Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Implementation of a computer vision
algorithm for onboard detection of
unmanned aircraft

Lukas Bauer

Supervisor: Ing. Martin Saska, Dr. rer. nat.
Field of study: Cybernetics and Robotics
Subfield: Robotics

May 2018

ctuthesis t1606152353

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e N
Student's name: Bauer Lukas Personal ID number: 456970

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics

Branch of study: Robotics
4
Il. Bachelor’s thesis details
~
Bachelor’s thesis title in English:
Implementation of a Computer Vision Algorithm for Onboard Detection of Unmanned Aircraft
Bachelor’s thesis title in Czech:
Implementace algoritmu pocitacového vidéni pro onboard detekci bezpilotnich letount
Guidelines:
The focus of this thesis is to design and implement a vision-based algorithm for detection of UAVs in image from an onboard
camera of a UAV.
1. Research possible approaches for feasible, real-time detection of an object class from images obtained by a camera
carried by a UAV.
2. Select, implement and optimize one such method as a Robot Operating System (ROS) node interoperable with other
flight systems onboard available platforms, for detection and relative localization of neighbor UAVs.
3. Test the method in simulation and on a dataset obtained from real-world flight.
4. Evaluate the precision and computational speed on onboard computers of the available UAVs.
5. Prepare the system for integration into formation control algorithm implemented by other students.
Bibliography / sources:
[1] R. Szelisky, "Computer Vision: Algotrithms and Applications (1st ed.)," Springer-Verlag New York, Inc., New York, NY,
2010
[2] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) , pp. 6517-6525, Honolulu, HI, 2017
[3] C. M. Bishop, "Neural networks for pattern recognition" Oxford university press, 1995
Name and workplace of bachelor’s thesis supervisor:
Ing. Martin Saska, Dr. rer. nat., Multi-robot Systems, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 12.01.2018 Deadline for bachelor thesis submission: 25.05.2018
Assignment valid until: 30.09.2019
Ing. Martin Saska, Dr. rer. nat. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.
L Supervisor’s signature Head of department’s signature Dean’s signature)

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

ctuthesis t1606152353

iv

Acknowledgements

I would like to thank my family for the
support provided to me during my stud-
ies, my supervisor for all the help and
advice given to me and last but not least,
all members of the MRS team for their
support and help during the experiments.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 24. May 2018

ctuthesis t1606152353

Abstract

In recent years, there has been an increase
of interest in formation control of un-
manned aerial vehicles (UAVs) [1]. Many
interesting applications have been stud-
ied, including forest fire monitoring [2],
or searching through a designated region
[3]. During these tasks, UAVs need to
maintain the formation. To maintain the
formation, relative position of UAVs is
needed. In this thesis, the YOLOv2 visual
detector was implemented as a ROS node
operating onboard of a UAV, to be used in
formation control. The detector was mod-
ified for relative position estimation from
the image and tested in leader-follower
experiment both in gazebo simulator and
in real world.

Keywords: UAV, visual detector,
YOLOv2, UAV formation control

Supervisor: Ing. Martin Saska, Dr. rer.
nat.

Multi-robot Systems,

FEE

ctuthesis t1606152353

vi

Abstrakt

V poslednich letech byl narust zajmu o
Iizeni formaci bezpilotnich letounu (UAV)
[1]. Bylo zkoumdno mnoho zajimavych
uplatnéni, véetné monitorovani lesnich po-
zaru [2], nebo prohledavani pozadovaného
tzemi. Béhem téchto tloh musi letouny
udrzet formaci. Pro udrzeni formace je po-
treba znat relativni pozice UAV. V této
préaci byl pouzit YOLOv2 vizualni detek-
tor, ktery byl implementovan jako ROS
node operujici pfimo na letounu pro pou-
zitl v TFizeni formace. Tento detektor byl
modifikovan pro odhad relativni pozice z
obrazu a otestovan jak v gazebo simula-
toru, tak ve skutec¢nosti.

Klicova slova: UAYV, vizudlni detektor,
YOLOV2, tizeni formaci UAV

Preklad nazvu: Implementace
algoritmu pocitacového vidéni pro
onboard detekci bezpilotnich letount —

Contents
Project Specification
1 Introduction 1l

1.1 A brief history of object recognition

1.2 Thesis overview 2l

Part |
Visual object recognition methods

2 Approaches to visual object

recognition 5|
2.1 Template matching
2.2 Color based 5l
2.3 Feature-based methods 6

2.4 Neural networks for visual object
recognition............ (]

2.4.1 Multilayer feedforward neural
network 6l

2.4.2 Convolutional neural network . [7l

3 State-of-the-art CNN detectors 9

3.1 Faster R-CNN 9]

3.2 SSD - Single shot multibox
detector)

3.3 YOLO - You Only Look Once ..

Part 11
Implementation of the YOLOv2
algorithm and experiments

4 Implementation of the YOLOv2

algorithm 15
4.1 Network training

4.2 Separating detections and filtering
out false positives...............

4.3 Calculating the real-world position
of a detected UAV 16l

4.3.1 Camera calibration......... 17

4.3.2 Position of a detected UAV
relative to the camera 18

4.3.3 Transforming the object
position to coordinate system of the

UAV .. 20/
5 Experiments 21
5.1 Performance of YOLOvV2 211
5.2 Leader-follower experiment.

ctuthesis t1606152353

5.3 Precision of the relative position

estimation

5.3.1 Experimental results

6 Conclusion

Appendices

A Bibliography

ctuthesis t1606152353

28

viii

Figures

2.1 An example of a simple
feedforward neural network [9]

2.2 Structure of a CNN [6]

4.1 Pinhole camera model [31]

4.2 Example image from camera
calibration process. The distortion of
the lens is clearly seen...........

4.3 Example image from camera
calibration when holding the
chessboard at the left side. The
width of the board is almost the
same as in front of the camera, even
though after undistortion it should
appear smaller due to perspective
projection................,

5.1 Detected UAV in the gazebo
simulator

5.2 The detector does not see the UAV
on the right

5.3 The detector can not separate the
UAV from the background

5.4 The detector identifies this UAV
after it was flying in front of the sun.

5.5 The detector detected both UAVs
in the image. The UAV on the left is
more than 20 meters away

ix

5.6 False positives in this image are

filtered out. 24]
5.7 Multiple detections of the same

UAV. These should also be filtered

out by the described filter........
5.8 The desired and ground truth

position of the follower UAV in X

and Z axis ...
5.9 The deviation from ground truth

position of the follower UAV in X

and Z axis ... 26l
5.10 The desired and ground truth

position of the follower UAV in X

and Z axis 27

5.11 The deviation from ground truth
position of the follower UAV in X
and 7 axis

5.12 Transformation from the global
coordinate system (O) to the UAV
frame (O”)

5.13 Comparison of the relative UAV
position estimated from the bounding
boxes received from the detector and
the relative UAV position calculated
from the ground truth...........

5.14 The deviation of the relative UAV
position estimated from the bounding
boxes received from the detector with
respect to UAV position calculated
from the ground truth...........

ctuthesis t1606152353

5.15 The deviation of the relative UAV Tables
position estimated from the bounding
boxes received from the detector with
respect to UAV position calculated
from the ground truth based on the
distance from image center in pixels

9 P

2.1 Overview of the various color
models and their invariance to
various imaging conditions. (+
denotes invariant and — denotes
sensitivity of the color model to the
imaging condition.)

ctuthesis t1606152353 X

Chapter 1

Introduction

In recent years, there has been an interest for formation control and obstacle
avoidance of unmanned aerial vehicles (UAVs) [I]. Many interesting appli-
cations have been studied, including forest fire monitoring [2], or searching
through a designated region [3]. During these tasks, UAVs need to maintain
the formation. This could be achieved, for example, by using GNSS to de-
termine relative position between UAVs from their known absolute positions
[4], but there are numerous cases, for example navigation through a forest,
when there such systems are unreliable. In those cases, we can use a camera
mounted on a UAV to detect and localize neighbors, in order to maintain
the formation. To achieve this goal, we need a fast and precise visual object
detector, that can run onboard of a UAV. The aim of this thesis is to select
and integrate such a detector into the pre-existing ROSH-based system used
by MRS groub.

B 1.1 A brief history of object recognition

In the 1980s, a lot of attention was focused on more sophisticated mathemat-
ical techniques for performing quantitative image and scene analysis. Image
pyramids started being widely used to perform tasks such as image blend-
ing and coarse-to-fine correspondence search [8]. Research into better edge
and contour detection was also active, including introdution of dynamically
evolving contour trackers such as snakes [9] [10].

More about Robot Operating System (ROS) can be found at [7]

1 ctuthesis t1606152353

1. Introduction

In the past decade, there was an emergence of numerous feature-based
techniques for object recognition combined with learning, for example by
representing an object as a collection of parts arranged in a deformable
configuration [I1]. Feature-based techniques also dominate other recognition
tasks, such as scene recognition [I2]. Another trend, which now dominates a
lot of the ongoing visual recognition research is the application of sophisticated
machine learning techniques to computer vision problems [I3]. This trend
coincides with the increased availability of large quantities of partially labeled
data on the Internet, which makes it possible to learn object categories
without the use of careful human supervision [10].

In recent years, convolutional neural networks have gained a significant
popularity in the development of artificial inteligence and its applications [14].
They are a useful tool for developing commercial computer vision applications
to recognize image objects, to identify human faces in picture, road signs
recognition for self-driving cars, and other visual tasks [15].

. 1.2 Thesis overview

In this thesis, first, various approaches to visual object recognition problem
are described, including neural networks. Subsequently the YOLOv2 detector
that is used for the onboard detection and other detectors that have similar
accuracy or speed of the detection are described. In the second part of
this thesis, modifications to the YOLOv2 detector and various experiments
performed to test its functionality are presented.

ctuthesis t1606152353 2

ctuthesis t1606152353

1. Introduction

Part |

Visual object recognition methods

ctuthesis t1606152353 4

Chapter 2

Approaches to visual object recognition

B 21 Template matching

Template matching is a very straightforward process. This method is matching
stored template images with given image to determine objects in the input
image. This can be performed both on color and greyscale images [16].

This technique can either be based on pixel to pixel mathing or feature
based matching. In feature based approach, features of template images are
compared to fragments of the given input image [16].

. 2.2 Color based

Another simple and efficient object detection technique is to represent and
match images based on their color histograms. However, when the illumination
circumstances are not the same as in template images, the object recognition
accuracy degrades significantly. There are also many color spaces that can
be used. Commonly used well-known color spaces include: RGB (red-green-
blue), CMY (cyan-magenta-yellow); (normalized color) rgh. We can also use
intensity I, hue H and saturation S. In table we can see differences in
invariance of these color models to different conditions of the image [17].

5 ctuthesis t1606152353

2. Approaches to visual object recognition

viewing surface highlights illumination | illumination
direction | orientation direction intensity
I - - - - -
RGB - - - - -
rgh + + - + +
S + + - + +
H + + + + +

Table 2.1: Overview of the various color models and their invariance to various
imaging conditions. (+ denotes invariant and — denotes sensitivity of the color
model to the imaging condition.)

. 2.3 Feature-based methods

Feature-based methods compare features extracted from an input image with
features extracted from template objects [18]. Popular feature extractors
include, for example, Speeded Up Robust Features extractor (SURF) [19],
which has been used for example for face detection [20], or neural network
feature extractors such as ResNet 101 or Darknet-53, which are used by some
of the state-of-the-art neural network detectors [21] [22].

B 2.4 Neural networks for visual object recognition

B 2.4.1 Multilayer feedforward neural network

This type of neural network is one of the simplest types used for object
recognition. This network has one input layer, followed by n hidden layers
and one output layer. All neurons of layer 7 are connected to each neuron in
layer i-1. Each of these connections has assigned weight, that defines how
sensitive the neuron is to the output values of the neurons in the previous
layer. Each neuron, excluding neurons in input layer, also have a bias number,
that strenghtens or weakens the activity of neuron. [23]

ctuthesis t1606152353 6

2.4. Neural networks for visual object recognition

Hidden
layer

Output

Inputs
Outputs

Figure 2.1: An example of a simple feedforward neural network [5]

When used in image recognition, the input to the network would be the
pixel value for each pixel in the image, so the input layer would have one
neuron for each pixel in the input image. The neurons in the output layer
can, for example, hold the probability values for each object class. The object
with the highest output value is then chosen as the result of detection. To
get correct results for each image neural network has to be trained [24].

Training the network means minimizing the cost function of this network.
One of the methods used for minimizing this value is backpropagation. This
method modifies the weigths of the connections between layers ¢ and -1 and
the biases of the neurons in layer -1 based on the errors in the value of
neurons in the layer 7 [23]. This means, that error propagates backwards
through network.

B 2.4.2 Convolutional neural network

Convolutional neural network (CNN) is a special type of multilayer feed-
forward neural network [I4]. Thse are composed of multiple stages. The
input and output of each stage is called the feature map [25]. There are two
main modules of a CNN ; the feature learning module and the classification
module [I4]. The feature learning module can contain multiple 3-layer stages,
composed of a filter bank layer, a non-linearity layer and a feature pooling
layer [25].

Filter bank layer extracts visual features from an input image. The con-

7 ctuthesis t1606152353

2. Approaches to visual object recognition

volution conv(e) is a dot product of the input image, I and the convolution
kernel, K. the output is a convolved feature map

fc:(I®K)(i’j)v (2'1)

where ® denotes a two-dimensional discrete convolution operator. The
convolution kernel slides over the input image to produce a convolved feature
map as output [14].

First the convolutional layer detects low level features from an image.
The output from a convolutional layer is called the activation map. The
next convolutional layer applies its filters on the activation map from the
current layer. This results in the detection of higher level features that are
an abstraction of several lower level features found by the previous layer.

Non-linearity layer traditionally consits of a sigmoid function, such as the
hyperbolic tangent. However, a more useful function for image recognition is
the rectified sigmoid Rgps : |g; tanh()|, where g; is a trainable gain parameter
[25].

The feature pooling layer subsamples the feature map to reduce its spatial
dimensionality, thus producing a more compact feature representation [14].

Fully-
connected
layer

Input image Convolution Maxpooling
(feature maps)

Figure 2.2: Structure of a CNN [6]

Convolutional neural networks are one of the best performing in visual
recognition tasks. Recently, they became an important technique for com-
puter vision researchers in design of more effective and sophisticated visual
recognition applications [25].

ctuthesis t1606152353 8

Chapter 3

State-of-the-art CNN detectors

B 3.1 Faster R-CNN

Faster region-based convolutional neural network (Faster R-CNN) is one
of the most accurate state-of-the-art detectors available today [22]. This
algorithm uses a region proposal algorithm to formulate a hypotheses about
the object locations. These algorithms are usually slow and can not be used
in on the fly detection tasks. Faster R-CNN upgrades on its previous version,
called Fast R-CNN [26] by combining it with Region Proposal Networks,
which are implemented on a Graphics Processing Unit (GPU) and share
convolutional layers with the detector while other region proposal methods
are implemented on the CPU [22].

B 32 ssD- Single shot multibox detector

Single shot multibox detector (SSD) uses similar approach to YOLO. It does
not use bounding box proposal methods, which significantly improves its
speed. Instead, the algorithm uses small convolutional filter to predict object
cathegories and offsets in bounding box locations, using separate filters for
different aspect ratio detections, and applies these filters to multiple feature
maps from the subsequent layers of the network in order to perform detection
on multiple scales. With these modifications, high accuracy can be achieved

9 ctuthesis t1606152353

3. State-of-the-art CNN detectors

using relatively low resolution input, further increasing the speed of the
detector. The SSD is faster and has better accuracy than the original YOLO
(66.4% mAP at 21 FPS for YOLO and 74.3% mAP at 59 FPS for SSD in the
Pascal VOC2007 test [27]) [28]

B 33 YOLO- You Only Look Once

YOLO detection system is a visual detector, that can recognize multiple
classes of objects in an image. Unlike other, similiar detectors, YOLO uses
only one convolutional neural network to predict all bounding boxes and
probabilities for each object class. All these predictions are simultaneous, so
YOLO processes given image in only one pass. Thanks to this ability, YOLO
is fast in object detection and can be used in real time detection. [29]

YOLO also reasons globally about an image when making predictions.
Unlike sliding window and region proposal-based techniques, YOLO sees the
entire image during training and test time and therefore it implicitly encodes
contextual information about classes as well as their appearance [29].

The system operates as follows. Before the detection, the input image is
scaled to 448 x 448 pixels. It is then divided into an S x S grid. The cell that
includes the center of an object is responsible for detection of that object.
Each cell then predicts n bounding boxes and the confidence score for each
bounding box. These confidence scores reflect the confidence of the model,
that the box contains an object as well as the accuracy of this box. [29]

YOLO detection network has 24 convolutional layers, followed by 2 fully
connected layers. Fast YOLO has only 9 convolutional layers instead of 24.
This is the only difference between these two versions. [29]

A newer version, YOLOv2, has many advantages compared to the older
version. One advantage is the ability to modify the resolution of the input
image and thus tune between accuracy and speed of the detector [30]. The
structure of the network has also changed. YOLOv2 has 19 convolutional
layers and 5 maxpool layers [30].

At the time of writing of this thesis the third version of You Only Look
Once (YOLO) detector has been published. YOLOv3 uses a new network
for feature extraction. This network has 53 convolutional layers, because of

ctuthesis t1606152353 10

3.3. YOLO - You Only Look Once

which it is called Darknet-53. The structure of the network can be seen in

[21]. This detector has similar accuracy as SSD, but it is three times faster
[21]

For this thesis, the YOLOvV2 is used for its precision, speed, as well as for
the ability to be easily optimized for the specific task.

11 ctuthesis t1606152353

ctuthesis t1606152353

12

Part ||

Implementation of the YOLOv2
algorithm and experiments

13 ctuthesis t1606152353

ctuthesis t1606152353

14

Chapter 4

Implementation of the YOLOv2 algorithm

For this project, an implementation of YOLOv2 based on the darknet neural
network framework written in C++4, CUDA and OpenCL was used, together
with the Robot Operating System (ROS) framework for implementation on a
UAV. The YOLOv2 yolo-voc.cfg configuration file was used, but with slight
modifications. Under the net section, the width and the height of an input
image was changed to be 640x360 pixels, which is the quarter of the resolution
of the camera used in experiments (1280x720 pixels). This way, the aspect
ratio of the image is preserved. Under the region section, the number of
classes was changed to 1, because the detector will be used only for detecting
other UAVs. Finally, the number of filters under the last convolutional section
was changed to 30.

B 21 Network training

A YOLOvV2 image label is in the following format:

[e][]ly][w][R], (4.1)

where c is the class number, x is the position of the center of an object along
the horizontal axis, y is the position of the center of an object along the
vertical axis, w is the width of the object and h is the height of the object
all expressed in pixels. For training of the network, a set of 2500 manually
labeled images was used. These images are all from the same recording, so
they have insufficient variation required for proper training of the network.

15 ctuthesis t1606152353

4. Implementation of the YOLOV2 algorithm

The ratio between images used for training and images used for testing was
set to 80/20. With this setup, the network was trained for 4000 iterations.
The weights that were obtained this way, were then used in the experiments.

B a2 Separating detections and filtering out false
positives

Due to the imperfection of the detector, not all bounding boxes correspond
to different UAVs. Some of these bounding boxes can belong to the same
UAV, falsely detected multiple times, while others can be random erroneous
detections. Some of these false positives are filtered out by keeping the last
known position for each UAV. At the start of the program, the maximum
number of UAVs expected to be detected by the network is given to the
program. When a new bounding box is produced by the network, it gets
assigned to the closest UAV from the previous frames. If there is no such
UAYV, the bounding box is assigned to a newly detected UAV. If the maximum
number of detections is reached, any new bounding boxes that are not close
enough to any UAVs are ignored until one of the previously known UAVs
is lost for sufficient time to be cleared. This duration was initially set to 1
second, but due to low performance onboard of a UAV, it was increased to 4
seconds.

This way, multiple detections of the same UAVs are all assigned to this
UAV and most of the false positives are filtered out.

The drawback of this solution is that false positives detected in multiple
frames can be detected as UAVs, and real UAVs can get filtered out instead.

B a3 Calculating the real-world position of a
detected UAV

For calculating the direction and distance of a detected UAV, the pinhole
camera model was used. In this model, a scene view is formed by projecting
3D points onto the image plane using a perspective transformation. In
OpenCV framework, cameras are described by a camera matrix and distortion

ctuthesis t1606152353 16

4.3. Calculating the real-world position of a detected UAV

coeficients. Camera matrix is in the following format:

fz 0 ¢
C=10 f, ¢, (4.2)
0O 0 1

where f, and f, are camera focal lengths expressed in pixels for x and y
axis and ¢, and ¢, are the optical centers expressed in pixels. Distortion
coeficients are used to correct the distorition of the camera lens. All these
parameters are obtained by camera calibration process.

P=(X.Y,2)

//'
optical
axis
4
principal 1
point |
(ex,cy)

|
1
1
1
1
[}
1
1
-

“
1
1
! [
| [
! [
! [
|
1 Yy
1

1

"!'

Figure 4.1: Pinhole camera model [31]

B 4.3.1 Camera calibration

A ROS package called Camera Calibrator was used for camera calibration.
The calibration is done by positioning black-white chessboard pattern in front
of the camera at various positions. We used 8x6 chessboard with 52 mm
squares.

17 ctuthesis t1606152353

4. Implementation of the YOLOv2 algorithm

Figure 4.2: Example image from camera calibration process. The distortion of
the lens is clearly seen

Figure 4.3: Example image from camera calibration when holding the chessboard
at the left side. The width of the board is almost the same as in front of the
camera, even though after undistortion it should appear smaller due to perspective
projection

B 4.3.2 Position of a detected UAV relative to the camera

Real world lenses usually have some distortion, mostly radial distortion and
slight tangential distortion. In order to calculate the direction of a detected
UAV correctly, the detected point from an image must first be undistorted.
The OpenCV function undistortPoints was used to undistort the point in
the center of the bounding box and thus to move it to the position it would
have in a pinhole-type camera image. This point was then used to calculate
the direction of the detected UAV with respect to camera. The projection of
the real world object in an image can be calculated using the camera matrix

ctuthesis t1606152353 18

4.3. Calculating the real-world position of a detected UAV

as
T X
y|=C|Y|[, (4.3)
w VA

where x, y are weighted position of an object in the image, X, Y, Z are
coordinates of an object with origin of the coordinate system in the camera
with X axis heading to the right, Y axis heading down, and Z axis heading
out of the camera, w = Z and C is the camera matrix. The direction vector
pointing towards the object from an image position can be calculated as

X T
V=Y |=C"|y]|. (4.4)
Z 1

1
(4.5)

In order to calculate the distance of a detected object from the camera,
triangle similarity was used. The ratio between real object width and its
distance from the camera is the same as the ratio between its width in the
image and the focal length.

oz (4.6)

where L is the real width of the object in meters, d is the distance of the
object in meters, 1 is the width of the object image in pixels and f is the
camera focal length in pixels. The distance of the object is then

_ 1L

d
l

(4.7)
Height of the object could also be used, but it is more dependent on the
orientation of the detected UAV and on the relative position of the detected
UAYV with respect to the camera. Because our UAVs have relatively round
shape, their orientation has minimal influence on the width of their bounding
boxes.

Once the direction vector towards the detected object and its distance from
the camera are obtained, the position of the detected object relative to the
camera can then be calculated as

§=dz, (4.8)

where p'is the position of the detected object with respect to the camera, d is
the distance of the detected object and ¢ is the normalized direction vector.

19 ctuthesis t1606152353

4. Implementation of the YOLOV2 algorithm

This vector is then rotated so that X axis is heading out of the camera, Z
axis is heading up and Y axis is heading left using rotation matrices

1 0 0
R,=[0 0 1

0 -1 0 o

0 10 (4.9)
R.=|-1 0 0

0 0 1

to match the coordinate system of UAV with the camera. The position of
the detected object in the new coordinate system is then

1;; = R, R;p. (4'10)

B 4.3.3 Transforming the object position to coordinate system
of the UAV

Some of the used UAVs have the camera rotated in yaw with respect to the
UAV frame. For those cases, this system is further rotated around Z axis
using the transformation matrix

cosa —sina 0 O
sinae cosa 0 O

R.(a) = 0 0 1ol (4.11)
0 0 01

where « is the camera yaw angle. The position of the detected UAV relative
to observer UAV with the camera is then

T
=R | Y], (4.12)
1

where z, ¥, z are the coordinates of the detected object relative to the UAV
with the camera and 2’,%/, 2’ are the coordinates of the detected object in
the camera coordinate system.

ctuthesis t1606152353 20

Chapter 5

Experiments

. 5.1 Performance of YOLOv2

The original YOLOvV2 is written on the darknet neural network framework,
written in CUDA m This implementation runs at 18 - 20 fps on PC with
Intel Core i7 4770K @ 4GHz, Nvidia GeForce GTX1070 and 16 GB of RAM.
Because our UAVs do not have CUDA capable GPU, this implementation
could not be used for experiments, so OpenCL port of the darknet framework
was used instead. In this version YOLO runs at 14 - 16 FPS on the same
PC and at 1 FPS on Intel Iris GPU onboard of our UAV. The expected
delay between the input to the network and the detected bounding boxes
was 1 s, however due to implementation issues the delay at the time of the
experiments was approximately 7 s. This was fixed afterwards.

When testing YOLOvV2 on desktop PC, the detector managed to detect all
UAVs in the image in majority of the cases. The cases where the detector
failed to successfuly detect all UAVs were usually when the UAV was flying
in front of the sun, or was hidden in the background, as can be seen in figures

5.2l and [5.3L

In the gazebo simulator, the detector managed to perfectly detect and
track the UAV.

'More about darknet can be found at |https://pjreddie.com/darknet/|

21 ctuthesis t1606152353

https://pjreddie.com/darknet/

5. Experiments

Figure 5.1: Detected UAV in the gazebo simulator

Figure 5.2: The detector does not see the UAV on the right

Figure 5.3: The detector can not separate the UAV from the background

ctuthesis t1606152353 22

5.1. Performance of YOLOv2

Figure 5.4: The detector identifies this UAV after it was flying in front of the sun.

When testing YOLOv2 onboard of the UAV, the accuracy of the detector
decreased compared to tests on PC, due to heavy performance load on the
UAV. Thanks to the filter described in the previous section, the detector can
still be used for tasks that do not require the production of precise bounding
boxes around UAVs.

Figure 5.5: The detector detected both UAVs in the image. The UAV on the
left is more than 20 meters away

23 ctuthesis t1606152353

5. Experiments

Figure 5.6: False positives in this image are filtered out.

When the UAV was moving in the image, the onboard detector sometimes
created multiple bounding boxes around the UAV. However, when running
the detector on the desktop PC, this does not happen.

Figure 5.7: Multiple detections of the same UAV. These should also be filtered
out by the described filter

B 52 Leader-follower experiment

To test the functionality of the detector, a simple leader-follower experiment
was performed. In this experiment, one UAV follows a pre-set trajectory
and another UAV is set to follow the first. Because the relative position
estimation, described in section was not implemented at the time of the
experiment, the Y axis was the same throughout the whole experiment.

ctuthesis t1606152353 24

5.2. Leader-follower experiment

The algorithm used for following the leader was a simplified version of the
algorithm described in [32], implemented in parallel by other Multi Robot
Systems team member at Czech Technical University. The method uses the
position of the leader in the image to compute the correct speed and direction
of the follower UAV. The thrust gain m(k) for the follower UAV in the time
step k is

m(k) =1— e—%a(/’%‘)T(2:,,1)’13515(1‘~‘))7 (5.1)

where (k) = [%] is the position of the leader in the camera image of the

follower and 3,, € R?? is a covariance matrix. The thrust m(k) will be
maximal when the leader is on the border of the camera view and zero, when
it is in the center of the image [32].

The thrust direction is then obtained as

where vx (k) is the velocity in the X axis and vz (k) is the velocity in the Z
axis. Furthermore we need to calculate the desired setpoint that is given to
the follower UAV. This setpoint is calculated as

X(k) = X(k — Ak) +vx (k) Ak

Z(k) = Z(k — Ak) + vz (k) Ak, (5:3)

where X (k — Ak) and Y (k — Ak) is the position of the follower UAV in the
previous time step and Ak is the sampling period. By increasing the sampling
period, we can increase the speed of the algorithm, but decrease its robustnes.

In all the experiments, the ground truth position was obtained from Real-
time kinematic (RTK) and rangefinder.

25 ctuthesis t1606152353

5. Experiments

26 T T T T T T
desired position
24 - .. 4
ground truth position
B
—22r .
bt
20 .
1 8 1 1 1 1 1 1
0 10 20 30 40 50 60 70
t [s]
81 desired position 1
ground truth position
— 6 F]
A
N 4 .
2r 4
0 10 20 30 40 50 60 70
t [s]

Figure 5.8: The desired and ground truth position of the follower UAV in X
and Z axis

70
3 T T T T T T
6 |
N
a4l |
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70

t [s]

Figure 5.9: The deviation from ground truth position of the follower UAV in X
and 7Z axis

ctuthesis t1606152353 26

5.2. Leader-follower experiment

In the first experiment, the follower oscillated around the target position,
because of the 7s delay of the detector. For the second experiment, the
sampling period of the algorithm was decreased to partially compensate for
this delay.

25 T T T T T

desired position
ground truth position

15 1 1 1 1 1
0 10 20 30 40 50 60

2r desired position

ground truth position

0 1 1 1 1 1
0 10 20 30 40 50 60

Figure 5.10: The desired and ground truth position of the follower UAV in X
and Z axis

27 ctuthesis t1606152353

5. Experiments

60
2 T T T T T
15 -
)
SR |
<
0.5 -
0 1 1 1 1 1
0 10 20 30 40 50 60

Figure 5.11: The deviation from ground truth position of the follower UAV in
X and Z axis

In this experiment, the deviation caused by the delay is still noticable, as
seen in and The follower UAV still manages to track the leader.
The video from the whole experiment can be found at https://www.youtubel
|com/watch?v=XYZEmq6qC78|

B 5.3 Precision of the relative position estimation

Because at the time of the experiments this functionality was not yet im-
plemented, the relative position estimation was tested on the desktop PC
on video recorded during the leader-follower experiment. This test was per-
formed by comparing the absolute position of the leader UAV obtained from
differential GPS data transformed to the coordinate system of the follower
UAV and the relative position of the leader UAV estimated from the bounding
box produced by the detector.

In order to transform the absolute position of the leader UAV to the
coordinate system of the follower we first need to define the transformation

ctuthesis t1606152353 28

https://www.youtube.com/watch?v=XYZEmq6qC78
https://www.youtube.com/watch?v=XYZEmq6qC78

5.3. Precision of the relative position estimation

matrices between the global coordinate system and the coordinate system of
the follower. These matrices are

cosa —sina 0 0
sima cosa 0 O
Ra(e) =1 0 10
0 0 01
cosf 0 sing 0
0 1 0 0
Ry (B) = —sinf8 0 cosfB 0
0 0o 0 1
] (5.4)
cosy —siny 0 O
_|siny cosy 0 O
0 0 01
1 0 0 =z
101 0 y
T(ZZ}, Y, Z) - O O 1 = ’
00 01
The relative position of the detected object can then be calculated as
x x
/
V| = (104,04, 0:) (@) Ry () Ro(0) ™ | ¥ | (5.5)
1 1

where z,y, z are the absolute coordinates of the leader, O., Oy, O; is the
position of the follower UAV and z/,%/, 2/ are the coordinates of the leader
UAV relative to the follower, ¢ is the yaw of the follower, v is pitch and 6 is
its roll.

29 ctuthesis t1606152353

5. Experiments

Figure 5.12: Transformation from the global coordinate system (O) to the UAV
frame (O’)

ctuthesis t1606152353 30

5.3. Precision of the

Bl 5.3.1 Experimental results

relative position estimation

£
> ground truth position
s bounding box position |
_1 0 1 1 1 1
0 50 100 150 200 250
t [s]
1 0 T T T T
5 - -
7 i
>~ i
ground truth position
-10 bounding box position .
_1 5 1 1 1 1
0 50 100 150 200 250
t[s]
4 T T T T
2 -
£]
N
-2 ground truth position]
bounding box position
_4 1 1 1 1
0 50 100 150 200 250

Figure 5.13: Comparison of the relative UAV position estimated from the bound-

ing boxes received from the detector and t
from the ground truth

31

he relative UAV position calculated

ctuthesis t1606152353

5. Experiments

0 50 100 150 200 250
t [s]
15 T T T T
)
L 10 J
<
5 1 1 1 1
0 50 100 150 200 250
t [s]
2 T T T T
E
SEM: l
<
0 1 1 1 1
0 50 100 150 200 250
t [s]

Figure 5.14: The deviation of the relative UAV position estimated from the

bounding boxes received from the detector with respect to UAV position calcu-
lated from the ground truth

ctuthesis t1606152353 32

5.3. Precision of the relative position estimation

10 T T T T T
£l .
~ 5 . . e J
< PR AT 5 LR AL
oL= 28 e o oM T e ST o HIRDRI . I I
0 100 200 300 400 500 600
L [pixel]
15 T T T T T
E
~ 101 . : 1
< S e “«"wrgw» B T
5 P ndesgy o 4 ° h I 1 1
0 100 200 300 400 500 600
L [pixel]
2 T T T T T
E v o ten S 1) ;.....', . o« o
S N [eidar e fRSmie g e, ws W e . 1
q . .‘ ..' . .
0 1 1 : 1 1 1
0 100 200 300 400 500 600
L [pixel]

Figure 5.15: The deviation of the relative UAV position estimated from the
bounding boxes received from the detector with respect to UAV position calcu-
lated from the ground truth based on the distance from image center in pixels

(L)

As can be seen in figures and the position estimated from the
bounding box obtained from the detector follows similar trajectory to the
position from ground truth in ¢ and 2’ axis, but with a constant offset. In
2’ axis the deviation is smaller. This deviation can be due to inaccurate
bounding boxes produced by the detector, error in camera calibration, or
inaccurate angle and position readings of UAVs. Because the YOLO detector
produces less accurate bounding boxes on the onboard GPU, this inaccuracy
would likely increase in such a situation.

As can be seen in figure the deviation does not increase with the
distance of the detected UAV from the center of the camera image in 3’ and
2 axis. For the 2/ axis, more data is needed.

33 ctuthesis t1606152353

ctuthesis t1606152353

34

Chapter 0

Conclusion

In this thesis we have described various algorithms of visual object detection
including some of the state-of-the-art CNN detectors that could be usable for
onboard detection of unmanned aircraft. From these detectors, the YOLOv2
system, which proved to be fast, precise and easy to modify was chosen
for implementation. The current onboard version of the detector is able
to process images at 1 FPS. The bounding boxes are produced 0.9 s after
receiving the image.

We have explained the modifications done to the YOLO system for its
use in UAV formation control. One of these modifications is filteration of
false positives and assigning each bounding box to the correct UAV using the
position of each detected UAV in previous frames. Another addition is the
estimation of the relative position of the detected UAV with respect to the
UAV with the camera.

The detector was tested in leader-follower experiment, together with sim-
plified formation control algorithm, described in [32], implemented in parallel
by other MRS team member as part of his Bachelor’s Thesis. Due to 7 s delay
of the detector, the follower could not center in on the leader, but managed
to follow it.

The detector is usable for formation control that does not depend on precise
estimation of the relative position between the UAVs, but with the current
available dataset the detector is functional only under very specific conditions
and even then numerous false positives and inprecise bounding boxes are
produced. These false positives are mostly filtered out by the filter described

35 ctuthesis t1606152353

6. Conclusion

in 4.2, The UAV that runs the detector also heavily from the computational
load. This could be solved by addition of a dedicated GPU.

ctuthesis t1606152353 36

37

ctuthesis t1606152353

6. Conclusion

Appendices

ctuthesis t1606152353

38

Appendix A

Bibliography

X. Wang, V. Yadav, and S. N. Balakrishnan, “Cooperative uav formation
flying with obstacle/collision avoidance,” IEEE Transactions on Control
Systems Technology, vol. 15, pp. 672-679, July 2007.

D. W. Casbeer, R. W. Beard, T. W. McLain, S.-M. Li, and R. K. Mehra,
“Forest fire monitoring with multiple small uavs,” in Proceedings of the
2005, American Control Conference, 2005., pp. 35630-3535 vol. 5, June
2005.

R. W. Beard and T. W. McLain, “Multiple uav cooperative search under
collision avoidance and limited range communication constraints,” in
42nd IEEE International Conference on Decision and Control (IEEE
Cat. No.03CH37475), vol. 1, pp. 25-30 Vol.1, Dec 2003.

S. J. Comstock, “Development of a low-latency, high data rate, differen-
tial gps relative positioning system for uav formation flight control,” tech.
rep., AIR FORCE INST OF TECHNOLOGY WRIGHT-PATTERSON
AFB OH GRADUATE SCHOOL OF ENGINEERING AND MANAGE-
MENT, 2006.

R. Quiza and J. Davim, “Computational methods and optimization,” 01
2011.

“Introduction to convolutional neural networks.” http://www.vaetas!
cz/posts/intro-convolutional-neural-networks/, Accessed: 2018-
05-24.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, p. 5, Kobe, Japan, 2009.

39 ctuthesis t1606152353

http://www.vaetas.cz/posts/intro-convolutional-neural-networks/
http://www.vaetas.cz/posts/intro-convolutional-neural-networks/

A. Bibliography

[8]

[19]

[20]

[21]

A. Rosenfeld, “Quadtrees and pyramids for pattern recognition and
image processing,” vol. 2, pp. 802-811, 01 1980.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International journal of computer vision, vol. 1, no. 4, pp. 321—
331, 1988.

R. Szeliski, Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for
object recognition,” International journal of computer vision, vol. 61,
no. 1, pp. 55-79, 2005.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features
and kernels for classification of texture and object categories: A compre-
hensive study,” International journal of computer vision, vol. 73, no. 2,
pp. 213-238, 2007.

I. Pitas, V. Calhoun, and K. Diamantaras, “Guest editorial: Special issue
on machine learning for signal processing,” Journal of Signal Processing
Systems, vol. 61, pp. 1-2, Oct 2010.

M. Y. W. Teow, “Understanding convolutional neural networks using a
minimal model for handwritten digit recognition,” in 2017 IEEE 2nd
International Conference on Automatic Control and Intelligent Systems
(I2CACIS), pp. 167-172, Oct 2017.

L. Deng and D. Yu, Deep Learning:Methods and Applications. Now
Foundations and Trends, 2014.

R. A. Khushboo Khurana, “Techniques for object recognition in images
and multi-object detection,” International Journal of Advanced Research
in Computer Engineering & Technology, vol. 2, apr 2013.

T. Gevers and A. W. Smeulders, “Color-based object recognition,” Pat-
tern Recognition, vol. 32, no. 3, pp. 453 — 464, 1999.

J. W. Howarth, H. H. C. Bakker, and R. C. Flemmer, “Feature-based
object recognition,” in 2009 4th International Conference on Autonomous
Robots and Agents, pp. 375-379, Feb 2009.

H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Furopean conference on computer vision, pp. 404-417,
Springer, 2006.

J. Li, T. Wang, and Y. Zhang, “Face detection using surf cascade,” in
Computer Vision Workshops (ICCV Workshops), 2011 IEEE Interna-
tional Conference on, pp. 2183-2190, IEEE, 2011.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

ctuthesis t1606152353 40

[22]

[26]

[27]

28]

[29]

A. Bibliography

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91-99, 2015.

C. Stergiou and D. Siganos, “Neural networks.” Available at: http://wwwl
doc.ic.ac.uk/~nd/surprise_96/journal/vol4/csll/report.html.

C. M. Bishop, Neural networks for pattern recognition. Oxford university
press, 11 1995.

Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks
and applications in vision,” in Proceedings of 2010 IEEFE International
Symposium on Circuits and Systems, pp. 2563-256, May 2010.

R. Girshick, “Fast r-cnn,” arXiv preprint arXiv:1504.08083, 2015.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal
of computer vision, vol. 88, no. 2, pp. 303-338, 2010.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in FEuropean conference on
computer vision, pp. 21-37, Springer, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779-788, June
2016.

J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6517-6525, July 2017.

“Camera calibration and 3d reconstruction.” https://docs.opencv!
org/2.4/modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.htmll Accessed: 2018-05-24.

F. Poiesi and A. Cavallaro, “Distributed vision-based flying cameras to
film a moving target,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2453-2459, Sept 2015.

41 ctuthesis t1606152353

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

	Project Specification
	Introduction
	A brief history of object recognition
	Thesis overview

	Visual object recognition methods
	Approaches to visual object recognition
	Template matching
	Color based
	Feature-based methods
	Neural networks for visual object recognition
	Multilayer feedforward neural network
	Convolutional neural network

	State-of-the-art CNN detectors
	Faster R-CNN
	SSD - Single shot multibox detector
	YOLO - You Only Look Once

	Implementation of the YOLOv2 algorithm and experiments
	Implementation of the YOLOv2 algorithm
	Network training
	Separating detections and filtering out false positives
	Calculating the real-world position of a detected UAV
	Camera calibration
	Position of a detected UAV relative to the camera
	Transforming the object position to coordinate system of the UAV

	Experiments
	Performance of YOLOv2
	Leader-follower experiment
	Precision of the relative position estimation
	Experimental results

	Conclusion

	Appendices
	Bibliography

