Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Task Allocation in a Team of

Heterogeneous Unmanned Aerial
Vehicles

Marek Soucek

May 2018
Supervisor: Ing. Milan Rollo, Ph.D.






BACHELOR'S THESIS ASSIGNMENT

|. Personal and study details
ra ™
Student's name: Soucek Marek Personal ID number: 457106

Faculty / Institute:  Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics
Study program: Open Informatics

L Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

-
Bachelor's thesis title in English:
Task Allocation in a Team of Heterogeneous Unmanned Aerial Vehicles

Bachelor's thesis title in Czech:
Alokace loh tymu heterogennich bazpilotnich prostfedki

Guidelines:
1. Study the problem of task allocation in a team of heterogeneous UAVS.
2. Define the concept of operations far various missions which could be executed by a team of UAVS (surveillance, tracking,
patrolling, ete.).
3. Study existing approaches to task allocation problem with focus on ceniralized and decentralized approaches.
4. Design a task allecation algorithm which will consider specific parameters of particular UAVS (type, performance, energy)
and their payload to efficiently distribute set of missions.
& Implement the algorithm within AgentFly simulation framewaork.
6. Validale the algorithm perfarmance in a sel of simulations.

Bibliography / sources:

[1] C. Berger, M. Wzorek, J. Kvarnstrém, G. Conte, P. Doherty and A. Eriksson.: Area coverage with hetercgenaous LAVS
using scan patterns. 20168 IEEE Internaticnal Sympasium on Safety, Security, and Rescue Robotics (SSRR), Lausanne,
pp. 342-349, 2018.

[2] Han-Lim Chai, A K. Whitten, and J.P. How.: Decentralized task allocation for heterogeneous teams with cooperation
constraints. American Control Conference (ACC), 2010, pp. 3057-3062, 2010.

[3] D. Twrra, L. Pollini and M. Innocenti_: Fast unmanned vehickes lask allocation with moving targets. 43rd IEEE Conference
on Decision and Cantral (CDC), pp. 4280-4285 Vol.4, 2004.

Mame and workplace of bachelor's thesis supervisor:

Ing. Milan Rollo, Ph.D., Artificial Intelligence Center, FEE

Mame and workplace of second bachelor's thesis supervisor or consultant:

Date of bachelor's thesis assignment: 08.01.2018  Deadline for bachelor thesis submission: 25.05.2018
Assignment valid until:  30.09.2019

Ing. Mitan Rolla, Ph.D. doc. Ing. Tomad Svoboda, Ph.D. jprof. Ing. Pavel Fupka, CSe.
L Supiredin ' GG g Hisdal Of QeQaMTHENTS SaGahag Dby & Sl
.

IIl. Assignment receipt

The siudent acknawiedges thal ihe bachelor's thesss s an indmdual work. The student must prduce his thesis without the assstance of others,
wath the eacepbon of provided consuRations. Withen the: bacheions thesss. the author must state e names of consuitants and incluce & kst of references.

ﬂﬂl'd‘m receipt Student’s signature







/ Declaration

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 25. 5. 2018



Abstrakt

Tato prace se zabyva problematikou
pridélovani loh v tymu heterogennich
bezpilotnich prostfedku (UAV). Defi-
nuje koncept operaci pro Sirokou skalu
misi, které mohou byt provadény ty-
mem UAV. Koncept operaci zahrnuje
mise jako mapovani, hlidky, sledovani
cile, vyhleddvani a dalsi. Prace pak
zavadi formalizaci téchto misi, UAV,
prostredi a zakladnich loh, na néz jsou
mise rozklddany. Pii Teseni problema-
tiky alokace tloh na UAV se, ve formé
automatizovaného planovaciho jazyka
PDDL, vyuzivaji neddvné pokroky v
oblasti obecného planovani. Soucasti
prace je také prehled a srovnéni dostup-
nych PDDL planovact. Prace navrhuje
architekturu systému pro planovani a
alokaci uloh na UAV, kterd vyuziva
PDDL planovaé¢ a je schopna zvladnout
sirokou skéalu misi v dynamickém svéte,
kde operator muze kdykoliv pridat novy
tkol nebo ukoncit existujici. Navrh-
nutd architektura je implementovana
a integrovana do AgentFly simuldtoru.
Na zavér je provedeno nékolik simu-
laci s riznymi scénari pro otestovani
navrhnutého systému.

Klicova slova: alokace dtloh, pla-
novani, bezpilotni prostfedky, UAV,
PDDL

/ Abstract

Vi

This thesis addresses problem of task
allocation in a heterogeneous team of
Unmanned Aerial Vehicles (UAVs). The
concept of operations is defined for a
wide range of missions which can be
executed by a team of UAVs. The
concept of operations includes missions
like mapping, patrol, tracking, search
and other. Thesis then introduces a
formalization for these missions, UAVs,
environment and elementary tasks into
which missions are decomposed. Recent
advances in the field of general plan-
ning are used in form of an automated
planning language PDDL to solve prob-
lem of tasks allocation. Overview and
comparison of available PDDL planners
in presented. Thesis proposes a sys-
tem architecture for planning and task
allocation that utilizes PDDL planner
and is capable to handle a wide range
of missions in a dynamic world where
the operator can add a new mission or
terminate existing one at any time. Pro-
posed architecture is implemented and
integrated within AgentFly simulator
framework. Finally, several simulations
with multiple scenarios are conducted
to test capabilities of proposed system.

Keywords: task allocation, plan-
ning, unmanned aerial vehicles, UAV,
PDDL



Contents

1 Introduction ........................ 1
2 Concept of operations ............. 2
2.1 Scenarios ..........ooviiiiiiiininn. 2
2.1.1 Mapping.............coo.... 2
2.1.2 Search ...................... 3
2.1.3 Tracking .................... 3
2.1.4 Patrolling................... 4
2.1.5 Measurement............... 4

2.2 UAV types ....covviiiiiiiiin.., 5)
2.3 Environment ..................... 5)
3 Problem formulation............... 6
31 UAV 6
3.2 Sensor ......iiiiiiiii 6
3.3 Environment ..................... 7
3.4 Missions .......coovvviiiiiiiai.. 7
3.4.1 Mapping.................... 7
3.4.2 Search ...................... 7
3.4.3 Tracking .................... 7
3.4.4 Patrolling................... 7
3.4.5 Measurement............... 7

3.5 Elementary tasks................. 8
3.5.1 Flight ....................... 8
3.5.2 Visit ....ooviiiiii 8
3.5.3 Tracking .................... 8

4 Stateoftheart .................... 9
5 PDDL planners ................... 11
5.1 Basic planners.................. 11
5.2 Numeric planners .............. 11
5.3 Temporal planners............. 12
531 LPG ............l 12
53.2 LPG-td .........oooiinl. 13
5.3.3 POPF .................... 13
5.34 OPTIC ................... 13

6 System architecture.............. 15
6.1 Model...................ooint 15
6.2 Planning module............... 16
6.3 Controller ...................... 16
6.4 AgentFly simulator ............ 16
7 Implementation................... 18
7.1 Decomposition ................. 18
7.1.1 Mapping.................. 18
7.1.2 Search .................... 18
7.1.3 Patrol..................... 18
7.1.4 Measurement............. 19

7.2 Mapping to PDDL domain.... 19
7.2.1 UAV and world .......... 19

vii

7.2.2 Elementary tasks ........ 21
7.2.3 Metric .................... 22

7.3 Planning........................ 23
7.3.1 Task interruption ........ 23
7.3.2 Timeline differences...... 24
7.3.3 Asynchronous execution . 24

7.4 UAV flight plan update........ 25
8 Experiments ...................... 27
8.1 Mapping scenario .............. 27
8.2 Tracking scenario .............. 28
8.3 Search scenario................. 29
8.4 Patrol scenario ................. 31
8.5 Measurement scenario ......... 32
8.6 Replanning scenario ........... 33
9 Conclusion and future work ..... 34
References ........................ 35

A Content of enclosed CD ......... 37



5.1.

5.2.

8.1.

8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

Tables

PDDL features supported by

numeric planners ............... 12
PDDL features supported by
temporal planners.............. 12
UAV configurations used in
experiments..................... 27
Mapping fleet definition. ....... 27
Tracking fleet definition. ....... 28
Search fleet definition. ......... 29
Patrol fleet definition........... 31

Measurement fleet definition. .. 32
Stres test results ............... 32
Replanning fleet definition. .... 33

/ Figures

viii

2.1.
2.2.
2.3.
2.4.
3.1.

6.1.
7.1.

7.5.
7.6.
8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.

Mapping mission ................. 2
Search mission.................... 3
Patrol mission .................... 4
Measurement mission ............ 4
Sensor properties and orien-
tation ... 6
System architecture ............ 15
Part of domain with UAV
and world description .......... 20
. Part of problem with UAV
and location initialization...... 20
. Part of problem with task
initialization and goal.......... 21
. Part of domain with task
description...................... 22
Plan without move cost. ....... 22
Plan with move cost............ 22
Mapping scenario plan. ........ 28
Tracking scenario plan. ........ 29
Search scenario plan............ 30
Search timeline. ................ 30
Patrol scenario plan. ........... 31
Patrol timeline.................. 31
Measurement plane............. 32
Replanning scenario initial
plan. ... 33

. Replanning scenario after re-

planning with tracking. ........ 33



Chapter ].
Introduction

In recent years, the UAVs (Unmanned Aerial Vehicles) have quickly expanded and
started to be used in many industries thanks to improvements of sensor equipment,
increasing range and descending prices. Lower prices also allow deploying of entire
UAV teams.

Cooperative UAV teams open opportunity for new types of missions. Search for
moving target can serve as an example. If more UAVs cooperates, search pattern can
be used to prevent undetected target move to already searched area. Cooperative
UAV teams can also significantly decrease mission execution time if that mission is
parallelizable.

Several military applications are a driving force for research and progress in field of
control and cooperation of UAV team. UAVs allow military to swiftly cover large or
hard to access areas with only a small number of operators. UAVs can also operate
in dangerous zones without the risk of human loss. Among frequently used military
applications belong border patrols in difficult terrain or search and destroy missions.
But many civilian applications also exist. UAVs are already used in search for missing
person or search and rescue missions after disasters. Another application can be found
in modern precise agriculture where UAVs are used to map the state of crops. Finally,
applications as package delivery or air quality monitoring and many others in other
domains.

This thesis proposes solution to situation where multiple missions are part of one
large operation controlled by one operator and executed by a team of heterogeneous
UAVs. Approach of decomposing large or complex missions into set of elementary tasks
is used. Actual task allocation to UAVs is represented and solved as general planning
problem in PDDL language.

This thesis is organized as follow. In Chapter 2 is concept of operation with an
overview of missions and description of UAVs and environment. Chapter 3 introduces
formalization of missions, UAVs, environment and elementary tasks into which mis-
sions are decomposed. Chapter 4 provides a study of existing approaches and state of
the art algorithms. In Chapter 5 is an overview and comparison of available PDDL
planners. Chapter 6 proposes a system architecture for planning and task allocation
that utilizes PDDL planner and is capable to handle a wide range of missions in a
dynamic world where the operator can add a new mission or terminate existing one at
any time. Chapter 7 describes an implementation of proposed system architecture and
its integration within AgenFly simulation framework. Results from several conducted
simulations with different scenarios are presented in Chapter 8. Finally, in Chapter 9
is conclusion and future work.



Chapter 2
Concept of operations

One operator should be able to control large group of UAVs in operation area just by
creating missions that need to be completed. The operator creates high-level missions
(e.g. map this area) which represent a large amount of work and that may require
use multiple UAVs for successful completion. The system decomposes these missions
to sets of elementary tasks and distributes these tasks to UAVs. Tasks and UAVs are
heterogeneous, so some UAVs are more competent to do certain tasks then others.

I 2.1 Scenarios

This section provides an overview of missions that are considered and implemented in
the system. Brief motivation, a form of input required from the operator and description
of intended behavior are presented for each mission.

B 2.1.1 Mapping

Mapping is one of the most frequently used UAV applications. Mapping has many
useful applications even outside of obvious use in exploration and cartography. For
example in [1] scenario in agriculture is presented where aerial photography of fields,
respectively crops is used to determine the status of the crops. Gathered data are then
used to determine when, where and in what amounts of fertilizers or pesticides should
be used.

The operator defines the area of interest to be mapped and selects required resolution.
The shape of the area is described as a flat polygon. Team of UAVs will take pictures
of area inside that polygon in required or better resolution.

Mapping mission

Mission area

—

Elementary task

Planned path

Figure 2.1. Mapping mission.

The main objective for UAVs is to create a map in required resolution in as short time
as possible. Flight path consists of parallel lines in such distances and height to ensure



required resolution and some minimal overlap. The flight path is divided into several
segments (elementary tasks) with same length and assigned to UAVs. Any number of
segments can be assigned to one UAV based on its speed, position and sensors on board
to minimize makespan of the mission.

Data from each UAV will be downloaded and combined together to create final map
after all UAVs complete their parts. Output is map of area in required resolution.

B 2.1.2 Search

Thanks to increasing range and improvements of sensor technology team of UAVs are
becoming a very interesting choice for solution of search and rescue missions such as
rescue operations after a natural disaster or searching for lost persons [2].

The operator defines the area of interest to be searched and selects required resolu-
tion. The shape of the area is described as a flat polygon. Team of UAVs will take
pictures of area inside that polygon in required or better resolution.

Search mission

Mission area - - _________] -
——1
Elementary task > >
= b
Planned path
--- o e i >
l----—-=--=-=-=-=-=-—-=--—- - -4 P
o e e -

Figure 2.2. Search mission.

Search is similar to mapping, but the goal, in this case, is to find target instead map
the whole area. Target will be mobile in most cases. Therefore team of UAVs should
coordinate and fly in formation. Use of formation allows to search a larger area without
gaps at one time. This prevents or at least minimizes the chance of target’s unnoticed
move to the already searched area.

B 2.1.3 Tracking

Tracking is task where UAVs are already successfully used. This type of mission is
required in several domains. The best known applications are in security. Whether it’s
tracking of an intruder on private property, or military UAV keeping eye on target to
provide real time intelligence. But tracking has also other more peaceful applications,
such as monitoring the movement of herds of wildlife [1].

The operator creates a tracking request. This request includes information about
target needed for efficient assignment of UAVs. Current position and estimation of
minimal and maximal speed of target are required minimum. Other requirements on
UAV capabilities such as sensor type can possibly be added in further to constrain UAV
that can be assigned to this task.

The system then assigns this task to UAV. The assignment has to satisfy constraints
on UAV capabilities and tries to minimize latency. Selected UAV then move to the
target position and begins auto-tracking. UAV in auto-tracking mode does not require



any other control from the system. The system just needs to be aware of this assignment
and not to plan any other tasks for this UAV.

Real time feed of sensor data is provided during tracking task execution. Tracking
has infinite duration and no termination condition. Tracking ends and is considered
completed when operator sends termination request.

B 2.1.4 Patrolling

Another application of UAV squad is a patrol. Team of UAVs can supplement static
surveillance cameras. The mobility of UAV allows covering of larger perimeter and dy-
namic changes if needed. Also if some intruder is detected UAV can go into the tracking
mode as described above in tracking scenario. And provide real time, comprehensive
picture of intruder’s actions and movements.

Patrol mission

Waypoint @\ .
® ,

Elementary task N

Flanned path

- - /

Figure 2.3. Patrol mission.

The operator defines patrol route and required period. Patrol route is described as a
list of way-points. The main objective is to ensure that each segment (elementary task)
of patrol route between two subsequent way-points is checked (fly throw) in each time
period. Real time feed of sensor data is provided during patrol task execution.

B 2.1.5 Measurement

Measurement is task category where the goal is to obtain dataset consisting of several
data points from different locations. An example can be air quality monitoring pre-
sented in [1] where a grid of measurements is required. Another example is a request
for multiple photos of one object from different positions and angles which are then
used for 3D modeling of that object.

Measurement mission
Missicn area § - T
— |
Planned path b _ B —— - -B - - -5

Figure 2.4. Measurement mission.



The air quality monitoring scenario is selected to represent this category of tasks in
the system. The operator defines the area of interest, height and required density of
data points. The shape of the area is described as a flat polygon. Also, duration of a
single measurement has to be provided.

The system then creates set of individual measurements needed to cover the area of
interest and distributes them to available UAVs. Data from UAVs will be downloaded
and combined together to create the final dataset after all UAVs complete their parts.

I 2.2 UAV types

First and most obvious source of heterogeneity is UAVs construction type. Construc-
tion type of UAVs affects maximal/minimal flight speeds, turning rate, flight levels or
weight and size of the payload. These flight characteristics are categorically different
for vehicles from different classes as VTOL (Vertical Take-Off and Landing) or fix-wing
but differ even within one class.

In addition to that, each vehicle can carry a different set of sensors and equipment
on board. Each sensor can be described by set of values. For description of some
equipment is one boolean value enough (has or has not sensor of atmospheric pressure).
Other equipment needs one number to express its capabilities and limitations (radio
range, amount of ammo). And for example camera like sensors may need several values
like spectrum (e.g. normal, infrared), FOV (field of view), FPS (frames per second)
and resolution.

Properties above together with fuel or energy level create state vector of given vehicle.
And as shown in [3] not only that state vectors differ from vehicle to vehicle, but they
also change in time due to fuel consumption and external environmental conditions.

I 2.3 Environment

All scenarios mentioned above consider outdoor operations which may spread over
large area. A detailed description of an outdoor environment in such scale can be
very complex. Some variables may even be only estimations or not completely reliable
predictions of state in given time especially if the weather is taken to account. This
unpredictable nature of outdoor environment makes effective and optimal planning
unreasonably complex.

Since this thesis is focused more on task allocation and a little bit on trajectory
planning. But do not deal with flight control in task execution level, we will consider
simplified environment.

No weather will be considered in calculations. Extreme conditions (e.g. heavy storm,
hail, fire etc.) may project to the overall planning of the operation. But the reaction
to such conditions and plan adjustments or changes are left on the human operator.
That may include temporary no-flight zones or termination of some missions in order
to protect UAVs. It is assumed that UAVs themselves take care of reactions to other
more standard conditions like a wind on flight control level.

Because flight altitude of most UAVs do not exceed 100 meters some obstacles like
high buildings or mountains should be taken to account. Event thought our environment
is a large open outdoor area where almost any obstacle can be fly over.



Chapter 3
Problem formulation

This chapter introduces the formalization used for UAVs, environment, missions and
elementary tasks.

B 31 uav

Each UAV is described by a set of properties. Type in sense of Fixed-wing or VTOL is
not saved directly. Because construction type does not affect planning. But differences
between Fix-wing or VI'OL will project to properties like minimal speed and other.

Let V be a UAV. Then V is described by current position (x,y), minimal v,
maximal v,q,; and optimal v,y speeds in m/s. Where v, is optimal cruise speed used
for planning. Also estimation of remaining flight time ¢,.,, in s based on energy or fuel
level.

We consider that only one sensor is installed on board of each UAV. Sensor is affecting
capabilities of UAV and is actually part of it. For that reason are sensor properties
included in UAV properties too, but their meaning is describe in 3.2.

V= [xayatremavmin>voptaUma:EaFO‘/v)FOVhaRUaRhaFPS]

I 3.2 Sensor

Properties of sensor are vertical and horizontal field of view in degrees donated as
FOV, and FOV}, respectively, resolution as number of pixels taken in vertical R, and
horizontal R;, direction and frame rate as F'PS.

FOV,, FOV, €< 0,180 >
vaRh > 0

The sensor is pointed towards the ground in such way that vertical direction is aligned
with flight direction and horizontal is from left to right in compare to flight direction
of UAV (Figure 3.1).

k/’RE{V/’

Figure 3.1. Sensor properties and orientation




3.3 Environment

I 3.3 Environment

Terrain in operation area is represented as a height map. And obstacles or no-fly
zones can be placed in the operation area. Use of polygon to define no-fly zone is
straightforward, but rectangular shape of zones is used for simplicity. The location of
upper-left corner is given by (Z;1, Zj2), and lower-right corner by (Z;s3, Z;4). Together,
these two pairs make up the j* row of matrix Z.

I 3.4 Missions

In this section, formalization for high-level missions is introduced. Missions formaliza-
tion at this level defines the form of input that is used by the operator to input new
missions to the system.

B 3.4.1 Mapping

Let M be a mapping mission. Rectangular bounding box aligned with axes is created
around area of interest which is defined as polygon. Bounding box have lower-left corner
given by (x1,y1), and upper-right corner by (xs, z2). Also required map resolution REZ
is given in px/cm.

M = [.%1, Y1, X2, T2, REZ]

B 3.4.2 Search

Let S be a search mission. Rectangular bounding box aligned with axes is created
around area of interest which is defined as polygon. Bounding box have lower-left
corner given by (x1,%1), and upper-right corner by (z2,z2). Required map resolution
REZ is given in px/cm. And search start time tgyq,+ is given as tiestamp in [ms].

S = [Jil,yl,ﬂfg,l'g,REZ, tstart]
B 3.4.3 Tracking

Let T be a tracking mission. Then last known position of target is given as (z,y).
Estimations of target’s minimal and maximal speeds are given as v, and Upge in
[m/s]. And time t4eqqrine until which can be target found on given position is given as
tiestamp in [ms] to help with prioritization of this task.

T = [ZL’, Y, Umin, Umazx, tdeadline]

B 3.4.4 Patrolling

Let P be a patrolling mission. Patrol route is given as a list of way-points wp; = (z;, y;)
and height h. Length of period is given as t,epiog in [s].
P = [(wph R wpn)u h7 tperiod]

Where i € 1...n and n is number of way-points.

B 3.4.5 Measurement

Let M E be a measurement mission. Rectangular bounding box aligned with axes is
created around the area of interest which is defined as polygon. Bounding box have
lower-left corner given by (z1, y1), and upper-right corner by (z2, x2). Spacing d between
measured points in square grid and their height h are defined in [m]. Duration ¢ of single
measurement is given in [s].

MFE = [331,y1,552,$2,d7h:t]



I 3.5 Elementary tasks

In this section formalization of elementary tasks is introduced. Elementary tasks serve
as units of work. These tasks can be assigned to particular UAV. Each high-level task
mentioned in the section above is decomposed to set of these elementary tasks.

B 3.5.1 Flight

Flight in the straight line from point A to point B is a simple but useful task. Most
bigger high-level missions described in scenarios 2.1 as mapping, patrol and others can
be broken apart to set of elementary flight tasks.

Elementary flight task E consists of information about two points given as A =
(Az, Ay) and B = (B, By), flight height h in m and time window when it can be
executed given as tgejqy > 0 and tgeqarine > 0 in s where tgeqqiine = 0 means no deadline.
Boolean value reverse determine whether £y can be completed also in reverse direction
from point B to point A. E; can be completed in reverse direction only if reverse =
true.

Ef = [Axa Ayv Bmu By, h7 tdelayv tdeadlines 7’61)67“86]

E, is considered as successfully completed if in time window bounded by tge1qy and
taeadiine Some UAV fly in given height A from A to B or from B to A if reverse = true.

B 3.5.2 Visit

Elementary visit task E, is defined as coordinates (x,y), height A, duration tguration
and time window when it can be executed given as tgeiqy > 0 and tgeqdiine > 0 in s
where tgeadqiine = 0 means no deadline.

E, = [‘7:7 Y, h, tquration tdelaya tdeadline]

E, is considered as successfully completed if in time window bounded by t4cqy and
taeadiine Some UAV loiters at given coordinates for tg,rqion. Loiter behavior is not
defined and do not constrain the type of UAV assigned to this task. Loiter can be
implemented as hovering for UAV with VTOL capabilities and circling for others.

B 3.5.3 Tracking

Tracking from task assignment point of view is a basic allocation of UAV which is capa-
ble to get to last known location of the target in reasonable time (before deadline). Task
definition also includes information about target min/max speeds estimates and only
UAVs that can handle such speed range can be assigned to the task. So tracking task
is used as a test case for implementation of constraints on UAVs. Used implementation
is general and can be used for many other constraints on different tasks (e.g. minimal
resolution of camera).

Elementary tracking task E; is defined as coordinates (x,y), minimal v;,;, and max-
imal v,q, speeds of target in m/s and deadline tgeqqiine > 0 in s.

Ey = [, 9, Ymin, Umaz tdeadline]
FE; is considered successfully completed if some UAV V' which satisfy constraints
Vmin < Bt Umin
Vivmar 2 Et-Umaa

is at given coordinates before tgeqqiine and can start autonomous tracking. That means
that this UAV does not have scheduled any task after this one.



Chapter 4
State of the art

Many studies have been conducted in the field of mission planning and control. But
most of them are closely focused on single mission type like mapping [2], target tracking
[4] or patrol and surveillance [5]. And many publications are focused on the military
use of UAVs with scenario covering the sequence of search, target identification, attack
and hit validation [6-8]. But situation is worse with general approaches or systems that
support a wider range of missions.

General situation with not closely specified tasks is considered in [9]. But more or
less brute-force approach for centralized solving of goal assignment, resource allocation,
and trajectory optimization is presented. [9] proposes only partial recalculation for
faster reactions to dynamic changes. That leads to less optimal solutions but for small
changes in big problems usually still good enough.

In [10] a receding horizon control scheme is proposed for dynamic vehicle trajectories.
Receding horizon is approach used to solve control problems for which feedback is hard
or impossible to obtain. The based idea of receding horizon is in rapid re-solving of
a smaller optimization problem for a short-term plan. Length of plan vary during
execution and depend on the situation. Mainly distances between vehicle and targets
are used in the calculation of length to the next plan horizon. This possibly real-time
approach shows solutions surprisingly close or near-identical to solutions obtained by
brute-force approach similar to [9].

In-depth study of UAV health is presented in [3]. Dynamic changes in health vector
which effecting UAVs capabilities are considered. Presented framework is also capable
of handle wide range of tasks including tracking, search, payload drop-off or communi-
cation relay. Markov Decision Processes are used in high-level planning and execution
level is implemented with use of learning-capable adaptive controllers. The close feed-
back loop is created between these two levels to enable anticipation of failures at the
planning level.

Some decentralized algorithms for task allocation have been developed in effort to
increase the mission range and remove single point of failure. Which are two main down-
sides of centralized approaches. In decentralized algorithms, situational awareness has
to be same among all agents and any inconsistencies in the situational awareness might
cause conflicting assignments. Thus, decentralized algorithms generally make use of
consensus algorithms to converge on a consistent situational awareness before perform-
ing the assignment. But convergence to situational awareness may take a significant
amount of time especially in networks with lower bandwidth.

To deal with this problem CBBA (Consensus-Based Bundle Algorithm) algorithm is
presented in [11]. CBBA produce conflict-free solutions independent of inconsistencies
in situational awareness. This is achieved by a combination of consensus-based and auc-
tion algorithms. Reasonable optimality is mathematically proven and fast convergence
validated by experiments for CBBA algorithm in [11].

Later several modified versions of CBBA were proposed. In [8] algorithm based on
CBBA that can handle heterogeneous UAVs is presented. It uses scoring matrix, which



reflects the heterogeneity between the UAVs and targets. The scoring matrix is then
optimized by episodic parameter optimization that utilizes reinforcement learning.

Another extension of CBBA that address problem of cooperation is proposed in
[12]. Cooperation has proven to be a very challenging problem. Only variant for
the cooperation of two UAV is considered in two variants soft-constrained cooperation
preference and hard-constrained cooperation requirement. Task decomposition with
associated scoring changes and task elimination protocols where introduced to deal
with cooperation.

Another option is to use some general planning approaches. In recent years, auto-
matic planning languages have been extended to support numerical expressions and
temporal planning problems. Options offered by PDDL, as one of such languages, for
planning in UAV domain are explored in [13-14] and this thesis uses a similar approach.

10



Chapter 5
PDDL planners

We decided to create PDDL domain and use some of the already existing planners for
actual assigning of elementary tasks to UAVs and planning of the whole operation.

But selection of suitable planner is quite challenging. Our domain requires some
advanced PDDL features except basic STRIPS and typing which are supported by
almost all of available planners.

The key features are fluents for numeric calculations required to describe speeds
and distances. Durative actions (introduced in PDDL 2.1 [15]) are another obvious
need since flying around take some time and this is a simple way to describe it and
also efficient to solve '. Finally, our domain also requires timely initiated predicates
(introduced in PDDL 2.2 [16]) because of time constraints in some missions like patrol
that needs to be executed in some time window.

Unfortunately, high requirements are not the only problem. The first step is to find
some implemented and ready to use planners. But download and run procedure is
not always straightforward. I came across few not compilable source codes and even
one planner that runs but is not able to parse input files. Fortunately, GitHub project
itSimple? provides a quite extensive list of planners and also include compiled and ready
to use executables. Next problem is documentation of available planners that is weak
if any. Often there is no other chance to find out capabilities of planner then download
and try.

After testing on several domains with different levels of requirements each planner is
classified as a basic, numeric or temporal planner.

Based on test results and more detail comparison of planners that fulfill all require-
ments the OPTIC planner is selected and used in this thesis. Overview of test results
and comparison of suitable planners are below.

I 5.1 Basic planners

Basic planners are able to solve basic PDDL problems which require STRIPS and
typing. These planners are usually older, simple and robust but are not even close
to our requirements. In this category are following planners BlackBox, FF, MaxPlan,
Plan-A and yahsp.

I 5.2 Numeric planners

Numeric planners add different levels of support for fluents and some of them also
basic support for durative actions. Almost all of them also provides full support for
:adl which is rare and limited feature between temporal planners mentioned below.
Overview of planners and their capabilities is presented in Table 5.1.

1 In the first experiments and attempts to model domain with this behavior I actually used only basic
actions and fluents, but it was extremely slow event on really small problems with one or two UAVs.
2 https://github.com/tvaquero/itsimple/blob/master/README

11


https://github.com/tvaquero/itsimple/blob/master/README

Planner :stripes ‘typing :adl :fluents :durative-actions

Metric-FF OK OK OK OK X
hsp-p OK OK OK OK OK
Iprpg OK OK X PARTIAL X
Mips-xxl1 OK OK OK OK OK
sgplan6 OK OK OK OK OK

Table 5.1. PDDL features supported by numeric planners.

I 5.3 Temporal planners

Temporal planners focus on durative actions and other time related features like con-
tinuous numeric effects, time initial predicates and other. Comparison of supported
features is in Table 5.2. Because differences in supported PDDL features are minimal
last two rows of Table 5.2 are added with additional information about the behavior of
planner.

Only LPG planner is not capable to solve problems in our domain, because it does
not support timed initial literals. Other planners in this category can handle all re-
quirements of our domain.

Feature LPG LPG-TD POPF OPTIC
fluents OK OK OK OK
:adl P+ IS5 P P
:negative-preconditions OK OK X X
:durative-actions OK OK OK OK
:timed-initial-literals X OK OK OK
:duration-inequalities OK OK OK OK
Continuously provides
best yet found solution YES YES NO YES
Is deterministic NO NO YES YES

Table 5.2. PDDL features supported by temporal planners. P stands for partial and +
for better.

B 531 LPG

The official description on web! states: "LPG (Local search for Planning Graphs) is
a planner based on local search and planning graphs that handles PDDL2.1 domains
involving numerical quantities and durations.”

LPG was first of more capable planners which was used in some initial domain ex-
periments. Unfortunately, it does not support time initiated literals so when they were
added LPG could not be used anymore.

Even though LPG do not fulfill all requirements it has several nice features. First is
fairly wide support of :adl including :negative-preconditions which is not common
between temporal planners. And next one is a continuous output of best yet found
solution.

! http://lpg.unibs.it/1pg/

12


http://lpg.unibs.it/lpg/

B 532 LPG-td

Short description on top of official web! says: "LPG-td is a new version of LPG that
extends and improves version 1.2, and that took part in the 4th International Planning
Competition, 2004. LPG-td is an extension of LPG to handle the new features of the
standard planning domain description languages PDDL2.2: Timed initial literals
and derived predicates.”

Unlike OPTIC or POPF planners below this planner can handle negative precon-
ditions and has better :adl support overall. It is true that in most cases negative
preconditions can be easily removed by introducing a new predicate, but use of simple
negation when writing a domain for LPG-td is a nice benefit.

LPG-td also print the best plan yet found during the planning process. Which is
another benefit especially if planning time is constrained. Because it is still possible
to retrieve some less optimal plan event if planning is interrupted prematurely suppose
that some plan was found before the interruption.

On the other hand, LPG-td is not deterministic. Each time a different solution in
different quality and search time is returned. These quality and time differences can
be large and assumption that longer planning means better quality does not apply in
this case. One run can return a reasonable solution in few seconds and the second run
take minute and return solution twice that long. So extreme differences are rare but
occurred several times.

From reliability point of view, LPG-td is not the best. Some Italian error message
followed by segmentation fault occurred few times when solving bigger problems. And
some unsolvable problems lead to an empty solution or infinite loop of messages

found worse quasi-solution. Restart using stored quasi-solution

B 533 POPF

"POPF supports a substantial portion of PDDL 2.1 level 5, including actions with
(linear) continuous numeric effects and effects dependent on the durations of the actions.
Its support for ADL, though, is limited: in the general case, it cannot handle negative
preconditions, disjunctive preconditions, conditional effects etc. As a compromise, it
will attempt to preprocess ADL preconditions and effects into STRIPS-like conjuncts,
through grounding existential quantifiers, and using some simple elimination rules for
static facts), which allows it to support a few useful PDDL constructs.”?

From behavior stand of view, POPF is the complete opposite to LPG-td. It returns
only the final solution but is deterministic.

Solutions provided by POPF for some small problems are not optimal but it generally
finds solutions with better quality then LPG-td on bigger ones.

In comparison to LPG-td is POPF more reliable and stable especially on big-
ger problems. No crashes or loops and if no solution is found it just simply print
Problem unsolvable!. On the other side waiting for the only final solution of bigger
problems can cause problems in some time sensitive applications.

B 53.4 OPTIC

OPTIC (Optimising Preferences and Time-Dependent Costs) is planner developed by
the same group as POPF above and according to one of the authors Dr. Amanda

! http://lpg.unibs.it/1pg/
2 https://nms.kcl.ac.uk/planning/sof tware/popf . html

13


http://lpg.unibs.it/lpg/
https://nms.kcl.ac.uk/planning/software/popf.html

Coles in ! "OPTIC, Is a planner capable of reasoning with the full range of PDDL 3
preferences, including temporal preferences.”

OPTIC is built on extension of POPF and inherit some of characteristics including
limited :adl support and deterministic behavior while adding support for new PDDL
3 features. But PDDL 3 features have not been tested because they are not required
in our domain.

OPTIC is much more chatty in output than other planners. In addition to standard
syntax errors, it also prints warnings about missing requirements in the domain and
some problem analysis, heuristic and pruning info. This additional info can be very
useful when debugging domain or trying to find out why is problem unsolvable.

One important change to OPTIC behavior is that after the first solution is found it
continues in search for better one similarly to LPG and LPG-TG. But OPTIC do not
have any build in time or memory limit. This means that it needs to be terminated
externally. Use of bash command ulimit is suggested on web? to solve this situation.
Limitation to 30 minutes of CPU and 4GiB of memory is shown below.

ulimit -t 1800
ulimit -v 4000000
./optic-clp domain.pddl problem.pddl

In comparison to LPG-td and even POPF | it seems that OPTIC is more reliable and
faster on bigger problems. I have encountered several problems where LPG-TD and
POPF finished with some error or claimed that problem is unsolvable but OPTIC had
no problem to find a valid solution.

Also quality of even the first solution is same or better as solution found by POPF
and better than an average of several LPG-TD runs (which give different solutions every
time). It should be noted that first solution from OPTIC is used because it does not
have build in stop mechanism and also on our test problems next better solution was
never found even after long period of time (the first solution in few seconds then over
half hour of waiting). But in problems created in simulator OPTIC often managed to
find two or three solutions in given time (10-20 seconds).

! https://nms.kcl.ac.uk/amanda.coles/software.html
2 https://nms.kcl.ac.uk/planning/software/optic.html

14


https://nms.kcl.ac.uk/amanda.coles/software.html
https://nms.kcl.ac.uk/planning/software/optic.html

Chapter 6
System architecture

The system allows dynamic additions and removals of missions to operation by the op-
erator at any time. When such change occurs replanning is executed to reflect changes.

The system can be split into four module if AgentFly simulator which provides world
simulation, visualization and simulation of user input is considered as one module.
Model module holds all information about current state of UAVs and missions. Model is
also responsible for all data needed for next replanning. Planning module is responsible
for asynchronous replanning. The controller module is then responsible for handling all
communication between system and outside world and decisions when to replan. The
last module is AgentFly simulator which in our case replaces outside world. Figure 6.1
shows all modules and their relationships.

AgentFly Simulator Task allocation system
. - U| Tasks Update MOdE'

‘ |-
Q

8 Prepare data

+ for planning
C
Current o

starus O | pianni .
annin
UAVs || et | Plannig
< —| module

Figure 6.1. System architecture.

B 61 Model

Model and its data structure is a backbone of the whole system around which all other
parts are built. Model holds and encapsulates lists of all UAVs and missions, provides
access to elementary tasks and also some global variables and constants like current
simulation time.

The model represents current state of operation. That means it keeps track of the
progress of tasks as well as currently executed actions for UAVs. But includes also data
needed for next replanning.

Data needed for replanning are for example delays and deadlines in elementary tasks
stored as plan relative time variable which is covered in more detail in 7.3.2. Or esti-
mations of UAV position and finished tasks at time which corresponds to the beginning
of next plan. Model not only include such data but it is also responsible for their
preparation and updates because it already has all necessary data needed for these
computations in description of the current state.

15



I 6.2 Planning module

Planning module is responsible for the asynchronous execution of planning. Online
planning when UAVs are already in the air is a complex problem and has three main
challenges, task interruption, timeline differences and asynchronous execution. How are
these challenges overcome is described in 7.3.

When replanning request from controller is received, planner reads data from model
and creates PDDL problem. Then OPTIC planner is used to solve prepared problem
and when a solution is parsed to a new plan this plan is returned through previously
provided callback back to controller.

The plan is represented as a list of plan elements for each UAV stored in the map.
Plan element can represent elementary task, move action or waiting.

I 6.3 Controller

The controller holds references to model, planner and current plan. The controller
decides when to replan, sends replanning requests to planner, updates plan when re-
planning is finished and handle all communication with AgentFly simulation. Here is
an overview of all actions with brief descriptions.

Registration of new UAV. Reference to the pilot entity in simulation is stored. This
reference is later used for sending flight plan updates. Description of UAV is pulled
from simulation, new vehicle model is created and added to operation model. Replan-
ning is not started after new UAV is registered because simulation calls this method
before actual spawn so the current position cannot be retrieved. Also, none of prepared
scenarios add nor remove UAV during execution.

Controller forwards requests from the operator for adding or removing mission to
model and initiates replanning after some mission is added or removed.

Controller updates flight plans of individual UAVs in simulation when replanning is
finished and the new plan is returned by planner. How plan is transformed and send
to UAV is described in 7.4.

Controller also listens to completion of way-points. Information about currently
executed plan element is updated when UAV reach some way-point. If completed
way-point is ending way-point of currently executed elementary task, then this task is
marked as completed.

In some cases, UAV’s flight plan can be altered in reaction to way-point completion.
Waiting loop is extended if UAV currently do not have any plan assigned. This approach
is inspired by the concept of layered planner in [17] where several planners are layered
on each other based on their priority. For example, loiter planner create waiting loop
while plan is not available and execution of planned task can be overridden by collision
avoidance planner. Also if currently executed task is tracking new random way-point
is added to simulate tracking behavior.

I 6.4 AgentFly simulator

AgentFly simulator replaces whole outside real world. That includes world simulation
with UAVs and operators which are replaced by pre-prepared scenarios to simulate
input of new missions. AgentFly simulator is also used for visualization.

In order to task allocation system work with UAV simulation, only minimal modifi-
cations in AgentFly simulator were required. Simulator has to notify controller about

16



two events. First is creation of new UAV. This is done by one simple call of apropriate
method from pilot entity initialization. And second is notification when UAV reaches a
way-point. This is also one simple call from Behavior class where flight plan is actually
executed.

Simulation of human input took a bit more effort. The ScenarioPlayer interface has
to be implemented and XML configuration created and added to run configuration of
the project for each scenario. But most of XML with simulation and world configu-
ration can be reused. Only scenario configuration needs to be changed. Reference to
correct ScenarioPlayer implementation needs to be edited for each scenario as well as
configuration, starting position and initial flight plan for each UAV.

17



Chapter 7
Implementation

This chapter includes description of key parts of implementation.

I 7.1 Decomposition

High-level and complex missions can be decomposed to set of elementary tasks. Only
small number of elementary tasks types can cover a wide range of missions. Types
of elementary tasks used in our domain are defined in 3.5. Delays and deadlines in
elementary tasks have to be in plan relative timeline as described in 7.3.2.

Decomposition of tracking mission is the easiest one. Tracking task is directly mapped
to elementary tracking task and only deadline has to be converted to plan relative time.
Decomposition of more complex task is described below.

B 7.1.1 Mapping

Decomposition of mapping mission M is done similarly to construction of flight path
in [2]. The area is divided to set of paralleled straight strips aligned with the longer
side of mapping area. Width of strip and height of flight is calculated from M.REZ
and sensor properties of UAV V. Suppose that sensors on all UAV are the same.

width = M.REZ x V.Ry,

width
2 % tan(%ovh)

Each strip is divided into equally long parts with length as close to FLIGHT_LENGTH
constant as possible. In test scenarios FLIGHT_LENGTH = 200 m. Each strip part
is then mapped to one elementary flight task which can be executed in both directions
and has no time delay nor deadline.

B 7.1.2 Search

Decomposition of search mission .S is almost same as mapping mission. Only difference
is that UAV should fly in formation, to prevent target from undetected move to already
searched area. Translated to elementary tasks area is divided to strips same way as
mapping. But all stripes have to be searched in the same direction at same time.
So whole strip is considered one elementary flight task which can be executed only
in direction from A to B. Delay equals to S.tgq¢ converted to plan relative time and
deadline is set to delay increased by execution time of the slowest UAV.

B 7.1.3 Patrol

Elementary flight task between every two subsequent way-points of patrol mission is
created for each period. Elementary tasks can be executed in both directions and have
delay and deadline equal to start and end of period converted to plan relative time. In

height =

18



mission decomposition and each subsequent preparing for replanning elementary tasks
for periods which starts before t;;,,;; are added.

tiimit = currentSimulationTime + PLAN_AHFEAD_LIMIT

Both variable currentSimulationTime and constant PLAN_AHFEAD_LIMIT are
part of model.

B 7.1.4 Measurement

Rectangular area of interest of measurement mission M F is covered by individual mea-
surement in square grid with origin at lower left corner (M E.x1, M E.y;) and length of
edge M FE.d. Same height M E.h and duration M E.t is set for all measurements. Each
individual measurement is then represented by one elementary visit task which has no
time delay nor deadline.

I 7.2 Mapping to PDDL domain

Use of PDDL is composed of three parts domain, problem and solution. Domain defines
object types and properties which can be used to describe particular state. Domain also
includes definitions of actions which can be taken to change these properties. Problem
file includes a list of object, description of initial and goal state and optionally metric
used for solution comparison. Only expressions defined in the domain can be used in
problem definition. Domain and problem definition are then given to PDDL planner.
Planner search for a solution in form of sequence of actions defined in domain optimized
by number of actions or provided metric.

PDDL domain for solving problem of elementary tasks allocation to UAVs is created.
This domain has to be able to describe UAVs and each type of elementary task. It also
has to know how to move UAVs and execute elementary tasks. This give baseline of
how domain looks like.

This domain defines three object types vehicle, task and location. Set of predicates
and function is then used to define object properties and relationships between these
objects. And domain includes actions which describe UAV movement and each task
type execution.

B 7.2.1 UAV and world

Figure 7.1 shows part of tasks allocation domain that provides UAV definition and
allows UAV to move around. Location object is created for each point of interest in
world and distance between each two locations has to be defined by distance function.

For UAV, object of vehicle type is created and its position is define by predicate
is-at. Minimal, maximal and optimal speeds of given UAV are defined by min-speed,
max-speed and speed functions respectively. Predicate available is used to forbid
execution of more concurrent actions for one UAV. Predicate available with time
initiated predicate feature also allow to define time which UAV need to finish the
current task in non-interrupting replanning that is described in 7.3.

Move action is defined to allow UAV move from one location to another. Move is
defined as durative action with duration calculated from distance and UAV’s optimal
speed. Purpose of available predicate is nicely shown here. Move action cannot
start if UAV is not available and effect statement ensure that the UAV is labeled as
unavailable during the entire action. Function move-time is a sum of durations of all
move actions executed by all UAVs. Purpose of move-time is described later in 7.2.3.

19



Figure 7.2 shows part of problem that defines objects and the initial state. This
problem contains two identical UAV and shows how available can be used to delay
first planned action for one UAV while other can work.

(:predicates
(available ?v - vehicle)
(is—at ?v - vehicle 7?1 - location)
)
(:functions
(distance 7a 7b -location)
(speed ?v -vehicle)
(max-speed ?v -vehicle)
(min-speed ?7v -vehicle)
(move-time)
)
(:durative-action move
:parameters (?v - vehicle ?from ?to - location)
:duration (= ?duration (/ (distance ?from 7to) (speed 7v)))
:condition (and
(at start (available 7v))
(at start (is-at ?v ?from)))
:effect (and
(at start (increase (move-time) ?duration))
(at start (not (is-at ?v ?from)))
(at start (not (available ?v)))
(at end (is-at ?v 7to))
(at end (available ?7v))))

Figure 7.1. Part of domain with UAV and world description.

(:objects
uavl uav2 - vehicle
a b - location)
(:init
(is-at uavl a)
(available uavi)
(= (speed uavl) 8)
(= (min-speed uavl) 0)
(= (max-speed uavl) 10)

(is-at uav2 b)

(at 30 (available uav2)) ;; 30s delay
(= (speed uav2) 8)

(= (min-speed uav2) 0)

(= (max-speed uav2) 10)

;; distance in both directions need to be defined
(= (distance a b) 100)
(= (distance b a) 100)

Figure 7.2. Part of problem with UAV and location initialization.

20



B 7.2.2 Elementary tasks

Figure 7.3 shows part of tasks allocation domain that provides expressions for the
definition of all elementary task and execution of elementary flight task type.

A task object is created for each elementary task. Type of task is then distinguished
by set of predicates. Each type has its own predicate which establishes given task
object as task of that type and also defines location or locations related to this task.
For example predicate (t-flight t a b) defines task object t to be an elementary
flight task from location a to location b. The reverse direction has to be defined by
another separate statement if task t can be completed in both directions. Additional
functions are used to define other task properties like target speed range for tracking
task.

Another two predicates can-start and completed are common for all tasks. Need
for completed in goal state description is obvious. On the other hand can-start is
not that intuitive. It has been added later as a fix for some problems related to metric
and its effect is explained in 7.2.3.

Each type of elementary tasks also has an action that defines task execution. Figure
7.3 shows an example of such action for flight task. Action task-flight is basically
upgraded move action. Predicate t-flight is used to check that given task object and
locations make together valid and existing task. Also t-flight needs to hold over the
whole duration of action this, together with time initiated literals, is used to define
required delay or deadline of a task.

Figure 7.4 shows how task is described in problem initial state and goal state. Ex-
amples of all combinations of time constraints on task are included.

(:objects tl t2 t3 t4 - task)
(:init
;; no time constraint
(can-start t1)
(t-flight t1 a b)

;; time constraint delay
(can-start t2)
(at 7 (t-flight t2 a b))

;; time constraint deadline
(can-start t3)
(t-flight t3 a b)
(at 20 (not (t-flight t3 a b)))

;; time constraints delay and delay
(can-start t4)
(at 7 (t-flight t4 a b))
(at 20 (not (t-flight t4 a b)))
)
(:goal (and (completed t) (completed t2)
(completed t3) (completed t4)))

Figure 7.4. Part of problem with task initialization and goal.

21



7. Implementation

(:predicates
(t-flight 7t -task ?a ?b - location)
(t-visit 7t -task 7a - location)
(t-track 7t -task ?7a - location)
(completed 7t - task)
(can-start 7t - task)
)
(:functions
(visit-duration 7t - task)
(target-min-speed 7t - task)
(target-max-speed 7t - task)
)
(:durative-action task-flight
:parameters (?v - vehicle 7t - task ?from 7to - location)
:duration (= ?duration (/ (distance ?from 7to) (speed ?7v)))
:condition (and
(over all (t-flight ?t ?from 7to))
(at start (can-start ?7t))
(at start (available ?v))
(at start (is-at ?v ?from)))
:effect (and
(at start (not (is-at ?v ?from)))
(at start (not (available ?7v)))
(at start (not (can-start 7t)))
(at end (is-at ?v ?7to))
(at end (available ?7v))
(at end (completed ?t))))

Figure 7.3. Part of domain with task description.

B 7.2.3 Metric

Few initial runs have shown that makespan metric is weak. Plans had unnecessary
move actions even for simple mapping task and ideal number of UAVs (Figure 7.5).
Unnecessary move actions in planed path for UAV are not removed when additional
duration does not cause this path to be the longest one.

Move cost is introduced to deal with this problem. Cost of each move action is equal
to its duration. And sum of all move costs is added to metric. This metric modification
improves quality of found plans (Figure 7.6) but does not remove it completely even
when experimented with different wights. Move cost is implemented in domain as
move-time function.

Figure 7.5. Plan without move cost. Figure 7.6. Plan with move cost.

22



Another problem arises when move cost is in metric. In 5 is shown that most of
advanced PDDL temporal planners do not support negative preconditions. Condition
in tasks that forbids executions of completed task was removed as redundant when
task allocation domain was rewritten to remove negative preconditions. Keeping this
condition means new predicate. But if planner search for the shortest plan it will not
include same task twice. But move cost changed this logic. UAVs often used flight
tasks instead of move actions to reduce move cost. Predicate can-start is added to
fix this situation. Predicate can-start is essentially negation of competed added to
action conditions. Only during actual execution of task both can-start and competed
have value false. Because once execution of task starts it cannot be started again but it
is not completed either. Use of can-start is presented in task-flight action (Figure
7.4).

Other costs ware considered when modifying metric. For example cost that would
enforce some kind of ASAP (As Soon As Possible) or priority behavior. This would
significantly improve way how tracking and patrol task are handled as described in 8.
But unfortunately, this seems to be impossible within PDDL 2.2 expression capabilities.
I did not find a way how to access time at which is action assigned from that action.
So cost which grows over time until task is finished is not an option.

Some priority behavior in sense of task T1 has to be started or finished before task
T2 is possible with the use of :adl expressions. But temporal PDDL planners usually
provide only partial support of :adl expressions. So one needs to be cautious when
using :adl in domains otherwise planner may not be capable of solving problems in this
domain. And this kind of priority can cause other problems in situations with multiple
UAVs.

Imagine a situation where one priority task is far from rest of UAVs and tasks. One
UAV starts move to this task but until it gets there the rest of UAVs have to wait and
cannot execute tasks even though they are ready on starting positions. This behavior
may find some use in some special scenarios but is harmful in our task allocation domain.

I 7.3 Planning

There are three main implementation challenges connected with online planning when
UAVs are already in the air.

B 7.3.1 Task interruption

First one is fact that UAVs already executing some actions when replanning occurs.
Some UAVs currently executing action waiting or move between tasks. In these cases
current action can be interrupted. And the execution of a new plan can start immedi-
ately.

But problem arises when currently executed action is some elementary task. In gen-
eral, there are three options. First, new plan starts after current task will be completed.
Second, current task is interrupted and new plan starts immediately. But the progress
of current task is lost and the whole task has to be planned again. Example for this
behavior is air quality measurement which ether finishes with result or not. In some
cases there is a third option where current task is interrupted but its progress is not
lost and only rest of it has to be planned again. Example of the third option is mapping
where already mapped part can be saved and res can be can be completed later.

What is the optimal option for given situation depends on the priority of current task,
the priority of new tasks that caused replanning, distances of this UAV and other UAVs

23



to new tasks as well as UAV suitability for new tasks. In general, it is close to impossible
to find the optimal option for each currently execution task before replanning. Which
is needed because interrupted ones have to be included in that replanning.

The solution implemented in this thesis relies on parallel computation. Only first
two options non-interrupting and interrupting with lost progress are considered. Two
separate PDDL problems definitions are created. One that interrupts all currently
executing tasks. That allows faster response of some UAV to tasks as tracking but
force restart and replanning of all currently executing tasks. Second problem definition
does not interrupt any currently executing elementary task. And two parallel processes
with OPTIC are started to solve each problem. Fact that OPTIC planner is 32bit one
thread executable that can be accessed and controlled through terminal and runs in its
own process significantly simplifies parallelization. After outputs of both processes are
parsed, new plans are compared and better one is chosen.

B 7.3.2 Timeline differences

The second implementation challenge is the difference between simulation and plan
timeline.

Time did not seem to be a problem in initial part of implementation when only
single planning situation wear considered and solved. But problem comes to light with
controller which connected the system to simulation. Plan obtained from planner always
starts at time zero and does not matter when, with respect to fixed simulation timeline,
is replanning started. PDDL problem definition also has to include time values, like
delays, in that floating timeline of plan. Now two independent timelines collide and
original implementation was not ready for that.

Two types of time variable are introduced to deal with this situation. Absolute time
is time on fixed simulation timeline and is represented as milliseconds stored in a long
integer which is format used in AgentFly simulation. Plan relative time is time on plan
timeline and is represented as seconds stored in double. Conversion between absolute
and plan relative time is easy if simulation offset of given plan is known. Conversion
formula is then

absolute = 1000 * relative + of fset

Next part is to decide which of already existing time variables belong to which type
and add simulation offset variables and conversions where needed.

Plan relative time is used in two places. All time variables in elementary tasks are
plan relative. Because they are directly written to planning problem definition and are
not read from anywhere else. Simulation offset is added to elementary tasks so it can
convert variable to absolute form. But more importantly to be able to move the whole
task to different plan timeline with different when next replanning occurs. Also all time
variables in a plan are plan relative because they are not directly needed in absolute
form and this simplifies parsing the output of planner. Simulation offset is added to
plan too.

Time variables in tasks are absolute. They are an input of operator which is expected
to work in simulation timeline and they are not accessed by planner during planning.
Also, all time variables in the controller are absolute.

B 7.3.3 Asynchronous execution

The third implementation challenge is an asynchronous execution of planning.
Most operations in task allocation system like adding mission or handling of way-
point completion are short and are executed synchronously by calling simulation thread.

24



The only exception is planning which is long and computation heavy process so it has
to be executed asynchronously.

PDDL planning problem definition cannot be created from the current situation.
Because when replanning finishes part of the new plan would be already in past and
therefore invalid. That is why the start of a new plan is moved to future to time ¢, fset-
This 2,7 fse: also serves as a deadline for replanning process.

Now we need to estimate how the situation at ¢, s looks like and create PDDL plan-
ning problem based on that. For such estimation data about all missions, elementary
tasks, current plan, UAVs and their current states are needed. Model is responsible for
estimation and preprocessing all data that are needed for replanning because it already
has all data needed for this calculation.

Data preparation includes estimation of position and currently executing tasks at
toffser for each UAV based on the current plan. Mark currently not completed elemen-
tary tasks which will be completed before replanning finish. Also, some missions may
want to change their set of elementary tasks (e.g. adding next period in patrol). And
finally, move all time variables as delays and deadlines in elementary tasks from their
current plan relative timline to new one which starts at £, fset-

Data preparation also has to reflect two types or replanning. Interrupting replanning
is easier and all required actions are described above. Suppose that currently executing
tasks at f,f st are included in plannig problem.

But a few changes are required for non-interrupting replanning. Currently executing
tasks at t,frsr are also marked as completed before replanning finish. Estimation of
UAV position has to be set to end way-point of that task. And delay after which can
be UAV considered as available in new plan is set based on t,f s and task end time.

Time limit for OPTIC planner has to be set so it finishes before t,frs;. OPTIC
continuously print best yet found solution to standard output. This is very important
because it allows to retrieve solution after OPTIC is externally terminated. Simple
bash script solve.sh, with a time limit in seconds and problem file as arguments, is used
to wrap external termination and OPTIC as one command.

#!/bin/bash
ulimit -t \$1
../pddl/optic-clp ../pddl/domain.pddl \$2

B 7.2 UAV flight plan update

It is controller’s responsibility to update flight plan of UAVs when new plan is created.
Controller can access UAV entities in simulation via reference to PilotAgent in Vehicle
class which represents UAV in model. From PilotAgent can be obtained FlightPlan-
Wrapper which contain current flight plan and provide methods like remove, insert and
append way-points.

New plan is converted to list of way-points in for cycle over all plan elements. Plan
element can be an elementary task, move action or waiting. List of way-points cannot
contain two subsequent way-points on same coordinates. So last way-point in list has
to be checked before first way-point of plan elements is added. Converting flight task
or move action to way-points is straightforward. Tracking task is simply one way-point
corresponding to the target location when this way-point is completed the controller
adds next random one to simulate auto-tracking behavior.

Unfortunately, AgentFly simulator is developed with focus on airplanes and does not
support hovering or any type of wait behavior. So all waiting need to be replaced by

25



additional way-points close to each other. And that is not much precise way to delay
UAV at some way-point.

In order to work properly FlightPlan Wrapper requires setting of plan position called
unchangeable part. In other words, it needs to know what is current position and what
part of the flight plan is in past and cannot be changed. It can be set anywhere and
FlightPlan Wrapper will work. But if position in past is set then PilotAgent refuse to
accept this flight path as a new one.

This concept of unchangeable part elegantly solves situation where planner re-
turn early and beginning of new plan is in future. FlightPlan Wrapper::getPosition
with new plan beginning as argument is used to get correct unchangeable part. If
new plan begins in past or getPosition() fails current plan position from PilotA-
gent::getCurrentPlanPosition is used as fallback.

After the unchangeable part is set. All way-points in changeable part of FlightPlan-
Wrapper are then removed. And a list of new way-points appended. After all changes
flight plan needs to be replanned and validated by call of FlightPlan Wrapper::plan().
This actually execute flight path planning with respect to flight dynamics of UAV. After
that FlightPlan Wrapper can be passed to PilotAgent as new flight path.

26



Chapter 8
Experiments

Several scenarios is used to test all types of missions. The same simulation environment
is used for all scenarios. World dimensions are

r €< —1024,1024 >

y €< —643,643 >
2 €< —0,6000 >

where z axis is up direction. Some topography and texture data are loaded but do
not effect simulation, no collisions are set. Also none no-flight zones are included in
environment.

Three predefined UAV types are used in scenarios. Speeds are different for each type
but used sensor is same for simplicity. Table 8.1 describe all predefined UAV types.
Different number and type combination of UAVs as well as their starting positions are
used in each scenario. All UAVs are created through XML configuration and no UAVs
are added nor removed dynamically during scenarios. Entity initialization take some
time so actual spawn of UAVs is execute with delay at simulationTiem =5 s.

Type Umin Vopt Umax F OVU F OVh Rv Rh

slow 0 7 10 70 70 640 480
normal 5 15 20 70 70 640 480
fast 10 30 35 70 70 640 480

Table 8.1. UAV configurations used in experiments.

When mission is added replanning with ¢,., = 15 s time limit is started immediately.
But because replanning requires access to the current position of UAVs all missions
have to be added after UAVs are in simulation. This is the reason why all missions in
all scenarios are created and added at simulationTiem = 6 s or later.

I 8.1 Mapping scenario

Mapping scenario shows mapping mission decomposition and tests how UAVs with
different speeds are handled. Scenario includes one mapping mission and three UAVs
with different speeds. Mapping area is big enough to be decomposed into more than
three lines to avoid simple one to one assignment.

1D type a2 Y color
UAV; fast 500 -200 white
UAV, normal 500 -280 red

UAV; normal 500 -360 yellow

Table 8.2. Mapping fleet definition.

27



8. Experiments

All UAVs are spawned at simulationTiem = 5 s with initial wait loops. Mapping
mission M1 is created, added and planning started at simulationTiem = 6 s.

M1 = [—450, —450, 250, 50, 0.2]

/erFrovide
der

Figure 8.1. Mapping scenario plan.

Mapping mission M1 is decomposed to 12 elementary tasks in 4 lines. As expected,
faster UAV; gets more (5 of 12) tasks assigned. Found plan (Figure8.1) looks reasonable
because U AV] is twice as fast as other UAVs and also got more and longer move actions.

But found plan has metric = 175 and is definitely not an optimal one. Path of U AV,
can be slightly improved even without changing task allocation. A simple change of
flight direction for the first task of UAV; reduces metric by 1.4. And manually found
plan has metric = 105.5. If decomposed lines were labeled 1-4 from the top this better
plan assign lines 1-2 to U AV, line 3 to UAV; and line 4 to UAV;.

I 8.2 Tracking scenario

Five UAVs of different types are present in this scenario. Constrained UAV selection
is tested when two tracking missions are added. Not all UAVs are capable to complete
given missions because of speed constraints.

ID type x Y color
UAV; normal -100 100 green
UAV, fast 100 100 blue
UAV; normal -100 -100 yellow
UAV, fast 200 -100 red
UAV; slow 100 -150 white

Table 8.3. Tracking fleet definition.

All UAVs are spauned at simulationTiem = 5 s with initial wait loops. And
two tracking missions 71 and T2 are created, added and planning started at
stmulationTiem = 6 s.

T1 = [-50, 200, 12, 18, 40000]

28



8.3 Search scenario

T2 = [100, —100, 8, 18, 40000]

Positions of UAVs and missions, combination of UAV types and parameters of mis-
sions are chosen to test most of constraints and optimality of assignment. T'1 can be
assigned to normal or fast UAVs and test optimality of assignment. U AV} is the closest
UAV to T'1, but UAV; can get there faster. T2 can be assigned only to the normal type
of UAV and tests compliance with the allocation constraints. Both too fast UAV, and
too slow U AV5 can get to T2 faster then U AV3 but can be assign.

The system handled this simple scenario without any problems. Figure 8.2 shows
found plan which is optimal and do not violate any constraints.

Speed;, riorm:
Tirme: ]

Figure 8.2. Tracking scenario plan.

This scenario has demonstrated that system is capable to deal with target tracking.
But used formalization of tracking task is not ideal for real world applications. The
main problem is concept of deadline. Deadline represents time until which target can
be found close enough to given position and tracking can start. Only estimations of
deadline are available and with each second danger of losing the target grows in the
real world. This lead to need to start tracking as soon as possible. But 7.2.3 explain
that system does not offer this kind of optimization because PDDL does not provide
tools to achieve this behavior.

I 8.3 Search scenario

Search scenario contains one search mission and four UAVs spread around the whole
map. Planning and timing for flight in formations are tested in this scenario when
UAVs closer to task have to wait for other.

1D type T Y color
UAV; normal 500 -100 yellow
UAV, normal 0 0 white
UAV; normal -400 -350 blue
UAV, normal -500 -50 read

Table 8.4. Search fleet definition.

29



8. Experiments

All UAVs are spawned at simulationTiem = 5 s with initial wait loops. Search
mission S1 is created, added and planning started at simulationTiem = 6 s.

S1 = [150, —500, 550, —100, 0.2, 70000]

Figure 8.3. Search scenario plan.

This scenario demonstrates that system is capable to plan a flight in formation to
cover the search area. Figure 8.4 shows timeline of found plan where all tasks are
aligned. Shown timeline is plan relative so tasks do not begin at 70 s as defined in S1
but at 49 s. This corresponds to simulation offset of this plan relative timeline which is

Sladded + trep =6+15=21

Search scenario timeline

B Moving I waiting Wl Task
Time o 20 40 60
UAV1
UAV2

UAV3

UAV4

Figure 8.4. Search timeline. Displayed in plan relative time.

But usability of used approach in real world applications is even more limited than
in case of tracking. Similarly, as in tracking case, search tasks are usually intended
as priority tasks that begin as soon as possible. Another problem is set of elementary
tasks types that is narrow and very general. This set allows simple PDDL domain with
faster planning while covering a wide range of missions but causes situation that only
tools to synchronize more elementary tasks are delay and deadline constraints. That
leads to a group of tasks with fixed time positions which planner only haves to obey
and cannot optimize. Also, a danger of unsolvable planning problem grows with task
fixed in time because when the start time is set to early UAVs may not be able to get
there in time.

30



8.4 Patrol scenario

I 8.4 Patrol scenario

Patrol scenario includes one patrol mission and two UAVs. This tests cooperation
of UAVs and time constraints that come with periodical execution of tasks in patrol
mission.

1D type x Y color

UAV, fast 500 -200 white
UAV, fast 500 -280 red

Table 8.5. Patrol fleet definition.

All UAVs are spawned at simulationTiem = 5 s with initial wait loops. Patrol
mission P1 is created, added and planning started at stmulationTiem = 6 s.

P1 = [((350,55)(350, —45) (750, —95) (750, 0)(350, 55)), 100, 50]

normal (paused)

- FlightPlanLa:

Figure 8.5. Patrol scenario plan.

This scenario demonstrates that system is capable to handle patrol for multiple co-
operating UAVs (Figure 8.5). Timeline of plan (Figure 8.6) shows that all elementary
tasks are planned correctly within their periods but also reveals unexpected behavior of
planner. Planner exploits a gap in patrol mission definition when optimizing the plan.
It saves time by assigning the same segment of patrol route twice in row around the
edge of each period. This behavior is valid within given definition of patrol because
the first repetition is in ending pored and the second one starts in next period. But
such behavior was not intended and I expect that in real world situations unwanted.
The solution to this problem in future work can be redefinition of patrol task or cost
modification to enforce execution of segment as soon as possible.

Patrol timeline

B Moving I waiting W sk

Time o 20 40 60 80 100
Period

UAV1

UAV2

Figure 8.6. Patrol initial plan timeline. Displayed in plan relative time.

31



8. Experiments

I 8.5 Measurement scenario

Measurement scenario consists of one measurement mission and three UAVs. Similarly
to mapping scenario one UAV is faster to test handling of UAVs with different speeds.
Measurement mission can be easily decomposed to a high number of elementary task
by change of density. A higher number of elementary tasks in this scenario is used as
a stress test for the PDDL planner.

1D type x Y color
UAV; fast 0 -50 yellow
UAV, normal -50 -175 white
UAV; normal 50 -175 red

Table 8.6. Measurement fleet definition.

All UAVs are spawned at simulationTiem = 5 s with initial wait loops. Measurement
mission M F1 is created, added and planning started at simulationTiem = 6 s.

ME1 = [-400, —650, 400, 250, 200, 100, 8]

erRrovider

Figure 8.7. Measurement plane.

Nice division of an area to sectors can be observed in found plan (Figure 8.7). Each
sector is then assigned to one UAV which is a nice result of travel time optimization.
More work is assigned to faster UAV'1 as expected but unfortunately a big part of time
gain is wasted for long trips to other sectors instead of expansion of one sector.

Mission M E1 is decomposed to 25 elementary tasks and PDDL planer have no prob-
lem to provide a solution within given t,., time limit. But experiments on modified
versions with higher densities were simulated to stress test PDDL planner with larger
sets of simple tasks without any time constraints. Table 8.7 show results of stress test.

Number of tasks 25 36 49 64 81
Planning time [s] 0.8 2.9 10.7 14.8 74.5

Table 8.7. Stres test results

32



8.6 Replanning scenario

I 8.6 Replanning scenario

Replanning scenario is extended variant of patrol scenario. This scenario includes one
patrol mission and two UAVs same as in patrol scenario. But after while tracking
mission is added.

1D type x Y color

UAV; fast 500 -200 white
UAV, fast 500 -280 red

Table 8.8. Replanning fleet definition.

All UAVs are spawned at simulationTiem = 5 s with initial wait loops. Patrol
mission P1 is created, added and planning started at simulationTiem = 6 s. And
tracking mission 7'1 is added and replannig started at simulationT'iem = 60 s.

P1 = [((350,55)(350, —45) (750, —95) (750, 0)(350, 55)), 100, 50]

T1 = [300, —200, 15, 15, 0.2, 100000]

Figure 8.8. Replanning scenario initial Figure 8.9. Replanning scenario after re-
plan. planning with tracking.

There are two reasons why to extend patrol scenario. Patrol mission is one of more
complex mission that includes delays and deadlines. Second one is that this scenario
can be expected in real world where patrolling UAV detects intruder and new tracking
mission is created.

This scenario demonstrates how system can react to dynamic change and replan
already executing tasks. U AV; which is closer to T'1 is assigned to it while UAV1 take
over whole P1 after replanning.

33



Chapter 9
Conclusion and future work

This thesis presented system that can handle task allocation in a team of heterogeneous
UAVs. Presented system uses decomposition of a wide range of high-level missions to
only three types of elementary tasks. Task allocation problem which includes elemen-
tary tasks and UAVs is defined and solved as PDDL problem. The resulting plan
obtained from PDDL planner is then transformed to list of way-points and passed to
UAV where flight path is calculated. The system is implemented to work with AgentFly
simulator.

Very flexible PDDL domain is proposed to deal with a team of heterogeneous UAVs.
Only simple variant of domain that handles different speeds of UAVs is implemented.
Tracking task serves as a test case for constraints that limit assignment of this task only
to UAVs with certain parameters. More specifically constraints on minimal and maximal
speed of UAV are introduced for tracking task. These constraints were successfully
tested and their general and relatively simple implementation allows easy introduction
of many other constraints as required resolution or payload capacity for other tasks in
future.

Experiments with several scenarios in the simulation demonstrated that system can
plan for a wide range of tasks including mapping, search, patrol, tracking and other.
The system is also capable of handling scenarios with several different types of tasks at
once.

Few limitations of PDDL have been encountered especially in expression capabilities
for a metric that is used for plan optimization. For example, cost increasing with
latency cannot be modeled. That leads to the cumbersome uses of time constraints as
delays and deadlines in tasks like tracking where low latency is required. Exploration
of PDDL successor languages or extended variants of PDDL like PDDL+, NDDL or
other is suggested for future work to address this problem.

Also, search task revealed some limitations of flight in formation and cooperation
caused mainly by a narrow set of too generalized elementary task. Consideration of
a new type of elementary task or modification of existing ones is suggested for future
work to improve support for cooperation and time synchronization between multiple
UAVs.

Except improvements mentioned above, future work should be focused on support of
obstacles and no-flight zones. As well as improvements in decomposition process which
should be also able to reflect the heterogeneity of UAVs same as task allocation and
planning.

34



References

[1] V. Marsélek, M. Selecky, and M. Rollo. Akéni scénare. 2018,

[2] C. Berger, M. Wzorek, J. Kvarnstrom, G. Conte, P. Doherty, and A. Eriksson.
Area coverage with heterogeneous UAVs using scan patterns. IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR). 2016,

[3] N.K. Ure, G. Chowdhary, J.P. How, M.A. Vavrina, and J. Vian. Health Aware
Planning under uncertainty for UAV missions with heterogeneous teams. 2013
European Control Conference (ECC). 2013,

[4] D. Turra, L. Pollini, and M. Innocenti. Fast unmanned vehicles task allocation
with moving targets. 43rd IEEE Conference on Decision and Control (CDC). 2004,
4280-4285.

[5] Stephen Buerger, Wendy A. Amai, Timothy J. Blada, Charles Q. Little, Jason C.
Neely, and Joshua Love. The Sandia Architecture for Heterogeneous Unmanned
System Control (SAHUC). 2015,

[6] Yan Jin, A. A. Minai, and M. M. Polycarpou. Cooperative real-time search and task
allocation in UAV teams. In: 42nd IEEE International Conference on Decision and
Control (IEEE Cat. No.03CHS37475). 2003. 7-12 Vol.1.

[7] 1. Xu, and U. Ozguner. Battle management for unmanned aerial vehicles.
In: 42nd IEEE International Conference on Decision and Control (IEEE Cat.
No.03CH37475). 2003. 3585-3590 vol.4.

[8] Dong Jun Kwak, Sungwon Moon, Suseong Kim, and H. Jin Kim. Optimization
of Decentralized Task Assignment for Heterogeneous UAVs. IFAC Proceedings
Volumes. 2013, 46 (11), 251 - 256. DOI https://doi.org/10.3182/20130703-3-FR~
4038.00072. 11th TFAC Workshop on Adaptation and Learning in Control and
Signal Processing.

[9] John Bellingham, Michael Tillerson, Arthur Richards, and Jonathan P. How. Multi-
Task Allocation and Path Planning for Cooperating UAVs. In: Cooperative Con-
trol: Models, Applications and Algorithms. Boston, MA: Springer US, 2003. 23—41.
ISBN 978-1-4757-3758-5.
https://doi.org/10.1007/978-1-4757-3758-5_2.

[10] C. G. Cassandras, and Wei Li. A receding horizon approach for solving some coop-

erative control problems. In: Proceedings of the 41st IEEE Conference on Decision
and Control, 2002.. 2002. 3760-3765 vol.4.

[11] H. L. Choi, L. Brunet, and J. P. How. Consensus-Based Decentralized Auctions
for Robust Task Allocation. IEEE Transactions on Robotics. 2009, 25 (4), 912-926.
DOI 10.1109/TRO.2009.2022423.

[12] Han-Lim Choi, A.K. Whitten, and J.P. How. Decentralized task allocation for
heterogeneous teams with cooperation constraints. American Control Conference
(ACC). 2010, 3057-3062.

35


http://dx.doi.org/https://doi.org/10.3182/20130703-3-FR-4038.00072
http://dx.doi.org/https://doi.org/10.3182/20130703-3-FR-4038.00072
https://doi.org/10.1007/978-1-4757-3758-5_2
http://dx.doi.org/10.1109/TRO.2009.2022423

[13] Davide Dell’Anna. Numerical and temporal planning for a multi-agent team acting
in the real world.

[14] Johann Uhrmann, Ruben Strenzke, and Axel Schulte. Task-based guidance of mul-
tiple detached unmanned sensor platforms in military helicopter operations. CO-
GIS, Crawley. 2010,

[15] Maria Fox, and Derek Long. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Int. Res.. 2003, 20 (1), 61-124.

[16] Stefan Edelkamp. PDDL2. 2: The language for the classical part of the 4th inter-
national planning competition. 2004,

[17] M. Selecky, and M. Rollo. Distributed control of heterogeneous team of autonomous
uavs. 2016 Xponential an auvs experience. 2016,

36



Appendix A
Content of enclosed CD

Jjed

latex

— ctulogo-blue.pdf

— ctulogo.pdf

— figures

—— cd_content.jpg

— different_speeds.jpg

—— mapping_mission.png

— measure_1.jpg

— measure_mission.png

— move metric_1.jpg

— move_metric_2.jpg

— patrol_1.jpg

— patrol_2.jpg

r— patrol_mission.png

— patrol_timeline.png

— search_1.]jpg

— search_2.jpg

r— search_mission.png

— search_timeline.png

— sensore_prop.png

— system_archytecture.png

“— tracking_1.jpg

— references.bib

— style

[— ctustyle.tex

— opmac-bib-simple.tex

— opmac-bib. tex

- task_allocation_in_a_team_of_heterogeneous_unmanned_aerial_vehicles.tex

\— zadani.pdf

— program

— agentfly

I: PilotAgent. java
PlaneBehaviour. java

— config

— mapping

— measurement

— patrol

— replan

— search

“— tracking

— pddl

r— domain.pddl

— optic-clp

“— solve.sh

‘— taskallocation

— Generator.java

— model

—— Coordinates.java

— DomainEntity.java

r— missions

— MappingMission.java

— MeasurementMission.java

— Mission.java

— PatrolMission.java

— SearchMission. java

‘— TrackingMission. java

— OperationModel. java

— tasks

|— ElementaryTaskFlight.java

— ElementaryTask.java

— ElementaryTaskTrack.java

'— ElementaryTaskvisit.java

— vehicle

Sensor.java

Vehicle. java

r— planning

r— PlankElement.java

— Plan.java

—— Planner.java

‘— ProblemBuilder.java

— scenarios

— ExperimentScenario.java

— MappingScenario.java

— MeasurementScenario. java

— PatrolScenario.java

r— ReplanScenario.java

r— SearchScenario.java

— SimpleMappingScenario. javg?

— TaskAllocationScenerioPlayer.java
‘— TrackingScenario.java

L— TaskAllocation.java

'— task_allocation_in_a_team_of_heterogeneous_unmanned_aerial_vehicles.pdf




	TITLE
	Specification
	/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Concept of operations
	Scenarios
	Mapping
	Search
	Tracking
	Patrolling
	Measurement

	UAV types
	Environment

	Problem formulation
	UAV
	Sensor
	Environment
	Missions
	Mapping
	Search
	Tracking
	Patrolling
	Measurement

	Elementary tasks
	Flight
	Visit
	Tracking


	State of the art
	PDDL planners
	Basic planners
	Numeric planners
	Temporal planners
	LPG
	LPG-td
	POPF
	OPTIC


	System architecture
	Model
	Planning module
	Controller
	AgentFly simulator

	Implementation
	Decomposition
	Mapping
	Search
	Patrol
	Measurement

	Mapping to PDDL domain
	UAV and world
	Elementary tasks
	Metric

	Planning
	Task interruption
	Timeline differences
	Asynchronous execution

	UAV flight plan update

	Experiments
	Mapping scenario
	Tracking scenario
	Search scenario
	Patrol scenario
	Measurement scenario
	Replanning scenario

	Conclusion and future work
	References
	Content of enclosed CD

