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Abstract

The task of inferring unknown random variables on a graph is a widely researched topic. Repre-
senting a system of random variables as a graphical model is less constraining as the graphs allow
the capture of dependencies between random variables. The more general model comes at the cost
of limited assumption set, for instance, i.i.d. assumption used in the classical statistical machine
learning setting becomes invalid. As a result, the size of the knowledge base of algorithms for
performing inference on graphical models is small, no guarantees are usually provided, and the
number of inferential algorithms with learnable parameters is even lower. In this thesis, we propose
a novel formalism for performing graph inference on graphical models. We show that the formalism
embraces many inference procedures and is very general compared to the inflexible models of prior
art. To demonstrate our claims we attempt to solve the problem of classifying unknown computer
servers as malicious or benign based only on the network traffic and a blacklist of known malicious
domains in the network. To accomplish this, we formulate the task in terms of the proposed formal-
ism and implement the solution. Early experiments indicate that our method performs superiorly to
the patented state-of-the-art Probabilistic threat propagation algorithm and at the same time is more
general and offers greater flexibility.

Keywords: graph inference, Markov random fields, message passing inference, multiple
instance learning, neural networks, Probabilistic threat propagation, computer security,
malicious server classification

Abstrakt

Inference hodnot neznámých náhodných proměnných v grafu je široce studovaný problém. Grafová
reprezentace systému náhodných proměnných je méně svazující, protože do grafu můžou být zakó-
dovány vztahy mezi proměnnými. Tento obecnější model ale získáváme za cenu toho, že některé
běžné předpoklady přestávají platit, jako například podmínka nezávislých a stejně rozdělených
vzorků, která se uplatňuje ve statistickém strojovém učení. Toto má za následek, že databáze použitel-
ných metod a algoritmů je omezená a zpravidla nejsou poskytovány žádné záruky. Metod, které by
umožňovaly jakoukoliv formu učení svých parametrů, je ještě méně. V této práci představíme nový
formalismus pro úlohu inference nad grafickými modely a demonstrujeme jeho flexibilitu a obecnost
v porovnání se staršími modely. Pro experimentální ověření našich tvrzení se pokusíme vyřešit
úlohu klasifikace počítačových serverů jako škodlivých anebo neškodných, to vše pouze pomocí
sledování sít’ového provozu a dodaného blacklistu známých hrozeb. Tuto úlohu jsme zformulovali
pomocí nového formalismu a vzniklou metodu řešení implementovali. Rané experimenty ukazují, že
tato metoda překonává patentovaný state-of-the-art algoritmus ‘Probabilistic threat propagation’ a
zároveň je více obecná.

Klíčová slova: inference na grafu, ‘Markov random fields’, ‘message passing inference’,
multi-instanční učení, neuronové sítě, ‘Probabilistic threat propagation’, počítačová bez-
pečnost, klasifikace škodlivých serverů
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Chapter 1

Introduction

The field of Machine learning has been on the rise in recent years, especially its offspring Deep
learning [Goodfellow et al., 2016], which has repeatedly drawn considerable attention with its success
in image recognition [Hu et al., 2017], machine translation [Wu et al., 2016], audio synthesis [van
den Oord et al., 2016] or mastering two-player games [Silver et al., 2017]. Close to human or
even superhuman performance was achieved in many tasks due to increasingly more accessible
amounts of data and computing power. In the field of statistical machine learning in the classical
supervised setting data is obtained in the form of a vector x of fixed size and its corresponding label
y. Moreover, it is usually assumed that datapoints drawn from an unknown underlying distribution
are independently and identically distributed (i.i.d. assumption). The goal is to devise a decision
strategy performing well on unseen data. Unfortunately, it is not possible to frame every task in this
manner.

Firstly, the data may be structured in such a way that it is impossible or counter-intuitive to
transform samples into a vector of fixed size. However, the same data can be more than often naturally
represented in a different way. Multiple instance learning (MIL) [Babenko, 2008] is a paradigm that
instead of single instances considers higher-level entities called bags. Each bag contains one or
more instances, and labels are only known on the level of bags. Instances are not explicitly labeled
although the existence of a class distribution on instances is usually assumed. One can imagine
image classification task where each picture contains multiple objects, all of them crucial for making
a decision. Even though every object surely belongs to an unknown class of objects, we are interested
only in classifying the picture as a whole. This requires lossless capture and efficient utilization
of knowledge about objects on the higher level of abstraction than single instances. Instead of
representing a bag as one vector x, we group vectors describing every instance from the bag into
a set {xi}n

i=1 where n denotes the bag’s size. For binary classification, a standard presumption is
often employed that bag is labeled positive if at least one of its instances has a positive label and
labeled negative otherwise. By taking a whole set of instances into account, MIL facilitates modeling
of structured data, but this rather new direction has not yet been studied as extensively compared to
other research areas. As a result, opting for MIL comes with a price of limited supply of algorithms
and datasets.

Secondly, in some real-world examples, i.i.d. assumption is incorrect. We often observe a somehow
structured system of objects that influence significantly each other. Reasoning about a single datapoint
while neglecting its dependencies on others results into information loss, nevertheless, the exact
opposite approach of considering every possible relation in the data is infeasible for larger datasets
due to the quadratic complexity. On the other hand, it is often the case that these dependencies are
mostly local to small groups of objects and thus sparse.

Lastly, there are many domains where labels are expensive or difficult to obtain, therefore it is
very hard to acquire sufficiently large and representative datasets. For instance, medical investigation
of a patient may be costly, and as a result, big datasets from the healthcare domain are rare. Another
difficulty is that the data is sometimes not labeled with absolute confidence as some tasks are very
difficult or almost impossible for a human annotator to perform without mistakes. Such type of
labels is called weak labels and the setting weak supervision. We still seek an efficient method that
would predict labels for previously unseen examples with sufficient accuracy, however, in the case of
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CHAPTER 1. INTRODUCTION

incomplete or weak data annotation it is unclear how to evaluate model’s performance. The classic
example comes from the Computer security (CS) domain, where new malware or viruses appear every
day and even though an experienced network analyst can recognize suspicious behavior, it is not
possible to label every object of interest with high precision. Semi-supervised learning [Chapelle Olivier,
2006] is a paradigm that allows a part of training data to be unlabeled.

In this work, we address a task of (probabilistic) inference on a graph in which each object of
interest is represented as a vertex and relations between objects as edges. This problem poses the
same challenges that were just described – it is hard to describe an instance by a fixed size vector,
there may be dependencies between objects and not every label is known and a hundred percent
correct. We propose a novel Multiple instance neural inference (MINI) formalism for the inference in
graphical models and derive a method which given only a graph and a small subset of its nodes
with positive labels can infer labels for the rest of nodes in the graph. In comparison to standard
models, the method is effective, much more flexible and more general. MINI formalism poses a task
as a MIL problem, therefore we are able to model complex relations between nodes accommodating
any degree distribution in a graph. By using a specific neural network formalism, we train models
with high capacity successfully avoiding overfitting. Our method generalizes well to other graphs
from a domain, where training data comes from. Furthermore, it is possible to include domain-
specific features of nodes, edges or both in the graph to improve accuracy. The method can be
readily extended to work in the multi-class environment, but we will consider only the binary case.
Additionally, it outputs a real number between zero and one which expresses the confidence of
the decision. We measure the performance of this approach by solving the problem of domain
classification and outperform Probabilistic threat propagation (PTP), the state-of-the-art algorithm
commonly used in the CS domain. The powerful iterative message passing inference algorithm
serves as a foundation for the formalism and positive results were obtained, although the specific
implementation reported here uses only one iterative step. This shows a great promise for the design
of multi-step iterative method in the future.

1.0.1 Computer Security Domain

Even though the proposed method can be effortlessly employed in an arbitrary domain, in this work
we focus on the CS domain. The arrival of the Internet and its swift growth gave rise to an entirely
new sort of crime, sometimes called cybercrime. Nowadays, malware programs are being created
faster than before, and protection against such threats becomes increasingly difficult. In the past, a
traditional method of signature-based detection compared pre-defined pieces of information extracted
from the inspected file or its communication, such as the hash of the file, various (sub)sequences
in compiled binary files or a special structure of data packets the program sends. After that, the
extracted signature was compared to an existing database of known threats. These databases are
called blacklists and form the core of the majority of antivirus software. This approach requires a
careful manual or semi-automatic examination of every newly-discovered malware, which results
in blacklists being temporarily outdated, sometimes even for several days. Furthermore, modern,
sophisticated malware makes use of polymorphic or encrypted code segments, therefore devising a
corresponding signature may be very hard or nearly impossible. The birth of code generation or code
mutation automated tools made this situation even more desperate, as this has allowed malware
creators to produce new threats with less effort. Fighting this losing battle, in which we are destined
to be one step behind all the time, is not the right way to go.

As a consequence, a radically different behavior-based approach is gaining popularity among CS
companies. The main idea is not to inspect the structure of the program but to observe its behavior.
This can be done by monitoring its network activity or system calls. Contrary to a signature of a
program, the behavior is really tough to conceal. To give an example, there are various types of

2



CHAPTER 1. INTRODUCTION

malware, each type with a different purpose, but the overwhelming majority of them aim to make
money for their creators. These types include ransomware, which encrypts the whole hard disk of
the user and demands payment in exchange for the decryption, adware, which generates revenue by
displaying additional advertisement on user’s screen, or spyware, which tracks user’s activity on the
internet without their consent and may steal important passwords. To obtain instructions on which
action to take next, the malware must connect to a controlling server, called Command and control
(C&C) server. This is a typical example of unavoidable behavior which can be used to detect malware.
Similarly, a program suddenly opening many files may be ransomware, many computations being
carried out indicate a presence of cryptocurrency mining malware or a lot of connections to distant
countries may be a consequence of the device being used for Distributed denial of service (DDoS)
attack. Tools of statistical analysis and machine learning proved themselves successful in classifying
programs based on their behavior because the explosion of the volume of data makes learning bigger
high-capacity models without overfitting feasible.

There is plenty of concrete tasks to address in the CS domain. One can for example attempt to
identify infected computers connected to the network, classify computer programs by inspecting their
code or binary representation or detect suspicious network flows1. In this thesis, we look into the task
of classifying dangerous servers, which may contain malicious code or give instructions to malware
installed on client’s computer. If we are accurate enough, the detected servers may be persecuted,
effectively dealing with the puppeteer himself instead of single puppets in the form of malware
programs. As a result, the malicious activity would be greatly reduced. The task is hard because the
CS domain suffers from exactly the same problems as described at the beginning of this chapter, that
is, manual data annotation is hard and servers influence each other and thus can be by no means
considered independent samples. This led to new terminology for weak annotations – instead of
reliable ground truth, we have only tips at our disposal and one needs to bear in mind that many
servers with malicious content may not be detected by network analysts. It is not, therefore, clear
how to even define a bulletproof performance measure given incomplete and unreliable information.
On top of that, computer networks are fastly evolving environment and datasets quickly become
obsolete. As more and more devices connect to the network and throughput of a network grows, a
vast amount of data is produced posing a computational and representational challenge for anyone
trying to harness it.

There are many types of dangerous servers and to simplify things, we split servers into two groups
and call them malware or positive servers and benign or negative servers. We perform classification by
examining records of communication between users connected to the network and domains residing
in it. To be able to employ the proposed formalism, we construct a graph of servers and then test
models by classifying vertices in this graph. Even though a domain is perhaps a more appropriate
name for the objects we classify, we are going to use the term interchangeably with a server in order
not to confuse the reader, when we speak about the CS domain. Moreover, previous work [Yu et al.,
2010] showed that malicious servers tend to form local communities in network graphs. This result
means that relations between considered objects are sparse and we will refer to it in the rest of the
text. Lastly, by users we mean all devices connected to the network, not only personal computers and
mobile phones but also printers, televisions and other objects able to communicate.

1https://en.wikipedia.org/wiki/NetFlow

3
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1.0.2 Related work

Graphical models and inference

To study graphical probabilistic models’ fundamentals and existing methods for inference in them,
we consulted [R. Kindermann, 1980, Lafferty et al., 2001] and [Bishop, 2006]. This thesis relies on
an important proof that every probability distribution can be factorized and thus represented as an
undirected graph from [Hammersley, 1971].

Probabilistic graph inference was solved exactly for some subclasses of graphs [Baum and Petrie,
1966, Pearl, 1988], but for general graphs, approximate methods need to be employed. Such methods
include Loopy belief propagation [Frey and MacKay, 1998], Markov chain monte carlo [Wang et al.,
2000] or Graph cuts [Kohli and Torr, 2005]. However, the most relevant method for our work is
the sum-product algorithm introduced in [Kschischang et al., 2001], which served as our starting
point. This algorithm belongs to the class of so-called Message Passing algorithms, where inference is
considered an iterative process of sending ‘messages’ between nodes in a graph.

An example of utilization of the sum-product algorithm is demonstrated for instance in [Horng
Polo Chau et al., 2011], but it requires manually crafted definitions of potential functions in the
graph model. Learning the potential functions involves performing inference procedure at every
iteration of gradient learning, which slows down the procedure significantly. In [Yu et al., 2017]
neural networks were used for the task, but only on binary Markov random fields. A suggestion to
predict messages instead of computing them directly (which is both computationally expensive and
also proved to be only an approximation) appeared in [Ross et al., 2011]. Previous work in computer
vision domain [Lin et al., 2015b] uses Convolutional neural networks to learn messages in message
passing inference for the task of semantic image segmentation.

Our main focus was to perform graph inference with the assistance of neural networks and
develop a method that would be efficient and accurate for any degree distribution of the graph.
We followed a Multiple instance learning [Babenko, 2008] learning framework and leveraged work
proposed in [Pevný and Somol, 2017, Stiborek et al., 2017] to solve graph inference task framed as a
MIL problem.

Probabilistic threat propagation

We test our method on the specific task of inferring malicious servers from the computer security
domain. The state-of-the-art approach is to use Probabilistic threat propagation [Carter et al.,
2013, Kazato et al., 2016], an iterative method, which despite offering limited possibilities performs
well in practice. We refer the reader to Appendix A, where we sketch out how the Probabilistic threat
propagation algorithm works. It was adapted and successfully deployed in Cisco Systems, Inc. [Jusko
et al., 2016], and the method was patented2 afterward. Probabilistic threat propagation demands
hand-crafted parameters and offers no intuitive way to take external knowledge about objects into
account compared to our method. What’s more, it appears to be superior to the Probabilistic threat
propagation approach according to early experiments.

2https://patents.google.com/patent/US9596321B2/en
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CHAPTER 1. INTRODUCTION

1.0.3 Thesis structure

In the second chapter, we familiarize the reader with previous work on graphical models that capture
relations between objects and briefly describe the message passing algorithm, which inspired us. We
describe the MINI formalism and the graph inference method derived from it in the third chapter and
in the fourth chapter discuss specific techniques and methods, which may be useful to implement
to decrease computational complexity of tasks we solve with the formalism. The same chapter also
presents the details about the server classification problem and our approach to solving it. The
description of experiments carried out is in the fifth chapter together with a comparison to PTP
method and a conclusion with several ideas for future work is presented in the last, sixth chapter.
Several appendices, a list of acronyms, a nomenclature and a bibliography close the thesis.
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Chapter 2

Background

In this chapter, we briefly introduce graphical models, which naturally encode dependencies and
interactions between objects, and the class of message passing inference algorithms, a standard method
for performing inference in graphical models.

2.1 Graphical models

As we shall see in the sections to come, it is possible to convert (joint) probability distributions
composed of many random variables into a graphical representation, where each node represents
one random variable and edges represent probabilistic relations between variables. These models are
called graphical models or structured probabilistic models and bring several advantages:

• Describing the entire joint probability distribution (for example in a table) may be very ineffi-
cient. Typically, there are no interactions between most pairs of random variables involved in
the distribution and the CS domain is no exception. Graphical models take advantage of this
and encode relations efficiently into a graph.

• Graph representation makes it easier to gain an insight into properties of probability distribution
and interactions between variables comprising this distribution.

• Graph as a mathematical structure is widely studied, and the graph theory provides many
useful algorithms and methods.

We define a graph G = (V , E), where V = {v1, v2, . . . , vn} is the set of n vertices associated with
random variables and E ⊆ {{u, v} ; u, v ∈ V , u 6= v} is the set of edges in G representing functional
dependencies between variables. We shall call the elements of V as ‘vertices’, ‘nodes’, ‘random
variables’ or just ‘variables’ and the set E as an adjacency relation since it in reality is a symmetric,
irreflexive binary relation. Note that we do not allow loops as it does not make sense in the context
of random variables.

One of the most important characteristics of graph models is conditional independence. Two random
variables X and Y are said to be conditionally independent given a set of other random variables
Z = Z1, . . . , Zk, denoted X ⊥⊥ Y | Z, if the following equation holds:

p(X |Y, Z) = p(X | Z) (2.1)

or equivalently:

p(X, Y | Z) = p(X | Z)p(Y | Z) (2.2)

for all possible values of X, Y and Z.
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We shall show that the conditional independence makes both structure of graphical models
and inference in them simpler and easier to grasp. Graphical models build on the fact, that every
probability distribution can be broken into a product of functions of its variables, which we call
factors:

p(X) = ∏ f (X) (2.3)

The definition of a factor varies from one type of graphical model to another, but usually, it
describes a form of dependency between variables or sets of variables. We distinguish two main
categories of graphical models – directed graphical models, also known as Bayesian networks, and
undirected graphical models, sometimes referred to as Markov random fields or Markov networks. We
also describe the specific subclass of Markov random fields, undirected graphical models known
as Conditional random fields, where some random variables in the graph are observed, due to their
importance later. By describing a joint probability as a graph we can define factors as functions
representing local conditional distributions on the variables. Indeed, in practice, we often work
with probability distributions defined on the set of random variables, where many variables are
conditionally independent of each other given some set of other nodes. This enables us to capture
important relations between variables while retaining favorable computational complexity.

All graphical models we work with are defined to exhibit so-called Markov property, which means
that two random variables represented by nodes Xi and X j are conditionally independent given
set of nodes S if S forms a separating subset1 in the graph between Xi and X j. As a result, every
two variables not connected in a graph must be conditionally independent given all other nodes in
the graph. We can consequently define the Markov blanket (MB) of the node Xi, denoted MB(Xi) as
a minimal set of vertices in the graph, such that every other vertex X j /∈ MB(Xi) is conditionally
independent of Xi given its Markov blanket MB(Xi):

Xi ⊥⊥ X j |MB(Xi) (2.4)

As a result, the inference of the probability of Xi given every other vertex in the graphs turns into:

p(Xi | {X j ; Xi 6= X j}) = p(Xi |
{

X j ; X j /∈MB(Xi) ∪ {Xi}
}

, MB(Xi))

= p(Xi |MB(Xi)) (2.5)

Here we used the definition of Markov blanket and the conditional independence in (2.1). This result
demonstrates the important role the concepts of conditional independence and Markov blanket play
in the modeling of structured data.

2.1.1 Bayesian networks

Bayesian network (BN) is a type of graphical model, which models joint probability distribution as a
directed acyclic graph. Factorization of joint probability is defined in this case according to sum and
product rule of probability into marginal and conditional probabilities:

p(X1, X2, . . . , Xn, Y) = p(X1, X2, . . . , Xn |Y)p(Y) (2.6)

1Separating subset between two vertices u and v in the graph is a minimal set of other vertices such that u becomes
unreachable from v after the removal of the separating subset from the graph.
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ED

C

BA

Figure 2.1: Example of factorization of
probability distribution p(A, B, C, D, E) =
p(A)p(B | A)p(C)p(D | B, C)p(E |D) into fac-
tors. It can be clearly seen that B is dependent
on A, D is dependent on C, B and E is depen-
dent on D. Additionally, E is conditionally
independent of all other nodes given its par-
ent D and D is conditionally independent of
A given B and C.

Edge incidence relation represents conditional
probability between two random variables and rela-
tionship between a factorization of the joint probabil-
ity and its graphical representation stems from the
properties of the joint distribution. By implication,
every node is conditionally independent of its non-
descendants given all its parents. A trivial example of
a Bayesian network can be seen in Figure 2.1. As we
do not directly work with Bayesian networks in this
thesis and every important aspect of these models for
our work have already been discussed, we end their
description here.

2.1.2 Markov random fields

Markov random field (MRF) [R. Kindermann, 1980] is an undirected graphical model, where the
joint probability distribution on a set of random variables is represented as an undirected graph.
Factorization of joint probability distribution into a product of functions defined over variables
which are local to the graph is not as straightforward as in the case of Bayesian Networks. Intuitively
two random variables not connected by an edge in the graph should be conditionally independent
of each other given every other vertex in the graph. This calls for the use of maximal cliques2 for
encoding dependence between variables into connectivity properties of a graph. The factorization of
the probability distribution is then proportional to the product of potential functions ψK:

p(X) ∝∏
K
ψK(XK) (2.7)

where XK is a set of variables which are represented as the nodes in clique K.

The definition of the Markov blanket of a vertex Xi is rather straightforward as it is the set of all its
neighbors in the graph N (Xi) =

{
X j ∈ V ; {Xi, X j} ∈ E

}
, where:

Xi ⊥⊥ X j | N (Xi) (2.8)

for every X j /∈ N (Xi). The Hammersley-Clifford theorem [Hammersley, 1971] states, that every
positive probability distribution can be factorized into a product of potential functions defined over
maximal cliques in the graph and therefore represented as Markov random field. The theorem also
holds in the reverse direction, that is, every Markov random field, whose density can be factorized
over its cliques, represents a probability distribution. This theorem is one of the foundation stones of
our method.

2Maximal clique is a maximal complete subgraph (adding another node from graph breaks this completeness).
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A B

C D

E

Figure 2.2: Example of representing proba-
bility distribution p(A, B, C, D, E) as an undi-
rected graph. This particular graph depicts
factorization into a form p(A, B, C, D, E) =
1
Zψ(A, B, C)ψ(B, C, D)ψ(B, E) as {A, B, C},
{B, C, D} and {B, E} are maximal cliques in
the graph. For example, E is conditionally inde-
pendent of every other node given B, A and D are
conditionally independent given their separating
subset S = {B, C} and MB(C) = {A, B, C} is the
Markov blanket of variable C.

Potential functions need not satisfy the proper-
ties of a probability function, particularly they
do not have to sum or integrate to one. However,
they are required to be non-negative. Taking this
into account we can normalize the factorization
in (2.7):

p(X) =
1
Z ∏

K
ψK(XK) (2.9)

where Z is a normalizing constant, sometimes
called partition function, defined as:

Z =
∫

X
∏
K
ψK(XK) dX (2.10)

where summation can be used in the case of
discrete distributions. Exact evaluation of this

constant may pose a significant computational challenge as the complexity of computation scales
exponentially with the number of random variables. Fortunately, in many applications, this term
cancels out. A simple instance of a Markov random field and its factorization can be seen in Figure 2.2.
As opposed to Bayesian networks where each factor has a clear meaning, potential functions have
no immediate interpretation. One particular point of view comes from the minimum total potential
energy principle in physics, which states that a system always approaches the state with the lowest
potential energy. Because potential functions are defined as non-negative, they are often interpreted
as:

ψC(XC) = exp(−E(XC)) (2.11)

where E is an energy of the variables in clique. This is favorable since now multiplication of potential
functions turns into addition and the state with the lowest energy corresponds to the state with the
highest probability.

A B

C = 0 D

E = 1

Figure 2.3: Conditional random field representing
the same model as the model in Figure 2.2, how-
ever, this time values of variables C and E have
been observed. A typical task now would be to infer
p(A, B, D | C = 0, E = 1) using observed informa-
tion and relations between variables encoded into
the graph.

2.1.3 Conditional random fields
If some random variables in a Markov random
field are observed, the model turns into Condi-
tional random field (CRF), therefore CRFs are just a
special case of MRFs. CRFs might come in handy
when solving different inference tasks and the
task of classifying computer servers, which we
attempt to solve later on, is in reality best inter-
preted as the inference in CRF. Indeed, we can
consider domains on the blacklist observed with
known value. An example of a CRF model is in
Figure 2.3.
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2.2 Inference on graphical models

Once the system of random variables is represented as a graphical model where vertices correspond
to single random variables, we can perform inference on this graph. The first classical use case is
inferring a conditional distribution:

p(Y1, Y2, . . . , Yn, | X1, X2, . . . , Xm) (2.12)

of one or more random variables Y1, Y2, . . . , Yn given some observations X1, X2, . . . , Xm. This task is
usually solved with Conditional random fields, but can be in fact generalized to finding a marginal
probability p(Y1, Y2, . . . , Yn, X1, X2, . . . , Xm) if we fix probability distribution of the observed vari-
ables to Dirac delta functions. This task corresponds to finding the marginal probability in Markov
random field, confirming that CRFs are only a special case of MRFs.

The second use case is finding a state in which the system is most likely to reside. This corresponds
to solving following optimization task:

X∗1 , X∗2 , . . . , X∗n = argmax
X1 ,X2 ,...,Xn

p(X1, X2, . . . , Xn) (2.13)

For some subclasses of models, exact methods were developed, for instance in [Baum and
Petrie, 1966] for Hidden Markov models, which are special instances of Bayesian networks, where
some variables are observed and some are latent. However, in general graphs solving either of the
aforementioned tasks is often computationally infeasible or even proved to be NP-complete and
iterative approximation methods have to be employed.

Approximation methods used to infer unknown probabilities include message-passing inference
[Pearl, 1988, Frey and MacKay, 1998, Kschischang et al., 2001], graph cuts [Kohli and Torr, 2005] and
Monte carlo Markov chains [Wang et al., 2000]. In the next section, we describe message passing
inference as it is the foundation of our method.

2.2.1 Message passing algorithms

Message passing algorithms is a family of algorithms which aims to infer unknown quantities on
graphs by sending messages between graph nodes. Messages capture information local to parts of
the graph and by propagating them through the graph it is possible to transfer this information to
distant nodes as well. Adjusting local messages accordingly to incoming messages from other parts
of the graph and repeating this process iteratively may lead to system converging to a stable state.
We will briefly introduce the main algorithms that Message passing inference (MPI) consists of.

In order to explain the inner-workings of the algorithms and simplify the further discussion,
we first need to introduce the concept of factor graph structure. Recalling back to the Section 2.1,
every probability distribution can be broken into factors, from whose product the joint probability is
computed. The joint probability distribution can be then computed as a product of these factors. the
factor graph is constructed by removing all edges of the original graph, adding nodes corresponding
to each factor to nodes already present in the graph and adding new edges according to the following
rule. A new edge is added between a node representing a random variable and a factor node,
whenever the factor as a function is parametrized by the random variable. This ensures that resulting
graph is bipartite, first partite formed by random variable nodes and second partite by factor nodes.
Markov random field can be easily turned into a factor graph because every potential function
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A B

C D

E

(a) Markov random field

A B

C D

fB,E

fA,B,C

fB,C,D

E

(b) Factor graph

A

B

C

D

fB,E

fA,B,C

fB,C,D

E

(c) The same factor graph

Figure 2.4: Transformation of Markov random field model from Figure 2.2 into factor graph. The same graph
is drawn on the right hand side to demonstrate bipartitness of any factor graph. Comparing to (2.7) it can be
seen that every factor and its neighbors corresponds to potential function of the neighbors.

operating on a clique corresponds to one factor. An example of such transformation can be seen in
Figure 2.4. We will discuss one particular algorithm originally proposed in [Pearl, 1988] called Belief
propagation. The work addressed only Bayesian networks, but we will describe its generalization to
MRFs called the sum-product algorithm. This algorithm adopted the name of its predecessor and
therefore is sometimes called Belief propagation as well.

2.2.2 Sum-product algorithm

The sum-product algorithm [Kschischang et al., 2001] tackles the problem of inferring marginal
probabilities from the whole joint probability or conditional probability described (2.12) while main-
taining efficiency. Every marginal probability of random variable X can be obtained by marginalizing
over other random variables:

p(Xi) =
∫
(X\Xi)

p(X)d(X \ Xi) (2.14)

= p(Xi) =
∫

X1

. . .
∫

Xi−1

∫
Xi+1

. . .
∫

Xn

p(X) dXn . . . dXi+1 dXi−1 . . . dX1 (2.15)

where X = (X1, X2, . . . , Xn) is a vector of all n random variables in the system. Also, we slightly
abuse the notation used for the set difference to keep brevity. Therefore, X \ Xi represents a vector
of random variables with the variable Xi left out. If Markov random field is a tree, it contains only
cliques of cardinality two and therefore every potential function ψ is a function of two arguments
and every factor in the factor graph has only two neighbors.
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As a result, the joint probability the graph represents can be written as:

p(X) = ∏
f∈N (Xi)

Ff (Xi, X( f )) (2.16)

Here, N (Xi) denotes the set of factors neigboring some random variable Xi in the factor graph, X( f )
the set of random variables present in the subtree formed by the factor node f and Ff (Xi, X( f )) is
the product of all the factors in the subtree formed by the factor f . To illustrate this factorization
we refer to Figure 2.5, which also gives a basic intuition about the notion of messages. Due to the
conditional independence between some variables, the joint probability can be computed locally and
the result can be ‘sent’ over to other parts of the graph.

Ff1(Xi, X( f1))
Ff2(Xi, X( f2))

Xi
f1

...

· · ·

· · ·
f2

...

· · ·

· · ·

· · ·
−→ µ

µ ←−

Figure 2.5: Factorization of a tree graph into a product of two terms. The values µ representing functions Ff
evaluated at different subtrees can be viewed as messages sent from other parts of the tree computed locally
and expressing belief about values of Xi.

Identity (2.14) can be then rewritten using (2.16) as:

p(Xi) =
∫

X\Xi
∏

f∈N(Xi)

Ff (Xi, X( f )) d(X \ Xi) (2.17)

for every random variable Xi. This factorization into functions of different part of graphs may not be
possible in general graphs. Belief propagation [Pearl, 1988] was shown to work exactly in tree graphs
and the algorithm can be directly derived from (2.17) and (2.16). In the case of graphs with loops, its
variant called Loopy belief propagation [Frey and MacKay, 1998] can be used. Exact inference is not
guaranteed, but this method performed reasonably well on various tasks.

As it turns out, integrands in (2.17) have many factors in common (this is given by the fact that
probabilistic dependencies are only local in the graph). For the summation of many terms containing
repeated members, we can use the identity xy + xz = x(y + z) and thus save one operation by
factoring out appropriate expressions. The sum-product algorithm leverages this observation and
takes an approach similar to dynamic programming.
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Messages passed between the factor node f and the random variable Xi and vice versa are recursively
defined as:

µ f→Xi(Xi) =
∫

X f

f (Xi, X f ) ∏
Xn∈N ( f )\Xi

µXn→ f (Xn) dX f (2.18)

µXi→ f (Xi) = ∏
fn∈N (Xi)\ f

µ fn→Xi(Xi) (2.19)

where X f is a set of variables on which the factor f depends with the variable Xi left out. Here,
we assumed that we work with an undirected graphical model and directly substituted potential
functions ψ into factor functions f , however, the equations hold for any functions that appropriately
factorize the joint distribution. In the case of discrete distributions, we apply summations instead of
integrals. From these equations, it can be seen that for inferring the marginal probability of a random
variable, the sum-product algorithm does nothing else than a marginalization over all possible values
of all other variables and rearranging the summation in an efficient way. Let us emphasize that every
message depends only on the value of the random variable it is sent to or sent from. Furthermore,
provided all incoming messages are nonnegative, resulting message is nonnegative as well.

Informally speaking, a message µ(Xi) carries a belief in random variable Xi having a particular
marginal value accumulated in other parts of the graph. Intuitively, when values of messages sent to
the random variable are high, the marginal probability of the value is high as well:

p(Xi) ∝ ∏
f∈N (Xi)

µ f→Xi(Xi) (2.20)

In this light, the messages can be viewed as likelihood of random variable having a particular
marginal value.

2.2.3 Max-sum algorithm

The max-sum algorithm solves the task of maximally probable state of distribution defined in (2.13).
We seek a state X∗ such that:

p(X∗) = max
X

p(X) = max
X1

max
X2

. . . max
Xn

p(X1, X2, . . . , Xn) (2.21)

Because the probability can be again expressed as a product of factors that are common for many terms
being maximized, we make similar observation as in the case of the sum-product algorithm, that is
max(xy, xz) = x max(y, z) if x is a constant, positive number. Following the same reasoning we could
define messages just like in (2.18) and (2.19) performing maximization instead of marginalization, but
in order to avoid underflow for small probabilities, the probability is transformed into the logarithmic
domain. The messages are defined as:

µ f→Xi(Xi) = max
X f

(
ln f (Xi, X f ) + ∑

Xn∈N ( f )\Xi

µXn→ f (Xn)

)
(2.22)

µXi→ f (Xi) = ∑
fn∈N (Xi)\ f

µ fn→Xi(Xi) (2.23)
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The most probable value for a single variable can be computed from:

p(X) = argmax
X

∑
f∈N(X)

µ f→X(X) (2.24)

If some values of random variables in MRF are known, we can take it into account when
computing messages coming from and into these variables and the inference procedure remains
the same. We still have not addressed many decisions that need to be taken when designing
message-passing algorithm, such as how to initialize all messages, whether to send all messages
synchronously or adopt a different asynchronous schedule and how to normalize messages, as
without normalization, the algorithm may diverge. However, this chapter was meant to give the
reader some insight into important methods and techniques that have inspired our work, most
importantly the notion of variables sending messages to each other, instead of describing them in
full detail. For a thorough discussion, one may consult [Bishop, 2006].
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Chapter 3

Method description

In this chapter, we define rigorously the task of classifying malware servers in computer networks,
introduce our Multiple instance neural inference formalism for performing inference in general graphs
and explain how the formalism leverages findings from the fields of message passing graph inference,
neural network modeling and Multiple instance learning. We propose a one-step method for solving
graph inference task using MINI formalism, present the advantages of the approach in comparison
with the current methods and discuss possible extension into multi-step inference algorithm.

3.1 Task formulation

To frame the task formally, we are presented with an undirected graph without loops G = (V , E)
where V is a finite set of vertices and is a set of edges (adjacency relation). Additionally, we consider
a set of classes C and a ‘ground-truth’ function C : V → C assigning the true class to every vertex.
This function is of course unknown, but we will use it to denote the class of some vertex. Given
a small subset of vertices V ′ ⊆ V and their respective values C(V ′), our goal is to infer remaining
labels with high degree of precision.

During learning, one or more graphs with complete labels (i.e. V ′ = V) serve as a training test
and at the test time another graph is fed to the algorithm, this time only a small subset of vertices V ′
is labeled. Our method outputs not only a class c ∈ C, but also probability distribution over classes.
Function C can be therefore viewed as a mapping from V to R|C|.

Using the graphical model framework introduced in the last chapter we can also interpret the
task from the probabilistic view. A set of vertices V becomes a set of random variables taking on
values from C. The joint probability p(X) is encoded in the corresponding Markov random field and
probabilistic relations between variables in C define the placement of edges. Given observations of
values of some variables XO ∈ X we want to infer conditional marginals:

p(X \ XO | XO) (3.1)

for the remaining variables in the graph. Because of our focus on undirected graphs, from now on
we abandon the general notation for graph factors f , used for the definition of messages in Section
2.2.2, and use potential functions ψ, described in Section 2.2, instead.

Computer security domain interpretation

In order to illustrate how this problem formulation translates to a real world use case, let us consider
again the CS domain and in particular the task of classifying servers as malicious or benign. We
can think of V as a set of all servers in the dataset, each server v ∈ V belonging to a class c ∈
{malicious, benign}. Graph adjacency relation E can be defined in multiple ways, in our case, we
define two servers to be adjacent in the graph if any user connected to both of these servers. The
existence of such communication channel depends on the servers themselves and their classes. If
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we are given a record of network traffic in a company during a pre-defined time window, we can
build a graph of servers by observing activities of users connected to the network. Given a blacklist
of malicious servers (known to be almost surely incomplete), we would like to infer which servers in
the network are likely malicious as well.

3.2 MINI formalism

Now we are ready to present the formalism itself. We begin by describing a hypothetical generative
model that generates graphs we will learn from given parameters θ (from the parameter space Θ).
Parameters θ can be thought of as a description of the system at the time of observation. Then we
show that by assuming the Markov property to be true in our graphs we can only consider Markov
blanket of the current node being inferred. This allows us to employ the powerful prior-art message
passing inference framework to define predictors of messages sent between nodes. By viewing the
problem from the MIL perspective we gain a new insight into the problem and define the predictors
using neural networks.

3.2.1 Generative model

In order to better understand the problem, let us firstly describe a hypothetical generative model
producing graphs that meet our requirements. The formal definition may seem intimidating by its
complexity, but we shall see that it suitably describes the situation and its all-embracing nature will
simplify the next step in MINI formalism.

Consider a finite set of vertices X which represent all random variables in the system. We define
G as a space of all undirected graphs without loops representing a probability distribution on its
vertices. Moreover, we assume that graphs in G have the Markov property.

We define a probability space (G ,A, Pθ) where G is a space of all graphs built on top of X fulfilling
the aforementioned requirements, A is a σ-algebra on G, and Pθ : A → [0, 1] is a probability measure.
Next, we define a function F which maps parameters θ ∈ Θ to every set of graphs in A. We also
require that for some fixed θ the probability measure Pθ satisfies Pθ(a) = 0, whenever F (a) 6= θ.
Because we consider X finite, the space of all graphs G is finite as well, therefore we can put A equal
to P(G) and restrict our attention only to probabilities of single graphs. Here, P(G) is a powerset of
the set G. Sampling from this probabilistic space provides us with graphs we shall observe and the
constraint put on Pθ makes sure that all sampled graphs come from the same situation θ.

Computer security domain interpretation

Returning to our example from the CS domain, we may interpret parameters θ as a ‘situation’ in the
network, including influential outer factors such as time and internet trends, characteristics of users
connected to the network and most importantly, properties of domains. The probability in (3.1) we
aim to infer is therefore parametrized by θ as well and can be rewritten as:

p(X \ XO | XO ; θ) (3.2)

We are interested in the part of parameters specifying labels of servers. We assume that parameters
θ are ‘stationary’, in other words, they do not change much during the time of observation. As a
result, all snapshots of communication follow the distribution that is parametrized by θ and in the
following text, we introduce a way of inferring conditional probability in (3.2) from the graphs in G.
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Markov property

By assuming that the graphs in G have the Markov property, we gain a way of factorizing the joint
probability every graph represents. Hammersley–Clifford theorem [Hammersley, 1971] says that
such graphs can be turned into Markov random fields and consequently factorized in the same way
as in (2.9):

p(X) =
1
Z ∏

K
ψK(XK ; θ) (3.3)

or in other words, the probability the graph represents can be written as a product of some functions
operating on maximal cliques XK in the graph. We define potential functions ψK to be parametrized
by θ, the vector of generative model parameters. Here, Z is a constant partition function.

As the next step we can derive a formula for following marginal conditional probability:

p(Xi | X \ Xi) =
p(X)

p(X \ Xi)
=

p(X)∫
Xi

p(X) dXi
=

1
Z ∏

K
ψK(XK ; θ)∫

Xi

1
Z ∏

K
ψK(XK ; θ) dXi

=

1
Z ∏

XK*MB(Xi)

ψK(XK ; θ) ∏
XK⊆MB(Xi)

ψK(XK ; θ)

1
Z ∏

XK*MB(Xi)

ψK(XK ; θ)
∫
Xi

∏
XK⊆MB(Xi)

ψK(XK ; θ) dXi

=

∏
XK⊆MB(Xi)

ψK(XK ; θ)∫
Xi

∏
XK⊆MB(Xi)

ψK(XK ; θ) dXi

=
p ({Xi} ∪MB(Xi))

p(MB(Xi))

= p(Xi |MB(Xi)) (3.4)

In the derivation, we used Bayesian and marginalization rules, together with the definition of the
Markov blanket in Markov random fields. This result is in fact nothing else than a specific case of
identity (2.5) applied on graphs from G. The graph inference task (3.2) is hard and suggests nothing
about the way the task can be grasped, let alone devising an exact solution, which would be feasible.
This result, however, motivates the use of Message passing inference framework, a prior-art method
for inference in MRFs. One may notice the similarity between the probability of Xi given its Markov
blanket and the formula for messages in message passing algorithms, which also contains only the
close neighborhood of variables. Another argument for employing MPI algorithms for inference
is the fact that the max-sum algorithm approximates the maximally probable state of the system
of variables. The sought probability is exactly the same as the definition of our task in (3.2), with
the only difference that in our task we observe some values, therefore the computation of messages
would be modified accordingly.

We showed that message passing inference algorithms are applicable to graphs generated by
the generative model. The definition of MINI formalism continues with the way one may learn the
messages in MPI instead of computing them using fixed closed-form formulas.
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3.2.2 Learning the messages

From our discussion in the previous sections it follows that thanks to the properties of graphs, we
can reason about the problem in MPI framework. Nevertheless, the framework seems constraining
because of the necessity to provide formulas for potential functions ψK(Xk) in a closed form. One
reasonable solution is to attempt to learn the definition of ψK(Xk) as has been done in previous
work [Lin et al., 2015a, Zheng et al., 2015, Schwing and Urtasun, 2015]. The authors attempted to
learn potential functions with Stochastic gradient descent (SGD) by optimizing a global objective
on the graph and predicting unknown variables by performing message-passing inference. This
approach has two drawbacks – firstly, running message-passing algorithm at each iteration of SGD is
expensive on large data and secondly, a strong bias is introduced by assuming message equations
to take the exact form as described in (2.18) and (2.19). We mentioned in the last chapter that the
sum-product algorithm is proven exact in tree graphs, however for general graphs with loops, there
is no guarantee apart from good experimental results.

As discussed in [Ross et al., 2011], comparing (2.19) and (2.20), variable-to-factor message µX→ f
can be thought of as a marginal value (2.20) of X when factor f is removed from a graph. By
substituting (2.18) into (2.19) we obtain:

µXi→ f (Xi) = ∏
f ′∈N (Xi)\ f

µ f ′→Xi(Xi) (3.5)

= ∏
f ′∈N (Xi)\ f

∫
X f ′

f ′(Xi, X f ′) ∏
X j∈N ( f ′)\Xi

µX j→ f ′(X j) (3.6)

Thus, messages µX→ f leaving a variable X and being sent to factor f can be considered a marginal
values over classes (classification) of variable X, dependent only on messages from variables not
connected to X by factor f . This means that the sum-product algorithm is classifying variables in the
graph by computing a sequence of classifications and can be viewed as a function we recursively
apply to each variable that operates on local beliefs obtained from the variable’s neighborhood. The
same substitution can be applied to (2.20):

p(Xi) ∝ ∏
f∈N (Xi)

µ f→Xi(Xi) (3.7)

∝ ∏
f∈N (Xi)

∫
X f

f (Xi, X f ) ∏
X j∈N ( f )\Xi

µX j→ f (X j) (3.8)

and exactly the same applies for the formulas of the max-sum algorithm. The reasoning above
demonstrates that any other predictor can be used in place of (3.6) and the message-passing algorithm
is just a special case with factors ψ as learnable parameters. Depending on the application, this
framework gives us freedom in carefully selecting a predictor meeting any requirements in terms of
capacity, speed or other properties. Using different class of predictors will lead to different classes
of inference procedures. Following this reasoning, we may even replace a generative probabilistic
model with a discriminative model, as only discriminating between classes is usually easier than
building a full probabilistic model, and we are primarily interested in predicting the labels. Inference
on graphs becomes a sequence of predictions of probability distributions on variables made by the
predictor functions operating on inferred values from the last step. The decision to learn messages
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instead of the potential functions also lowers the dimension of model’s output from |C|a, where a is
the arity of the potential function, to |C| and consequently reduces the number of model’s parameters
significantly. Also learning messages does not require performing inference procedure after every
step of gradient descent as it is the case with potential functions.

This reasoning obviously opens a variety of directions to explore. It is possible to focus on
optimizing predictors such that inference procedure works well over several steps by propagating
important knowledge throughout the graph. Nonetheless, in this work, we are focused mainly
on devising a high-quality predictor that can infer accurate values in a small number of steps.
We performed only one step in our experiments and indeed, this may result into inference being
inaccurate due to the lack of information in the close neighborhood. This issue is discussed further in
the last section of this chapter. In the following section, we define the class of predictor functions
used in the formalism and the details of their implementation.

3.2.3 Multiple instance learning predictor

One of the main challenges of designing such predictor lies in a variable number of neighbors of the
graph variables. For instance, in the computer vision domain [Lin et al., 2015b, Ross et al., 2011] the
representation of an image or a 3D point cloud as a graph is rather straightforward – single pixels (or
superpixels) represent graph vertices, and their spatial relations are readily encoded into the graph
by adding an edge between each pair of directly neighboring pixels or pixels lying close together. The
number of neighbors of a vertex in the graph and consequently the input dimension of the predictor
is therefore controllable and known beforehand. Unfortunately, this is not the case in many other
domains. To give an example of such domain, we again resort to the CS domain in which computer
network and communication over it is inherently represented by a graph, however, no assumption
can be made about its shape or density. Furthermore, many machine learning algorithms demand
a fixed size vector of values as their input. This would require every vertex in the graph to be of
constant degree, which is hardly ever the case, and therefore a space of possible potential predictors
is tiny. Another possible approach is to reduce or increase the input dimensionality as needed by
some ad hoc techniques.

In the previous section, we identified message passing inference as the specific case of the
sequential inference on graphs where probability distributions on the variables are obtained from
the predictor function operating on distributions inferred in the previous step. This frees us from
having to think about predictors in any concrete form like in message passing algorithms and reason
about the inference on the higher level of abstraction. One of the key ideas of MINI formalism is to
view the situation from the perspective of Multiple instance learning and attempt to find the desired
predictor using the MIL framework. We identify each vertex (variable) in the graph as a bag and
vertices in its neighborhood as instances in the bag. One can then attempt to define a model to learn
the predictor function acting on the bag and optimize the model so that predictions are accurate.
This approach copes with every possible number of neighbors in a natural way and is suitable for
describing every relation in the graph with an arbitrary set of features. Note that this definition of a
bag makes sure that all the variables from the Markov blanket of the current vertex are present in the
bag and vice versa.
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Formally, we define a bag bu corresponding to a node u ∈ V in a graph G = (V , E) as the set of
all the neighbors of u, i.e., bu = {v ∈ V ; {u, v} ∈ E}. We then denote a space of all such bags as
B and represent each relation between u and some v by a feature vector of fixed size αu(v) ∈ Rn.
We will call the mapping αu the feature mapping in the context of the bag bu. The highly variable
size of the bag |bu| (number of neighbors of v) demands utilization of MIL techniques, namely the
embedded-space paradigm [Chen et al., 2006]. Feature vectors of instances are firstly embedded into a
Euclidean space of dimension m by applying a set of m nonlinear transformationsφi : Rn → R:

φ(αu(v)) = (φ1(αu(v)),φ2(αu(v)), . . . ,φm(αu(v))) (3.9)

Subsequently, we aggregate all embedded instances φ(αu(v)) into one vector with r functions
g j : R|b|×m → Rm (r ≥ 1) and by concatenating every gi we obtain:

g = (g1, g2, . . . , gr) : R|b|×m → Rrm (3.10)

The composition ofαu(v),φ and g defines a mappingψ from the space of all bags B to Rm :

ψ(bu) = g({φ(αu(v))}v∈bu) (3.11)

The key observation is that the range of this composition is a Euclidean space Rm, in other words
it maps every bag b ∈ B to a vector of fixed size. Finally, we define a classificating function
h : Rlm → R|C| that assigns every aggregated bagψ(b) a probability of b being assigned a class. The
whole model f : V → R|C| can be summarized as follows:

f (u) = h(ψ(bu)) = h(g({φ(αu(v))}v∈bu)) (3.12)

This general model definition allows for wide options for mappingsφ, g, and h. For instance, the
classificating function h can be chosen from the variety of off-the-shelf predictors taking a vector of
fixed size as an input, since the composition of the other two functionsψ (3.11) does all the heavy
lifting of embedding the bag into a space of given dimension. The other two functions φ and g
may be designed arbitrarily as well, the only requirement is to comply with the aforementioned
embedded-space paradigm. The last part of the MINI formalism is to specify these functions and
define their implementation.

bu = {v1, . . . , vn} ∈ B

x1 = αu(v1) ∈ Rn

x2 = αu(v2) ∈ Rn

x|b| = αu(v|b|) ∈ Rn

e1 =φ(x1) ∈ Rm

e2 =φ(x2) ∈ Rm

e|b| =φ(x|b|) ∈ Rm

a = g({ei}|
b|

i=1) ∈ Rrm

h(a) ∈ R|C|)

Figure 3.1: A picture of the whole model. Given a feature vector x of the length n of every instance v in the
bag bu corresponding to vertex u in the graph, we firstly embed each feature vector throughφ into space Rm,
aggregate all embeddings, and then feed the aggregation a through function h to obtain the prediction f (bu).

20



CHAPTER 3. METHOD DESCRIPTION

3.2.4 Neural networks function approximators

We have already mentioned the complexity of the task and that we presumably cannot hope that
either potential functions factorizing the distribution or formulas for message passing inference can
be expressed in the closed form. This motivates the use of neural networks, regarded as universal
function approximators. As proposed in [Pevný and Somol, 2017,Stiborek et al., 2017], we implement
both functions φ (3.9) and h (3.12) as one or more (feedforward) neural network layers. Every
instance from the bag is firstly fed through layer(s) embodying function φ (note, that the layers
use the same weights for every instance) and after applying the aggregation g (3.10), classification
with the function h is performed by another set of feedforward layers. If g is at least peace-wise
differentiable, full model becomes differentiable. This has the advantage that we train the embedding
with respect to labels of bags and optimization by a plethora of gradient descent methods is possible.

Aggregating functions

In this subsection, we introduce few useful aggregating functions, suitable for use in place of
the aggregating function g described in (3.11). Note that every function is (at least piecewise)
differentiable, therefore the whole model remains differentiable as well.

Max

The max aggregating function is defined component-wise:

g(i)max(x1, x2, . . . , xm) = max
j∈{1,...,m}

x(i)j (3.13)

As its derivation we obtain:

∂g(i)max

∂x(k)j

=

{
1 if i = k and ∀ j′ : x(i)j ≥ x(i)j′ or j ≤ j′

0 otherwise
(3.14)

Maximum comes in handy when the label of the whole bag may be determined based on a single
instance. For example, if many users who communicate with a server connected to a blacklisted
server in the past, the server is very likely to be malicious as well. However, despite this strong
evidence, this may be pure coincidence, but it is beneficial to extract this information from bag and
let the classificating function decide.

Mean

The mean aggregating function is defined as:

g(i)mean(x1, x2, . . . , xm) =
1
m

m

∑
j=1

x(i)j (3.15)

this function simply averages over its inputs. Deriving the function we obtain:

∂g(i)mean

∂x(k)j

=

{
1/m if i = k
0 otherwise

(3.16)

As opposed to gmax, this functions express a quantitative property of the whole bag.
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Weighted mean

The weighted mean is a function similar to gmean function, the only difference is that we must provide
a weight for each of its inputs:

g(i)wm(x1, x2, . . . , xm, w) =
m

∑
j=1

w( j)x(i)j

/ m

∑
j=1

w( j) (3.17)

Its derivative is:

∂g(i)wm

∂x(k)j

=

w(k)
/ m

∑
j=1

w( j) if i = k

0 otherwise
(3.18)

This function can be used in the case when for some reason we want to assign a higher priority to
some instances in mean computation.

Concatenation

Given two aggregating functions g1 and g2 each outputting a vector in Rm it is also possible to
concatenate the result of both into a new function g = (g1, g2) and produce a vector from R2m. This
results into the extraction of information of different types for the classification layer of the model.

Other aggregating functions

Due to the differentiability being the only requirement on the aggregating function, one can see that
the space of all eligible aggregating functions is huge. In fact, this function can be designed from
scratch with respect to the task being solved. Even the use of differentiable functions with learnable
parameters is possible as long as the whole model remains fully differentiable. The idea to learn
parameters of some aggregating function is not new and indeed, it has been studied for example
in [Gulcehre et al., 2014], where authors discussed learning parameter p in Lp norm, or in [Pevný
and Nikolaev, 2015], where authors learned parameters determining the shape of a bell curve.

Example

To conclude the description of the method, we demonstrate a simple example of how such model can
be defined in concrete terms. We defineφ(x) = Wφx as a one-layer neural network with parameters
Wφ ∈ Rm×n and the identity activation function (applied coordinate-wise). For the aggregation, we
take a concatenation of max and mean functions g = (gmax, gmean) and for the classification function
we pick another one-layer neural network h(x) = σ(Whx) with parameters Wh ∈ R2m×|C| and the
softmax activation function σ . Suppose a bag bu = {vi}l

i=1 of size l. The whole model (function f
(3.12)) consists of first taking the feature vectorαu(v j) of the j-th instance and computing its mapping
through functionφ by multiplying it with matrix Wφ. Each instance mapping in Rm then acts as
the input to the aggregating function, that compresses a set of l vectors from space Rm to a single
vector from R2m. The last step is to multiply this vector by Wh, and apply the softmax function on
the resulting vector to obtain class distribution.
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bu = {v1, . . . , vn}

x1 = αu(v1)

x2 = αu(v2)

x|b| = αu(v|b|)

e1 = Wφx1

e2 = Wφx2

e|b| = Wφx|b|

a =

(
max

i=1,...,|b|
(ei), ∑

|b|
i=1(ei)/ |b|

)

σ (Wha)

Figure 3.2: A picture of the specific model. This is the same model as the model depicted in Figure 3.1 with all
specific mappings filled in except the feature mappingαu (which is discussed in the next chapter). Functions
max andσ are applied element-wise and (·, ·) means vector concatenation.

If we define the components of g to operate row-wise on a matrix, where input vectors are in
columns, we can construct a matrix Xbu = [αu(v1),αu(v2), · · · ,αu(vl)] ∈ Rn×l representing the bag
bu by putting feature vectors of bag instances into its columns. The function f defining our model is
then defined as the composition of all the pieces:

f (bu) = σ (Wh (gmax (WφXbu) , gmean(WφXbu)) (3.19)

Instance representation

One of the big advantages of using the model described above is having a free hand in defining the
mappingαu associated with a bag bu. The big benefit is that this mapping can take into account not
only a neighboring vertex v but also the vertex u and even the relation between u and v, therefore
available knowledge captured in the graph is effectively employed. Moreover adding external
additional features results in only a little increase of computing cost, thus external knowledge about
vertices is easily injected into the model.

Returning to the example of the edge in the graph between two servers s1 and s2 present when
existing user connected to both of them, we may utilize only known information extracted from the
graph about s1 or s2. This may include the degree distributions or other graphical features. However,
thanks to the flexibility of the formalism we can also include information about the relation between
s1 and s2 itself and external knowledge about servers s1 or s2, which have nothing in common
with the graphical interpretation, but would complement the set of features well. The mappingαu
evidently depends on our goal and the domain we are working in, and the specific mapping we use
for the task of classifying servers is discussed in detail in the next chapter.

3.2.5 Recapitulation

To summarize, we began with stationary parameters θ describing a ‘situation’ and introduced a
generative model producing graphs that we assume to have Markov property. This assumption
allowed us to employ the message passing inference framework and by inspecting the message
definitions we redefined the inference procedure as a sequential classification process performed by
a predictor acting on the neigborhood of a vertex. This way we avoid having to define formulas for
either the potential functions or the messages in MPI inference. After that, we formulated the task of
finding the predictor as a MIL problem, which enabled us to accommodate to an arbitrary degree
distribution without compromises. The clever use of instance embedding functions and aggregating
functions bridged the gap between a bag defined by a set of vectors representing its instances to
one fixed size vector which we classify using another function. Moreover, the MIL predictor takes

23



CHAPTER 3. METHOD DESCRIPTION

all the information about the adjacency relation in the graph (or equivalently being in the bag of
another vertex) into account, this includes both participants in the relation and the properties of
edges. The use of neural networks to approximate unknown and rather complex functions defined
in the model provided us with a way to learn these unknown functions instead of defining them,
which would introduce a bias to the model. The MINI formalism brings a novel perspective to the
problem of inference in a graph and by combining several different techniques we obtain a general,
easily adaptable and extensible method.

3.2.6 Multi-step algorithm

Lastly, we outline how the method introduced here can be extended to perform multiple steps. As it
turns out, the MINI formalism accommodates to every approach to multi-step inference we sketch
here. Let us denote the number of inference steps performed by a method as s. An the beginning of
this chapter, we made an assumption that all important information needed to make the decision
is contained in the Markov blanket of a vertex. This is the same assumption that MPI framework
requires and if it holds, that means that methods with s = 1 are sufficient. Good experimental results
presented at the end of this work show that one step is almost always enough in CS domain, however,
this assumption may not be true in general and information about vertices and relations between
vertices from a greater distance than one may be needed. In such case, MPI methods perform more
steps and this results into all crucial information being propagated to vertices in the Markov blanket
and used for the inference afterward.

One possibility is to train a different predictor for every step. The first predictor would be trained
using the initial values p(Xi), where we set p(Xi) to one if Xi is contained on the ground-truth
blacklist and zero otherwise. After that, we would train the second predictor operating on values
p(Xi) inferred in the previous step. Repeating this procedure produces a sequence of s different
predictors. Another reasonable approach is to use the same predictor for every step and after one
step add bags with values inferred in the previous step to the dynamic dataset. This approach is
not dependent on the number of steps s, however, the size of the dataset grows exponentially. The
theorems about various guarantees both approaches offer are rigorously proven in [Ross and Bagnell,
2010] and [Ross et al., 2010].

Lastly, we present one more possible approach, applicable to smaller values of s, that immediately
suggests itself thanks to the properties of MIL formalism. Let us consider a vertex u, its corresponding
bag bu and a vertex v from the bag, that is v ∈ bu. What we could do is alter the definition of feature
mappingαu to include the neighborhood of v (Markov blanket) as well and define it asαu(v ; bv).
There are more ways of accomplishing this and one of them is to return to Section 3.2.3 and employ
the very same definition of a model f , operating on the space of all vertices V and returning a vector
from R|C|, and then define feature mapping as αu(v ; bv) = αu(v, f (bv)). We can easily make f
return even higher dimensional vector attempting to capture more information and then modify the
definition of the feature mappingαu itself to take a higher dimensional vector together with v as the
input. This yet again demonstrates the flexibility of the formalism. Moreover, we could apply the
same idea for the neighborhood of v as well. This results into a powerful multi-step layered model
which makes use of all knowledge in the graph within s steps from the vertex u we consider. The
illustration of this approach is in Figure 3.3.
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u
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v

...
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bu bvu
←− f (bv)

u

...
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v
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Figure 3.3: The depiction of how a multi-step layered model operates on a vertex u. Firstly, all vertices from
the Markov blanket of u ( {v1, v2, v3, v4, v5} ) are fed through a model similar to the one introduced for the
one-step inference. The result f (bv) is included to the model operating on the bag bu via a moddified feature
mappingαu(v, f (bv)).
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Chapter 4

Specific adjustments and techniques

The last chapter introduced our MINI formalism for performing graph inference in general terms.
This chapter outlines several adjustments we made and techniques we devised to accommodate the
universal approach to a more specific situation. We are mainly focused on the CS domain and huge,
dense graphs.

4.1 Dealing with bipartite graphs

Until now we have considered our method to work for general graphs whose vertices represent our
objects of interest. The formalism introduced in the last chapter enables us to construct an adjacency
relation E on the set of the vertices (in other words where we put edges) in the graph arbitrarily.
Thanks to the fact that our method works for any number of neighbors and instance mappingαu
takes u, v and also relation {u, v} into account, we are not constrained in any way in defining the
the adjacency relation E to suit our needs. This is very convenient because as a result, we can only
focus on defining this relation in a natural way and avoiding any loss of information about relations
between objects of interest without a need to adapt to any rules. However, we are yet to specify how
we obtained the graph of servers. In Section 3.1, we outlined how to construct the adjacency relation
E on servers by putting an edge between two of them if any user communicated with both during a
predefined time window. In this section, we describe this construction formally and in more detail
as we decided to use it for further experiments. Nonetheless, we would like to emphasize that the
formalism presented in the last chapter accommodates many more use cases and this is only one
specific example. In the following text, we will sometimes use an alternative notation E instead of E .

4.1.1 Construction of adjacency relation

Let us firstly define a list of connections. It is a set L[t1 ,t2] ⊆ U ×D, where U and D are sets of all users
and domains (servers) observed, and [t1, t2] is a time interval during which the data was collected,
usually termed time window. The presence of a tuple (u, d) in L[t1 ,t2] means that user u communicated
with a domain d during the time window. Because the choice of the time window does not affect the
next steps, we denote L = L[t1 ,t2].

To construct a graph of servers from a list of connections L, we begin with creating a bipartite
graph, where one partite represents different users and the other different servers. We put an edge
between a user and a server if the user connected to the server during the time window, or in other
words, the connection between them is present in L. Next, we build a new graph of servers by taking
servers present in L and putting an edge between two servers for each user who connected to both
of the servers. This operation may add parallel edges into the resulting graph therefore to ensure
that we obtain a simple graph, we merge all parallel edges between two servers into one carrying all
information about every user connecting to both servers.

An example of this procedure is depicted in Algorithm 4.1. Note the striking similarity to Markov
random field and its corresponding factor graph in Figure 2.4. In this way, we can very roughly view
each user as a potential function operating on the servers that the user connected to.
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u1

u2

u3

u4

u5

d1

d2

d3

d4

d5

d1

d2

d3

d4

d5

{u1, u2}{u2, u3}

{u3}

{u2}

{u3}

Figure 4.1: An example of a bipartite graph of users and servers and an adjacency relation
in a graph of servers constructed from it. The connection list L used in this illustration is
{(u1, d1), (u1, d2), (u2, d1), (u2, d2), (u2, d3), (u3, d2), (u3, d3), (u3, d4), (u4, d5), (u5, d3)}. We merged parallel
edges into one to obtain a simple graph, but information about users is not lost. For example, there are two
users u2 and u3 who connected to both domains d2 and d3, therefore we put two edges between d2 and d3 and
merge them into one edge afterward. Also users u4 and u5 are not used in the graph of servers due to the fact
that they connected to only one server and no relation may be therefore observed. The resulting relation is
therefore E = {{d1, d2}, {d1, d3}, {d2, d3}, {d2, d4}, {d3, d4}}. Graphics by [Freepik, 2016].

Algorithm 1 Construction procedure of an adjacency relation E in a graph of servers. Servers D from
D become vertices in the graph and edges E carry all the information.

1: procedure CONSTRUCT(L)
Input: L ⊆ U ×D ← a list of connections
Output: D ⊆ D, E ⊆ {{u, v} ; u, v ∈ V , u 6= v} ← an adjacency relation, I : E → P(U ) ← edges’

information
2: U ← {u ∈ U ; ∃d ∈ D : (u, d) ∈ L}
3: D← {d ∈ D ; ∃u ∈ U : (u, d) ∈ L}
4: E← {(d1, d2) ∈ D× D ; ∃u ∈ U : {(u, d1), (u, d2)} ∈ L}
5: for each edge e = (d1, d2) in E do
6: I(e)← {u ∈ U ; {(u, d1), (u, d2)} ∈ L}
7: end for
8: return D, E, I
9: end procedure

From now on, when we mention Bipartite graph (BG), we mean a bipartite graph of users and
servers, and when we mention Graph of servers or a Server graph (SG), we mean a graph derived from
the bipartite graph of users and servers by the procedure defined above. Additionally, recall the
mappingαu introduced in the previous chapter which returns a feature vector representing a relation
between u and v, where u is a vertex in the graph and v is its neighbor. We can now rewrite this as
αs1(s2) = f (s1, s2, e), where we renamed u and v to names s1 and s2, notation used with the graph of
servers, e is an edge between s1 and s2 and f is any function. Going even further, we can replace the
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edge e with information about users comprising it, we getαs1(s2) = f (s1, s2, {u1, u2, . . . , uk}). This
means that a mapping between instances in bags and feature vectors depends not only on both ends
of the edge, but also on the properties of the edge, taking every user into account. In fact, this is just
a concrete example of the remark we made earlier in Section 3.2.4 applied to the server graph.

To finish this section, there are some problems that must be addressed so that the procedure can
be used in practice. The logical consequence of the definition of the adjacency relation in the previous
graph is that some users with only one connection are omitted in the graph of servers and therefore
the graph of servers may not be connected. On the contrary, users who are too active and create
many connections introduce large cliques into the resulting graph. The next section describes how to
deal with these side effects of adjacency relation construction.
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Figure 4.2: Degree distributions on a bipartite
graph computed from datasets we worked with.
Both X and Y axis are logarithmically scaled.
Graphs support our claim that popular servers
with high number of connections tend to be be-
nign and can be removed from the graph.

4.2 Graph pruning
In a dense graph with n vertices, we are re-

quired to perform for each vertex u as many as
O(n) · T(αu(v)) calculations to compute a feature
vectorαu(v) for every neighbor v (in other words
computing representation of a bag bu correspond-
ing to the vertex u). The final cost of this operation
depends on how we define the feature vector itself
and its own computing cost T(αu(v)), however
many informative features derivable from graph
may take linear time as well, accounting to the
whole procedure of computing taking O(n2) time.
This is clearly impossible to realize in reasonable
time for graphs with a large number of vertices.

One possibility (besides of course increasing
computational budget) is to use features available
in constant time giving up information contained
in features demanding more computational time,
however, we used a different approach. The crucial
observation is that in many domains vertices of
highest degrees form a set of objects with different
properties than the rest of the graph and it is harm-
less to erase them from the graph. To illustrate this
claim with an example, in the CS domain, servers
that are communicated with often, are usually be-
nign. Because malicious servers form communities
in network graphs we seek mainly the evidence
of a relation to positive servers while making the
decision. Besides that, servers with a high degree
are in relation with the majority of servers in the
graph. As a result, removing positive servers with
a high degree from the graph significantly reduces
computation demands while sacrificing little infor-
mation. Instead of optimizing the latter factor in
O(n) · T(αu(v)), we optimize the first one by re-
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moving some vertices and edges incident to them. The opposite extreme, servers with a low number
of connections, were also removed from the graph. This is not inspired by any empirical knowledge
of the domain, but rather by the fact that these servers offer only little irrelevant information to make
use of and removing them from the dataset may be considered a means of cleaning noise in the data
or preprocessing the data.

Another intuitive and empirically verified track to follow is removing users with few connections
from the bipartite graph. If we consider a bipartite graph comprising domains and users in a
predefined time window, some users may connect only to a server or two. These users are of little
information value and it is safe to delete them. A printer that downloads software updates twice a
year, showing no other network activity besides that, is an example of such uninteresting behavior.
However, the same printer being much more active may signify a member of a DDoS botnet, which
makes it interesting for us. To support our arguments above, we refer to Table B.1, which shows
names of the most and least visited domains in one of our datasets. The most visited domains
are evidently unlikely malicious. The same analysis can be done for the degrees of users, but we
do not disclose user data here due to privacy concerns. Moreover, Figure 4.2, showing degree
distributions in bipartite graphs, and Figure 4.3, showing how is the set of positive servers in the
dataset influenced by pruning, provide empirical evidence for our claims. More insightful discussion
on pruning network graphs is in [Jusko, 2017], which we consulted when setting the parameters
for the pruning procedure. We present two pruning techniques that can be used to prune bipartite
graphs of domains and users described in Section 4.1.
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Figure 4.3: Influence of the graph pruning on the set of positive servers in the graph. Values used for lower
and upper bounds areαD = αU = 5 and βD = βU = 105 and the procedure used was the Complete pruning. X
axis is scaled logarithmically and Y axis linearly. In the first row there are graphs computed from the dataset
CiscoNet1 and in the second row there are graphs computed from the dataset CiscoNet2. The first column
shows the distribution of degrees of positive servers (in a bipartite graph of servers and users) before pruning
procedure, the second column shows the distribution after the procedure is finished and the last column
compares both in one figure. Graphs suggest that performing the pruning procedure properly removes noise
in the form of servers with a low number of connections and we are left with clean data.
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4.2.1 Complete pruning

The Complete pruning (Algorithm 2) procedure guarantees that every vertex in pruned graph satisfies
the constraints on values of degrees. Note that under specific conditions this pruning procedure may
prune the whole graph, but this does not happen in practice.

Algorithm 2 The Complete pruning technique. A graph is iteratively pruned by removing vertices
that does not meet the constraints.

1: procedure COMPLETE PRUNING(D, U, E,αD,βD,αU ,βU)
Input: D← a partite of domains, U← a partite of users, E← a set of edges,αD,βD ← a lower and

an upper bound on domains’ degrees,αU ,βU ← a lower and an upper bound on users’ degrees
Output: D′← a partite of domains remaining in the pruned graph, U′← a partite of users remaining

in the pruned graph, E′ ← edges remaining in the pruned graph
2: DP ← ∅, UP ← ∅
3: repeat
4: D′ ← D \ DP
5: U′ ← U \UP
6: E′ ← E \ ({{d, u} ∈ E ; d ∈ DP} ∪ {{d, u} ∈ E ; u ∈ UP})
7: DP ← D′ \ {d ∈ D ; αD ≤ deg(d) and deg(d) ≤ βD}
8: UP ← U′ \ {u ∈ U ; αU ≤ deg(u) and deg(u) ≤ βU}
9: D← D′, U ← U′, E← E′

10: until DP ∪UP 6= ∅
11: return D′, U′, E′

12: end procedure

4.2.2 Simple pruning

An alternative technique is the Simple pruning (Algorithm 3) that does not have this property and is
on the one hand faster, but on the other hand offers no guarantee of lower bound on degree values
in resulting graph. The two procedures presented here handle bipartite graphs, but can be easily
modified to operate on general graphs or n-partite graphs.

Algorithm 3 The Simple pruning technique. Note that removing some vertices from a graph and
edges incident to them may result into other vertices not meeting the requirements.

1: procedure SIMPLE PRUNING(D, U, E,αD,βD,αU ,βU)
Input: D← a partite of domains, U← a partite of users, E← a set of edges,αD,βD ← a lower and

an upper bound on domains’ degrees,αU ,βU ← a lower and an upper bound on users’ degrees
Output: D′← a partite of domains remaining in the pruned graph, U′← a partite of users remaining

in the pruned graph, E′ ← edges remaining in the pruned graph
2: DP ← D \ {d ∈ D ; αD ≤ deg(d) and deg(d) ≤ βD}
3: UP ← U \ {u ∈ U ; αU ≤ deg(u) and deg(u) ≤ βU}
4: D′ ← D \ DP
5: U′ ← U \UP
6: E′ ← E \ ({{d, u} ∈ E ; d ∈ DP} ∪ {{d, u} ∈ E ; u ∈ UP})
7: return D′, U′, E′

8: end procedure
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4.3 A mapping from instance relations to feature vectors

In the previous chapter, we defined our model as a composition of four mappings – the classificating
function h, the aggregating function g, the instance-embedding functionφ and the feature mapping
αu. We have implemented h and g as neural networks and discussed prospective aggregating
functions, however, the mapping from a relation between two instances to its corresponding feature
vector is yet to be explained. We have already stressed the importance of extracting useful information
from the graph while keeping the computing cost low, therefore every feature described here requires
only linear time at worst. Consider a bag bu corresponding to a vertex u in the graph of servers and
a vertex v, one of its neighbors. Speaking in MIL terms, we treat v and its relation represented by
an edge {u, v} in the graph of servers as an instance in bu, according to our definition from the last
chapter. Recall that vertices u and v in a graph of servers represent domains and edge {u, v} carries
information about every user who connected to both u and v. Because some features may be more
naturally interpreted in a bipartite graph (BG) than a server graph (SG) we include this interpretation
to Table 4.2.

feature name property of SG interpretation BG interpretation

# of neighboring servers u |NSG(u)| #of vertices reachable from u
by a trail of length 2

# of connected users (u) u # of users stored in edges
incident to u

|NB(u)|

# of connected users (v) v # of users stored in edges
incident to v

|NB(v)|

user intersection {u, v} amount of information
about users saved in
{u, v}

|NB(u) ∩NB(v)|

user union {u, v} amount of information
about users saved in all
edges incident to u or v

|NB(u) ∪NB(v)|

Jaccard index 1 {u, v} - |NB(u) ∩ NB(v)|/|NB(u) ∪ NB(v)|

preferential attachment 2 {u, v} - |NB(u)| |NB(v)|
one-hot class v - -

Table 4.2: Table of features used in our experiment, where NB(u) and NSG(u) denote a set of neighbors of u
in the bipartite and the server graphs respectively. Note that we employ knowledge about both endpoints of
the edge between u and v as well as the relation {u, v}. We also include a one-hot encoded class of v in the
features as it is important knowledge.

To make the input values more suitable for a neural network, we also applied the transformation
x→ log(1 + x) on the features in every row except the Jaccard index and the one-hot class as they
are already located in the interval [0, 1]. As the last step, we concatenate all values into a vector,
obtaining a result ofαu(v).

1 [Jaccard, 1902]
2 [Liben-Nowell and Kleinberg, 2003]
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Note that in our task servers are both bags (when we infer the server’s class) and instances (when
the server appears in the neighborhood of server being considered). This allowed us to also include a
class of the neighbor v into features and in the computer security domain, it is really important to
know the class of the neighbor. For the first step of the inference procedure, we can consider tips from
the blacklist as malicious and every other server as benign. In the following steps, we use predictions
inferred in the previous steps (see Section 3.2.6). In this work, however, we only discuss one-step
inference. Also, the way how features are defined hints, that working with both the bipartite graph
of servers and users and the server graph enables us to use a set of features that would be really
hard to obtain or even interpret in only one representation. This demonstrates the strength of this
approach as we can keep both graphs in the memory, perform inference on the server graph, and at
the same time compute some features from the bipartite graph. Another possibility is to keep only
one of these graph in memory and computing the desired features on demand. This typically results
into a lower memory requirements, but prolongs computing time.

It is relevant to emphasize that the features described above all represent information extracted
only from the graph (or more precisely, the Markov blanket of the current node u) and no external
knowledge about servers or relations is used. To give the example, we could describe every server u
with its domain name, IP address, nameservers used or Whois database query result. Each relation
{u, v} can be associated with any information about users participating in the relation or frequency,
packets’ size and content of the communication. We omit this undoubtedly informative kind of
features on purpose, in order to fully test the model’s ability to infer labels only from the information
contained in the graph and to investigate how far can we go in this direction. Therefore, we knowingly
isolate the model from useful knowledge and can expect worse results, as we shall show in the
experiments section.

4.4 Sampling

4.4.1 Bag subsampling

We have already explained how to transform a list of connections to a graph of servers and how
to prune the graphs to select noiseless and more informative data. The resulting graph of servers
however still remains too dense to extract useful features from every instance in a bag while training.
If we somehow reduced the number of neighbors in the bag, we would be able to allocate more
resources to the feature computation of the remaining portion of the bag more properly. Bag
subsampling is a technique that attempts to represent the whole bag b with a set of representative
instances, a subset of all instances in the bag. Let n(c) = |{v ∈ b ; C(v) = c}| denote a number of
instances in the bag b = {v1, v2, . . . , v|b|} belonging to class c ∈ C and k(c) denote an intended
number of instances used for the bag representation (k(c) ≤ n(c)). First, we select k(c) instances
from the bag according to a selection policy and then assign each class c a weight proportional to its
frequency in the bag:

wBS(c) =
n(c)
k(c)

(4.1)

As a consequence the following equality holds for every class c present in the bag b:

n

∑
v∈b, C(v)=c

wBS(c) = n(c) (4.2)
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During the prediction phase, the vector of weights is fed together with mappings of selected
instances into embedding space and consequently into a suitable aggregating function taking the
weights on the instances as another input, for instance Weighted mean (Section 3.2.4). Weighing
instances in this way enables us to put emphasis on instances that have larger weights while
training, thus compensating for the rest of instances of the same class we opted to leave behind. The
information about proportions of classes present in the bag is also preserved.

A strategy of which instances to select from the bag for its representation is an important decision
to make and again can be carefully handcrafted to suit the particular domain’s needs. Sometimes,
the presence of one class in the bag may be more discriminative and sought after than the occurrence
of another class, or, if we have an accurate and effective measure of similarity between instances,
we are able to pick suitable and representative instances according to this measure. One possibility
of measuring the similarity between instances in the bag and selecting the best subset is using
Greedy ε-Cover [Kohout and Pevný, 2018], a technique applicable in any Hilbert space. In the CS
domain, intuitively, not every instance in the bag is needed to make a decision, on the contrary, a
sign of communication with only one well-known malicious server can be enough to uncover a
threat. In our work with used the random policy – we selected representative instances randomly with
uniform probability and without replacement. A pleasant side-effect of the bag subsampling with
random policy is an introduction of stochasticity into learning, which is known to be beneficial for
optimization with the gradient descent class of algorithms. Moreover, a stochastical sampling partially
remedies the need to observe the network for a long time in order to capture all important behavior.
For instance, instead of having 365 datasets for every day in the year, we can only have 12 from each
month. Assuming that the pattern of the network traffic does not radically change between two
following days, but rather during longer time spans, we reduce the loss of information by stochastic
sampling.3

Since the class distribution in the CS domain is highly imbalanced, it is very often the case that
a large number of negative (benign) instances is present in the bag and only a small number of
positive (malicious) instances is present. Because the presence of a positive instance in the bag is
more discriminating than the occurrence of a negative instance, we settled on using k(c) = n(c) for
a positive class and k(c) = min(k	, n(c)) for a negative class for every bag, where k	 becomes a
hyperparameter of our method.

4.4.2 High-level graph sampling

The last piece of the puzzle is how to sample bags themselves on the level of a server graph. To
successfully train our model we need a way of selecting a representative sample of domains in each
iteration of gradient descent and use bags associated with these domains for training. Due to the size
of the graph, we cannot simply select a bag of every domain in a graph of servers, therefore we need
to employ variants of the traditional Batch gradient descent (BGD) that do not require the whole dataset
to be used in each iteration of learning, for example, Mini-batch gradient descent (M-BGD) [Ruder,
2016]. Ideally, we would like to keep all pieces of crucial information while selecting such subset of
domains, similarly to preserving the information contained in the bag in the case of bag subsampling.
This cannot be done by random sampling from domains in the graph as we need to consider classes
of domains as well. An elegant solution is to first sample one class with uniform probability and
after that sample a domain belonging to this class. This ensures that bags of every class are present
in the resulting subset with approximately equal frequency, effectively dealing with the problem
of imbalanced classes. On the other side, such sampling spoils the model’s image about the real

3This assumption is not entirely correct since traffic changes a lot at weekends or on the public holiday in comparison
with working days, however, the point has been made.
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distribution of the data. We address this issue in the following section. Altogether, our sampling
procedure is summarized in Algorithm 4. Finally, to construct a batch of bags used in M-BGD we
repeat this procedure as many times as we wish making sure to sample without replacement so that
a bag of one instance does not get duplicated in the batch.

Algorithm 4 Sampling procedure used to sample bags from a graph of servers. We firstly pick a class
with uniform probability, then choose a domain belonging to this class with uniform probability
again and finally perform bag subsampling on the bag.

1: procedure SAMPLING FROM A GRAPH OF SERVERS(D, E, k	)
Input: D ← vertices in a graph representing domains, E ⊆ {{d1, d2} ; d1, d2 ∈ D} ← edges in a

graph of servers, k	 ← the sampling constant
Output: bs ← sampled bag, w← vector of weights of instances in sampled bag

2: cs ← a class sampled from a set of classes C with uniform probability
3: ds ← a domain sampled from {d ∈ D ; C(d) = cs} with uniform probability
4: b← {d ∈ D ; {ds, d} ∈ E} . neighbors of ds
5: b+ ← {d ∈ b ; C(d) = +} . positive instances in the bag
6: w+ ← (1, 1, . . . , 1)︸ ︷︷ ︸

|b+|

. weights on positive samples

7: b− ← {d ∈ b ; C(d) = −} . negative instances in the bag
8: bs

− ← min(k	, |b−|) sampled instances from b− with uniform p. without replacement
9: w− ← (|b−|/k	, |b−|/k	, . . . , |b−|/k	)︸ ︷︷ ︸

|bs
−|

. weights on negative samples

10: bs ← b+ ∪ bs
− . final bag

11: w← (w+, w−) . final weights
12: return bs, w
13: end procedure

4.5 Dealing with imbalanced classes

One of the typical characteristics of the CS domain is highly imbalanced classes as the overwhelming
majority of all domains is benign. Similarly to spam detectors, our goal is to discover as many
malicious servers as possible while keeping the false positive rate low. The desired outcome is,
therefore, to train a model with the high precision which is preferred to having the high recall, ideally
to have an option to increase one of these measures at the cost of lowering the other. An easy solution
is to make use of a confidence value in the interval (0, 1) output by both our method and the PTP
algorithm. By increasing the decision threshold, we can increase the precision at the expense of the
recall and vice versa. One useful way of comparing two methods outputting a confidence value
is by plotting Precision-recall curves (PR-curves) and comparing them – this thesis is no exception.
This offers a way to visualize the performance of a method taking all possible values of the decision
threshold into account. We elaborate more on the measures of performance in the following chapter
presenting experiments.

Besides a confidence value, a nice property of the method would be an option to include prior
knowledge about the domain, namely about distributions of classes. For instance, in the CS domain
there is a strong prior on a server being benign. It is estimated that the prior probability of an
observed server being positive approaches the Bernoulli distribution with probability p = 10−5, that
it, only one server out of one hundred thousand is malicious. Training a model assuming uniform
distribution of classes and isolating it from the priors about the domain leads to worse results.
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Another useful property of the method is the possibility to define different costs c for false
positives and false negatives. This is again the case with the CS domain, where tagging a negative
server as positive is generally more unwanted mistake than tagging a positive server as negative.
Finally, in the last section, we discussed sampling techniques which are beneficial in many aspects,
however, they cause the difference between the distribution of the real data and the data the model
encounters during training. We denote the true distribution of the data p and the sampling distri-
bution q. In the following text, we introduce the loss function used for the training of models and
show that it accommodates every issue described above. On the contrary, PTP offers no direct way
to include priors on classes or costs of decisions and the only way to accomplish it is by various ad
hoc solutions [Jusko, 2017].
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Figure 4.4: A characteristical loss function curve
of learning with priors of classes. The loss initially
rapidly decreases due to the bias we introduce
to the model with weights in cross entropy loss
function. Eventually, the steep decline stops and
the value of the loss function stabilizes around a
fixed point.

Here, we abstract from our specific setting and
denote objects of interest by x, their corresponding
labels (classes) by y, and the output of our model by
f (x) = ŷ. Let us narrow our focus on binary classi-
fication and set y ∈ {−1, 1} to simplify equations.
The following, however, applies to an arbitrary
number of classes. We train our model to minimize
the following weighted cross entropy objective:

E(x,y)∼q wy l(ŷ, y) (4.3)

Note that we used the sampling distribution q in-
stead of the true distribution p, because they are
not the same. Remember that we first sample a
class with probability q(y) and then from all ob-
jects belonging to the sampled class we pick one
and this is done evidently according to the true
distribution p. The joint sampling probability can
be therefore written as:

q(x, y) = p(x | y)q(y) (4.4)

Returning to terms used in (4.3), wy is a training weight of class y and l is the standard multinomial
cross entropy loss:

l(ŷ, yreal) = −yreal log(ŷ)− (1− yreal) log(1− ŷ) (4.5)

where yreal , ŷ are real and predicted labels.
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Now we rewrite the terms above using integrals and perform a specific substitution of wy:

E(x,y)∼q wy l(ŷ, y) =
∫
(x,y)

q(x, y) wy l(ŷ, y) d(x, y)

=
∫
(x,y)

p(x | y)q(y) wy l(ŷ, y) d(x, y) =

[
wy =

p(y)
q(y)

cy

]
=

=
∫
(x,y)

p(x | y)p(y) cy l(ŷ, y) d(x, y)

=
∫
(x,y)

p(x, y) cy l(ŷ, y) d(x, y) = E(x,y)∼p cy l(ŷ, y) (4.6)

This result means that by optimizing the objective in (4.3) we simultaneously optimize (4.6), an
expected value according to the true distribution p of the cross entropy loss with costs cy included,
provided that the substitution holds. Taking a closer look at the substitution of wy, one may see, that
the training weights are actually a product of training costs cy and the likelihood ratio between p and q.
This is an important observation as this enables us to include both priors p(y = −1) and p(y = 1)
into the model. All we need to do is come up with suitable training weights wy for classes. In this
light, we can also consider a high-level graph sampling described in the previous section as a form of
importance sampling on the distribution of server classes and therefore a model’s variance reduction
technique. The desired effect of including class priors to the model is reflected in the shape of the
loss function curve, this is depicted in Figure 4.4.

To sum up the content of this chapter, we elaborated on a way to construct a graph of servers from
a list of network connections and discussed the possible handling of large and dense graphs. We
also introduced sampling techniques with low demands on both memory and time of computation
that take properties of the dataset into account. Lastly, the weighted cross entropy loss function was
introduced and it was explained how it helps us to reduce the variance of our model and to inject
priors about classes and different costs for false positives and false negatives. We are now ready to
employ the MINI formalism to perform the inference task.
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Chapter 5

Experiments

This chapter discusses both graphs and server labels we used in experiments. Then a suitable
evaluation pipeline is introduced, which takes into account several constraints that our task carries
in comparison with classical statistical machine learning i.i.d setting. After that, we briefly elaborate
on the remaining details of our model and the learning procedure. In the final part results from
experiments are presented together with the comparison to the state-of-the-art PTP algorithm for
inferring malicious servers.

5.1 Data

Here we specify which graphs and which ground-truth blacklists we worked with.

5.1.1 Graphs

To test our approach we used two datasets we call CiscoNet1 and CiscoNet2 collected from networks
of companies serviced by Cisco Systems, Inc. during November 2017. A 24-hour-long time window
was used (from 00:00:00 to 00:00:00 UTC) and two-week interval elapsed between the collection of
CiscoNet1 and CiscoNet2. The datasets were saved in the form of connection lists specifying bipartite
graphs of servers and users. The properties of the graphs constructed from the datasets before
and after pruning are shown in Tables B.2 and B.3. During our experiments, we trained our model
using one dataset and tested it on the other. Pruning was performed every time with parameters
αD = αU = 5 and βD = βU = 105. Note in particular the ratio of the positive and the negative class -
each malicious server corresponds to roughly 105 benign servers.

5.1.2 Ground truth

Besides datasets in the form of lists of connections we also worked with ground truth provided
through blacklists on various levels of abstraction:

• Binary labels only divide domains from the dataset into two disjoint sets, one set consisting of
malicious (positive) domains and the other of benign (negative) domains.

• High-level labels split malicious servers even further and distinguish between types of malware
according to its behavior. Examples include ransomware, spamware, adware, cryptocurrency-
mining malware or malware designed to steal users’ credentials.

• Low-level labels provide the most fine-grained labels, splitting high-level labels into several
subcategories, based on the specific infrastructure of the threat contained on the domain. This
could be for instance the protocol used for communication, the structure of a binary file or
a presence of a domain generation algorithm. The set of domains sharing a low-level label is
sometimes called a cluster because such domains tend to create dense subgraphs in the graph
of servers.
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In this work, we focused mainly on producing binary labels for the dataset, therefore, we did not need
further separation. Nonetheless, the detailed classes of malware are important for the evaluation of
the model, which is the topic of the next section. Table B.4 is included in the appendix to give the
reader some examples of which low-level labels were defined on the blacklist.

5.2 Evaluation pipeline

In the introductory chapter we mentioned the difficulty of defining a suitable performance measure
and as it turns out common measures like accuracy are not convenient for our task. This is due to the
way we defined it – we want to infer labels to every vertex in a given graph and while inferring a
label for one vertex we also make use of knowledge about other nodes in the graph. This strategy
of considering a whole system of objects (graphs) at once instead of single objects is more general,
because independently and identically distributed datapoints correspond to discrete graph in our
setting, but causes another issue of how to measure the performance of a model on the whole system.
The inference procedure is designed to extend our current knowledge about the system and not
to derive it from scratch. Therefore we expose the blacklist of malicious domains to our model
hoping that it would predict more malicious domains which are not currently on the blacklist. Many
questions arise: How to simulate plausibly this inference environment when we test our model?
The blacklist we have is very likely incomplete. How to deal with false positives? The model may
discover a previously unknown domain which is not on the blacklist. Should the model be penalized
for this even if it actually made the right decision? Definitely not, but how to tell the difference
between this situation and genuine false positive? If we assume that the blacklist is perfect and
we know about every malicious domain in the graph, how to test the model to find out that it
will perform well given incomplete ground truth in real-world setting? The most straightforward
solution is to use only a part of the blacklist and let the model infer the rest. However how to split
appropriately the blacklist into two parts so that they accurately reflect the distribution of known
malicious domains and malicious domains which we are yet to discover?

To gain a better understanding, imagine a scenario of using this method in practice. We have
collected several datasets of lists of connections from the network we observe. Additionally, we
know that some specific domains contain malicious content. We have a huge and frequently updated
blacklist of them, but at the same time, we are aware that new malicious domains can appear every
day and some even may not be detected by present methods. We have trained an inference model
and decided to evaluate its performance. Which measure is accurate enough so that once our model
attains higher scores we can be confident about its predictions? Designing such a measure requires
complete information about the datasets, however, we lack in terms of both quantity (incomplete
blacklists) and quality (weak labeling) of ground truth information. Unfortunately, the situation is
not set to change in many domains. Precise labeling of a malicious domain or a malignant tumor is
not going to be easier than detecting an object in the picture or pronouncing a review to be positive or
negative. Thus, we have no choice but to devise measures that at least partially reduce the influence of
the flaws described above on the results. For a more thorough discussion on performance evaluation
we refer to [Jusko, 2017] or [Grill and Pevný, 2016].

In this work, we made an assumption that our ground truth blacklist is complete. The method
produces a low number of false positives that can be examined by hand and potentially added to the
blacklist, however, we did not head in this direction and considered the blacklist complete. Our main
goal was to test properly the model’s ability to discover new threats by giving it a suitable subset of
domains from the blacklist and testing it on the remaining domains.

38



CHAPTER 5. EXPERIMENTS

K× ∑i Xi/n

X1

XK

Figure 5.1: An illustration of how K-fold validation methods work. We begin by selecting a fold according to
some strategy, which can be leaving one cluster out or stratified selection. We evaluate the performance of the
model on the remaining domains, that are not in the fold. Having done that K times, we average the results.

5.2.1 Leave one domain out

This simplest Leave one domain out (LODO) evaluation method leaves the blacklist unchanged, takes
one domain at a time and infers its label, hiding the true label of course, but the label of every other
domain on the blacklist can be used for inference. Having done that on every domain in the server
graph, we can plot PR-curves and judge the performance of the model, thus only one pass over
the testing data is required, On the other hand the method makes an assumption that the blacklist
used at the decision time is complete, which is not always the case. Therefore by evaluating with
this method, we are given only a little evidence of how the model is capable of inference from an
incomplete blacklist and can overall expect better curves (in fact this is the special case of methods
explained next).

5.2.2 Fold validation

In the previous paragraphs, we explained the importance of selecting an appropriate subset of
domains on the ‘ground-truth’ blacklist that would resemble the real world situation so that a model
performing well in this simulated scenario would likely do well in practice too. This turns out as a
non-trivial task and the main idea of K-fold validation methods is to remove the bias we introduce
into evaluation by selecting a specific subset of domains by repeating the same procedure K times.
We call such subsets seeds, tips or folds and define two possible approaches differing in the way we
select them during each repetition. In comparison to LODO evaluation, K passes over the whole
dataset are required. During each pass, we record the performance of the model on the domains that
are not selected into the fold (both positive and negative). The total score (or performance curve) is
then obtained by averaging over all K scores. Theoretically, if we let K approach infinity we would
also approach the real world situation. The depiction of how K-fold validation methods work is in
Figure 5.1.
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Stratified fold validation

The method of Stratified fold validation (SFV) selects a proportion of every cluster to be included into
the blacklist in each repetition. The proportion of each cluster is fixed and does not change during
the evaluation. This approach ensures that on the blacklist there are at least some domains from
every cluster and therefore the method tests if the model can discover additional malicious domains
from the cluster given some (incomplete) knowledge about the cluster. If we lower the proportion
of domains used, we make the task more challenging for the model. In our experiments, we used
K = 10 due to the sheer size of the data we worked with.

Leave one cluster out

In the Leave one cluster out (LOCO) setting we remove a specific cluster of domains based on low-level
labels from the blacklist, therefore K equals the number of such clusters. The model obtaining a high
value of averaged results is able to discover new threats without any knowledge about them. This
is a much harder task than the task of completing clusters simulated in stratified validation and the
experimental results presented in this work do not evaluate the performance in LOCO setting.

5.3 Hyperparameters

In this section, we present our choice of hyperparameters. Two kinds of hyperparameters can be
distinguished – the parameters of the model itself and the parameters of the training procedure. A
very important parameter of the method is the choice of the feature mapping functionαu, which was
described in full detail in the previous chapter (and for every experiment presented here the same
function was used). One could consider the feature mapping as a parameter of data preprocessing
together with pruning parameters, therefore it is not included in the following description in spite of
being a part of method’s pipeline.

5.3.1 Model hyperparameters

Instance embedding functionφ Instance embedding function was implemented as one or more
feedforward neural network layers. Therefore a number of layers and number of neurons in each
layer is adjustable. We experimented with more possibilities, however there were always 9
neurons in the first input layer (7 for each feature and 2 for one hot encoding of binary labels).

Aggregating function g Aggregating function was the same for all experiments, defined as a concate-
nation of element-wise maximum and weighted mean aggregating functions. As a consequence,
output size of aggregation function g was doubled.

Classificating function h Classificating function was similarly to the instance embedding function
φ implemented as a neural networks with one or more layers. Because we used the same
definition of g for all experiments, the size of input layer is required to be twice as big as an
output layer of instance embedding functionφ. Moreover, the number of neurons in the output
layer must equal the number of classes. Number of layers and number of neurons in each other
layer were hyperparameters we experimented with.

Layer types In all experiments, the layers composingφ or h were standard fully-connected feed-
worward layers, differing only in their depth or width. Every feedforward layer was equipped
with a type of normalization. Similarly to [Lei Ba et al., 2016], where authos scale all activations
from every layer on the level of samples into a vector of zero mean and unit variance, we
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normalized each vector x flowing through the network with following mapping:

xnorm =
x
‖x‖ 2

This ensures that every sample is mapped to the unit sphere in the Euclidean space of activa-
tions, reducing the impact of potential concept drift.

Activation function To introduce nonlinearity into the model we employed either Rectified linear
unit (ReLU) defined as:

f (x) = max(0, x)

or Leaky rectified linear unit (LReLU) ( [Xu et al., 2015]), known for mitigating a problem of Dying
ReLU, defined as:

f (x) =

{
x if x ≥ 0
ax otherwise

where a ∈ R is a parameter. For all experiments with Leaky ReLU, we used the default value of
a = 0.01. Last layer always consisted of linear transformation followed by the sigmoid function
suitable for binary classification:

σ(x) =
1

1 + exp(−x)

5.3.2 Training hyperparameters

Loss function and training weights wy In the last chapter we presented weighted cross entropy
loss function taking class priors and costs of decision into account. This function was used for
all experiments with training weights wy being either fixed for the whole duration of training:

wy(b) =

{
0.01 if c(x) = positive
0.99 if c(x) = negative

Gradient descent variant We used a variant called Mini-batch gradient descent to train neural nets
constituting the model. Using the whole dataset as vanilla Batch gradient descent does is
infeasible and we ruled out using only one or few datapoints in each step as Stochastic gradient
descent does as the signal in them would be too weak.

Gradient descent optimizer Adam optimizer [Kingma and Ba, 2014] was applied to optimize the
loss function in every experiment, with learning rate η = 0.0001 and other parametersβ1 = 0.9,
β2 = 0.999, and ε = 10−8.

Batch size A number of bags sampled from the graph, serving as an input to backpropagation
algorithm in each iteration before weights in neural networks are updated, also varied in
experiments. Typically, we would use 256 samples, however we experimented with bigger
or lesser sizes. The batch-size of 256 samples seemed as a reasonable trade-off between the
computational demands and the strength of the signal in the batch of bags.

Sampling strategy As it has already been discussed dataset size and imbalanced distribution of
classes make a systematic iteration over dataset impossible, therefore on-demand uniform high-
level sampling without replacement in combination with bag-subsampling was performed in
each iteration.
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Bag subsampling parameter k	 The parameter specifying how many negative instances from bag
are sampled to represent it. Optimally, k	 should equal the number of all negative instances in
the bag, leading to all negative instance being used, however this is too expensive to compute.
We can also use different values of k	 for training and testing. During testing bag subsampling
was also performed, but only several iterations over dataset were required, which enabled us
to increase the value.

Number of iterations This hyperparameter specifies how many times weights were updated in the
network with gradients obtained from backpropagation algorithm using a batch of bags as an
input. We trained every model in experiments for the total number of 105 iterations.

Training and testing dataset In every experiment we trained a model using the dataset CiscoNet1
and tested it on the dataset CiscoNet2.

Data normalization Min-Max scaling, which translates each value serving as an input to a network
between zero and one, was performed in every experiment, using the formula:

Xscaled =

{
X−Xmin

Xmax−Xmin
if Xmin 6= Xmax

1 otherwise

where Xmax and Xmin is the biggest and smallest possible value of the input.

Due to the fact that many hyperparameter were same for all experiments carried out, we will
restrict our attention to the hyperparameters we actually changed during experimenting and every
result will be accompanied by a table similar to this:

hyperparameter value

φ (9, 30)
h (60, 2)

activation ReLU
batch size 256

k	test 100

This means that the model consisted of two-layer instance embedding functionφ with 9 neurons
in the input layer and 30 neurons in the output layer. Classification function h was also implemented
with two layers, first one having 60 neurons and the second one 2. All layers in the model except the
last layer in the classification function use ReLU as their activation and gradients in every iteration
were computed from batch of 256 bags. The same constant k	test was set to 100 during the test time.
All other hyperparameters do not change, that is, aggregating function g was the concatenation of
the mean and the element-wise maximum, the same normalization was employed on the level of the
data and the activations from the layers, model was trained for 105 iterations, with fixed training
weights wc (0.01 for the positive and 0.99 for the negative class), using Mini-batch gradient descent
algorithm with Adam optimizer, and the sampling was performed with the same constant k	train
equalling 100.

The model defined in the table above, in reality, turned out as a convenient baseline for further
experiments. We began with training this model and then experimented with other configuration,
comparing the results.
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Before Interpolation After Interpolation

Figure 5.2: An illustration of linear interpolation on PR curves. The curve on the right is computed from every
point in the dataset whereas 100 points for approximation was used on the left. We give up some details in
order to better observe global characteristics of the curve.

5.4 Results

All experiments were carried out on a virtual server with 16 CPUs and 64 GB of RAM running on the
Amazon Elastic compute cloud (EC2)1. No GPUs were used for training. The programming language
chosen for experimenting was Julia2, because of the speed it achieves comparable to the speed of
compiled languages and its wide support for distributed and parallel computing. The training time
ranged between 2 and 5 days, depending on the complexity of the model or the batch size we trained
with. Inference for every domain in the datasets took approximately half a day.

To compare the performance of the models, we examine PR-curves, which capture the perfor-
mance very good in case of imbalanced classes. By gradually increasing the decision threshold we
can calculate precision and recall for different points in the curve. For various values of the decision
threshold we used values that were predicted for every domain in the dataset accurately compute
Area under (the) curve (AUC) performance metric. However, the resulting curve has as many points
as there are domains in the testing dataset that we evaluate on. This leads to generally chaotic and
spiky curve, where global characteristics are difficult to observe. We, therefore, sampled one hundred
linerly spaced points and used linear interpolation to compute their values as depicted in Figure 5.2.

We evaluated following models in Stratified fold validation and Leave one domain out settings. Due
to the different amount of domains in each fold, the remaining portion of the domains we predict on
differs as well. Therefore, interpolation of the curves also enables us to compute per-point average
for Stratified fold validation setting. The shapes of the curves in following experiments may give the
impression, that our model performs poorly. Remember that the seemingly poor performance is
given by the unusual complexity of the task. Furthermore, keep in mind that the distribution of
classes is highly imbalanced in both the real world and our datasets and also that we attempt to
classify a server based on solely the simple features extracted from the server graph and nothing else
(as explained in Section 4.3).

1https://aws.amazon.com/ec2/
2https://julialang.org/
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5.4.1 Baseline model

Firstly, we measured the performance of the baseline model defined in the previous section. The
results are in Figure 5.3.
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Figure 5.3: PR curves of the baseline model.

The curves indicate that the model is capable of detecting malicious servers even in Stratified
fold validation setting, however falls behind in some aspects. For instance, the appearance of the
curve on the left for small values of recall shows that only a few right decisions are made with high
confidence and some benign servers incorrectly obtain high probability of being malicious.

5.4.2 Further experiments and improvements

In this section we present the results we obtained by altering either the defition of the model or the
training procedure. After that we show the comparison of some selected models to the Probabilistic
threat propagation algorithm.

Increasing the number of negative instances in the bag

The first thing we tried was increasing k	 at the test time. We experimented with values of k	test from
{100, 300, 1000} (Figure 5.4).
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Figure 5.4: PR curves of the baseline model with different numbers of negative instances in the bag
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It can be clearly seen that enabling the model to work with more negative examples in the bag
increases the performance. The result of the experiment where we set k	test to 1000 indicates that the
area under the curve metric saturates and further change of k	test probably would not help. This is
in agreement with the assumption that the whole set of negative instances in the bag is needed to
make the decision. Also, the curves differ much more in the first picture describing stratified fold
validation results. This is probably due to the fact, that increasing the number of sampled negative
instances in the bag results into more malicious servers (that are not in the fold and thus considered
positive) being in the bag.

Going wider

Another reasonable direction is changing the definition of the instance embedding functionφ and
the classification function h. The instance embedding function in the baseline model consisted of
the input layer of 9 neurons followed by a layer of 30 neurons and the classification function was
implemented by one layer of 60 neurons and the output layer of 2 neurons. We tried increasing
the number of neurons in the second layer of instance embedding function to 60 and 90 (and also
accordingly increased the number of neurons in the first layer of the classification function so that
the dimensions agreed) (Figure 5.5).
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Figure 5.5: PR curves of the models with layers of different widths in the bag.

Quick examination uncovers that the wider models classify serveral malicious instances with high
confidence resulting into the ‘peak’ of curves near the origin.

45



CHAPTER 5. EXPERIMENTS

Going deeper

We also attempted to change the number of layers inφ and h instead of changing the size of the layers,
as it is usually the case that deeper models improve accuracy of neural networks. The following
figure shows the results of the baseline model and models with 3 or 4 layers instead of 2 in bothφ
and h (Figure 5.6).
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Figure 5.6: PR curves of the models of different depth.

Contrary to the expectations, adding more layers did not improve the results much and even worse
performance was achieved.

Different batch size

It is a well-known empirical observation that increasing or decreasing of the batch size may increase
(or decrease) the performance. The bigger batch carries stronger signal and the smaller batch makes
the optimizing procedure more stochastic, resulting into bigger chance to escape local optimas. The
baseline model was trained with 256 bags in each batch and we trained the same model using batches
of size 64 or 512 (5.7).
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Figure 5.7: PR curves of the models trained with different batch sizes.

The results imply that the batch size of 256 was well-chosen.
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Leaky ReLUs

Lastly, we tried different activation function due to our concerns of dying ReLU units (5.8).
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Figure 5.8: PR curves of the models with ReLUs or Leaky ReLUs as the activation function.

Dying ReLUs are evidently not a problem of the baseline model.

5.4.3 Comparison to Probabilistic Threat Propagation

Lastly, we compared our results to the results of the Probabilistic threat propagation, the state of
the art algorithm. The implementation was the same as in [Jusko et al., 2016], where no external
knowledge used for the computation of edge weights as well, thus seemingly poor results may
be expected. PTP ran for 40 iterations. In Figure 5.9 we compare the performance of the PTP
method with the performance of several our models. Besides the baseline model and the model with
increased k	test, whose curves were already presented in the sections above, we also include models
with combined hyperparameters. On the basis of previous results, we evaluated models with deeper
or wider architectures with a higher number of sampled negative instances in the bag. Intuitively,
performance should improve.

In each of our experiments, our method outperformed the PTP method by a large margin.
Although all experiments were carried out using only one dataset for training and one for testing,
thus to declare our method superior would require more experiments on different data, this shows
bright prospects of the approach. The fact that even the simple baseline model, a launching pad for
further experimenting, achieved better results, demonstrates that careful tuning of model properties
and hyperparameters is likely to result into even better performance. We are fully aware that the
method requires more thorough testing and consider it as future work. The sketch of our plans for
the future is provided in the following, last chapter. Formalizing the task the way it was done is more
general and less constraining. This opens the variety of directions for the future research. Some of
these possible directions were already discussed and the rest is described in the chapter to follow. To
finish, it is important to emphasize that better performance in experiments is not the only advantage
of our method over the PTP algorithm. Benefits of drawbacks of both methods are summarized in
Table 5.1.
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Figure 5.9: Comparison of selected models – baseline (a), k	test = 1000 (b), wider model with k	
test = 1000 (c),

and deeper model with k	test = 1000 (d) – with the state-of-the-art PTP method (40 iterations). Only the results
from the stratified fold validation setting are shown, because multiple step nature of the PTP algorithm made
it impossible to evaluate the leave one domain out setting for each positive domain in the dataset. The picture
on the right is the same as the one on the left zoomed to interval [0, 1/2]× [0, 1/2].
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Table 5.1: Benefits and drawbacks of both methods we compared.

MINI formalism method Probabilistic threat propagation

Performs only one inference step. This in-
creases the speed but at the same time, the as-
sumption that all information needed to make
the decision is present in the Markov’s blanket
of the server (see Section 3.2.6) is made. This
is usually the case in the CS domain, but may
not be true in general.

The general definition of the predictors used in
each step allows for proper selection of knowl-
edge to propagate through the graph. This
makes MINI formalism a theoretical concept
applicable and adjustable to many problems.

The general definition of feature mapping func-
tion opens up the possibility of describing both
vertices taking part in the relation as well as
the properties of the relation itself in a natural
way.

Enables external knowledge to be effortlessly
included into the model and complement fea-
tures extracted from graph.

The functions comprising the model in the for-
malism implemented as neural networks ac-
commodate many possible inference formulas
and the correspondence between a bag describ-
ing a vertex and the Markov blanket of the ver-
tex represent a natural and flexible view of the
general inference problem.

The training procedure can easily cope with
new data and weighted cross entropy loss func-
tions enables us to include prior knowledge
about the distribution of classes or assigning
different costs to mistakes made by the model.

The training took 2-5 days, depending on the
model, and performing the inference took half
a day, on an EC2 m5.4xlarge machine (16 CPUs
and 64 Gb of RAM). We were able to achieve
such small memory requirements because of
the dataset pruning and the fact, that we do not
store the whole server graph in the memory
and computed everything from the bipartite
graph or on demand. This results in much
lower memory demands, but on the other
hand, increases computing time.

Its multi-step nature in theory allows the prop-
agation of information throughout the whole
graph and not only the close neighborhood.

On the other hand, PTP provides limited pos-
sibilities of selecting which information gets
propagated further.

The weights on edges and initial threats in the
vertices are the only specifiable ‘degrees of free-
dom’ of the method. No features representing
vertices can be directly used and the only way
to include them is by some ad-hoc artificial
methods.

No external knowledge can be directly injected
and can be only taken into account in the defi-
nition of edges’ weights or the initialization of
threat in individual vertices.

Employs fixed formulas for threat propaga-
tion.

Only possible learning of parameters would
mean learning of edge weights. This requires
a whole inference procedure to be run after
every step of SGD. This is infeasible given the
complexity of a single inference run. Therefore,
adaptation to new data is inflexible.

No prior knowledge about classes can be lever-
aged and there is no direct way to express pref-
erences by assigning different costs to false
positives and false negatives.

Performing the inference using carefully op-
timized source code demands several hours,
on an EC2 x1.32xlarge machine (64 CPUs and
1,952 Gb of RAM). However, the high memory
requirement is not a drawback of the method
itself, but rather the approach to computation.
The same tricks can be employed to sacrifice
some computing time in order to save memory,
but once we attempt to store the whole dense
server graph in the memory, referring to B.3,
there may be approximately 1011 edges in the
server graph.
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Chapter 6

Conclusion

This work proposed a novel formalism for thinking about the inference in graphical models and
investigated its strengths and weaknesses. Our main interest lies in the development of an efficient
and general algorithm that would be able to infer any unknown quantity in a graph. The universality
of the formalism introduced in this thesis is one step towards this goal and many research ideas and
directions are still open. In the end, we want to be able to define a high-level inference procedure
and let the learning algorithm learn any inference rules by its own from a sufficient amount of data.
It has been experimentally demonstrated that the method using our formalism overcomes older
approaches due to its flexibility and the ability to learn any function used for inference. However,
we still feel that the method can be further improved by defining better learning procedure or using
a stronger model. The potential of the method is huge and many possible applications suggest
themselves. Indeed, we have opted for the CS domain and the task of server classification, but this
is only the tip of the iceberg. The world around us is full of dynamical systems evolving in time,
consisting of objects that interact with others. Examples include:

• Social graphs. We may be interested for instance in detecting fake accounts, accounts exhibiting
illegal activity or communities of users with similar interest that we can target with our product.
We may experiment with multiple ways of defining adjacency relation in social graphs as there
are more ways of how users present themselves on the network. Some of these ways, such
as communication between users, require access to private data of users, others are publicly
observable without any permissions.

• Natural language processing. Including a relations between texts being classified can improve
the classification performance. For instance we might put edges between two documents one
of which references the other.

• Stock Marketing. By putting an edge between companies offering similar products or compa-
nies with the same purpose, we can predict if their stock price is likely to grow or not. External
knowledge in the form of previous stock prices and other companies features can be used.

6.0.1 Future work

We finish the thesis by listing several ideas for the future work. There is certainly much room
for improvement of models and the training procedure. Trying to solve different problems with
the formalism is another possible thing to investigate. Nonetheless, our future aim is to use the
formalism and extend the inference method to perform more than one step (as it has been discussed in
Section 3.2.6). Furthermore, we would like to improve our results in malware classification task. We
intend to add external features to the model to complement purely graphical features and see how the
results change. This way we may observe to what extent is the method able to efficiently use external
knowledge together with the knowledge encoded in the graph. This may be done by comparing
the performance of the model using only graphical features, the performace of the model using
only external features and then the performance of the model using both. It is evident, that we may
expect better performance, however, the question of how much the results would differ remains to
be answered. Another possible way to go is to improve the adjacency relation construction described
in Section 4.1 and extend it to work with multipartite graphs. Such graphs would contain not only
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CHAPTER 6. CONCLUSION

servers and users, but also programs that were used by users to access the servers, nameservers that
store the location of a domain name’s various services or Whois query results. The problem becomes
more complex, however, one can verify that the general MINI formalism smoothly accommodates
to the problem and apart from designing the adjacency relation construction process no additional
effort is required.
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Appendix A

Probabilistic threat propagation

Probabilistic threat propagation [Carter et al., 2013] is an iterative method for detecting malicious
objects in the network represented by an undirected graph. It assumes that the threat is highly
concentrated in some parts of the network, forming communities. Utilizing tips from blacklists,
probabilistic threat propagation firstly assigns high threat P(X) to each blacklisted object X in the
network representing the probability of X being dangerous. By iterative propagation of the threat
throughout the network, other malicious objects are discovered. The probability of maliciousness is
defined as the weighted sum of probabilities of neighbors in the graph conditioned on the current
node being benign ((A.1)).

P(Xi) = ∑
X j∈N (Xi)

wi jP(X j | Xi = 0) (A.1)

This condition prevents the method from the un-
wanted effect of ‘direct feedback’, when the prob-
ability of maliciousness of the current node is in-
fluenced by the threat the node had previously
propagated to its neighbors. By setting zero threat
to the node, this effect is nullified.

A.0.1 Approximate Inference

Solving (A.1) exactly requires quadratic time for computing the conditional probability for all pairs
of nodes in the graph. This makes exact inference infeasible for larger graphs, which is almost always
the case for computer networks. Authors of the paper proposed an iterative approximation described
in (A.2).

Pk(Xi) = ∑
X j∈N (Xi)

wi j(Pk−1(X j)− Ck−1(Xi, X j)) (A.2)

Here Pk(X) denotes the threat at iteration k and Ck−1(Xi, X j) is a part of Pk−1(X j) propagated from a
node Xi (in the previous step). This successfully prevents the direct feedback from happening. In
each iteration, all threats are simultaneously recalculated and iterations are repeated until terminating
condition or convergence. To reinforce knowledge about tips from the blacklist, threats of the tip
nodes are initialized to a high value at the beginning of every iteration.

A.0.2 Weights

The last remaining question to be answered is how to assign weights used in (A.2). In order to
obviate the need of normalization weights should satisfy equality ∑ j wi j = 1. While this enables one
to alter properties and behavior of the algorithm by changing the way weights are assigned, it also
introduces a necessity to decide even if it may not be clear how to do so. A thorough discussion on
how to set weights wi j is in [Jusko, 2017].

Apart from the need to pick suitable weights, the algorithm is not applicable for cases when
external knowledge about objects (apart from their threat level) is important for decisions. Also,
injecting any prior about the distribution of classes is impossible.
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Appendix B

Dataset details

Table B.1: The most and the least frequently visited domains in the bipartite graph from the dataset CiscoNet1.

rank domain # of connections

1. google.com 2.356 · 106

2. microsoft.com 2.073 · 106

3. googleapis.com 1.799 · 106

4. gstatic.com 1.713 · 106

5. doubleclick.net 1.600 · 106

6. windowsupdate.com 1.502 · 106

7. google-analytics.com 1.460 · 106

8. symcd.com 1.279 · 106

9. facebook.com 1.190 · 106

10. live.com 1.179 · 106

11. digicert.com 1.175 · 106

12. bing.com 1.146 · 106

13. googlesyndication.com 1.068 · 106

14. googleadservices.com 1.030 · 106

15. adnxs.com 1.010 · 106

16. googleusercontent.com 9.871 · 105

17. facebook.net 9.609 · 105

18. googletagmanager.com 9.584 · 105

19. gvt1.com 9.412 · 105

20. scorecardresearch.com 9.071 · 105

21. googletagservices.com 8.944 · 105

22. yahoo.com 8.918 · 105

23. msn.com 8.902 · 105

24. cloudfront.net 8.718 · 105

25. demdex.net 8.371 · 105

26. twitter.com 8.346 · 105

27. youtube.com 8.330 · 105

28. amazonaws.com 8.303 · 105

29. adsrvr.org 8.174 · 105

30. adobe.com 8.161 · 105

domain # of connections

riverlifechurch.org.au 1
marelec.gr 1
exploreair.com 1
sonharcomsonhos.co 1
tsunami-martial-arts.com 1
167.114.174.141 1
yokumoku.co.jp 1
rugbytownfc.com 1
hertford.gov.uk 1
gorsko.eu 1
objessions.com 1
browncountytx.org 1
myfail-tube.com 1
tobegourmet.com 1
153.3.233.106 1
wszystkoconajwazniejsze.pl 1
hirsch-automobile.ch 1
portosaude.com 1
hmprg.org 1
risearmament.com 1
hegeoraekszer.hu 1
pavelkogan.com 1
patinageplateau.com 1
basketczechowice.pl 1
wearedepaul.com 1
cheztapioca.com.br 1
turtlemoon.com 1
praxisclarahof.ch 1
ifoodala.com 1
ufsinc.com 1
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APPENDIX B. DATASET DETAILS

Table B.2: Properties of the datasets used in experiments before pruning. ∆, δ, and d denote the maximal, the
minimal and the average degree in a graph specified in a subscript (Bipartite graph or server graph).

name CiscoNet1 CiscoNet2

# of servers 3.97 · 106 3.69 · 106

# of positive servers 955 655

# of users 2.81 · 106 2.33 · 106

∆SG 2.73 · 106 2.25 · 106

δSG 0 0

dSG ≈ 1.25 · 104 ≈ 7.91 · 103

∆BG (server) 2.36 · 106 1.95 · 106

∆BG (user) 8.14 · 104 4.1 · 104

dBG (server) ≈ 77.23 ≈ 77.605

dBG (user) ≈ 54.57 ≈ 49.56

δBG (server) 1 1

δBG (user) 1 1

Table B.3: Properties of the datasets used in experiments after the complete pruning using parameters
αD = αU = 5 and βD = βU = 105. ∆, δ, and d denote the maximal, the minimal and the average degree in a
graph specified in the subscript (bipartite graph or server graph).

name CiscoNet1 CiscoNet2

# of servers 4.74 · 105 3.99 · 105

# of positive servers 340 222

# of users 1.97 · 106 1.68 · 106

∆SG 4.29 · 105 3.61 · 105

δSG 4 4

dSG ≈ 3.04 · 104 ≈ 2.19 · 104

∆BG (server) 9.92 · 104 9.94 · 104

∆BG (user) 4.7 · 104 3.33 · 104

dBG (server) ≈ 166.9 ≈ 172.54

dBG (user) ≈ 40.08 ≈ 40.98

δBG (server) 1 1

δBG (user) 1 1
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APPENDIX B. DATASET DETAILS

Table B.4: Examples of low-level cluster labels on the blacklist. ‘C&C’ is an abbreviation for Command &
control servers. The first column provides the name of the cluster (low-level label), the second column names
of higher-level labels corresponding to the definition of the threat in the last column.

Cluster code High-level categorization Threat definition

CCPT04 • cryptowall

• ransomware

• C&C

Threat related to a variant of the last Cryptowall
(3.0) botnet and ransomware which encrypts the disk
of the infected device and extorts the affected user.
Bot communicates using HTTP with the command-
and-control server and sends information about the
infected device before encrypting the disk. Botnet
uses compromised, legitimate sites as temporary
command-and-control servers.

CEXF01 • information stealer

• exfiltration

• malware distribution

• C&C

Threat related to malware that exfiltrates large
amounts of data to external servers using a custom
protocol on TCP port 443, disguising it as HTTPS
traffic. Additionally, threat can download malware
and other malicious applications onto the affected
device to perform click fraud.

CAST01 • asterope

• click fraud

• botnet

• C&C

Threat related to Asterope click-fraud botnet. Aster-
ope is a Trojan bot malware which performs click
fraud by imitating the action of a user clicking
on an advertisement. The bot communicates with
the command-and-control server using HTTP from
which it receives the next website to visit.

CLDM01 • loadmoney

• ad injector

• malware distribution

• pua

• adware

Threat identified as the potentially unwanted ap-
plication (PUA) known as LoadMoney, which dis-
tributes additional adware and other malicious soft-
ware onto the affected device. Threat arrives on the
system while installing freeware and exfiltrates in-
formation from the infected system.

CADT03 • tracking

• malicious advertising

Threat related to advertisements and web analytics
tracking which leaks sensitive information from the
user device such as unique user identifier, referrer,
and system events. Threat is associated with known
adware, ad injectors, and other malicious software.

CSPM03 • spam

• phishing

• tracking

• malicious advertising

Threat related to spam campaigns which may in-
clude advertisements and phishing. May expose
user email address to third parties. May be dis-
tributed via email or as advertisement banners on
web mail sites such as Yahoo.
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Appendix C

DVD Content

The attached DVD contains the Julia code that was used for the data preprocessing, the training
and the evaluation. Due to the size of the dataset and the privacy regulations about user data we
cannot disclose the dataset, however, a dummy dataset representing a simple task is prepared. To run
the whole project, the following tools must be installed (numbers in parentheses signify particular
version of the library used):

• Julia language (0.6.1)

• MLDataPattern.jl (0.4.0)

• MicroLogging.jl (0.2.0)

• GraphPlot.jl (0.2.0)

• Gadfly.jl (0.6.5)

• CSV.jl (0.1.5)

• Revise.jl (0.1.1)

• Hiccup.jl (0.1.1)

• Flux.jl (0.3.4)

• PyPlot.jl (2.5.0)

• Conda.jl (0.7.1)

• MLBase.jl (0.7.0)

• JLD.jl (0.8.3)

• PGFPlotsX.jl (0.2.1)

• AWSS3.jl (0.3.6)

• ForwardDiff.jl (0.7.5)

• DualNumbers.jl (0.3.0)

• FastClosures.jl (0.2.0)

• DataStructures.jl (0.8.2)

• Calculus.jl (0.3.1)

• DataFrames.jl (0.10.1)

• JSON.jl (0.17.2)

• StatsBase.jl (0.22.0)

The contents of the DVD are structured as follows:

/mandlsim_bachelor_thesis_*.pdf The electronic version of this work.

/src/ A directory containing all code and provided data.

/src/data/ Dummy dataset representing simple task and dummy blacklist of domains that can be
used for experimenting (generated by random_graph.jl)

/src/Datasets/ Algorithms and data structures for working with various types of datasets, such as
dataset of graphs or dataset of bags.

/src/FluxModels/ Definitions of various neural network layers and models used in experiments.

/src/_init.jl Initial script needed to be run after starting Julia.

/src/train.jl Training script containing definitions of hyperparameters and main train loop.

/src/evaluate.jl Evaluation script, usually executed right after training. Provides all validation
methods discussed.

Both /src/Datasets/ and /src/FluxModels/ are parts of a bigger library, which is a property of Cisco
Systems, Inc., therefore the code cannot be published. The attached DVD does not contain these
parts, however, they can be disclosed to those interested.
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Acronyms
A

AUC Area under (the) curve [43]

B

BG Bipartite graph [27]

BGD Batch gradient descent [33]

BN Bayesian network [7]

C

C&C Command and control [3, 56]

CRF Conditional random field [9, 10]

CS Computer security [2, 3, 6, 15, 16, 19, 24, 26, 28, 33–35, 49, 50]

D

DDoS Distributed denial of service [3, 29]

E

EC2 Elastic compute cloud [43, 49]

L

LOCO Leave one cluster out [40]

LODO Leave one domain out [39]

LReLU Leaky rectified linear unit [41, 47]

M

M-BGD Mini-batch gradient descent [33, 34]

MB Markov blanket [7]

MIL Multiple instance learning [1, 2, 4, 16, 19, 20, 23, 24]

MINI Multiple instance neural inference [2, 5, 15–17, 19, 20, 24, 26, 36, 51, 59]

MPI Message passing inference [10, 17, 18, 23, 24]

MRF Markov random field [8–11, 14, 17, 59]

P

PR-curves Precision-recall curves [34, 39, 43]

PTP Probabilistic threat propagation [2, 5, 34, 35, 37, 47, 48]

R

ReLU Rectified linear unit [41, 42, 44–47]

S

SFV Stratified fold validation [40]

SG Server graph [27]

SGD Stochastic gradient descent [18, 49]

U

UTC Coordinated universal time [37]
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Nomenclature

Graph interpretation

G Space of all observable graphs (Section 3.1, page 15)

V Set of all vertices in a graph (Section 2.1, page 6)

u, v, w, . . . Vertices in a graph (Section 3.1, page 15)

E , E Set of all edges in a graph, adjacency rleation on the set of vertices (Section 2.1,
page 6)

N (v) All neighbors of the vertex v (Section 2.2, page 11)

dG Average degree in the graph G (Section B.0, page 55)

∆G Maximal degree in the graph G (Section B.0, page 55)

δG Minimal degree in the graph G (Section B.0, page 55)

Probabilistic interpretation

X Finite set of all considered variables (Section 3.2, page 16)

XO All observed random variables (Section 3.1, page 15)

X, Y, Z, . . . Random variables (Section 2.1, page 6)

X ⊥⊥ Y | Z Conditional independence of X and Y given Z (Section 2.1, page 6)

N (X) All neighbors of the random variable X in MRF (Section 2.1, page 8)

MB(X) Markov blanket of the variable X (Section 2.1, page 7)

XK Set of vertices (or random variables) in the clique K (Section 2.1, page 8)

ψ(X) Potential function operating on the set of random variables X (Section 2.1, page 8)

f , f ′, . . . Factors in a factor graph (Section 2.2, page 10)

X( f ) Random variables in the subtree with root f (Section 2.2, page 11)

Ff (Xi, X( f )) Product of all factors in the subtree formed by the factor f in the tree rooted in Xi
(Section 2.2, page 11)

µ f→X Message sent from the factor f to the variable X (Section 2.2, page 11)

µX→ f Message sent from the variable X to the factor f (Section 2.2, page 11)

E(X) Energy of the set of random variables (Section 2.1, page 8)

d(X) Integration over the values of all random variables in vector X (in the right order)
(Section 2.1, page 8)

X \ Xi Vector of random variables with the variable Xi left out (Section 2.2, page 11)

MINI formalism

θ Parameters describing the situation of the system at the observation time (Section
3.2, page 16)

(G ,A, Pθ) Probability space of all graphs (Section 3.2, page 16)

F Mapping between observable graphs and the parameter space (Section 3.2, page
16)

C Set of all classes (Section 3.1, page 15)
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Nomenclature

C(v) Class of the vertex v (the actual value of random variable associated with it)
(Section 3.1, page 15)

B Space of all bags (Section 3.2, page 19)

bu Bag associated with the vertex u (Section 3.2, page 19)

αu(v) Feature mapping of the relation {u, v} (in the context of the bag bu) (Section 3.2,
page 19)

φ Instance embedding function (Section 3.2, page 19)

g Aggregating function (Section 3.2, page 19)

gmax, gmean, gwm Maximum, mean and weighted mean activation functions (Section 3.2, page 21)

h Classification function (Section 3.2, page 19)

s Number of steps performed by an inference method (Section 3.2, page 24)

L[t1 ,t2] List of connections observed in the interval between t1 and t2 (Section 4.1, page
26)

U Set of all users connected to the network (Section 4.1, page 26)

D Set of all domains accessible from the network (Section 4.1, page 26)

I(e) Information carried by the edge e (Section 4.1, page 26)

αD,βD,αU ,βU Lower and upper bounds for pruning (Section 4.2, page 28)

NSG(u), NB(u) Set of all neighbors of v in server graph and bipartite graphs of servers and users
(Section 4.3, page 31)

wBS(c) Bag subsampling weight of the class c (Section 4.4, page 32)

k	train, k	test Maximal number of negative instances left in the bag after performing bag sub-
sampling, during training or testing phase (Section 4.4, page 32)

p, q True and Sampling distributions of the data (Section 4.5, page 34)

yreal , ŷ True class and Estimated class (Section 4.5, page 34)

wy Training weight of the class y (Section 4.5, page 34)

cy Training cost of the class y (Section 4.5, page 34)

Probabilistic threat propagation

Pk(Xi) Threat computed on the vertex Xi at step k (Section A.0, page 53)

Ck(Xi, X j) Part of Pk(Xi) that was propagated through node X j (Section A.0, page 53)

wi j Weight on the edge between vertices Xi and X j (Section A.0, page 53)

Other Symbols

Rn Euclidean space of dimension n (Section 3.2, page 19)

P(M) The powerset of the set M (Section 3.2, page 16)

x(i) i-th component of the vector x (Section 3.2, page 21)
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