Bachelor’s Thesis

Czech

Technical
University
in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Behavior Model of Flight Based on Visual
Flight Rules

Jan Toth

Supervisor: Mgr. Premysl Volf, PhD.

Study program: Open Informatics

Branch of study: Computer and Information Science
May 2018

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

I. Personal and study details
s N
Student's name: Toéth Jan Personal ID number: 457116

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Behavior Model of Flight Based on Visual Flight Rules

Bachelor’s thesis title in Czech:

Model chovani pro let fizeny vizualnimi pravidly

Guidelines:

. Study the problem of flying under visual flight rules.

. Study the problem of map representation and its use for visual flight.

. Study the problem of pilot behavior related to detection of other aircraft.
. Design environment data representation for visual flight.

. Design pilot behavior for visual flight.

. Implement designed methods into the AgentFly system.

. Validate experimentally designed model under various conditions.

NOoO O~ WN -

Bibliography / sources:

[1] Rizeni letového provozu CR, Pravidla pro lety za viditelnosti - https://lis.rip.cz/ais_data/aip/data/valid/e1-2.pdf

[2] Colvin, Kurt and Dodhia, Rahul and Dismukes, R Key: Is Pilots' Visual Scanning Adequate to Avoid Mid-Air Collisions?,
Citeseer, 2005

[3] Orrell, Gregory L. : Effects of Primary TIS-B on the General Aviation Pilot: A Human-in-the-Loop Simulation, ICRAT,
Berkley, 2012

[4] Olbricht, Roland M: OpenStreetMap in GIScience - Data Retrieval for Small Spatial Regions in OpenStreetMap, pages
101-122, Springer 2015
[5] https://wiki.openstreetmap.org/
Name and workplace of bachelor’s thesis supervisor:
Mgr. Pfemysl Volf, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 12.01.2018 Deadline for bachelor thesis submission: 25.05.2018

Assignment valid until: 30.09.2019

Mgr. Pfemysl Volf, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to express my gratitude to my
supervisor, Mgr. Pfemysl Volf, PhD., and
also to his associate Ing. Lukas Koranda

for their valuable advice and guidance.

This work would not be possible without
their collaboration.

Declaration

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, date

signature

Abstract

The aim of this thesis is to design a
behavior model of a flight based on
Visual Flight Rules. The proposed model
is to be implemented in multi-agent
simulation system AgentFly to augment
its current capabilities of simulating air
traffic. This work primarily focuses on
problems of a suitable map
representation for flights operating under
Visual Flight Rules, accurate visual
detection of possible conflicts and their
resolution in accordance with Visual
Flight Rules. The map representation
proposed by this work is created by the
combination of data from height maps
and OpenStreetMap database. Both
detection and resolution of possible
conflicts are based on observing the GPS
coordinates of the other aircraft. The
implementation created as a part of this
thesis allows to thoroughly test the safety
and reliability of flying under Visual
Flight Rules in a multitude of situations.

Keywords: visual flight rules,
multi-agent simulation, map
representation, conflict detection, conflict
resolution, safety testing

Supervisor: Mgr. Premysl Volf, PhD.

vi

Abstrakt

Cilem této prace je navrhnout model
chovani letu rizeného vizualnimi pravidly.
Navrzeny model ma byt implementovan
v multi-agentnim simula¢nim systému
AgentFly za tcelem rozsifeni jeho
soucasnych schopnosti simulovat leteckou
dopravu. Tato price se prevazné zabyva
problémy reprezentace mapy vhodné pro
lety Tizené vizualnimi pravidly, presnou
vizualni detekci moznych koliznich
hazardu a jejich fesenim v souladu v
vizualnimi pravidly. Reprezentace mapy
navrzena touto praci je vytvorena
spojenim dat z vyskovych map a
databize OpenStreetMap. Detekce i
feseni moznych koliznich hazardl jsou
zalozeny na pozorovani GPS souradnic
druhého letadla. Implemetance vytvorena
v ramci této prace umoznuje dukladné
testovat bezpecnost a spolehlivost létani
podle vizualnich pravidel v mnoha
situacich.

Kli¢ova slova: pravidla pro let za
viditelnosti, multi-agentni simulace,
reprezentace mapy, detekce konfliktu,
feseni konfliktu, testovani bezpecnosti

Preklad nazvu: Model chovani pro let
Fzeny vizualnimi pravidly

1 Introduction

2 Problem Specification

2.1 Visual Flight Rules

2.1.1 Airspace Overview

2.1.2 Standard Airport Procedures .
2.1.3 Minimum Flight Altitudes ...

Contents

2.1.4 Collision Avoidance
2.2 Simulation Framework.........

221 A-Globe
222 AgentFly

3 Approach

3.1 Generation of VFR Flights.

3.2 Minimum Flight Altit
3.2.1 OpenStreetMap . .
3.2.2 City Polygons ...
3.2.3 Terrain Elevation

3.3 Collision Avoidance .
3.3.1 Conflict Types. ..

udes

3.3.2 Conflict Resolution.........

4 Implementation

4.1 Generation of VFR Flights.

4.2 Minimum Flight Altit

udes

4.2.1 City Data Creation.........

4.2.2 City Data Integrat
4.2.3 Terrain Sampling
4.2.4 Altitude Changes
4.3 Collision Avoidance .
4.3.1 Conflict Detection

ion

4.3.2 Conflict Resolution.........

5 Experiments

5.1 City Polygons

5.2 Altitude Changes . ..
5.2.1 Altitude Test 1 ..
5.2.2 Altitude Test 2 ..

5.3 Collision Avoidance .
5.3.1 Single Conflict . ..
5.3.2 Multiple Conflicts
5.3.3 Larger Scenario . .

6 Conclusion
6.1 Future Work

Bibliography
A List of Abbreviations

B Videos
B.1 Single Conflict

1l

vii

B.2 Multiple Conflicts
B.3 Larger Scenario

C Contents of Enclosed CD

Figures

2.1 Minimum flight altitudes according
toRLP ... 5l
2.2 Collision avoidance sectors [7l
3.1 Grid rounding
3.2 Small angles removal

3.3 Stereographic projection principle
3.4 Ramer-Douglas-Peucker algorithm

3.5 Bentley-Ottmann algorithm
3.6 Flight route sampling
3.7 Resolution of conflicts
3.8 Resolution of conflicts IT 22|

4.1 Cities of the Czech Republic ...
4.2 FOV visualization 29

5.1 Built-up areas of Karlovy Vary .
5.2 Built-up area of Karlovy Vary ..

5.3 Built-up areas of Osek.........
5.4 Map of Osek and Dlouha Louka
5.5 Built-up area of Osek
5.6 Built-up areas of other cities ...
5.7 Flight route of Altitude test 1 ..
5.8 Results of Altitude test 1 37
5.9 Flight route of Altitude test 2 ..
5.10 Results of Altitude test 2 38|
5.11 Head-on conflict resolution 40
5.12 Converge conflict resolution . . .

5.13 Multiple conflicts resolution . . .

viii

Tables

5.1 City representations...........
5.2 Conflict resolution

B.1 Videos of standard conflicts. . ..

51l

Chapter 1

Introduction

Air traffic is the youngest means of transport. It is only over a century
old [I]. At first, the number of planes was small, and there was no need
for any specialized air traffic coordination. The first significant development
of the air traffic began after the World War I. The development was soon
followed by the first rules for air traffic (General Rules for Air Traffic) that
were presented by International Commission for Air Navigation founded in
1919. Back then, simple and straightforward signals such as waving flags
were used to coordinate air traffic from the ground. Pilots did not have any
specialized instruments to navigate in the air, and they had to rely primarily
on their vision. Nowadays, such flying is called a flight based on Visual Flight
Rules (abbr. VFR) or a VFR flight or simply a VFR.

Over the course of modern history, air traffic has continuously grown.
As the number of aircraft was increasing and newer airplanes with more
advanced capabilities were being constructed (e.g., jet planes), new rules and
technologies had to be introduced to ensure safety and efficiency of air traffic.
At the turn of the 1950’s and the 1960’s, United States Federal Aviation
Administration (abbr. FAA) and European Organization for the Safety of
Air Navigation (abbr. EUROCONTROL) were established. Since then, they
have become leading authorities in the creation of regulations regarding air
traffic management (abbr. ATM) and safety [1].

Gradually, technologies such as radio, radar, and computer systems were
adopted by the Air Traffic Services (abbr. ATS) that aim to ensure air traffic
safety. ATS provides various individual services such as Air Traffic Control
(abbr. ATC) or Flight Information Service (abbr. FIS) [2]. With the help of
all these services, a new type of flying was introduced where pilots only rarely
rely on their vision (which has proven to be somewhat unreliable [3]). In this
type of flying, they turn to their technical equipment for an overview of their
current situation, and they perform actions based on instructions from the
local ATC. Unlike the pilots, air traffic controllers at the ATC can "see" the
bigger picture, i.e., other aircraft or incoming storms, on computers in the
control center and can appropriately advise the pilots to avoid dangerous
situations. Such flying is termed a flight based on Instrument Flight Rules
(abbr. IFR) or an IFR flight or simply an IFR. Nowadays, practically all large
aircraft and many smaller ones as well fly under IFR as it allows them to

1

1. Introduction

operate at much higher altitudes and in significantly worse weather conditions.
These capabilities are a significant advantage for many reasons. Pilots flying
under VFR rely on their vision, on what they can see, such as landmarks or
terrain features - distinctive visual cues. Therefore, flying in or above the
clouds where there are no distinctive terrain features to see, and operating in
storms or even at night with reduced visibility is neither practical nor safe for
VFR flights. Also, higher altitudes equal lower fuel consumption. All of these
are the reasons that make IFR flights much more reliable and convenient to
use for long-distance transportation [4]. Therefore, IFR flights make up the
majority of all modern air traffic.

Flying under VFR may not be as popular as it used to be, but it remains
the most popular operation mode for small aircraft. Moreover, it has been
regaining some of its former attention with attempts to incorporate Unmanned
Aerial Vehicles (abbr. UAV) into the air traffic on a larger scale, e.g., Amazon’s
project Prime Air [5, 6] or Google X’s project Wing [7]. In these and other
similar cases, fully autonomous UAVs should be integrated into day-to-day
air traffic. These machines are small, and they are only able to fly at very
low altitudes. Since in such altitudes only VFR flights are permitted, the
UAVs need to fly under Visual Flight Rules.

This thesis aims to create a behavior model of a flight based on Visual
Flight Rules (further referenced only as model). Such a model can then be
used in an air traffic simulation to study modern ATC, identify its weaknesses
and propose extensively tested solutions to them. Visual Flight Rules are still
an essential part of modern air traffic, and thus they have a rightful place in
any such simulation.

The task is further explored and described in |Chapter 2. Theoretical
solutions to problems specified there are proposed in |(Chapter 3. Practical
implementation of the suggested solutions is then described in [Chapter 4.
After that, in [Chapter 5|, follow results of several experiments conducted on
the resulting behavior model to assess its correctness and efficiency.

Chapter 2

Problem Specification

Several challenges need to be solved to create a proper behavior model of
a flight based on Visual Flight Rules.

First of all, a generator of VFR flights is required to quickly and efficiently
produce various scenarios that can be used to demonstrate possible situations
pilot flying under VFR may encounter. Such scenarios are also essential to
test all proposed strategies and correctness of their final implementation. The
generator should produce the scenarios in an appropriate, portable and easy
to handle format. Generated flight plans should also be somewhat reasonable.
The VFR flights have their purposes, they usually avoid no-fly zones such
as airspace above military bases, and like every flight, even they require a
certain amount of fuel to fly their planned route.

After the creation of a flight plan, the pilot’s behavior itself follows. First,
the pilot needs to execute all pre-flight procedures such as file the flight plan
and report the VFR flight to the nearest ATS. They also have to allow all
other airplanes with higher priority, based on their status, to either land or
to take off before they can depart from the (departure) airport. Following the
takeoff, provided the flight is not required to execute orders from ATC (i.e.,
it is, in fact, a Visual Flight Rules flight), the pilot must maintain minimum
flight altitudes defined in the current airspace, watch out for possible conflicts
and solve them if necessary in compliance with Visual Flight Rules. Once
the flight reaches its terminal (arrival) airport similar procedures to those
performed before takeoff must be repeated before the pilot may finish the
flight by landing and taxiing to its designated parking space. The rules are
properly stated and further examined in [Section 2.1|

For purposes of testing and future usage of this work, proposed strategies
will be implemented in AgentFly simulation framework. This system simulates
air traffic using agent-based modeling approach and is further described in
Section 2.2.

The implementation is aimed to be as much general as possible. Some rules
regarding aviation were unified by International Civil Aviation Organization
(abbr. ICAO). These will be taken into consideration. However, Visual Flight
Rules are one of many things that remains different throughout the world
and each airspace may have its own, slightly different, VFR regulations. So
for purposes of the simulation, rules issued by Air Navigation Services of the

3

2. Problem Specification
Czech Republic (abbr. RLP) will be used.

B 2.1 Visual Flight Rules

In this section, a brief overview of the Visual Flight Rules issued by RLP
is stated and discussed in regards to this thesis and its goals. The complete
Visual Flight Rules can be inspected in [8] [9].

B 2.1.1 Airspace Overview

Airspace is a three-dimensional portion of the Earth’s atmosphere. There
are many defined airspaces all over the world, usually national (country
airspace).

Each airspace is further divided into horizontal classes. ICAO defines
seven such classes designated A through G. Classes A-E are considered to be
controlled airspace, and every aircraft operating in any of these classes must
follow the instructions from ATC [10]. Classes F and G are uncontrolled
airspace, and aircraft operating in these classes usually do not have to maintain
permanent contact with air traffic services.

RLP adopts the ICAO airspace division, but it effectively works only with
classes C, D, E and G [11]. With regard to ICAO definitions, classes C, D,
E are defined by RLP as controlled airspace and class G as uncontrolled
airspace. Each class has different requirements on a VFR flight in areas such
as visibility, speed, radio communication, etc. and there are also different
services offered to VFR in each class. The list of all services provided to
VFR flights and requirements on them in accordance with Visual Flight Rules
issued by RLP can be viewed in [I1].

The airspace is also divided into areas that may impose other restrictions
on individual flights such as restricted or prohibited areas. Some of these
areas are long-term, others are only short-term. Special clearances need to be
obtained for the VFR pilots to be able to operate their aircraft in such zones.
For that reason, VFR flights should, in general, actively avoid these areas.

B 2.1.2 Standard Airport Procedures

On controlled airports, pilots must perform several procedures [12].

On departure, pilots must first verify all their information and get clearance
for starting the engines and for the departure. After that, they taxi to a
holding point at a specific runway. There, they must wait until they receive
clear to take-off. Only then, they may take off and leave the airport space.

On arrival, pilots must circle above the airport until they are given clearance
to land. After landing, they must vacate the runway at first available exit
and taxi to their designated position (gate or hangar - based on the type of
the given flight).

On uncontrolled airports, the similar procedures should take place, only
without the assistance of the ground control.

4

2.1. Visual Flight Rules

B 2.1.3 Minimum Flight Altitudes

The quote of definition of minimum VFR flight altitudes from [§] follows:

Except when necessary for take-off or landing, or except by permission from
the Civil Aviation Authority, a VFR flight shall not be flown:

a) over the congested areas of cities, towns or settlements or over an open-air
assembly of persons at a height less than 300 m (1000 ft) above the
highest obstacle within a radius of 600 m from the aircraft

b) elsewhere than as specified in a), at a height less than 150 m (500 ft)
above the ground or water, or 150 m (500 ft) above the highest obstacle
within a radius of 150 m (500 ft) from the aircraft.

(81)

Sometimes, other situations are included in the formulation, or different
altitudes are stated, but this is the generally used formulation of minimum
flight altitudes in Visual Flight Rules. Note, that the values specified in
meters and the values specified in feet are not exactly the same which is
caused by the conversion constant between meters and feet, but they are
similar enough. It holds:

1 ft=0.3048 m.[13]

Hence:

500 ft = 152.4 m~ 150 m,
1000 ft = 304.8 m ~ 300 m,
2000 ft = 609.6 m ~ 600 m.

Minimum flight altitudes in meters.

Figure 2.1: Minimum flight altitudes according to RLP

2. Problem Specification

B 2.1.4 Collision Avoidance

During the flight, VFR pilots must constantly watch out for possible
conflicts (collision hazards) with other traffic. If they find themselves in any
such conflict, they have to perform an evasive action in accordance with the
Visual Flight Rules. The quote of rules for avoiding collisions described in [§]
follows:

The pilot shall constantly monitor airspace in the vicinity of aircraft, regardless
of class of airspace in which the aircraft is operating. An aircraft shall not be
operated in such proximity to other aircraft as to create a collision hazard.

Right-of-way. The aircraft that has the right-of-way shall maintain its
heading and speed. An aircraft that is obliged by the following rules to keep
out of the way of another shall avoid passing over, under or in front of the
other, unless it passes well clear and takes into account the effect of aircraft
wake turbulence.

Approaching head-on. When two aircraft are approaching head-on or
approximately so and there is danger of collision, each shall alter its heading
to the right.

Converging. When two aircraft are converging at approximately the same
level, the aircraft that has the other on its right shall give way, except as
follows:

a) power-driven heavier-than-air aircraft shall give way to airships, gliders
and balloons

b) airships shall give way to gliders and balloons
c) gliders shall give way to balloons

d) power-driven aircraft shall give way to aircraft which are seen to be
towing other aircraft or objects

Overtaking. An overtaking aircraft is an aircraft that approaches another
from the rear on a line forming an angle of less than 70 degrees with the
plane of symmetry of the latter. An aircraft that is being overtaken has the
right-of-way and the overtaking aircraft, whether climbing, descending or in
horizontal flight, shall keep out of the way of the other aircraft by altering its
heading to the right, until it is entirely past and clear. A sailplane overtaking
another sailplane may alter its course to the right or to the left.

(I81)

The task of deciding the type of conflict will further be simplified by
dividing the surrounding area around an aircraft into four sectors as can be
seen in [Figure 2.2,

2.2. Simulation Framework

 — -
L Sector 4
Sector 2 k L
.- aircraft
. =)| axis
______________ S : N R ———
7 N direction
. vector Sector 1
2x70° 2x30°
, \ | Sector 3)

Sector 1 — head-on conflict

Sector 2 — overtaking conflict

Sector 3 — converge conflict with the other aircraft having right-of-way

Sector 4 — converge conflict with the given aircraft having right-of-way

Figure 2.2: Collision avoidance sectors

. 2.2 Simulation Framework

The behavior model of a VFR flight developed in this thesis will be imple-
mented in the environment of AgentFly software. AgentFly is a multi-agent
system enabling large-scale simulation of civilian and unmanned air traffic.
The system is built on a multi-agent platform A-Globe [14].

B 2.2.1 A-Globe

A-Globe is an open multi-agent environment. It supports the integration
of an arbitrary number of distributed computational processes, i.e., agents.
Among other things, the A-Globe platform offers high scalability, modeling,
and simulation of various environments in which the agents are to operate
and visualization support. All of the above is used by AgentFly framework
that is built on top of the A-Globe platform, and all of the above will be to
some degree used to implement and test theoretical propositions made in this
thesis.

A-Globe platform encapsulates all necessary services for large-scale simula-
tions of real-world problems. It offers Geographical Information System-like
services to the user which makes it suitable for simulating global air traffic as
it can easily maintain exact GPS coordinates of all active airplanes (agents)
and it can serve as a communication infrastructure between them.

2. Problem Specification

l 2.2.2 AgentFly

The AgentFly is highly scalable multi-agent air traffic simulator. It is
capable of worldwide simulation with hundreds of thousands of flights.

The system has two major components.

Firstly, it models aircraft and its pilot. Aircraft’s characteristics are based
on performance models from EUROCONTROL’s Base of Aircraft Data (abbr.
BADA). The pilot communicates with ATC using radio and is responsible
for confirmation and implementation of provided control clearances.

Secondly, ATC agent that represents the human controller is simulated.
The agent is responsible for a given sector and it provides ATM services in it.
For each flight, ATC agents build an internal flight information model. The
internal flight model integrates controller predictions and uncertainness.

Chapter 3
Approach

Several problems connected with VFR flights are already implemented
in the AgentFly framework. The behavior of a controlled flight (behavior
in controlled airspace), standard airport procedures and no-fly zones have
already been solved in AgentFly. Since those problems have already been
solved, this work will not discuss them any further. This thesis will focus
solely on the parts of VFR flights’ behavior that are not implemented in
AgentFly yet and thus are the missing pieces for putting together a working
behavior model of a flight based on Visual Flight Rules. As a result, this
work will further on, without other specifications, always assume that the
VFR flight is taking place in uncontrolled airspace (i.e., class G according to
Visual Flight Rules issued by RLP) without any special restricting conditions.

In the following sections of this chapter, solutions to individual problems
relating to Visual Flight Rules flights that have been specified in [Chapter 2
and have not been solved yet in AgentFly are proposed.

B 3.1 Generation of VFR Flights

The first problem determined in [Chapter 2| was a generation of reasonable
VFR flights in an appropriate format. Such format will be a flight plan for
each aircraft that is already used by IFR flights whose behavior is already
implemented in AgentFly system. This flight plan is similar to the one that is
used in real-life air traffic which makes its use even more adequate. Without
considering administrative data such as flight identification etc., the flight
plan consists of an ordered list of waypoints that the pilot is supposed to
pass during the flight. Waypoints are coordinates on Earth, and they are
expressed in latitude and longitude.

Flights based on Visual Flight Rules are often sightseeing flights. Therefore,
it would make sense for their destinations to be famous landmarks such as
castles, mountain ranges, etc. However, for this work, it is not necessary for
the flights to have such realistic destinations. It is only necessary to generate
series of scenarios that can be used to test the correctness of the proposed
model. Generated flight plans should contain behavior such as flying from
the airport to a particular destination, cruising above it for a while and then
flying to another one or straight back to the airport. A smaller percentage of

9

3. Approach

flights could also be transport flights that would only fly from one airport to
another. Flight plans meeting these criteria can easily be constructed without
the need to obtain additional information regarding real-life landmarks in
the surrounding area of the flight’s departure airport. Thus, no real-life
landmarks will be used as waypoints when generating flights plans for testing
of the proposed model.

Generation of a flight plan itself is rather easy and straightforward. The
core element of a flight plan is an ordered list of waypoints that are to be
visited. With this in mind, the task of generating a flight plan can be reduced
to a simple operation of rotation of a point in 3D space (not translation
because airplanes fly along circular segments - arcs which are given by the
shape of the Earth). The initial waypoint will be the position of the airport
where the flight takes off from (expressed in AgentFly’s Cartesian coordinate
system). This position can then be rotated in an arbitrary direction by an
arbitrary angle to generate the next waypoint of the flight plan. Repetition
of this action may generate any number of waypoints. Position of the arrival
(terminal) airport will be the final waypoint in the flight plan. This way, a
flight plan, sufficient for the usage intended by this thesis, can be generated
with ease and in a little amount of time.

B 3.2 Minimum Flight Altitudes

As was already mentioned above, VFR flights are often sightseeing flights,
and their pilots fly as close to the surface as they can without violating the
minimum flight altitude so that the passengers or even the pilots themselves
see the ground in as much detail as possible. It is necessary to express
elevation of surface the VFR is currently flying over to simulate such behavior.
Furthermore, the surface must distinguish whether there is a congested area
or not in order to comply with Visual Flight Rules stated in [Subsection 2.1.3.

For that, it is appropriate to use real-world data describing terrain elevation
and cities’ areas along with their heights. According to the Visual Flight
Rules, information about open-air assemblies should also be obtained as
these are deemed congested areas too. But as open-air assemblies usually
have a short lifespan and both their locations and durations often differ, this
information would be difficult, sometimes even impossible, to obtain and
work with and thus it will be further ignored.

Areas of cities can be obtained from OpenStreetMap which is an open,
community-developed map of the world providing all its data as open data
under Open Data Commons Open Database License [15].

However, when talking about areas of cities, it is essential to distinguish
the area that belongs to the city based on the administrative partitioning of
the country and the actual built-up area that classifies as a congested area of
the city. The entire administrative area may contain dense forests, vast fields,
water surfaces, etc. but the pilot must increase the altitude of his or her
airplane only when flying over built-up areas. OpenStreetMap offers quite an
extensive description of all administrative areas of cities. But unfortunately,

10

3.2. Minimum Flight Altitudes

it lacks the information describing only built-up areas which are necessary to
obtain for accurate simulation.

Two possible solutions come to mind as to how to solve this.

One of them being download all buildings of given city and join them
together to one polygon covering all built-up areas of the given city. However,
there are obvious problems with this approach. Imagine a city that consists
of more than one built-up area. It could be that the city includes some
neighboring villages or there is, in fact, a secluded area somewhere on the
administrative area of that city (e.g., industrial areas or cottages used for
summer vacationing). It would be possible to apply some clustering to the
data to tackle this particular problem. But even though, other problems
persist. Assume, there is a set of polygons of buildings that represent a single
built-up area. At this point, the goal is to find the smallest polygon that
covers all of the buildings. Such polygon is likely concave, and it cannot be
constructed by merely joining one building to another as a different ordering
of the buildings may produce completely different shapes. There are possible
solutions to this problem as well. For instance, the buildings could be declared
single points (e.g., their geographical centers) and then it would be a task
of finding polygon that would characterize the shape of the set of those
points (buildings). This topic has been explored before, and there are efficient
algorithms that could solve it. Some of them have been studied and compared
in [I6]. This technique seems somewhat problematic but doable. The resulting
shapes might be reasonable approximations of given cities’ built-up areas.

The second approach is to obtain the entire administrative area and then
subtract areas such as woods, water surfaces, etc. This way, obtained areas
may be disjoint polygons describing separated city center, villages and secluded
areas which is desirable. Intersection, union, and the difference between two
polygons is required in many fields of computer graphics or geographic
information systems (abbr. GIS), ergo even here efficient algorithms exist
that could be used to solve the problem. For instance, an efficient algorithm
for polygon operations is proposed in [17].

The second approach seems to be less problematic and more feasible when
compared to the first one. Among other things, it doesn’t require to keep all
buildings of the city (of which there are potentially millions) in memory at the
same time and perform operations on them. Hence, the second approach will
be used to obtain data for this thesis. However, there is no right answer as to
which of the proposed approaches is better. Advantages and disadvantages
recognized only by brief examination of both methods have been discussed.
The topic could be examined more rigorously and explored in much more
detail, but that is not the aim of this work.

Even with polygons of built-up areas, the height of cities and elevation of
terrain still need to be obtained in order to model the reality accurately. This
information may easily be acquired from height maps created using satellite
or aerial imagery.

In the following subsections, proposed technologies and techniques are
further examined, and their use is specified. All of that, in order to obtain

11

3. Approach

data necessary for the resulting model to be able to maintain minimum flight
altitudes according to the Visual Flight Rules.

B 3.2.1 OpenStreetMap

OpenStreetMap (abbr. OSM) is a free, editable map of the world that
provides all of its data under Open Data Commons Open Database License.
OSM is built by volunteers from all over the world [I8]. As open, community-
developed map, it may not be fully reliable, but data obtained from OSM
will be sufficient for this work.

OpenStreetMap offers global geographic data. However, VFR flights are
usually sightseeing flights, and they fly only locally. It is common for VFR
flights to be performed over a single country or two if the pilot is cruising
in the vicinity of a country border. For that reason, it is not necessary to
download areas of cities all over the world and take them all into account
during the testing of the implementation. It is only necessary to download
cities in a single area and perform simulation using them. In this case, as
this work takes into consideration the Visual Flight Rules issued by RLP,
only cities of the Czech Republic will be downloaded and further processed.
Interface allowing just that (download only small portions of the OSM data
from appropriately tagged layers) is Overpass API [19].

It is possible to display data returned by Overpass API with ease, using
Overpass turbo. Overpass turbo is web-based data mining tool for Open-
StreetMap [20]. It accepts a query to Overpass API, sends it to an interpreter,
transforms received data to geoJSON and displays the results on an interac-
tive map. It is a useful tool for debugging complicated queries to OSM and
visualizing received data.

Data in OpenStreetMap. OpenStreetMap models the physical world using
three core elements. Those are nodes, ways, and relations [2I]. Nodes
define positions on the globe in latitude and longitude coordinates. Nodes
are the only elements that possess information about their location. Ways
are sequences of nodes that allow defining linear features and boundaries.
Relations are structures that can hold specific sets of nodes, ways, and even
other relations together and explain their collective significance. All of these
elements may have various tags that specify, what they represent. A tag is a
pair of two items - key and value [22] - and it is used to describe the meaning
of each OSM element. OSM has an extensive list of tags that may be used
for element description along with detailed instructions for tagging newly
created elements.

The set of tags used by OSM is large. Unfortunately, no single tag describes
built-up areas of a city. However, there are tags that distinguish areas such
as forests, fields, meadows, lakes, ponds, etc. This fact further supports
convenience of the proposed method to obtain built-up areas (i.e., download
entire city administrative area and subtract all areas without buildings from
that).

12

3.2. Minimum Flight Altitudes

Overpass APl. Overpass API is read-only application programming interface
that acts as a database over OpenStreetMap and provides parts of the OSM
based on tags of the entities or various GIS-like operations [19].

Overpass API accepts queries written in two querying languages - Overpass
XML and Overpass QL (Overpass Querying Language). Overpass XML
expects the query to be formatted as an XML (eXtensible Markup Lan-
guage) document whereas Overpass QL is a language quite similar to the C
programming language.

Apart from access to OSM data, one can query Overpass API for an
additional data element next to the basic nodes, ways, and relations. This
element is called area (filled polygon). All relations and enclosed ways with
tags suggesting that the elements encapsulate actual area are processed into
area elements. It is important to mention that the original relations or ways
are not deleted. They are still in OSM, and one can query directly for them.
But Overpass API offers additional filtering possibility by keeping track of
these areas.

B 3.2.2 City Polygons

Once downloaded from OpenStreetMap, the data needs to be processed
into final built-up areas.

When obtained from OSM, nodes of the polygons will have geographic
coordinates (latitude and longitude). Stereographic (abbr. SG) projection
will be used to convert these spherical polygons into planar ones. Once in
the plane, the workflow is rather straightforward - take city’s administrative
area polygon and subtract all polygons of nature from it.

However, this operation has a couple of drawbacks on its own. Real-world
polygons are quite detailed, and the repeated subtraction will gradually make
the initial polygon even more complex (e.g., disjoint polygons and holes will
likely be created) which will cause the subtraction to run significantly slower.
So the operation would take an enormous amount of time to finish. Moreover,
the resulting polygon (even if not too complex) would be made up of a high
number of nodes. Such polygon is not suitable to be used by the model as it
would take too much time to determine if current flight plan intersects with
airspace above the polygon. This calculation needs to be very fast as it will
be potentially performed in every position of the flight (i.e., in every step of
the simulation).

A few algorithms will be proposed to obtain simpler polygons that are still
good approximations of given city’s built-up areas.

Firstly, subtracting from large polygon soon causes it to have many holes
and thus to be extremely difficult to work with. It is a good idea to split
the polygon into smaller pieces and then subtract from them. Afterward,
if the resulting polygons share an edge (are touching), they will be joined
back together. If they do not share any edge, then they will be declared two
separate built-up areas.

Secondly, it is not necessary (even not desirable) for the polygons to consist
of hundreds of points. Some ways to reduce the number of polygon vertices

13

3. Approach

are required. Two simple techniques and one advanced will be used in the
thesis.

The simple techniques will be grid rounding of the vertices and small
angles removal. Both are rather straightforward. In grid rounding, a
regular grid will be laid on top of the polygon, and each of its vertices will
be snapped to the closest point on the grid. The process is depicted in the
In small angles removal, joined segments with an angle between
them that is smaller than given threshold, will be replaced by a single line
segment. The process is depicted in the figure

—D

— |/

C—

Figure 3.1: Grid rounding

The advanced technique used to reduce the number of polygon vertices
will be Ramer-Douglas-Peucker algorithm (abbr. RDP) for line sim-
plification that is further explained in paragraph |Ramer-Douglas-Peucker|
Algorithn

Last, but not least, polygon subtraction combined with rounding and
computer’s limited floating number precision could cause for the resulting
polygon to degenerate. It is difficult to handle all possible degenerations, but
one particular case will be addressed here. It is possible, in some cases, that
self-intersecting polygon may be a result of the above-proposed processing.
This degeneration can be resolved by finding the intersections and splitting the
polygon into smaller simple polygons. If the situation of the self-intersecting
polygon will arise, the following approach will be applied to resolve the
situation. Points, where the polygon intersects itself, will be found using
Bentley-Ottmann algorithm (abbr. BO). BO is further explained in
paragraph [Bentley-Ottmann Algorithml

14

3.2. Minimum Flight Altitudes

Figure 3.2: Small angles removal

After all of this is done, a 2D polygon representing the built-up area of a
city (further referred to just as city polygon or city area) will be obtained.
However, VFR pilots need not only to know, if they are flying above a city but
also the height of the city below them so that they can adjust their altitude
according to Visual Flight Rules. A city is quite a complicated structure,
and its height often differs at each position of its area. This problem will be
solved by simplification of reality. For simulation purposes, the height of each
city will be considered uniform across its entire area. This value will be the
average height of the city.

The average height of a city will be obtained from height maps by random
sampling of the city polygon. The area will first be triangulated. Then each
triangle will be randomly sampled using the formula for random uniform
triangle sampling presented in [23]. Average of sampled elevations will be
computed, thus obtaining average height for each triangle making up the
city polygon. Afterward, the weighted sum of the determined heights will be
computed in order to gain the average height of the entire city area. The
weights will be portions of the total area of the city polygon that each triangle
occupies.

With the city height, the 2D polygon of the city’s built-up area can be
raised into a 3D polygon that encapsulates the city area as a whole. Once
such bounding box is created for every city, the task of detecting if an aircraft
is flying above a city reduces to a simple check if the flight route intersects
with given 3D polygon.

The following paragraphs discuss the procedures and techniques suggested
above to be used for obtaining the desired data in greater detail.

15

3. Approach

Stereographic Projection. Stereographic projection is a technique of map-
ping a spherical surface onto a plane [24]. It is a type of azimuthal projection
that is based on casting rays from the projection center onto the target plane.
In SG projection, the sphere is projected onto a tangent plane from a point
that is located on the sphere, and that is antipodal to the contact point
with the tangent plane. This projection has several convenient mathematical
properties which are the reason for the SG projection being used.

This figure has been taken from [24].

Figure 3.3: Stereographic projection principle

Ramer-Douglas-Peucker Algorithm. Ramer-Douglas-Peucker algorithm is
an algorithm for line simplification [25]. It takes a line (polyline) to simplify
and one parameter €. The algorithm finds a point P. P is the farthest point
from the connector of the endpoints of given line. If P’s distance from the
connector is less or equal to the parameter ¢, the line is replaced by the
connector itself. Otherwise, the polyline is split into two - the first going from
the starting point to P and the second going from P to the endpoint. The
procedure is recursively repeated on both new segments. Once execution stops,
the simplified line is constructed. This algorithm can easily be modified to
work on polygons and thus will be used during processing of the downloaded
data.

Bentley-Ottmann Algorithm. Bentley-Ottmann algorithm is an algorithm
for finding intersections of line segments in 2D [26]. It uses a concept known
as a sweep line and is sometimes referred to as a sweep line algorithm.
First, endpoints of all line segments are linearly ordered by their coordinates.
These points are known as events and are kept in an ordered structure known
as event queue. Afterward, an imaginary line passes through the event queue
and processes (sweeps) events one at a time. The sweeping line keeps track
of all line segments that it currently intersects - by adding a line segment

16

3.2. Minimum Flight Altitudes

This figure has been taken from [25].

Figure 3.4: Ramer-Douglas-Peucker algorithm

to a dynamic set when it encounters the first endpoint and by removing the
line segment when it encounters the second endpoint. Only those segments
that are in the sweep line’s set at the same time can intersect each other.
Moreover, the sweep line keeps the list ordered in above-below relation. When
a segment intersects with another segment in sweep line’s list, their positions
are swapped, and the intersection is added to the event queue. When the
intersection is encountered in the event queue, it is checked that there is
not another intersection with above or below segment. If there is, another
intersection is again added to the event queue, and appropriate exchanges
are made. This outputs ordered list of all intersections. Bentley-Ottmann
algorithm can easily be modified to work on self-intersecting polygons (by
merely ignoring "intersections" of endpoints). It can also output the pairs of
segments that form each intersection which is suitable for further polygon
refactoring (i.e., splitting the polygon in found intersections).

17

3. Approach

Sweep Direction ————

Evemt 1 2 3 4 35 6 7 89 10 11 12

This figure has been taken from [26].

Figure 3.5: Bentley-Ottmann algorithm

B 3.2.3 Terrain Elevation

When not over any congested area, every airplane must still be operated at
least, according to Visual Flight Rules issued by RLP, 150 meters above the
terrain. Such information may also be obtained from height maps of the given
terrain. The elevation should be measured with regard to the highest obstacle
in a 600-meter radius of the aircraft. As it would be necessary to compute
average height of a 600-meter circle around the airplane in every moment of
the simulation, this fact will be simplified from here on. The elevation will
only be computed for discrete positions of the currently planned flight route,
but it will be calculated much further than only 600 meters ahead. In every
moment of the flight, the pilot is looking out of the cockpit a sees terrain
features ahead. He or she can recognize hills, mountains or valleys and from
that estimate the relative elevation to their current position. However, they
can better recognize such features over a shorter distance rather than longer.

To account for all of the above, following procedure will estimate appropriate
minimum flight altitude over the terrain. The height map will be sampled
along the current flight route. Sampling will be divided into two parts -
short-range sampling and long-range sampling. Each sampling will produce
the highest altitude of the sampled section of the flight route. If the difference
between plane’s altitude and height produced by short-range sampling will
violate Visual Flight Rules, the aircraft will start climbing. If the difference

18

3.3. Collision Avoidance

between plane’s altitude and height produced by short-range sampling will
not violate Visual Flight Rules but the difference between aircraft’s altitude
and the elevation generated by long-range sampling will, then the airplane
will maintain its current altitude as the pilot can fly lower for now without
violating VFR or placing the aircraft in danger. If and only if both differences
will not violate Visual Flight Rules, the pilot will start descending closer to
the surface.

The last question is, how often should the terrain be sampled. In real-life,
pilots scan their surroundings continuously with their vision, but in discrete
simulation, this is modeled by sending and handling events. Hence, terrain
sampling will also be triggered by a received event. The sampling will be
done once. The initial sampling will give a position P where the aircraft is
in violation with Visual Flight Rules (if no such location is found, then this
position will be the position right after the sampling range). Then, an event
will be planned to arrive a certain amount of time before the airplane reaches
P. When the event is received, the sampling will be done again, new P will
be found, and a new event will be scheduled.

The route sampling is depicted in [Figure 3.6. S and L denote the short
and long sampling range, respectively. AS signifies the sampling step at the
short-range sampling and AL indicates the sampling step at the long-range
sampling. hg are hj are the highest elevations obtained from short-range and
long-range sampling, respectively.

T o T T e T e

!\,/ : \fﬂfv&\

S L
Figure 3.6: Flight route sampling

. 3.3 Collision Avoidance

Another problem that needs to be solved to create a model of flight based
on VFR is the detection of a conflicts with another aircraft and execution of
an appropriate evasive maneuver in accordance with Visual Flight Rules.

The majority of conflicts in real-world situations is solved using so-called
see-and-avoid principle. The name is self-explanatory - pilots are to scan
their surroundings for incoming traffic and when they spot a conflict with
another aircraft, they are to perform evasive maneuver according to VFR.

19

3. Approach

However, this principle has its weaknesses [3]. Human pilots are generally not
paying as much attention to their surroundings as they should. Furthermore,
even with pilot’s full attention, many other factors have negative effects on
human vision, such as higher altitude or the direction of sunlight, that make
see-and-avoid principle that much more unreliable. For this work and the
simulation, a simplification of reality will be adopted. The pilot will be given
a predefined, static field of view (abbr. FOV) a he or she will be able to see
everything in it at all times. The continually changing range of pilot’s vision
based on the shape of the terrain ahead will be ignored, as well as pilots
turning their heads and not being able to see all their surroundings at the
same time.

If another airplane enters the FOV, its GPS position will be passed to the
pilot to process. The pilot will not have access to any additional information
about the conflict flight such as its planned flight route. The conflict will
have to be detected only from the changes of the GPS position over time.
Each pilot will have to detect the conflict on their own. There will be no
central evaluator just like there is not one in real life.

B 3.3.1 Conflict Types

Visual Flight Rules specify three types of conflicts. The type of a single
conflict will be determined based on sectors defined in [Figure 2.2 The rules
also state several exceptions for aerial vehicles such as airships, gliders, etc.
These exceptions will be ignored. The model will assume all involved entities
are a power-driven, heavier-than-air aircraft.

Head-on and converging conflicts are both straightforward, and there are
not any significant special cases to consider. However, three situations classify
as overtaking. The first one is that a faster aircraft is overtaking a slower
one. That is a traditional overtaking conflict. The second one is that a slower
aircraft is overtaking a faster one. If this situation occurs, there is no actual
conflict as the overtaking itself never takes place. The third one is that both
airplanes have approximately the same speed. In this case, the model will
treat as the faster aircraft the one, that would reach the collision position
(the "intersection" of airplanes’ trajectories) first.

B 3.3.2 Conflict Resolution

Fach conflict type will be resolved differently, but all in accordance with
rules stated in [Subsection 2.1.4. Graphical demonstration of resolutions for
each conflict type can be seen in [Figure 3.7.

The goal of each resolution is to maintain a safe distance from the conflict
by altering the flight route. The flight route must be altered in accordance
with Visual Flight Rules. It is also a natural requirement that the flight route
is changed as little as possible.

Additional waypoints will be generated to change current flight route in
the simulation, They will be created with regard to the current positions of
both the airplane and the detected conflict.

20

3.3. Collision Avoidance

(a) : Head-on approaching resolution

(c) : Overtaking resolution

Figure 3.7: Resolution of conflicts

Positions will be rotated by a certain (necessary for safe evasion) angle in
appropriate directions. The directions will be derived from the directions
of the airplane and the conflict. [Figure 3.8 approximately depicts intended
transformations for each conflict type.

21

3. Approach

rotate

(a) : Head-on approaching resolution

rotate
P

rotate

(c) : Overtaking resolution

Figure 3.8: Resolution of conflicts IT

22

Chapter 4

Implementation

The model proposed by this thesis is implemented within AgentFly frame-
work that is written in Java programming language. Hence, all source codes
related to this work are also written in Java programming language.

The implementation only augments AgentFly framework, and thus, it
honors the module structure and class hierarchy introduced by AgentFly.
Written modules extend classes or implement interfaces that are used across
the entire AgentFly to ensure readability, consistency and proper communica-
tion between individual modules. All source codes were implemented within
agentfly.atm.vfr.scenario and atc.utility projects.

The main class that implements the proposed model is FomPilotVfr. It
works with data supplied by VfrFlightsGenerationScenarioPlayer and CitiesS-
cenarioPlayer.

EomPilotVfr is an AgentFly pilot module. In AgentFly, each entity (air-
plane) has its predefined behavior (based on filed flight plan) that can be
altered at simulation runtime by supplying an arbitrary number of pilot
modules. All pilot modules are part of a class hierarchy with base abstract
class FventOrganizerModule.

As FomPilotVfr is also a pilot module that is intended to alter the prede-
termined behavior of VFR flights during the flight, it is part of the EventOr-
ganizerModule hierarchy. The class consists of two major parts. The first one
is responsible for maintaining minimum flight altitude over the entire course
of the flight. The second one is aimed at detecting and resolving conflicts. If
the two behaviors find themselves conflicting with each other, the collision
avoidance takes precedence.

VfrFlightsGenerationScenarioPlayer and CitiesScenarioPlayer are both
implementations of ScenarioPlayer interface that is a part of the AgentFly
framework. Each scenario that is to be simulated by AgentFly is initialized
by one or more implementations of the ScenarioPlayer interface. Every
provided ScenarioPlayer is executed before the beginning of the simulation,
and together, they prepare the simulation to run (e.g., they create all necessary
agents or load data that will be required at simulation runtime).

VfrFlightsGenerationScenarioPlayer is responsible for generating all VFR
flights that are to make an appearance during the simulation. CitiesScenario-
Player creates 3D polygons encapsulating city built-up areas. It also prepares

23

4. Implementation

them for optimized querying whether a given flight route intersects with any
of them.

All of these modules along with several others that solve partial problems
are described in more detail further on in this chapter.

B 4.1 Generation of VFR Flights

The generation of VFR flights is implemented in VfrFlightsGenerationSce-
narioPlayer module. By default, this class generates (pseudo-)random VFR
flights. The randomization is partially parametrized and can be changed by
the user.

The generation process is started by the selection of a departure airport.
The position of the airport is expressed as a point on Earth (that is approxi-
mated as a regular sphere in AgentFly system) and rotated in a randomly
selected direction. The newly obtained position (so-called waypoint) is con-
sidered to be the first destination of the flight. The new waypoint is then
rotated again to generate another one. That is repeated a random number of
times (with a predefined upper bound of the total number of destinations per
flight). Finally, another airport is selected as the terminal point of the flight
route (i.e., the arrival airport).

VirFlightsGenerationScenarioPlayer distinguishes two types of VFR flights.
The types are a sightseeing flight and a transport flight. For sightseeing
flights, in addition to generating waypoints, the module also generates a
cruising trajectory above the destination (e.g., a circle). Type of a flight is
again selected randomly.

Apart from random flight generation, the class is also capable of generating
VFR flights based on information passed in a data file. That allows users
to supply their scenarios to the simulation in order to test the model using
them.

Generated data are exported in instances of classes already implemented
within AgentFly that are designed to hold information about the desired
simulation scenario.

B 4.2 Minimum Flight Altitudes

The implementation of the behavior of maintaining minimum flight altitude
consists of three separate tasks. The first one is to obtain polygons delimiting
congested areas (only built-up areas for the purposes of this work). Next,
terrain height maps need to be processed in order to be able to query for
terrain elevation at any position. Finally, all of that data needs to be taken
into consideration at simulation runtime.

B 4.2.1 City Data Creation

As was proposed in [Section 3.2, the map data is downloaded from Open-
StreetMap using Overpass API. A utility for the communication with Overpass

24

4.2. Minimum Flight Altitudes

APT online interpreter was created within AgentFly project. [27] was used
as a partial inspiration for the implementation, but it wasn’t used directly
nor edited for the use in this thesis and the AgentFly framework as a whole.
As the utility itself has nothing to do with air traffic, it was implemented
in isolation from the core modules of the AgentFly, in atc.utility project,
in openstreetmap package. The tool located in openstreetmap.overpasser
package encapsulates several functionalities. It allows a fast and convenient
building of queries in Overpass QL language, sending the created queries to
Overpass API and parsing received responses into new Java objects defined
in openstreetmap.entities package.

The main class that communicates with Overpass API is class Overpasser.
Overpasser is a singleton object implemented as one-instance Java enumerate
type. It holds the URL of the online Overpass API interpreter. It expects a
query as a simple String that is sent to the online interpreter as a Hypertext
Transfer Protocol (abbr. HTTP) request. Response from the Overpass API
is returned as a stream with incoming data.

The obtained data need to be further processed. This task has also been
implemented in atc.utility project, in openstreetmap.processing package. The
main processing class is Processor.

Processor is again a singleton object implemented using one-instance Java
enumerate type. The class has many fields (parameters) that can be adjusted
to match the current need of thr user. The parameters include options such
as what rounding (if any) should be applied to the polygons during processing
or what (if any) SG projection should be used. The module also offers a
parameter that determines if any debugging outputs will be produced during
processing. Except for console output, images of the resulting areas can also
be created using specialized Visualizer module. Processor awaits queries
for cities that are to be downloaded and processed into polygons of their
built-up areas. The class downloads the entire administrative area of each
city. Afterward, it checks, if the city is made up of smaller administrative
areas (such as villages without a town hall or separate city districts). If
such subareas exist, they are downloaded one at a time. Along with them,
areas of forests, water surfaces, etc. that intersect them are also fetched,
and they are subtracted (polygon operation of difference) from the obtained
administrative subareas. Once all the subtraction is done, Processor checks
if some of the resulting polygons share a line segment. If that is the case,
the polygons are joined together as one polygon. If the downloaded city
has no such subareas, the subtraction is applied to the original city polygon.
All resulting polygons are then checked by BO for intersecting themselves
before they are returned. The implementation from [28] of BO was edited
and incorporated into AgentFly to use in this situation. If it is detected that
the polygon is self-intersecting, it is split into simpler polygons. However,
the current implementation of the splitting is not ideal, and it would not
handle some more complicated situations properly. Nevertheless, its results
are more than sufficient, and if some inappropriate polygons are created, they
are discarded. Once the computation is finished, all nodes in the original

25

4. Implementation

administrative area tagged as a place (every settlement should have such a
node that on a map is used to display the settlement’s name) are downloaded
and laid onto the resulting polygons. Each polygon that contains one of the
place nodes is declared a built-up area with the name of the appropriate
node.

Each built-up area is returned as an instance of the class City. City instances
hold information such as city’s name, polygon delimiting its built-up area
and its average height.

B 4.2.2 City Data Integration

Exported instances of the class City are passed to ClitiesScenarioPlayer
when the simulation is started. This module converts City instances into
instances of GpsFpaSector class that is already a part of AgentFly. It is used
for airspace partitioning, and hence, it is optimized for querying whether or
not a flight route intersects with its instance. All created sectors (cities) are
encapsulated in an instance of GpsFpaSectors class.

GpsFpaSectors organizes all its sectors into binary search tree (abbr. BST).
The created BST is a hierarchy of bounding objects (spheres), and it is
constructed from its leaves to the root. First, all sectors are placed to the
leaves of the BST. They are all their own smallest bounding object. Then
repeatedly, two bounding objects are joined together (the two nodes of the
BST are connected to a common parent node) and encapsulated by a new
bounding sphere that bounds them both if and only if the created bounding
sphere is the smallest one that can be created. This hierarchy can then be
used for fast and easy detection if a flight route of any aircraft intersects with
any city. And if so, that route is in violation of the Visual Flight Rules.

For the simulation purposes, it is suitable to visualize the obtained cities.
To this end, module CitiesLayerProvider was created. LayerProvider is an
abstract class that allows adding a new layer to the graphical user interface
of the AgentFly system. As a part of LayerProvider hierarchy, the CitiesLay-
erProvider module displays all 3D polygons encapsulating the built-up areas
of each city.

Visualization of the city built-up areas using AgentFly visualization tool
with incorporated CitiesLayerProvider is shown in [Figure 4.1.

B 4.2.3 Terrain Sampling

The terrain sampling is implemented using AgentFly module ElevationMap.
This class loads height maps of the Earth and can be queried for a terrain
elevation at any Earth coordinates specified by latitude and longitude.

B 4.2.4 Altitude Changes

The behavior of appropriately altering altitude based on the observation of
the terrain elevation and congested areas is a part of EomPilotVfr module.

26

4.2. Minimum Flight Altitudes

(a) : Cities of the entire Czech Republic

(b) : Detail of Prague and surrounding settlements

Figure 4.1: Cities of the Czech Republic

Firstly, the terrain is sampled in accordance with the strategy proposed in
\Subsection 3.2.3. All parameters of the sampling introduced in may
be specified by the user in the configuration file. However, if not specified,

27

4. Implementation

values default to the following:

S =4 km,
L =206 km,
AS = 20 m,
AL = 50 m.

Secondly, the hierarchy of the bounding objects constructed in CitiesSce-
narioPlayer is traversed to see if the current flight route intersects with a
city either within the short sampling distance or the long sampling distance.
Finally, the results are combined to obtain the minimum flight altitude for
the short-range sampling (hg) and the long-range sampling (hy) that are in
accordance with Visual Flight Rules.

At this point, there are several possible outcomes. Let A denote the current
altitude of the airplane. Let F denote the event proposed in [Subsection 3.2.3
that is called CHECK _ALTITUDE CONFLICT.

a) hg is higher than A. Then the airplane immediately increases its altitude
to hg, and the FomPilotVfr module plans E to arrive moments before
reaching the position where hg occurred.

b) hg is smaller than A, but Ay is higher than A. Then the airplane
maintains its current altitude A and the FomPilotVfr module plans F
to arrive moments before reaching the position where hj, occurred.

c) Both hg and hjy are smaller than A. Then the airplane decreases its
altitude to the maximum of hg and hy and the FomPilotVfr module
plans F to arrive moments before reaching the last position of long-range
sampling.

. 4.3 Collision Avoidance

The detection and resolution of conflicts is the essential part of the Eom-
PilotVfr module.

The pilot has a static FOV defined by range, horizontal angle, and vertical
angle. FOV is static but has wider horizontal angle than normal human
vision to account for real-life pilots turning their heads. FOV is visualized in
AgentFly visualization tool using SensorGpsRangeLayerProvider class.

The parameters of FOV may be passed by the user. If not, they default to:

range = 10 km,
vert__angle = 90°,

horiz__angle = 180°.

28

4.3. Collision Avoidance

The goal of a possible evasion maneuver is to maintain given safe separation
from the aircraft and to be in accordance with Visual Flight Rules. The safe
separation is in current implementation set to 2 kilometers.

The visualization of both the FOV (orange circular sector) and the minimum
safe separation (green circle) in AgentFly can be seen in The
white corridor displays the safe separation along the whole planned flight
route.

Figure 4.2: FOV visualization

B 4.3.1 Conflict Detection

Whenever an entity enters pilot’s FOV, the pilot module obtains the entity’s
GPS coordinates. The coordinates are available to the pilot at each simulation
step that the entity spends inside pilot’s FOV.

For each entity that enters pilot’s FOV an instance of a class derived from
ConflictEvaluator module is instantiated. ConflictEvaluator is an abstract
class that encapsulates evaluation of the possible conflict based on the changes
in its GPS position. The class expects to be passed the new GPS coordinates
at each simulation step via method update. The pilot module only works
with a reference to ConflictEvaluator. Specific instances are created based
on supplied parameters. That allows for a better generality of the model
as it is not limited to a single conflict evaluation behavior. If a user wishes
to test different evaluation behavior, they merely have to supply their class
derived from ConflictEvaluator in parameters to the pilot module. All created
instances are kept in a HashMap. ConflictEvaluator instances are referenced
by their unique id for quick access when updating them.

29

4. Implementation

For this thesis, FxactGpsBasedConflictFEvaluator was implemented to serve
as the evaluator. This module tracks the changes in the GPS position and from
them approximates conflict’s trajectory and speed. Based on the trajectories
and speeds of both the conflict and the owner, the approximate minimum
separation that will be achieved if both airplanes maintain current course is
computed. If the separation is smaller than predefined minimum safe distance,
the detected aircraft is treated as a conflict. Based on conflict’s position, the
type of conflict is determined (see Figure 2.2/ and [Subsection 3.3.1) so that
the evasion maneuver is not in violation of Visual Flight Rules.

B 4.3.2 Conflict Resolution

If some of the detected entities are evaluated as a conflict, they are moved
to a queue of conflicts waiting to be solved. Based on the type of the conflict, a
different evasive maneuver is performed. However, generation of all maneuvers
is implemented similarly. Additional waypoints are generated and added to
the current flight plan to resolve the conflict. New waypoints are derived
from the positions of the aircraft and the conflict. The positions are rotated
in an appropriate direction derived from the orientations of both the aircraft
and the conflict. The rotations are performed in a way so that the new flight
plan is in accordance with defined evasive maneuvers in Visual Flight Rules
(see Figure 3.8]).

When the new flight plan is generated and registered, an event is scheduled
to arrive a few moments later. The event signals that the pilot module should
check if there were no complications and the evasion was successful. If not,
then new maneuver is generated.

The conflicts are kept in the HashMap even after their resolution and even
after they have left the pilot’s FOV. They are only deleted when the update
method has not been called on them for a while. That, to some degree,
models human pilots who have some awareness of airplanes they detected
during the flight. And only after a certain amount of time after the airplanes
left their FOV, they "delete" those airplanes from their mind.

30

Chapter 5

Experiments

In this chapter, results of various experiments and tests conducted on
implemented functionalities are presented. The experiments aimed to test
the correctness of the implemented model.

It is an important note that scenarios presented further on in this chapter are
purely fictional. They were only used to test the correctness of implemented
model’s behavior. The scenarios may violate specific air traffic regulations
for a better demonstration of the model’s properties.

For the test cases where hardware capabilities apply, the tests were per-
formed on a computer with GIGABYTE Z370 HD3P-CF motherboard, In-
tel(R) Core(TM) i7-8700K CPU @ 3.70GHz (6-core CPU), 64GB DDR/-2400
RAM and M.2 NVMe SSD.

B 51 City Polygons

The implemented model should be able to recognize that it is flying above
a city (built-up area). This section discusses if the built-up areas obtained
using proposed techniques have met the expectations set by this work and if
they are sufficient for use by the implemented model.

In |Subsection 3.2.2, it was suggested that precisely (i.e., without any
rounding or approximations applied) computed built-up areas would be too
difficult to calculate with during the flight. The section also proposed several
techniques to approximate the built-up areas to obtain city representations
that are more suitable for further computations.

In [Table 5.1|, approximated and accurate representations of several cities
are compared. Each row in the table shows the number of vertices making up
the original city polygon and resulting city representations for both accurate
and approximate computations. The cities are described by the number
of individual built-up areas, the total number of vertices making up those
built-up areas and the time required to finish the computation of the given
city representation.

The results signify that approximated representations are much reduced in
comparison to the accurate results. The representations obtained without any
approximations are in many cases even more complex than the original city
polygons, and they also took relatively long to compute. The data suggest

31

5. Experiments

that the accurate city representations are not suitable for the model to work
with.

Clity Original Accurate result Approzimate result
Vertices || Areas | Vertices ‘ Time [s] || Areas | Vertices ‘ Time [s]

Praha 3590 1 12707 27047 1 103 707
Brno 3957 1 9183 1962 3 70 226
Ostrava 2604 1 8369 3791 2 74 154
Plzen 2012 1 5078 1246 5 60 252
Liberec 2362 1 6382 528 2 40 84
Olomouc 2502 1 5377 247 1 67 78
Ust{ nad Labem 3504 1 5480 447 4 119 66
Hradec Krélové 1507 1 4300 297 2 94 59
Zlin 2441 3 8184 1990 6 111 56
Most 1621 1 3342 72 1 83 30
Karlovy Vary 1476 1 3454 196 1 52 36
Jihlava 2373 1 6425 1136 6 82 52
Téabor 1673 1 4574 497 1 42 71
Osek 1643 2 1419 14 1 13 10

Table 5.1: City representations

Further examination of the differences between accurately computed and
approximated built-up areas is depicted in |Figure 5.1, It shows the outputted
built-up areas of the city of Karlovy Vary (both accurate and approximate).
The built-up areas are displayed with red color. The original outline of the city
is also shown (black contour) to better demonstrate performed calculations.
It can be seen that applied rounding and simplifications crop the edges of the
built-up area (somewhere even quite drastically) but the general area remains
the same and center of the city (the densest area) is not omitted from the
result.

(a) : Simplified built-up areas (b) : Exact built-up areas

Figure 5.1: Built-up areas of Karlovy Vary

To better judge the correctness of the resulting simplified built-up area, in
Figure 5.2 the approximation of the built-up area of Karlovy Vary is laid
over a screenshot from OpenStreetMap of the entire administrative area of
the city. It can be seen that it is a relatively good result. The majority of
built-up areas of the city are covered. Compared to the accurate result, the

32

5.1. City Polygons

approximated one excludes the area of the airport. That is not an issue, as
airports’ airspaces are special airspaces with additional restrictions and these

airspaces are already (as was said in |Chapter 4)) implemented in AgentFly
system.

T Sadow Lesov PooIT

b | = 13 - a
R Otovice -
Jirm o

Jenisay

v Hije
The map capture was taken from [29].

Figure 5.2: Built-up area of Karlovy Vary

Another comparison is provided for the city of Osek in [Figure 5.3, Osek
is a small town with approximately 5000 inhabitants in Ustecky Region of
the Czech Republic. Here, in [5.3b, can be observed that accurate calculation
preserved two separate built-up areas. It can be seen from a map that the
two built-up areas are in fact the city of Osek and a village Dlouhd Louka
(see that belongs to the administrative area of Osek. The accurate
results contain very long and narrow "lines" - roads that were preserved in
polygon subtraction. This undesired property is removed in the rounded
results. The approximation also deletes the village Dlouhd Louka altogether.
Though this will cause the model to violate Visual Flight Rules when flying
over Dlouha Louka, this also, to a certain degree, simulates the behavior of
real pilots. A pilot may easily overlook small villages hidden in forests or
mountains. Moreover, for the use of this thesis, it is not necessary for the
data regarding built-up city areas to perfectly model the real world.

Again, the approximated built-up area is laid over the real map to see how
good the result is. This is shown in Again, it is a fairly good
approximation.

So far, the results seem to be good enough, but sometimes, they crop a

33

5.Experiments 5 B EEESEEESEES S S EESSEE S S EEESEE S

(a) : Simplified built-up areas (b) : Exact built-up areas

Figure 5.3: Built-up areas of Osek

This capture was taken from [29].
Figure 5.4: Map of Osek and Dlouhé Louka

larger portion of built-up area’s edges than it would seem to be necessary. The
results for other three cities are shown in for further comparison.
These show that the majority of cropped areas are locations with little building
density and thus, the applied rounding and simplifications are well-aimed.
It is true that the polygon rounding and reducing omits some parts of
built-up areas. The edges of built-up areas are sometimes cropped, and
some smaller built-up areas are removed altogether. However, the resulting
polygons seem to be, in general, a good approximation of real-world built-up

34

5.1. City Polygons

o
po
Hrol
i

. {7
KFianow

o

| Mezibofi *

Sumna s
na N /)
Litvingv ;
Chudefin L s X
;- e Y

o
Louka u Lindnova

.

om
e

P/

=

\

Fl

Marlanske
Radéice

S

1am AL

The map capture was taken from [29].

Figure 5.5: Built-up area of Osek

e

e

by b Dyscee

ol

o

(a) : Built-up area of Prague

(b) : Built-up area of Olomouc

+

Lom vrsary

suupiice

Ml Brezne

(c) : Built-up area of Most
Captures were taken from [29].

Figure 5.6: Built-up areas of other cities

areas of the cities of the Czech Republic. Moreover, produced polygons
are also a good trade-off between geographic accuracy and computationally-

35

5. Experiments

friendly shapes. Thus, the polygons are more than sufficient to be used for
further calculations by the implemented model.

B 52 Ailtitude Changes

Here, the goal of the implemented model is to fly as low as possible without
violating the Visual Flight Rules (i.e., fly as low as possible but above the
minimum flight altitude). In the scenarios designed to test this property,
the altitude of the aircraft was observed at its every position for the entire
duration of the simulation. Simultaneously, minimum flight altitudes were
computed for all aircrafts’ positions as well. The subject of the tests in this
section is the comparison of these values.

In the following tests, default sampling settings mentioned in
tion 4.2.4! were used.

B 5.2.1 Ailtitude Test 1

In this scenario, scheduled flight originates in Prague and heads to water
dam Lipno. From Lipno, it continues along the Sumava mountain range and
Sumava National Park until it turns back to Prague. The scheduled route is

displayed in the

Figure 5.7: Flight route of Altitude test 1

The flight originates in lowlands and gradually moves towards mountains.
It flies for a while in parallel with the mountain range before returning to
the lowland. The graph comparing aircraft’s altitude and minimum flight
altitudes for the entire duration of the testing scenario is shown in

It can be seen that flight violates the minimum safe altitude only rarely
and never for a long time. The occasional violation is caused by the discrete
sampling of the height maps. Discrete sampling with a reasonable sampling
step will never detect every terrain feature. However, this is not a problem as

36

5.2. Altitude Changes

1400 T 1 T

— Aircraft altitude
1200 - |
1000 wu][\ ﬂ)m}w
W
f I

4 — Minimum flight altitude
| b
800 - J“J U{J

600 - Joh f
Al

;! k}
400 - ‘

200 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time [s]

Altitude [m]

Figure 5.8: Results of Altitude test 1

this conveniently models the behavior of a real-life VFR pilot. The pilot often
only guesses the appropriate altitude, at which he or she should currently be.
And since they only estimate the actual minimum flight altitude, a few short
moments below it are not considered a violation of the Visual Flight Rules.
Only gross violations of the minimum flight altitude can be observed at the
beginning and the end of the curves. However, that is not a violation of
Visual Flight Rules as those describe the take-off and landing when a different
set of rules applies.

The graph also shows that sometimes, the situation is misinterpreted and
the flight increases its altitude even higher than necessary. That is again
caused by the discrete sampling of the terrain elevation, but it is not an issue
for the model as it does not violate Visual Flight Rules.

Another property that can be seen in the graph is that the flight does not
merely copy the shape of the surface. Sometimes, it remains at a certain
altitude for a longer period even though it could descend a little. That is, in
fact, a desirable feature.

B 5.2.2 Altitude Test 2

In this scenario, scheduled flight originates in Karlovy Vary and heads
to Prague. From there, it continues towards Krkonose and its highest peak
Snézka. From Snézka, the flight heads back to Karlovy Vary. The scheduled
route is visualized in [Figure 5.9.

The flight first descends to a lowland before climbing to the highest peak
of the Czech Republic, from where it returns across the lowland back to
where it started. The graph comparing aircraft’s altitude and minimum flight
altitudes for the entire duration of this scenario is shown in [Figure 5.10.

Similar results as in [Subsection 5.2.1/ can be observed in this case. Not even
the steep climb along the Krkonose mountain range caused the implemented
model to violate the minimum flight altitude delimited by the Visual Flight
Rules.

37

5. Experiments

Figure 5.9: Flight route of Altitude test 2

1800

T T
— Aircraft altitude
1600 |- I —— Minimum flight altitude|

1400 ‘

1200 - k -

@

o

S
T

Altitude [m]
(2] 3
8 8
T
_—
==
1
Y~
L L L

wt YL |]

1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time [s]

Figure 5.10: Results of Altitude test 2

. 5.3 Collision Avoidance

The essential part of the model is the ability to detect a conflict with
an approaching aircraft and avoid the collision by an evasive maneuver in
accordance with Visual Flight Rules.

There are different types of conflicts with other traffic. The expected
classification of a conflict is depicted in

In the following tests, default sampling settings mentioned in
were used.

B 5.3.1 Single Conflict

In order to test as many conflict situations as possible, the conflicts were
sent towards the aircraft from all positions on a circle around the aircraft
with 15 degrees step.

38

5.3. Collision Avoidance

There was always only one conflict at a time (i.e., two airplanes). Each
airplane was only given the conflict’s GPS position at each simulation step if
the conflict was in the aircraft’s field of view. The flights did not have access
to any additional information. There was also no communication between
the two airplanes.

Table 5.2 shows the result of the experiment. Data is taken from the
point of view of the airplane in the center of the circle. For each angle on
the circle around the aircraft, real type of the conflict is stated, the type as
which the conflict was evaluated and the minimum distance (separation) that
the airplanes maintained from each other. Some evaluations for overtaking
conflicts are missing. In those situations, the airplane did not register the
conflict before the conflicting aircraft performed an evasive maneuver on its
own (i.e., in those situations pilot did not know at all about the possible
danger).

’ Angle] ‘ Type ‘ Evaluation ‘ Separation [m] ‘
0 head-on head-on 8787
15 head-on head-on 9049
30 head-on/left left 4457
45 left left 4720
60 left left 4989
75 left left 6412
90 left left 6485
105 left left 5442
120 overtaking overtaking 4278
135 overtaking overtaking 4242
150 overtaking - 3294
165 overtaking - 2541
180 overtaking - 6637
195 overtaking - 3453
210 overtaking - 3656
225 overtaking - 5257
240 overtaking - 4152
255 right right 5646
270 right right 5630
285 right right 5527
300 right right 4745
315 right right 3701
330 head-on/right right 2783
345 head-on head-on 9227

o left — Converging conflict. The conflict is incoming from the left side.

e right — Converging conflict. The conflict is incoming from the right side.

Table 5.2: Conflict resolution

39

5. Experiments

From the table can be seen that all situations were classified correctly and
the minimum safe separation set to 2 kilometers was never violated. For the
majority of overtaking conflicts, the pilot did not know at all that there was
a conflict. That is a natural situation - usually, the airplane that is being
overtaken does not know about the overtaking, and it is the responsibility of
the other pilot to resolve such conflict.

The table also shows that detection of overtaking conflicts was asymmetrical.
That is connected with the different kinds of evasive maneuvers that are
performed in each situation.

Resolutions of some of the conflicts are depicted in [Figure 5.11 and [Fig]
For better demonstration, see enclosed videos described in

(a) : Before conflict resolution

(b) : After conflict resolution

Figure 5.11: Head-on conflict resolution

B 5.3.2 Multiple Conflicts

The collision avoidance of the implemented model was proposed and imple-
mented for a resolution of one conflict at a time. However, a simple scenario
with two simultaneous conflicts was also tested. The repeated application of
the implemented techniques resolved all conflicts and none of the airplanes
violated the minimum safe separation.

See and enclosed video described in for more detail.

40

5.3. Collision Avoidance

(a) : Before conflict resolution (b) : After conflict resolution

Figure 5.12: Converge conflict resolution

(b) : After conflict resolution

Figure 5.13: Multiple conflicts resolution

41

5. Experiments

B 5.3.3 Larger Scenario

30 VFR flights were generated for the final test as a small demonstration
of fictional VFR traffic over the Czech Republic. All of flights originated and
terminated at airports of the Czech Republic. The same altitude was filed for
the flights so that the collision avoidance behavior would be engaged more
often.

Several conflict situations occurred over the course of the scenario. All
of the conflicts were detected and resolved in accordance with Visual Flight
Rules. No two aircraft violated the minimum safe separation.

For an overview of the scenario, see the enclosed video described in [Sec{
tion B.3l

42

Chapter 0

Conclusion

The aim of this thesis is to propose and implement a behavior model of
a flight based on Visual Flight Rules. The problem of flying under VFR is
studied and inspected.

Problems connected with VFR identified during the studies are presented in
the first part of this thesis. Further on, each problem is separately discussed
and explored. The discussion also contains proposing a possible solution to
the issues. Suggested solutions are implemented in AgentFly system and
experimentally validated.

For the VFR flights to maintain minimum flight altitude, a suitable map rep-
resentation is required. The map is constructed by the combination of height
maps of the Earth that are discretely sampled and polygons delimiting city
built-up areas that are obtained by processing of data from OpenStreetMap.
The downloaded data must be adjusted for the purposes of VFR flights. All
adjustments are made in preprocessing making the data ready and optimized
for use by the VFR flights after take-off.

The VFR flight also has to correctly detect conflicts and resolve them in
accordance with Visual Flight Rules. The detection of conflicts is based on
knowing the exact GPS position of the conflict in pilot’s field of view. From
changes in that position, conflict’s trajectory and minimum likely separation
between the airplanes, should they stay on their current course, are calculated.
If the computed minimum separation violates predefined safe separation, the
incoming aircraft is treated as a conflict. The type of conflict as defined by
Visual Flight Rules is derived from the approximated trajectory. Afterward,
the conflict is resolved by an evasive maneuver in accordance with Visual
Flight Rules.

The implementation is tested on several distinct scenarios. All results are
satisfactory (see Chapter 5 and |Appendix B)). Therefore, the goals of this
thesis are reached.

. 6.1 Future Work

Overall results of the experiments conducted on the implemented model
are favorable. However, there are still several ways in which the results of
this work may be improved.

43

6. Conclusion

VFR flights’ destinations are currently generated entirely at random. The
randomly chosen values are bounded to produce somewhat reasonable flights,
but the relation between the generated positions and real-life landmarks is
currently ignored. The generation of VFR flights could be improved by using
real-life landmarks such as castles, mountains, etc. The real-world data could
be possibly obtained from OpenStreetMap using the API implemented for
the purposes of this work.

The built-up areas of real-world cities are another issue. The data obtained
from OSM must be edited and re-purposed on quite a large scale before they
can be used by the model. In [Section 3.2| alternative approach to processing
the OSM data is proposed, but it is not utilized. The approach could be
further explored to compare its complexity and results with the currently
used data. Other ways of obtaining the city built-up areas besides OSM could
also be inspected in the future.

A considerable simplification of reality was introduced in detecting incoming
traffic (conflicts). A better detection system could be proposed. The pilots
do not statically stare forward but rather turn their heads which causes them
not to see all their surroundings at once. They can be blinded by incoming
sunlight, or they may not see everything ahead due to terrain features. The
detection system accounting for all of the above could be created to improve
the accuracy of the results of this thesis.

44

Bibliography

[1] Pfemysl Volf. Multiagent Simulation of Air Space and Air Traffic Man-
agement. PhD thesis, Czech Technical University in Prague, January
2013.

[2] Air Navigation Services of the Czech Republic. Air Traffic Services.
Online: http://www.rlp.cz/en/services/our/Pages/default.aspx!
Last accessed: 21.5.2018.

[3] Kurt Colvin, Rahul Dodhia, and R Key Dismukes. Is Pilots’ Visual
Scanning Adequate to Avoid Mid-Air Collisions? In Proceedings of the
13th international symposium on aviation psychology, pages 104-109.
Citeseer, 2005.

[4] Federal Aviation Administration. Instrument Flying Handbook, 2012.
Online: https://www.faa.gov/regulations_policies/handbooks_|
manuals/aviation/media/FAA-H-8083-15B.pdf|

[5] Amazon. Amazon Prime Air. Online: https://www.amazon|
[com/Amazon-Prime-Air/b7ie=UTF8&node=8037720011. Last accessed:
15.4.2018.

[6] Amazon Unveils Futuristic Plan: Delivery by Drone. CBS
News, December 2013. Online: https://www.cbsnews.com/news/
lamazon-unveils-futuristic-plan-delivery-by-drone/. Last ac-

cessed: 15.4.2018.

[7] Sarah Deener. DRONING ON. AOPA, April 2015. Online:
laopa.org/news-and-media/all-news/2015/april/pilot/f_drones!|

Last accessed: 15.4.2018.

[8] Air Navigation Services of the Czech Republic. Visual flight rules.
Online: |https://lis.rlp.cz/ais_data/aip/data/valid/el-2.pdf]
February 2016. Last accessed: 30.4.2018.

[9] Air Navigation Services of the Czech Republic. VFR Manual, Visual
Flight Rules. Online: https://lis.rlp.cz/vfrmanual/actual/enr_|

2_en.html, April 2018. Last accessed: 1.5.2018.

45

http://www.rlp.cz/en/services/our/Pages/default.aspx
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-15B.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-15B.pdf
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
https://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
https://www.aopa.org/news-and-media/all-news/2015/april/pilot/f_drones
https://www.aopa.org/news-and-media/all-news/2015/april/pilot/f_drones
https://lis.rlp.cz/ais_data/aip/data/valid/e1-2.pdf
https://lis.rlp.cz/vfrmanual/actual/enr_2_en.html
https://lis.rlp.cz/vfrmanual/actual/enr_2_en.html

[10]

[11]

[14]

Bibliography

International Civil Aviation Organization. Air Traffic Services, Annex 11,
Chapter 2, July 2001. Online: http://mid.gov.kz/images/stories/
contents/anll_en.pdfl

Air Navigation Services of the Czech Republic. VFR Manual, Airspace of
the Czech republic. Online: http://lis.rlp.cz/vfrmanual/actual/
enr_1_en.html, April 2018. Last accessed: 1.5.2018.

Tomas Hnidek. Simulation and Control of Airplanes at Airport Area.
Bachelor’s thesis, Czech Technical University in Prague, 2014.

National Institute of Standards and Technology. Appendix E. General
Tables of Units of Measurement. In Handbook 133, Checking the Net
Contents of Packaged Goods. U.S. Government Printing Office, January
2011.

David Siglak, Michal Péchoucek, Pfemysl Volf, Dusan Pavli¢ek, Jifi
Samek, Vladimir Marik, and Paul Losiewicz. Agentfly: Towards multi-
agent technology in free flight air traffic control. In Defence Industry
Applications of Autonomous Agents and Multi-Agent Systems, pages
73-96. Springer, 2007.

OpenStreetMap. Copyright and License. Online: |https://wuw,
openstreetmap.org/copyright/enl Last accessed: 30.4.2018.

Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient
generation of simple polygons for characterizing the shape of a set of
points in the plane. Pattern Recognition, 41(10):3224-3236, 2008.

Zhiyuan Lin and Yan Li. An Efficient Algorithm for Intersection, Union
and Difference between Two Polygons. In 2009 International Conference

on Computational Intelligence and Software Engineering, pages 1-4.
IEEE, 2009.

OpenStreetMap Wiki. About OpenStreetMap. Online: https://
wiki.openstreetmap.org/wiki/About_OpenStreetMapl Last accessed:
30.4.2018.

OpenStreetMap Wiki. Overpass APL. Online: https://wikil
openstreetmap.org/wiki/0Overpass_API. Last accessed: 15.4.2018.

OpenStreetMap Wiki. Overpass turbo. Online: https://wikil
openstreetmap.org/wiki/0Overpass_turbo. Last accessed: 15.4.2018.

OpenStreetMap Wiki. Elements. Online: https://wikil
openstreetmap.org/wiki/Elements, Last accessed: 15.4.2018.

OpenStreetMap Wiki. Tags. Online: https://wiki.openstreetmap,
org/wiki/Tags| Last accessed: 15.4.2018.

46

http://mid.gov.kz/images/stories/contents/an11_en.pdf
http://mid.gov.kz/images/stories/contents/an11_en.pdf
http://lis.rlp.cz/vfrmanual/actual/enr_1_en.html
http://lis.rlp.cz/vfrmanual/actual/enr_1_en.html
https://www.openstreetmap.org/copyright/en
https://www.openstreetmap.org/copyright/en
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Tags
https://wiki.openstreetmap.org/wiki/Tags

[23]

Bibliography

Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David
Dobkin. Shape distributions. ACM Transactions on Graphics (TOG),
21(4):807-832, 2002.

Martin Hlozek. Sférickd geometrie. Master’s thesis, Zapadoceska uni-
verzita v Plzni, August 2014.

Yan-hua Liu and Wei-qing Chen. Line simplification algorithm imple-
mentation and error analysis. In Computer Science and Automation
Engineering (CSAE), 2011 IEEE International Conference on, volume 2,
pages 64-68. IEEE, 2011.

Dan Sunday. Intersections of Set of Segments. Online: http:
//geomalgorithms.com/a09-_intersect-3.htmll Last accessed:
16.4.2018.

Zsolt Kocsi. Overpasser. GitHub: https://github.com/zsoltk/
overpasser. Last accessed: 21.5.2018.

Petr Valenta. Bentley-Ottmann. GitHub: https://github.com/
valenpe7/bentley-ottmann. Last accessed: 21.5.2018.

OpenStreetMap. Online: https://www.openstreetmap.org/, Last
accessed: 30.4.2018.

47

http://geomalgorithms.com/a09-_intersect-3.html
http://geomalgorithms.com/a09-_intersect-3.html
https://github.com/zsoltk/overpasser
https://github.com/zsoltk/overpasser
https://github.com/valenpe7/bentley-ottmann
https://github.com/valenpe7/bentley-ottmann
https://www.openstreetmap.org/

48

Appendix A

List of Abbreviations

BST ...

FAA ...

Application programming interface

Air Traffic Control

Air Traffic Management

Air Traffic Service

Base of Aircraft Data

Bentley-Ottmann Algorithm

Binary Search Tree

European Organization for the Safety of Air Navigation
Federal Aviation Administration

Flight Information Service

Field of View

Geographical Information System
Hypertext Transfer Protocol
International Civil Aviation Organization
Instrument Flight Rules

OpenStreetMap

Ramer Douglas Peucker Algorithm

Air Navigation Services of the Czech Republic
Stereographic [Projection]

Unmanned Aerial Vehicle

Visual Flight Rules

eXtensible Markup Language

49

50

Appendix B

Videos

This appendix describes videos enclosed to the thesis. The videos were
made to better demonstrate the results of this work. They were all recorded
using the AgentFly visualization system.

B B.1 Single Conflict

There are five videos in total dedicated to the standard conflict situations.
They are listed in [Table B.1| and they are all located in videos/2_planes
directory on the enclosed CD.

File

Description

0_deg.avi

The airplane and the conflict are approaching head-on. They
both alter their course to the right.

75_deg.avi

The conflict is coming up on the left side of the airplane. The
airplane has right-of-way and the conflict avoids the airplane
by altering its course to the right.

180_deg.avi

The conflict is coming on the airplane from behind in parallel
direction. The conflict overtakes the airplane by altering its
course to the right.

225_deg.avi

The conflict is coming on the airplane from behind in non
parallel direction. The conflict alters its course and passes
the airplane in parallel direction. Once it is well ahead of
the airplane, it turns back to its original destination.

285_deg.avi

The conflict is coming up on the right side of the airplane.
The conflict has right-of-way and the airplane avoids the
conflict by altering its course to the right.

Table B.1: Videos of standard conflicts

B B.2 Multiple Conflicts

There is one video depicting three airplanes on a collision course with each
other. Two airplanes are approaching head-on. The third is incoming from a

o1

B. Videos

side. Gradually, all airplanes alter their course to the right.
The video file is 3_planes.avi and it can be found in the videos directory
on the enclosed CD.

B B3 Larger Scenario

The last video shows a fictional VFR traffic over the Czech Republic within
five hours interval with 30 VFR flights in total. Multiple conflict situations
(along with their resolutions) can be observed over the course of the scenario.

The video file is traffic_demo.avi and it can be found in videos directory
on the enclosed CD.

52

Appendix C
Contents of Enclosed CD

E:}sources

E:Jsrc -
ﬁ:}config -

ﬁ:}atc.utility

E:Jsrc -

E:Jvideos

E:}Q_planes -

3_planes.avi -

traffic_demo.avi -

text.pdf -

E:}text—tex -

53

ﬁ:}agentfly.atm.vfr.scenario

Java source files

flights configuration files

Java source files

videos with a single conflict

video with two conflicts
larger scenario

text of this thesis

text source codes in LaTeX

	Introduction
	Problem Specification
	Visual Flight Rules
	Airspace Overview
	Standard Airport Procedures
	Minimum Flight Altitudes
	Collision Avoidance

	Simulation Framework
	A-Globe
	AgentFly

	Approach
	Generation of VFR Flights
	Minimum Flight Altitudes
	OpenStreetMap
	City Polygons
	Terrain Elevation

	Collision Avoidance
	Conflict Types
	Conflict Resolution

	Implementation
	Generation of VFR Flights
	Minimum Flight Altitudes
	City Data Creation
	City Data Integration
	Terrain Sampling
	Altitude Changes

	Collision Avoidance
	Conflict Detection
	Conflict Resolution

	Experiments
	City Polygons
	Altitude Changes
	Altitude Test 1
	Altitude Test 2

	Collision Avoidance
	Single Conflict
	Multiple Conflicts
	Larger Scenario

	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	Videos
	Single Conflict
	Multiple Conflicts
	Larger Scenario

	Contents of Enclosed CD

