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Abstract

Automatic age and gender prediction is ap-
plicable in many real-world problems (e.g.
surveillance, commercial profiling, etc.).
Often, only low-resolution(LR) images are
available. The goal of the thesis is to com-
pare a baseline CNN age and gender pre-
dictor trained on high-quality images with
two proposed strategies for improving pre-
diction accuracy on low-resolution images:
(1) Data-augmentation strategy trains a
CNN classifier on synthetically generated
LR images. (2) Super-resolution strat-
egy enhances image resolution using con-
ditional generative adversarial network
(cGAN) and the age and gender predic-
tion is subsequently made using the base-
line CNN. The intermediate step provides
human-readable interpretation, unlike in
the case of data-augmentation. The ex-
periments show that both methods out-
performed the baseline method and in-
deed improve prediction accuracy on LR
images. The super-resolution noticeably
exceeding the data-augmentation given
comparable amount of training data.

Keywords: facial images, age and
gender classification, convolutional
neural network, single-image
super-resolution, conditional generative
adversarial network, GAN
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Abstrakt

Automaticky odhad véku a pohlavi mé po-
tencidlni redlné aplikace (napt. sledovani
osob, komeréni profilovani, apod.). Casto
jsou ale k dispozici pouze obrazky s niz-
kym rozlisenim. Cilem této préace je porov-
nat zakladni klasifikdtor véku a pohlavi,
ktery byl trénovan na obréazcich vysoké
kvality, se dvéma navrhovanymi strate-
giemi pro zlepseni presnosti predikce na
obrézcich nizkého rozliseni. (1) Rozsifeni
datové sady, které adaptuje zakladni CNN
klasifikator véku a pohlavi pomoci syntézy
obrazku nizkého rozliseni. (2) Superrozli-
Seni vylepsuje rozliseni za pouziti podmi-
néné generativni adversarialni sité a vék
a pohlavi se nasledné odhaduji za pouziti
zékladniho CNN klasifikatoru. Na rozdil
od metody rozsireni dat tento mezikrok
poskytuje interpretaci vysledka srozumi-
telnou pro clovéka. Experimenty ukazuji,
ze obé zminéné strategie prekonaly za-
kladni metodu a opravdu zlepsuji pres-
nost predikce na obrédzcich nizkého rozli-
seni. Se srovnatelnym poctem trénovacich
dat poskytuje superrozliseni znatelné lepsi
vysledky.

Klicova slova: obrazky obliceje,
klasifikace véku a pohlavi, konvolu¢ni
neuronové sité, superrozliseni, podminéné
generativni adversarialni sité, GAN

Pieklad nazvu: Ulohy interpretace
obliceje na obrazcich nizké kvality
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Chapter 1

Introduction

Automatic age and gender prediction from facial images is applicable in many
different fields (such as demographic data collection, commercial profiling,
surveillance, etc.). Nowadays, due to the tremendous progress of convolutional
neural networks, the prediction accuracy achieves and outperforms human
estimates [27].

Generally in real-world, high-quality images are rarely available (e.g. in
surveillance scenario, using wide angle cameras, poor quality due to the subject
distance). The images are often corrupted by the low resolution, motion
blur, compression artifacts, image noise or poor lightning. The thesis studies
the impact of low resolution to the accuracy of age and gender prediction.
The resolution is probably a prominent degradation factor and can be easily
simulated.

Two strategies to improve the prediction accuracy are proposed:

(i) Data-augmentation. Training or adapting a CNN by synthesizing
low-resolution images.

(ii) Super-resolution. Enhancing image resolution using conditional gen-
erative adversarial network [2I] and feeding it into the CNN trained to
predict from high-resolution images.

CNNs probably have enough capacity and can, to some extent, train or
adapt to low-resolution images. A disadvantage of that approach is that
large labeled dataset is needed to sufficiently train the network. Another
disadvantage is that the interpretation is unclear. Extremely low-resolution
images are difficult to understand for humans. A trained CNN performs the
prediction with improved accuracy, however, the "black-box" nature of the
approach is undesirable and may limit the practical applicability.

Whilst the super-resolution approach enhances the quality of images first,
and then predicts the age and gender is human-interpretable, meaning we
have an outlook on predicted attributes and the actual face. As opposed to
data-augmentation, the super-resolution strategy is more general and can be
applied to improve results of already trained networks. Moreover, to train the
c¢GAN for super-resolution, there is no need to have a labeled dataset. The
cGAN can be potentially trained using a huge set of unlabeled face images that
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are widely available. The disadvantage is that the cGAN produces artifacts
that can confound the age and gender classifier. To this approach, several
scenarios exist, such as training super-resolution cGAN and CNN classifier
end-to-end together, training with fixed weights of either network or to train
both networks independently.

The goal of the thesis is to analyse and quantitatively compare the two
previously discussed approaches to this problem.

In Chapter 2 we review related literature on super-resolution and age
and gender prediction methods. Chapter 3 focuses on the description of
specific methods used to conduct the experiments. In particular, generative
adversarial networks for super-resolution, convolutional neural network for
age and gender estimation. Two strategies are presented in detail in Chapter
4. Proposed strategies are compared and analysed in Chapter 5, followed by
the conclusion of the thesis in Chapter 6.



Chapter 2
Related Work

This section goes briefly over related work of super-resolution and age and
gender prediction. Especially, the super-resolution is very challenging problem
and there exist many different approaches. Here we will review only basic
principles.

B2 Super-Resolution

Super-resolution is a classical computer vision problem [19]. The goal is to
estimate a high-resolution(HR) image from low-resolution(LR) one.
Super-resolution (SR) is an ill-posed problem. HR solution is intrinsically
ambiguous i.e. many HR images correspond to given LR image. Approaches
to solving SR can be separated into two groups based on the number of input
images.

1. Multiple-frame super-resolution (MISR) - usually bypasses the ill-posedness
by utilizing similar but non-identical information (e.g. local geometry)
from multiple LR images (e.g. from video sequence).

2. Single-image super-resolution (SISR) - relies on learned prior of the
image classes. Since images within a class typically have a structure (e.g.
facial images).

From now on we will focus on SISR only.

Most straight-forward attempts to solve SISR problem are filter-based
without the need of previous learning. The result is obtained by applying a
mathematical formula. Interpolation methods (e.g. Lanczos, bilinear, bicubic)
are fast and still widely-used, but the solution is far too simple to solve whole
complexity of the problem and typically results in overly smooth edges.

Another method of super-resolution aims to preserve edge sharpness [I].
Edges play a crucial role in human vision, so it only makes sense, that it
brings a better visual quality of high-resolution outputs than when using
prediction-based approaches. However, even with limited artifacts and sharp
edges, the technique fails to reconstruct high-frequencies, resulting in a poor
texture impression.
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More complex approaches to super-resolution problem are patch-based
methods, which strive to find a mapping between LR and HR images. The
basic principle of patch-based methods is that the input image is decomposed
into patches and subsequently super-resolved by matching its local geometry
with exemplary high-resolution patches. Often, learning of the mapping
functions is conducted by learning sparse dictionaries [2], [3], kernel regression
[4] or support vector regression [5, [].

Current state-of-the-art approaches are neural networks that endeavour to
learn end-to-end mapping from LR input image to HR images. Convolutional
networks [7] are able to learn upscaling filters and outperform previously
mentioned methods. Ulyanov et. al [8] shows that even the structure of
generator network contains lot of low-level statistics prior to any learning.
The most recent, and probably most accurate, contributions were made with
GAN4!| that proved to be successful at super-resolving [I].

. 2.2 Generative Adversarial Networks

Recently, GANs have gained solid reputation in many computer vision prob-
lems. Usually used in conditional setting. It is a feasible solution to problems
such as single-image super-resolution [9], text to image synthesis [10], face
ageing [11] and domain transfer [12} 13} [14] .

BN 23 Age and Gender Prediction

Age and gender classification is immensely useful practice, usually applied in
human-computer interaction, surveillance, commercial profiling, psychology or
demographic data collection. We will only focus on facial image classification
methods given the face detections in the image.

Particularly, age prediction is challenging because there is no straight-
forward feature that discriminate the genders or ages, but many cues together
play an important role.

Amongst the most practiced methods to predict age and gender are: princi-
pal component analysis (possibly independent component analysis) to reduce
the feature space and extract the features and linear discriminant analysis
to classify the gender [15]. Another approach employs Adaboost with pixel
comparisons [I6] or nonlinear support vector machines (SVM) with radial
basis function (RBF) kernel [17] and lately convolutional neural networks.
CNNs are usually trained to predict both age and gender, but the disadvan-
tage is the necessity to have a large labeled dataset. The CNN takes raw
images and learns the representation unlike using hand-engineered features in
previous approaches. Franc and Cech [I8] have dealt with this complication
by training the CNN with weakly annotated images using an instance of EM
algorithm.

Lsenerative adversarial networks; will be discussed more thoroughly in following chapters

4



Chapter 3
The Background

B 31 Super-Resolution

Generative adversarial networks have proven that are suitable for solving
single-image super-resolution accurately [9].

B 3.1.1 Generative Adversarial Neural Network

GANs were proposed by Goodfellow et. al [2I]. The idea was to introduce a
generative model that allows to generate samples from very complex distribu-
tions capturing a manifold of e.g. facial images. It is implemented as a pair of
convolutional neural networks - generator and discriminator. The structure
corresponds to two-player minimax game - Generator and Discriminator com-
pete against each other. Generator tries to generate output that cannot be
distinguished from the real data. Whereas the discriminator tries to correctly
discern the real data and the synthesized data from the generator.

Main advantage of GANSs is that they produce high-quality photorealistic
images with sharp edges. Competing approaches, e.g. auto-encoders [20],
tend to produce overly smooth results.

Generator. Is a generative unsupervised model represented by a convolu-
tional neural network. The input of a generator (G) is a noise vector z € Z,
typically a Gaussian distribution ~ N(0,1) we can generate samples from.
The generator maps the input to the output image via CNN.

Simply, the input of the G is a noise vector and the output is generated
image x’ from data space X’. The goal of G is to produce output image
indistinguishable from the real data distribution X. In other words, to
approximate the real data distribution as close as possible (X’ 4x ) and thus
minimize the probability that the discriminator will correctly predict the
origin of its input image

G(z0,): Z — X',

where 0, are the generator’s parameters.
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Discriminator. As the name suggests, the discriminator is a discriminative
supervised model. Correspondingly with G, the discriminator (D) is repre-
sented by a convolutional neural network. D’s goal is to correctly determine
the origin of its input. Given an image (either from G’s distribution X’ or
the real data distribution X), D with parameters 6 returns the probability
of its input being from X

D(z;04) : {X, X'} —[0,1].

Let (z;, ;)X ; be the training set, where @; is an image and y; its corresponding
label (y; = 1 if the input image is from the real data distribution and y; = 0
if the image is synthesized by the generator).

Discriminator’s loss is the cross-entropy

N N
H((zi,y:)iey, D) = = yilog(D(xi)) — Y _(1 — yi)log(1 — D(x;))). (3.1)
=1 =1

1 f o~
with label y; = OT &; ~ Pdata
0 for @ =G(z),z~p.

Which can be rewritten as

TP = H((@i, 9)i1: D) = ~Eampgara[108(D(@)] — Eany, [log(1 — D(G(2)))].

The GAN framework corresponds to two-player minimax game. Thus, for
the generator we get

J@D = —JP) =By log(D(@)] + Euey, [log(1 — D(G(2)))].

Therefore, the objective is
min max —J®) = Eqep,, llog(D(@)] + sy los(1 ~ DG())]. (32)

Convergence. The GAN framework is relatively hard to train because the
convergence is not always ensured. G and D are trained simultaneously and it
is often rather difficult to harmonize the training process of both networks. As
opposed to other neural network set-ups, the generator often has a problem
with under-fitting rather than over-fitting. A frequent failure case when
training the GAN is so-called mode collapse. The situation emerges when the
generator is supposed to learn a multimodal distribution but fails to produce
data with enough variety.

B Conditional GANs

GAN [2]] framework is easy to extend to a conditional setting [22]. Con-
ditioning both generator and discriminator on an additional information .
Frequently in practice, the conditioning is done on class labels (generating
MNIST digits [22]) or on input images [14]. Now, the objective is

min max —JP) = Eqnp,,,, [0g(D(a]y)] +Eanp. [log(1-D(G(2ly)|y))] (3.3)
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B 32 Age and Gender prediction

Age and gender prediction can be divided into two groups according to
the method of solution. The problem can be fromulated as a multi-class
classification [27], 28] or as a problem of regression [29] [30].

When using regression, facial features are extracted by learning the age
manifold reducing the dimensionality (common method is, for example, princi-
pal component analysis). Subsequently, parameters of the regression function
are computed to fit the training data. The output value (estimated age) is
continuous, unlike in case of multi-class prediction, thus, can be more precise.

State-of-the-art methods for multi-class prediction are CNNs [27] per-
forming feature extraction and classification together. An advantage of the
multi-class prediction is that the output is a distribution, which provides a
confidence in the prediction. Other multi-class approaches reduce input space
(similarly as regression methods) and employ a classifier e.g. structured SVM
[28].






Chapter 4

Strategies for prediction accuracy
improvement on LR images

To conduct the experiment on age and gender classification, we used state-of-
the-art method - a convolutional neural network.

We used the net architecture [I8] depicted in Figure The net classifies
into two genders and 60 age categories (minimal age is 16 and maximal
75). Therefore, the output is a 120-dimensional vector with separated male
and female age categories. For clarity the vector is depicted in Figure 4.1
Each dimension represents a probability of the category given an image. We
computed age and gender as median over marginalized softmax distribution.

Male age categories - 1x60 Female age categories - 1x60 ‘

1x120

Figure 4.1: The Output of the age and gender prediction CNN. The 120-
dimensional vector constitutes of two gender categories, each consists of 60
dimensions representing ages from 16 to 75. Each dimension can be interpreted
as a probability of given category.

Dataset. The dataset comprises of 87,485 fully annotated (with age and
gender) high-quality facial grayscale images. The faces were found by face
detector, cropped and resized to 100 x 100 pixels. The smallest faces detected
were 50 x 50 pixels. The dataset was split into training 78%, validation set
4% and test set 18% with no overlaps. Training and validation sets consist of
70% of PubFig database [23] and 30% of Labeled faces in the wild (LF'W)
database [24]. The test set is composed from PubFig (55%), LFW (17%),
ChaLearnAge [26] (22%) and FG-NET [25] (6%). Age categories range from
16 to 75.

Baseline. The CNN was trained on previously described dataset using the
resolution of 100 x 100 pixels.
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Input : 100x100x1

Conv-Softmax: 120: 1x1, s:1, p:0

Figure 4.2: Age and gender CNN architecture. Each block carries additional
information about its layers. Notation corresponds with following: number of

convolutional filters: filter size, stride, padding. The output is a 120 dimensional
vector depicted in Figure

B a1 Data-augmentation

First strategy is to adapt a convolutional neural network to low-resolution
images by data-augmentation. The same architecture as in case of Baseline
method (Figure was used. The augmentation was carried out by down-
sampling images of the training set (100 x 100 pixels) randomly to scales: 1,
0.5, 0.25, 0.125 with uniform distribution, and subsequently upsampled to
the former 100 x 100 size via bicubic interpolation. The augmentation was
implemented within the SGD iteration.

In principle, it would be possible to adapt the CNN to single-scale downsam-
pled images, but with additional information about the real-world problem
environment (such as the camera resolution etc.). For each resolution a special

10
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CNN needs to be trained.
Therefore, we decided to mix all resolutions and train a single CNN.

B a2 Super-resolution

To conduct the super-resolution part of experiments we used pix2pix image-
to-image translation framework [I4]. The paper proposes a general-purpose
framework for image-to-image translation using generative adversarial network
conditioned on an input image. The generator learns the mapping between
the input image and the output image (mappings such as architectural
labels — photo, object edges — photo, map — aerial photo or day —night).
Whereas the discriminator serves as a structured loss, penalizing the structure
at the scale of patches. Two losses are combined. The L; loss between
generated image and the output image and the adversarial loss that proved to
output photorealistic images. Experiments show that the framework provides
impressive results, especially, with highly structured outputs.
Low-resolution input and high-resolution output have the same structure,
the LR image is only lacking high frequencies. That makes our problem
appropriate for previously mentioned framework. The generator’s architecture
is depicted in Figure [4.3] and discriminator’s in Figure [4.4. Generator’s
architecture with skip connection is convenient because of the same underlying
structure in LR and HR images. The framework is conditioned on low-
resolution images and instead of input noise vector, the noise is provided in
the form of dropout (also during testing phase).
The final objective is

G = arg miGn m%x EILR,IHRNPdam(ILR,IHR)UOg(D(ILP" IHR)]

+EILR~pdam(ILR),Z~pz(z) [log(l - D(ILRa G(ILRa Z)))] (4'1)

+)\EILR,IHRdiata(ILR,IHR),ZN;DZ(Z)[H IHR - G(ILR7 Z) Hl]

In all experiments A is set to 100 following the provided code of [14].

Dataset. Dataset comprises of total 2650 (2419 for training and 231 for
testing) high-quality facial images. Faces were detected |'| and cropped from
images from IMDB database. High-quality was ensured by selecting only
samples with detection score ! over 130 and bounding-box size larger than
224 x 224 pixels. All images were resized to 224 x 224px ( a standardly used
resolution of ImageNet CNNs - AlexNet, VGG). Resolution degradation was
simulated by downsampling the input image and upsampling via bicubic
interpolation before the training. The downsampling was implemented by
Matlab imresize function. The antialiasing filter was on. Before upsampling
to 224 x 224, the intensities were quantized to integer levels 0 - 255. Down-
sampling scales {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} were selected

!Eyedea Recognition, Ltd. www.eyedea.cz

11



4. Strategies for prediction accuracy improvement on LR images

randomly with sampling probabilitieﬂ {0.2, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05,
0.05, 0.05}. Simply, the smallest resolution was 22 x 22 px (0.1 x 224=22)
selected with probability 0.2 and the largest 224 x 224 with probability 0.05.

Input : 256x256x3

Japodou3

J9p0da(

Tanh

Figure 4.3: Generator architecture is an hourglass shaped model with skip
connections. The number associated with each block signifies the number of its
convolutional filters. All convolutional layers have the same parameters (with
the exception of the number of filters): kernel size is 4 x 4, stride is 2, padding
is 1. All ReLLU layers in the encoder are leaky with the slope of 0.2, whereas in
the decoder there is no leak. Dropout rate is 0.5. Connections are indicated by

black lines.

2 Based on observation of previous experiments.

12



4.2. Super-resolution

Input : 256x256x6

Sigmoid

Figure 4.4: Discriminator architecture. The GAN framework is conditioned on
LR image. Therefore, the input has 6 channels - concatenated generated/real
image and LR image. All convolutions have same parameters: kernel size is
4 x 4, stride 2 and padding 1. ReLU layer has a slope 0.2. The output reflects a
probability of the input data being from the real data distribution.

B 4.2.1 Chaining the networks: cGAN 4+ CNN chain

Super-resolved

LR input HR image Output
J — - Super-resolution cGAN —» Age &_geqder _ Femalels
~ . classification - CNN

i

Figure 4.5: Tlustration of the super-resolution strategy.

In the super-resolution strategy the cGAN and CNN are connected as
shown in Figure [4.5. We tested four options to implement the connection of
the two networks:

(i) ¢cGAN + CNN - not-trained - two networks are trained independently
and connected only in testing phase.

(ii) cGAN 4 CNN - fixed CNN - both networks are connected during
training but weights of the CNN classifier are not updated.

13



4. Strategies for prediction accuracy improvement on LR images

(iii) ¢cGAN + CNN - fixed cGAN - both networks are connected during
training, weights of the cGAN are not updated.

(iv) ¢cGAN + CNN - end-to-end - both networks are connected during
training and all weights are updated.

When predicting age and gender, a broader facial context plays an important
role (such as hair, a neck etc.). Unlike in cGAN super-resolution, where every
pixel in the generated image is penalized evenly, forcing the generator to learn
also contextual areas and generating artifacts in the facial part, See Figure
Moreover, the context lacks the assumed within-class structure. For that
reason, we decided to strip off the context from the original image, pass it
through the generator and pad the reconstructed image with the context in
low-resolution. Subsequently, pass the padded image through age and gender
predictor. Whole process is depicted in following figures.

Original image
with context

Facial area Context

100px

Oum

(a) : An ilustration of facial image and its context.
Face without context is passed through the generator

LR _— cGAN Generator — HR
input output

(b) : Facial image without context is super-resolved with ¢cGAN.
Again padded with low-resolution
context and passed through the CNN

HR Age and Gender
output CNN Predictor

(c) : Super-resolved facial image is padded with low-resolution context
and passed to the CNN predictor.

Figure 4.6: Chained networks
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4.3. Implementation details

Input Output Ground truth

Figure 4.7: Example of artifacts when training the cGAN on images with a
larger context around the face.

B a3 Implementation details

To connect both networks, additional operations had to be arranged. Mainly,
due to the difference in cGAN output size (256 x 256 px internal pix2pix
[14] network input size) and CNN input size (100 x 100px) and the fact
that input images needed to be striped off the context, super-resolved and
subsequently padded with low-resolution context for age and gender prediction.
Operations (such as resizing by bilinear interpolation, converting from RGB
to grayscale, padding the super-resolved image with low-resolution context,
etc.) of the connection of cGAN and CNN are differentiable, which allows
the chain to be trained. Scripts for training were written in pytorch that
has an automatic differentiation package. Operations on torch tensors are
differentiated automatically.

Training times. The training of the originally trained cGAN with 2419
images took approximately 1 day. The training times of chained cGAN and
CNN varied from 2 to 6 days.
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Chapter 5

Experiments

First, we introduce the test set, the error statistics for accuracy of age
and gender prediction and for super-resolution accuracy. Then we present
experiments comparing the baseline with two proposed strategies and variants.
Namely: Data-augmentation, cGAN + CNN chain - not-trained,
cGAN +4 CNN chain - end-to-end, cGAN + CNN chain - fixed
cGAN and cGAN + CNN chain - fixed CNN.

. 5.1 Dataset

Experiments on age and gender were conducted on labeled test dataset
(Chapter 4, containing 16013 grayscale images with zero overlap
with training set. As explained in (Chapter 4, , detected images
were resampled to 100 x 100 pixels. Images were downsampled by scale
s € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} and upsampled with bilinear
interpolation. Statistics were computed over all 16013 images for each scale
s.

. 5.2 Error Statistics

B 5.2.1 Age and Gender prediction accuracy

MAE - Mean Absolute Error. Average magnitude of age prediction error.
Where g; denotes the predicted age and y; the true age for the i-th input
image. N is the number of test samples.

1 Y .
MAE = N2|yi_yi| (5.1)
i—1

CSk - Cumulative score at k. Ratio of predictions differing from the ground
truth by less than or equal to k. Where [] are the Iverson brackets.

CSk = — 2_llyi — 5l <= #] (5.2)



5. Experiments

gerr - Gender error. Ratio of incorrectly classified samples. Where §;
denotes the predicted gender and g; the true gender for the i-th input image.

100 & R
gerr = - Z[[gZ # Gi] (5.3)
i=1

Bl 5.2.2 Super-resolution

MSE - Mean square error. Average of squared differences between every
pixel intensities in output and target images. For images I, K with size
m X n X ¢ is MSE defined as

ZZZ i, j k) — K (i, j, k)] (5.4)

zljlkl

MSE(I, K)

PSNR. Peak signal to noise ratio.PSNR for image I with reference image
K is computed as

(5.5)

MAX?
PSNR(I, K) = 10logy, ( L )

MSE(I,K)

Although the PSNR is a widely used statistics to assess the quality of the
super-resolution, it does not reflect well subjective human visual perception.
Paper [31] studied several error statistics and measured their correlation
with human perception. The highest reported correlation was information
fidelity criterion (IFC) [32]. Although, the conclusion may be different for
face images in particular.

. 5.3 Baseline

The experiment evaluates the impact of low resolution input to prediction
accuracy of CNN trained on high-quality images. The CNN [I§] was trained
for 16 epochs using labeled dataset (Chapter 4, |Dataset). As can be seen
in Figures 5.1}, 5.2, 5.3}, 5.4, Baseline method copes with resolutions larger
than 60 x 60 pixels (scale 0.6). On smaller scales, the prediction accuracy
gradually diminishes. That is due to the fact that the network was trained
only on high-quality images.

. 5.4 Data-augmentation

The objective of the experiment was to adapt the CNN [I§] to low-resolution
images and compare its accuracy to the Baseline method. The CNN was
trained on the same labeled dataset (described in Chapter 4, [Dataset|) for 58
epochs. Data was augmented by downsampling to scales [1,0.5,0.25,0.125]
randomly with uniform distribution and upsampled to the original 100 x 100 px
size via bicubic interpolation. Figures|[5.1} 5.2} 5.3 5.4 show that, as expected,
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5.4. Data-augmentation

Data-augmentation surpassed the baseline method on low-resolution images,
due to the fact that the Data-augmentation was adapted to LR images during
training. Whereas on larger scales, the performance of Data-augmentation
worsens only slightly.

baseline

35 + data-augmentation

30 )

25 A

20

gerr[\%]

15 A A

10 + N

L%

=

—

—_—

0.1 0.7 0.8 0.9 1.0

T T
0.2 0.3 0.5 0.6

resizing scale

0.4

Figure 5.1: Baseline/Data-augmentation comparison - Gender error.

19



5. Experiments

14
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MAE[year]
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-_— — -
—

5 T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

resizing scale

Figure 5.2: Baseline/Data-augmentation comparison - Mean Absolute Error.
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Figure 5.3: Baseline/Data-augmentation comparison - Cumulative Score at 5.
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5.5. Super-resolution cGAN
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Figure 5.4: Baseline/Data-augmentation comparison - Cumulative Score at 10.

B 55 Super-resolution cGAN

The experiment focuses solely on the assessment of the super-resolution qual-
ity of low-resolution images. The cGAN was trained to enhance the resolution
of facial images. The training started from scratch on 2419 facial images
with resolution 224 x 224 px for 200 epochs using pix2pix framework [14],
explained in detail in section |4.2l. None of the subjects were presented simul-
taneously in both test and train set. Weights were initialized randomly from
a normal distribution ~ N(0,0.02). Resolution degradation was simulated
by downsampling the input image randomly by scales {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1} with probabilities {0.2, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05,
0.05, 0.05} respectively, and by upsampling to the original size via bicubic
interpolation.

Figures [5.5], [5.6| demonstrate that cGAN is capable of producing sharp
edges and enhancing visual quality. Although certain imperfections are still
present in the reconstructed images i.e. corruptions by generated artifacts,
blurry regions. The reconstruction quality would most likely improve with
more training images.

In Figure [5.7, PSNR performance of cGAN is worse than of bilinear
interpolation. The reason is that PSNR metric, as we noted in section 5.2, is
not correlated with human quality perception and does not take in account
edge sharpness and image structure.
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Input Output Ground truth PSNR [dB]

25,5976

22,1802

23,4348

21,8126

22,1410

20,1801

Figure 5.5: Examples of super-resolved images with trained cGAN. PSNR of
the output image.
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5.5. Super-resolution cGAN

Input Output Ground truth PSNR [dB]

20,5054

22,7327

24,6686

23,8506

21,1220

Figure 5.6: Examples of super-resolved images with trained cGAN. PSNR of
the output image.
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- cGAN
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80
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40 -

20 =9
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resizing scale

Figure 5.7: Comparison between trained cGAN and the input image upsampled

with bilinear interpolation - PSNR.
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5.6. Chained networks: cGAN + CNN

. 5.6 Chained networks: cGAN 4+ CNN

The experiment evaluates the second strategy for improvement of prediction
accuracy on LR images. We compare it with Baseline method. To connect
the chain, we used pretrained networks from section [5.5| and from section
5.3. The training was performed on labeled dataset (Chapter 4, Dataset]).
We tested four alternatives explained in detail in section 4.2.1. The cGAN
+ CNN - end-to-end was trained for 4 epochs, cGAN + CNN - fixed
cGAN for 10 epochs and cGAN 4+ CNN - fixed CNN for 20 epochs.
The results are shown in Figures 5.8} 5.9, 5.10, 5.11}, [5.12, |5.13.

Super-resolution quality is shown in Figures 5.8, 5.9. The cGAN + CNN
- not-trained produces surprisingly worse results than other alternatives of
the connection. The reason is most likely the under-fitting (cGAN trained
independently was trained on 2419 images while the chain variations were
trained on 68,238 images).

Results of age and gender prediction (Figures 5.10} 5.11,|5.12, 5.13)) show
that the naive connection of the networks trained independently (cGAN +
CNN - not-trained) performed even worse than the Baseline. That is
caused by the artifacts produced by cGAN and that probably confounds the
CNN classifier.

On cGAN + CNN - trained end-to-end, training improved perfor-
mance over the Baseline method on smallest scales but worsened on larger.
That might be caused by the fact that smaller scales were prioritized during
training (as is the case of super-resolution alone, section |5.5)).

In comparison with cGAN 4+ CNN - trained end-to-end, the perfor-
mance of cGAN 4+ CNN - fixed cGAN worsened on all scales. However,
on the smallest scales, the cGAN 4+ CNN - fixed cGAN outperformed
the Baseline.

The best performance of all chain alternatives brought cGAN + CNN -
fixed CNN, which performed the best on low-resolution images in particular.
The conclusion holds for all age and gender error statistics. The reason
for this result is the fact that the originally trained cGAN was most likely
under-fitted.

Therefore, we use the cGAN 4+ CNN - fixed CNN for the final com-
parison of strategies for prediction accuracy improvement on LR images.
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Figure 5.11: Chain comparison - Mean Absolute Error.
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. 5.7 Final comparison

In this section, we compare strategies for prediction accuracy improvement
on LR images - Data-augmentation and Super-resolution - with the
Baseline method. Final results are shown in figures [5.14} |5.15l [5.16,, |5.17.

Both proposed strategies outperformed the Baseline method on low-
resolution images and had a comparable accuracy on larger scales. Super-
resolution strategy outperformed both Baseline and Data-augmentation
methods on LR images. In larger resolution, there is slightly worse perfor-

mance, which can be caused by the fact that the smaller scales were prioritized
during training phase.
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Figure 5.14: Final comparison - Gender error.

29



5. Experiments

14
- cGAN + CNN - fixed CNN
13 data-augmentation
——- baseline
12 4
11
114
!
& 10 -
2 [N
= \
g 9 4 % Yo
b Y
\ \\\
G A S \\
LY
~ N
- s
7 3 -‘\\“ B
Y T R (P R
6 <]
5 T T T T T T T T _--:-_'-—-__-I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
resizing scale
Figure 5.15: Final comparison - Mean Absolute Error.
- cGAN + CNN - fixed CNN RS bl
data-augmentation =T
60 : 1
—=- baseline ’
’I
s
rd
55 ¥
.-"".— - — - - —_ _—
- ~
-
— 50 - . =
.E'E Fd ;1
45 !
! !"
;f
! F;
40 7 ;
'
I
7 /
35
! /-"'
T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

resizing scale

Figure 5.16: Final comparison - Cumulative Score at 5.

30




CS10[%]

5.7. Final comparison

907 —  cGAN + CNN - fixed CNN -
data-augmentation U L
g5 4 ——- baseline sral
, .
A it " —_ — —
P Rt o =
'_'\-’
80 1 = o
! ../'f'
L
PR
75 - A
f F e
;f
70 ! /
’.’
o i

.'I !

6517 ¥
s,

{ S

60 - 7
4

&

4
55 T T T T T T T T T T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

resizing scale

Figure 5.17: Final comparison - Cumulative Score at 10.

31




32



Chapter 6

Conclusion

The thesis analyzed and compared proposed strategies for prediction accu-
racy improvement on low-resolution images: data-augmentation and super-
resolution. Data-augmentation adapts a CNN age and gender classifier to LR
images. The super-resolution enhances the image resolution using cGAN and
subsequently predicts age and gender using a CNN classifier trained purely
on high-quality images. Unlike in the case of the data-augmentation, the
super-resolution method provides an interpretation of produced attributes
(age and gender), because the results can be confronted with high-resolution
image.

We tested 4 alternatives of super-resolution strategy. Connecting cGAN
and CNN only for testing phase without joined training. Training jointly both
networks end-to-end or with fixed weights of either network. The experiments
with super-resolution method showed that best performance gave a connection
with fixed weights of CNN age and gender classifier.

When comparing the super-resolution, the data-augmentation and the
baseline method, it showed, that both proposed strategies for improving
prediction accuracy on LR images outperformed the baseline method. Super-
resolution had slightly better performance than data-augmentation method.

Despite promising results, we are aware that full potential of the cGAN
super-resolution was not fully exploited. The training of cGAN does not need
labeled images, however, due to limited computational resources we trained
from rather modest dataset of unlabeled 2419 images and of 67k images from
the labeled dataset.

In the same spirit, we trained from mixed resolutions instead of training
several scale-specialized CNNs. That was probably sub-optimal, since in the
most real-world applications, the real resolution is often known.
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Appendix A
CD contents

® Project_ LaTex - folder containing LaTex source codes, images and graphs

® thesis_ subrtade.pdf - The thesis in pdf format.
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