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Abstract

The goal of this thesis was to evaluate
how well can deep reinforcement learn-
ing (deep RL) methods perform in the
task of controlling the heating system
in a building. We had focused on the
deep Q-learning algorithm. The algorithm
was tested in a simulation of a building
equipped with boiler heating, written us-
ing MATLAB/Simulink. We had com-
pared the efficiency of our agents against
the rule based thermostat solutions. Our
results suggest that the deep RL meth-
ods are able to control the heating system
in the building more efficiently than the
traditionally used rule based thermostat
solutions.

Keywords: Deep reinforcement
learning, Deep Q-Network, Optimal
control, Building thermoregulation

Supervisor: Mgr. Viliam Lisý, Ph.D.

Abstrakt

Cílem této práce bylo zjistit účinnost ří-
zení vytápění budovy pomocí posilova-
ného učení s neuronovými sítěmi. Naše
algoritmy byly testovány na simulaci bu-
dovy vytápěné pomocí ústředního topení,
která běžela v programu MATLAB/Si-
mulink. Z algoritmů na posilované učení
s neuronovými sítěmi jsme se zaměřily
zejména na deep Q-network algoritmus.
Účinnost deep Q-Network algoritmu jsme
porovnali vůči účinosti termostatů s pevně
definovanými teplotami pro zapnutí a vy-
pnutí vytápění. Naše výsledky ukázaly,
námi implemntovaný algoritmus je scho-
pen lépe řídit vytápění budovy, než ter-
mostaty s pevně definovanými teplotami
pro zapnutí a vypnutí vytápění.

Klíčová slova: posilovaného učení s
neuronovými sítěmi, Deep Q-Network,
Optimální řízení, termoregulace budovy

Překlad názvu: Řízení vytápění
budovy pomocí posilovaného učení s
neuronovými sítěmi
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Chapter 1

Introduction

The goal of this work was to efficiently control the heating system of a
building using deep reinforcement learning. Deep reinforcement learning is
a combination of reinforcement learning which is a computation approach
which learns an optimal policy for given problem by interacting with the
environment [SB18, p. 10–11] and deep learning which allows to train an
artificial neural network (ANN) that can automatically learn task-relevant
features [SB18, pg.361-362]. For obtaining the optimal policy for our agent
we will be using the deep Q-Network algorithm [MKS+15]. This algorithm
allows the agent to make judgments about the value of each action, that can
be executed in given state, and tries to optimize the long term reward of
the agent. The values for actions are approximated using artificial neural
network. The overview of deep reinforcement learning and the reasons behind
using deep Q-Network are documented in Chapter 2.

Our agents were tested on a simulation of building equipped with a boiler
heating. The simulation of the building had been provided for our work
by Honeywell. The simulation accurately reflects a physical example of a
heating system in the building. During the simulation the agent periodically
receives data regarding the current state of the building. The data includes
for example the current room temperature, the outside temperature and
the temperature of water in the heating system. Based on the data the
agent makes decision about turning the heating system on or off. The exact
specifications of our problem are provided in Chapter 3. The agent chooses the
actions in order to minimize the difference between the room temperature and
the predefined temperature for the room. In this work we have compared the
performance of a deep Q-Network algorithm against the rule based thermostat
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1. Introduction .....................................
solutions. Our hypothesis was that the Q-Network system could better react
to ambient temperature changes and thus provide better control of the room
temperature. The reasons why are specified in the section 3.1 and then
experimentally confirmed in Chapter 7. The simulation of the building was
written in MATLAB and Simulink. The Chapter 4 provides a broad overview
of the capabilities of the building simulation.

For training of the deep Q-Network algorithm the Open AI Baselines
framework[DHK+17] was used. The framework is written in Python and
is using TensorFlow library for computations. To enable the use of Open
AI Baselines framework it was required to solve the problem of interprocess
communication between Python and MATLAB. In our work the TCP/IP
protocol for interprocess communication was used. The reasoning behind
this decision is documented in Section 4.2. A Python environment which is
capable of controlling the simulation process in Simulink had been created.
The environment is compatible with the Open AI Gym [BCP+16] Toolkit.
The exact specifications of the environment are shown in Chapter 6. This
chapter also contains a discussion about the features which were used for
training the algorithm.

The evaluation methodology used in the experimental part of our task,
along with an overview of the impact of the hyper-parameter setting on the
performance of the neural network are provided in Chapter 7. In our work
we had experimentally evaluated the effectiveness of using deep Q-Network
for heating regulation of the building. Our results have shown that the deep
Q-Network is a suitable solution for this problem. We had also statistically
confirmed that our solution is able to beat the rule based solutions. The
preceding statements are shown in Chapter 7.

2



Chapter 2

Theoretical background for our work

In order to explain the role of using function approximation in reinforcement
learning a brief introduction to the reinforcement learning is given.

2.1 Reinforcement learning

Reinforcement learning is a method used for solving problems which are de-
fined as finite Markov decision processes(MDPs). Markov decision processes
are used to formalize the problem of sequential decision making, where the
future states of the process depend only on the current state. This property
of MDPs is known as the Markov property. Because the future states of the
Markov decision process are affected by the current state, a delayed reward
needs to be taken into consideration in order to solve MDPs optimally. MDPs
are defined as a 5-tuple (S,A,P,R,γ), where S is a finite set of states, A is a
finite set of actions, P is the probability of taking action a in state st and
ending in state st+1. R is the reward obtained after transitioning from state
s to state s’. γ is the discount factor used for defining the trade-off between
immediate and delayed rewards.

The purpose of the reinforcement learning is to calculate an unknown
Markov decision process of an environment by interacting with it and making
an optimal policy for the agent to follow based on the calculated Markov
decision process. The goal of the agent’s optimal policy is to maximize the

3



2. Theoretical background for our work...........................

Figure 2.1: Interaction of the agent with the environment, taken from [SB18,
p. 38]

long term reward of the agent. The term agent refers to the part of the
algorithm interacting with the environment. Agent receives information from
the environment about the state St ∈ S it is currently in and based on the
information received selects an appropriate action At ∈ A(s) to perform.
After performing the action, the agent receives a numerical reward, Rt+1 ∈ R
and information regarding the state St+1 it is in after performing the action.
The agent chooses which action to perform based on his current policy π.
Agent’s policy defines what action will the agent perform in each state. The
optimal policy tries to get the agent into states with the highest expected,
accumulative, discounted reward. The state value function vπ(s), represents
the value of the accumulative sum of rewards the agent will obtain if it is
in the state s and follows the policy π thereafter. We will also define the
Q function qπ(a, s), which represents the value of the accumulative sum of
rewards of taking action a in state s and thereafter following policy π.

2.2 Function approximation

Function approximation is used in reinforcement learning when the environ-
ment state space is continuous, or too large to be computed effectively. In
these cases we are unable to calculate the exact value for each state separately.
Instead of trying to calculate the value for each state separately we will
use an approximation function which predicts the value of the state based
on the input provided. By using approximation function we are able to
effectively reduce the state space of the environment. Another advantage
of using the approximation function is that our algorithm will be able to
evaluate the value of a state which it had never encountered before based
on the experience obtained from other states it had visited before. For the

4



.................................... 2.3. Deep learning

approximation function various algorithms can be used. In our work we have
focused on deep reinforcement learning which is using deep neural network
for function approximation. Deep reinforcement learning is a rapidly evolving
area and it is beyond the scope of this thesis to provide a full overview of all
of the existing algorithms. In our work we will focus on the deep Q-Network
algorithm [MKS+15] and the Asynchronous advantage actor-critic [MBM+16]
algorithm. These two algorithms were one of the first algorithms used in deep
reinforcement learning and both of them are still in the area of active research.
For full overview of the deep reinforcement learning field we recommend the
following paper [Li17].

2.3 Deep learning

2.3.1 General overview

The neural networks are algorithms that are capable of learning to perform
complex tasks such as playing games at human level performance or driving
cars. They are able to do so by automatically recognizing patters in the data
provided to them. The neural network is made up from a set of neurons
which are interconnected with each other. A single neuron is capable of doing
a simple logical reasoning and by combining multiple neurons together the
neural network is able to solve complex problems. The logical reasoning is
achieved by assigning weight to each neural network connection. During each
step of the training data is fed into the network and the network outputs
it’s solution for the task. The solution provided by the neural network is
then compared to the expected result of the neural network. The difference
between expected output and provided output is measured using loss function.
Then the impact of each neural connection on the final reward is measured
and it’s weight is updated using gradient descend to minimize the loss. The
following paragraphs contain the technical details of the deep neural network
learning process described in this paragraph.

2.3.2 Neuron

Neuron is the basic building unit of a neural network, shown in Figure 2.2.
Neuron takes in n inputs x1, x2, ...xn and multiply them by their respective
weights w1, w2, ....wn. The inputs multiplied by their respective weights are

5



2. Theoretical background for our work...........................
then summed together and a bias constant b is added to the sum. The sum
is denoted as z, and is used as an input for the neuron activation function δ,
which output is the output of the whole neuron, denoted y. The preceding
statements are displayed in Equation 2.1.

y = δ(b+
n∑
i=1

wixi) (2.1)

x1

x2

x3

b

∑
δ y

w1

w2

w3

w4

Figure 2.2: Neuron unit with three inputs x1, x2 and x3 and a bias unit b

2.3.3 Activation functions

There exists a wide variety of different activation functions which can be used
in neural networks. The two most commonly used activation functions are
ReLu [GBB11], defined in Equation 2.2 and sigmoid, defined in Equation 2.3.
The activation functions are displayed in Figure 2.3. The ReLu function is
currently considered the default activation function to use in neural network.
The main advantage of using ReLu over sigmoid is that ReLu doesn’t suffer
from the vanishing gradient problem. However the problem of dead neurons
can occur, for further information on the differences between activation
functions please read the paper where ReLu function was introduced in
[GBB11]. By using activation function we are adding non-linearity to our
neural network, this allows us to connect multiple neurons together to increase
the complexity of the problems that we are able to solve using neural networks.
If the non-linearity hadn’t been added to the neural network, we wouldn’t be
able to approximate non-linear function, because combining multiple linear
function together results only in an another linear function.

f(x) = max(0, x) (2.2) f(x) = 1
1 + e−x

(2.3)
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Figure 2.3: The two most commonly used activation functions. The ReLu
function is shown on the left. The Sigmoid activation function is shown on the
right

2.3.4 Fully connected neural network

An example of a fully connected neural network is depicted in Figure 2.5. The
neural network is called fully connected because every neuron is connected
with each neuron in the previous layer. The columns of neurons are referred
to as the layers of the neural network. The term input layer is used for the
first layer of the neural network. The last layer is referred to as the output
layer. The layers in between the input layer and output layer are called the
hidden layers.

x1

x2

x3

x4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.5: An example of a simple 3 layered fully connected feed forward neural
network

2.3.5 Gradient descent

In neural networks the optimal values for the weights are usually found
using the Gradient descent algorithm. Gradient descent is an optimization

7



2. Theoretical background for our work...........................
technique used to find the minimum of a function. For finding the minimum
of a function the gradient, which represents the direction of the greatest
increase of the value of the function, needs to be calculated. The gradient
corresponds to the first-order derivation of the function. After finding the
gradient we can minimize the value of function by taking a step into the
opposite direction of the gradient. A step is taken by multiplying the gradient
by a constant α, referred to as learning rate and subtracting the result of the
multiplication from the function value. An example of using gradient descent
on a function of one variable is shown in Figure 2.6. If the learning rate is
too high divergence occur. If the learning rate is set too low the learning will
be too slow.

Figure 2.6: An example of gradient descent performed on a function of one
variable, taken from [Sur18]

2.3.6 Neural network computation

The neural networks starts with a randomly initialized weights, we recommend
using Xavier initialization [GB10], this initialization provides a initialization
of the weights with zero mean and unit variance. The choice of neural network
weight initialization influences the stability and performance of the algorithm.
After the weights are initialized, the train data are fed into the neural network
and the output of the neural network is computed using forward propagation.
Forward propagation speeds up the computation by placing the parameters
w and b of neurons which share the same layer, into a matrix. Then by using
matrix multiplication the parameters are multiplied with their corresponding
inputs. The activation function is then applied to every element of the final
matrix. This allows us to calculate the output of all neurons in one layer
using two operations. Based on the output of the final layer a loss of the
neural network is calculated using Equation 2.4. The choice of loss function
depends on the problem we are trying to solve using the neural network. This

8



.................................... 2.3. Deep learning

concrete function is used in the task of classification, which is used as an
introductory topic to neural networks, where y represents the label of the
image generated by neural network and ŷ represents the label of the image in
the test data.

E(y, ŷ) = 1
2(y − ŷ)2 (2.4)

Based on the loss of the neural network the weights are updated in order
to minimize the loss. This is done by using the gradient descent algorithm
introduced in Section 2.3.5. The computation of gradients used for gradient
descent are computed using backpropagation. Backpropagation is using the
chain rule to calculate the gradients. Chain rule is used in mathematics to
compute the derivative of the composition of two or more functions. Neural
network is a composition of functions where each neuron is a function. The
backpropagation algorithm computes the gradients starting from the output
layer and ending in the input layer. By starting the computation of gradients
from the back of the neural network we are able to use the values of gradients
calculated in previous layer to speed up the computation. After computation
of gradients we can apply gradient descend. The last step is to update the
weights of the neural network. After updating the weights if the result of
the neural network isn’t sufficient, another cycle of neural network training
is executed, this continues until convergence or the predefined number of
training steps is exceeded. The end of neural network training varies from
implementation to implementation. The pseudocode for algorithm used to
train neural network is shown in Algorithm 1. For more details on deep
learning we recommend reading the book [GBC16].

input :Training data
output :Updated neural network
initialize the weights in neural network
for episode = 1 to episode = training length do

Perform forward propagation to compute the output of the neural
network
Compute the error from the output layer
Compute the gradient using backpropagation
Update network weights by substracting the gradient multiplied by
the learning rate

end
Algorithm 1: A pseudocode for the algorithm which is used for the training
of the neural network
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2. Theoretical background for our work...........................
2.4 Deep Q-Network

2.4.1 Algorithm description

The first approach is using the deep Q-Network (DQN)[MKS+15]. The deep
Q-Network learns to approximate the value of the Q-function. Q-function
represent the accumulative, discounted reward of performing an action a in
state s. In each step the algorithm performs the action with the highest
value of Q-function. During training an ε-greedy exploration strategy is used.
The ε-greedy exploration strategy performs a random action in each state
with probability ε, if the random action is not performed the action with the
maximal Q-value is performed. An alternative for ε-greedy exploration policy
is for example the exploration strategy described in paper [PHD+17], which
explores the state space by adding noise to the neural network of the agent.
After action is performed the transition is stored inside the experience buffer.
The transitions stored in the experience buffer are then used for training
of the neural network. During each training a minibatch of transitions is
randomly selected from the experience buffer. An alternative to selecting the
transitions randomly is to use prioritized replay which selects the transitions
based on the Temporal Difference error. For more information on prioritized
replay please refer to the paper [SQAS15]. After choosing the transitions
for the algorithm to train on we estimate the Q-value of the state sj and
action aj recorded in the transition using the neural network. We will then
approximate the value of the state sj+1 by taking the maximum Q-values
from all the actions that can be performed in the state sj+1, the reward
rj from the transition is then added to the value of the state sj+1, we will
denote this variable yj . After obtaining the value of action aj in state sj
and the value of variable yj we can subtract these two values to obtain error
in estimation of our network on Q-value of action aj in state sj . We then
update the parameters of the neural network by performing the gradient
descent. The preceding algorithm description is written using pseudocode in
Algorithm 2.
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................................... 2.4. Deep Q-Network

input : the pixels and the game score
output :Q action value function (from which we obtain policy and select

action
Initialize replay memory D
Initialize action-value function Q with random weight θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1 to M do

Initialize sequence s1={ x1} and preprocessed sequence φ1 = φ(s1)
for t = 1 do T do

Following ε-greedy policy, select

at =
{
a random action with probability ε
argmaxaQ(φ(st), a, θ) otherwise

Execute action ai in emulator and observe reward rt and image
xt + 1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
\\experience replay
Sample random minibatch of transitions (φj , aj , rj , φj+1) from D
set yj ={
rj , if episode terminates at step j + 1
rj + γmaxa′Q̂(φj+1, a

′, θ−), otherwise
Perform a gradient descent step on (yj −Q(φj , aj ; θ))2

\\periodic update of target network
Every C steps reset Q̂ = Q, i.e, set θ− = θ

end
end

Algorithm 2: A pseudocode of the deep Q-Network algorithm, taken from
[MKS+15], where the deep Q-Network had been introduced, in our work
the data about the current state of the building will be used as input, the
neural network used in our work will be feed forward fully connected neural
network. In our work preprocessing of the states is unnecessary, because we
are not receiving data from raw input

2.4.2 Algorithm properties

Deep Q-Network is an off-policy method which means that the network is
able to train even on data which weren’t produced by it’s current policy. This
makes it possible to train the neural network on data generated by another
algorithm, or even on data generated by examining the human solution for
the given problem. Recent progress in the area of deep reinforcement learning
has shown that by combining extensions of DQN the algorithm is able to
outperform the A3C algorithm[HMvH+17] mentioned below.
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2. Theoretical background for our work...........................
2.5 Asynchronous advantage actor-critic

The second algorithm considered was asynchronous advantage actor-critic
(A3C)[MBM+16].The algorithm learns both a policy and a state-value func-
tion, where the value function is used to speed up the learning. In the
paper where the A3C algorithm was introduced the authors proved that for
Atari games A3C algorithm is able to learn faster and perform better than
or comparably to vanilla deep Q-Network[MKS+15]. A3C algorithm is an
on-policy method which means that it is able to learn only from the data
produced by it’s own policy. Another property of A3C is that the stability of
the algorithm is influenced by the number of actors employed in parallel. A
detailed description of A3C algorithm is not provided because the algorithm
wasn’t used in the project. For a full description of the algorithm please visit
the paper that introduced it.

2.6 Comparison of algorithms considered for our
problem

We found that the deep Q-Network algorithm is better suited for our prob-
lem than the A3C algorithm. The main deciding factor when considering
which algorithm to use was the fact that the deep Q-Network is an off-policy
method. This means that in further work we could combine the training data
obtained in the simulation with the data obtained in real life situations to
make the results of our algorithm more realistic. When considering the real
life application of our algorithm, the stability of A3C training is dependent
on the number of the agents run in parallel. Because of this property the
algorithm would need to be applied to multiple buildings at once to achieve
optimal results. In our case it also spares us from the need to implement
parallelization for our simulation of the building.
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Chapter 3

Problem definition

The goal of this thesis was to evaluate how well can deep Q-learning perform
in the task of controlling the heating system in a building. The performance
of our algorithm was compared against the basic rule based thermostat so-
lutions. The agent was trained on a simulation of a building equipped with
a boiler heating, over which the agent had full control. The goal of the
agent was to keep the temperature inside of the room as close to the user
defined temperature as possible. The inside temperature in our simulation is
influenced by the weather outside of the building. The temperature data set
for weather outside of the building is based on the weather measured in Basel,
Switzerland. The building isn’t equipped with any cooling system. Because
of this, we had limited the examples of the outside temperatures only to days
when the use of the heating system is required.

In our simulation the predefined desired room temperature was set to 16
degrees C during hours when the building is unoccupied and to 22 degrees
C when it is occupied. The testing period of the simulation was set to 1
day. Our agent periodically receives data regarding the current state of the
system during the simulation. The default frequency set for data acquisition
had been set to 2,5 minutes, which should provide the agent with enough
information in order to control the heating system of the building efficiently.
After every action the agent receives a negative reward calculated from the
quadratic difference between the predefined and the current temperature.
An example of the agent controlling the heating system of the building is
displayed in Figure 3.1.
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3. Problem definition ..................................
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Figure 3.1: Visualized behavior of the rule based thermostat solution during
the simulation, we can observe that the thermostat is able to control the heating
in the building effectively, however not optimaly. The thermostat is unable
to make an optimal transition when the value of the predefined temperature
changes. Another deficiency is that the rule for turning the heating on and off
can’t be decided in the case of the rule based thermostat only from the difference
between the predefined temperature and the current temperature. Lastly we can
observe a domain specific problem between the time steps 200 and 300 when the
thermostat is trying to increase the temperature, however there are small drops
in the temperature, this is caused by the safety measure implemented inside of
the boiler which prevents the boiler from overheating by automatically turning
the boiler off when the temperature of the supply water reaches 70 ◦C.

3.1 Problem analysis

We have started by examining the capabilities and limitations of the rule
based thermostat solutions. As we can see the thermostat is able to control
the temperature in the building quite effectively shown in Figure 3.1. However
the policy could still be improved. We can see that the thermostat is unable
to make optimal transition when the value of the predefined temperature
changes. Another deficiency is that the rule for turning the heating on and
off can’t be decided in the case of the rule based thermostat only based
on the difference between the predefined and current temperatures. This

14



................................... 3.1. Problem analysis

basic system does not take into account the fact that the heat required for
keeping the optimal room temperature is greatly influenced by the outside
temperature and by the temperature of the water in the heating system. We
believe that by using deep reinforcement learning we will be able to train
the agent which will be able to take into consideration all these dependent
variables mentioned above, when deciding the optimal action for the agent to
make. By using deep neural networks the agent should be able to act based
on non-linear features of the dependent variables.
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Chapter 4

Model of the building

4.1 Model Information

For purpose of testing deep reinforcement learning algorithms a physically
accurate simulation of a building, equipped with boiler heating had been
provided by Honeywell. The following paragraphs provides an overview of
the capabilities of the Simulation and the underlying construction details of
the simulated building.

The building consists of two rooms. For each room information about
the room temperature, furniture temperature, perimeter temperatures, heat
losses and sum of heat flows can be obtained. Each room has 4 walls. In our
model we have 3 different types of walls: External wall, Neighbor wall and
Internal wall. Monitoring information from walls will allow our algorithm
to use external weather conditions to its benefit. It also allows model to get
better information about the heat flows thorough the building.

Rooms are equipped with heating radiators. Room A is heated by one
radiator and Room B is heated by two radiators. We will monitor water heat
content utilization and zone heat flow is monitored. The water is distributed
into heating system from the Pump. From the pump we get information
about its flow(kg/h), pressure(kPa) and the pump speed. Water from the
pump is first sent to gas heating boiler. Gas boiler warms up the water to the
required temperature and then the water continues in to the system. During
the simulation the gas boiler can be turned on/off during simulation. On
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4. Model of the building .................................

Figure 4.1: Model of the building used in the Simulation

gas boiler we can monitor the gas consumption(W), heat flow(kW), supply
water temperature(◦C) and return water temperature(◦C). The gas boiler
has active limiter on the supply water temperature. When the supply water
temperature exceeds 70 degrees, the gas boiler is turned off.

A basic implementation of a functional thermostat was included with the
model. It tries to keep the temperatures in rooms close to the predefined ones
by activating and deactivating when the difference between the temperatures
exceeds 0.2 degrees. We will use this thermostat as a baseline for our algorithm
to beat.

The model also allows us to specify different types of buildings. However
in our work we will use only one type building with fixed construction details.
We have the option to choose the height of ceiling, size of the building,
construction(wall thickness and heat capacity), insulation, and a type of
radiators.

Another factor we can decide is how much the gas boiler corresponds to the
reality. We can use the physically accurate gas boiler model or the physically
inaccurate model. The main disadvantage of using the realistic model is that
it has 10 times longer execution time. This makes the realistic model difficult
to use for us, because the deep reinforcement learning requires a large number
of samples in order to train the agent. Because of the limitations of deep
reinforcement learning we will be using only the physically inaccurate model
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............................. 4.2. Model implementation details

of the gas boiler.

4.2 Model implementation details

The model is written using Simulink and MATLAB. Simulink is a simulation
and model-based design environment for dynamic and embedded systems,
integrated with MATLAB. For the usage of the model first a MATLAB
function (in our project init_fce.m) needs to be executed. This function
initializes all the variables needed by the model. In the function we can also
specify which type of building we want to use in our simulation. The body of
the function contains command sim. This command runs the simulation in
Simulink. We use the FastRestart option in our simulation. This leads to a
significant speedup of the program, because the Simulink model is compiled
only once instead of compiling it every time command sim is used.

My code for data manipulation is located within Enabled and Triggered
Subsystem block. This block is activated each 150 time steps and thus saves
computation power. 1 time step in simulation corresponds to 1 second in
real life. For getting the data from an another subsystems Goto and From
blocks were used. These blocks are used for the communication between the
subsystems in Simulink. During the implementation of the Simulink code we
have followed the programming practices used in the model of the building.
The reinforcement learning agent which optimizes the central heating system
of the building access the data from the sensors 2,5 minutes, and based on
the data it decides what action to take. The RL agent is implemented using
Python whilst the Simulation is written in Simulink/MATLAB, thus we
need to develop a method for the inter-process communication between the
programming languages.

4.3 Python Simulink interface

Because the model of the building is written in Simulink/MATLAB and our al-
gorithm controlling the heating system is written in Python we needed to solve
the problem of communication between these two programming languages.
By using Python as the programming language for the implementation of
the algorithm which controls the heating system a variety of frameworks for
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4. Model of the building .................................
deep reinforcement learning became available to us, the DRL frameworks are
discussed in Chapter 5. In the following paragraph the different methods for
the problem of inter-process communication between programming languages
are discussed.

4.3.1 MATLAB/Python API

The first choice for Python/Simulink communication was the official MATLAB
API for Python. The MATLAB API for Python provides a package for Python
to use MATLAB as a computational engine. After implementation was done
we had found a critical error which made this solution unusable in our project.
The MATLAB API for Python was unable to exchange information regarding
the Simulink simulation while the simulation was running, the information
was exchanged only after the simulation had terminated. In our project the
agent needs to obtain the data during the simulation in order to be able to
control the heating system of the building, therefore this solution is unusable
for our project.

4.3.2 Message passing

This method allows two processes to communicate with each other, by es-
tablishing a communication link between them. The Transmission Control
Protocol(TCP) will be used for communication between Python and MAT-
LAB. The TCP protocol offers a reliable, ordered, and error-checked delivery
of the data. All properties of TCP are needed in our project. In the im-
plementation of message passing used in the project the server is written
in Python whilst the client is written in MATLAB. After message passing
was implemented the time to complete the simulation of one day increased
from 1.05 second to 2.45 seconds. The increase in computational time was
expected because the connection needs to verify that all the data sent using
TCP have been received correctly. The speed of the message passing method
for data sharing turned out to be sufficient solution for our problem and will
be used in our project.
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............................... 4.3. Python Simulink interface

4.3.3 Shared memory

Shared memory allows two processes to communicate by writing data into the
random access memory (RAM). This method for inter-process communication,
should achieve the fastest transfer speed out of the methods mentioned above.
If in the future we would want to increase the speed of the execution of
the model, implementing shared memory is a viable method to do so. The
reason behind not using shared memory is that the shared memory imple-
mentation is system dependent. This could turn out to be a problem when
executing the computations on a computational server, such as MetaCentrum.
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Chapter 5

Frameworks used

5.1 Open AI gym

Open AI Gym is a toolkit for developing and comparing reinforcement learning
algorithms [BCP+16].The Open AI Gym Toolkit offers a wide variety of
environments with a common interface with which the agent can interact.
Most Python frameworks with implementations of deep reinforcement learning
algorithms are using Open AI Gym interface for the communication between
the agent and the environment. The framework also allows to add user
created environments if they are compatible with it’s interface. In our work
we had implemented an Open AI Gym environment which controls the state
of the MATLAB/Simulink simulation of the building.

5.2 Deep reinforcement learning frameworks

The implementation of deep reinforcement learning algorithms can be very
challenging because even the slightest mistake in the implementation of
the algorithm can dramatically affect the performance it’s performance. A
thorough testing needs to be done in order to prove that the implementation
of the algorithm is correct. In order to speed up the development time of
our solution we had chosen to use a framework with implementations of deep
reinforcement learning algorithms and modify it to suit our problem.
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5. Frameworks used ...................................
5.2.1 Open AI Baselines

In our project we have decided to use the Open AI Baselines framework
[DHK+17]. This framework uses TensorFlow library for the neural network
related computations. The interaction of the agent with the environment
is written in Python. The available deep reinforcement learning algorithms
at the time of writting were DQN, A2C, ACER, ACKTR, DDPG, GAIL,
PPO1, PPO2 and TRPO. As mentioned in Chapter 2, we will be using DQN
algorithm in our work. The Open AI Baselines includes along with the vanilla
version of the algorithm also several extensions. The extensions are Double
DQN [vHGS15], DQN with prioritized experience reward [SQAS15] and DQN
with exploration using parameter noise [PHD+17]. In our work we had used
the Double DQN extension.

5.2.2 Open AI Baselines alternatives

Open AI Baselines contains the most implementations and extensions out of
the algorithms used for deep reinforcement learning. The authors actively
add new deep reinforcement algorithms when they are introduced. When
considering a framework to use for deep reinforcement learning we recommend
using the Open AI Baselines framework. One of the shortcomings of the
framework is that the computational logic is spread out between Python and
TensorFlow this choice impairs the readability of the code. The framework
TensorForce [SKF17] addresses this limitation by moving all of the computa-
tional logic inside the TensorFlow. Another alternative to Open AI Baselines
is the deep reinforcement learning extension of Chainer framework [TOHC15].
This framework uses Chainer for the neural network computations. Chainer
framework is written purely in python which could be preferred by some
programmers to the option of writing the code in TensorFlow.

5.3 Metacentrum

In order to search the hyper-parameter space of the neural networks ade-
quately and to statistically confirm our results our computational resources
turned out to be insufficient. In our work we have used for computations the
computational resources provided by the National Grid Infrastructure Meta-
Centrum. We had developed bash scripts which allow the user to schedule
multiple jobs into the MetaCentrum Grid Infrastructure for computation. The
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scripts for computation using the National Grid Infrastructure MetaCentrum
are included on the DVD.
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Chapter 6

Our Environment

6.1 Feature selection

In this section the choice of features used by our agent is discussed. The
ranges of the features are documented in Section 6.2

. Current temperature - based on the value of the current temperature
and predefined temperature the agent should be able to tell whether to
turn the heating on or off.. Predefined temperature - the agent should strive to keep the current
temperature as close as possible to the predefined temperature.. Supply water - gives the agent information about the current temperature
of water being sent into the radiators. The information about supply
water allows our agent to predict how the temperature will change in
the next state. For example if the current temperature is 21.9 and the
predefined temperature is 22 and the temperature of supply water is close
to 70, the agent can turn off the heating because in next time step the
current temperature will raise because of the supply water and keeping
the boiler on for another time step would result in overheating which
can be seen in rule based thermostats. Also as mentioned in Chapter
4 the boiler is equipped with a safety control, which turns the heating
automatically off if the supply water temperature reaches 70 degrees.. Return water - provides information about how much heat is sinked
during heating. Also the water needs to be heated again after returning
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6. Our Environment ...................................
from the system. Based on the temperature of the return water our
agent can calculate the amount of heat it can provide to the system..Gas consumption - in future work the gas consumption will be incor-
porated into the system. Neural network should be able to evaluate
during the early stages of the training that this feature does not affect
the system and set it’s weight to 0.. Future predefined temperature - this feature allows the agent to react
to the expected temperature in future and prepare in advance to make
a smooth transition between the two different predefined temperatures.
Future predefined temperature can be given to the algorithm in two
different forms. The first form is giving the current time of the simula-
tion. The second choice is giving the algorithm value of the predefined
temperature x time steps in advance. The main advantage of the first
form is that it contains more information about the system, another
advantage is that the information extends the input space only by one.
The main disadvantage is that it is harder for the algorithm to process
the feature properly. We will prove this in Section 7.6. The second
choice is easier for the algorithm to interpret because it acquires only
two values during the training. Where the neural network can increase
the Q-value of turning the heating on when the current temperature
is lower than the predefined temperature x steps ahead, and increase
the Q-value of turning off when the current temperature is higher than
predefined temperature x steps ahead. The disadvantage is that the
agent needs to know the values for predefined temperature for 5,10,15
.... steps ahead to be able to choose the optimal time for changing the
temperate, during every weather profile. In the experimental part both
of the methods were tested.. Outside temperature - the outside temperature affects the inside tempera-
ture. When the outside temperature is lower than the inside temperature,
the temperature in the room decreases, also the heating system needs to
produce more heat to keep the room temperature at the user predefined
value. On the other hand when the outside temperature is high the
thermostat could overestimate the heating required and increase the
temperature outside of the user comfort zone. The outside temperature
should help the agent to learn a strategy which fits the outside weather
temperature the most.

6.2 Overview of environments used for learning

Our algorithms were tested in two different environments. The environments
differ in the features available to the agent. The respective features and
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their ranges are documented in the tables below. The Table 6.1 provides
an overview of the features available to the agent when the building version
0 environment is used for the training, Table 6.2 shows a summary of the
actions available to the agent during training, Table 6.3 displays the settings
of the simulation. Table 6.4 shows the list of features that are available to
the agent when the building version 1 environment is used for the training of
the agent.

6.2.1 Building version 0 information

Number Observation Min value Max value
0 Current temperature -20 40
1 Current predefined temperature 16 22
2 Predefined temperature 12.5 minutes in advance 16 22
3 Predefined temperature 25 minutes in advance 16 22
4 Predefined temperature 37.5 minutes in advance 16 22
5 Predefined temperature 50 minutes in advance 16 22
6 Predefined temperature 62.5 minutes in advance 16 22
7 Predefined temperature 75 minutes in advance 16 22
8 Predefined temperature 87.5 minutes in advance 16 22
9 Predefined temperature 100 minutes in advance 16 22
10 Predefined temperature 112.5 minutes in advance 16 22
11 Predefined temperature 125 minutes in advance 16 22
12 Water supply temperature 0 70
13 Water return temperature 0 70
14 Gas consumption 0 30
15 Outside temperature -20 40

Table 6.1: Building version 0 overview of the features used for training

Number Action
0 Turn boiler off
1 Turn boiler on

Table 6.2: Building version 0 overview of the available actions

Number of Days per episode Number of time steps in episode Time step in minutes
1 576 2,5

Table 6.3: Building version 0 overview of the simulation settings
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6.2.2 Building version 1 information

Number Observation Min value Max value
0 Current temperature -20 40
1 Current predefined temperature 16 22
2 Current time step 0 576
3 Water supply temperature 0 70
4 Water return temperature 0 70
5 Gas consumption 0 30
6 Outside temperature -20 40

Table 6.4: Building version 1 overview of the features used for training

6.3 Weather analysis

The outside temperature is based on the temperatures measured in Basel,
Switzerland during years 1985 to 2017, the data were acquired from the
website [Met18]. The data contains hourly measurements of the temperature
in the provided area. The building simulation requires the data input to be
continuous. In order to make the measurements continuous we linearly inter-
polated between them. The data from the year 2018 weren’t used to prevent
an unequal distribution of the weather, caused by adding only the winter
weather profiles from the year 2018. All of the weather profiles during which
the average day temperature exceeded 16 ◦C were excluded from the training
data set. This decision was made because we are testing the performance of
our agent only on days when the heating is required.

In order to get the best performance of our agent it is important to
train the agent in every possible weather profile it can encounter during
a real life situation. This will allow us to make general conclusions about
the performance of the agent. Another important aspect influencing the
performance of our agent is the distribution of the weather profiles during
the training. If we would train our agent on weather profiles taken from each
season equally we would overfit the policy for certain weather profiles. This
could lead to better averaged rewards. However the agent’s strategy on the
weather data which are under represented could lead to an unpredictable
behavior. To prevent this we took the data samples of ambient temperature
for each day and analyzed the frequency of their average temperature and
grouped the data in 8 bins of equal range, which can be seen in Figure 6.1a.
In the next step we have created experimentation data set for training of our
algorithm where the frequency of the temperature taken from each bin is
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(a) : Entire dataset (b) : Train dataset

Figure 6.1: A histogram of the average temperatures for each day, on the left
side of the picture the temperatures from the entire dataset are used, on the
right side of the picture the temperatures from the training dataset are used.
The average temperatures from the training dataset are equally distributed to
stabilize the performance of our algorithm.

(a) : Entire data set (b) : Test data set (c) : Validation data set

Figure 6.2: A visualization of the weather during the day, on the left side the
weather for the entire data set is visualized, in the middle is the data set used
for training and on the left is the data set used for validation.

equally represented, this can be seen in Figure 6.1b . This data set helped us
to stabilize the performance of our algorithm on weather conditions which
are under represented in the whole data set. The weather profiles during day
for the entire dataset can be seen in Figure 6.2a, the weather profiles used for
validation are plotted in Figure 6.2b and the weather profiles used for testing
are depicted in Figure 6.2c. By using our algorithm we had managed to
generate the training and the validation data sets which represent accurately
the whole weather dataset.

6.4 Thermostat overview

In order to measure the performance of our agents we have implemented a rule
based thermostat algorithm in Simulink. The algorithm receives information
continuously during the simulation and reacts based on the difference between
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the current temperature and the predefined temperature 5 minutes ahead of
the current time. If the difference between the temperatures exceeds 0.2 ◦C
the algorithm turns the heating On/Off. This solution was able to achieve
the reward of -678 in the simulation. We had also implemented a rule based
thermostat in Python which receives information about the environment with
the same frequency as our agent. The agent was able to receive the reward of
-710. For testing the implementation of the thermostat written in Simulink
will be used.

6.5 Reward function

For the computation of the reward obtained by the agent after each step we
are using the following Equation 6.1.

reward = −(current_temperature− predefined_temperature)2 (6.1)

By making the temperature difference quadratic, we are penalizing our
algorithm more if there are large differences in the temperatures. This should
make the algorithm prefer making more small mistakes to making one large
mistake. This behavior is preferred in real life, because large fluctations in
the temperatures are more noticeable by the humans.
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Chapter 7

Experimental results

7.1 Training and Testing

The duration of the training was set to 360 episodes. Our agents were tested
in two different environments which were specified in Section 6.2. After every
60 training episodes the agent was tested on 48 weather profiles. During
the testing the agent was acting only based on his policy and there was no
randomness in his actions. The testing episodes weren’t counted into the
duration of the training. The average reward over all 48 test weather profiles
had been used as the metric for comparing the algorithms.

7.2 Hyper-parameter overview

In the following section the effects of deep Q-Network hyper-parameters are
described. The description should provide the reader with a general idea
about how the hyper-parameter influences the performance of the algorithm.

. Learning rate - affects how large steps the neural network will make
using the gradient descend algorithm introduced in Section 2.3.5. If the
learning rate is set too high the learning will diverge. If the learning
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7. Experimental results..................................
rate is set too low the neural network won’t be able to converge in a
reasonable amount of time. Learning rate has usually the largest effect
on the performance of the neural network when sufficient neural network
architecture is chosen for the given problem. It is recommended to tune
the learning rate first [Ben12].. Hidden layers - the number of hidden layers and the size of hidden layers
decides how complex functions the neural network is able to approximate.
By increasing the size of hidden layers we also enable the neural network
to better generalize. On the other hand increasing the complexity of
hidden layers increases the computational cost.. Training length - increasing the training length leads to more states
explored by the agent. This results in the increase of the neural network’s
performance on the training data. When the training length is set too
high it could lead to overfitting of the neural network. Overfitting occurs
when the performance on the train set is substantially higher than the
performance of the algorithm on the testing set. Cross validation is
used in order to prevent the algorithm from overfitting. Cross validation
divides the training data into training, testing, and validation data
groups. The algorithm is then trained using the training data, and tested
during training on the validation data. The final result of the algorithm
is measured using the test data, which the algorithm hadn’t encountered
during the training.. Buffer size - after every transition made by the agent the transition
is recorded in the experience buffer. When the experience buffer size
exceeds the value defined by this hyper-parameter the oldest recorded
transition is replaced by the new transition.. Exploration steps - the exploration rate starts at the value of 1 and
linearly decreases to the value defined by the exploration final value
hyper-parameter, during the first x steps defined by Exploration steps
hyper-parameter.. Exploration final episode - sets the value of exploration rate after the
number of steps exceeds the value of exploration steps hyper-parameter.. Train frequency - decides how often the training of the neural network is
executed.. Batch size - the number of transitions which will be used for training
during each step. The samples are taken randomly from the replay
buffer.. Learning starts - defines the number of steps at the beginning of the
simulation during which the agent isn’t learning and is only recording
the transitions he had made.
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.Gamma - influences how much into the future the algorithm looks. By
setting gamma to 0 the agent would react only based on the value of the
current state. It is recommended to set the value of gamma to 0.9 or to
0.95..Gradient norm clipping - the gradient norm clipping is used in order to
stabilize the learning of the algorithm [MKS+15]. If the L2-norm value
of the gradient exceeds the value specified by the gradient norm clipping,
the gradient is clipped to be equal the gradient norm clipping value in
the L2-norm. Which prevents the problem of exploding gradients. For
understanding the full effects of gradient norm clipping we recommend
to study the following paper [PMB12].. Target network update freq - during the training of the deep Q-Network
algorithm the target network is updated after every x-th step defined by
the value of this hyper-parameter. This leads to better stability of the
algorithm because the weights of the target Q-Network aren’t changed
after every step. However this solution comes in with the possible cost
of decreasing the training speed of the algorithm if the hyper-parameter
value is set too high. The decrease in the learning speed is caused by the
fact that the weights of the target Q-Network aren’t updated frequently
enough.

7.3 Hyper-parameter tuning

The combinatorial space of the hyper-parameters is too large for us to search
properly. In our work we will optimize the values for the learning rate and we
will also try to find a suitable network architecture. We will be searching the
hyper-parameter space by defining a subset of values for each hyper-parameter
and then searching through the space by using every possible combination
of the elements from the subsets. This technique is known as grid search.
Grid search suffers from the curse of dimensionality. For high dimensional
spaces it is recommended to use random search. However in low dimensional
space the grid search proved to be a sufficient solution [BB12] for systematic
hyper-parameter search. We have searched through the hyper-parameter
space for optimal values for the learning rate and the number an size of hidden
layers of neural network. The following learning rates had been searched
through 0.005, 0.0005, 0.00005 and 0.000005. The following sizes and numbers
of hidden layers had been searched through 64, 128, 256, 512, 1024, 2048,
128-128.

The less important hyper-parameters were set constant during the trainings.
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7. Experimental results..................................
The initial values for the hyper-parameters had been taken from the Open
AI baselines implementation of DQN which were optimized for classic control
problems. The hyper-parameters which are dependent on the environment
the algorithm is trained in had been changed to fit our better environment.
The batch size has been increased from 32 to 64. The target network update
frequency has been decreased from 500 steps to 50. The start of learning has
been changed from 1024 to 576. Which means the training starts after finish-
ing one episode of simulation. During the first 60 episodes the exploration
rate linearly decreases from 1 to to 0.01.

We used the Adam optimizer introduced in [KB14]. The values for the
ADAM optimizer have been set to the values defined in the paper. The learning
rate remains constant during the training. The Q-function is approximated
using a fully connected neural network. The rectified linear unit (ReLu)
[GBB11] is used as the activation function.

7.4 Hyper-parameters used

Hyper-parameter Value
Optimizer Adam
Activation function ReLu
Layer type fully connected
Learning rate [0.005, 0.0005, 0.00005, 0.000005]
Learning rate decay constant
Gradient norm clipping 10
Hidden layers [64, 128, 256, 512, 1024, 2048, 128-128]
Buffer size 50000
Batch size 64
Gamma 0.9
Train freq 1
Target network update freq 50
Learning starts 576
Training length 360 episodes
Exploration steps 60 episodes
Exploration final episode 0.01

Table 7.1: An overview of the hyper-parameters used for the training of the
neural network
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7.5 Training results - building version 0

hidden layers, learning rate mean std max min CI Up CI Low samples
[1024], 5e-05, 360 -512.7 25.1 -476.5 -545.7 -498.3 -527.1 10
[2048], 5e-05, 360 -578.5 73.5 -502.8 -710.0 -536.4 -620.6 10
[128, 128], 5e-05, 360 -634.6 135.1 -540.2 -898.9 -557.3 -711.9 10
[256], 0.0005, 360 -637.2 41.9 -573.1 -717.8 -613.2 -661.2 10
[2048], 0.0005, 360 -644.8 46.5 -575.6 -741.7 -618.2 -671.4 10
[512], 0.0005, 360 -650.7 56.2 -565.9 -753.0 -618.5 -682.9 10
[1024], 0.005, 360 -661.0 91.7 -524.0 -821.8 -608.5 -713.5 10
[1024], 0.0005, 360 -667.5 49.3 -611.8 -777.5 -639.3 -695.7 10
[128], 0.0005, 360 -681.5 76.9 -582.1 -852.2 -637.5 -725.5 10
[256], 0.005, 360 -686.2 134.5 -553.2 -953.9 -609.2 -763.2 10

Table 7.2: The ten best performing hyper-parameter configurations for Building
version 0, sorted by mean

The ten best results of our algorithms are documented in the Table 7.2.
From the analysis of the results we can conclude that the neural network
with one hidden layer with 1024 neurons trained using learning rate 0.00005
had been able to outperform the other neural network architectures. We
have supported this conclusion by running each of the best performing neural
network architectures 10 times and then we have calculated the values for the
upper bound and lower bound values of the mean with 95 percent confidence
interval. The confidence intervals can be seen in the Table 7.2 in columns CI
Up and CI Low. After observing the training data it is apparent that further
increasing the number of neurons inside of the hidden layers won’t result in
better performance of the neural network. The stability of learning is shown
in Figure 7.1, the figure contains the rewards of the ten best performing
neural network architectures during their training. From the results it can
be seen that the algorithms are steadily converging towards their optimal
values. The term ftr in the legend of the Figure 7.1, denotes the reward
obtained by the agent on the training data and the term sttr, denotes the
maximal reward obtained on the cross validation data during the training.
As we can see the algorithm is able to generalize properly and overfitting
to training data hadn’t occurred. We can also see that our optimal neural
network architecture had been able to obtain the 3 best testing scores.
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Figure 7.1: The performance of the neural networks during the training, the
term ftr refers to the reward obtained on the testing data, the term sttr refers to
the reward obtained on the cross validation data, we can see that during learning
the neural networks are stable

7.5.1 Comparison with the rule based solutions

We have compared the results of our agents against the solutions obtained
using the rule based thermostats. We have compared the performance of both
our solutions on the score obtained on the testing data and we have also exam-
ined the results obtained on different weather profiles which can occur during
the year. The first weather profile, denoted W0 has the average temperature
between -16 ◦C and -12 ◦C, each subsequent weather profile has average day
temperature approximately by 4 ◦C higher than the previous temperature.
The results are summarized in Table 7.3. The two best performing agents were
used for this comparison. We can see that our agents were able to outperform
the rule based solutions. With 95 percent confidence interval the mean of
the test rewards of our best performing agent is -527 as can be seen in Table
7.2. Performance of the best rule based thermostat is -678 as can be seen in
Table 7.3. We had compared the visualized strategies of our agent against the
strategies of the rule based thermostat. We can see that our agent is able to
better distribute the temperatures during the time when the user predefined
temperature is constant, plotted in Figure 7.2. If we examine the behavior
of the thermostat we can see that when predefined temperature is set to 22
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◦C, the thermostat is able to keep the temperature within the defined range.
However when the temperature is set to 16 ◦C the thermostat actions leads
to overheating. Our agent is able to keep the room temperatures within the
defined range for both predefined temperatures. Our agent manages to do so
with an update frequency of 2,5 minutes, while the thermostat has continuous
control over the system. We expect that increasing the update frequency of
our agent would lead to a better performance of the agent, at the cost of
additional computation resources. Our agent is able to better react to the
change in the predefined temperature by heating in advance after receiving
information about the upcoming change in the predefined temperature. The
ability to react to the change of the predefined temperature had shown to be
the area where our agent is able to outperform the policies obtained by the
rule based thermostat solutions by the highest margin. If we compare the
results obtained by our two best performing agents we can see that the first
agent was able to perform better in days when the outside temperature was
lower. While the second agent performed better when the outside temperature
was higher. After close inspection we have found out that the agent 1 had
problems with keeping the temperature constant during the time when the
predefined temperature was set to 22 ◦C, but the agent 1 have managed to
better adapt to the changes in the temperature than the agent 2. This in-
sight shows that the performance of the deep Q-Network can still be increased.

AVG W0 W1 W2 W3 W4 W5 W6 W7
Agent 1 -476.5 -545 -473 -355 -299 -370 -453 -696 -575
Agent 2 -482.5 -597.0 -503.0 -408.0 -326.0 -347.0 -417.0 -694.0 -537.0
Termostat -678.0 -583 -493 -422 -455 -540 -748 -988 -783

Table 7.3: Comparison of the rewards obtained by the two best performing
agents with the rewards obtained using the continous thermostat. The term AVG
refers to the average reward obtained during the testing. The W0 label represents
the performance of the agent when tested on the data where the average outside
temperaure was between -16 and -12 ◦C. Every subsequent column W1, W2, ...,
W7 shifts the bound of the average temperature by 4, this means W1 represents
the agents performance on the test data with the average outside temperature
between -12 and -8. W7 represents the ouside temperature between 12 and 16.
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Figure 7.2: Figure shows how the agent 1 performs when the average outside
temperature is between -16 and -12 ◦C, the agent 1 is able to better control
the thermoregulation of the building better than the agent 2, when the outside
temperature is low. The main diffrence is in the ability to adapt to the change
in the predefined temperature occuring in time step 480. The act of agent 2 is
shown in Figure 7.4
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Figure 7.4: Figure shows how the agent 2 performs when the average outside
temperature is between -16 and -12 ◦C, we can see that the reward -597 obtained
by the agent 2 is even lesser than the reward of -583 obtained by the thermostat
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Figure 7.6: Figure shows how the agent 1 performs when the average outside
temperature is between 0 and 4 ◦C, we can see that the agent 1 is able to
outperform the thermostat, however the agent 2 is starting to get better rewards
than the agent 1 because the temperature is getting higher
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Figure 7.8: Figure shows how the agent 2 performs when the average outside
temperature is between 0 and 4 ◦C, we can see that the agent 2 is able to
outperform the agent 1 by better regulating the temperature when the predefined
temperature is set to 22 ◦C
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Figure 7.10: Figure shows how the agent 1 performs when the average outside
temperature is between 12 and 16 ◦C, we can see that the agent 1 is able to
outperform the thermostat by better adapting to the change in the predefined
temperature.
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Figure 7.12: Figure shows how the agent 2 performs when the average outside
temperature is between 12 and 16 ◦C, we can see that the reward obtained by
the agent 2 is better than the reward obtained by the agent 1. This is caused by
the difference in the behavior when the predefined temperature is set to 22 ◦C.
The agent 2 is able to better keep the constant temperature than the agent 1.

7.6 Training results - building version 1

hidden layers, learning rate mean std max min CI Up CI Low samples
[1024], 0.0005 -822.1 85.8 -723.7 -898.9 -740.4 -903.8 5
[128, 128], 0.0005 -840.6 47.9 -768.5 -899.5 -795.0 -886.2 5
[128, 128], 0.005 -870.4 37.5 -811.8 -911.6 -834.7 -906.1 5
[64], 0.005 -879.9 48.1 -823.6 -946.2 -834.1 -925.7 5
[512], 0.005 -899.6 34.3 -866.2 -956.5 -866.9 -932.3 5
[2048], 0.0005 -900.3 40.8 -848.5 -939.1 -861.4 -939.2 5
[128], 0.005 -922.7 161.2 -703.4 -1063.9 -769.1 -1076.3 5
[2048], 0.005 -925.9 45.6 -859.7 -988.1 -882.5 -969.3 5
[1024], 0.005 -935.1 52.8 -872.0 -988.0 -884.8 -985.4 5
[512], 0.0005 -941.3 92.9 -779.6 -999.7 -852.8 -1029.8 5

Table 7.4: The ten best performing hyper-parameter configurations for Building
version 1, sorted by mean

In Section 6.1 we had discussed the option of using the current time of
the simulation as the feature based on which the algorithm would obtain
the information about the change in the predefined temperature in the
future. In our analysis we have came to the conclusion that our agent would
face difficulties when learning an optimal policy for transition between the
temperatures based solely on the current time of the simulation. We proved
this conclusion by training multiple agents using this feature, the results of
our trainings can be seen in Table 7.4. After the inspection of the results,
we can see that the highest average reward we were able to obtain was -
785. If we compare this result to the result obtained by training the DQN
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algorithm in the building environment version 0 we can conclude that for the
training length of 360 episodes the building environment version 0 proved to
be better environment. We statistically confirmed this statement using the
95 % confidence interval. The 95 % confidence interval upper bound of the
agent’s average reward in the building version 1 environment was -740, while
the 95 % confidence lower bound of agent’s average reward in the building
version 0 was -527.
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Chapter 8

Conclusion

In this thesis we have evaluated the effectiveness of using deep reinforcement
learning for controlling the heating system of a building. The algorithms
were evaluated in a simulation of a building developed in MATLAB. We have
compared the performance of our solution to the performance achieved using
the traditional rule based thermostats solutions.

At the beginning of the thesis the issue of using an approximation function
with reinforcement learning was introduced to the reader. After that an
overview and comparison of deep reinforcement learning algorithms which
were considered to use for solving the problem of optimal control for the
heating system were given. After establishing the theoretical background
behind the deep reinforcement learning we have specified the exact specifica-
tions of our tasks and defined the parts of the task in which our algorithm
could outperform the current solutions. After that we have documented
the software development part of our project where we solved the problem
of inter-process communication between Python and MATLAB/Simulink.
After solving the problem of inter-process communication we have created
an environment in Python which was able to control the simulation of the
building. We have integrated an Open AI gym interface into our environment.
This allowed us to use a wide variety of frameworks with implementations
of deep reinforcement learning algorithms. Afterwards we have designed a
suitable representation of the features used in our task.

After systematically searching through the hyper-parameter space of neural
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8. Conclusion......................................
networks used in our work, we have obtained a neural network configuration
which was able to solve the problem of optimal heating control in the building
effectively. Our solution proved to be capable of achieving better perfor-
mance than the rule based solutions traditionally used in this field. Previous
conclusion was statistically proven. The average reward of our solution was
-512 while the rule based thermostat was able to achieve the reward of -678.
Our results showed that deep reinforcement learning is a viable option when
considering an algorithm for optimal heat control in the building. We believe
that the results we have achieved can be further improved and we have
mentioned few areas to focus on in order to improve the performance of deep
reinforcement learning.
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Appendix B

User manual

B.1 Requirements

The following programs and their respective modules are needed in order to
execute the programs included with our work.

.MATLAB version 2017a and newer
Simulink
Hydronic Heating Toolbox(Request from Honeywell). Python version 3.4
Open AI Baselines module for Python
Open AI Gym module for Python
Matplotlib

Without the proper MATLAB version the simulation of the building will
not run. The Python needs to be exactly version 3.4 in order to work with
the saved neural network data provided alongside our work. A newer version
than Python 3.4 can be used for training, but the saved data will still have
the dependency on the Python version used for the training execution. We
used Python 3.4 because it was already installed on the National Grid In-
frastructure MetaCentrum. The list of all python modules required for the

51



B. User manual.....................................
project are exported in the file requirements.txt.

The codes for the simulation will not be provided with this work. The
reason behind this is that the source codes for the simulation of the building
are not publicly available. After showing us the permission from Honeywell
to use the codes for the simulation of the building we will give you access to
our modified versions of them.

B.2 DVD structure

root
Python

Gym_env
Thesis
Saved_trainings

bv0
bv1
thermostat

data_preprocess

The structure of the project is shown above. The deep reinforcement
learning algorithms alongside with the tools used for visualization are placed
inside the Python Folder. The Python environment for controlling the
simulation of the building is located inside the Gym_env folder. By placing
the environment inside a separate folder we allow it to be easily transfered into
another projects. The thesis in pdf format is located within the Thesis folder.
The Saved_trainings folder contains saved data from our trainings. The bv0
folder contains saved data obtained from training the agent in the building
version 0 environment. The bv1 folder contains saved data obtained from
training the agent in the building version 1 environment. The thermostat
folder contains data regarding the performance of the rule based thermostat
solutions.

The data_preprocess folder contains the code for generating the data for
training and testing with equal weather distributions. The bash scripts for
running the training on MetaCentrum are located inside the root folder. The
root folder also contains the bash scripts for training and testing the learning
algorithms. The manual and readme are contained inside the root folder.
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.....................................B.3. Script usage
B.3 Script usage

The description of the scripts used in our project, along with the examples
of the commands used for their execution is provided in the file manual.pdf
contained inside the root folder of the project.
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