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Abstract

Many problems in computer vision require solving a system of polynomial equations.
Practical systems with a finite number of solutions may have a big number of solutions
(greater than 100). The more the system has solutions, the more difficult it is to solve it.
However, we can check if it is possible to get from one solution v1 another solution v2 (e.g.
by multiplying v1 by some matrix). If there are such matrices, then we say that a polynomial
system has symmetries. If we are able to find these symmetries, then there are two ways
how to simplify the solution of the polynomial system. The first is to simplify the original
polynomial system to get another (the reduced) polynomial system with a smaller number
of solutions. Solving the reduced polynomial system, we can then obtain all the solutions
of the original polynomial system as a matrix multiplication of the solutions of the reduced
system. The second is to use an action matrix, which, after choosing specific monomials,
becomes block-diagonal.

Keywords: computer vision, symmetries in polynomial systems, polynomial system re-
duction, ideals stable under matrices
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Abstrakt

Mnoho problémů v počítačovém vidění vyžaduje vyřešení soustavy polynomiálních rovnic.
Praktické systémy s konečným počtem řešení mohou mít velký počet řešení (více než 100).
Čím více má soustava řešení, tím obtížnější je vyřešit ji. Můžeme však zkontrolovat, zda
je možné získat z jednoho řešení v1 jiné řešení v2 (např. vynásobením v1 nějakou maticí).
Pokud existují takové matice, říkáme, že polynomiální soustava má symetrie. Pokud budeme
schopni tyto symetrie najít, pak jsou dva způsoby, jak zjednodušit řešení polynomiální sous-
tavy. První způsob je zjednodušit původní polynomiální soustavu, abychom získali jinou
(redukovanou) polynomiální soustavu s menším počtem řešení. Řešením redukované poly-
nomiální soustavy pak můžeme získat všechna řešení původní polynomiální soustavy mati-
covým násobením řešení redukované soustavy. Druhý způsob je použit akční matici, která,
po určitém výběru monomů, se stává blokově diagonální.

Klíčová slova: počítačové vidění, symetrie v polynomiálních soustavách, redukce poly-
nomiální soustavy, idealy stabilní vůči maticím
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1 Introduction

1.1 Motivation

Solving system of polynomial equations is a very common problem in computer vision.
These systems usually consist of many polynomials of high degree in several variables. One
of the state of the art methods for solving such systems is to construct an action matrix
and find its eigenvalues (an eigenvalue method of solving). If the system has a huge number
of solutions, then the action matrix is large. The larger the action matrix is, the more
difficult it is to find its eigenvalues. However, there are some special polynomial systems
called symmetric. This means that there exists some matrix A such that for any v from the
solution set, Av also belongs to the solution set. Having found such matrices, we can either
simplify the determination of the eigenvalues of the action matrix [3, 9], or obtain a simpler
system of equations from the original one [8, 7].

1.2 State of The Art

There are several articles which describe how to use stability matrices. In [9] a connection
was made between diagonal stability matrices and the block-diagonal structure of the action
matrix. But it was not shown how to find diagonal stability matrices of a given polynomial
system. The authors assumed that we know the stability matrices in advance. Another
related work is [8, 7]. They made a connection between diagonal stability matrices and
reduction of polynomial systems (i.e. obtaining some kind of a simpler system from the
original one). Also, [8, 7] give a method how to find some diagonal stability matrices of
a given polynomial system using linear algebra tools. There are also some related results
in [6]. There it was described how to use stability matrices to speed up Groebner basis
computations. In [3] a connection between stability matrices and the block-diagonal structure
of the action matrix was made. However, in this thesis we concentrate on works [8, 7] and
don’t talk about action matrices. Summing up, [8, 7] proposed a method for finding only
some diagonal stability matrices of a given polynomial system. In this thesis we propose
a modified method from [8, 7] to find all diagonal stability matrices. To find them only
linear algebra can be used. We also suggest a method for finding all in general non-diagonal
stability matrices.
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1.3 Contributions

In [8, 7] methods how to find only some diagonal stability matrices of a given polynomial
system using linear algebra tools were proposed. To find such matrices, we can only look at
the multidegrees of monomials in each polynomial and need not care about the coefficients.
The first contribution of this work is the proposal of the method for finding all diagonal
stability matrices. The main idea is to apply linear algebra on multidegrees of monomials
in a reduced Groebner basis of an ideal generated by a given polynomial system. We also
show that applying it on multidegrees of some other basis of the same ideal may not give us
all diagonal stability matrices.

The second contribution is the proposal of the method for finding all in general non-
diagonal stability matrices. However, to find them, it is no longer sufficient to use only
linear algebra. Generally, we should solve another polynomial system, which can be more
difficult than the original one.
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2 Linear change of variables

Further we will use some well-known mathematical concepts taken from [1, 4]. These
concpets are: ring [1, p. 346], field [1, p. 83], ring homomorphism [1, p. 353], polynomial
ideal [4, p. 29], variety [4, p. 5], group [1, p. 42], subgroup [1, p. 44], group homomorphism
[1, p. 51], isomorphic groups [1, p. 49], direct product of groups [1, p. 61].

Throughout this thesis we will work with an infinite number field k. For a matrix
A ∈ km×n we introduce a mapping

ϕA : k[x1, ..., xm]→ k[y1, ..., yn]

f(x) 7→ f(Ay)
(2.1)

where

x =

x1...
xm

 , y =

y1...
yn


are the vectors of variables. The variables of the domain and image polynomial rings of ϕA

are x1, ..., xm and y1, ..., yn, respectively. Such a notation is made for simplicity because of
a different number of variables in domain and image rings. But we will make an exception
for a square matrix A: instead of the image vector of variables y we will write the same x
as for the domain polynomial ring. This is because x and y are vectors of the same length.
We now give an Example 2.1, which shows how ϕA maps polynomials.

Example 2.1. Suppose a number field k = Q. Suppose a matrix

A =

 1 0 3 1
4 7 3 0
−1 5 −2 1

 ∈ Q3×4.

Then the mapping ϕA is from Q[x1, x2, x3] to Q[y1, y2, y3, y4]. By definition (2.1) we have

ϕA(f(x)) = f(Ay) = f(y1+3y3+y4, 4y1+7y2+3y3,−y1+5y2−2y3+y4), ∀f(x) ∈ Q[x1, x2, x3].

Let’s take f(x) = x1 + x2 + 2x3. Then

ϕA(f(x)) = (y1+3y3+y4)+(4y1+7y2+3y3)+2(−y1+5y2−2y3+y4) = 3y1+17y2+2y3+3y4.

The following Section 3 will require from us to understand, how a mapping ϕA changes after
removing some columns (or rows) from A. We give the following Example 2.2.
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Example 2.2. Suppose a matrix A from Example 2.1. We can understand A in the following
way:

A =

y1 y2 y3 y4[ ]1 0 3 1 x1
4 7 3 0 x2
−1 5 −2 1 x3

We will call the variable yj above the column j (resp. xj to the right of row j) as labelled
variable of the column j (resp. of the row j). Let’s construct two matrices B1 (by
replacing column 3 with a zero column) and B2 (by removing column 3 and its labelled
variable) from A as

B1 =

y1 y2 y3 y4[ ]1 0 0 1 x1
4 7 0 0 x2
−1 5 0 1 x3

, B2 =

y1 y2 y4[ ]1 0 1 x1
4 7 0 x2
−1 5 1 x3

Then we can easily see that

f(B1y) = f(B2yr) = f(y1 + y4, 4y1 + 7y2,−y1 + 5y2 + y4), yr =

y1y2
y4

 .
We generalize an Example 2.2 to the following Remark 2.1.

Remark 2.1. Suppose a matrix A ∈ km×n. Construct two matrices B1 (by replacing column
j with a zero column) and B2 (by removing the same column j and its labelled variable) from
A as in Example 2.2. Then ϕB1 : k[x1, ..., xm] → k[y1, ..., yn] and ϕB2 : k[x1, ..., xm] →
k[y1, ..., yj−1, yj+1, ..., yn] act on k[x1, ..., xm] in the same way in the sense that

ϕB1(f(x)) = ϕB2(f(x)) ∀f(x) ∈ k[x1, ..., xm].

As a corollary this means that ker(ϕB1) = ker(ϕB2), which we will use later.

We give a similar Remark 2.2 about removing rows from A.

Remark 2.2. Suppose we have a matrix A ∈ km×n. Construct two matrices B1 (by replacing
row j with a zero row) and B2 (by removing the same row j and its labelled variable) from A.
Then ϕB1 : k[x1, ..., xm] → k[y1, ..., yn] and ϕB2 : k[x1, ..., xj−1, xj+1, ..., xm] → k[y1, ..., yn]
act on k[x1, ..., xj−1, xj+1, ..., xm] in the same way in the sense that

ϕB1(f(x)) = ϕB2(f(x)) ∀f(x) ∈ k[x1, ..., xj−1, xj+1, ..., xm].
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3 Polynomial ring after a linear change of
variables

A matrix A ∈ km×n is not necessarily a square matrix now. The following Lemma 3.1
shows that ϕA is a ring homomorphism from k[x1, ..., xm] to k[y1, ..., yn].

Lemma 3.1. Suppose a matrix A ∈ km×n. Then the mapping ϕA : k[x1, ..., xm]→ k[y1, ..., yn]
is a ring homomorphism.

Proof. We can easily verify (it follows from definition (2.1) of ϕA) that

ϕA(f(x) + g(x)) = f(Ay) + g(Ay) = ϕA(f(x)) + ϕA(g(x)),

ϕA(f(x) · g(x)) = f(Ay) · g(Ay) = ϕA(f(x)) · ϕA(g(x)),

ϕA(1) = 1,

which proves the lemma.

The following Lemma 3.2 shows a well-known fact about ring homomorphisms.

Lemma 3.2. For any ring homomorphism ϕ : R→ S, where R and S are rings, the kernel
of ϕ is an ideal in R.

Proof. Statements 1)− 3) follows from the properties of ring homomorphism.
1) The zero polynomial lies in ker(ϕ), because ϕ(0) = 0.
2) For any two r1 and r2 from ker(ϕ) we have that

ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) = 0 + 0 = 0,

Then r1 + r2 ∈ ker(ϕ).
3) For any x ∈ ker(ϕ) and r ∈ R we have

ϕ(r · x) = ϕ(r) · ϕ(x) = ϕ(r) · 0 = 0,

ϕ(x · r) = ϕ(x) · ϕ(r) = 0 · ϕ(r) = 0,

Then r · x and x · r are in ker(ϕ). And we have the proof.
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Lemma 3.2 tells us that the kernel of ϕA is an ideal in k[x1, ..., xm]. Now we will give Lemma
3.3, which will help to prove the following Lemmas in Sections 3.1 and 3.2.

Lemma 3.3. Suppose a matrix A ∈ km×n and a polynomial f(x) ∈ ker(ϕA). Then for any
D ∈ kn×n we have f(x) ∈ ker(ϕAD).

Proof. We have

ϕAD(f(x)) = f(ADy)
(1)
= ϕD(f(Ay)) = ϕD(ϕA(f(x))) = ϕD(0) = 0.

In the equality (1) we used an exception for a square matrix: not to relabel the vector of
variables.

We want to note that ϕAD(f(x)) is equal to ϕD(ϕA(f(x))), not to ϕA(ϕD(f(x))). This
is because ϕA(f(x)) means to change x to Ax and put it as a variable vector into f(x).
That’s why, when we have ϕD(f(Ay)), this means that we change y to Dy and put it as a
variable vector into f(Ay) and get f(ADy).

3.1 The case of a full row rank matrix

3.1.1 The case of a square matrix

The following Lemma 3.4 shows that for a square full row rank (invertible) A ∈ kn×n the
mapping ϕA is a ring automorphism on k[x1, ..., xn].

Lemma 3.4. Suppose an invertible matrix A ∈ kn×n. Then ϕA is a ring automorphism on
k[x1, ..., xn].

Proof. To prove that ϕA is a ring automorphism, we only need to show that it is a bijection
because we already know that it is a ring homomorphism. To show that it is bijective, we
need to show that it is injective and surjective.
1) Injective. Suppose we have

f(Ax) = g(Ax),

then
ϕA−1(f(Ax)) = ϕA−1(g(Ax)),

f(AA−1x) = g(AA−1x)

or
f(x) = g(x).

2) Surjective. We want to show that

∀f(x) ∈ k[x1, ..., xn] : ∃ g(x) ∈ k[x1, ..., xn] : ϕA(g(x)) = f(x).

We will choose g(x) = f(A−1x). It is obvious that g(x) ∈ k[x1, ..., xn] and

ϕA(g(x)) = f(A−1Ax) = f(x).

6



Remark 3.1. So, for an invertible A we can conclude from injectivity of ϕA that its kernel
is the trivial ideal I = {0}.

3.1.2 The case of a non-square matrix

Here we will just prove that for a full row rank non-square matrix A ∈ km×n there holds
ker(ϕA) = {0} true.

Lemma 3.5. Suppose a full row rank non-square matrix A ∈ km×n (i.e. m ≤ n). Then
ker(ϕA) = {0}.

Proof. From linear algebra we know that we can extract m linearly independent columns
from A. Let’s denote by B1 ∈ km×n a matrix obtained from A in which we leave these m
LI columns without changing and all the other columns replace by zero. Then, there exists
a diagonal matrix D ∈ kn×n with 1 and 0 on its diagonal such that

B1 = AD.

To get a contradiction suppose there is some nonzero polynomial f(x) ∈ ker(ϕA). By Lemma
3.3 we obtain that f(x) ∈ ker(ϕB1). Denote by B2 ∈ km×m a matrix obtained from B1 by
removing zero columns and their labelled variables. Then B2 is an invertible matrix. By
Remark 2.1 we have that f(x) ∈ ker(ϕB2). But by Remark 3.1 it is a contradiction. Then
ker(ϕA) = {0}.

3.2 The case of not-full row rank matrix

Here we will show that for any matrix A ∈ km×n not of full row rank, the kernel of ϕA

cannot be the trivial ideal.

Suppose a matrixA ∈ km×n not of full row rank. We can suppose that the last q < m rows
are linearly independent. Otherwise, to achieve this we can permute the rows of A together
with and their labelled variables x1, ..., xm. We will denote the rows of A by rT1 , ..., r

T
m.

These are row vectors. Then for every rTj , j = 1, ...,m − q there exist (unique) numbers
cij ∈ k, i = m− q + 1, ...,m, such that

rTj +
m∑

i=m−q+1

cijr
T
i = 0T . (3.1)

The following Theorem 3.1 tells us what are the generators of ker(ϕA).

Theorem 3.1. Suppose a matrix A ∈ km×n not of full row rank and numbers cij ∈ k,
m− q + 1 ≤ i ≤ m, 1 ≤ j ≤ m− q from Equation (3.1). Then

ker(ϕA) =

〈{
xj +

m∑
i=m−q+1

cijxi

}m−q
j=1

〉
.

7



Proof. 1) We will denote pj(x) = xj +
∑m

i=m−q+1 cijxi. At first we can easily verify that

linear polynomials
{
pj(x)

}m−q
j=1

lie in ker(ϕA). Applying ϕA on each of them we obtain

ϕA

(
xj +

m∑
i=m−q+1

cijxi

)
= rTj ·y+

n∑
i=m−q+1

cijr
T
i ·y =

(
rTj +

m∑
i=m−q+1

cijr
T
i

)
·y = 0T ·y = 0.

And because ϕA is a ring homomorphism, then any polynomial combination of
{
pj(x)

}m−q
j=1

lies in ker(ϕA). Hence, we have now proved that

ker(ϕA) ⊃
〈{

pj(x)
}m−q
j=1

〉
.

2) Here we will prove the opposite inclusion. We will use the lex monomial ordering (grlex
is also available) for variable ordering x1 > ... > xn. Take any f(x1, ..., xm) ∈ ker(ϕA) and

apply the division algorithm [4, p. 59] on it by the set
{
pj(x)

}m−q
j=1

. Then we obtain

f(x) =

m−q∑
j=1

gj(x) · pj(x) + r(x).

Our task is to show that every f(x) ∈ ker(ϕA) is generated by
{
pj(x)

}m−q
j=1

, which means

that we have to show that r(x) = 0. Because f(x) ∈ ker(ϕA),
{
pj(x)

}m−q
j=1

⊂ ker(ϕA) and

ker(ϕA) is an ideal, then also r(x) ∈ ker(ϕA). To get a contradiction suppose r(x) 6= 0.
From the properties of the division algorithm and because of using lex ordering

(
LT(pj(x)) =

xj , 1 ≤ j ≤ m − q
)

it follows that r(x) = r(xm−q+1, ..., xm), which means that r is a
polynomial in only xm−q+1, ..., xm.
Now, because r is a polynomial in only xm−q+1, ..., xm, we conclude by Remark 2.2 that

ϕA(r(xm−q+1, ..., xm)) = ϕALI
(r(xm−q+1, ..., xm)) = 0,

where ALI ∈ kq×n is a matrix of q last linearly independent rows of A. We can construct an
invertible matrix M ∈ kq×q from ALI by the same way as B2 was constructed from A in the
proof of Lemma 3.5. Then by Lemma 3.3 and Remark 2.1 we have that r(xm−q+1, ..., xm) ∈
ker(ϕM). But by Remark 3.1 it is a contradiction. Then we must have that r(xm−q+1, ..., xm)
is the zero polynomial and we got the proof.

3.3 The general case

Here we will give the main theorem of this chapter. This theorem shows that ϕA : k[x1, ..., xm]→
k[y1, ..., yn] “reduces” k[x1, ..., xm] to the polynomial ring isomorphic to k[y1, ..., yq], where
q = rank A.
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Theorem 3.2. Suppose a matrix A = km×n such that rank A = q. Also suppose the
mapping ϕA : k[x1, ..., xm]→ k[y1, ..., yn]. Then there is a ring isomorphism

im(ϕA) ∼= k[y1, ..., yq].

In the case q = 0, i.e. A = O, we have

im(ϕA) ∼= k.

Proof. It is sufficient to prove that

k[x1, ..., xm]/ker(ϕA) ∼= k[y1, ...yq]

Then by the First Isomorphism Theorem [1, p. 68] we obtain im(ϕA) ∼= k[x1, ..., xm]/ker(ϕA) ∼=
k[y1, ..., yq].
The statement of the theorem is obvious for matrices A with full row rank. As mappings ϕA

of such matrices have a trivial ideal as their kernel (by Remark 3.1 and Lemma 3.5), then

k[x1, ..., xm]/ker(ϕA) = k[x1, ..., xm]/{0} ∼= k[x1, ..., xm].

Suppose now that A is of not full row rank. Then from [4, p. 229, Proposition 4], which
states that k[x1, ..., xn]/I ∼= Span

(
xα : xα 6∈ 〈LT(I)〉

)
, we obtain the desired result, because

S = Span
(
xα : xα 6∈ 〈LT(ker(ϕA))〉

)
= Span

(
xα : xα 6∈ 〈x1, ..., xm−q〉

)
= k[xm−q+1, ..., xm].

If A = O, then it is obvious that the mapping ϕA : k[x1, ..., xm] → k is surjective, from
which the result follows.
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4 Ideal after a linear change of variables

In all chapters further we will consider only the case of square matrix A ∈ kn×n. If we
will want to talk about invertible A, then we will always note it at the beginnig of Lemma
(or Definition). The following Lemma 4.1 describes a well-known fact about images by ring
homomorphisms.

Lemma 4.1. Suppose a ring homomorphism ϕ : R → S, where R and S are rings. Then
ϕ(R) is a subring of S. Also if I is an ideal of R, then ϕ(I) is an ideal of ϕ(R).

Corollary 1. As a corollary of Lemma 4.1 we have that if A is invertible, then for any ideal
I of k[x1, ..., xn] there holds true that ϕA(I) is also an ideal of k[x1, ..., xn].

Proof. This follows from Lemma 3.4, which shows that

ϕA(k[x1, ..., xn]) = k[x1, ..., xn].

We can ask a question: does there exist for an ideal I a matrix A such that ϕA maps I into
itself? As we will see in the following sections, this could be very useful for computing the
variety V(I). We give the following two definitions.

Definition 4.1. A polynomial ideal I ⊂ k[x1, ..., xn] is said to be stable under a matrix
A ∈ kn×n if

ϕA(I) ⊂ I.

Such a matrix A we will call a stability matrix of I.

Definition 4.2. A polynomial ideal I ⊂ k[x1, ..., xn] is said to be invariant under a
matrix A ∈ kn×n if

ϕA(I) = I.

The following Lemma 4.2 gives a necessary and sufficient condition for an ideal I to be stable
under A.

Lemma 4.2. Suppose a polynomial ideal I ⊂ k[x1, ..., xn] and let G =
{
gj(x)

}m
j=1

be some

set of generators of I. Then I is stable under A ∈ kn×n if and only if

gj(Ax) ∈ I ∀j = 1, ...,m.

11



Proof. It is trivial by Definition 4.1 that if I is stable underA, then gj(Ax) ∈ I ∀j = 1, ...,m.
Conversely, we want to prove the following implication:

gj(Ax) ∈ I ∀j = 1, ...,m ∧ f(x) ∈ I ⇒ f(Ax) ∈ I.

Any polynomial f(x) ∈ I we can write as

f(x) =

m∑
j=1

hj(x)gj(x), hj(x) ∈ k[x1, ..., xn] ∀j = 1, ...,m.

Then

f(Ax) =
m∑
j=1

hj(Ax)gj(Ax).

Because
{
hj(Ax)

}m
j=1
⊂ k[x1, ..., xn] and by assumption gj(Ax) ∈ I ∀j = 1, ...,m, then

also f(Ax) ∈ I.

The following Remark 4.1 tells us more about an ideal I invariant under invertible matrix.

Remark 4.1. Suppose an invertible matrix A ∈ kn×n. Then
1) An ideal I is invariant under A if and only if ϕA : I → I is a bijection.
2) ϕA : I → I is a bijection if and only if I is stable under both A and A−1.

Proof. 1) ⇒) If A is invertible then we know from Lemma 3.4 that ϕA : k[x1, ..., xn] →
k[x1, ..., xn] is injective (and then also ϕA : I → I). Because I is invariant under A, then
ϕA(I) = I, which shows that ϕA : I → I is surjective.
1) ⇐) ϕA : I → I is a bijection, then it is surjective, from which the result follows.
2) ⇒) It is obvious that ϕA−1 : I → I is an inverse bijective map of ϕA : I → I, from which
the result follows.
2) ⇐) From Lemma 3.4 we know that ϕA : I → I is injective. It remains to prove that it
is surjective. Take any f(x) ∈ I. We want to prove that there exist such g(x) ∈ I that
ϕA(g(x)) = f(x). We will take g(x) = f(A−1x). Because I is stable under A−1, then
g(x) ∈ I. And also ϕA(g(x)) = ϕA(f(A−1x)) = f(A−1Ax) = f(x).

The following Lemma 4.3 gives the necessary and sufficient conditions for an ideal I to be
invariant under A. However to prove it generally we need to assume that A is invertible.

Lemma 4.3. Suppose a polynomial ideal I ⊂ k[x1, ..., xn] and let G =
{
gj(x)

}m
j=1

be some

set of generators of I. Let also A ∈ kn×n be an invertible matrix. Then I is invariant under
A if and only if

I =

〈{
gj(Ax)

}m
j=1

〉
.

12



Proof. ⇐) Because
{
gj(Ax)

}m
j=1
⊂ I, then by Lemma 4.2 we obtain that ϕA(I) ⊂ I. To

prove I ⊂ ϕA(I) we take any polynomial f(x) ∈ I. Because
{
gj(Ax)

}m
j=1

are the generators

of I, then there exist polynomials
{
aj(x)

}m
j=1
⊂ k[x1, ..., xn] such that

f(x) =

m∑
j=1

aj(x)gj(Ax).

Because (by Corollary 1) ϕA(I) is an ideal of k[x1, ..., xn] and
{
gj(Ax)

}m
j=1
⊂ ϕA(I), then

f(x) ∈ ϕA(I).
⇒) Because ϕA(I) ⊂ I, then we conclude by Lemma 4.2 that

{
gj(Ax)

}m
j=1
⊂ I. And

because I is an ideal, then
〈{

gj(Ax)
}m
j=1

〉
⊂ I. To prove an opposite inclusion, take

any f(x) ∈ I. By Remark 4.1 we have that f(A−1x) ∈ I. Then there exist polynomials{
bj(x)

}m
j=1
⊂ k[x1, ..., xn] such that

f(A−1x) =
m∑
j=1

bj(x)gj(x).

Applying ϕA on both sides of the above equation we obtain

f(x) =
m∑
j=1

bj(Ax)gj(Ax),

which proves the inclusion I ⊂
〈{

gj(Ax)
}m
j=1

〉
.

We can ask a question: is it possible for an ideal I to be stable under an invertible A, but
not to be invariant under the same A? It turns out that this case can not happen. But it
can happen for a non-invertible A. Here is an example.

Example 4.1. Suppose an ideal I = 〈x, y〉 ⊂ Q[x, y]. Suppose a non-invertible matrix

A =

[
1 −1
1 −1

]
∈ Q2×2. Then ϕA(I) is a set

ϕA(I) =
{
h1(x, y)ϕA(x) + h2(x, y)ϕA(y) | h1(x, y), h2(x, y) ∈ ϕA(Q[x, y])

}
=

=
{
h(x, y)(x− y) | h(x, y) ∈ ϕA(Q[x, y])

}
.

Another words, ϕA(I) is an ideal of ϕA(Q[x, y]) generated by one polynomial x − y. We
see from Lemma 4.2 that ϕA(I) ⊂ I, because ϕA(x) = ϕA(y) = x − y ∈ I. We can also
see that x ∈ I, but x 6∈ ϕA(I), because there doesn’t exist such h(x, y) ∈ ϕA(Q[x, y]) that
x = h(x, y)(x− y). These then means that ϕA(I) ( I.

13



We will next prove that Definitions 4.1 and 4.2 are equivalent for an invertible A. For
this we will prepare Lemmas 4.4 and 4.5. In Lemma 4.5 it will be shown that for an
upper triangular invertible matrix A (under which I is stable) there exist generators{
gj(x)

}m
j=1

of I such that
{
gj(Ax)

}m
j=1

are also generators of I. To prove Lemma 4.5,

we will require the following Lemma 4.4, which tells us that a leading monomial (using lex
ordering for variable ordering x1 > ... > xn) of a transformed monomial xα by an upper
triangular invertible matrix A is the same monomial xα.

Lemma 4.4. Suppose an upper triangular invertible matrix A ∈ kn×n. Then

LM
(
(Ax)α

)
= xα, ∀ α =

[
α1 ... αn

]
∈ Zn≥0.

with respect to the lex monomial ordering for variable ordering x1 > ... > xn.

Proof. We will prove it by induction on the number of variables n. It is obviously true for
n = 1. Suppose it is true for n = m−1. Then we will prove it for n = m. We can decompose
each monomial xα as

xα = xα1
1 xαr

r , xr =

x2...
xm

 , αr =
[
α2 ... αm

]
.

We can also decompose matrix A as

A =

[
cT

0 B

]
,

where cT ∈ k1×m and B ∈ k(m−1)×(m−1) is an invertible upper triangular matrix. It is also
obvious that

(Ax)α = (cTx)α1 · (
[
0 B

]
x)αr = (cTx)α1 · (Bxr)

αr .

By an inductive assumption we know that LM
(
(Bxr)

αr
)
= xαr

r . Because A is an upper
triangular invertible matrix, then the first element of c is nonzero. Then, because of using
the lex monomial ordering, we obtain

LM
(
(cTx)α1

)
= xα1

1 .

Then by a well-known property LM
(
f(x) · g(x)

)
= LM

(
f(x)

)
·LM

(
g(x)

)
for any f(x) and

g(x) from k[x1, ..., xn] we have

LM
(
(Ax)α

)
= LM

(
(cTx)α1 · (Bxr)

αr
)
= LM

(
(cTx)α1

)
·LM

(
(Bxr)

αr
)
= xα1

1 ·x
αr
r = xα.

Lemma 4.5. Suppose an ideal I ⊂ k[x1, ..., xn] stable under an upper triangular invertible
matrix A ∈ kn×n. Then for a Groebner basis

{
gj(x)

}m
j=1

of I with respect to the lex mono-

mial ordering for variable ordering x1 > ... > xn, there holds true that
{
gj(Ax)

}m
j=1

are also

generators of I.

14



Proof. From Lemma 4.4 we have that

LM
(
gj(x)

)
= LM

(
gj(Ax)

)
∀j = 1, ...,m.

Then we have 〈
LT(I)

〉
=

〈{
LM
(
gj(x)

)}m
j=1

〉
=

〈{
LM
(
gj(Ax)

)}m
j=1

〉
.

Because I is stable under A, then
{
gj(Ax)

}m
j=1
⊂ I. Because their leading monomials

generate 〈LT(I)〉, then we conclude that
{
gj(Ax)

}m
j=1

is a Groebner basis of I with respect

to the lex monomial ordering (and then they are the generators of I).

Corollary 2. Suppose an ideal I ⊂ k[x1, ..., xn] and an upper triangular invertible matrix
A ∈ kn×n. Then I is stable under A if and only if it is invariant under A.

Proof. ⇐) This case is trivial.
⇒) Let’s take some Groebner basis of I with respect to the lex monomial ordering for variable
ordering x1 > ... > xn. From Lemma 4.5 we have that the images of these generators by ϕA

also generate I. Then by Lemma 4.3 we obtain that I is invariant under A.

Now we give the main Theorem 4.1 of this chapter. It states that for an invertible matrix
A Definitions 4.1 and 4.2 are equivalent.

Theorem 4.1. Suppose an ideal I ⊂ k[x1, ..., xn] and an invertible matrix A ∈ kn×n. Then
I is stable under A if and only if I is invariant under A.

Proof. ⇐) This case is trivial.
⇒) Let I ′ denote ideal ϕA(I). We know that any invertible matrix A can be decomposed
into

A = SDS−1,

where D is a Jordan canonical form of A, which means that D is upper triangular. And be-
cause A is invertible, then so is D. Denote ideals ϕS(I) and ϕS(I

′) by IS and I ′S respectively.
It is obvious that

I ′S = ϕS(I
′) = ϕS(ϕA(I)) = ϕAS(I) = ϕSD(I) = ϕD(ϕS(I)) = ϕD(IS) (4.1)

And because I ′ ⊂ I (I is stable under A), then

I ′S = ϕS(I
′) ⊂ ϕS(I) = IS (4.2)

Then from I ′S = ϕD(IS)
(
Equation (4.1)

)
and I ′S ⊂ IS

(
Equation (4.2)

)
we conclude that

IS is stable under D. Because D is upper triangular invertible matrix, then by Corollary 2
we obtain that

I ′S = IS.

15



As ϕS : I → IS and ϕS : I
′ → I ′S are bijections (they are injective because S is invertible,

and surjective because by definition IS = ϕS(I) and I ′S = ϕS(I
′)), then it follows that

I ′ = ϕS−1(I ′S) = ϕS−1(IS) = I.

And we have the proof.
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5 Stability of an ideal’s variety under a ma-
trix multiplication

In the previous section we have described the stability of an ideal. Here we will describe
the stability of an ideal’s variety. Consider a (not necessarily invertible) matrix A ∈ kn×n.
We introduce a usual linear mapping

σA : kn → kn

x 7→ Ax
(5.1)

The following Definitions 5.1 and 5.2 are similar to the Definitions 4.1 and 4.2 from the
previous section about ideals.

Definition 5.1. A subset V ⊂ kn is said to be stable under the matrix A ∈ kn×n if

σA(V ) ⊂ V.

Definition 5.2. A subset V ⊂ kn is said to be invariant under the matrix A ∈ kn×n if

σA(V ) = V.

Remark 5.1. Suppose an invertible matrix A. Then
1) A subset V ⊂ kn is invariant under A if and only if σA : V → V is a bijection.
2) Also σA : V → V is a bijection if and only if V is stable under both A and A−1.

Proof. Proof can be made by a similar way as the proof of Remark 4.1.

We will define σA(∅) = ∅ for any matrix A ∈ kn×n. Then by Definition 5.2 we conclude
that an empty set is invariant under any matrix A ∈ kn×n. The following Lemma 5.1 shows
a connection between stability of an ideal and its variety.

Lemma 5.1. Consider an ideal I ⊂ k[x1, ..., xn]. If I is stable under A ∈ kn×n, then so is
V(I).

Proof. The statement of the Lemma is obvious for empty V(I). For a non-empty V(I) we
need to show the following:

v ∈ V(I)⇒ f(Av) = 0 ∀f(x) ∈ I.

17



Because I is stable under A, then from Definition 4.1 we have:

p(x) = f(Ax) ∈ I ∀f(x) ∈ I.

Because p(x) ∈ I, then it vanishes on any v ∈ V(I). Then this means that

∀v ∈ V(I) ∀f(x) ∈ I : f(Av) = p(v) = 0.

Example 5.1. Suppose an ideal I ⊂ Q[x] generated by f(x) = x4 − 1. We can see that
I is stable under A = −1 ∈ Q1×1. The variety V(I) consists of two solutions ±1 and is
clearly stable under A. Let’s suppose an ideal J ⊂ C[x] generated by the same f(x) = x4−1.
We can see that J is also stable under A = −1 ∈ C1×1. The variety V(J) consists of four
solutions ±1,±i. We clearly see that V(J) is stable under A. Notice that J and V(J) are
also stable under A = ±i.

Example 5.2. Suppose an ideal I = 〈x3 − 1, xy − 1〉 ⊂ C[x, y]. Denote f1(x) = x3 − 1 and
f2(x) = xy − 1. We can see that I is stable under

A =

[
e2πi

1
3 0

0 e2πi
2
3

]
∈ C2×2,

because
f1(Ax) = f1(x) ∈ I, f2(Ax) = f2(x) ∈ I.

The variety of I is

V(I) =

{[
1
1

]
,

[
e2πi

1
3

e2πi
2
3

]
,

[
e2πi

2
3

e2πi
1
3

]}
.

And we clearly see that V(I) is also stable under A.

We now give the following Corollary 3 of Lemma 5.1.

Corollary 3. Suppose an ideal I ⊂ k[x1, ..., xn] and an invertible matrix A ∈ kn×n. If I is
stable under A, then V(I) is invariant under A.

Proof. From Lemma 5.1 it follows that V(I) is stable under A. By Theorem 4.1 we obtain
that I is invariant under A, and then by Remark 4.1 also I is stable under A−1. Then by
Lemma 5.1 V(I) is stable under A−1. By Remark 5.1 it follows that V(I) is invariant under
A.

We will next show that from stability of V(I) we can only talk about stability of a radical
ideal of I.

Lemma 5.2. Suppose an ideal I ⊂ k[x1, ..., xn] and matrix A ∈ kn×n. If V(I) is stable
under A, then so is I(V(I)).
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Proof. To prove that I(V(I)) is stable under A we need to show that

f(x) ∈ I(V(I))⇒ f(Ax) ∈ I(V(I)).

This is equivalent to the following:

∀v ∈ V(I) ∀f(x) : f(v) = 0⇒ f(Av) = 0.

Take any v ∈ V(I). Because V(I) is stable under A, then Av ∈ V(I). But then it means
that any polynomial f(x) ∈ I(V(I)) vanishes on Av by the definition of I(V(I)).

Lemma 5.3. Consider an ideal I ⊂ k[x1, ..., xn] and an invertible matrix A ∈ kn×n. Then
the following statements are equivalent:

(i) V(I) is stable under A,

(ii) I(V(I)) is stable under A,

(iii) I(V(I)) is invariant under A,

(iv) V(I) is invariant under A.

Proof. (i)⇒ (ii): follows from Lemma 5.2.
(ii)⇒ (iii): follows from Theorem 4.1.
(iii)⇒ (iv): follows from Corollary 3, where we will use the fact that V(I(V(I))) = V(I).
(iv)⇒ (i): trivial.

Lemma 5.2 shows us that if the variety V(I) of a radical ideal I is stable under A, then I
is stable under A. But it shouldn’t be true for a non-radical ideal. We give the following
Example 5.3, which shows it.

Example 5.3. We will take a non-radical ideal I =
〈
x2, y2

〉
⊂ Q[x, y]. Its variety is

V(I) =

{[
0
0

]}
.

This variety is stable under any matrix A ∈ Q2×2. For example if we’ll take

A =

[
1 1
0 1

]
,

then by Definition 4.1 I isn’t stable under A, because for f(x) = x2 ∈ I we have:

xy 6∈ I ⇒ f(Ax) = (x+ y)2 = x2 + 2xy + y2 6∈ I.

But if we take a radical ideal
J =

〈
x, y
〉
⊂ Q[x, y]

with the same variety, then for its two generators g1(x) = x and g2(x) = y we have

g1(Ax) = x+ y ∈ I, g2(Ax) = y ∈ I.

Then, by Lemma 4.2, an ideal J is stable under A.

19



As the last thing of this section we will say something about groups of stability matrices of
an ideal I. The following Lemma 5.4 tells us that all invertible stability matrices of an ideal
I form a group.

Lemma 5.4. Suppose an ideal I ⊂ k[x1, ..., xn]. Then all its invertible stability matrices
A ∈ kn×n form a group with respect to the operation of matrix multiplication.

Proof. The set of all such matrices is obviously closed under matrix multiplication (it follows
from Definition 4.1). Matrix multiplication is associative. Obviously, an identity matrix is
one of stability matrices. And to every stability matrix A there exists an inverse A−1, which
is by Theorem 4.1 also a stability matrix of I.

We will denote the group of all invertible stability matrices of I as GI . In the next Chapter 6
we will use a notion of stability under a group of matrices. We give the following Definitions
5.3 and 5.4.

Definition 5.3. A polynomial ideal I ⊂ k[x1, ..., xn] is said to be stable under a group
G ⊂ GLn(k) if it is stable under any matrix from G.

Definition 5.4. A subset V ⊂ kn is said to be stable under a group G ⊂ GLn(k) if it is
stable under any matrix from G.
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6 Stability under a diagonal matrix of a spe-
cial kind and a generalization of homoge-
neous polynomials

In this chapter we will see how homogeneous polynomials are connected with the stability
of ideals under diagonal matrices of a “special kind”. It even turns out that it is very easy
to find all such stability diagonal matrices of a given ideal (we will describe the method in
Section 8). By a “special kind” we understand the following kind of diagonal matrix:

Dc
λ = diag

({
λcj
}n
j=1

)
∈ kn×n, cj ∈ Z, λ ∈ k∗ (6.1)

By k∗ we denote k\{0}. There is a reason why we suppose such a special kind of Dc
λ. This

matrix acts on a polynomial in a very nice way:

f(x) =

s∑
j=1

ajx
αj ⇒ ϕDc

λ
(f(x)) = f(Dc

λx) =

s∑
j=1

λc
Tαjajx

αj =

s∑
j=1

λqjajx
αj , qj = cTαj ∈ Z.

An interesting thing comes up when one of the following conditions holds true:

a) all qj are equal to some q ∈ Z.
b) there exists p ∈ N, p > 1 such that all qj are equal to some q ∈ Zp modulo p.

We will discuss these two cases later. The main goal of this chapter is to give a necessary
and sufficient condition for an ideal I to be stable under Dc

λ. To understand the following
material we should be familiar with the concept of a homogeneous polynomial. We recall
that the total degree of monomial xα is defined as 1Tα.

Definition 6.1. A polynomial f(x) ∈ k[x1, ..., xn] is said to be homogeneous if all monomials
in f(x) have the same total degree.

Example 6.1. A polynomial f(x) = x3 +2x2y+ y3 is homogeneous, because all monomials
in f(x) have the same total degree, which is equal to 3.

We now give two similar Definitions 6.2 and 6.3 which relate to the conditions a) and b)
above. By a c-weighted total degree of monomial xα we will mean a number cTα.
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Definition 6.2. A polynomial f(x) ∈ k[x1, ..., xn] is said to be c-weighted homogeneous
for c ∈ Zn if all monomials in f(x) have the same c-weighted total degree, i.e.

f(x) =

s∑
j=1

ajx
αj ⇒ cTα1 = cTα2 = ... = cTαs.

Definition 6.3. A polynomial f(x) ∈ k[x1, ..., xn] is said to be c-weighted p-homogeneous
for c ∈ Zn and p ∈ N, p > 1 if all monomials in f(x) have the same c-weighted total degree
modulo p, i.e.

f(x) =

s∑
j=1

ajx
αj ⇒ cTα1 ≡ cTα2 ≡ ... ≡ cTαs mod p.

Notice that in Definition 6.3 we didn’t exclude that f(x) isn’t a c-weighted homogeneous.
It means that every c-weighted homogeneous polynomial is c-weighted p-homogeneous for
every p ∈ N, p > 1. Such a definition was made not to confuse the reader while giving
Proposition 6.1. Also notice that Definition 6.2 is a small generalization of homogenity from
Defintion 6.1 (which is for c = 1). We give the following two Lemmas 6.1 and 6.2, which
connect Definitions 6.2 and 6.3 with cases a) and b), respectively.

Lemma 6.1. Suppose a polynomial f(x) ∈ k[x1, ..., xn]. Then f(x) is c-weighted homoge-
neous if and only if

f(Dc
λx) = λqf(x) ∀λ ∈ k∗

for some q ∈ Z.

Proof. ⇒) Trivial.
⇐) We have

f(x) =
s∑
j=1

bjx
αj ⇒ λqf(x) = f(Dc

λx) =
s∑
j=1

λqj · bjxαj ∀λ ∈ k∗,

or

hλ(x) =
s∑
j=1

(λq − λqj ) · bjxαj = 0 ∀λ ∈ k∗ (6.2)

Equation (6.2) means that hλ(x) is the zero polynomial for every λ ∈ k∗. Since bj 6= 0 for
j = 1, ..., s, it follows that

λq − λqj = 0 ∀λ ∈ k∗,∀j = 1, ..., s (6.3)

If qj = q ∀j = 1, ..., s, then we are done. So, suppose that there exists qm 6= q for some
1 ≤ m ≤ s. Notice that q and qm can be negative integers. We take the least of q and qm
(call it t). Then p(x) = xq−t − xqm−t is a polynomial in k[x]. Equation (6.3) means that
p(λ) = 0 ∀λ ∈ k∗. But we know that every nonzero polynomial in k[x] of degree d has at
most d roots in k. Since k is infinite, it follows that p(x) has infinitely many roots. Hence
p(x) must be the zero polynomial, which means that q − t = qm − t. And then q = qm.
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Lemma 6.2. A polynomial f(x) ∈ C[x1, ..., xn] is c-weighted p-homogeneous if and only if

f(Dc
λx) = λqf(x) ∀λ ∈ Up

for some q ∈ Z. By Up we denote the finite group of p-th roots of unity.

Proof. By the same steps as in the proof of Lemma 6.1 we obtain

λq − λqj = 0 ∀λ ∈ Up, ∀j = 1, ..., s (6.4)

If qj ≡ q mod p ∀j = 1, ..., s, then we are done. So, suppose that there exists qm 6≡ q mod p
for some 1 ≤ m ≤ s. Equation (6.4) means that

e
2πi q

p − e2πi
qm
p = 0

for chosen λ = e
2πi 1

p . Dividing this equation by e2πi
qm
p we obtain

e
2πi q−qm

p = 1,

which is true if and only if q − qm ≡ 0 mod p. Then q ≡ qm mod p.

We will denote the infinite group of matrices Dc
λ, λ ∈ k∗ for some fixed c ∈ Zn by Gc

k. Sim-
ilarly, by Gc

p we will denote the finite group of matrices Dc
λ, λ ∈ Up for some fixed c ∈ Zn.

Next we give Proposition 6.1 which connects a homogenity of polynomials with an ideal’s
stability. At first, let’s recall what is a reduced Groebner basis of a polynomial ideal. The
following Definition 6.4 is taken directly from [4, p. 90, Definition 5].

Definition 6.4. Fix an arbitrary monomial ordering. A reduced Groebner basis for a
polynomial ideal I is a Groebner basis G for I such that:

(i) LC(g) = 1 for all g ∈ G.

(ii) For all g ∈ G, none of non-leading monomials of g lies in
〈
LT(G)

〉
.

Proposition 6.1. Let I ⊂ k[x1, ..., xn] (resp. I ⊂ C[x1, ..., xn]) be a polynomial ideal. Then,
I is stable under Gc

k (resp. Gc
p) if and only if each polynomial in a reduced Groebner basis

of I (with respect to any monomial ordering) consists of c-weighted homogeneous (resp. c-
weighted p-homogeneous) polynomials.

The following Lemmas 6.3 and 6.4 prove the ⇐ implication of the above Proposition 6.1.

Lemma 6.3. Let I ⊂ k[x1, ..., xn] be a polynomial ideal. Suppose some set G =
{
gj(x)

}m
j=1

of generators of I. If each gj, j = 1, ...,m is c-weighted homogeneous, then I is stable under
Gc
k.
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Proof. Let qj be a c-weighted total degree of each monomial in gj . Take any matrix Dc
λ from

Gc
k. Then by Lemma 6.1 (⇒ implication) we have

gj(D
c
λx) = λqjf(x) ∈ I, ∀j = 1, ...,m.

Then by Lemma 4.2 we obtain that I is stable under Dc
λ and this proves the Lemma.

Lemma 6.4. Let I ⊂ C[x1, ..., xn] be a polynomial ideal. Suppose some set G =
{
gj(x)

}m
j=1

of generators of I. If each gj, j = 1, ...,m is c-weighted p-homogeneous, then I is stable
under Gc

p.

Proof. This Lemma can be proved in a similar way as Lemma 6.3 (using Lemma 6.2 instead
of Lemma 6.1).

Notice that the ⇐ implication of Proposition 6.1 works for any basis of I (not only for a
reduced Groebner basis), while the ⇒ implication can fail for some basis of I. We give an
Example 6.2.

Example 6.2. Consider an ideal I = 〈f1, f2〉 ⊂ Q[x, y], where

f1(x) = x2 + y2, f2(x) = x+ y.

Then I is stable under

A =

[
−1 0
0 −1

]
∈ Q2×2,

because
f1(Ax) = f1(x) ∈ I, f2(Ax) = −f2(x) ∈ I.

We see that f1 and f2 are 1-weighted homogeneous of total degree 2 and 1 respectively. We
can construct another basis of I:

I = 〈f3, f4〉, f3(x) = x2 + y2 + x+ y, f4(x) = x+ y.

We can see that f3 is not 1-weighted homogeneous. However this cannot happen for a reduced
Groebner basis of I.

Now, we are ready to prove a Proposition 6.1. We will split the proof into two Theorems 6.1
and 6.2 (for Gc

k and Gc
p respectively). We will prove only Theorem 6.1, because Theorem

6.2 can be proved in the same way.

Theorem 6.1. Let I ⊂ k[x1, ..., xn] be a polynomial ideal. Then I is stable under Gc
k if and

only if its reduced Groebner basis G =
{
gj(x)

}m
j=1

(with respect to any monomial ordering)

consists of c-weighted homogeneous polynomials.
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Proof. ⇐) This case has been already proved by Lemma 6.3.
⇒) We will prove that if there exists a gt(x) ∈ G that isn’t c-weighted homogeneous, then
I isn’t stable under Gc

k. Our aim now is to find at least one f(x) such that f(Dc
λx) 6∈ I

for some Dc
λ ∈ Gc

k. Then, by Definition 5.3, we will get that I isn’t stable under Gc
k. We

will show that such f(x) is gt(x). The fact that gt(x) isn’t c-weighted homogeneous means
(from Lemma 6.1) that there exists such Dc

λt
∈ Gc

k that

gt(D
c
λtx) 6= λqgt(x) for any q ∈ Z (6.5)

To get a contradiction, suppose gt(Dc
λt
x) ∈ I. Let

gt(x) = xα1 +
s∑
j=2

ajx
αj , LT(gt) = xα1 .

Then

gt(D
c
λtx) = λq1xα1 +

s∑
j=2

λqjajx
αj .

Construct a polynomial

f(x) = λq1gt(x)− gt(Dc
λtx) =

s∑
j=2

(
λq1 − λqj

)
ajx

αj .

The polynomial f(x) is not the zero polynomial, which follows from Equation (6.5). Using
assumption gt(x) ∈ I and gt(Dc

λt
x) ∈ I we conclude that f(x) ∈ I. Because G is a Groebner

basis of I, then
LM(f) ∈

〈
LT(G)

〉
.

Notice that LM(f) is a non-leading monomial of gt. Then by (ii) in Definition 6.4, it is a
contradiction. So we must have that gt(Dc

λt
x) 6∈ I and by Definition 5.3 we have that I isn’t

stable under Gc
k.

Theorem 6.2. Let I ⊂ C[x1, ..., xn] be a polynomial ideal. Then I is stable under Gc
p if

and only if its reduced Groebner basis (with respect to any monomial ordering) consists of
c-weighted p-homogeneous polynomials.

Proof. ⇐) This case has been already proved by Lemma 6.4.
⇒) The proof can again be made in a similar way as the proof of Theorem 6.1 (using Lemma
6.2 instead of Lemma 6.1).

We want to note that Theorem 6.1 works generally only for infinite fields k, because the ⇐
implication of Lemma 6.1 works generally only for infinite fields.

We refer to [4, p. 371, Definition 1 and Theorem 2]. At first we will explain what does
the notion of homogeneous component mean. Suppose a polynomial f . Let fj be the sum
of all terms of c-weighted total degree j. Then we call fj the jth c-weighted homogeneous
component of f . We give the following Definition 6.5 and Theorem 6.3 (from [4, p. 371]).
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Definition 6.5. An ideal I ⊂ k[x1, ..., xn] is said to be 1-weighted homogeneous if for each
f ∈ I, the 1-weighted homogeneous components fj of f are in I as well.

Theorem 6.3. Let I ⊂ k[x1, ..., xn] be an ideal. Then the following are equivalent:

(i) I is a 1-weighted homogeneous ideal.

(ii) I = 〈f1, ..., fm〉, where f1, ..., fm are 1-weighted homogeneous polynomials.

(iii) A reduced Groebner basis of I (with respect to any monomial ordering) consists of
1-weighted homogeneous polynomials.

The above Theorem 6.3 can be generalized for c-weighted homogenity and c-weighted p-
homogenity (we won’t give the proof here). We can add one more statement to Theorem 6.3
about the stability of I and obtain the following Theorem 6.4.

Theorem 6.4. Let I ⊂ k[x1, ..., xn] (resp. I ⊂ C[x1, ..., xn]) be an ideal. Then the following
are equivalent:

(i) I is a c-weighted homogeneous (resp. c-weighted p-homogeneous) ideal.

(ii) I = 〈f1, ..., fm〉, where f1, ..., fm are c-weighted homogeneous (resp. c-weighted p-
homogeneous) polynomials.

(iii) A reduced Groebner basis of I (with respect to any monomial ordering) consists of
c-weighted homogeneous (resp. c-weighted p-homogeneous) polynomials.

(iv) I is stable under Gc
k (resp. Gc

p).

We refer to some previous works [6, 7, 9]. In [6, Theorem 4], [7, Proposition 5.3] and [9,
Theorem 1, Theorem 2 and Corollary 1] there is a proof of (i) ⇐⇒ (ii) ⇐⇒ (iv) of the
above Theorem 6.4 for c-weighted p-homogenity using VanDerMonde matrix. However, in
these papers there is no statement (iii) about reduced Groebner basis.

In Chapter 8 we will show how to apply Theorems 6.1 and 6.2 on finding groups Gc
k and

Gc
p of stability matrices of a given ideal I. However, to understand Chapter 8, we should be

familiar with the concepts of Hermite and Smith normal form of an integer matrix.
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7 Remarks on Modules, Hermite and Smith
Normal Forms

7.1 Modules

We cite [5, p. 179]: “Modules are to rings what vector spaces are to fields: elements of a
given module over a ring can be added to one another an multiplies by elements of a ring.
The axioms for a module are the same as for a vector space but instead of a field there is a
commutative ring”.

An R-module M is said to be finitely generated if there exist such f1, ..., fm ∈ M
such that for any f ∈M there exist such r1, ..., rm ∈ R that f = r1f1 + ...+ rmfm. Such set
of f1, ..., fm is called a generating set of M . Linear dependence (resp. independence) is
defined the same as for the vector spaces. What is different for modules (unlike for the vector
spaces) is that a finitely generated M need not to have a linearly independent generating set
(basis). The reason for this is that

a1f1 + ...+ amfm = 0M , aj ∈ R, fj ∈M,a1 6= 0R

doesn’t generally imply

∃ b2, ..., bm ∈ R : f1 = b2f2 + ...+ bmfm.

However, there are modules which have a basis. These are called free modules. If every
basis of a free finitely generated module M has the same number of elements, then we say
that M is free of finite rank .

We cite [2, p. 64]: “We can study most of linear algebra problems in the context of
modules over a commutative ring instead of vector spaces over a field. If the ring R is an
integral domain (no zero divisors), we can work over its field of fractions K. However, this
is not completely satisfactory, since the answer that we want may be different. For example,
to compute the kernel of a map defined between two free modules of finite rank (given as
usual by a matrix), finding the kernel as a K-vector space is not sufficient, since we want
it as an R-module. In fact, this kernel will usually not be a free module, hence cannot be
represented by a matrix whose columns form a basis. One important special case where it
will be free is when R is a principal ideal domain (an integral domain where every ideal is
generated by one element). In this case all submodules of a free module of finite rank are
free of finite rank. This happens when R = Z or R = k[x] for a field k. In this case, asking
for a basis of the kernel makes perfectly good sense”.
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7.2 The Hermite Normal Form

In Chapter 8 we will use the concepts Hermite and Smith normal form of an integer
matrix. We give the following Definition 7.1 about the Hermite normal form.

Definition 7.1. We will say that a matrix M ∈ Zm×n, M = mi,j is in column Hermite
normal form (abbreviated column HNF) if there exists r ≤ n and a strictly increasing map
f from [1, n− r] to [1,m] satisfying the following properties:

(i) For 1 ≤ j ≤ n− r, mf(j),j ≥ 1, mi,j = 0 if i > f(j) and 0 ≤ mf(k),j < mf(k),k if k < j.

(ii) The last r columns of M are zero.

Example 7.1. Suppose the following matrix

M =


1 0 5
4 2 3
0 2 3
0 1 0
0 0 2

 ∈ Z5×3.

We see that M has no zero columns, then r = 0. A strictly increasing map f from [1, 3]
(columns) to [1, 5] (rows) can be defined as f(1) = 2 (m2,1 = 4 ≥ 1), f(2) = 4 (m4,2 =
1 ≥ 1), f(3) = 5 (m5,3 = 2 ≥ 1). The statement mi,j = 0 if i > f(j) means that all
elements in the column under each of pivots m2,1, m4,2 and m5,3 are zero. The statement
0 ≤ mf(k),j < mf(k),k if k < j means that all elements in the rows to the right of pivots are
non-negative and smaller than this pivot. Then we conclude that M is in column Hermite
normal form.

Example 7.2. For m < n a matrix M ∈ Zm×n of full row rank in column Hermite normal
form has the following shape:

∗ ∗ ... ∗ 0 0 ... 0
0 ∗ ... ∗ 0 0 ... 0
...

. . . . . .
...

...
...

. . .
...

0 ... 0 ∗ 0 0 ... 0

 .
Theorem 7.1. Let A ∈ Zm×n. Then there exists a unique B ∈ Zm×n in column HNF of
the form B = AU with U ∈ GLn(Z), where GLn(Z) is the group of matrices with integer
coefficients which are invertible, i.e. whose determinant is equal to ±1.

Proposition 7.1. Let A ∈ Zm×n, B = AU its column HNF with U ∈ GLn(Z), and let r be
such that the last r columns of B are zero. Then a Z-basis for the right integer kernel of A
is given by the last r columns of U .

The algorithmic proof of Theorem 7.1 can be found in [2, p. 68, Algorithm 2.4.4]. The
proof of Proposition 7.1 can be found in [2, p. 73, Proposition 2.4.9].

By will also define a row Hermite normal form.
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Definition 7.2. We will say that a matrix M ∈ Zm×n is in row Hermite normal form
(abbreviated row HNF) if MT is in column Hermite normal form.

Proposition 7.2. Let A ∈ Zm×n. Then there exists a unique B ∈ Zm×n in row HNF of the
form B = UA with U ∈ GLm(Z).

Proof. Suppose BT = ATUT is in column HNF, UT ∈ GLm(Z) (from Theorem 7.1 we know
that such UT exists). Then B = UA is in row HNF and U ∈ GLm(Z).

Proposition 7.3. Let A ∈ Zm×n, B = UA its row HNF with U ∈ GLm(Z), and let r be
such that the last r rows of B are zero. Then a Z-basis for the left integer kernel of A is
given by the last r rows of U .

Proof. The proof can be obtained similarly as the proof of Proposition 7.1 and using the fact
that the left integer kernel of A is the right integer kernel of AT .

7.3 The Smith Normal Form

The following Definition 7.3 explains what is the Smith normal form of an integer matrix.
In the Definition 7.3 below we use a notation a | b for integers a and b, which means that
there exists c ∈ Z such that b = ac.

Definition 7.3. We say that a full row rank matrix B ∈ Zm×n is in Smith normal form if
B is a diagonal matrix with nonnegative integer coefficients such that bi,i | bi+1,i+1 for all
i < n.

Example 7.3. The following matrix

B =

1 0 0 0
0 3 0 0
0 0 12 0


is clearly in Smith normal form.

Theorem 7.2. Let A ∈ Zm×n be a matrix of full row rank. Then there exists a unique
matrix in Smith normal form B such that B = V AU with U and V elements of GLn(Z).

The proof of Theorem 7.2 can be found in [2, p. 76, Theorem 2.4.12] for the case m = n.
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8 Finding Scaling (Diagonal) Symmetries of
a Given Polynomial System

In this chapter we will explain how to use linear algebra tools for finding all stability
diagonal matrices of kind (6.1) of a given ideal. We refer to the previous works [8, Appendix
A] (describes how to find Gc

k) and [7, Section 6] (describes how to find Gc
p). We will start

with two examples (finding Gc
k in Example 8.1 and Gc

p in Example 8.2) and then give general
methods. If an ideal I ⊂ k[x1, ..., xn] has a group of stability matrices Gc

k (resp. Gc
p), then

we will say that I has infinite (resp. finite) symmetries.

Example 8.1. Suppose an ideal

I = 〈f1, f2〉 ⊂ C[z1, z2, z3, z4], f1 = z2z
2
4 − z1 − z4, f2 = z1z3 − z2, F =

{
f1, f2

}
.

We will construct the so-called “matrix of exponent differences” KF . From f1 and f2 we
extract multidegrees of monomials for variable ordering z1 > z2 > z3 > z4:

f1 →


0
1
0
2


︸︷︷︸
d11

,


1
0
0
0


︸︷︷︸
d12

,


0
0
0
1


︸︷︷︸
d13

f2 →


1
0
1
0


︸︷︷︸
d21

,


0
1
0
0


︸︷︷︸
d22

.

Then construct KF as follows. Take the first multidegree d11 and d21 in f1 and f2 respectively
and for the rest multidegrees d1j , j > 1 and d2j , j > 1 compute the differences d1j − d11 and
d2j − d21 and put these differences as columns to the matrix KF . We will obtain

KF =



1
0
0
0

−

0
1
0
2



0
0
0
1

−

0
1
0
2



0
1
0
0

−

1
0
1
0


 =


1 0 −1
−1 −1 1
0 0 −1
−2 −1 0

 .
Compute a row Hermite normal form of KF by some unimodular multiplier U :

1 0 −1 0
−1 −1 0 0
0 0 −1 0
1 −1 −2 1


︸ ︷︷ ︸

U


1 0 −1
−1 −1 1
0 0 −1
−2 −1 0


︸ ︷︷ ︸

KF

=


1 0 0
0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

H

.
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We see that the last row of H is zero. Then, by Proposition 7.3, the last row of U forms
a basis for the integer lattice of the left kernel of KF . Then we obtain the infinite group of
stability matrices Gc

C, where c =
[
1 −1 −2 1

]
is the last row of U .

To see that I is stable under Gc
C suppose an arbitrary matrix

Dc
λ =


λ

1
λ

1
λ2

λ

 , λ ∈ C∗

from Gc
C. We will now show that f1(Dc

λz) and f2(D
c
λz) are in I, where z =

[
z1 z2 z3 z4

]T .
Then by Lemma 4.2 we get that I is stable under Dc

λ. We obtain

f1(D
c
λz) =

( 1
λ
z2

)(
λz4

)2
− λz1 − λz4 = λf1(z) ∈ I,

f2(D
c
λz) =

(
λz1

)( 1

λ2
z3

)
− 1

λ
z2 =

1

λ
f2(z) ∈ I.

Example 8.2. Suppose an ideal

I = 〈f1, f2〉 ⊂ C[x, y], f1 = x3 − 1, f2 = xy − 1, F =
{
f1, f2

}
.

Construct the matrix KF by the same method as in Example 8.1 for variable ordering x > y:

KF =

[
−3 −1
0 −1

]
.

We see that KF has full row rank over Z, and thus I has no infinite symmetries. Let us try
to find finite symmetries. Unimodular multipliers U and V for Smith normal form of KF

are: [
0 −1
−1 1

]
︸ ︷︷ ︸

U

[
−3 −1
0 −1

]
︸ ︷︷ ︸

KF

[
0 1
1 0

]
︸ ︷︷ ︸

V

=

[
1 0
0 3

]
︸ ︷︷ ︸

S

.

We look on the diagonal elements of S greater than 1. There is element p = 3 in the 2-nd
row of S. Then vector c is represented by the 2-nd row of U . We obtain that I has finite
symmetries Gc

p, where c =
[
−1 1

]
and p = 3, which means that

Gc
p =

{[
1 0
0 1

]
,

[
e2πi

1
3 0

0 e2πi
2
3

]
,

[
e2πi

2
3 0

0 e2πi
1
3

]}
.

8.1 Finding All Infinite Symmetries

Here we will give a method of how to find all infinite groups Gcj
k , j = 1, ..., r of stability

matrices of I ⊂ k[x1, ..., xn]. We will represent these groups by a matrix A ∈ Zr×n, where
the j-th row of A corresponds to cTj of Gcj

k for j = 1, ..., r (such a notation for A was used
in [8]). We will use Theorem 6.1. To find all groups Gcj

k of stability matrices of I, we should
find all c ∈ Zn such that all polynomials in a reduced Groebner basis of I are c-weighted
homogeneous. We give the following Method 8.1.
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Method 8.1. Suppose a reduced Groebner basis of I ⊂ k[x1, ..., xn]:

f1(x) =

s1∑
j=1

a1jx
α1j , ..., fm(x) =

sm∑
j=1

amjx
αmj , F =

{
f1, ..., fm

}
.

A c-weighted homogenity of fj for j = 1, ...,m means

cTα11 = cTα12 = ... = cTα1s1 , ..., cTαm1 = cTαm2 = ... = cTαmsm .

We can equivalently rewrite these equations as

cT
(
α12 −α11

)
= cT

(
α13 −α11

)
= ... = cT

(
α1s1 −α11

)
= cT

(
α22 −α21

)
=

= ... = cT
(
α2s2 −α21

)
= ... = cT

(
αmsm −αm1

)
= 0.

Or writing it in a matrix form gives

cT
[
α12 −α11 α13 −α11 ... αmsm −αm1

]︸ ︷︷ ︸
KF

= 0T .

cTKF = 0T .

The task of finding all c, for which polynomials f1, .., fm are c-weighted homogeneous, can
be reformulated as finding a basis C ⊂ Zn for the integer lattice of the left kernel of KF .
Then, every c satisfying the required property can be written as an integer combintation of
vectors from C. Of course if KF has full row rank over Z, then C contains only zero vector.
That’s why we suppose that KF hasn’t full row rank over Z. We can find a basis C using a
row Hermite multiplier U of KF :

UKF = H,

where the last r rows of H are zero. Then, by Proposition 7.3, the last r rows of U form a
basis for the left kernel of KF over Z. And we let A be the last r rows of U .

We give the following Remark 8.1.

Remark 8.1. An ideal I is stable under groups Gcj
k , j = 1, ..., r if and only if I is stable

under a group

GAk =

{
M1M2 | M1 ∈ G

cj1
k ,M2 ∈ G

cj2
k , j1, j2 ∈

{
1, ..., r

}}
,

where A =
[
c1 ... cr

]T .
That’s why, instead of saying that an ideal I is stable under every group Gcj

k , j = 1, ..., r,
where cTj is a row of A, we will just say that I is stable under GAk .
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8.2 Finding All Finite Symmetries

Here we will give a method of how to find all finite groups Gcj
pj , j = 1, ..., r of stability

matrices of I ⊂ C[x1, ..., xn]. We will represent these groups by two matrices B ∈ Zr×n
and P = diag(pj) ∈ Zr×r, where the j-th row of B corresponds to cj of Gcj

pj for j = 1, ..., r
(such a notation for B and P was used in [7]). We will use Theorem 6.2. To find all groups
G

cj
pj of stability matrices of I, we should find all such c ∈ Zn and p ∈ N, p > 1 that all

polynomials in a reduced Groebner basis of I are c-weighted p-homogeneous. We give the
following Method 8.2.

Method 8.2. Suppose a reduced Groebner basis of I ⊂ C[x1, ..., xn]:

f1(x) =

s1∑
j=1

a1jx
α1j , ..., fm(x) =

sm∑
j=1

amjx
αmj , F =

{
f1, ..., fm

}
.

Performing the same steps as in Method 8.1, we get a modular matrix equation

cTKF ≡ 0T mod p (8.1)

Analogically as in [7, p. 20, paragraph 5], we assume that KF has full row rank because
not full row rank case was already described in Method 8.1. Let U and V be the unimodular
multipliers such that

UKFV = S

is in Smith normal form. Suppose that last r elements on the diagonal in S are > 1. We let
B be the last r rows of U , and P be a diagonal matrix of the last r elements on the diagonal
in S.

We give the following Remark 8.2.

Remark 8.2. An ideal I is stable under groups Gcj
pj , j = 1, ..., r if and only if I is stable

under a group

GBP =

{
M1M2 | M1 ∈ G

cj1
pj1
,M2 ∈ G

cj2
pj2
, j1, j2 ∈

{
1, ..., r

}}
,

where B =
[
c1 ... cr

]T and P = diag(p1, ..., pr).

That’s why, instead of saying that an ideal I is stable under every group Gcj
pj , j = 1, ..., r,

where cTj is a row of B and pj is a diagonal element of P , we will just say that I is stable
under GBP .

Example 8.3. Suppose that we obtained by Method 8.2 the following matrices

B =

[
0 1
1 1

]
, P =

[
2 0
0 3

]
.
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Then making all possible products of matrices from G

[
0 1

]T
2 and G

[
1 1

]T
3 we obtain the

following group

GBP =

{[
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
e2πi

1
3 0

0 e2πi
1
3

]
,

[
e2πi

2
3 0

0 e2πi
2
3

]
,

[
e2πi

1
3 0

0 −e2πi
1
3

]
,

[
e2πi

2
3 0

0 −e2πi
2
3

]}
of all diagonal stability matrices of I. We can notice that

GBP
∼= Z/2Z× Z/3Z ∼= Z/6Z ∼= G

[
4 1

]T
6 .

Notice that in Example 8.1 (resp. 8.2) we didn’t suppose a reduced Groebner basis of I,
and that’s why the method we used was incomplete (there could exist a group Gc

k (resp.
Gc
p), which it didn’t find). We give the following Example 8.4, which shows that performing

Method 8.2 on a basis of I (which is not a reduced Groebner basis) may not find finite
symmetries, while they exist.

Example 8.4. Suppose an ideal

I = 〈f1, f2〉 ⊂ C[x, y], f1 = x3 + x2 − y − 1, f2 = x2 − y, F =
{
f1, f2

}
.

We note that F is not a reduced Groebner basis of I. Constructing matrix KF we obtain

KF =

[
−1 −3 −3 −2
0 1 0 1

]
.

Smith normal of KF is

S =

[
1 0 0 0
0 1 0 0

]
.

But this doesn’t mean that I has no finite symmetries. A reduced Groebner basis of I (using
the grevlex monomial ordering for variable ordering x > y) is

I = 〈h1, h2, h3〉, h1 = y2 − x, h2 = xy − 1, h3 = x2 − y,H =
{
h1, h2, h3

}
.

Constructing matrix KH we obtain

KH =

[
1 −1 −2
−2 −1 1

]
.

Smith normal form of KH is[
1 0
−1 1

]
︸ ︷︷ ︸

U

[
1 −1 −2
−2 −1 1

]
︸ ︷︷ ︸

KH

 0 −1 1
−1 −1 −1
0 0 1


︸ ︷︷ ︸

V

=

[
1 0 0
0 3 0

]
︸ ︷︷ ︸

S

.

Then all finite symmetries of I we can describe by

B =
[
−1 1

]
, P =

[
3
]
.

This gives us the finite group of all finite symmetries of I:

Gc
p =

{[
1 0
0 1

]
,

[
e2πi

1
3 0

0 e2πi
2
3

]
,

[
e2πi

2
3 0

0 e2πi
1
3

]}
.
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The main result of this section is that computing a matrix KF of exponents differences
of a reduced Groebner basis F of I can give us more symmetries than computing it from
some another basis of I. However, the authors of [8] and [7] didn’t use a reduced Groebner
basis for finding symmetries. And we want to show that in [7, Example 3.5] there are more
symmetries than the authors found.

Example 8.5. Consider an ideal

I = 〈f1, f2, f3〉 ⊂ C[z1, z2, z3],

f1 = 3z1z2 + 3z3 − 3z23 + 12, f2 = −3z1z2 + 3z23 − 15, f3 = z31 + z32 + z33 − 3z1z2z3 − 13.

The authors found only the symmetries

B =
[
1 2 0

]
, P =

[
3
]
.

But we can compute a reduced Groebner basis of I with respect to the grevlex monomial
ordering for variable ordering z1 > z2 > z3:

I = 〈h1, h2, h3, h4〉, h1 = z3 − 1, h2 = z1z2 + 4, h3 = z31 + z32 , h4 = z42 − 4z21 .

Then all finite symmetries are:

B =
[
1 −1 0

]
, P =

[
6
]
.

36



9 Finding all stability matrices

In this section we give an algorithm of how to find all stability matrices of a given ideal I.
At first we need the following Lemma 9.1. It shows that for any ideal I ⊂ k[x1, ..., xn] two
operators mod I and ψ (an evaluation on variables y1, ..., yt) are commutative on the ring
k[y1, ..., yt, x1, ..., xn] with respect to the operation of function composition.

Lemma 9.1. Suppose an ideal I ⊂ k[x1, ..., xn] ⊂ k[y1, ..., yt, x1, ..., xn]. Also suppose an
evaluation function

ψ : k[y1, ..., yt, x1, ..., xn]→ k[x1, ..., xn]

f(y1, ..., yt, x1, ..., xn) 7→ f(α1, ..., αt, x1, ..., xn),

where αi ∈ k ∀i = 1, ..., t. So ψ is an evaluation on variables y1, ..., yt. Then we have

ψ(f mod I) = ψ(f) mod I, ∀f ∈ k[y1, ..., yt, x1, ..., xn].

Proof. Take any f ∈ k[y1, ..., yt, x1, ..., xn]. Let’s denote

r1 = ψ(f) mod I, r2 = ψ(f mod I).

It’s obvious that r1 and r2 are from k[x1, ..., xn]. Suppose some Groebner basis
{
gj(x1, ..., xn)

}m
j=1

of I. Then for r1 there holds true

f(α1, ..., αt, x1, ..., xn) =
m∑
j=1

aj(x1, ..., xn) · gj(x1, ..., xn) + r1(x1, ..., xn) (9.1)

For r2 there holds true

f(y1, ..., yt, x1, ..., xn) =

m∑
j=1

bj(y1, ..., yt, x1, ..., xn) · gj(x1, ..., xn) +R2(y1, ..., yt, x1, ..., xn)

(9.2)
Applying ψ on both sides of (9.2) we obtain:

f(α1, ..., αt, x1, ..., xn) =
m∑
j=1

bi(α1, ..., αt, x1, ..., xn) · gj(x1, ..., xn) +R2(α1, ..., αt, x1, ..., xn),

r2(x1, ..., xn) = R2(α1, ..., αt, x1, ..., xn).
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We conclude that r1 − r2 ∈ I, because

f(α1, ..., αt, x1, ..., xn)− f(α1, ..., αt, x1, ..., xn) =

=
m∑
j=1

(
aj(x1, ..., xn)−bj(α1, ..., αt, x1, ..., xn)

)
·gj(x1, ..., xn)+

(
r1(x1, ..., xn)−r2(x1, ..., xn)

)
= 0.

To get a contradiction suppose r1 6= r2 or that r1 − r2 6= 0. Because r1 − r2 ∈ I, then
LT(r1 − r2) ∈ 〈LT(I)〉. From the properties of the division algorithm it follows from (9.1)
that

LT(r1) 6∈ 〈LT(g1), ...,LT(gt)〉 = 〈LT(I)〉.

By the same reasoning it follows from (9.2) that none of monomials of R2(y1, ..., yt, x1, ..., xn)
lies in 〈LT(I)〉. It means that LT(r2) 6∈ 〈LT(I)〉. This then means that LT(r1−r2) 6∈ 〈LT(I)〉.
It is a contradiction. Then r1 = r2 and we have the proof.

Now we are ready to give the following Theorem 9.1, which gives us an algorithm for finding
all stability matrices of an ideal I.

Theorem 9.1. Suppose an ideal I = 〈f1, ..., fm〉 ⊂ k[x1, ..., xn]. Suppose also two n × n
matrices: S with indeterminate elements s11, ..., snn and A ∈ kn×n with elements a11, ..., ann
from k. Let

rj(s11, ..., snn, x1, ..., xn) = fj(Sx) mod I, j = 1, ...,m.

Then I is stable under A if and only if rj(a11, ..., ann, x1, ..., xn) ∈ k[x1, ..., xn] is the zero
polynomial for each j = 1, ...,m.

Proof. We see that rj ∈ k[s11, ..., snn, x1, ..., xn], j = 1, ...,m. By Lemma 9.1 we have that

rj(a11, ..., ann, x1, ..., xn) = fj(Ax) mod I, j = 1, ...,m.

Then by Lemma 4.2 we obtain the desired, because fj(Ax) ∈ I if and only if fj(Ax) mod I
is the zero polynomial.

Definition 9.1. We will say that a polynomial f ∈ k[s11, ..., snn, x1, ..., xn] is written in
x-monomial disjoint way if

f =

q∑
j=1

hj(s11, ..., snn) · xαj ,

where hj(s11, ..., snn) ∈ k[s11, ..., snn] and there don’t exist j1 6= j2 such that αj1 = αj2.

Corollary 4. Let each rj(s11, ..., snn, x1, ..., xn) is written in x-monomial disjoint way

rj(s11, ..., snn, x1, ..., xn) =

qj∑
i=1

hji(s11, ..., snn) · xβji .
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Then from definition of the zero polynomial it follows that rj(a11, ..., ann, x1, ..., xn), j =
1, ...,m are the zero polynomials if and only if

hji(a11, ..., ann) = 0, ∀j = 1, ...,m ∀i = 1, ..., qj .

Then to find all stability matrices all we need is just to solve a system of equations hji(s11, ..., snn).

Remark 9.1. Notice that Theorem 9.1 makes no restriction on invertibility of A. Then
solving system of equations hji can give us also non-invertible matrices A. If we want only
invertible, we can use an extra dimension and add another one equation

h = w · det S+ 1,

where w is a new variable.

We will denote the ideal generated by equations hji(s11, ..., snn) as

HF =

〈{
hji

}〉
, j = 1, ...,m, i = 1, ..., qj ,

where F =
{
f1, ..., fm

}
is a chosen basis of I to compute remainders rj . It is obvious that

HF ⊂ k[s11, ..., snn]. We will call HF a matrix F-ideal of stability of I. Now, we
give an example of how to compute all stability matrices of a given ideal I.

Example 9.1. Suppose an ideal I = 〈f1, f2〉 ⊂ C[x, y], where

f1(x, y) = x3 − 1, f2(x, y) = xy − 1, F =
{
f1, f2

}
.

Then we make polynomials:

f1(Sx) = s311x
3 + 3s211s12x

2y + 3s11s
2
12xy

2 + s312y
3 − 1,

f2(Sx) = s11s21x
2 + s11s22xy + s12s21xy + s12s22y

2 − 1.

Now compute the remainders of f1(Sx) and f2(Sx) modulo I

r1 = f1(Sx) mod I = 3s211s12x+ 3s11s
2
12y + s311 + s312 − 1,

r2 = f2(Sx) mod I = s12s22x+ s11s21y + s11s22 + s12s21 − 1.

Extracting polynomials hji from r1 and r2 we obtain:

h11 = 3s211s12, h12 = 3s11s
2
12, h13 = s311 + s312 − 1,

h21 = s12s22, h22 = s11s21, h23 = s11s22 + s12s21 − 1.

Matrix F -ideal of stability of I is

HF =
〈
h11, h12, h13, h21, h22, h23

〉
.

The variety V(HF ) contains 6 solutions. We write them as a group GI of 6 matrices:

GI =

{[
1 0
0 1

]
,

[
e2πi

1
3 0

0 e2πi
2
3

]
,

[
e2πi

2
3 0

0 e2πi
1
3

]
,

[
0 1
1 0

]
,

[
0 e2πi

1
3

e2πi
2
3 0

]
,

[
0 e2πi

2
3

e2πi
1
3 0

]}
.
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It is obvious by Theorem 9.1 that V(HF1) = V(HF2) for two different sets F1 and F2 of
generators of I, because the set of all stability matrices of I is uniquely determined. But we
can say even more: an ideal HF doesn’t depend on the choice of the set F of generators of
I.

Lemma 9.2. Suppose an ideal I ⊂ k[x1, ..., xn]. Let F =
{
f1, ..., fm

}
and G =

{
g1, ..., gr

}
be two different set of generators of I. Let HF be a matrix F -stability ideal of I and HG be
a matrix G-stability ideal of I. Then HF = HG.

Proof. 1) HF ⊃ HG. Let the remainders of f1, ..., fm modulo I be written in an x-monomial
disjoint way:

fi(Sx)
I
=

qi∑
t=1

hit(s11, ..., snn) · xαit .

Then
HF = 〈hit〉, i = 1, ...,m, t = 1, ..., qi.

Because f1, ..., fm are the generators of I then there exist zij ⊂ k[x1, ..., xn] such that

gj(x) =

m∑
i=1

zij(x) · fi(x)⇒ gj(Sx) =

m∑
i=1

zij(Sx) · fi(Sx), ∀j = 1, ..., r.

Then ∀j = 1, ..., r there exists aj(x) ∈ I such that

gj(Sx)
I
=

m∑
i=1

zij(Sx)
I · fi(Sx)

I
+ aj(x).

Then ∀i = 1, ...,m, ∀j = 1, ..., r we write zij(Sx)
I · fi(Sx)

I
in x-monomial disjoint way:

zij(Sx)
I · fi(Sx)

I
=

cij∑
t=1

pijt(s11, ..., snn) · xβijt .

It is obvious that pijt is a polynomial combination of hi1, ..., hiqi . Let’s now write gj(Sx) in
the following way:

gj(Sx)
I
=

m∑
i=1

zij(Sx)
I · fi(Sx)

I
+ aj(x) =

wj∑
s=1

vsj(s11, ..., snn) · xβsj + aj(x) (9.3)

where
∑wj

s=1 vsj(s11, ..., snn) ·xβsj is written in x-monomial disjoint way. We clearly see that
vsj is a linear combination of pijt. Then, applying mod I on Equation (9.3), we obtain

gj(Sx)
I
= gj(Sx)

I
I

=

wj∑
s=1

vsj(s11, ..., snn) · xβsj
I
+ aj(x)

I︸ ︷︷ ︸
=0

=

=

wj∑
s=1

vsj(s11, ..., snn)
I · xβsj

I
+ bj(x) =

wj∑
s=1

vsj(s11, ..., snn) · xβsj
I
+ bj(x)
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for some bj(x) ∈ I. Writing
∑wj

s=1 vsj(s11, ..., snn) · xβsj
I
in an x-monomial disjoint way we

obtain

gj(Sx)
I
= gj(Sx)

I
I

=

cj∑
ζ=1

uζj(s11, ..., snn) · xγζj + bj(x) (9.4)

where xγsj 6∈ 〈LT(I)〉 and uζj is a linear combination of vsj . Applying mod I on Equation
(9.4) we obtain

gj(Sx)
I
= gj(Sx)

I
I
I

=

cj∑
ζ=1

uζj(s11, ..., snn) · xγζj
I
+ bj(x)

I︸ ︷︷ ︸
=0

=

cj∑
ζ=1

uζj(s11, ..., snn) · xγζj .

Notice that
HG = 〈uζj〉, j = 1, ..., r, ζ = 1, ..., cj .

Becuase uζj(s11, ..., snn) is a polynomial combination of hi1, ..., hiqi then we proved that
HF ⊃ HG.
2) HF ⊂ HG. Can be proved by a similar way.

Now, because matrix F -stability ideal of I doesn’t depend on the choice of generators of I,
then we can call it just matrix ideal of stability of I and denote as HI .
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10 Invariant Theory and Reduction of a Poly-
nomial System Using Scaling Symmetries

10.1 Invariant Theory

Invariant theory is a very beautiful topic of mathematics. It studies objects invariant
under some group G. Invariance means that these objects don’t change after performing an
action of this group. We will consider here polynomial invariant theory, which means that
objects are polynomials. Denote by k[x1, ..., xn]G the set of all polynomials invariant under
G. It can be proved that k[x1, ..., xn]G is a subring of k[x1, ..., xn]. Polynomial invariant
theory gives an answer on three main questions:

1) Is k[x1, ..., xn]G a finitely generated algebra over k? We can reformulate this as fol-
lows: do there exist polynomials w1, ..., wm ∈ k[x1, ..., xn]

G such that every polynomial
f ∈ k[x1, ..., xn]G we can write as a polynomial in w1, ..., wm with coefficients in k?

2) If such generators w1, ..., wm exist, then how can we find them?

3) When we have found w1, ..., wm, then how to rewrite every polynomial f ∈ k[x1, ..., xn]G
as a polynomial in w1, ..., wm?

In [4, Chapter 7 (Invariant Theory of Finite Groups)] there is an answer to all these
questions assuming G is a finite matrix group (and action of this group on f is just a linear
change of variables of f).

Assuming G is a matrix group (not necessarily finite) we define that a polynomial (or,
more generally, rational function) f is invariant under G if there holds

f(Ax) = f(x)

true for any matrix A ∈ G.

10.2 Generating Set of Invariants of Scaling Symmetries and
The Rewriting Rules

We want to start with a notation for monomials. Let x be a column vector of variables
x1, ..., xn and M ∈ Zn×s be an integer matrix. Then by xM we will denote a column vector
of s elements xM.,1 , ...,xM.,s , where M.,j is the j-th column of M.

43



Example 10.1. Suppose a matrix

M =

[
1 2
3 4

]
.

Then
xM =

[
x1x

3
2 x21x

4
2

]T
.

10.2.1 Infinite Symmetries

We are now moving from a polynomial ring k[x1, ..., xn] to a field of rational functions
k(x1, ..., xn). The reason of this will be described in Section 10.3. We recall (Section 8.1)
that infinite scaling symmetries are represented by an integer matrix A. We will say that
f ∈ k(x1, ..., xn) is invariant under A, if f is invariant under a group GAk . Here we will
describe shortly how to find a generating set of rational invariants under A and how to rewrite
any rational invariant in terms of w1, ..., wm (the so-called “rewriting rules”), as it was done
in [8]. Finding this generating set means to find such invariants w1, ..., wm ∈ k(x1, ..., xn)
under A that any invariant f ∈ k(x1, ..., xn) under A can be written as a rational function
in w1, ..., wm with coefficients in k.

A generating set of invariants is usually not unique. Invariants obtained in [8] are actually
Laurent monomials (usual monomials only involving fractions). For example, xy

2

z2
is a Laurent

monomial from k(x, y, z). To see the proof of how this generating set can be obtained and
how to rewrite any rational invariant as a rational function in terms of this generating set
the reader is refered to [8, Theorem 4.2]. We only give a method here. By w we will denote
a column vector of w1, ..., wm.

Method 10.1. Consider a field k(x1, ..., xn) of rational functions. Suppose a matrix A ∈
Zr×n of full row rank over Z which defines infinite scaling symmetries. Suppose also a
unimodular matrix V ∈ Zn×n such that AV is in column Hermite normal form. Denote by
Vn a submatrix of the last n − r columns of V . Then the columns of Vn ∈ Zn×(n−r) are
the multidegrees of Laurent monomials which form a generating set w =

[
w1 ... wn−r

]T
of rational invariants under A (this fact partially follows from Proposition 7.1). Suppose
W = V −1 ∈ Zn×n. Denote by Wd ∈ Z(n−r)×n a submatrix of the last n− r rows of W . Then
the rewriting rules are

x =
[
x1 ... xn

]T → wWd .

Example 10.2. Consider a field k(x1, x2, x3, x4) of rational functions. Suppose infinite
symmetries given by

A =

[
1 0 0 −1
2 1 0 0

]
.

A unimodular column Hermite multiplier V of A is

V =


1 0 0 1
−2 1 0 −2
0 0 1 0
0 0 0 1

 , AV =

[
1 0 0 0
0 1 0 0

]
, Vn =


0 1
0 −2
1 0
0 1

 .
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Then we clearly see that the columns of Vn lie in the right kernel of A. We construct Laurent
monomials from the columns of Vn as w1 = x3, w2 = x1x4

x22
. Then we see that w1 and w2

are invariant under groups Ga1
k and Ga2

k , where aT1 and aT2 are rows of A. In addition, any
rational invariant under A can be written as a rational function in w1 and w2. The inverse
of V is

W = V −1 =


1 0 0 −1
2 1 0 0
0 0 1 0
0 0 0 1

 , Wd =

[
0 0 1 0
0 0 0 1

]
.

Then the rewriting rules are[
x1 x2 x3 x4

]T → wWd =
[
1 1 w1 w2

]T
.

Suppose a rational invariant f =
x1x23x4
x22

+
x42x3
x21x

2
4
under A. Then we can rewrite it in terms of

w1 and w2 as
f → h = w2

1w2 +
w1

w2
2

.

By Method 10.1 we can obtain different generating sets for a given A because unimodular
column Hermite multiplier of A is not unique.

10.2.2 Finite Symmetries

10.2.2.1 Using Column Hermite Multiplier

Here we will also work with a field k(x1, ..., xn) of rational functions. We recall (Section
8.2) that finite scaling symmetries are represented by matrices B and P . We will say that
f ∈ k(x1, ..., xn) is invariant under B and P , if f is invariant under a group GBP . Here we
will describe shortly how to find a generating set w1, ..., wm of rational invariants of scaling
symmetries defined by B and P and how to rewrite any rational invariant as a rational
function in w1, ..., wm (as it was done in [7]). Invariants obtained in [7] are also Laurent
monomials. To see the proof of how this generating set can be obtained and how to rewrite
any rational invariant as a rational function in terms of this generating set the reader is
refered to [7, Theorem 3.4]. We only give a method here.

Method 10.2. Consider a field k(x1, ..., xn) of rational functions. Suppose matrices B ∈
Zr×n and P ∈ Zr×r of full row rank over Z which define finite scaling symmetries. Suppose
also a unimodular matrix V ∈ Z(n+r)×(n+r) such that

[
B P

]
V is in column Hermite normal

form. Denote by Vn a submatrix of the first n elements of the last n columns of V . Then
the columns of Vn are the multidegrees of Laurent monomials which form a generating set of
rational invariants under B and P . Suppose W = V −1 ∈ Z(n+r)×(n+r). Make a partition of
W

W =

[
Wu Pu

Wd Pd

]
, Wu ∈ Zr×n,Wd ∈ Zn×n, Pu ∈ Zr×r, Pd ∈ Zn×r.

Then the rewriting rules are

x =
[
x1 ... xn

]T → wWd−PdP−1B.
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Example 10.3. Consider a field k(x, y) of rational functions. Suppose finite symmetries
the same as in Example 8.4 given by

B =
[
1 2

]
, P =

[
3
]
.

A unimodular column Hermite multiplier V of
[
B P

]
is

V =

1 −2 −3
0 1 0
0 0 1

 , [
B P

]
V =

[
1 0 0

]
, Vn =

[
−2 −3
1 0

]
.

Then we clearly see that the last 2 columns of V lie in the right kernel of
[
B P

]
. From

the columns of Vn we construct Laurent monomials w1 =
y
x2
, w2 =

1
x3
. Then we see that w1

and w2 are invariant under the finite group Gc
p with c =

[
1 2

]
and p = 3. In addition, any

rational invariant under B and P can be written as a rational function in w1 and w2. The
inverse of V is

W = V −1 =

1 2 3
0 1 0
0 0 1

 , Wd =

[
0 1
0 0

]
, Pd =

[
0
1

]
.

Then the rewriting rules are

[
x y

]T → wWd−PdP−1B =
[

1

w
1/3
2

w1

w
2/3
2

]T
.

Suppose a rational invariant f = x7+y3x+y2

x4+y2
under B and P . Then we can rewrite it in terms

of w1 and w2 as

f → h =

1

w
7/3
2

+
w3

1

w
4/3
2

+
w2

1

w
4/3
2

1

w
4/3
2

+
w2

1

w
4/3
2

=
1
w2

+ w3
1 + w2

1

1 + w2
1

=
w3
1w2 + w2

1w2 + 1

w2(1 + w2
1)

.

By Method 10.2 we also can obtain different generating sets for given B and P because
column Hermite multiplier of

[
B P

]
is not unique.

It is also possible to compute with a Hermite multiplier of
[
B −P

]
(which was used in

[7]). We want to note that there is a typo in [7]. The rewriting rules using Hermite multiplier
of
[
B −P

]
should be

x→ wWd+PdP−1B,

but in [7] was written

x→ wWd−PdP−1B,

which is for Hermite multiplier of
[
B P

]
. The reader can see how this typo firstly occurred

in the proof of [7, Lemma 2.6]. But all the results in [7] are correct.
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10.2.2.2 Using Reynolds Operator

Here we will work with a polynomial ring k[x1, ..., xn]. Suppose a finite matrix group
G acting on a polynomial as a linear change of variables. Then the Reynolds Operator
RG : k[x1, ..., xn]→ k[x1, ..., xn] is defined as

RG(f)(x) =
1

|G|
∑
A∈G

f(Ax).

If f ∈ k[x1, ..., xn], then RG(f) ∈ k[x1, ..., xn]G. We can use the Reynolds Operator for find-
ing a generating set w1, ..., wm of the ring of invariants k[x1, ..., xn]G, which means that every
polynomial f ∈ k[x1, ..., xn] we can rewrite as a polynomial in w1, .., wm with coefficients in
k. We refer to [4, Chapter 7, §3, Theorem 5], which tells us how to find a generating set.
Also [4, Chapter 7, §3, Proposition 7] describes how to rewrite any invariant polynomial as
a polynomial in these generators.

Example 10.4. Consider a polynomial ring k[x, y]. Also suppose a finite matrix group as
in Example 10.3

G =

{[
1 0
0 1

]
,

[
e2πi

1
3 0

0 e2πi
2
3

]
,

[
e2πi

2
3 0

0 e2πi
1
3

]}
.

We can use [4, Chapter 7, §3, Theorem 5] to compute a generating set of k[x, y]G. It consists
of 3 monomials xy, x3, y3 and then

f ∈ k[x, y]G ⇐⇒ f ∈ k[xy, x3, y3].

10.3 Reduction of a Polynomial System

This section presents our current (partial) understanding of polynomial systems reduc-
tion. And it is still ongoing work. We will work here only with scaling symmetries.

We cite [8, Section 5, paragraph 1]: “if the solution set of a polynomial system of equation
is invariant under a group action, then there is an equivalent system given in terms of
invariants of this group action. The equivalent system written in terms of a generating set of
invariants is the reduced system. However, for general symmetry reductions a futher problem
is to recover the solutions of the original system from the solutions of the reduced system”.

We want to note that by a notion of “invariant set under a group” mathematicians usually
mean our Definition 5.4 (which is for specific set V ⊂ kn and group G ⊂ GLn(k)). And a
notion of stability in mathematical world means something different. That’s why, when in
[8] the authors talk about an invariant solution set under a group G, we will understand it
(according to our Definition 5.4) as a stable solution set under the same group G.

If a variety V(I) ⊂ kn (resp. V(I) ⊂ Cn) has a group of stability matrices Gc
k (resp. Gc

p),
then we will say that V(I) has infinite (resp. finite) symmetries. To see how to construct the
solutions of the original system from its reduced form the reader is refered to [8, Theorem
5.3] and [7, Theorem 5.5]. Here we will only describe how to obtain a reduced system.
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10.3.1 Reduction of Infinite Symmetries

To understand in more details the reduction of infinite symmetries the reader is refered
to [8, Proposition 5.2 and Theorem 5.3]. We only show some examples here.

Suppose a system P of polynomials pj(x) = 0, j = 1, ..., q. Polynomials pj generate
an ideal I ⊂ k[x1, ..., xn]. Our aim is to find all infinite symmetries of V(I). In [8, p.
7, paragraph after Definition 5.1] the authors wrote that “Appendix A provides a way of
determining some of these symmetries”. We, however, give a method of how to determine
all infinite symmetries of V(I). We give the following Lemma 10.1.

Lemma 10.1. Suppose an ideal I ⊂ k[x1, ..., xn]. Then its variety V(I) is stable under Gc
k

if and only if a reduced Groebner basis of I(V(I)) (with respect to any monomial ordering)
consists of c-weighted homogeneous polynomials.

Proof. The proof can be easily obtained from Lemma 5.3 ((i) ⇐⇒ (ii)) and Theorem 6.1.

Then applying Method 8.1 on a reduced Groebner basis of I(V(I)) gives us all infinite
symmetries of V(I). These symmetries we represent by a matrix A. After obtaining these
symmetries we want to find an equivalent system (possibly not of polynomials, but rational
functions, we will see later) given in terms of invariants under A.

Suppose a reduced Groebner basis GB =
{
gj(x)

}m
j=1

of I(V(I)) from which A was

obtained. Then GB is an equivalent polynomial system to a polynomial system P , because
V(I(V(I))) = V(I). There can happen two cases.

Case 10.1. All polynomials in GB are invariant under A, which means that Aα = 0 for
every monomial xα from GB.

Case 10.2. There exists a polynomial gt in GB which is not invariant under A, which
means that Aαi = Aαj 6= 0 for every two monomials xαi and xαj in gt. The equality
Aαi = Aαj holds true because gt is c-weighted homogeneous for every row c of A. Then to
obtain a rational invariant under A from gt we just divide gt by its some (for example, last)
monomial. We will do this for every polynomial in GB which is not invariant under A. To
be able to do such dividing, we suppose that variables in the dividing monomials cannot be
zero. That’s why we obtain an equivalent system to the original one, where we discount all
the solutions for which there is a zero component in variables involving the division.

After obtaining an equivalent (or almost equivalent as in Case 10.2) system of invariants
under A (call it F ) we can rewrite these invariants as rational functions in terms of a
generating set (obtained by Method 10.1) and obtain a new reduced system of equations (call
it H) in new variables. After obtaining the solutions of H we need somehow to construct
from them the solutions of F . (We think that we can recover only the solutions of F which
don’t have a zero component in a variable which lies in a denominator of some Laurent
monomial from generating set.)

The authors in [8, Proposition 5.2 and Theorem 5.3] (possibly, for simplification) just
discount all the solutions of the original system for which there is a zero component and
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say that every of the rest solutions of the original system can be obtained from the solutions
of H.

We give the following Example 10.5 taken from [8, Example 5.4].

Example 10.5. Consider an ideal

I = 〈g1, g2〉 ⊂ Q[z1, z2, z3, z4], g1 = z2z
2
4 − z1, g2 = z1z3 − z2.

This ideal is radical and g1, g2 is already a reduced Groebner basis of I. All infinite symmetries
of V(I) (obtained by Method 8.1) are given by matrix

A =

[
1 1 0 0
0 2 2 −1

]
.

We see that we are dealing with the Case 10.2, because g1 and g2 are not invariant under A.
Then we make from them the following rational invariants under A:

f1 =
z2z

2
4

z1
− 1, f2 =

z1z3
z2
− 1.

A unimodular column Hermite multiplier V for A (obtained in [8]) is

V =


1 −1 1 −1
0 1 −1 1
0 0 1 0
0 1 0 2

 , Vn =


1 −1
−1 1
1 0
0 2

 , W = V −1 =


1 1 0 0
0 2 2 −1
0 0 1 0
0 −1 −1 1

 .
Then a generating set of invariants is formed by monomials w1 = z1z3

z2
and w2 =

z2z24
z1

. The
rewriting rules are [

z1 z2 z3 z4
]T → wWd =

[
1 1

w2

w1
w2

w2

]
.

Then we rewrite f1 and f2 in terms of a generating set as

f1 → h1 =
1

w2
w2
2 − 1 = w2 − 1, f2 → h2 =

w1
w2

1
w2

− 1 = w1 − 1.

Obtained system of h1 and h2 is the reduced system.

As the last thing, we want to note that reduction of infinite symmetries is closely con-
nected to dimensional analysis and the Buckingham’s π-Theorem (as was mentioned in [8,
Section 4, paragraph 2]).

10.3.2 Reduction of Finite Symmetries

To understand in more details the reduction of finite symmetries the reader is refered to
[8, Theorem 5.5]. We only show some examples here.

The steps here to obtain a reduced system are the same as in the case of reduction of
finite symmetries. We give the following Lemma 10.2 for obtaining all finite symmetries of
V(I).

49



Lemma 10.2. Suppose an ideal I ⊂ C[x1, ..., xn]. Then its variety V(I) is stable under Gc
p

if and only if a reduced Groebner basis of I(V(I)) (with respect to any monomial ordering)
consists of c-weighted p-homogeneous polynomials.

Proof. The proof can be easily obtained from Lemma 5.3 ((i) ⇐⇒ (ii)) and Theorem 6.2.

Then applying Method 8.2 on a reduced Groebner basis of I(V(I)) gives us all finite
symmetries of V(I). These symmetries we represent by matrices B and P . We give the
following Example 10.6.

Example 10.6. Consider an ideal

I = 〈g1, g2〉 ⊂ C[x, y], g1 = x3 − 1, g2 = xy − 1.

This ideal is a radical. Its reduced Groebner basis (with respect to the grevlex monomial
ordering for variable ordering x > y) is

g3 = y2 − x, g4 = xy − 1, g5 = x2 − y.

All finite symmetries of V(I) (obtained by Method 8.2) are given by matrices

B =
[
−1 1

]
, P =

[
3
]
.

Taking g3, g4, g5 we see that we are dealing with the Case 10.2, because g3 and g5 are not
invariant under B and P . Then we make from them the following rational invariants under
B and P :

f3 =
y2

x
− 1, f4 = xy − 1, f5 =

x2

y
− 1, F1 =

{
f3, f4, f5

}
.

Let’s try to take also g1, g2. We see that we are dealing with the Case 10.1, because g1 and
g2 are invariant under B and P . Then we let

f1 = x3 − 1, f2 = xy − 1, F2 =
{
f1, f2

}
.

A unimodular column Hermite multiplier V for
[
B P

]
is

V =

−1 1 3
0 1 0
0 0 1

 , Vn = [1 3
1 0

]
, W = V −1 =

−1 1 3
0 1 0
0 0 1


Then a generating set of invariants is formed by monomials w1 = xy and w2 = x3. The
rewriting rules are [

x y
]T → wWd−PdP−1B =

[
w

1/3
2

w1

w
1/3
2

]T
.

Rewriting F1 in terms of a generating set we obtain

f3 → h3 =

w2
1

w
2/3
2

w
1/3
2

−1 =
w2
1

w2
−1, f4 → h4 = w

1/3
2

w1

w
1/3
2

−1 = w1−1, f5 → h5 =
w

2/3
2
w1

w
1/3
2

−1 =
w2

w1
−1.
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Rewriting F2 in terms of a generating set we obtain

f1 → h1 = w2 − 1, f2 → h2 = w
1/3
2

w1

w
1/3
2

− 1 = w1 − 1.

We see that the system F2 was rewritten to simpler equations in w1 and w2 that the system
F1.

Further examples on reduction of finite symmetries can be found in [7, Examples 3.5 and
3.7]. The following Example 10.7 shows how to use invariants obtained using the Reynolds
operator to reduce the system.

Example 10.7. Consider the same ideal as in Example 10.6

I = 〈g1, g2〉 ⊂ C[x, y], g1 = x3 − 1, g2 = xy − 1.

All finite symmetries of V(I) are given by a finite matrix group

G =

{[
1 0
0 1

]
,

[
e2πi

1
3 0

0 e2πi
2
3

]
,

[
e2πi

2
3 0

0 e2πi
1
3

]}
.

In Example 10.4 we saw that w1 = x3, w2 = y3 and w3 = xy form a generating set of
C[x, y]G, and then

f ∈ C[x, y]G ⇐⇒ f ∈ C[x3, y3, xy].

Notice that the above equivalence is dealing only with polynomials invariant under G (not
rational functions). We see that g1 and g2 are invariant under G. We use [4, Chapter 7, §3,
Proposition 7] to rewrite g1 and g2 in terms of x3, y3 and xy:

g1 = w1 − 1, g2 = w2 − 1.

But, if we take another generators of I:

g1 = x3 − 1, g3 = x2 − y,

then we see that g3 is not invariant and we cannot use [4, Chapter 7, §3, Proposition 7]
(while in the case of reduction using column Hermite multiplier it wasn’t a problem).

The reason why we moved from a polynomial ring to a field of rational functions (Sub-
section 10.2.1, the 1st sentence) is that computing with a column Hermite multiplier V and
its inverse W there can arise negative integers.

As the last thing of this section we want to note that in [8] and [7] there are two different
methods of recovering solutions of the original system from its reduced form. In [8] the
solutions of the original are obtained from the reduced one by simple multiplying and rising
to powers the solutions of the reduced system (see [8, Theorem 5.3 and Example 5.4]). While
in [7], after obtaining the solutions of the reduced system, we then should solve another
(monomial) systemM (see [7, Theorem 5.5 and Example 5.6]). We also want to note that in
[7] the so-called “normalized” unimodular column Hermite multiplier of

[
B −P

]
was used.

For such a multiplier, the matrix Vn becomes upper triangular. This then means that a
monomial system M becomes an upper triangular and, as a corollary, not so hard to solve.
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10.4 Note On a Homogeneous Ideal

Suppose a 1-homogeneous ideal I ⊂ k[x1, ..., xn] generated by 1-weighted homogeneous
polynomials g1, ..., gm. Then V(I) has infinite symmetries given by A = 1 ∈ Z1×n. One of
unimodular column Hermite multipliers V of A is

V =


0 1 0 ... 0
0 0 1 ... 0
...

...
...

. . .
...

0 0 0 ... 1
−1 −1 −1 ... −1

 ∈ Zn×n, W = V −1 =


−1 −1 ... −1 −1
1 0 ... 0 0
0 1 ... 0 0
...

...
. . .

...
...

0 0 ... 1 0

 .

Then w1 =
x1
xn

, w2 =
x2
xn

, ..., wn−1 =
xn−1

xn
form a generating set of rational invariants under

A. We clearly see that g1, ..., gm cannot be invariant under A, because 1-weighted total
degree of a monomial in any polynomial cannot be less than one (and as a consequence
cannot be equal to zero). But each of g1, ..., gm we can devide by xrjn , where rj is 1-weighted
total degree of each monomial in gj . After such division, we obtain a set F =

{
f1, ..., fm

}
of

rational functions invariant under A. We can see the rewriting rules in terms of w1, ..., wn−1
from the last n− 1 rows of W , which are[

x1 ... xn
]T → [

w1 ... wn−1 1
]T
.

And we note that after rewriting we obtain polynomials in w1, ..., wn−1 from f1, ..., fm.

52



11 Permutation Representations

In this chapter we will explain how stability matrices of I act on a variety V(I). We
will consider here only ideals I with a finite non-empty variety V(I). By Corollary 3 we can
claim that V(I) is a GI -set (see [1, p. 176]). Suppose V(I) has m elements. Then we can
construct a group homomorphism

ϕ : GI → Sm,

(where Sm is the symmetric group on m elements) in a usual way. Suppose g ∈ GI permorfs
the following permutation σg of the elements of V(I):

σg =

(
1 2 ... m
i1 i2 ... im

)
.

Then we set ϕ(g) = σg. We can easily verify (see [1, p.182, Proposition 8.2]) that so defined ϕ
is a group homomorphism. The First Isomorphism Theorem tells us that im(ϕ) is a subgroup
of Sm. In examples below we will show that ϕ shouldn’t be surjective nor injective.

Example 11.1. Suppose an ideal I = 〈f1, f2〉 ⊂ C[x, y], where

f1(x, y) = x2 + y2 − 1, f2(x, y) = x+ y − 1, V(I) =

{[
1
0

]
,

[
0
1

]}
.

A group of all stability matrices GI is:

GI =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
.

Let’s look on how these matrices permute the elements of V(I). Let’s denote v1 =

[
1
0

]
,

v2 =

[
0
1

]
. Then[

1 0
0 1

] [
v1 v2

]
=
[
v1 v2

]
,

[
0 1
1 0

] [
v1 v2

]
=
[
v2 v1

]
.

Then we construct ϕ as follows:

ϕ

([
1 0
0 1

])
= ( ), ϕ

([
0 1
1 0

])
= (1 2).

Here ( ) means the identity permutation, (1 2) means permutation of 2 elements. Obviously,
homomorphism ϕ here is surjective and injective (ϕ is an isomorphism), and then

GI ∼= S2.
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Example 11.2. Suppose an ideal I = 〈f1, f2〉 ⊂ R[x, y], where

f1(x, y) = x2 + y2 − 1, f2(x, y) = x+ y, V(I) =

{[
−
√
2
2√
2
2

]
,

[ √
2
2

−
√
2
2

]}
.

A group GI is:

GI =

{[
−s22 + 1 + w −s22 + w

s22 − 1 s22

]
︸ ︷︷ ︸

setM1

,

[
−s22 − 1− w −s22 − w

s22 + 1 s22

]
︸ ︷︷ ︸

setM2

}
, s22 ∈ R, w ∈ R∗.

Let’s denote v1 =

[
−
√
2
2√
2
2

]
, v2 =

[ √
2
2

−
√
2
2

]
. Then we can verify that ∀s22 ∈ R, w ∈ R∗ there

holds true [
−s22 + 1 + w −s22 + w

s22 − 1 s22

] [
v1 v2

]
=
[
v1 v2

]
,[

−s22 − 1− w −s22 − w
s22 + 1 s22

] [
v1 v2

]
=
[
v2 v1

]
.

Hence, after constructing a homomorphism ϕ, we conclude by The First Isomorphism The-
orem that the set M1 is a normal subgroup of GI and

GI/M1
∼= S2.

We also could suppose here a field C instead of R. Then V(I) is the same. Also group GI is
the same, only s22 ∈ C and w ∈ C∗.

Example 11.3. Suppose an ideal I = 〈f1, f2〉 ⊂ C[x, y], where

f1(x, y) = x4 − 1, f2(x, y) = xy − 1, V(I) =

{[
1
1

]
,

[
−1
−1

]
,

[
i
−i

]
,

[
−i
i

]}
.

Then a group of all stability matrices of I is:

GI =

{[
1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 −1
−1 0

]
,

[
i 0
0 −i

]
,

[
−i 0
0 i

]
,

[
0 i
−i 0

]
,

[
0 −i
i 0

]}
.

We can easily verify which permutation of V(I) performs each matrix of GI and then conclude
that

GI ∼= D4,

where D4 is a dihedral group (group of symmetries of a regular 4-polygon).

Example 11.4. Suppose an ideal I = 〈f1, f2〉 ⊂ C[x, y], where

f1(x, y) = y3 + x2 + x+ 1, f2(x, y) = xy + y − 1, |V(I)| = 5.

A group of all stability matrices of I is:

GI =

{[
1 0
0 1

]}
.
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Example 11.5. Suppose an ideal I = 〈f1, f2〉 ⊂ C[x, y], where

f1(x, y) = −xz + y2 + 1, f2(x, y) = xyz + y − 1, f3(x, y) = z2 + y + 1, |V(I)| = 6.

A group of all stability matrices of I is:

GI =

{1 0 0
0 1 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 −1

} ∼= S2.

You may have already noticed that Examples 11.3 and 9.1 are similar and differ only by an
exponent of the first monomial in f1. In Example 9.1 we can in the same way (by observing
which permutation of V(I) performs each matrix from GI) conclude that

GI ∼= D3
∼= S3.

This observation can be made for all such ideals with generators f1(x, y)q = xq − 1, q ≥ 3
and f2(x, y) = xy − 1. We want to note that the solutions of Iq = 〈f1(x, y)q, f2(x, y)〉 “form
a regular q-polygon”. We give Definition 11.2, which explains what does than mean.

Definition 11.1. Suppose a vector x =
[
a+ bi c+ di

]
∈ C2. We will say that y is an

extension of x to R4 if y =
[
a b c d

]
.

Definition 11.2. Suppose a subset V1 ⊂ C2 with m elements. Make an extension of each vec-
tor in V1 to obtain a new subset V2 ⊂ R4. We will say that V1 forms a regular m-polygon
if ∀ v1,v2 ∈ V2:

(i) ‖v1‖2 = ‖v2‖2.

(ii) ∠(v1,v2) = r 2πm for some integer r, 0 ≤ r ≤ m− 1.

Let’s take a look on Example 11.3. We extend variety from this example to R4 and
obtain

V =

{
1
0
1
0

 ,

−1
0
−1
0

 ,


0
1
0
−1

 ,


0
−1
0
1


}
.

We can easily verify that V forms a regular 4-polygon by Definition 11.2. And because
I = 〈x4 − 1, xy − 1〉 ⊂ C[x, y] is radical, then we see that Conjecture 11.1 holds true. The
same it is for Example 9.1.

We saw in examples above that in some cases GI is finite, in some not. Proposition 11.1
gives a sufficient condition for GI to be finite. In the proof of Proposition 11.1 we will use
the following Lemma 11.1.

Lemma 11.1. Suppose an ideal I ⊂ k[x1, ..., xn]. Then GI is a subgroup of GI(V(I)).

Proof. Take any g ∈ GI . By Corollary 3, V(I) is invariant under g. Then by Lemma 5.3
(ii ⇐⇒ iv), I(V(I)) is stable under g.
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Proposition 11.1. Suppose an ideal I ⊂ k[x1, ..., xn]. If V(I) is finite and Spank(V(I)) =
kn, then GI is finite.

Proof. We know from Lemma 5.3 that A is from GI(V(I)) if and only if A permutes elements
of V(I). Because Spank(V(I)) = kn, then we can extract a basis v1, ...,vn for kn from V(I).
Take any permutation σ on m elements. We want to find all matrices Aσ which perform this
permutation on V(I). Notice that Aσ should also perform some permutation τ of v1, ...,vn:

Aσ

[
v1 ... vn

]
=
[
vi1 ... vin

]
, τ =

(
1 ... n
i1 ... in

)
.

Then
Aσ =

[
vi1 ... vin

] [
v1 ... vn

]−1 (11.1)

Now, we know that Aσ defined in Equation (11.1) performs a permutation τ of v1, ...,vn.
But we should check if Aσ performs a permutation σ on all elements in V(I). If it is true,
then Aσ belongs to GI(V(I)) (and from Equation (11.1) it follows that there doesn’t exist
another matrix Bσ which performs the same permutation σ of V(I)). Because there is only
a finite number of permutations on m elements (namely m!), then we conclude that GI(V(I))

has cardinality at most m!. Because GI is a subgroup of GI(V(I)), then it follows that GI
also has cardinality at most m! and, as a corollary, is finite.

We give the following conjecture about how big can be a group of stability matrices of
an ideal I with a specific finite variety.

Conjecture 11.1. Let k be a subfield of C. Suppose an ideal I ⊂ k[x, y] with a finite variety
V(I),

∣∣∣V(I)
∣∣∣ = m, m ≥ 3. Suppose also that Spank(V(I)) = k2. Then GI is isomorphic to

some subgroup of dihedral group Dm. For a radical ideal I, GI is isomorphic to Dm if and
only if V(I) forms a regular m-polygon.

In the statement of the above conjecture we made a restriction Spank(V(I)) = k2 to
make a group GI finite by Proposition 11.1. We also want m ≥ 3, because for m = 2 a
variety V(I) with the property Spank(V(I)) = k2 cannot form a regular 2-polygon. We
suppose k is a subfield of C, because a notion of forming a regular polygon (Definition 11.2)
is defined for subsets of C2.

Also, for a variety V(I) with 2 elements with the property SpanC(V(I)) = C2 (from
Proposition 11.1) we obtain that GI can be a trivial one or isomorphic to S2.
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12 Finding All Symmetries of a Weak Perspective-
n-Points Problem

We refer to [9, Section 5]. The problem of estimating the pose of a weak perspective
camera can be reduced to

min
s,R

∥∥∥∥R diag(a1, a2, a3)−
[
b11 b12 b13
b21 b22 b23

]∥∥∥∥2
F

s.t. RRT = s2I2,

where a1 ≥ a2 ≥ a3 ≥ 0. We can use a quaternion parametrization of 2× 3 rotation R:

R(q) =

[
q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q1q3 + q2q4)
2(q1q4 + q2q3) q21 − q22 + q23 − q24 2(q3q4 − q1q2)

]
,

where q =
[
q1 q2 q3 q4

]
and ‖q‖2 = s. Then constructing a cost function we obtain

f(q) = ‖R(q)A−B‖2F , A = diag(a1, a2, a3), B =

[
b11 b12 b13
b21 b22 b23

]
.

Minimising f(q) means finding the solutions of q for

g(q) = ∇qf(q) = 0.

Because q is of length 4, then we should solve the system of 4 polynomial equations.

Example 12.1. Choosing

A = diag(2, 3, 5) B =

[
−8 −11 13
9 8 11

]
we obtain the following equations g(q) = 0:

g1(q) = 52q31 + 180q1q
2
2 + 220q1q

2
3 + 52q1q

2
4 − 40q2q3q4 − 32q1 + 220q2 − 260q3 − 204q4,

g2(q) = 180q21q2 − 40q1q3q4 + 52q32 + 52q2q
2
3 + 220q2q

2
4 + 220q1 + 160q2 + 60q3 − 260q4,

g3(q) = 220q21q3 − 40q1q2q4 + 52q22q3 + 52q33 + 180q3q
2
4 − 260q1 + 60q2 − 160q3 − 220q4,

g4(q) = 52q21q4 − 40q1q2q3 + 220q22q4 + 180q23q4 + 52q34 − 204q1 − 260q2 − 220q3 + 32q4.
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All stability matrices of I = 〈g1, g2, g3, g4〉 ⊂ C[q1, q2, q3, q4] are

GI =

{
1

1
1

1

 ,

−1

−1
−1

−1

 ,


i
i

−i
−i

 ,


−i
−i

i
i

}.
We can easily see that

GI ∼= Z/2Z× Z/2Z.

And because Z/2Z×Z/2Z is abelian, then we can diagonalize GI to obtain an isomophic group
of diagonal matrices. It was done in [9, p. 10, Section 5.2]. One of matrices S ∈ GL4(C)
which diagonalizes GI is

S =


−i 0 i 0
0 −i 0 i
0 1 0 1
1 0 1 0

 .
Then

GJ = S−1GIS =

=

{
1

1
1

1

 ,

−1

−1
−1

−1

 ,

−1

−1
1

1

 ,


1
1
−1

−1

}.
We can represent this group by matrices B and P as follows:

B =

[
1 1 0 0
0 0 1 1

]
, P =

[
2 0
0 2

]
.

Applying a linear change of variables on g1, g2, g3, g4 by matrix S we obtain a new ideal
J = 〈g1(Sx), g2(Sx), g3(Sx), g4(Sx)〉 = ϕS(I) which is stable under GJ (as was shown in the
proof of Theorem 4.1).
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13 Conclusion

In this thesis we have shown how to find stability matrices of a given ideal and how to
use them for reduction of polynomial systems.

We explained that to obtain all infinite scaling symmetries of a given ideal I we need to
find a Z-basis of the left integer kernel of matrix of exponents differences KF obtained from
a reduced Groebner basis F of I. To obtain all finite symmetries we need to compute the
Smith normal form of KF . In Chapter 10 we have shown how to reduce a polynomial system
to obtain another polynomial system with a smaller number of solutions [8, 7].

In Chapter 9 we proposed a method for finding all stability matrices of a given ideal.
We saw that this leads to solving another polynomial system, usually more difficult than the
original one.

In Chapter 4 we have shown that an ideal I is stable under an ivertible matrix A if and
only if it is invariant under A. We used this fact to show that A acts as a bijection on V(I).
In the case of finite variety, A permutes elements of V(I). This allows us to construct a
group homomorphism from GI to the symmetric group Sm (m is the number of elements in
V(I)), which was described in Chapter 11. We gave a conjecture that for a finite variety
V(I) ⊂ k2 (k is a subfield of C, m ≥ 3) such that Spank(V(I)) = k2, a group GI cannot be
bigger than a dihedral group Dm.

In the last Chapter 12 we found all stability matrices of the weak perspective-n-points
problem. We have shown that in generic situation there are only 4 stability matrices, which
form an abelian group isomorphic to Z/2Z× Z/2Z.
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Appendix A. Contents of the attached CD

/
FindingSymmetries ...............folder with code for finding symmetries

TPLibrary .....................folder with imported library
TPMapleLibrary.mla ....... library archive file
TPMapleLibrary.mw .........implementation of library functions

FindingSymmetries.mw ........ the implemented approach to finding symmetries
Bachelor_Thesis.pdf ............ digital copy of this thesis
README.txt
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