decided that the
drone would be detected by a real camera. The amount of pixels necessary for detection
has been calibrated to 12. This value needs to be calibrated for each camera that is to
be simulated, depending on its specifications.

Since only a small part of the frame is redrawn for each frame, the camera model
works very fast, especially if the drone is far away from it.

6.2.3 AcousticSensor
The main speed-up of the AcousticSensor is achieved through two very similar methods
listen and listenFully. The listen method was designed to quickly detect if the drone
is detectable by the sensor by exiting early upon detection. The listenFully method
keeps tracing rays until all rays drop below a threshold. This allows the visualisation
of the detection and the computing of an estimation of the energy cumulated on the
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sensor. With these two methods, it can be chosen whether the detection should be fast
or thorough.

This class uses a LinkedList object to store rays, that are to be traced. Each ray is
traced until it hits a triangle in the KD-tree. If the ray also intersects the sphere of the
sensor, the distances to these intersections are compared. If the sphere intersection dis-
tance is shorter, the hit is recorded and the energy at the point of intersection is added
to the estimated cumulated energy. If the triangle is closer, or the sphere intersection
returns no intersection, the ray is reflected and refracted using the ReflectionGenera-
tor class from the util package. This class generates new rays and adds them to the
LinkedList. If at any point the energy of the traced ray drops below a set threshold,
this ray is discarded and another ray is taken from the queue.

If desired, each ray’s parameters are recorded for visualisation. The visualisation
framework used is a part of the AgentFly visualisation framework.

6.2.4 OBJLoader
To obtain the triangle mesh, an OBJLoader needed to be implemented. The imple-
mented OBJLoader is a simple translator of .obj and .mtl files into arrays of vertices
and indices that can be used to create Triangle objects from them. The OBJLoader is
a part of the AgentFly visualisation framework.

6.2.5 Ray and AcousticRay
The ray class has been implemented according to its previous design. Apart from
the origin and the direction of the ray an inverse of its direction is also precomputed
and stored. This needs to be done as division is computationally demanding and the
inverse is needed multiple times. The returned intersection, when the ray hits an object,
is stored in a field of type Vector2f which can be used to store either two intersection
distances or an intersection distance and the ID of the intersected object. The class
AcousticRay that extends the ray class stores two energies - one as a threshold for the
simulation and one for counting the cumulative energy on the sensor. It also stores the
material that the ray goes through as per the design.

6.2.6 AABB
The AABB class represents an axis-aligned bounding box. It contains 6 fields of type
float containing the minimum and maximum values on each of the three axes. It was
improved by adding one field of type Vector4d that is only initialized by some construc-
tors. These vectors represent the corners of the box and can be easily transformed with
projection and view matrices for camera visualisation.

6.2.7 Triangle
The Triangle class represents a geometrical triangle. It stores its 3 points as Vector3f
objects but it also stores two edges from one point to two others, so they do not have to
be computed each time the triangle is intersected. Each triangle also has an ID, unique
to this triangle in one data structure. A triangle can also store its material necessary
for calculating reflections.

6.2.8 IntersectionHandler
The proposed intersection algorithms from previous chapters have been implemented
in this class.
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6.2.9 Drone
Another class representing an entity is the Drone class. An instance of this class stores
the drone’s velocity, the model transformation matrix and the KD-Tree that contains its
object. All the movement of the drone is done through transforming its model matrix.
For this rotation and movement methods are implemented, for example:

public void rotDroneX(double angleVelo, double t) {
temp.setIdentity();
temp.rotX(angleVelo * t);
M.mul(M, temp);

}

The drone also has a method for creating acoustic rays on a sphere with uniform
distribution, representing the sound it makes.

6.2.10 Settings
The Settings class and its 3 extensions: CameraSettings, AcousticSettings and Drone-
Settings represent settings of entities in the environment. Each one has a method for
returning a new instance of the object it sets. It is implemented for the purpose of easy
swapping between settings. The extensions will be described in the next chapter.

6.2.11 ReflectionGenerator
The ReflectionGenerator stores methods for refraction and reflection used when a trian-
gle is hit by a ray. The acousticDistribution method is the main method for generating
rays. They are generated on a uniformly distributed sphere. It is checked multiple
times whether a ray’s energy dropped under the threshold to avoid unnecessary com-
putations. This check is done when the ray hits a triangle and when each new ray is
generated. Before generating random rays, one ray in the direction of reflection and
one ray in the direction of the the sensor is created to prioritize rays with higher chance
of reaching the sensor.
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Chapter 7
Experiments

This chapter describes several experiments and their results. The correct implemen-
tation will be verified, as well as the possibility of detecting real drones with acoustic
sensors and cameras. Custom scenario generation is discussed at the very end of this
chapter.

7.1 Experiment 1 - Closed space scenario

The first experiment is performed in a closed space of a church. The purpose of this
experiment is to visualise all the acoustic reflections that can be traced in such an
environment. The experiment is set with following parameters:

World model Sibenik.obj ( 130 000 triangles)
Background noise 20 dB

Drone model LinkQuad.obj ( 60 cm x 40 cm x 30 cm)
Drone sound level 55 dB

Drone velocity 5 m/s
Cameras 1

Camera Resolution 800 x 800 pxs
Camera FOV 0.6918 rad

Acoustic Sensors 1
Initial No. of acoustic rays 10
Acoustic reflections per hit 10

Acoustic visualisation True

In this experiment, the drone is in a static position 10 meters away from the sensors.

7.1.1 Results

The drone is detected by both the acoustic sensor and the camera. The visualisation
can be seen in Figure 7.1. and Figure 7.2.
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Figure 7.1. A video shot capturing the drone

Figure 7.2. Acoustic sensor testing: 10x10 rays

Both sensors seem to be working properly, so the implementation is verified.
It can be seen that 10 initial rays with 10 reflections do not fill the environment
completely, but the visualisation is clear. Both parameters are now set to 20.
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Figure 7.3. Acoustic sensor testing: 20x20 rays

With this many rays, the simulation is more precise, but the visualisation is very
confusing. For further testing, a high number of rays generated will be chosen, but the
visualisation will be omitted.

7.2 Experiment 2 - Camera max distance scenario

The second scenario sets a camera on a hill. The camera is directly aimed at the drone.
The purpose of this simulation is to determine the maximum distance at which a camera
can detect a drone. The simulation will be run multiple times to determine the relation
between the camera’s FOV and the distance at which the drone is detected. It can be
assumed that the lower FOV camera will detect the drone further away, as more pixels
will be detecting the drone.

World model object right.obj ( 65 000 triangles)
Drone model LinkQuad.obj ( 60 cm x 40 cm x 30 cm)

Drone velocity 5 m/s
Cameras 1

Camera Resolution 1920 x 1080 pxs
Camera FOV (π6 , π

5 , π
4 , π

3 , π
2 ) rad

7.2.1 Result

The results of the simulation can be seen in the following figure:
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Figure 7.4. The relation between drone’s distance and the FOV of the detecting camera

The results of this experiment confirm the assumption that lower FOV cameras detect
objects further. Therefore, to boost detection range of a camera system, multiple lower
FOV cameras should be used. The detection distance is heavily dependent on the
threshold function. This function for now is a static number of pixels, which is far from
ideal. However, determining a stable threshold function for detection depending solely
on the pixels would require testing with real drones, cameras and detection algorithms
and a substantial amount of time. For now, calibrating the function for each simulated
camera so that the simulation yields similar results to the camera’s specifications should
suffice.

7.3 Experiment 3 - Acoustic sensor max distance
scenario

The third scenario puts the sensor onto a hill. The purpose again is to determine the
maximum distance of the sensor. The way the acoustic sensor detection is set up in this
project causes that if the drone has no obstacles between it and the sensor detection
depends only on the difference between the power of the sound emitted by the drone
and the background noise in the scene. It is assumed that the detection distance can
be calculated as:

L = (Pdrone − PBG − 15dB)mair
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where

L maximum detection distance
Pdrone the power of the sound emitted by the drone
Pdrone background noise level
mair attenuation coefficient of air at the drone’s sound frequency

It has been stated that the attenuation coefficient depends on the frequency of the
sound; therefore to flawlessly simulate the detection the sound’s frequency spectrum
would have to be measured. For now, the coefficient has been set to 0.05 dB/m. Again
the simulation will be run multiple times, decreasing the background noise each time
by 5 dB.

World model object right.obj ( 65 000 triangles)
Background noise 30 - 5n dB

Drone model LinkQuad.obj ( 60 cm x 40 cm x 30 cm)
Drone sound level 50 dB

Drone velocity 5 m/s
Acoustic Sensors 1

Initial No. of acoustic rays 20
Acoustic reflections per hit 20

Acoustic visualisation False

7.3.1 Results

Figure 7.5. The relation between the difference of the bg noise and the drone’s noise level,
and the distance of detection

The results confirm the assumed dependency.
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7.4 Experiment 4 - Multiple-sensor scenario
The last predesigned scenario utilises multiple sensors to cover an object completely.
The object is a house with a rectangular platform with three cameras in each corner of
its roof. An outline of this area can be seen in Figure 7.6.

Figure 7.6. The covered area

An acoustic sensor is placed on the roof, in its middle. The acoustic sensor’s purpose
is to cover the area if the drone flies too high, undetected by the cameras. This scenario
serves as an example of area coverage with multiple sensors, as well as for testing of
simulating 13 sensors at once. This scenario is meant to be adjusted; it is possible to
quickly change the drone’s movements, the power of the sound it emits, the drone’s
model to a smaller or bigger size, etc. The background noise has been set to 32 dB to
represent a quiet rural area. The results are derived from following parameters:

World model object right.obj ( 65 000 triangles)
Background noise 32 dB

Drone model LinkQuad.obj ( 60 cm x 40 cm x 30 cm)
Drone sound level 52 dB

Drone velocity 5 m/s
Cameras 12

Camera Resolution 1920 x 1080 pxs
Camera FOV 0.6918 rad

Acoustic Sensors 1
Initial No. of acoustic rays 20
Acoustic reflections per hit 20

Acoustic visualisation True
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7.4.1 Results

The results of the simulations indicate a maximum detection range of 100 meters. This
has bad implications for multiple attack types, especially if a small drone’s purpose
was to film an area from a distance, as it would go undetected, unless more effective
sensors are set up, or they are set up further from the object. This would increase
the number of sensors necessary to cover the area and the overall cost of the system.
Bigger and noisier drones might be detected in a sufficient range and therefore giving
enough time to react to the attack. However, as research showed, these drones are often
used to carry explosives or weapons, so a swifter response to the attack is necessary. In
conclusion, it is almost always necessary to set up a larger array of sensors around the
object to detect drone attacks at sufficient distances.

7.5 Designing a sensor area coverage model for real
infrastructure

This section discusses the design of a multi-sensor coverage of an area and the suggested
approach derived from the simulations..Determining the properties of the layout - this includes the background noise, con-

sidering all the possible camera obstructions or sources of noise..Setting requirements for detection.Choosing sensors satisfying the requirements - this includes the price of the sensors,
as well as its detection power. Sometimes the size of the sensor also needs to be
considered, not to disrupt the surrounding environment..Designing a coverage model using geometry.Calibrating sensor detection functions in the environment according to real values.Simulating attacks on the infrastructure in the simulation environment

7.6 Generating custom scenarios
To generate a custom scenario, it is recommended to create a new extension of the
abstract class scene. Simply use the load function of the Scene class to load all the
necessary objects, and the Settings class to set up all the sensors in the environment. It
is recommended to store of the same type in an array, and iterate over it. This makes
the code very clear. When the sensors are set, the drone can be moved around the
simulated area, as described earlier.
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Chapter 8
Conclusion and Future work

8.1 Future work
With no access to real drones and sensors for detection and with limited time, the
simulation environment proposed in this work comes with options of improvement to
it.

Firstly, radars should be added to the sensor models, as they also are a powerful
means of drone detection, as described in the research.

As far as acoustics are concerned, many parameters are heavily dependent on the
frequency of the sound. Therefore it would be beneficial to implement this in the
simulations. However, there are hardly any articles or databases that the drone’s sound
spectrum could be derived from, therefore it would be best to measure these values and
make a new database for it.

Another database that would improve the simulation would be a table of materials,
from which all the parameters could easily be fetched. So far a generic solid material
is used for the objects in this work, and a constant value of absorption independent of
the angle. This could potentially cause deviation from real sound propagation, however
mostly only when the drone is behind a thick layer of material.

With the camera, a better detection threshold function can be implemented. This
would require a deep study of detection algorithms used for drone detection and finding
correlation between the number and arrangement of pixels and the detections using
statistics.

Finally the biggest drawback of the camera is the weather and light conditions. It
would be very difficult to implement this, since simulating weather conditions in an
image is an area still explored in computer vision. With the colour visualisation set
up and with access to a real-time detection algorithm, the simulation could generate
real-looking pictures, that would be analyzed by the detector.

In its current state the simulation environment has too many flaws to solely depend
on it when testing an area coverage model. It does, however, provide an option to
coverage models very fast and discard designs that have no chance of working.

8.2 Conclusion
Systems with both acoustic and camera sensors are able to detect most types of attacks.
However, these systems can be avoided, by using larger drones with both propellers and
gliders. These drones can ascend using the propellers, turn them off and glide into the
destination. This way, it is able to go above the camera’s field of view and make little
sound. They, however, require very specific design and cannot be stopped without being
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detected. Consequently, their main use would be to carry explosives as they are unable
to capture stable video.

In conclusion, unless a drone is specifically design to fly over cameras without making
sound, it will be detected by multi-sensor systems. The detection range is longer if the
drone is larger or noisier.
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