Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Cybernetics

Bachelor Thesis

Using Symmetries in Solving Minimal Problems in Computer
Vision

Viktor Korotynskiy

Supervisor: doc. Ing. Toméas Pajdla, PhD.

Study Program: Cybernetics and Robotics, Bachelor
Field of Study: Robotics

May 24, 2018






S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 ™
Student's name: Korotynskiy Viktor Personal ID number: 453214

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

Branch of study: Robotics

\_ 4
Il. Bachelor’s thesis details
e N\

Bachelor’s thesis title in English:

Using Symmetries in Solving Minimal Problems in Computer Vision

Bachelor’s thesis title in Czech:
Vyuziti symetrii pfi FeSeni minimalnich problém v pocitacovém vidéni

Guidelines:

1) Study the approach to analyzing symmetries in polynomial systems from [1,2,3].
2) Suggest an approach to finding symmetries and demonstrate it on a relevant computer vision problem.
3) Implement the approach and evaluate it on real data.

Bibliography / sources:

[1] Viktor Larsson & Kalle Astrom. Uncovering symmetries in polynomial systems. ECCV 2016.

[2]Jean-Charles Faugére, Jules Svartz. Grébner Bases of Ideals Invariant under a Commutative Group: the Non-Modular
Case. The 38th International Symposium on Symbolic and Algebraic Computation, ISSAC '13, Jun 2013, Boston, United
States. ACM, Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC 13,
pp.347-354, 2013.

[3] Evelyne Hubert, George Labahn. Computing the Invariants of Finite Abelian Groups. Mathematics of Computation,
American Mathematical Society, 2016, 85 (302), pp.3029-3050.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomas Pajdla, Ph.D., Applied Algebra and Geometry, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 11.01.2018 Deadline for bachelor thesis submission: 25.05.2018

Assignment valid until:  30.09.2019

doc. Ing. Tomas$ Pajdla, Ph.D. doc. Ing. Toma$ Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.

Supervisor’s signature Head of department’s signature Dean'’s signature

(G J
lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others, )
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature )

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC






Aknowledgements

I would like to thank my advisor Tomas Pajdla for introducing me into the world of algebraic
geometry and showing that algebraic geometry is no less interesting than other mathemat-
ical topics. In every talk with me, Tomas Pajdla was very accurate while talking about
mathematical concepts. This helped me in understanding the material very much.



vi



vil

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for ob-
serving the ethical principles in the preparation of university theses.

Prague, date .....ccccooovvincces
signature



viil



Abstract

Many problems in computer vision require solving a system of polynomial equations.
Practical systems with a finite number of solutions may have a big number of solutions
(greater than 100). The more the system has solutions, the more difficult it is to solve it.
However, we can check if it is possible to get from one solution v; another solution vy (e.g.
by multiplying v; by some matrix). If there are such matrices, then we say that a polynomial
system has symmetries. If we are able to find these symmetries, then there are two ways
how to simplify the solution of the polynomial system. The first is to simplify the original
polynomial system to get another (the reduced) polynomial system with a smaller number
of solutions. Solving the reduced polynomial system, we can then obtain all the solutions
of the original polynomial system as a matrix multiplication of the solutions of the reduced
system. The second is to use an action matrix, which, after choosing specific monomials,
becomes block-diagonal.

Keywords: computer vision, symmetries in polynomial systems, polynomial system re-
duction, ideals stable under matrices
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Abstrakt

Mnoho problémi v pocita¢ovém vidéni vyzaduje vyfeSeni soustavy polynomialnich rovnic.
Praktické systémy s koneénym poctem FeSeni mohou mit velky pocet Feseni (vice nez 100).
Cim vice mé soustava FeSeni, tim obtiznéjsi je vyresit ji. Muzeme vSak zkontrolovat, zda
je mozné ziskat z jednoho FeSeni v; jiné feSeni vo (napf. vynasobenim v; né&jakou matici).
Pokud existuji takové matice, fikame, Ze polynomialni soustava mé symetrie. Pokud budeme
schopni tyto symetrie najit, pak jsou dva zpusoby, jak zjednodusit feSeni polynomialni sous-
tavy. Prvni zptisob je zjednodusit ptvodni polynomiélni soustavu, abychom ziskali jinou
(redukovanou) polynomialni soustavu s mensim poc¢tem FeSeni. Regenim redukované poly-
nomialni soustavy pak mizeme ziskat vSechna feSeni ptivodni polynomiélni soustavy mati-
covym nésobenim FeSeni redukované soustavy. Druhy zpiisob je pouzit akéni matici, ktera,
po uréitém vybéru monomi, se stava blokové diagonalni.

Klicova slova: pocitacové vidéni, symetrie v polynomialnich soustavach, redukce poly-
nomialni soustavy, idealy stabilni vi¢i maticim
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1 Introduction

1.1 Motivation

Solving system of polynomial equations is a very common problem in computer vision.
These systems usually consist of many polynomials of high degree in several variables. One
of the state of the art methods for solving such systems is to construct an action matrix
and find its eigenvalues (an eigenvalue method of solving). If the system has a huge number
of solutions, then the action matrix is large. The larger the action matrix is, the more
difficult it is to find its eigenvalues. However, there are some special polynomial systems
called symmetric. This means that there exists some matrix A such that for any v from the
solution set, Av also belongs to the solution set. Having found such matrices, we can either
simplify the determination of the eigenvalues of the action matrix [3, 9], or obtain a simpler
system of equations from the original one [8, 7].

1.2 State of The Art

There are several articles which describe how to use stability matrices. In [9] a connection
was made between diagonal stability matrices and the block-diagonal structure of the action
matrix. But it was not shown how to find diagonal stability matrices of a given polynomial
system. The authors assumed that we know the stability matrices in advance. Another
related work is [8, 7]. They made a connection between diagonal stability matrices and
reduction of polynomial systems (i.e. obtaining some kind of a simpler system from the
original one). Also, [8, 7] give a method how to find some diagonal stability matrices of
a given polynomial system using linear algebra tools. There are also some related results
in [6]. There it was described how to use stability matrices to speed up Groebner basis
computations. In [3| a connection between stability matrices and the block-diagonal structure
of the action matrix was made. However, in this thesis we concentrate on works [8, 7| and
don’t talk about action matrices. Summing up, [8, 7| proposed a method for finding only
some diagonal stability matrices of a given polynomial system. In this thesis we propose
a modified method from [8, 7| to find all diagonal stability matrices. To find them only
linear algebra can be used. We also suggest a method for finding all in general non-diagonal
stability matrices.



1.3 Contributions

In [8, 7] methods how to find only some diagonal stability matrices of a given polynomial
system using linear algebra tools were proposed. To find such matrices, we can only look at
the multidegrees of monomials in each polynomial and need not care about the coefficients.
The first contribution of this work is the proposal of the method for finding all diagonal
stability matrices. The main idea is to apply linear algebra on multidegrees of monomials
in a reduced Groebner basis of an ideal generated by a given polynomial system. We also
show that applying it on multidegrees of some other basis of the same ideal may not give us
all diagonal stability matrices.

The second contribution is the proposal of the method for finding all in general non-
diagonal stability matrices. However, to find them, it is no longer sufficient to use only
linear algebra. Generally, we should solve another polynomial system, which can be more
difficult than the original one.



2 Linear change of variables

Further we will use some well-known mathematical concepts taken from |1, 4|. These
concpets are: ring [1, p. 346|, field [1, p. 83|, ring homomorphism [1, p. 353, polynomial
ideal [4, p. 29|, variety [4, p. 5], group [1, p. 42], subgroup [1, p. 44], group homomorphism
[1, p. 51], isomorphic groups [1, p. 49|, direct product of groups [1, p. 61].

Throughout this thesis we will work with an infinite number field k. For a matrix
A € ™™ we introduce a mapping

oA klxy, o xm] = K[yt .. yn)

(2.1)
f(x) = f(Ay)
where
T n
X = Y= |
Tm Yn

are the vectors of variables. The variables of the domain and image polynomial rings of
are Ti,..., Ty, and yi, ..., Yn, respectively. Such a notation is made for simplicity because of
a different number of variables in domain and image rings. But we will make an exception
for a square matrix A: instead of the image vector of variables y we will write the same x
as for the domain polynomial ring. This is because x and y are vectors of the same length.

We now give an Example 2.1, which shows how ¢pa maps polynomials.

Example 2.1. Suppose a number field k = Q. Suppose a matrix

10 31
A=1| 4 7 3 0| Q>
-1 5 -2 1

Then the mapping o is from Qlx1, x2, x3] to Qy1, Y2, ys, ya]. By definition (2.1) we have
oa(f(x) = [(Ay) = f(y1+3ys+ya, 4y1+Ty2+3y3, —y1+5y2—2y3+ya), Vf(x) € Q[r1, x2, 3]
Let’s take f(x) = x1 + x2 + 223. Then

oA (f(x)) = (y1+3y3+ya)+(4y1 +Ty2+3y3) +2(—y1+5y2 —2y3+ya) = 3y1+17y2+2y3+3y4.

The following Section 3 will require from us to understand, how a mapping ¢ a changes after
removing some columns (or rows) from A. We give the following Example 2.2.



Example 2.2. Suppose a matriz A from Example 2.1. We can understand A in the following
way:

Yr Y2 Y3 Y4

1 0 3 1 xT1
A:[ 4 7 3 0] T9

-1 5 =2 11 =x3

We will call the variable y; above the column j (resp. x; to the right of row j) as labelled
variable of the column j (resp. of the row j). Let’s construct two matrices By (by
replacing column 3 with a zero column) and By (by removing column 3 and its labelled
variable) from A as

Yyr Y2 Ys ya Y Y2 Y4

1 0 0 1 I 1 0 1 1

Bi=|4 7 0 0]x2, Bo=| 4 7 0]x2

-1 5 0 11 z3 -1 5 11 x5

Then we can easily see that

U
f(B1y) = f(Bayr) = f(y1 + ya, 491 + Ty2, —y1 +5y2 +y4), yr = |12
Ya

We generalize an Example 2.2 to the following Remark 2.1.

Remark 2.1. Suppose a matriz A € k™*™. Construct two matrices By (by replacing column
J with a zero column) and By (by removing the same column j and its labelled variable) from
A as in Ezample 2.2. Then ¢B,: k[x1,...;Tm] — kly1,....,yn] and ¢B,: k[z1, ..., Tm] —
Elyi, ... Yj—1,Yj+1, -, Yn| act on klxy, ..., zp] in the same way in the sense that

¥B1 (f(X)) = ¥By (f(X)) Vf(X) € k[xlv e xm]
As a corollary this means that ker(ypn,) = ker(pn,), which we will use later.

We give a similar Remark 2.2 about removing rows from A.

Remark 2.2. Suppose we have a matriz A € k"™*™. Construct two matrices By (by replacing
row j with a zero row) and Bo (by removing the same row j and its labelled variable) from A.
Then @B, : k[z1,...,2m) = kly1,....,un] and @B, : k[T1,...,2j-1,Tj41, s Tm] = K[Yy1, ..., Yn)
act on kX1, ..., Tj—1,Tj41, ..., Tm) i the same way in the sense that

90131(.](()()) = SOBQ(f(X)) Vf(X) € k[xb v Lj—1, Tj41, >$m]



3 Polynomial ring after a linear change of
variables

A matrix A € K™*" is not necessarily a square matrix now. The following Lemma 3.1
shows that @A is a ring homomorphism from k[z1, ..., ] to k[y1, ..., yn].

Lemma 3.1. Suppose a matriz A € k™*™. Then the mapping o : k[x1, ..., Tm]| = k[Yy1, ..., Yn]
1$ a ring homomorphism.

Proof. We can easily verify (it follows from definition (2.1) of pa) that
pa(f(x) +9(x)) = f(Ay) + 9(Ay) = pa(f(x)) + pal9(x));

= pa(f(x)) - palg(x)),

which proves the lemma.

The following Lemma 3.2 shows a well-known fact about ring homomorphisms.

Lemma 3.2. For any ring homomorphism ¢: R — S, where R and S are rings, the kernel
of v is an ideal in R.

Proof. Statements 1) — 3) follows from the properties of ring homomorphism.
1) The zero polynomial lies in ker(y), because ¢(0) = 0.
2) For any two r1 and 79 from ker(yp) we have that

@(r1+12) = @(r1) +¢(r2) =0+0=0,

Then r1 4 ra € ker(¢p).
3) For any x € ker(¢) and r € R we have

p(r-z)=p(r) @) =) 0=0,

p(x-r)=p() @(r)=0-¢(r) =0,

Then r - x and = - r are in ker(y). And we have the proof.



Lemma 3.2 tells us that the kernel of ¢ is an ideal in k[z1, ..., ;). Now we will give Lemma
3.3, which will help to prove the following Lemmas in Sections 3.1 and 3.2.

Lemma 3.3. Suppose a matriz A € k"™ and a polynomial f(x) € ker(pa). Then for any
D € k™™ we have f(x) € ker(pap).

Proof. We have

oAb (f(x)) = f(ADy) ¥ o (f(Ay)) = ¢n(@a(f(x))) = ¢ (0) = 0.

In the equality (1) we used an exception for a square matrix: not to relabel the vector of
variables.

O]

We want to note that pap (f(x)) is equal to ¢p (A (f(x))), not to wa(¢p(f(x))). This
is because ¢a (f(x)) means to change x to Ax and put it as a variable vector into f(x).
That’s why, when we have pp(f(Ay)), this means that we change y to Dy and put it as a
variable vector into f(Ay) and get f(ADy).

3.1 The case of a full row rank matrix

3.1.1 The case of a square matrix

The following Lemma 3.4 shows that for a square full row rank (invertible) A € £™*" the
mapping @A is a ring automorphism on k[x1, ..., ).

Lemma 3.4. Suppose an invertible matriz A € k™*™. Then @A is a ring automorphism on

klxy, ..., Tp].

Proof. To prove that 4 is a ring automorphism, we only need to show that it is a bijection
because we already know that it is a ring homomorphism. To show that it is bijective, we
need to show that it is injective and surjective.

1) Injective. Suppose we have

f(Ax) = g(Ax),
then
ea-1(f(AX)) = pa-1(9(Ax)),
F(AA~'x) = g(AA"x)

or

2) Surjective. We want to show that
Vf(x) € kla1, ..., an] : T g(x) € kla1, .., 2] : pal9(x)) = f(x).
We will choose g(x) = f(A~1x). It is obvious that g(x) € k[z1, ..., z,] and
palg(x)) = f(AT1AX) = f(x).



Remark 3.1. So, for an invertible A we can conclude from injectivity of pa that its kernel
is the trivial ideal I = {0}.

3.1.2 The case of a non-square matrix

Here we will just prove that for a full row rank non-square matrix A € k™" there holds
ker(pa) = {0} true.

Lemma 3.5. Suppose a full row rank non-square matriz A € k™*" (i.e. m < n). Then
ker(oa) = {0}.

Proof. From linear algebra we know that we can extract m linearly independent columns
from A. Let’s denote by By € k"*™ a matrix obtained from A in which we leave these m
LI columns without changing and all the other columns replace by zero. Then, there exists
a diagonal matrix D € k™™ with 1 and 0 on its diagonal such that

B, = AD.

To get a contradiction suppose there is some nonzero polynomial f(x) € ker(¢a). By Lemma
3.3 we obtain that f(x) € ker(¢n,). Denote by By € k™*"™ a matrix obtained from B by
removing zero columns and their labelled variables. Then Bs is an invertible matrix. By
Remark 2.1 we have that f(x) € ker(¢p,). But by Remark 3.1 it is a contradiction. Then
ker(pa) = {0}.

O

3.2 The case of not-full row rank matrix

Here we will show that for any matrix A € £™*™ not of full row rank, the kernel of pa
cannot be the trivial ideal.

Suppose a matrix A € k™" not of full row rank. We can suppose that the last ¢ < m rows
are linearly independent. Otherwise, to achieve this we can permute the rows of A together
with and their labelled variables x1, ..., ;. We will denote the rows of A by r{, Tl
These are row vectors. Then for every r?, j = 1,...m — q there exist (unique) numbers

cij €k,i=m—q+1,...,m, such that
m
I‘? + Z Cz‘jI'lT = OT. (31)
i=m—q+1
The following Theorem 3.1 tells us what are the generators of ker(pa ).

Theorem 3.1. Suppose a matric A € k™™ not of full row rank and numbers c;; € k,
m—q+1<i<m,1<j<m-—q from Equation (3.1). Then

ker(pa) = <{9UJ + f: C“xi}:l_lq>‘

1=m—q+1



Proof. 1) We will denote p;(x) = x; + >0, . cijv;. At first we can easily verify that

linear polynomials {pj (x)}m lq lie in ker(pa ). Applying pa on each of them we obtain
J:

m n m
ealei+ Y eyw)=rTy+ Y eply=(J+ Y anl)y=0"-y=o0.
i=m—q+1 i=m—q+1 i=m—q+1

m—q
And because 4 is a ring homomorphism, then any polynomial combination of {pj(x)} -

j:
lies in ker(pa ). Hence, we have now proved that

ker(pa) D <{pj (x) };n:lq>'

2) Here we will prove the opposite inclusion. We will use the lex monomial ordering (grlex
is also available) for variable ordering z1 > ... > z,,. Take any f(x1,...,2m) € ker(pa) and

apply the division algorithm [4, p. 59] on it by the set {pj (X)}m 1q. Then we obtain
]:

m—q

Fx) =) 9i(%) - pi (%) +r(x).

J=1

m—q
Our task is to show that every f(x) € ker(¢a) is generated by {pj (X)} X which means

that we have to show that r(x) = 0. Because f(x) € ker(ya), {pj (x)}é;q C ker(pa) and
J:
ker(pa) is an ideal, then also r(x) € ker(pa). To get a contradiction suppose r(x) # 0.

From the properties of the division algorithm and because of using lex ordering (LT(pj (x)) =

zj, 1<j<m-— q) it follows that r(x) = r(Zm—g+1, ..., Tm), Which means that r is a
polynomial in only Tp—g41, ..s T
Now, because r is a polynomial in only Zp,—¢1, ..., Zm, we conclude by Remark 2.2 that

@A(T(Scm—q-&-lv ey Scm)) = PAL; (T(l'm—q-i-l, 00y l‘m)) =0,

where A7 € k9™ is a matrix of ¢ last linearly independent rows of A. We can construct an
invertible matrix M € k9%? from A ; by the same way as By was constructed from A in the
proof of Lemma 3.5. Then by Lemma 3.3 and Remark 2.1 we have that r(zp—q+1, ..., Tm) €
ker(om). But by Remark 3.1 it is a contradiction. Then we must have that (2 —g4+1, ..., Tm)
is the zero polynomial and we got the proof.

O]

3.3 The general case

Here we will give the main theorem of this chapter. This theorem shows that @a : k[z1, ..., Ty —

kly1, ..., yn] “reduces” k[z1, ..., 2] to the polynomial ring isomorphic to klyi, ..., y,], where
q = rank A.



Theorem 3.2. Suppose a matrix A = kE™*" such that rank A = q. Also suppose the
mapping O : k[x1, ..., Tm| = k[y1, ..., yn]. Then there is a ring isomorphism

im(pa) = kly1, ..., Yq)-

In the case ¢ =0, i.e. A = O, we have
im(pa) = k.
Proof. 1t is sufficient to prove that

klzq, ..., xm] /ker(oa) = k1, ...yq)

>~

Then by the First Isomorphism Theorem [1, p. 68] we obtain im(¢a ) = k[x1, ..., zy]/ker(pa)

klyi, ..., yql-
The statement of the theorem is obvious for matrices A with full row rank. As mappings pa

of such matrices have a trivial ideal as their kernel (by Remark 3.1 and Lemma 3.5), then

klx1, ..., zm] /ker(pa) = k[x1, ...y 2] /{0} = k21, ..., 2]

Suppose now that A is of not full row rank. Then from [4, p. 229, Proposition 4|, which
states that k[z1, ..., x,)/I = Span (xa (x* ¢ <LT(I)>>, we obtain the desired result, because

S = Span(xo‘ (XY ¢ (LT(ker(goA))>> = Span(xa :xX* & (21, ...,a;m_q>> = k[Tm—qt1, s T

If A = O, then it is obvious that the mapping @a: k[z1,..., 2] — k is surjective, from
which the result follows.

O
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4 Ideal after a linear change of variables

In all chapters further we will consider only the case of square matrix A € k™*". If we
will want to talk about invertible A, then we will always note it at the beginnig of Lemma
(or Definition). The following Lemma 4.1 describes a well-known fact about images by ring
homomorphisms.

Lemma 4.1. Suppose a ring homomorphism ¢: R — S, where R and S are rings. Then
©(R) is a subring of S. Also if I is an ideal of R, then ¢(I) is an ideal of ¢(R).

Corollary 1. As a corollary of Lemma 4.1 we have that if A is invertible, then for any ideal
I of k[z1, ..., zp] there holds true that pa (1) is also an ideal of k[x1, ..., 2p].

Proof. This follows from Lemma 3.4, which shows that
oA (k[z1, ..., zp]) = K[z, .0y 2]
O

We can ask a question: does there exist for an ideal I a matrix A such that oo maps I into
itself? As we will see in the following sections, this could be very useful for computing the
variety V(I). We give the following two definitions.

Definition 4.1. A polynomial ideal I C k[xy,...,zy] is said to be stable under a matrizc
A e k™ af
(pA(I) c I

Such a matric A we will call a stability matriz of I.

Definition 4.2. A polynomial ideal I C k[xi,...,xy,] is said to be invariant under a
matriz A € k™" if

pall) =1

The following Lemma 4.2 gives a necessary and sufficient condition for an ideal I to be stable
under A.

m

Lemma 4.2. Suppose a polynomial ideal I C klz1,...,zy] and let G = {gj(x)}} ) be some
]:
set of generators of I. Then I is stable under A € k™™ if and only if

gi(Ax) eI Vj=1,..,m.

11



Proof. It is trivial by Definition 4.1 that if I is stable under A, then g;(Ax) € I Vj =1,...,m.
Conversely, we want to prove the following implication:

gi(Ax) eI Vj=1,..m N f(x)el= f(Ax)el.

Any polynomial f(x) € I we can write as

Fx) = hi(x)gj(x), hj(x) € klz1,...;zn] Vj=1,..,m.
j=1
Then .
f(Ax) = hj(Ax)g;(Ax).
j=1

Because {hj(Ax)}fn
also f(Ax) € I.

C k[z1,...,zy] and by assumption g;(Ax) € I Vj = 1,...,m, then

O

The following Remark 4.1 tells us more about an ideal I invariant under invertible matrix.

Remark 4.1. Suppose an invertible matriz A € k"*™. Then
1) An ideal I is invariant under A if and only if oa: I — I is a bijection.
2) oa: I — I is a bijection if and only if I is stable under both A and A='.

Proof. 1) =) If A is invertible then we know from Lemma 3.4 that pa: k[z1,...,z5] —
k[x1,...,xy] is injective (and then also pa: I — I). Because I is invariant under A, then
wa(I) = I, which shows that pa: I — I is surjective.
1) <) ¢a: I — I is a bijection, then it is surjective, from which the result follows.
2) =) It is obvious that pa-1: I — I is an inverse bijective map of ¢a: I — I, from which
the result follows.
2) <) From Lemma 3.4 we know that pa: I — I is injective. It remains to prove that it
is surjective. Take any f(x) € I. We want to prove that there exist such g(x) € I that
oa(9(x)) = f(x). We will take g(x) = f(A~!'x). Because I is stable under A~! then
g(x) € I. And also ¢ (9(x)) = pa(f(A~1x)) = F(A1AX) = f(x).

O

The following Lemma 4.3 gives the necessary and sufficient conditions for an ideal I to be
invariant under A. However to prove it generally we need to assume that A is invertible.

Lemma 4.3. Suppose a polynomial ideal I C k[z1,...,x,) and let G = {gj(x)}r'n . be some

set of generators of I. Let also A € k™™™ be an invertible matriz. Then I is invariant under

A if and only if
r={{sax}" )

12



Proof. <) Because {gj(Ax)}r'n € I, then by Lemma 4.2 we obtain that ¢ (I) C I. To
J:

m
prove I C pa (I) we take any polynomial f(x) € I. Because {gj (AX)} are the generators
Jj=1

of I, then there exist polynomials {aj(x)}é , C k[x1, ..., zy] such that
]:
Fx) =) aj(x)g;(Ax).
j=1

Because (by Corollary 1) ¢a (I) is an ideal of k[z1, ..., x,] and {gj (Ax)}m  C wA(]), then

f(x) € pall). .
=) Because pa(I) C I, then we conclude by Lemma 4.2 that {gj(AX)}' € I. And
]:

m
because [ is an ideal, then <{gj(Ax)} > C I. To prove an opposite inclusion, take

any f(x) € I. By Remark 4.1 we have that f(A~'x) € I. Then there exist polynomials

} ) C k[x1,...,x,] such that
j=

m

FATIX) =) bi(x)g;(%).

=1

Applying A on both sides of the above equation we obtain

x) = _bj(Ax)g;(Ax),

j=1

which proves the inclusion I C <{gj(Ax)}Tln 1>'
J:
O

We can ask a question: is it possible for an ideal I to be stable under an invertible A, but
not to be invariant under the same A7 It turns out that this case can not happen. But it
can happen for a non-invertible A. Here is an example.

Example 4.1. Suppose an ideal I = (x,y) C Q[z,y]. Suppose a non-invertible matrix

A= E _ﬂ € Q**2. Then pa(I) is a set

all) = {m(@,p)ea(@) + ha(@,v)ea(®) | hi(e,y),ha(e,y) € pa(@l,y) | =

- {h(x,y)(:ﬁ —y) | h(zy) € @A(Q[%y])}-

Another words, oa(I) is an ideal of pa(Q[z,y]) generated by one polynomial x —y. We
see from Lemma 4.2 that pa(I) C I, because pa(r) = pa(y) = x —y € 1. We can also
see that x € I, but © & wa(I), because there doesn’t exist such h(z,y) € oa(Qx,y]) that
x = h(z,y)(z —y). These then means that pa(I) C I.

13



We will next prove that Definitions 4.1 and 4.2 are equivalent for an invertible A. For
this we will prepare Lemmas 4.4 and 4.5. In Lemma 4.5 it will be shown that for an
upper triangular invertible matriz A (under which I is stable) there exist generators

m m
{gj(x)}' , of I such that {gj(Ax)}' | are also generators of I. To prove Lemma 4.5,
j= j=

we will require the following Lemma 4.4, which tells us that a leading monomial (using lex
ordering for variable ordering x; > ... > x,,) of a transformed monomial x® by an upper
triangular invertible matrix A is the same monomial x%.

Lemma 4.4. Suppose an upper triangular invertible matrix A € k"™, Then
LM((Ax)a) =x% Va=[a .. an| €ZL.
with respect to the lex monomial ordering for variable ordering x1 > ... > xy,.

Proof. We will prove it by induction on the number of variables n. It is obviously true for
n = 1. Suppose it is true for n = m —1. Then we will prove it for n = m. We can decompose
each monomial X% as

T2
(0] (e (072 .
x*=a'x), x. =11, arz[ag ozm].
Tm
We can also decompose matrix A as
T
C
A= ;

0 B

where ¢ € k2™ and B € k(m=Dx(m=1) ig an invertible upper triangular matrix. It is also
obvious that
(Ax)* = (CTX)O‘1 . ([0 B] x)r = (ch)O‘1 - (Bx,)*r.

By an inductive assumption we know that LM((BXT)QT> = x7. Because A is an upper

triangular invertible matrix, then the first element of c is nonzero. Then, because of using
the lex monomial ordering, we obtain

LM((CTX)al) =]

Then by a well-known property LM (f(x) -g(x)) =LM <f(x)> -LM (g(x)) for any f(x) and

g(x) from k[z1,...,x,] we have

LM((Ax)"‘> - LM((ch)O“ : (er)ar> = LM((CTX)‘“) -LM((BXT)O‘T> = 29X = x@,
O

Lemma 4.5. Suppose an ideal I C k[z1,...,zy] stable under an upper triangular invertible

m
matriz A € k"*"™. Then for a Groebner basis {gj (x)} . of I with respect to the lex mono-
]:

m
maal ordering for variable ordering x1 > ... > x,, there holds true that {gj (Ax)} - are also
j:
generators of I.

14



Proof. From Lemma 4.4 we have that

LM(gj(x)> - LM(gj(Ax)> Vi=1,..,m.

Then we have

(1r) = ({1i(0) |- )= ({(san)} ),

j= j=1

m
Because I is stable under A, then {gj(Ax)}. C I. Because their leading monomials

generate (LT(I)), then we conclude that {gj(Ax)}m is a Groebner basis of I with respect
=1

to the lex monomial ordering (and then they are the generators of I).
O

Corollary 2. Suppose an ideal I C k[z1,...,x,] and an upper triangular invertible matriz
A € k™" Then I is stable under A if and only if it is invariant under A.

Proof. <) This case is trivial.

=) Let’s take some Groebner basis of I with respect to the lex monomial ordering for variable
ordering 1 > ... > xp,. From Lemma 4.5 we have that the images of these generators by pa
also generate I. Then by Lemma 4.3 we obtain that I is invariant under A.

O

Now we give the main Theorem 4.1 of this chapter. It states that for an invertible matrix
A Definitions 4.1 and 4.2 are equivalent.

Theorem 4.1. Suppose an ideal I C k[x1,...,x,] and an invertible matriz A € k™™, Then
1 is stable under A if and only if I is invariant under A.

Proof. <) This case is trivial.
=) Let I’ denote ideal ¢a (I). We know that any invertible matrix A can be decomposed
into

A =SDS !,

where D is a Jordan canonical form of A, which means that D is upper triangular. And be-
cause A is invertible, then so is D. Denote ideals ¢g(I) and ¢g(I’) by Is and I§ respectively.
It is obvious that

Is = ¢s(I') = ps(pall)) = pas(I) = vsp(I) = ¢p(ps(I)) = ¢p(Is) (4.1)
And because I' C I (I is stable under A), then
Is = ps(I') C ps(I) =Is (4.2)

Then from Iy = ¢p(Is) ( Equation (4.1) ) and Ig C Is ( Equation (4.2) ) we conclude that

Ig is stable under D. Because D is upper triangular invertible matrix, then by Corollary 2
we obtain that
I = Is.

15



As ¢g: I — Ig and ps: I' — I§ are bijections (they are injective because S is invertible,
and surjective because by definition Ig = pg(I) and I§ = ¢g(I’)), then it follows that

I' = pg-1(Ig) = ps-1(Is) = I.

And we have the proof.

16



5 Stability of an ideal’s variety under a ma-
trix multiplication

In the previous section we have described the stability of an ideal. Here we will describe
the stability of an ideal’s variety. Consider a (not necessarily invertible) matrix A € k™*".
We introduce a usual linear mapping

Y = S
oA (5.1)
X — Ax

The following Definitions 5.1 and 5.2 are similar to the Definitions 4.1 and 4.2 from the
previous section about ideals.

Definition 5.1. A subset V' C k™ is said to be stable under the matriz A € k™" if
oa(V)cCV.

Definition 5.2. A subset V' C k™ is said to be invariant under the matriz A € k™*"™ if
oa(V)=V.

Remark 5.1. Suppose an invertible matrix A. Then
1) A subset V- C k™ is invariant under A if and only if oa: V — V is a bijection.
2) Also oa: V — V is a bijection if and only if V is stable under both A and A~

Proof. Proof can be made by a similar way as the proof of Remark 4.1.
O

We will define o4 (2) = @ for any matrix A € k"*". Then by Definition 5.2 we conclude
that an empty set is invariant under any matrix A € k™*". The following Lemma 5.1 shows
a connection between stability of an ideal and its variety.

Lemma 5.1. Consider an ideal I C klz1,...,zy]. If I is stable under A € E™*™, then so is
V(I).

Proof. The statement of the Lemma is obvious for empty V(I). For a non-empty V(I) we
need to show the following:

ve V()= f(Av)=0 Vf(x) eI

17



Because I is stable under A, then from Definition 4.1 we have:
p(x) = f(Ax) € I Vf(x) e I.
Because p(x) € I, then it vanishes on any v € V(I). Then this means that
VweV() Vf(x)el: f(Av)=p(v)=0.

O

Example 5.1. Suppose an ideal I C Q[x] generated by f(x) = x* — 1. We can see that
I is stable under A = —1 € Q1. The variety V(I) consists of two solutions +1 and is
clearly stable under A. Let’s suppose an ideal J C C[x] generated by the same f(x) = % —1.
We can see that J is also stable under A = —1 € C'*1. The variety V(J) consists of four
solutions £1,+i. We clearly see that V(J) is stable under A. Notice that J and V(J) are
also stable under A = +i.

Example 5.2. Suppose an ideal I = (z3 — 1,2y — 1) C C[z,y]. Denote f1(x) =23 — 1 and
fo(x) =xy — 1. We can see that I is stable under

i1
A = !627”3 0 c (C2><2

-2
0 627T7,§

because

fi(Ax) = fi(x) € I, fa(Ax) = fa(x) € 1.

11 |e27is e2mi3
V(1) = { L] ’ [627ri§] ’ [627”';

And we clearly see that V(I) is also stable under A.

The variety of I is

—_
H/_/

We now give the following Corollary 3 of Lemma 5.1.

Corollary 3. Suppose an ideal I C k[z1,...,x,] and an invertible matriz A € k™*™. If I is
stable under A, then V (I) is invariant under A.

Proof. From Lemma 5.1 it follows that V() is stable under A. By Theorem 4.1 we obtain
that I is invariant under A, and then by Remark 4.1 also I is stable under A~!. Then by
Lemma 5.1 V(I) is stable under A~!. By Remark 5.1 it follows that V() is invariant under
A.

O

We will next show that from stability of V(I) we can only talk about stability of a radical
ideal of I.

Lemma 5.2. Suppose an ideal I C k[z1,...,x,] and matriz A € k"*". If V(I) is stable
under A, then so is I(V(I)).

18



Proof. To prove that I(V(I)) is stable under A we need to show that
f(x) e (V(I)) = f(Ax) e I(V(I)).
This is equivalent to the following:
Vv eV() Vf(x): f(v)=0= f(Av) =0.

Take any v € V(I). Because V(I) is stable under A, then Av € V(I). But then it means
that any polynomial f(x) € I(V(I)) vanishes on Av by the definition of I(V(I)).

O

Lemma 5.3. Consider an ideal I C k[x1,...,x,] and an invertible matriz A € k™*™. Then
the following statements are equivalent:

(i) V(I) is stable under A,
(i) 1
(iii) 1(

(iv) V(I) is invariant under A.

A%
A%

)

(1)) is stable under A,
(I)) is invariant under A,
)

Proof. (i) = (ii): follows from Lemma 5.2.
(13) = (417): follows from Theorem 4.1.
(131) = (iv): follows from Corollary 3, where we will use the fact that V(I(V(I))) = V(I).
(tv) = (7): trivial.

0
Lemma 5.2 shows us that if the variety V(I) of a radical ideal I is stable under A, then I

is stable under A. But it shouldn’t be true for a non-radical ideal. We give the following
Example 5.3, which shows it.

Example 5.3. We will take a non-radical ideal I = <x2,y2> C Qlx,y]. Its variety is

vor={[a]}

This variety is stable under any matriz A € Q**2. For example if we’ll take

1 1]
A=lo ).

then by Definition 4.1 T isn’t stable under A, because for f(x) = 2% € I we have:
ryd 1= f(Ax) = (z+y)? =2* + 2oy + > ¢ L.

But if we take a radical ideal
J = (z,y) C Qlz,y]

with the same variety, then for its two generators gi1(x) = x and g2(x) = y we have
g(Ax) =z +yel, g(Ax)=yel
Then, by Lemma 4.2, an ideal J is stable under A.
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As the last thing of this section we will say something about groups of stability matrices of
an ideal I. The following Lemma 5.4 tells us that all invertible stability matrices of an ideal
I form a group.

Lemma 5.4. Suppose an ideal I C k[z1,...,xy]). Then all its invertible stability matrices
A € k™™ form a group with respect to the operation of matriz multiplication.

Proof. The set of all such matrices is obviously closed under matrix multiplication (it follows
from Definition 4.1). Matrix multiplication is associative. Obviously, an identity matrix is
one of stability matrices. And to every stability matrix A there exists an inverse A~!, which
is by Theorem 4.1 also a stability matrix of I.

O

We will denote the group of all invertible stability matrices of I as G;. In the next Chapter 6
we will use a notion of stability under a group of matrices. We give the following Definitions
5.3 and 5.4.

Definition 5.3. A polynomial ideal I C k[z1,...,xy] is said to be stable under a group
G C GL, (k) if it is stable under any matriz from G.

Definition 5.4. A subset V' C k"™ is said to be stable under a group G C GL, (k) if it is
stable under any matriz from G.
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6 Stability under a diagonal matrix of a spe-
cial kind and a generalization of homoge-
neous polynomials

In this chapter we will see how homogeneous polynomials are connected with the stability
of ideals under diagonal matrices of a “special kind”. It even turns out that it is very easy
to find all such stability diagonal matrices of a given ideal (we will describe the method in
Section 8). By a “special kind” we understand the following kind of diagonal matrix:

¢ — diag<{w}7_ > €k e e TN ER (6.1)
7=1

By k* we denote k\{0}. There is a reason why we suppose such a special kind of D§. This
matrix acts on a polynomial in a very nice way:

S S S
Fx) = ax% = ops(f(x)) = f(DSx) = A g X = > Nax®, gj=c a; €L
j=1 j=1 j=1

An interesting thing comes up when one of the following conditions holds true:

a) all ¢; are equal to some ¢ € Z.
b) there exists p € N, p > 1 such that all ¢; are equal to some ¢ € Z, modulo p.

We will discuss these two cases later. The main goal of this chapter is to give a necessary
and sufficient condition for an ideal I to be stable under DS. To understand the following
material we should be familiar with the concept of a homogeneous polynomial. We recall
that the total degree of monomial x® is defined as 17 av.

Definition 6.1. A polynomial f(x) € k[x1, ..., zy] is said to be homogeneous if all monomials
in f(x) have the same total degree.

Example 6.1. A polynomial f(x) = x3 + 22%y + y> is homogeneous, because all monomials
in f(x) have the same total degree, which is equal to 3.

We now give two similar Definitions 6.2 and 6.3 which relate to the conditions a) and b)

above. By a c-weighted total degree of monomial x®* we will mean a number ¢’ a.
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Definition 6.2. A polynomial f(x) € k[x1,...,z,] is said to be c-weighted homogeneous
for c € Z™ if all monomials in f(x) have the same c-weighted total degree, i.e.

S
f(X) = Zajxaj = CTCMI = CTa2 = ... = CT(XS.

Jj=1

Definition 6.3. A polynomial f(x) € k[x1, ..., zy] is said to be c-weighted p-homogeneous
forc e Z™ and p € N, p > 1 if all monomials in f(x) have the same c-weighted total degree
modulo p, i.e.

S
f(x) = Zajxo‘f =claj=clay =... = c’a, mod p.
j=1

Notice that in Definition 6.3 we didn’t exclude that f(x) isn’t a c-weighted homogeneous.
It means that every c-weighted homogeneous polynomial is c-weighted p-homogeneous for
every p € N, p > 1. Such a definition was made not to confuse the reader while giving
Proposition 6.1. Also notice that Definition 6.2 is a small generalization of homogenity from
Defintion 6.1 (which is for ¢ = 1). We give the following two Lemmas 6.1 and 6.2, which
connect Definitions 6.2 and 6.3 with cases a) and b), respectively.

Lemma 6.1. Suppose a polynomial f(x) € k[x1,...,xs]. Then f(x) is c-weighted homoge-
neous if and only if

f(DS$x) = Xif(x) VAeEk”

for some q € Z.

Proof. =) Trivial.
<) We have

Fx) = bix™ = \f(x) = f(D§x) = Y A -bx* VA€EkT,
=1 =1
or
ha(x) =) (M =A¥).p;x% =0 VAek” (6.2)
j=1
Equation (6.2) means that hy(x) is the zero polynomial for every A € k*. Since b; # 0 for
j=1,...,s, it follows that

AN =0 VAEEk Yi=1,..s (6.3)

If ¢ = qVj =1,..,s then we are done. So, suppose that there exists ¢, # ¢ for some
1 < m < s. Notice that ¢ and ¢,, can be negative integers. We take the least of ¢ and ¢,
(call it ¢). Then p(x) = 297t — 29~ is a polynomial in k[x]. Equation (6.3) means that
p(A) = 0 VA € k*. But we know that every nonzero polynomial in k[x] of degree d has at
most d roots in k. Since k is infinite, it follows that p(x) has infinitely many roots. Hence
p(x) must be the zero polynomial, which means that ¢ — t = ¢, — ¢t. And then g = ¢y,

O
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Lemma 6.2. A polynomial f(x) € Clzy, ..., xy] is c-weighted p-homogeneous if and only if
F(D$x) = NIf(x) VA€,

for some q € Z. By U, we denote the finite group of p-th roots of unity.

Proof. By the same steps as in the proof of Lemma 6.1 we obtain
M —Xi=0 VAeUp,Vji=1,..,s (6.4)

If gj = gmod p Vj =1,...,s, then we are done. So, suppose that there exists g,, Z ¢ mod p
for some 1 < m <'s. Equation (6.4) means that

2mid 2 dm
P —e€

e r =0

2mit e . . i L .
for chosen A = e”" 7. Dividing this equation by e » we obtain

2mitm 1,
which is true if and only if ¢ — ¢;, = 0 mod p. Then ¢ = ¢, mod p.
O

We will denote the infinite group of matrices DS, A € k* for some fixed ¢ € Z" by G7,. Sim-
ilarly, by G} we will denote the finite group of matrices DS, A € U, for some fixed ¢ € Z".

Next we give Proposition 6.1 which connects a homogenity of polynomials with an ideal’s
stability. At first, let’s recall what is a reduced Groebner basis of a polynomial ideal. The
following Definition 6.4 is taken directly from [4, p. 90, Definition 5|.

Definition 6.4. Fiz an arbitrary monomial ordering. A reduced Groebner basis for a
polynomial ideal I is a Groebner basis G for I such that:

(i) LC(g) =1 for all g € G.
(i) For all g € G, none of non-leading monomials of g lies in <LT(G)>.

Proposition 6.1. Let I C k[z1,...,zy] (resp. I C Clzy,...,xy,]) be a polynomial ideal. Then,
I is stable under Gf,. (resp. Gz(;) if and only if each polynomial in a reduced Groebner basis
of I (with respect to any monomial ordering) consists of c-weighted homogeneous (resp. c-
weighted p-homogeneous) polynomials.

The following Lemmas 6.3 and 6.4 prove the <= implication of the above Proposition 6.1.

m
Lemma 6.3. Let I C klzy,...,z,] be a polynomial ideal. Suppose some set G = {gj(x)}
=1

of generators of I. If each g;, j = 1,...,m is c-weighted homogeneous, then I is stable under
G-
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Proof. Let q; be a c-weighted total degree of each monomial in g;. Take any matrix D from
Gf. Then by Lemma 6.1 (= implication) we have

g;(DSx) = A9 f(x) €I, Vj=1,..,m.

Then by Lemma 4.2 we obtain that I is stable under Df and this proves the Lemma.
O

m
Lemma 6.4. Let I C Clzy,...,xy,] be a polynomial ideal. Suppose some set G = {gj(x)} .
]:

of generators of I. If each gj, j = 1,...,m is c-weighted p-homogeneous, then I is stable
under Gy.

Proof. This Lemma can be proved in a similar way as Lemma 6.3 (using Lemma 6.2 instead
of Lemma 6.1).

O]

Notice that the < implication of Proposition 6.1 works for any basis of I (not only for a
reduced Groebner basis), while the = implication can fail for some basis of I. We give an
Example 6.2.

Example 6.2. Consider an ideal I = (f1, f2) C Q[z,y], where
Ax) =2"+9% fax)=z+y.
Then I is stable under
A= [_01 _01] Q¥

because
fi(Ax) = fi(x) €I, f2(Ax) = —fa(x) € 1.

We see that f1 and fo are 1-weighted homogeneous of total degree 2 and 1 respectively. We
can construct another basis of I1:

I={fs,f1), fs(x)=2+y*+z+y fix)=x+y.

We can see that f3 is not 1-weighted homogeneous. However this cannot happen for a reduced
Groebner basis of I.

Now, we are ready to prove a Proposition 6.1. We will split the proof into two Theorems 6.1
and 6.2 (for G and Gy respectively). We will prove only Theorem 6.1, because Theorem
6.2 can be proved in the same way.

Theorem 6.1. Let I C k[x1,...,x,] be a polynomial ideal. Then I is stable under GY, if and
m

only if its reduced Groebner basis G = {gj(x)} . (with respect to any monomial ordering)
j:

consists of c-weighted homogeneous polynomials.
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Proof. <) This case has been already proved by Lemma 6.3.

=) We will prove that if there exists a g;(x) € G that isn’t c-weighted homogeneous, then
I isn’t stable under Gf,. Our aim now is to find at least one f(x) such that f(D$x) & I
for some DS € GY,. Then, by Definition 5.3, we will get that I isn’t stable under GF. We
will show that such f(x) is g:(x). The fact that g;(x) isn’t c-weighted homogeneous means
(from Lemma 6.1) that there exists such DS, € G, that

gt(D5,x) # ANgi(x) for any q € Z (6.5)

To get a contradiction, suppose gt(Df\tx) € I. Let
S
gr(x) = x* 4+ Zajxaj, LT(g;) = x*.
=2

Then .
gt(D5,x) = AT x* + Z A x>
j=2
Construct a polynomial
S
F6) = A gi(x) = (D, %) = D (A" = X8 ) ajx™.
j=2
The polynomial f(x) is not the zero polynomial, which follows from Equation (6.5). Using
assumption g:(x) € I and g+(D5,x) € I we conclude that f(x) € I. Because G is a Groebner
basis of I, then
LM(f) € (LT(G)).
Notice that LM(f) is a non-leading monomial of g;. Then by (ii) in Definition 6.4, it is a
contradiction. So we must have that g:(Df x) ¢ I and by Definition 5.3 we have that I isn’t
stable under G7.
O

Theorem 6.2. Let I C Clzy,...,x,] be a polynomial ideal. Then I is stable under Gy if
and only if its reduced Groebner basis (with respect to any monomial ordering) consists of
c-weighted p-homogeneous polynomials.

Proof. <) This case has been already proved by Lemma 6.4.
=) The proof can again be made in a similar way as the proof of Theorem 6.1 (using Lemma
6.2 instead of Lemma 6.1).

O

We want to note that Theorem 6.1 works generally only for infinite fields k, because the <
implication of Lemma 6.1 works generally only for infinite fields.

We refer to [4, p. 371, Definition 1 and Theorem 2|. At first we will explain what does
the notion of homogeneous component mean. Suppose a polynomial f. Let f; be the sum
of all terms of c-weighted total degree j. Then we call f; the jth c-weighted homogeneous
component of f. We give the following Definition 6.5 and Theorem 6.3 (from [4, p. 371]).
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Definition 6.5. An ideal I C k[x1,...,xy] is said to be 1-weighted homogeneous if for each
f €1, the 1-weighted homogeneous components f; of f are in I as well.

Theorem 6.3. Let I C k[x1,...,2,] be an ideal. Then the following are equivalent:

(i) I is a 1-weighted homogeneous ideal.
(1)) T =1{f1,..., fm), where fi1,..., fm are 1-weighted homogeneous polynomials.

(11i) A reduced Groebner basis of I (with respect to any monomial ordering) consists of
1-weighted homogeneous polynomials.

The above Theorem 6.3 can be generalized for c-weighted homogenity and c-weighted p-
homogenity (we won’t give the proof here). We can add one more statement to Theorem 6.3
about the stability of I and obtain the following Theorem 6.4.

Theorem 6.4. Let I C k[z1,...,xzy] (resp. I C Clzy,...,x,]) be an ideal. Then the following
are equivalent:

(i) I is a c-weighted homogeneous (resp. c-weighted p-homogeneous) ideal.

(i) I = (f1,..., fm), where fi,...,fm are c-weighted homogeneous (resp. c-weighted p-
homogeneous) polynomials.

(i) A reduced Groebner basis of I (with respect to any monomial ordering) consists of
c-weighted homogeneous (resp. c-weighted p-homogeneous) polynomials.

(iv) I is stable under Gy, (resp. Gy).

We refer to some previous works [6, 7, 9]. In [6, Theorem 4|, [7, Proposition 5.3] and [9,
Theorem 1, Theorem 2 and Corollary 1] there is a proof of (i) <= (ii) <= (iv) of the
above Theorem 6.4 for c-weighted p-homogenity using VanDerMonde matrix. However, in
these papers there is no statement (7i7) about reduced Groebner basis.

In Chapter 8 we will show how to apply Theorems 6.1 and 6.2 on finding groups Gy, and
G, of stability matrices of a given ideal I. However, to understand Chapter 8, we should be
familiar with the concepts of Hermite and Smith normal form of an integer matrix.
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7 Remarks on Modules, Hermite and Smith
Normal Forms

7.1 Modules

We cite [5, p. 179]: “Modules are to rings what vector spaces are to fields: elements of a
given module over a ring can be added to one another an multiplies by elements of a ring.
The axioms for a module are the same as for a vector space but instead of a field there is a
commutative ring”.

An R-module M is said to be finitely generated if there exist such fi,..., fmn € M
such that for any f € M there exist such rq,...,7, € R that f = rif1 + ... + 7 fmm. Such set
of fi,..., fm is called a generating set of M. Linear dependence (resp. independence) is
defined the same as for the vector spaces. What is different for modules (unlike for the vector
spaces) is that a finitely generated M need not to have a linearly independent generating set
(basis). The reason for this is that

arfi+ ...+ amfm =00, a; €R,f; € M,a1 #Og
doesn’t generally imply
dby, ..., € R : f1 = bgfg + ...+ bmfm

However, there are modules which have a basis. These are called free modules. If every
basis of a free finitely generated module M has the same number of elements, then we say
that M is free of finite rank.

We cite [2, p. 64]: “We can study most of linear algebra problems in the context of
modules over a commutative ring instead of vector spaces over a field. If the ring R is an
integral domain (no zero divisors), we can work over its field of fractions K. However, this
is not completely satisfactory, since the answer that we want may be different. For example,
to compute the kernel of a map defined between two free modules of finite rank (given as
usual by a matrix), finding the kernel as a K-vector space is not sufficient, since we want
it as an R-module. In fact, this kernel will usually not be a free module, hence cannot be
represented by a matrix whose columns form a basis. One important special case where it
will be free is when R is a principal ideal domain (an integral domain where every ideal is
generated by one element). In this case all submodules of a free module of finite rank are
free of finite rank. This happens when R = Z or R = k[x] for a field k. In this case, asking
for a basis of the kernel makes perfectly good sense”.
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7.2 The Hermite Normal Form

In Chapter 8 we will use the concepts Hermite and Smith normal form of an integer
matrix. We give the following Definition 7.1 about the Hermite normal form.

Definition 7.1. We will say that a matric M € Z™*", M = m;; is in column Hermite
normal form (abbreviated column HNF) if there exists r < n and a strictly increasing map
f from [1,n — 7] to [1,m] satisfying the following properties:

(i) For1<j<n—r,ms,; =1, mij=0ifi > f(j) and 0 <mypp); < myppyr if k< J.
(ii) The last r columns of M are zero.

Example 7.1. Suppose the following matriz

c ZB><3

=

I
c oo~
N Cl Ul )
DO W W »

We see that M has no zero columns, then r = 0. A strictly increasing map f from [1,3]
(columns) to [1,5] (rows) can be defined as f(1) = 2 (ma1 =4 > 1), f(2) =4 (my2 =
1>1), f(3) =5 (ms3 =2 > 1). The statement m;; = 0 if i > f(j) means that all
elements in the column under each of pivots ma 1, maa and ms3 are zero. The statement
0<mym),; <mpr)r tf k <Jj means that all elements in the rows to the right of pivots are
non-negative and smaller than this pivot. Then we conclude that M 1s in column Hermate
normal form.

Example 7.2. For m <n a matric M € Z™*™ of full row rank in column Hermite normal
form has the following shape:

* % * 00 0
0 = * 0 0 0
0 0 = 00 0

Theorem 7.1. Let A € Z™*™. Then there exists a unique B € Z™*™ in column HNF of
the form B = AU with U € GL,(Z), where GL,(Z) is the group of matrices with integer
coefficients which are invertible, i.e. whose determinant is equal to £1.

Proposition 7.1. Let A € Z™*", B = AU its column HNF with U € GLy,(Z), and let r be
such that the last v columns of B are zero. Then a Z-basis for the right integer kernel of A
s given by the last r columns of U.

The algorithmic proof of Theorem 7.1 can be found in [2, p. 68, Algorithm 2.4.4]. The
proof of Proposition 7.1 can be found in [2, p. 73, Proposition 2.4.9].

By will also define a row Hermite normal form.
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Definition 7.2. We will say that a matric M € Z™*™ is in row Hermite normal form
(abbreviated row HNF) if MT is in column Hermite normal form.

Proposition 7.2. Let A € Z™*™. Then there exists a unique B € Z™*™ in row HNF of the
form B =UA with U € GL,,,(Z).

Proof. Suppose BT = ATUT is in column HNF, UT € GL,,(Z) (from Theorem 7.1 we know
that such UT exists). Then B = UA is in row HNF and U € GL,,,(Z).

O

Proposition 7.3. Let A € Z™*", B = UA its row HNF with U € GL,,,(Z), and let r be
such that the last r rows of B are zero. Then a Z-basis for the left integer kernel of A is
given by the last r rows of U.

Proof. The proof can be obtained similarly as the proof of Proposition 7.1 and using the fact
that the left integer kernel of A is the right integer kernel of AT .

O

7.3 The Smith Normal Form

The following Definition 7.3 explains what is the Smith normal form of an integer matrix.
In the Definition 7.3 below we use a notation a | b for integers a and b, which means that
there exists ¢ € Z such that b = ac.

Definition 7.3. We say that a full row rank matrix B € Z™*™ is in Smith normal form if
B is a diagonal matriz with nonnegative integer coefficients such that b;; | biy1,i+1 for all
1< n.

Example 7.3. The following matriz

10 0 O
B=|0 3 0 O
0 0 12 0

1s clearly in Smith normal form.

Theorem 7.2. Let A € Z™*"™ be a matriz of full row rank. Then there erists a unique
matriz in Smith normal form B such that B =V AU with U and V elements of GL,(Z).

The proof of Theorem 7.2 can be found in [2, p. 76, Theorem 2.4.12| for the case m = n.
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8 Finding Scaling (Diagonal) Symmetries of
a Given Polynomial System

In this chapter we will explain how to use linear algebra tools for finding all stability
diagonal matrices of kind (6.1) of a given ideal. We refer to the previous works |8, Appendix
A] (describes how to find Gf) and [7, Section 6] (describes how to find Gj). We will start
with two examples (finding G, in Example 8.1 and Gy in Example 8.2) and then give general
methods. If an ideal I C k[z1,...,z,] has a group of stability matrices G (resp. G}), then
we will say that I has infinite (resp. finite) symmetries.

Example 8.1. Suppose an ideal

I ={f1,f2) CClz1,20,23,21], f1=r2028 —21— 21, fo=2123—22,F = {flan}-

We will construct the so-called “matriz of exponent differences” Kg. From fi and fo we
extract multidegrees of monomials for variable ordering z1 > zo > z3 > z4:

0 1 0 1 0

1 0 0 0 1

fl — ol’lol’ o f2 — 11’ 1o

2 0 1 0 0
M~~~

d11 d12 d13 d21 d22

Then construct Kg as follows. Take the first multidegree di, and dz, in f1 and fa respectively
and for the rest multidegrees dy,,j > 1 and dg;,j > 1 compute the differences dy; — dy, and
dzj — da, and put these differences as columns to the matriz Kp. We will obtain

11 [o] f[o] [o] f[o] [t 1 0 -1
P 1) O N ) O O (1 O B s B
o |o| |o| |o] o] |1 0 0 -1
o] 2 (1] 2] [o] (o -2 -1 0

Compute a row Hermite normal form of Kp by some unimodular multiplier U :

1 0 -1 0 1 0o —1 1 00

-1 -1 0 0 -1 -1 If 10 1.0

0 -1 0 0 0o -1 0 0 1

1 -1 -2 1/ [-2 -1 o] |00 o0
U Kp "
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We see that the last row of H is zero. Then, by Proposition 7.3, the last row of U forms
a basis for the integer lattice of the left kernel of Kp. Then we obtain the infinite group of
stability matrices G¢, where ¢ = [1 -1 =2 1] is the last row of U.

To see that I is stable under GG suppose an arbitrary matriz
A
1
Dg\ = A 1 5 )\ S (C*
A2
A

from G&. We will now show that f1(DS$z) and fo(DSz) arein I, where z = [21 29 23 24]T
Then by Lemma 4.2 we get that I is stable under DS. We obtain

fi(DSz) = GZQ) (AZ4)2 — Xz — Az = Mu(z) €1,

1 1 1
fQ(DKZ) = ()\Zl) (FZ:J,) — XZQ = XfQ(Z) el.
Example 8.2. Suppose an ideal
I= <f17f2> C C[xay]v fl = m3 - 17f2 =TY — laF = {f17f2}'
Construct the matriz Kg by the same method as in Example 8.1 for variable ordering x > y:
-3 -1
ke= [ 1)
We see that Kg has full row rank over Z, and thus I has no infinite symmetries. Let us try
to find finite symmetries. Unimodular multipliers U and V' for Smith normal form of Kp

B G bR

U Kp \% S

We look on the diagonal elements of S greater than 1. There is element p = 3 in the 2-nd
row of S. Then vector c is represented by the 2-nd row of U. We obtain that I has finite
symmetries Gy, where ¢ = [—1 1] and p = 3, which means that

2

. 1 0] le2ris 0 o273 0
Gy = 0 1}’ 2mi2 | omil | (-
0 e“™3 0 e“Tt3

8.1 Finding All Infinite Symmetries

Here we will give a method of how to find all infinite groups sz ,j =1,...,r of stability
matrices of I C klx1,...,z,]. We will represent these groups by a matrix A € Z"*", where
the j-th row of A corresponds to CJT of sz for j = 1,...,7 (such a notation for A was used
in [8]). We will use Theorem 6.1. To find all groups sz of stability matrices of I, we should
find all ¢ € Z™ such that all polynomials in a reduced Groebner basis of I are c-weighted
homogeneous. We give the following Method 8.1.
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Method 8.1. Suppose a reduced Groebner basis of I C klz1,...,xp):
S1 Sm
fl(X) :Zaljxa1j7 ceey fm(x) :Zamjxamja F= {fla”'?fm}'
j=1 j=1

A c-weighted homogenity of f; for j =1,...,m means
T T T T T T
C 1] =C (012 = ... = C (X1sy, ceey C ml = C Op2 = ... = C Qypg,, -

We can equivalently rewrite these equations as

T T T T
Cc <a12 - all) =cC (Of13 - all) =..=¢C (04151 - all) =cC (0422 - a?l) =

T T
=..==¢ (a282 — a21) =..=¢ <amsm — aml) = 0.

Or writing it in a matriz form gives

CT [a12 — 1] ™13 — 11 ... Opg,, — aml] = OT'
Kp
CTKF = OT.
The task of finding all c, for which polynomials fi,.., fmn are c-weighted homogeneous, can

be reformulated as finding a basis C' C Z"™ for the integer lattice of the left kernel of Kp.
Then, every c satisfying the required property can be written as an integer combintation of
vectors from C. Of course if Kg has full row rank over Z, then C' contains only zero vector.
That’s why we suppose that Kr hasn’t full row rank over Z. We can find a basis C using a
row Hermite multiplier U of Kp:

UKp = H,

where the last v rows of H are zero. Then, by Proposition 7.3, the last r rows of U form a
basis for the left kernel of Kp over Z. And we let A be the last r rows of U.

We give the following Remark 8.1.

Remark 8.1. An ideal I is stable under groups Gy, j = 1,...,r if and only if I is stable
under a group

G4 = {M1M2 | My € GY' My € G2, 1,52 € {17“}}
where A = [cl CT]T.

ThatT’s why, instead of saying that an ideal I is stable under every group sz i =1,

where ¢ is a row of A, we will just say that I is stable under G’,?.
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8.2 Finding All Finite Symmetries

Here we will give a method of how to find all finite groups G;j:, j = 1,...,r of stability
matrices of I C Clzy,...,z,]. We will represent these groups by two matrices B € Z"™*"
and P = diag(p;) € Z"*", where the j-th row of B corresponds to c; of GE for j=1,...,r
(such a notation for B and P was used in [7]). We will use Theorem 6.2. To find all groups
G;§ of stability matrices of I, we should find all such ¢ € Z™ and p € N,p > 1 that all
polynomials in a reduced Groebner basis of I are c-weighted p-homogeneous. We give the
following Method 8.2.

Method 8.2. Suppose a reduced Groebner basis of I C Clxy, ..., xy]:
S1 Sm
filx) = Zaljxo‘lj, vy fm(x) = Zamjxamj, F = {fl, - fm}
j=1 j=1

Performing the same steps as in Method 8.1, we get a modular matriz equation
c'Kp =0T mod p (8.1)

Analogically as in [7, p. 20, paragraph 5], we assume that Kp has full row rank because
not full row rank case was already described in Method 8.1. Let U and V' be the unimodular
multipliers such that

UKpV =5

1s in Smith normal form. Suppose that last r elements on the diagonal in S are > 1. We let
B be the last v rows of U, and P be a diagonal matriz of the last r elements on the diagonal
m S.

We give the following Remark 8.2.

Remark 8.2. An ideal I is stable under groups G;j:, j=1,..,r if and only if I is stable
under a group

GB = {MIMQ | M, € G;ﬁaMQ € G;j;a j17j2 € {L"'ar}}a

where B = [cl CT]T and P = diag(p1, ..., pr)-

That’s why, instead of saying that an ideal I is stable under every group G;; ,ig=1,..7
where CJT is a row of B and p; is a diagonal element of P, we will just say that I is stable

B
under Gp.

Example 8.3. Suppose that we obtained by Method 8.2 the following matrices
0 1 2 0
R ]
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T
0 1 1
Then making all possible products of matrices from GQ[ ] and G?[ ]

following group

2mil 2mi2 2mil
QB — 1 0] |1 O e”"'s 0 e“"'s 0 e
P 0 1[’[0 =1|"| o e2miz |7 o e2ms || o

of all diagonal stability matrices of I. We can notice that

4
GB =7/27 x 7.)37, = 7.)67, = G(L

1]T'

T

—e

we obtain the

0

27725

Notice that in Example 8.1 (resp. 8.2) we didn’t suppose a reduced Groebner basis of I,
and that’s why the method we used was incomplete (there could exist a group Gf (resp.
Gy), which it didn’t find). We give the following Example 8.4, which shows that performing
Method 8.2 on a basis of I (which is not a reduced Groebner basis) may not find finite

symmetries, while they exist.

Example 8.4. Suppose an ideal

I={fi,f2) CCla,yl, fi=a’+a®—y—1,fo=a"—yF= {fhfz}.

We note that F is not a reduced Groebner basis of I. Constructing matriz Kr we obtain

-1 -3 -3 -2
KF_[O 1 0 1}

Smith normal of Kp is

1000
S‘[Oloo]'

But this doesn’t mean that I has no finite symmetries. A reduced Groebner basis of I (using

the grevlex monomial ordering for variable ordering x > y) is

I=(hi,ha,hs), hi=y®— 2 ho=ay—1 hy=a®—y H= {hl,hg,hg}.

Constructing matriz Ky we obtain

A

-2 -1 1

Smith normal form of Ky is

10 1—1—2_(1):1_1_1
-1 1) [-2 -1 1 IR
—_—— ——— ——

Ky

<3

Then all finite symmetries of I we can describe by
B=[-1 1], P=]3].
This gives us the finite group of all finite symmetries of I:

oo = 1 0 6271'1% 0 627”% 0
p 0 1’| o e2miz |7 o 275
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The main result of this section is that computing a matrix Kr of exponents differences
of a reduced Groebner basis F' of I can give us more symmetries than computing it from
some another basis of I. However, the authors of [8] and [7] didn’t use a reduced Groebner
basis for finding symmetries. And we want to show that in |7, Example 3.5] there are more
symmetries than the authors found.

Example 8.5. Consider an ideal

I'=(f1, f2, f3) C Clz1, 22, 23],

f1=3z129 4+ 323 — 3232, + 12, fo = —3z129 + 3z§ — 15, fs = zi” + zg’ + zg — 3212923 — 13.

The authors found only the symmetries
B=[1 2 0], P=[3].

But we can compute a reduced Groebner basis of I with respect to the grevlex monomial
ordering for variable ordering z1 > z9 > 23:

I= <h1,h2,h3,h4>, hi=2z3—1,ho = z129+4,hs = Z‘“l)’ + Zg,h4 = Z% — 42%.
Then all finite symmetries are:

B=[1 -1 0], P=][6].
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9 Finding all stability matrices

In this section we give an algorithm of how to find all stability matrices of a given ideal I.
At first we need the following Lemma 9.1. It shows that for any ideal I C k[x1, ..., z,] two
operators mod I and v (an evaluation on variables ¥, ..., ;) are commutative on the ring
klyi,y ..., Yt, T1, ..., Tn) With respect to the operation of function composition.

Lemma 9.1. Suppose an ideal I C k[x1,...,xn]) C k[y1, ..., yt, 1, ..., ). Also suppose an
evaluation function

kY1, e Yty T1y ooy Tn] = KX, o0y 2]
f(ylu e Yty X1, 7‘Tn) = f(alu ey O, 1, "'axn))
where a; € k Yi=1,...,t. So ¢ is an evaluation on variables yi,...,y:. Then we have
Y(f mod I) =¢(f) mod I, Vf€klyi,...,ys, X1, ..., Tn].

Proof. Take any f € k[y1, ..., yt, z1, ..., Zn). Let’s denote

r1 =¥(f) mod I, 719 =1(f mod I).

m
It’s obvious that r; and 7o are from k[z1, ..., x,]. Suppose some Groebner basis {gj (1, ..., xn)}

of I. Then for r; there holds true

j=1

m
flag, g, 1,y zp) = Zaj(:vl, s @) - G5 (X1 e, ) F 1 (20, ) (9.1)
=1

For ro there holds true
m
f(y17 e Yty L1, 7‘7:71) = Zb](yh e Yty L1, 7‘7:71) : gj(xl, "'7$N) + RQ(yl, e Yty X1, ,ﬂ?n)
=1

<

(9.2)
Applying 1 on both sides of (9.2) we obtain:

m
flag, o, 21,y xy) = Zbi(ah ey O T ey ) - G5 (1 s Tp) + Ra(0a, oy a1, oy Ty),
j=1

r9(Z1, .y Tpn) = Ro(Q1, ooy gy 14 ovy ).
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We conclude that 71 — ry € I, because

flaa, .y apn,x1,xn) — flag, o, @1, ey @) =

= Z <aj(x1, o ) —bj (a1, .., 0, 21, ,xn)> -gj (21, ...,xn)—|—<r1(x1, vy Tp)—T2 (1, ,xn)> =0.

J=1

To get a contradiction suppose r; # ro or that r1 — ro # 0. Because r1 — ro € I, then
LT(ry —re) € (LT(I)). From the properties of the division algorithm it follows from (9.1)
that

LT(r1) & (LT(91), -, LT(g2)) = (LT(I)).

By the same reasoning it follows from (9.2) that none of monomials of Ro(y1, ..., Yt, 1, ..., Tn)
lies in (LT(I)). It means that LT (r9) ¢ (LT(I)). This then means that LT (r1 —ry) & (LT(I)).
It is a contradiction. Then r1 = r9 and we have the proof.

O]

Now we are ready to give the following Theorem 9.1, which gives us an algorithm for finding
all stability matrices of an ideal I.

Theorem 9.1. Suppose an ideal I = (f1,..., fm) C k[x1,...,2y]. Suppose also two n x n
matrices: S with indeterminate elements s11, ..., Snn and A € k"= with elements a1, ..., Gpn
from k. Let

75(S115 e, Snmy L1, oo, Tn) = f3(Sx) mod I, j=1,...,m.

Then I is stable under A if and only if rj(ai1, ..., Gnn, T1, ..., Tn) € k[T1,...,2y] is the zero
polynomaal for each j =1,...,m.

Proof. We see that r; € k[s11, ..., Spn, Z1, ..., Zn), j = 1,...,m. By Lemma 9.1 we have that
(@11, ooy G, 1, - ) = fj(AX) mod I, j=1,...,m.

Then by Lemma 4.2 we obtain the desired, because f;(Ax) € I if and only if f;(Ax) mod I
is the zero polynomial.

O]

Definition 9.1. We will say that a polynomial f € k[s11,..., Spn, X1, ..., Tpn] 1S written in
x-monomial disjoint way if

f = Zhj(sll’ ceey Snn) . XO‘j7

7=1
where hj(s11, .., Snn) € k[S11, ..., Spn] and there don’t exist ji # jo such that o, = auj,.

Corollary 4. Let each 7(s11, ..., Spn, T1, ..., Tn) 1S written in x-monomial disjoint way

q;
Tj(Sll, ...,snn,xl,...,mn) = E hji(su,...,snn) . X’Bﬂ.
i=1
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Then from definition of the zero polynomial it follows that rj(aii, ..., ann, 1, ..., Tpn), j =
1,...,m are the zero polynomials if and only if

hji(au,...,am) :07 ijl,...,m Vi:1,...,qj.
Then to find all stability matrices all we need is just to solve a system of equations hj;(s11, ..., Snn)-

Remark 9.1. Notice that Theorem 9.1 makes no restriction on invertibility of A. Then
solving system of equations hj; can give us also non-invertible matrices A. If we want only
tnvertible, we can use an extra dimension and add another one equation

h=w-det S+1,
where w 1s a new variable.

We will denote the ideal generated by equations hj;(s11, ..., Snn) as

HF:<{h]Z}>’ jzla“wm?i:l""’qj’

where F' = < f1, ..., fm} is a chosen basis of I to compute remainders r;. It is obvious that

Hp C E[s11,...,Snn|. We will call Hr a matriz F-ideal of stability of I. Now, we
give an example of how to compute all stability matrices of a given ideal I.

Example 9.1. Suppose an ideal I = (f1, f2) C Clz,y], where

fl(xvy):xg_la f2<$,y):.’L’y—1, F:{flaf2}'
Then we make polynomials:
f1(Sx) = 8?11‘3 + 35%151233231 + 38115%21@2 + S?Qy?’ -1,

f2(Sx) = s115012% + 5115207y + 5125212y + 51282297 — 1.

Now compute the remainders of f1(Sx) and fo(Sx) modulo I
r1 = f1(Sx) mod I = 3s% 5192 + 3511559y + 559 + 555 — 1,

ro = fo(Sx) mod I = s12520% + s11521Y + S11522 + S12521 — 1.

Eztracting polynomials hj; from r1 and ro we obtain:
2 2 3 3
hi1 = 3571812,  hia = 35118715,  hiz = s7; + 875 — 1,

ho1 = 512822, hoo = 511821, ho3 = S11522 + S12521 — 1.
Matriz F-ideal of stability of I is

Hp = <h11, hi2, h13, hot, hoo, h23>.

The variety V(HFp) contains 6 solutions. We write them as a group G of 6 matrices:
1 0] [e*™s 0 23 0 1 0 e2mig 0 e2ris
G[ = { |:0 1:| ’ 0 eZTri% ’ 0 627”:% ’ |:1 0:| ) 627”:% 0 ) 627”% 0 }

39



It is obvious by Theorem 9.1 that V(Hp,) = V(Hp,) for two different sets F; and Fy of
generators of I, because the set of all stability matrices of I is uniquely determined. But we

can say even more: an ideal Hr doesn’t depend on the choice of the set F' of generators of
1.

Lemma 9.2. Suppose an ideal I C k[x1,...,z,]. Let F = {fl, ,fm} and G = {gl, ...,gr}

be two different set of generators of I. Let Hp be a matriz F-stability ideal of I and Hg be
a matriz G-stability ideal of I. Then Hp = Hg.

Proof. 1) Hr D Hg. Let the remainders of fi, ..., f,, modulo I be written in an x-monomial

disjoint way:
qi

fl(SX) = Z hit(sn, ceey Snn) - x it

t=1
Then
HF: <hit>7 izl,...,m,tzl,...,qi.

Because fi, ..., fm are the generators of I then there exist z;; C k[z1, ..., 2] such that
Z’Zl] :>g] SX Zzz] SX fz(SX) Vi=1,..,r.
i=1

Then Vj = 1, ..., 7 there exists a;(x) € I such that

sz Sx - fi Sx) + a;(x).

I I
Then Vi =1,...,m, Vj =1, ...,7 we write 2;;(Sx) - f;(Sx) in x-monomial disjoint way:

Cij

zij(Sx) - fi( Sx me (115 -y Snn) xPiit

It is obvious that p;;; is a polynomial combination of hji, ..., hig,. Let’s now write g;(Sx) in
the following way:

ZZ’J Sx - fi Sx +aj(x sz] S11y ey Spn) - xPsi + aj(x) (9.3)

where Z;ﬁl Vs (811, -y Snn) - X759 is written in x-monomial disjoint way. We clearly see that
vgj is a linear combination of p;j;. Then, applying mod I on Equation (9.3), we obtain

7 Vi J I I
9;(8x)" =g;(Sx)" = vs(s11, .., 8nm) - XP +aj(x) =

w;
1 ——I .1
= szj S11s ey Sun) - XP51 +bj(x) = szj(sn, vy S ) - XPs + bj(x)
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. I
for some b;(x) € I. Writing Zq:il Vs (811, oy Spn) - XP+ in an x-monomial disjoint way we

obtain

71 C]
I 1 .
gj(Sx) =g;(Sx) = E Ui (8115 ey S ) - X759 4 bj(x) (9.4)
=1

where x7s ¢ (LT(I)) and u¢; is a linear combination of vs;. Applying mod I on Equation
(9.4) we obtain

— c c
—] J J
I 1 I 1 )
9i(8x) = g;(Sx) = ugi(s11, ey ) - X5 4 b;(x) =D ugi(s11,00s Sun) - X7,
¢=1 0 ¢=1
Notice that
Hg = (u¢ej), j=1,...r¢(=1..¢.

Becuase u¢j(S11,...,8nn) is a polynomial combination of hi, ..., hig, then we proved that
Hr D Hg.
2) Hr C Hg. Can be proved by a similar way.

O

Now, because matrix F-stability ideal of I doesn’t depend on the choice of generators of I,
then we can call it just matriz ideal of stability of I and denote as Hj.
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10 Invariant Theory and Reduction of a Poly-
nomial System Using Scaling Symmetries

10.1 Invariant Theory

Invariant theory is a very beautiful topic of mathematics. It studies objects invariant
under some group G. Invariance means that these objects don’t change after performing an
action of this group. We will consider here polynomial invariant theory, which means that
objects are polynomials. Denote by k[z1, ..., mn]G the set of all polynomials invariant under
G. It can be proved that k[x1,...,7,]% is a subring of k[z1,...,z,]. Polynomial invariant
theory gives an answer on three main questions:

1) Is k[z1,...,2,)¢ a finitely generated algebra over k? We can reformulate this as fol-
lows: do there exist polynomials wi,...,w, € k[wl,...,xn]G such that every polynomial
f € klxy,...,2,)¢ we can write as a polynomial in wy, ..., w,, with coefficients in k?

2) If such generators wy, ..., wy, exist, then how can we find them?

3) When we have found wy, ..., wy,, then how to rewrite every polynomial f € k[zy, ..., z,]

as a polynomial in wy, ..., wy,?

In [4, Chapter 7 (Invariant Theory of Finite Groups)| there is an answer to all these
questions assuming G is a finite matrix group (and action of this group on f is just a linear
change of variables of f).

Assuming G is a matrix group (not necessarily finite) we define that a polynomial (or,
more generally, rational function) f is 4nvartiant under G if there holds

f(AX) = f(x)

true for any matrix A € G.

10.2 Generating Set of Invariants of Scaling Symmetries and
The Rewriting Rules

We want to start with a notation for monomials. Let x be a column vector of variables
Z1, ..., Ty and M € Z™** be an integer matrix. Then by x™ we will denote a column vector
of s elements xM-1, ... xM-s where M. ; is the j-th column of M.
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Example 10.1. Suppose a matrix

Then

10.2.1 Infinite Symmetries

We are now moving from a polynomial ring k[z1, ..., x,] to a field of rational functions
k(x1,...,xy). The reason of this will be described in Section 10.3. We recall (Section 8.1)
that infinite scaling symmetries are represented by an integer matrix A. We will say that
f € k(x1,...,xy,) is invariant under A, if f is invariant under a group G‘,?. Here we will
describe shortly how to find a generating set of rational invariants under A and how to rewrite
any rational invariant in terms of wj, ..., wy, (the so-called “rewriting rules”), as it was done
in [8]. Finding this generating set means to find such invariants wi, ..., wn,, € k(21,...,2y)
under A that any invariant f € k(z1,...,2,) under A can be written as a rational function
in wy, ..., w, with coefficients in k.

A generating set of invariants is usually not unique. Invariants obtained in [8] are actually
Laurent monomials (usual monomials only involving fractions). For example, xz% is a Laurent
monomial from k(z,y, z). To see the proof of how this generating set can be obtained and
how to rewrite any rational invariant as a rational function in terms of this generating set
the reader is refered to [8, Theorem 4.2]. We only give a method here. By w we will denote
a column vector of wq, ..., Wy,.

Method 10.1. Consider a field k(x1, ...,xy,) of rational functions. Suppose a matriz A €
77" of full row rank over Z which defines infinite scaling symmetries. Suppose also a
unimodular matriz V. € Z™*™ such that AV is in column Hermite normal form. Denote by
Vi a submatriz of the last n — v columns of V. Then the columns of Vi € Z"*("=7) gre
the multidegrees of Laurent monomials which form a generating set w = [wl wn,r]T
of rational invariants under A (this fact partially follows from Proposition 7.1). Suppose
W =V~ e Z"™". Denote by Wy € Z=")%" q submatriz of the last n—r rows of W. Then

the rewriting rules are

x:[xl J:n]T—>WW°.

Example 10.2. Consider a field k(x1,x2,x3,24) of rational functions. Suppose infinite
symmetries given by
Ao {1 0 0 1] _

21 0 0

A unimodular column Hermite multiplier V of A is

100 1 0 1
2 1 0 -2 1000 0 —2
V=10 01 O’AV_[0100]’ =11
000 1 0 1
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Then we clearly see that the columns of Vy lie in the right kernel of A. We construct Laurent

monomials from the columns of V, as w1 = w3, wyg = %. Then we see that wy and ws
2

are invariant under groups Gi* and G52, where al' and al are rows of A. In addition, any
rational invariant under A can be written as a rational function in wy and wo. The inverse

of V is

1 00 —1

o 210 o0 oo 10

W=V"=1001 ol ™= |00 0 1|
000 1

Then the rewriting rules are

[371 To X3 :c4]T—>wW“:[1 1 w; wg]T

2 4
. . . T1TET4 TaT . .
Suppose a rational invariant f = —3— + xgxg under A. Then we can rewrite it in terms of
2 1+4

w1 and ws as
w
f = h=whoy + —.
w3
By Method 10.1 we can obtain different generating sets for a given A because unimodular

column Hermite multiplier of A is not unique.

10.2.2 Finite Symmetries

10.2.2.1 Using Column Hermite Multiplier

Here we will also work with a field k(x1, ..., zy,) of rational functions. We recall (Section
8.2) that finite scaling symmetries are represented by matrices B and P. We will say that
f € k(z1,...,z,) is invariant under B and P, if f is invariant under a group GB. Here we
will describe shortly how to find a generating set wy, ..., wy, of rational invariants of scaling
symmetries defined by B and P and how to rewrite any rational invariant as a rational
function in wi, ..., wy,, (as it was done in [7]). Invariants obtained in [7] are also Laurent
monomials. To see the proof of how this generating set can be obtained and how to rewrite
any rational invariant as a rational function in terms of this generating set the reader is
refered to [7, Theorem 3.4]. We only give a method here.

Method 10.2. Consider a field k(x1,...,x,) of rational functions. Suppose matrices B €
7" and P € Z™*" of full row rank over Z which define finite scaling symmetries. Suppose
also a unimodular matriz V € ZM+tX+r) gych that [B P} V is in column Hermite normal
form. Denote by Vi a submatriz of the first n elements of the last n columns of V.. Then
the columns of V,, are the multidegrees of Laurent monomials which form a generating set of
rational invariants under B and P. Suppose W = V~1 € Z(H+1)x(n+7) -~ Make a partition of

P,
W= [VW;H P“] Wi € Z5T W,y € T Py € Z'F7, Py € T
o 1o
Then the rewriting rules are
X = [xl xn]T — WWa_P°P_IB.
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Example 10.3. Consider a field k(x,y) of rational functions. Suppose finite symmetries
the same as in Example 8.4 given by

B=11 2|, P=[3].

A unimodular column Hermite multiplier V' of [B P] s

1 -2 -3 o 3
V=0 1 0|, [B Pl[V=][1L 0 0], w—[l J.
0 0 1

Then we clearly see that the last 2 columns of V' lie in the right kernel of [B P]. From
the columns of Vi we construct Laurent monomials wy = %, Wy = x%, Then we see that w;
and wy are invariant under the finite group Gy, with ¢ = [1 2] and p = 3. In addition, any
rational invariant under B and P can be written as a rational function in wi and we. The
inverse of V is

1 2 3
w=v1i=10 1 0], MZF]L R:ﬂ.
00 1

Then the rewriting rules are

T
T Wo—PP~'B _ [_L_ w1
[l‘ y] — W = w;/s w§/3 .

ﬂc7+y3x+y2

R under B and P. Then we can rewrite it in terms

Suppose a rational invariant f =
of w1 and wo as

1w wi 1 3, .92
f—)h_w;/3 w§/3 wg/s _@+w1+w1_w‘;’w2+w%w2+1
= 2 = 2 = 2
— + s L+ wy wa(1 + wy)
2 2

By Method 10.2 we also can obtain different generating sets for given B and P because
column Hermite multiplier of [B P} is not unique.

It is also possible to compute with a Hermite multiplier of [B —P] (which was used in
[7]). We want to note that there is a typo in [7]. The rewriting rules using Hermite multiplier
of [B —P] should be

X — WWD-&-PaP*lB’
but in [7] was written

N WWD—PDP*B’
which is for Hermite multiplier of [B P]. The reader can see how this typo firstly occurred
in the proof of |7, Lemma 2.6]. But all the results in [7] are correct.
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10.2.2.2 Using Reynolds Operator

Here we will work with a polynomial ring k[z1,...,z,]. Suppose a finite matrix group
G acting on a polynomial as a linear change of variables. Then the Reynolds Operator
Rg: klzy, ..., zn] — K[x1, ..., 2,] is defined as

RN = 157 3 (Ax).

AedG

If f € k[z1, ..., 2], then Ra(f) € k[z1,...,2,]¢. We can use the Reynolds Operator for find-
ing a generating set wy, ..., wy, of the ring of invariants k[x1, ..., ,]¢, which means that every
polynomial f € k[z1,...,z,] we can rewrite as a polynomial in wj, .., w,, with coefficients in
k. We refer to [4, Chapter 7, §3, Theorem 5|, which tells us how to find a generating set.
Also [4, Chapter 7, §3, Proposition 7| describes how to rewrite any invariant polynomial as
a polynomial in these generators.

Example 10.4. Consider a polynomial ring klz,y|. Also suppose a finite matriz group as

i FErample 10.3
a_ [ 0] s o | [ems o
- 0 1/’ 0 e2mis | 0 o275 :

We can use [{, Chapter 7, §3, Theorem 5] to compute a generating set of klx,y|®. It consists
of 3 monomials xy, x>,y and then

fE€klz,y¢ < feklzy,a® .

10.3 Reduction of a Polynomial System

This section presents our current (partial) understanding of polynomial systems reduc-
tion. And it is still ongoing work. We will work here only with scaling symmetries.

We cite |8, Section 5, paragraph 1]: “if the solution set of a polynomial system of equation
is invariant under a group action, then there is an equivalent system given in terms of
invariants of this group action. The equivalent system written in terms of a generating set of
invariants is the reduced system. However, for general symmetry reductions a futher problem
is to recover the solutions of the original system from the solutions of the reduced system”.

We want to note that by a notion of “invariant set under a group” mathematicians usually
mean our Definition 5.4 (which is for specific set V' C k™ and group G C GL,(k)). And a
notion of stability in mathematical world means something different. That’s why, when in
[8] the authors talk about an invariant solution set under a group G, we will understand it
(according to our Definition 5.4) as a stable solution set under the same group G.

If a variety V() C k™ (resp. V(I) C C") has a group of stability matrices G, (resp. G),
then we will say that V(I) has infinite (resp. finite) symmetries. To see how to construct the

solutions of the original system from its reduced form the reader is refered to [8, Theorem
5.3] and |7, Theorem 5.5|]. Here we will only describe how to obtain a reduced system.
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10.3.1 Reduction of Infinite Symmetries

To understand in more details the reduction of infinite symmetries the reader is refered
to [8, Proposition 5.2 and Theorem 5.3]. We only show some examples here.

Suppose a system P of polynomials pj(x) = 0, j = 1,...,q. Polynomials p; generate
an ideal I C k[zy,...,zp). Our aim is to find all infinite symmetries of V(I). In [8, p.
7, paragraph after Definition 5.1] the authors wrote that “Appendix A provides a way of
determining some of these symmetries”. We, however, give a method of how to determine
all infinite symmetries of V(I). We give the following Lemma 10.1.

Lemma 10.1. Suppose an ideal I C k[z1,...,x,]. Then its variety V(I) is stable under G¥,
if and only if a reduced Groebner basis of I(V(I)) (with respect to any monomial ordering)
consists of c-weighted homogeneous polynomials.

Proof. The proof can be easily obtained from Lemma 5.3 ((i) <= (i¢)) and Theorem 6.1.
O

Then applying Method 8.1 on a reduced Groebner basis of I(V(I)) gives us all infinite
symmetries of V(I). These symmetries we represent by a matrix A. After obtaining these
symmetries we want to find an equivalent system (possibly not of polynomials, but rational
functions, we will see later) given in terms of invariants under A.

Suppose a reduced Groebner basis GB = {gj(x)}r'n . of I(V(I)) from which A was
]:

obtained. Then GB is an equivalent polynomial system to a polynomial system P, because
V(I(V(I))) = V(I). There can happen two cases.

Case 10.1. All polynomials in GB are invariant under A, which means that Ao = 0 for
every monomial X% from GB.

Case 10.2. There exists a polynomial g in GB which is not invariant under A, which
means that Ao; = Aoy # 0 for every two monomials x* and x* in g;. The equality
Aa; = Aaj holds true because g is c-weighted homogeneous for every row ¢ of A. Then to
obtain a rational invariant under A from gy we just divide g; by its some (for example, last)
monomial. We will do this for every polynomial in GB which is not invariant under A. To
be able to do such dividing, we suppose that variables in the dividing monomials cannot be
zero. That’s why we obtain an equivalent system to the original one, where we discount all
the solutions for which there is a zero component in variables involving the division.

After obtaining an equivalent (or almost equivalent as in Case 10.2) system of invariants
under A (call it F') we can rewrite these invariants as rational functions in terms of a
generating set (obtained by Method 10.1) and obtain a new reduced system of equations (call
it H) in new variables. After obtaining the solutions of H we need somehow to construct
from them the solutions of F'. (We think that we can recover only the solutions of F' which
don’t have a zero component in a variable which lies in a denominator of some Laurent
monomial from generating set.)

The authors in [8, Proposition 5.2 and Theorem 5.3| (possibly, for simplification) just
discount all the solutions of the original system for which there is a zero component and
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say that every of the rest solutions of the original system can be obtained from the solutions
of H.

We give the following Example 10.5 taken from [8, Example 5.4].
Example 10.5. Consider an ideal

2
I= <91792> C Q[21,22,Z3,Z4], g1 = 2224 — 21, G2 = 2123 — 22

This ideal is radical and g1, g2 1s already a reduced Groebner basis of I. All infinite symmetries
of V(I) (obtained by Method 8.1) are given by matriz

110 0
A‘[022—1}

We see that we are dealing with the Case 10.2, because g1 and gs are not invariant under A.
Then we make from them the following rational invariants under A:

2
292 2123
=2, p=22

<1 22

A unimodular column Hermite multiplier V' for A (obtained in [8]) is

1 -1 1 -1 1 -1 1 1 0 0
o1 -1 -1 o o2 ~1
V=10 o 1 o™ 1 of "=V =l 0 1 o0
0o 1 0 2 0 2 0 -1 -1 1

2
. . . . . 222
Then a generating set of invariants is formed by monomials wy = % and wy = z—l‘*. The

rewriting rules are

[21 29 23 24]T—>WW°=[1 ws  wo wg].

Then we rewrite fi and fo in terms of a generating set as
L o
f1—>h1:—w2—1:w2—1, f2—>h2:T—1:’w1—1.
w2

Obtained system of hy and hs is the reduced system.

As the last thing, we want to note that reduction of infinite symmetries is closely con-
nected to dimensional analysis and the Buckingham’s 7-Theorem (as was mentioned in |8,
Section 4, paragraph 2]).

10.3.2 Reduction of Finite Symmetries

To understand in more details the reduction of finite symmetries the reader is refered to
[8, Theorem 5.5]. We only show some examples here.
The steps here to obtain a reduced system are the same as in the case of reduction of

finite symmetries. We give the following Lemma 10.2 for obtaining all finite symmetries of
V(I).
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Lemma 10.2. Suppose an ideal I C Clx1, ...,xy]. Then its variety V(I) is stable under G},
if and only if a reduced Groebner basis of I(V(I)) (with respect to any monomial ordering)
consists of c-weighted p-homogeneous polynomials.

Proof. The proof can be easily obtained from Lemma 5.3 ((i) <= (i¢)) and Theorem 6.2.
O

Then applying Method 8.2 on a reduced Groebner basis of I(V(I)) gives us all finite
symmetries of V(I). These symmetries we represent by matrices B and P. We give the
following Example 10.6.

Example 10.6. Consider an ideal

I={g1,92) CClz,y], qr=2>-1, go=ay—1.
This ideal is a radical. Its reduced Groebner basis (with respect to the grevlex monomial
ordering for variable ordering x > y) is
p=y -z, g=wy-1, g=a"—y.
All finite symmetries of V(I) (obtained by Method 8.2) are given by matrices
B=[-1 1], P=][3].

Taking g3, g4, g5 we see that we are dealing with the Case 10.2, because gs and gs are not
mwvariant under B and P. Then we make from them the following rational invariants under
B and P:

2 2

fzz%—l, Jo=xy—1, f5:%—1, F1={f3,f4,f5}-

Let’s try to take also g1,g92. We see that we are dealing with the Case 10.1, because g1 and
go are invariant under B and P. Then we let

h=x—1, fo=ay—1, ng{fl,fg}.

A unimodular column Hermite multiplier V' for [B P] 1S

-1 1 3 -1 1 3
V=] 01 o,vnz[1 0}, W=vi=|010
00 1 00 1

Then a generating set of invariants is formed by monomials w1 = xy and wy = x>. The

rewriting rules are

_ 1/3 T
oy o WP ]
2
Rewriting Fy in terms of a generating set we obtain

2
wi

2/3 2 2/3
w w 1/3 W1 w w2
fzs > hy=—2_--1=-1_-1 f4—>h4:w2/ ——1l=w—1, fs—=hs=-—2——1=—-1.
1/3 w 1/3 o w
We 2 Wy e 1
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Rewriting Fy in terms of a generating set we obtain

w
fi— h1 =ws — 1, f2—>h2=w;/3%/3

Wy

—1=w; —1.

We see that the system Fy was rewritten to simpler equations in w1 and wsy that the system
Fy.

Further examples on reduction of finite symmetries can be found in |7, Examples 3.5 and
3.7]. The following Example 10.7 shows how to use invariants obtained using the Reynolds
operator to reduce the system.

Example 10.7. Consider the same ideal as in FExample 10.6
I={g1,92) CClz,y), qr=2a"—1, ga=umy—1

All finite symmetries of V(I) are given by a finite matriz group

10 8271'2% 0 eQm% 0
G - 5 2 -2 |, 2 1 .
0 1 0 e g 0 e g

3. wo = y3 and wz = wy form a generating set of

In Exzample 10.4 we saw that w; = x
Clz,y]%, and then

f€Clay® <= feCl?y’ zy).

Notice that the above equivalence is dealing only with polynomials invariant under G (not
rational functions). We see that g1 and go are invariant under G. We use [4, Chapter 7, §3,
Proposition 7] to rewrite g1 and go in terms of x®, y* and xy:

gr=wr—1, g=wy—1L
But, if we take another generators of I:
gl:xg_la 93:=T2—ya

then we see that gs is not invariant and we cannot use [4, Chapter 7, §3, Proposition 7/
(while in the case of reduction using column Hermite multiplier it wasn’t a problem).

The reason why we moved from a polynomial ring to a field of rational functions (Sub-
section 10.2.1, the 1st sentence) is that computing with a column Hermite multiplier V' and
its inverse W there can arise negative integers.

As the last thing of this section we want to note that in [8] and [7] there are two different
methods of recovering solutions of the original system from its reduced form. In [8] the
solutions of the original are obtained from the reduced one by simple multiplying and rising
to powers the solutions of the reduced system (see [8, Theorem 5.3 and Example 5.4]). While
in [7], after obtaining the solutions of the reduced system, we then should solve another
(monomial) system M (see [7, Theorem 5.5 and Example 5.6]). We also want to note that in
[7] the so-called “normalized” unimodular column Hermite multiplier of [B fP] was used.
For such a multiplier, the matrix V, becomes upper triangular. This then means that a
monomial system M becomes an upper triangular and, as a corollary, not so hard to solve.
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10.4 Note On a Homogeneous Ideal

Suppose a 1-homogeneous ideal I C k[z1, ..., ] generated by 1-weighted homogeneous
polynomials g1, ..., gm. Then V(I) has infinite symmetries given by A = 1 € Z'*". One of

unimodular column Hermite multipliers V' of A is

0O 1 0 0 -1 -1 -1 —1]
0 0 1 0 10 0 O
V= : : : ezrvr, w=vt=| 0 1 0 O
0 0 0 1 D Co
-1 -1 -1 —1] . 0 0 1 0
Then wy = 74, wo = %’ ey W1 = x;: form a generating set of rational invariants under

A. We clearTy see t

hat g¢1,...,gm cannot be invariant under A, because 1-weighted total

degree of a monomial in any polynomial cannot be less than one (and as a consequence
cannot be equal to zero). But each of g1, ..., g Wwe can devide by z,7 , where rj is 1-weighted

total degree of each monomial in g;. After such division, we obtain a set F' = { f1yeees fm} of

rational functions invariant under A. We can see the rewriting rules in terms of wy, ..., wy_1
from the last n — 1 rows of W , which are
T T
[xl a:n] — [wl Wp—1 1] .
And we note that after rewriting we obtain polynomials in wq, ..., w,—_1 from fi,...; .
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11 Permutation Representations

In this chapter we will explain how stability matrices of I act on a variety V(I). We
will consider here only ideals I with a finite non-empty variety V(I). By Corollary 3 we can
claim that V(I) is a Gr-set (see [1, p. 176]). Suppose V(I) has m elements. Then we can
construct a group homomorphism

P GI — va

(where S, is the symmetric group on m elements) in a usual way. Suppose g € G permorfs
the following permutation o, of the elements of V(I):

0_12...m
97 \iy da e i/

Then we set p(g) = 04. We can easily verify (see |1, p.182, Proposition 8.2|) that so defined ¢
is a group homomorphism. The First Isomorphism Theorem tells us that im(y) is a subgroup
of Sp,. In examples below we will show that ¢ shouldn’t be surjective nor injective.

Example 11.1. Suppose an ideal I = (f1, fa) C Clx,y], where

filz,y) =22 4+92 -1, folz,y) =z +y—1, V(I):{H,m }

A group of all stability matrices Gy is:

={ b

Let’s look on how these matrices permute the elements of V(I). Let’s denote vi = [(1)];

Vg = [ﬂ Then

[(1) (1)] Vi Vo] =[v1i V2], [(1) é] [vi vo] =[v2 wvi].

Then we construct ¢ as follows:

(o =00 oL o)-om

Here () means the identity permutation, (1 2) means permutation of 2 elements. Obviously,
homomorphism ¢ here is surjective and injective (@ is an isomorphism), and then

Gr =2 8s.

93



Example 11.2. Suppose an ideal I = (f1, fa) C Rz, y], where

[\

2 2

_V2 V2
flzy) =2 +y* =1, f(z,y)=z+y, V() :{ [ Y ] ; [_2@] }
A group Gy is:

GI:{[522+1+U) 822+w]7[5221w 822w:| }’ 599 € R,w € R,

S99 — 1 592 S99 + 1 592
set My semz
_ V2 V2
Let’s denote vi = \/% , Vg = %/5 . Then we can verify that Vsqo € R,w € R* there
2 T2

holds true

—S9o+14+w —s9o+w B
[ ] Vi vl = [vi v,

599 — 1 599

|:_522 —l-w A w:| [Vl Vg] = [Vg Vl} .
599 +1 522

Hence, after constructing a homomorphism ¢, we conclude by The First Isomorphism The-
orem that the set My is a normal subgroup of G and

G]/M1 =~ G,.

We also could suppose here a field C instead of R. Then V(I) is the same. Also group Gy is
the same, only soo € C and w € C*.

Example 11.3. Suppose an ideal I = (f1, fa) C Clx,y], where

hea=o =1 e =a-1 v ={ ] 31

Then a group of all stability matrices of I is:

R (R R b H R RO R ol B G i

We can easily verify which permutation of V(I) performs each matriz of Gy and then conclude
that
GI = D47

where Dy is a dihedral group (group of symmetries of a regular 4-polygon).

Example 11.4. Suppose an ideal I = (f1, f2) C Clx,y], where
Ay =y’ +a +a+1, folr,y)=azy+y—1, V()| =5

A group of all stability matrices of I is:

=1l 1}
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Example 11.5. Suppose an ideal I = (f1, fa) C Clx,y], where
filzy) =224+ +1, falz,y) =ayz+y—1, fa(x,y)=2"+y+1, [V(I)|=6.
A group of all stability matrices of I is:
1 0 0 -1 0 O
Gr = { 01 0/,]0 1 O } =~ G,.
0 01 0 0 -1

You may have already noticed that Examples 11.3 and 9.1 are similar and differ only by an
exponent of the first monomial in f;. In Example 9.1 we can in the same way (by observing
which permutation of V(I) performs each matrix from G;) conclude that

G = D3y = S;5.

This observation can be made for all such ideals with generators fi(z,y)q =29—1,¢ >3
and fo(z,y) = vy — 1. We want to note that the solutions of I, = (fi(z,y)q, fo(z,y)) “form
a regular g-polygon”. We give Definition 11.2, which explains what does than mean.

Definition 11.1. Suppose a vector x = [a—}— bi c+ di] € C%2. We will say that y is an
extension of x to R ify = [a b c d].

Definition 11.2. Suppose a subset Vi C C? with m elements. Make an extension of each vec-
tor in Vi to obtain a new subset Vo C R*. We will say that Vi forms a regular m-polygon
ifv Vi,Vg € VQ

(i) [[vill2 = [[v2ll2-

(it) Z(vi,v2) =712 for some integer r, 0 <r < m — 1.

Let’s take a look on Example 11.3. We extend variety from this example to R* and

obtain
1 -1 0 0
0 0 1 -1
V= { 1’ ]1-11" 0]’ 0
0 0 -1 1

We can easily verify that V forms a regular 4-polygon by Definition 11.2. And because
I = (z* — 1,2y — 1) C C[z,y] is radical, then we see that Conjecture 11.1 holds true. The
same it is for Example 9.1.

We saw in examples above that in some cases G is finite, in some not. Proposition 11.1
gives a sufficient condition for G to be finite. In the proof of Proposition 11.1 we will use
the following Lemma 11.1.

Lemma 11.1. Suppose an ideal I C k[z1,...,z,]. Then G is a subgroup of Gyiv(r))-

Proof. Take any g € G7. By Corollary 3, V(I) is invariant under g. Then by Lemma 5.3
(11 <= iv), I(V(I)) is stable under g.
O
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Proposition 11.1. Suppose an ideal I C k[x1,...,xy,]. If V(I) is finite and Span,(V(I)) =
k™, then Gy is finite.

Proof. We know from Lemma 5.3 that A is from Gyy(r)) if and only if A permutes elements
of V(I). Because Spany(V(I)) = k™, then we can extract a basis vy, ..., v,, for k" from V(I).
Take any permutation o on m elements. We want to find all matrices A, which perform this
permutation on V(7). Notice that A, should also perform some permutation 7 of vi, ..., v,:

Ao[vi e vl = Ve e val, T_<.1 - .”).

Then
A(,:[vi1 vin] [vl Vn]_l (11.1)

Now, we know that A, defined in Equation (11.1) performs a permutation 7 of vy, ..., v,,.
But we should check if A, performs a permutation o on all elements in V(I). If it is true,
then A, belongs to Gy () (and from Equation (11.1) it follows that there doesn’t exist
another matrix B, which performs the same permutation o of V(I)). Because there is only
a finite number of permutations on m elements (namely m!), then we conclude that Grv(n))
has cardinality at most m!. Because Gy is a subgroup of Gy (), then it follows that G
also has cardinality at most m! and, as a corollary, is finite.

O

We give the following conjecture about how big can be a group of stability matrices of
an ideal I with a specific finite variety.

Conjecture 11.1. Let k be a subfield of C. Suppose an ideal I C k[x,y] with a finite variety
V(I), ‘V(I)’ =m, m > 3. Suppose also that Span,(V(I)) = k%. Then G| is isomorphic to
some subgroup of dihedral group Dy,. For a radical ideal I, Gy is isomorphic to Dy, if and
only if V(I) forms a regular m-polygon.

In the statement of the above conjecture we made a restriction Span,(V(I)) = k? to
make a group G finite by Proposition 11.1. We also want m > 3, because for m = 2 a
variety V(I) with the property Span,(V(I)) = k? cannot form a regular 2-polygon. We
suppose k is a subfield of C, because a notion of forming a regular polygon (Definition 11.2)
is defined for subsets of C2.

Also, for a variety V(I) with 2 elements with the property Spanc(V(I)) = C? (from
Proposition 11.1) we obtain that G can be a trivial one or isomorphic to Ss.
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12 Finding All Symmetries of a Weak Perspective-
n-Points Problem

We refer to [9, Section 5|. The problem of estimating the pose of a weak perspective
camera can be reduced to

2
min s.t. RRT = §*I,,
s,R

R diag(al, an, ag) — |:b11 b12 b13:|

bar baa a3

F

where a1 > as > ag > 0. We can use a quaternion parametrization of 2 x 3 rotation R:

R(q) = [Q? T a3 ad 20eg - qe)  2A0ds q2q4)}
2(qs +a293) G — a3+ — a7 2(@3qa — 1a2)]’

where = [¢1 g2 ¢3 qu] and [|¢||2 = s. Then constructing a cost function we obtain

. b b b
F(@) = [R(@A - BI%, A= diag(ar, as, as), Bz[” 12 13].

bo1 baa  bag

Minimising f(q) means finding the solutions of q for

g(a) = Vqf(a) = 0.

Because q is of length 4, then we should solve the system of 4 polynomial equations.

Example 12.1. Choosing

. C[-8 -1 13
A = diag(2,3,5) B = [9 g 11}

we obtain the following equations g(q) = 0:
g1(q) = 52q7 + 180q145 + 220q1¢3 + 52147 — 40424304 — 32q1 + 220q2 — 2603 — 204q4,

92(q) = 180¢3qa — 40q1q3q4 + 52¢5 + 52¢243 + 220¢2q3 + 220q1 + 160g2 + 60g3 — 260q4,
g93(q) = 220qiq3 — 40q192q4 + 52¢5q3 + 5243 + 180g3q; — 260g1 + 60g2 — 160g3 — 220qu,

94(q) = 52¢3qs — 40q1¢2q3 + 220q5q4 + 180¢3qs + 52¢5 — 204q1 — 260g2 — 220g3 + 32q4.
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All stability matrices of I = (g1, ga, 93, 94) C Clq1, 42, g3, qa] are

1 -1 { —1
1 -1 ? —1
GI - { 1 ) _1 ) _7/ ) 7/ }’

We can easily see that
G =7/27 x Z]27.

And because Z./27 X 7./ 27 is abelian, then we can diagonalize Gt to obtain an isomophic group
of diagonal matrices. It was done in [9, p. 10, Section 5.2]. One of matrices S € GL4(C)
which diagonalizes G is

—2 0 4 0
0 —i 0 i
S = 0 1 01
1 0 10
Then
G;=S"1'G/S =
1 -1 -1 1
B 1 -1 -1 1
- 1 ’ -1 ’ 1 ' -1 '
1 -1 1 -1

We can represent this group by matrices B and P as follows:

1 100 20
B_[O 0 1 1]’ P_{O 2]'

Applying a linear change of variables on g1, 92,93, 94 by matriz S we obtain a new ideal
J = (g1(Sx), g2(Sx), g3(Sx), g4(Sx)) = ws(I) which is stable under G ; (as was shown in the
proof of Theorem 4.1).
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13 Conclusion

In this thesis we have shown how to find stability matrices of a given ideal and how to
use them for reduction of polynomial systems.

We explained that to obtain all infinite scaling symmetries of a given ideal I we need to
find a Z-basis of the left integer kernel of matrix of exponents differences Kr obtained from
a reduced Groebner basis F' of I. To obtain all finite symmetries we need to compute the
Smith normal form of K. In Chapter 10 we have shown how to reduce a polynomial system
to obtain another polynomial system with a smaller number of solutions (8, 7].

In Chapter 9 we proposed a method for finding all stability matrices of a given ideal.
We saw that this leads to solving another polynomial system, usually more difficult than the
original one.

In Chapter 4 we have shown that an ideal I is stable under an ivertible matrix A if and
only if it is invariant under A. We used this fact to show that A acts as a bijection on V(I).
In the case of finite variety, A permutes elements of V(I). This allows us to construct a
group homomorphism from G to the symmetric group S,, (m is the number of elements in
V(I)), which was described in Chapter 11. We gave a conjecture that for a finite variety
V(I) C k? (k is a subfield of C, m > 3) such that Span,(V(I)) = k%, a group G cannot be
bigger than a dihedral group D,,.

In the last Chapter 12 we found all stability matrices of the weak perspective-n-points
problem. We have shown that in generic situation there are only 4 stability matrices, which
form an abelian group isomorphic to Z/27Z x Z/27.
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Appendix A. Contents of the attached CD

/
| FindingSymmetries ............... folder with code for finding symmetries
TPLibrary .....oeeevunnennnnnn. folder with imported library
TPMapleLibrary.mla ....... library archive file
TPMaplelLibrary.mw ......... implementation of library functions
FindingSymmetries.mw ........ the implemented approach to finding symmetries
| Bachelor_Thesis.pdf ............ digital copy of this thesis
. README. txt
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