
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor's Project

Fraud Detection in Unlabeled Payment Card Transactions

Josef Voná²ek

Supervisor: �t¥pán Kop°iva, MSc.

Study Program: Open Informatics

Branch of Study: Computer and Information Science

May 25, 2018

iv

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

456932Personal ID number:Vonášek JosefStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Fraud Detection in Unlabeled Payment Card Transactions

Bachelor’s thesis title in Czech:

Detekce podvodů v platbách kreditní kartou

Guidelines:
1) Study the existing principles of automated fraud detection on transactions, mainly on credit card transactions.
2) Study anomaly detection techniques for unlabeled data sets (for non-time series datasets) which might be used to solve
the fraud detection in transactions problem.
3) Design an algorithm for detecting the fraudulent transactions in provided real data set of card transactions with low
number of fraudulent transactions in the dataset (this is one of the typical signs in the fraud detection tasks).
4) Implement the algorithm from 3).
5) Evaluate the solution quality by comparing your solution to other existing algorithms.

Bibliography / sources:
[1] Andrea Dal Pozzolo, Olivier Caelen, Reid A. Johnson andGianluca Bontempi - Calibrating Probability with Undersampling
for Unbalanced Classification - In Symposium on Computational Intelligence and Data Mining (CIDM), IEEE, 2015
[2] Varun Chandola, Arindam Banerjee and Vipin Kumar - Anomaly Detection: A Survey - ACM Computing surveys, 2009
[3] Manoranjan Pradhan, Sateesh Kumar Pradhan, Sudhir Kumar Sahu - Anomaly Detection Using Artificial Neural Network
- International Journal of Engineering Sciences & Emerging Technologies, 2012

Name and workplace of bachelor’s thesis supervisor:

Štěpán Kopřiva, MSc., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2018Date of bachelor’s thesis assignment: 12.01.2018

Assignment valid until: 30.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Štěpán Kopřiva, MSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

vi

vii

Aknowledgements

I am very grateful to my supervisor MSc. �t¥pán Kop°iva. I highly value his guidance
that led me in the right direction. I would also like to thank Tomá² Witzany and Mikulá²
Krupi£ka for their valuable help. Finally I would also like to express my gratitude to my
family and friends.

viii

ix

Declaration

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, May 21, 2018 .

x

Abstract

The developments in the Information Technology slowly shift a portion of our every day
life into an electronical form. The global nature of Internet along with its anonymity make
it an ideal instrument for committing a fraud, resulting in huge �nancial losses every year.
Although prevention is the best way to reduce fraud, with enough time, fraudsters will
usually �nd ways to circumvent these measures. Methodologies for the detection of fraud
are therefore essential if we are to catch fraudsters once prevention has failed.

In this work we present an unsupervised method for credit card fraud detection, based
on projecting the dataset into low dimensional representation and consecutive reconstruc-
tion. The fraud detection system consists of two components, namely an autoencoder neural
network and a feature scaling technique. Autoencoder is used to compute the reconstruction
error matrix, which is then further utilized in the feature scaling and selection component.
An updated reconstruction error is thereafter used to detect fraudulent transactions.

The experimental results of proposed architecture are presented and discussed.

Abstrakt

Vývoj informa£ních technologií pomalu posouvá £ást na²eho kaºdodenního ºivota do elek-
tronické podoby. Globální povaha internetu spolu s jeho anonymitou z n¥j £iní ideální nástroj
pro páchání podvod·, coº kaºdoro£n¥ vede k obrovským �nan£ním ztrátám. P°estoºe pre-
vence je nejlep²ím zp·sobem, jak podvod·m zabránit, s dostatkem £asu úto£níci obvykle
najdou zp·soby, jak obejít tato opat°ení. Metody pro odhalení podvodu jsou tedy nezbytné,
pokud se chceme, poté co selºe prevence, s podvodníky vypo°ádat.

V této práci p°edkládáme unsupervised metodu pro detekci podvod· kreditní kartou,
zaloºenou na zobrazení dat do prostoru o nízké dimenzi. Klasi�kátor se skládá ze dvou
komponent, jmenovit¥ autoenkodéru (neuronové sít¥) a metody pro selekci atribut·. Au-
toenkodér je pouºit k vypo£tení rekonstruk£ní chyby ve form¥ matice, která se dále pouºije
pro selekci atribut·. Aktualizovaná rekonstru£ní chyba je poté pouºita k odhalení podvod-
ných transakcí.

Experimentální výsledky tétoarchitektury jsou prezentovány a diskutovány.

xi

xii

Contents

1 Introduction 1

1.1 Goals of thesis . 1
1.2 Chapter description . 2

2 Related work 5

2.1 Supervised techniques . 5
2.1.1 Arti�cial Neural Networks . 5
2.1.2 Decision Trees . 6
2.1.3 Bayesian Belief Networks . 6
2.1.4 Arti�cial Immune System . 6
2.1.5 Support Vector Machines . 6

2.2 Unsupervised techniques . 7
2.2.1 Nearest Neighbor techniques . 7
2.2.2 Clustering techniques . 7
2.2.3 Isolation based techniques . 8
2.2.4 Spectral techniques . 8

3 Technical Background 11

3.1 Autoencoder . 11
3.2 Pretraining . 12

4 Data Description 15

5 Problem de�nition 19

6 Proposed solution 21

6.1 Architecture . 21
6.2 Mean Squared Feature Recall . 22
6.3 Normalization . 23
6.4 Autoencoder hyperparameters . 23

6.4.1 Activation functions . 24
6.4.2 Optimization algorithm . 24
6.4.3 Loss function . 24
6.4.4 Layers . 25
6.4.5 Batch size . 25

6.5 Pretraining . 25

xiii

xiv CONTENTS

6.6 Feature selection and scaling . 26

7 Implementation 29

7.1 Technology . 29
7.2 Code structure . 29

8 Experiments 33

8.1 Number of layers . 33
8.2 Feature selection . 35

8.2.1 Performance improvement . 35
8.2.2 Learned feature weights . 35

8.3 Classi�cation performance . 36
8.3.1 Comparison to existing work . 38

9 Conclusion 41

9.1 Future work . 41

A Content of the CD 47

List of Figures

3.1 Simple autoencoder with one hidden layer. 12

3.2 Three autoencoders {A0, A1, A2}, each having only one hidden layer, are
trained with an a dataset. The learned latent representations are used as
the data for the next autoencoder in the set. 13

3.3 The deep autoencoder obtained by unfolding the three autoencoders from
Figure 3.2. 13

4.1 The x axis represents time in milliseconds. They y axis represents the number
of transaction during each time interval. There is an obvious cyclical behavior
but overall the distribution is too dense to reveal any outliers. 16

4.2 The x axis represents time in milliseconds. The y axis represents the amount
of money transfered. The only outliers here are the transactions which transfer
a lot of money. 16

4.3 The most promising type of features. They contain data instances which
are highly unlikely to be part of the major cluster because of their di�erent
distribution. The x axis represents the feature V14. They y axis represents
the feature V17. 17

4.4 There are only few obvious outliers. Almost all datapoints look like to be
generated by the same distribution. The x axis represents the feature V5.
They y axis represents the feature V26. 18

6.1 The work�ow of our proposed solution. Xtrain ∈ IRN×M and Xtest ∈ IRN×M

are the transaction datasets used for training and testing the classi�er. Threshold ∈
[0, 1] is a real number that signi�es how many frauds should be detected.
Labels ∈ {Fraud,Normal}N is a vector of predicted labels based on the
given Threshold. Scores ∈ IRN are the suspicion scores of each transaction. 22

6.2 The proposed autoencoder we use to compute the reconstruction error. The
network consists of four layers with 25, 20, 25 ad 29 neurons in this order. First
three hidden layers use the exponential linear unit as the activation function,
while the output layer is using logistic sigmoid. 23

xv

xvi LIST OF FIGURES

7.1 Scheme of the implementation. After calling the DetectionSystem method
init, the three other classes are instantiated and saved, so that they can be
later used in the method predict. The methods are called in the order as
the arrows suggest. The parameter X is an input dataset, X_loss is the
reconstruction error matrix, sensitivity is the the detection threshold used for
labeling transactions. 30

8.1 (Left) The mean squared feature recall of autoencoder with 6 layers during
training. (Right) The mean squared feature recall of autoencoder with 10
layers during training. The autoencoder on the left should outperform the
one on the right, because of its overall higher mean squared feature recall and
because of the shape of the curve. 34

8.2 (Left) The mean squared feature recall of autoencoder with 4 layers during
training. (Right) Raw f1 score (without feature scaling) of the same autoen-
coder during training. 34

8.3 Two features with the highest weights V14 is on the X axis. V16 is on the Y
axis. Fraudulent transactions are highlighted by using the + marker. 37

8.4 Two features with the lowest weights (excluding the removed features with
zero weights). V24 is on the X axis. V5 is on the Y axis. Fraudulent
transactions are highlighted by using the + marker. 37

List of Tables

4.1 A basic statistical description of features in our dataset 15

8.1 Evaluation of detection performance with feature scaling turned on and o�.
The second column contains detection threshold. The third, fourth, �fth and
sixth column contain True Positives, False Negatives, False Positives and True
Negatives respectively. The default threshold of 0.001727 is in bold and it is
equal to the ratio of frauds in the dataset. 35

8.2 The very left columns contains all the features which do not in�uence the �nal
detection score (their weight would be zero), because they are removed from
the dataset. The rest of the features is listed with their corresponding weight,
the higher, the better. 36

8.3 A confusion matrix obtained from the strati�ed 5-fold cross validation. It is
an average of 5 di�erent confusion matrices. 38

8.4 The amount of money spared by our detection system is depicted in the last
column. Second and third column show the veri�cation cost and detection
threshold for each of the three European currencies. 38

8.5 Outlier techniques are listed in the �rst column. The performance is measured
in recall (middle column) and false postive rate (last column). Our algorithm
performance for the detection threshold 0.0065 is listed in the �rst row. 39

A.1 Content of the CD. 47

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

With the arrival of digitalization, internet sales became one of the essential business methods
for most companies. Because of that, the usage of credit card payments has dramatically
increased during the last two decades. Although there are many ways to commit a fraud,
online attacks trough the Internet are one of the most popular. Because of its global nature, it
is easy for the user to become completely anonymous, hiding its identity and location, which
makes it ideal media for fraudsters. As a result, credit card industry is a very attractive
target for these individuals and their behavior causes huge �nancial losses each year.

Credit card fraud detection is a heavily studied branch of anomaly detection. The goal is
to detect the highest number of fraudulent transactions possible, with reasonable number of
false positives (misclassi�ed normal transactions). If we know the cost of verifying, whether
a transaction is fraudulent, there is also very easy way to directly quantify the optimal per-
formance. Because of the con�dentiallity issues, one of the most limiting factor for research
on �nancial fraud detection is the lack of publicly available datasets. The dataset used in
this thesis is no exception, since its features have been transformed by PCA in order to
anonymize all card transactions. Thus common techniques like feature aggregation cannot
be used.

We present a fraud detection method based on autoencoder neural network. Our method
is completely unsupervised and includes our own feature selection and scaling algorithm. We
examine the existing techniques focused on anomaly detection and provide a mathematical
de�nition for the problem of credit card fraud detection. We discuss our proposed solution
and examine its performance on a real credit card transactions dataset from an European
bank. The expiremntal results show that the performance of our solution is comparable to
existing unsupervised algorithms with supervised feature selection.

1.1 Goals of thesis

We can summarize our goals as follows:

1. Study the existing principles of automated fraud detection on transactions,

mainly on credit card transactions.

1

2 CHAPTER 1. INTRODUCTION

In order to fully understand the fundamentals of automated fraud detection, we need
to closely examine the concepts behind the detection methods used in the existing
work, with the focus on credit card transactions.

2. Study anomaly detection techniques for unlabeled data sets (for non-time

series datasets) which might be used to solve the fraud detection in trans-

actions problem.

To design an e�ective detection algorithm, we need to get familiar with the existing
methods used for anomaly detection. Knowing their advantages and disadvantages will
help us choose the right algorithm for the task given.

3. Design an algorithm for detecting the fraudulent transactions in provided

real data set of card transactions with low number of fraudulent transactions

in the dataset (this is one of the typical signs in the fraud detection task).

We will design an unsupervised fraud detection algorithm based on the knowledge we
attained (goals 1 and 2). To examine whether the algorithm could be used in real
world scenario, we will use a provided real data set of card transactions.

4. Implement the algorithm from 3 .

We need to implement our algorithm to examine its performance.

5. Evaluate the solution quality by comparing your solution to existing algo-

rithms.

To verify the e�ciency and quality of our solution, we will evaluate its performance by
using a labeled dataset and several performance metrics. By comparing the solution
to existing algorithms, we will get a better understing of the e�ectivity of our solution
in relation to other methods.

1.2 Chapter description

The thesis has the following structure:

• Chapter 2 provides an overview of related work on anomaly detection. It describes
both supervised and unsupervised techniques. This chapter addresses the �rst two
goals of our thesis.

• Chapter 3 provides a technical background on the spectral technique we will use in
our detection system.

• Chapter 4 introduces and describes the card transactions dataset.

• Chapter 5 is concerned with the mathematical formulation of our task - detection of
fraudulent behavior in credit card transactions dataset.

• Chapter 6 presents our solution to the problem. An unsupervised fraud detection
system based on autoencoder neural network along with pretraining and feauture se-
lection. This chapter addresses the third goal of our thesis.

1.2. CHAPTER DESCRIPTION 3

• Chapter 7 describes the system implementation in detail, justy�ng some of the choices
for hyperparameters we have made. Pretraining and feature selection are thoroughly
explained. This chapter addresses the fourth goal of our thesis.

• Chapter 8 is devoted to the analysis of performance of our credit card fraud detection
system. We address the last goal of our thesis in this chapter.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

In this chapter, we present an overview of work related to our topic. In order to provide
a better picture we also include work from closely related domains like insurance fraud
detection, intrusion detection and other areas that deal with anomaly detection. Although
our work explores the area of unsupervised fraud detection, the majority of research in credit
card fraud detection deals with supervised methods. Hosseinpour et al. [19] even proposed
a system, which incorporates methods from both categories.

2.1 Supervised techniques

This section contains an overview of techniques that are used mostly in supervised settings
(labeled dataset is required in order to train the classi�er). But some of them are robust
enough to be also applied as semisupervised method (training dataset contains only non-
anomalous data points) or even (with small alternation) as an unsupervised method in the
case of support vector machines (SVM).

2.1.1 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) are inspired by the constitution of the animal brain where
each neuron is modeled as a nonlinear function applied to a weighted sum of the neuron
inputs. Despite the ANN popularity, comparative studies suggest that simpler techniques
like Bayesian Belief Networks (BBN) often perform better. This might in part explained by
the di�cullty of �nding the right paramaters (which are plenty choose from) and also by
their tendency to over�t.

In year 1994 Ghosh and Reilly [15] made a study for the Mellon Bank. They compared the
bank's rule based detection procedure which was checked against all portfolio activy. They
concluded that ANN could reduce their losses caused by credit card fraud by 20% - 40%.
Syeda et al. [30] developed a fuzzy parallel granular neural network (GNN) in order to speed
up data mining and knowledge discovery process. Dorronsoro et al. [10] developed a system
named Minerva for a company which provides a card payment scheme in Spain. They have
used non-linear discriminant analysis neural models with the usual multilayer perceptron
(MLP) architecture. Aleskerov et al. [6] created CARDWATCH, a neural network based
data mining system for credit card fraud detection.

5

6 CHAPTER 2. RELATED WORK

2.1.2 Decision Trees

Decision trees are tree structured rule based techniques where each inner node performs a
test on one attribute and leafs perform the �nal classi�cation. Their advantage is trivial
explanation, fast classi�cation and the possibility to work with discrete attributes.

Sahin and Duman [27] have made one of the �rst comparative study of Decision Trees
and SVM on a nonsythethic dataset containing credit card transactions. Their result demon-
strated that although both methods have similar detection accuracy, decision tree methods
(particularly C&RT implementation) caught up to 33% more frauds.

2.1.3 Bayesian Belief Networks

The Bayesian belief network (BBN) represents a set of random variables and their conditional
independencies using a directed acyclic graph (DAG), in which nodes represent random
variables and missing edges encode conditional independencies between the variables.

Maes et al. [23] have designed an automated credit card fraud detection system com-
paring BBN to ANN. They concluded that although ANN was faster in classi�cation, BBN
outperformed ANN during the training phase and gave overall better results.

Viaene et al. [32] used AdaBosted naive bayes (special version of BBN where features
are independent) for insurance fraud detection. Compared to unboosted and boosted naive
Bayes, the framework showed slightly better accuracy and AUC but clearly improved on the
cross entropy and Brier scores.

2.1.4 Arti�cial Immune System

The arti�cial immune system (AIS) comprises promising techniques inspired by an animal
immune system, which has the ability to distinguish internal cells and molecules of the body
from foreign pathogens, so called self and non-self respectively. This behavior is very similar
to the one which is expected from fraud detection system where attacker has a malicious
intent.

Gadi et al. [14] made a comparative study of �ve classi�cation methods (Decision Trees,
Naive Bayes, Bayesian Networks, Neural Network and Arti�cial Immune System) in a credit
card fraud detection domain. Their results showed that NN surprisingly scored the worst
while AIS produced the best classi�ers of all the �ve methods.

Hosseinpour et al. [19] explored the area of unsupervised intrusion detection with a
combination of AIS and unsupervised method. The output of DBSCAN clustering is used
to feed the training data for the adaptive immune system as online and real-time training
data. The system is tested in centralized and distributed mode and is able to provide a fast
response to previously unknown anomalies.

2.1.5 Support Vector Machines

Support Vector Machines (SVM) seek such a hyperplane that maximizes its distance between
classi�ed data points. Its training speed grows rapidly with the number of training samples

2.2. UNSUPERVISED TECHNIQUES 7

and therefore it is not suitable for large amount of data. Since this technique is robust to
outliers, it can be also used for unsupervised anomaly detection.

Hu et al. [20] used robust SVM in the area of intrusion detection. They showed that
RSVM are robust to over�tting caused by noisy data and also produces signi�cantly less
support vectors, therefore improving classi�cation performance.

Amer at al. used an enhanced one-class SVM [7] for unsupervised anomaly detection.
They have examined two approaches which are insensitive outlier - robust and eta one-class
SVM. They conclude that the eta one-class SVM has shown the greatest potential. It was
capable of maintaining the sparsity of the SVM solution, while performing best on most
datasets.

2.2 Unsupervised techniques

This section contains an overview of unsupervised techniques. Thus the dataset does not
have to be labeled, but it assumed that anomalous data instances will have very di�erent
behavior compared to normal ones. They might be for example located in sparse regions,
harder to project into lower dimensional space or they might form their own special clusters.
It is also usually required for the dataset to contain only minority of anomalous instances.

2.2.1 Nearest Neighbor techniques

Nearest neighbor (K-NN) work with the assumption that anomalies are rare - they occur in
less dense clusters than normal instances. A metric which compares the similarity between
individual data is therefore needed, which is also the biggest weakness of this technique as
well as slow classi�cation, which is quadratic in case of the simplest implementation. Pruning
is often utilized to accelerate the calculation, because a large part of the normal instances is
easily recognizable.

It has been applied by Viane et al. [31] in Automobile Insurance Claim Detection. They
report that although K-NN attained one of the best performance, with increasing number of
data instances the computational overhead and memory requirements for storing the distance
matrix would become a burden.

2.2.2 Clustering techniques

Clustering methods are unsupervised by their nature and since their primary goal is not
anomaly detection, they can be divided into three distinct groups based on the assumptions
they make about anomaly behavior:

• Anomalies do not belong to any cluster

• Anomalies occur at the edges of clusters

• Anomalies form sparse and / or small clumps

8 CHAPTER 2. RELATED WORK

There are several clustering algorithms that do not force every data instance to belong
to a cluster which could be used, such as DBSCAN (Ester et al. [12]), ROCK (Guha et al.
[17], and SNN clustering (Ertoz et al. [11]). These methods are advantageous, because they
do not make any assumptions about anomaly behavior themselves. Therefore the anomalies
can be either part of cluster. In which case the technique is robust to noise in data. Or they
do not have to belong to any cluster, in which case anything outside of cluster is treated as
an anomaly.

Smith et al. [29] studied Self-Organizing Maps (SOM), K-means and Expectation Maxi-
mization (EM) clustering methods. They worked with the second assumption, that anomalies
occur at the edges of clusters, and they calculated the suspicion score as the distance from
its cluster centroid.

It is not uncommon to use clustering in combination with other methods. We have
already mentioned Hosseinpour et al. [19] who used pipeline of DBSCAN and Arti�cial
Immune System. Dheepa et al. [9] have used a clustering method along with gaussian
mixture model and bayesian networks for credit card fraud detection.

2.2.3 Isolation based techniques

Although isolation based techniques are not yet widely used, they de�nitely deserve a men-
tion, because of their special features. As usual they build on the assumption that anomalies
are few and have unusual attribute values. In comparison to density based techniques, they
do not require a distance metric. In fact the only requirement is the possibility to split the
data into multiple groups, thus nonnumerical attributes can be present in the dataset.

iBAT is an example of an isolation based technique developed by Zhang et al. [33] for
detection of adverse and malicious events based on recorded taxi driver GPS trajectories. Liu
et al. [22] explored a technique called Isolation Forest (iForest) where anomalies are instances
with short average path lengths on the iTrees, which randomly isolate data instances from
each other. The characteristic of iForest enables it to exploit subsampling and the detection
phase is linear in time completexity and has minimal memory requirements [22].

2.2.4 Spectral techniques

These techniques try to project the dataset into a space with less dimensions than the
original has. The suspicion score is then usually calculated as the reconstruction error with
the assumption that anomalies are harder to compress. All techniques from this category
require all attributes to be numeric and some distance metric is usually needed to measure
the reconstruction error, although not necessarily [8].

Principal component analysis (PCA) is very common dimension reduction method and it
has been therefore used by several authors. Shyu et al. [28] in the domain of intrusion detec-
tion applied PCA with custom distance measure similar to the Mahalanobis one. Although
Fowler et al. [13] detected anomalies with random projections, they have also used PCA
along with multitask Bayesian compressive sensing (MT-BCS) for the dataset reconstruction.

Because PCA cannot pick up on nonlinear trends in the dataset, autoencoders (type
of neural networks) have been used in their place. Nicolau et al. [25] used a hybrid of
autoencoder of density estimation model to detect network anomaly behavior. They utilized

2.2. UNSUPERVISED TECHNIQUES 9

the compressed feature representation from hidden layer as an input to density based anomaly
detection technique (they have chosen a single Gaussian and full kernel density estimation).

Variational Autoencoders (VAE) are another type of autoencoders which use reconstruc-
tion probability instead of reconstruction error during their training. They have been used
for anomaly detection by An et al. [8] with positive results. The advantage of this technique
is that, as they state, the reconstruction probability, being probability measure, is a much
more objective and principled anomaly score than the reconstruction error.

10 CHAPTER 2. RELATED WORK

Chapter 3

Technical Background

We have presented the most commonly used techniques in chapter 2. Because obtaining a
labeled dataset in real situation is very di�cult, we will focus on unsupervised techniques.
After careful consideration we have decided to use autoencoder based solution. The reasoning
behind this decision is described in chapter 6.

In this chapter we are going to describe the autoencoder neural network and weight
initialization technique named pretraining.

3.1 Autoencoder

An autoencoder is a neural network which attempts to replicate the input as closely as
possible at the output. Output layer therefore matches the input layer in number of neurons,
while the hidden layer contains less neurons as depicted in Figure 3.1, to force the network
into reducing the dimensionality of incoming data, for example by noise reduction.

Let x ∈ IRN be an input. Then in the simplest case the autoencoder has only one
encoding layer and its hidden representation h(x) ∈ IRM is a function:

h(x) = σ1(W1x+ b1)

Where σ1 is a element-wise non-linear activation function such as recti�ed linear unit
(relu) [4]. W1 ∈ IRN×M is a weight matrix, b1 ∈ IRM is a bias vector. The latent representa-
tion h(x) (latent representation is a representation of the input data in the hidden layer) is
then reconstructed into x̂ ∈ IRN in the output layer:

x̂ = σ2(W2h(x) + b2)

Where σ2 is again an activation function such as sigmoid or softmax. W2 ∈ IRM×N and
b ∈ IRN are the weight matrix and bias vector of the output layer.

Autoencoder is trained to optimize the parameters {W1, b1,W2, b2} in order to minimize
the average reconstruction error, such as squared error:

RE(x, x̂) = ||x− x̂||2 = ||x− σ2(W2(σ1(W1x̂+ b1)) + b2)||2

11

12 CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.1: Simple autoencoder with one hidden layer.

Stochastic gradient descent (SGD) or other variants of backpropagation are commonly
used to train the network. When used for anomaly detection, outliers will be harder to
reproduce than normal data and will have therefore high RE values. Thus the anomaly
score of data point is simply its reconstruction error and it will be treated as an anomaly /
outlier, if its score exceeds certain threshold.

This defenition of autoencoder neural network is easily extensible for arbitrary even num-
ber of layers. The latent representation is simply used as an input to another autoencoder
with one hidden layer. By stacking multiple autoencoders like this, we obtain new symmet-
rical autoencoder of arbitrary depth. As you will see, will utilize this fact shortly in the
Section 3.2.

3.2 Pretraining

Pretraining is a form of weight initialization method introduced by Hinton et al. [18]. Good
weight initialization of multi layered autoencoder is important. With large initial weights,
autoencoders typically �nd poor local minima. With small initial weights, the gradients in
the early layers will be tiny, making it infeasible to train autoencoders with many hidden
layers. Although Hinton et al. [18] used pretraining with a stack of restricted Boltzmann
machines (RBM), their technique can be applied to any symmetrical deep autoencoder.

As mentioned in 3.1, a deep autoencoder with multiple layers can be naturally built from
simpler ones. We can utilize this fact by building the deep autoencoder from already trained
two layer deep autoencoders presented in 3.1.

As depicted in Figure 3.2, during pretraining a stack of autoencoders is sequentially
trained. While �rst autoencoder learns on the dataset X ∈ IRM, all following encoders take
the latent representation from the hidden layer of the previous autoencoder as an input.

After the training is �nished, the stack of autoencoders is unrolled to form a deep au-
toencoder as is shown in Figure 3.3. By doing this, we can reuse the weights of the trained

3.2. PRETRAINING 13

Figure 3.2: Three autoencoders {A0, A1, A2}, each having only one hidden layer, are trained
with an a dataset. The learned latent representations are used as the data for the next
autoencoder in the set.

Figure 3.3: The deep autoencoder obtained by unfolding the three autoencoders from Figure
3.2.

autoencoders. As Hinton et al. [18] shows, such initialized weights greatly improve the
performance of the �nal autoencoder.

14 CHAPTER 3. TECHNICAL BACKGROUND

Chapter 4

Data Description

The dataset contains 284,807 card transactions made by European card holders during the
year 2013, publicly avaialable at kaggle [16]. The number of fraudulent transactions accounts
only for 0.172% of all transactions.

Due to con�dentiallity issues, the data has been anonymised: There are 28 numerical
features named V1 ... V28 which are the result of a Principal Component Analysis (PCA)
transformation. Additionally there also are two special features - Time and Amount. Time
contains the seconds elapsed between each transaction and the �rst transaction in the dataset.
Amount contains the amount of money in an unknown currency.

As one can see from the Table 4.1, the features V1 ... V28 have e�ectively mean of
zero. On the other hand standard deviation (std) as well as minimum and maximum cover
wider range of values.

It is also useful to look at the histogram representation of at least some of the features.
It will give us a basic idea of the data distribitution. Because fraudulent data are so rare and
probably also very sparse, using linear scale for the y axis is not optimal, since the outliers
would most likely not be visible. Log scale is therefore used instead.

First lets look at the only two features not transformed by PCA: Time and Amount.
The Time histogram (Figure 4.1) shows a very dense distributioin with cyclical behavior.

Because all the data points are so close to each other (even in the least dense areas), we

V1 V2 ... V27 V28 Amount
mean 3.919560e-15 5.688174e-16 ... -3.660161e-16 -1.206049e-16 88.34
std 1.958696e+00 1.651309e+00 ... 4.036325e-01 3.300833e-01 250.12
min -5.640751e+01 -7.271573e+01 ... -2.256568e+01 -1.543008e+01 0.00
25% -9.203734e-01 -5.985499e-01 ... -7.083953e-02 -5.295979e-02 5.60
50% 1.810880e-02 6.548556e-02 ... 1.342146e-03 1.124383e-02 22.00
75% 1.315642e+00 8.037239e-01 ... 9.104512e-02 7.827995e-02 77.16
max 12.454930e+00 2.205773e+01 ... 3.161220e+01 3.384781e+01 25691.16

Table 4.1: A basic statistical description of features in our dataset

15

16 CHAPTER 4. DATA DESCRIPTION

Figure 4.1: The x axis represents time in milliseconds. They y axis represents the number
of transaction during each time interval. There is an obvious cyclical behavior but overall
the distribution is too dense to reveal any outliers.

Figure 4.2: The x axis represents time in milliseconds. The y axis represents the amount of
money transfered. The only outliers here are the transactions which transfer a lot of money.

17

Figure 4.3: The most promising type of features. They contain data instances which are
highly unlikely to be part of the major cluster because of their di�erent distribution. The x
axis represents the feature V14. They y axis represents the feature V17.

can safely remove this feature from the dataset, since it would not be useful for the dection
system.

The Amount feature on the other hand has some obvious outliers as can be seen from
Figure 4.2. The problem is, those outliers are simply transactions which transfer a lot of
money - something that usually draws a lot of attention, which fraudsters try to avoid.
Our domain knowledge therefore suggest that fraudsters will transfer only small amounts of
money, very frequently, making them undetectable (at least based on the amount of money
transfered). Because of that we were highly tempted to also remove this feature from the
dataset, but that would mean fraudsters could take an advantage of this fact (if they reverse
engineered our detection system). Therefore we ultimately decided to leave it in the dataset.

We will now pick some interesting examples from the rest of the features. The most
important thing we can take from visualization is the number of clusters, some basic idea of
anomalous behavior and an estimation of how which features will be actually useful for the
detection process.

As can bee seen from both �gures 4.4 and 4.3, data instances form usually only one
dense cluster. Figure 4.3 also shows quite a lot data points with a very di�erent distribution
and position than the rest, which means they are most like the anomalies we are looking for.
They still look like they form a cluster of some sort. This means that we could teorethically
use clustering techniques based both on the assumptions that anomalies form a cluster and
that anomalies do not belong to any cluster.

18 CHAPTER 4. DATA DESCRIPTION

Figure 4.4: There are only few obvious outliers. Almost all datapoints look like to be
generated by the same distribution. The x axis represents the feature V5. They y axis
represents the feature V26.

Finally most of the features (see Figure 4.4) have only few outliers. Most of their data
seems to be generated from one distribution. Anomalies will be therefore somewhere inside
of those clusters, not possible to detect. It would be therefore bene�cial to have some form
of feature selection, to get rid of these useless features.

Chapter 5

Problem de�nition

We present a mathematical de�nition of anomaly detection in banking industry. Our task is
�nding fraudulent behavior in a given credit card transaction dataset.

Obtaining a labeled dataset in real world scenario is, with few exceptions, very com-
plicated or even impossible (especially in the domain of anomaly detection). Therefore,
even though we have access to the labels of all transactions, we will focus on unsupervised
techniques, to re�ect the most common situation in real world, where the dataset is often
unlabeled.

Let T be the set of all credit card transactions. Every transaction tt ∈ T consists of

• The time timet of its execution in milliseconds.

• The amount amountt of money transfered.

• The set Ft of 28 anonymized, numerical features.

Furthermore for the purpose of evaluation we also have access to the set L which contains
label lt ∈ L of each transaction.

Let model : θm×Ttrain → classifierm be our model and classifierm : θc× t→ label be
our classi�er such that

• θm is the set of model hyperparameters closely related to detection method used.

• Ttrain ⊆ T is a ransaction subset used to train the classi�er.

• θc is the detection rate sensitivity parameter.

• The term t→ l assigns a label l ∈ {Fraud,Normal} to any transaction t ∈ T . As we
will see, these transactions will be obtained from the subset {Ttest ⊆ T‖Ttest∩Ttrain =
∅}.

We are not going to use the labels during training, because we use unsupervised tech-
niques. But we can use the labels to examine the performance of our unsupervised classi�er.
Therefore our task is to �nd the best performing model and its hyperparameters θm:

19

20 CHAPTER 5. PROBLEM DEFINITION

arg max
model,θm

performance(model, Ttrain, θm, Ttest)

Where the peformance is measured by function performance : model, Ttrain × θm ×
Ttest → IR.

Chapter 6

Proposed solution

In this chapter we describe our proposed solution based on an autoencoder neural network,
which is a member of the spectral based anomaly detection techniques. We have deliberately
decided to use this technique for the following reasons:

1. The only requirement we have on the dataset is to be numerical (we do not need
distance metric).

2. The method makes very few assumptions about anomaly behavior (it does not matter
if anomalies form their own clusters or not).

3. Neural networks work well with highly dimensional data.

4. Neural networks do not have a problem with large number of samples (our dataset has
around 285 000 samples).

We �rst describe the architecture of our solution in section 6.1. The autoencoder neural
network is discussed in section 6.4 along with its wide pool of hyperparameters. We explain
our choices for all of them. Then we brie�y visit the weight initialization method with
pretraining as described in 3.2. Finally we present our feature selection and scaling method
in section 6.6 to avoid and penalize badly reconstructed features.

6.1 Architecture

As depicted in the Figure 6.1, the heart of our classi�er is a four layered symmetrical neural
network with two encoding and two decoding layers as described in 6.4. It uses a condition
for an early training phase exit if a detection threshold is given.

The second most important component is feature scaling and selection, which is used
to penalize badly reconstructed features as described in 6.6. A detection threshold is again
required, otherwise the component is not utilized.

The output of our detection system is either vector of labels or the anomaly (suspicion)
scores.

21

22 CHAPTER 6. PROPOSED SOLUTION

Figure 6.1: The work�ow of our proposed solution. Xtrain ∈ IRN×M and Xtest ∈ IRN×M

are the transaction datasets used for training and testing the classi�er. Threshold ∈
[0, 1] is a real number that signi�es how many frauds should be detected. Labels ∈
{Fraud,Normal}N is a vector of predicted labels based on the given Threshold. Scores ∈
IRN are the suspicion scores of each transaction.

6.2 Mean Squared Feature Recall

Even though we do not have access to labels during training, we would like to at least have
some estimate of the performance of our solution. It turned out that the mean squared feature
recall, as shown in Pseudocode 1, is a good enough measure for the actual performance of
our classi�er.

Algorithm 1 Compute mean of squares of each feature recall.
1: procedure Mean Squared Feature Recall(RE, t) . RE is the reconstruction

error matrix, t is a detection sensitivity
2: scores = predictScores(RE)
3: labels = predictLabels(RE, t)
4: recalls = emptyList
5: for feature← RE do

6: recalls.append(recall(labels, predictLabels(feature, t))2)
7: end for

8: return mean(recalls)
9: end procedure

The idea is that untrained autoencoder will produce a terrible reconstruction of the
original dataset, because every feature will predict the anomalies di�erently (reconstruction
error is random at the beginning). In other words the mean of their prediction recalls will
be low, but steadily getting better over time.

We used this metric during experimentation with the various autoencoder hyperparam-
eters and it is also used as an condition for an early stop of training phase: once the mean

6.3. NORMALIZATION 23

Figure 6.2: The proposed autoencoder we use to compute the reconstruction error. The
network consists of four layers with 25, 20, 25 ad 29 neurons in this order. First three hidden
layers use the exponential linear unit as the activation function, while the output layer is
using logistic sigmoid.

squared feature recall stops improving, we halt the training. The little disadvantage of this
method is the need for prediction threshold, which means we need to have some reason-
able approximation of the ratio of anomalies in the dataset. For example although only
0.173% transactions are fraudulent in our dataset, the prediction threshold of 0.002 would
give almost the same results as the exact threshold of 0.00173.

6.3 Normalization

Naturally, the transactions dataset must be �rst normalized, before it can be used for train-
ing or detecting. Because our output layer of autoencoder is sigmoid, we normalize the
transactions features by their mean and limit them to the interval [0, 1]. The normalization
is pretty straightforward as shown in 2.

Algorithm 2 normalize procedure
1: procedure Normalize(X) . X is a dataset, rows are data points
2: for column← X do

3: column = column−mean(column)
4: column = column ∗ 0.5/max(abs(min(column)), abs(max(column)))
5: column = column+ 0.5
6: end for

7: return T
8: end procedure

6.4 Autoencoder hyperparameters

One of the problems of neural networks is their large number of hyperparameters, resulting
in vast space of possible con�gurations while only a small subpart actually gives good results.
Therefore �nding the meaningful ones is not a trivial task and it usually takes more e�ort
compared to other methods. Because of that we will take the e�ort to describe all of the
hyperparameters we have chosen and considered, when building the neural network. We will
also explain what lead us to choose those particular hyperarameters.

The graph of our neural netwok is presented in Figure 6.2.

24 CHAPTER 6. PROPOSED SOLUTION

6.4.1 Activation functions

Activation function is one of the key parts of neural network, which gives them the power to
approximate non-linear functions (obviously only if the activation function itself is nonlinear).

We have considered three activation functions for our hidden layers: logistic sigmoid,
recti�ed linear unit (relu) and exponential linear unit (elu). Logistic sigmoid has been very
widely used in the past, but it su�ers heavily from the vanishing gradient problems and
is not very computionaly e�cient. The obvious next choice was the most commonly used
activation function used in deep networks - recti�ed linear unit - which addresses both of
these problems [4]. In the end we have decided to use exponential linear unit which speeds
up the learning by making the mean activations closer to zero. It also addresses the dying
relu problem [4].

Formula of exponential linear unit:

σh(α, x) =

{
x x ≥ 0

α(ex − 1) x < 0

The �nal layer should limit the output to certain bounds. We have examined two com-
monly used function: tanh and logistic sigmoid. Tanh should in theory perform better,
because its output is symmetrical around zero. In reality we found out logistic sigmoid
performed better, by giving outliers much higher suspicion scores.

Formula of logistic sigmoid:

σo(α, x) =
1

1 + e−αx

6.4.2 Optimization algorithm

The purpose of optimization algorithm is to minimize the loss function, based on the recon-
truction error and weight matrices of each layer. The best optimization algorithm should
give us the best training speed.

We have tried several avaialable optimizers and measured their loss convergence over 50
epochs. Out of 7 di�erent variants - including the SGD, Adadelta and RMSProp - Adamax
showed to have the fastest convergence.

6.4.3 Loss function

Loss function is used for evaluation and minimization of the di�erence between expected and
actual output. Since we are interesting in �nding outliers in the dataset, the loss function
should be insensitive to them.

We have examined the popular mean squared error (mse) and also not so commonly used
mean absolute error (mae) and logarithm of cosh (LC).

MSE(x, x̂) =

∑N
i=1 ||xi − x̂i||2

N

6.5. PRETRAINING 25

MAE(x, x̂) =

∑N
i=1 |xi − x̂i|

N

LC(x, x̂) =

∑N
i=1 log(cosh(xi − x̂i))

N

As it turned out, both mse and even logcosh to a point, were too sensitive to outliers,
because of their exponential growth. So in the end we went with mean absolute error, which
was more tolerant to them.

6.4.4 Layers

The number of layers and neurons generally depends on the complexity of the relations in
the dataset. In other words, the more complex is the regression function we try to model,
the more neurons and layers are required. With too many layers there is also the danger of
over�tting the data, leading to poor general solution. In outlier detection this behavior is
even worse, because over�tting leads to very low suspicion scores.

We have examined several con�gurations and given the dataset does not seem to be too
complex (there is only one cluster of normal data), increasing number of neurons in a layer
did not yield noticeably better results. Therefore our number of neurons decreases by 5 in
each encoding layer. The number of layers then closely corresponds to the dimension of our
latent representation.

In the end we have chosen an implementation with two encoding and two decoding layers
(29→ 25→ 20→ 25→ 29) as shown in 6.2, because it produced very high suspicion scores
during training.

In chapter 8.1 we compare di�erent layer con�gurations and show how very deep autoen-
coder tended to over�t the outliers.

6.4.5 Batch size

Batch size indicates how many samples of data will be propagated in the neural network.
Similar to optimization algorithm, batch size has a direct impact on the performance of
our training phase. Using small batches instead of whole dataset during training allows
us to escape bad local optima (saddle points) by introducing noise into the gradient. It
also improves the convergence, because gradient evaluated over a small batch acts as an
estimation (especially) of the gradient of the whole dataset.

We have examined multiple batch sizes, ranging from 32 (along with 64, this batch size
is commonly used for deep neural networks and the exact size typically depends on the
underlying GPU) to few thousands. Our autoencoder achieved the best convergence with
the batch size of 64.

6.5 Pretraining

As described in 3.2 pretraining is weight initialization technique, particularly e�ective for
deep autoncoder networks. It improves the training speed and helps to avoid poor local
optima. Although the autoencoder we use in our solution has only four layers, we have got

26 CHAPTER 6. PROPOSED SOLUTION

better results wih pretraining turned on. It was also very useful during the initial phase, when
we expereminted with the number of layers in combination with other hyperparameters.

Naturally we also use adamax optimizer and mean absolute loss loss function for pre-
training as for the the actual autoencoder. The only parameter which is di�erent, is the
much lower number of epochs, because the convergence is very fast with only one hidden
layer.

6.6 Feature selection and scaling

Our solution relies on the fact that the data poins with highest reconstruction error will be
anomalies. The reasoning behind it lies in their special distribution, which di�ers from the
majority of data points. But there are two instances, where this approach fails:

1. If the anomalies are located inside the normal cluster and the normal cluster is hard
to replicate.

2. If the normal class also has, for any reason, similar reconstruction error to anomalies.

In the �rst case, the anomalies will be simply undetectable. Instead, the normal instances
at the edge of cluster will have high suspicion score. In the second case, we will get very
high number of false positives, because the ratio of normal to anomalous instances is highly
unbalanced in favor of nonanomalous data.

It makes perfect sense, that we would like to avoid all features with any of those behaviors,
because they will have highly negative impact on the calculation of the total reconstruction
error. The problem is that we �rst need to run the algorithm, before being able to select
the right features, since if we want to address the �rst problem, we need to know which data
are anomalous, and if we want to address the second problem, we need to know, what the
reconstruction error is.

Our solution therefore involves selecting relevant features after the training phase is �n-
ished, based on their reconstruction error. But unlike the widely used wrapper and embedded
feature selection methods, we are not going to retrain the autoencoder with the new subset
of features.

Another technique that will help us to mitigate both of the mentioned problems is feature
scaling. By feature scaling we just mean multiplying each feature by some scalar x ∈ IR.
Compared to feature selection, there is no threshold that decides, which features are relevant
and which are not. This makes the method more robust and easier to use. In fact, our features
selection is just a special form of feature scaling, where we multiply the the selected feature
reconstruction error by zero.

Our feature selection and scaling algorithm is described in 3. We �rst normalize all
features with their quantile (which should be very close to the maximum loss of normal
transaction), thus all anomalies will have their loss greater or equal to 1. Then we penalize
them based on their recall. Finally we remove features with recall lower than 0.5, since they
give us less than 50% chance to detect an anomaly. We iterate this algorithm few times to
get a better result.

6.6. FEATURE SELECTION AND SCALING 27

Algorithm 3 Feature scaling and selection algorithm. It selects the best features based on
their recall.
1: procedure FeatureScalingAndSelection(RE,t) . RE is a reconstruction error

matrix, t is a detection threshold (sensitivity)
2: for featureRE ← RE do . normalize features
3: featureRE = featureRE/quantile((1− t) ∗ 0.99, featureRE)
4: end for

5: recalls = emptyList
6: for featureRE ← RE do . intialize recalls
7: recalls.push(1)
8: end for

9: for i← [1, 2, 3] do . do 3x
10: labels = predict(ScaleAndSelectHelper(RE.copy(), recalls), t)
11: recalls = emptyList
12: for featureRE ← RE do

13: recalls.append(getRecall(labels, predict(featureRE, t)))
14: end for

15: return ScaleAndSelectHelper(RE.copy(), recalls)
16: end for

17: end procedure

18: procedure quantile(n, vector)
19: vector.sort()
20: index = length(vector)*n
21: return (vector[�oor(index)] + vector[ceil(index)]) / 2
22: end procedure

23: procedure ScaleAndSelectHelper(RE, recalls)
24: for featureRE, recall← RE, recalls do
25: if recall > 0.5 then . penalize features with low recall
26: featureRE = featureRE ∗ recall
27: else . if recall is too low, remove the feature
28: RE.dropFeature(featureRE)
29: end if

30: end for

31: return RE
32: end procedure

28 CHAPTER 6. PROPOSED SOLUTION

Chapter 7

Implementation

In this chapter we describe the implementation of our proposed solution, which allowed us
to experiment with various autoencoder paramaters and evaluate the performance of our
algorithm. We discuss the programming language and libraries we have used in section 7.1.
The speci�cs of implementation are described in section 7.2.

7.1 Technology

We have used the python language, because of its popularity in data science. It has high qual-
ity data science libraries with good documentation and convenient development environment
- jupyter notebooks - which is great for easy and fast visualization.

For implementing the autoencoder, we have used the high level neural network library
keras [4]. It uses the same API for several popular neural network backends called Ten-
sorFlow [5], CNTK [24] and Theano [3]. Therefore it allows us to switch the underlying
neural network implementation without changing our code. In our implementation we use
the TensorFlow backend, but there should be no problem using one of the other two instead.

For manipulating the matrices e�ectively, we use the numpy and pandas [2] libraries.
Numpy allows us to use much less memory for matrices, than the default python lists,
and it also makes the matrix operations much more e�cient. Pandas is built on top of
numpy and it provides higher level interface for manipulating datasets with named rows
and columns (the input datasets are required to be pandas dataframes).

To measure the performance of our detection system, we have used some helper functions
from the library sklearn [26].

Finally, we have used matplotlib [1] to create some of the �gures shown throughout the
thesis. Mostly to visualize the dataset along certain dimensions.

7.2 Code structure

Because python is an object orianted programming language (OOP), we have used objects
(classes) to wrap the functionality of the components described in the proposed algorithm

29

30 CHAPTER 7. IMPLEMENTATION

Figure 7.1: Scheme of the implementation. After calling the DetectionSystem method init,
the three other classes are instantiated and saved, so that they can be later used in the method
predict. The methods are called in the order as the arrows suggest. The parameter X is
an input dataset, X_loss is the reconstruction error matrix, sensitivity is the the detection
threshold used for labeling transactions.

7.2. CODE STRUCTURE 31

architecture 6.1. We have depicted the interaction between the components in the Figure
7.1.

As can be seen, we use four di�erent classes:

1. DetectionSystem

2. Normalization

3. AutoEncoder

4. FeatureScaling

The DetectionSystem is the only class which is exposed to the world, using all of the other
components mentioned. Therefore if we are about to classify anomalies in some dataset, the
DetectionSystem will be the only class we will interact with.

It exposes these three methods:

1. init(X ∈ IRM×N, fraud_ratio ∈ IR)

This method takes the training dataset X and an approximate ratio of frauds in the
dataset fraud_ratio. It initializes all the other objects (Normalization, AutoEncoder,
FeatureScaling) and trains the autoencoder on the dataset.

2. predict_scores(X ∈ IRM×N)→ scores ∈ IRM

This method takes a test dataset X and returns anomaly scores for each transaction,
which is computed from the reconstructed dataset by autoencoder.

3. predict(X ∈ IRM×N, sensitivity ∈ IR)→ labels ∈ {Fraud,Normal}M

This method takes a test dataset X and detection sensitivity and returns the labels
for each transaction. The result of predict_scores with a cuto� based on the detection
sensitivity is utilized to compute the vector of labels.

The Normalization object is there to preprocess the dataset in order to be able to compute
the reconstruction error matrix. It has only two methods:

1. init(X ∈ IRM×N)

This method takes a dataset X and initializes the object by saving the dataset features
like means and maximum and minimum.

2. normalize(X ∈ IRM×N)→ X′ ∈ IRM×N

This method takes a dataset X and returns a normalized dataset X ′.

The AutoEncoder object contains an autoencoder neural network which is used to create
a reconstruction of the input dataset. It has the following three methods:

32 CHAPTER 7. IMPLEMENTATION

1. init(X ∈ IRM×N, fraud_ratio ∈ IR)

This method takes a training dataset X and initializes the object by building the au-
toencoder neural network and initializating its weights with pretraining. The fraud_ratio
is required in order to call the train method.

2. train(X ∈ IRM×N, fraud_ratio ∈ IR)

This method takes a training dataset X and an approximate ratio of frauds in the
dataset fraud_ratio. It trains the autoencoder neural network with the dataset X.
The fraud_ratio as well an FeatureScaling object is required for an early stop of
training.

3. predict(X ∈ IRM×N)→ X′ ∈ IRM×N

This method takes a test dataset X and returns a reconstruction of the dataset X ′,
which is simply the output of autoencoder neural network.

The FeatureScaling object is used to rescale and remove features, based on their utility
as described in 6.6. It has exactly two methods:

1. init(X ∈ IRM×N, fraud_ratio ∈ IR)

This is the initialization method, which takes a reconstruction error matrix X_loss
an approximate ratio of frauds in the dataset fraud_ratio. It computes and saves the
weights of each feature.

2. scale(X_loss ∈ IRM×N)→ X_loss′ ∈ IRM×Q

This method takes a reconstruction error matrix X_loss and returns an updated
reconstruction error matrix X_loss′, by rescaling the features with the saved weights
and removing the features with zero weights.

Chapter 8

Experiments

In the chapter we present the experiments which show the quality of our detection system.
We discuss the results of experiments with various autoencoder hyperparameters and show
the impact of pretraining and feature scaling on the detection performance. For that we use
the mean squared feature recall as presented in chapter 6.

Because we have access to the labels of the dataset, we are also going to present several
performance measures to discuss the e�ciency of our detection system in section 8.3 along
with comparison to existing work.

8.1 Number of layers

Although the number layers generally depends on the complexity of function we want to
model with the neural network, picking the right number is not trivial. As described in
chapter 6, we have examined several con�gurations and decided for one of them based on
the mean squared feature recall described in chapter 6.

To illustrate that, we show three �gures with di�erent layer con�gurations, in each the
number of neurons between layers decreases (and increases) by 5. To generate these curves,
we have used the detection threshold of 0.001727. The f1 score was calculated against
the same dataset and same threshold by using the labels we have. Figure 8.2 (left) shows
a training phase of autoencoder with four layers (thus the latent representation has 20
dimensions). Figures 8.1 (left) and 8.1 (right) show autoencoders which consist of six and
ten layers respectively (thus the latent representations have 15 dimensions and 5 dimensions).
We would favor the con�guration on left, based on the shape of the curve and based on the
maximum value of the mean squared feature recall.

As can be seen from the the �gure 8.2, there is a close relation between feature recall and
performance of our classi�er. Both of those measures usually tend to increase and decrease
together. Since the the four layered autoencoder produced a curve with highest maximum
value and the most promising shape, we have decided to use it in our autoencoder.

33

34 CHAPTER 8. EXPERIMENTS

Figure 8.1: (Left) The mean squared feature recall of autoencoder with 6 layers during
training. (Right) The mean squared feature recall of autoencoder with 10 layers during
training. The autoencoder on the left should outperform the one on the right, because of its
overall higher mean squared feature recall and because of the shape of the curve.

Figure 8.2: (Left) The mean squared feature recall of autoencoder with 4 layers during
training. (Right) Raw f1 score (without feature scaling) of the same autoencoder during
training.

8.2. FEATURE SELECTION 35

feature selection threshold θ TP FN FP TN
with feature scaling 0.000172 49 443 0 284315

0.00069 166 326 31 284284
0.001209 284 208 60 284255
0.001727 388 104 104 284211
0.002591 397 95 341 283974
0.005009 406 86 1021 283294
0.010019 409 83 2444 281871
0.015029 411 81 3869 280446

without feature scaling 0.000172 47 445 2 284313
0.00069 144 348 53 284262
0.001209 220 272 124 284191
0.001727 273 219 219 284096
0.002591 353 139 385 283930
0.005009 396 96 1031 283284
0.010019 398 94 2455 281860
0.015029 402 90 3878 280437

Table 8.1: Evaluation of detection performance with feature scaling turned on and o�. The
second column contains detection threshold. The third, fourth, �fth and sixth column contain
True Positives, False Negatives, False Positives and True Negatives respectively. The default
threshold of 0.001727 is in bold and it is equal to the ratio of frauds in the dataset.

8.2 Feature selection

Feature scaling as presented in 6.6 is the key component in our detection system. We are
going to show its impact on performance and discuss the weights we obtained.

8.2.1 Performance improvement

In table 8.1 we compare the performance of our detection system with feature scaling turned
on and o�. To achieve this result, we have trained the autoencoder with whole transactions
dataset with the training detection threshold of 0.001727 (the ratio of fraudulent transactions
in our dataset), the detection threshold in the table was then used to predict the labels for
all transactions in the dataset.

As can be seen, with increasing threshold, the number correctly classi�ed fraudulent
transactions (True Positives) increases, but without feature scaling we need much higher
detection threshold to get the same number of True Positives.

8.2.2 Learned feature weights

The feature weights are used to scale down the reconstruction error of certain features as
described in 6.6. For training we use the whole dataset and detection threshold of 0.001727.
The weights are in fact the feature recalls and they are presented in Table 8.2. The larger

36 CHAPTER 8. EXPERIMENTS

removed features feauture weight feature weight
V28 V24 0.554878 V13 0.906504
V2 V5 0.648374 V9 0.908537
V20 V1 0.658537 V17 0.926829
V27 V4 0.731707 V18 0.932927
V23 V22 0.739837 V12 0.959350
V21 V7 0.762195 V14 0.959350
Amount V15 0.764228 V16 0.961382
V8 V11 0.794715
V6 V10 0.843496
V19 V3 0.845528
V26 V25 0.898374

Table 8.2: The very left columns contains all the features which do not in�uence the �nal
detection score (their weight would be zero), because they are removed from the dataset.
The rest of the features is listed with their corresponding weight, the higher, the better.

the weight (recall) is, the more important the reconstruction error of that feature is. We
could say that the feature provides more information about fraudulent behavior.

For illustration the two features with largest weights V14 and V16 are depicted in the
Figure 8.3 and the two features with the lowest weights (if we don't count the removed
features with zero weights) V24 and V5 are depicted in the Figure 8.4. It can be seen the
features in the second graph gives us almost no useful information which could be used to
classify fraudulent transactions.

8.3 Classi�cation performance

In this section we discuss the performance of our unsupervised detection system by using the
labels from the dataset. Although we have already showed some performance measure in the
previous sections, all of them used the whole dataset both for training and classi�cation. This
is not ideal, because we might over�t on the data (e.g. by choosing certain parameters) and
our solution might not generalize well. We would also like to classify incoming transactions
immediately (so called online classi�cation), but retraining the whole autoencoder every time
would be too slow.

Because of these three reasons we used cross validation to simulate the situation of
receiving an unseen dataset. We use the strati�ed kfold method where k = 5, which means
we split the dataset randomly into a training one, containing 80% of the original transactions,
and testing one, containing 20% of the original transactions. Because the split is strati�ed,
the ratio of fradulent transactions remains always the same.

This is done 5 times to obtain 5 di�erent training and testing sets, which are used as
an input to the detection system (with the detection threshold of 0.1727). We average the
results and obtain a single confusion matrix which is depicted in 8.3.

There is also a very straightforward way to quantify the cost of various detection thresh-
olds. If we assume that undetected fraud costs the bank as much money as was stolen, we

8.3. CLASSIFICATION PERFORMANCE 37

Figure 8.3: Two features with the highest weights V14 is on the X axis. V16 is on the Y
axis. Fraudulent transactions are highlighted by using the + marker.

Figure 8.4: Two features with the lowest weights (excluding the removed features with zero
weights). V24 is on the X axis. V5 is on the Y axis. Fraudulent transactions are highlighted
by using the + marker.

38 CHAPTER 8. EXPERIMENTS

positive
(actual)

negative
(actual)

positive
(predicted) 73 25.4
negative

(predicted) 25 56838

Table 8.3: A confusion matrix obtained from the strati�ed 5-fold cross validation. It is an
average of 5 di�erent confusion matrices.

currency veri�cation cost threshold net gain
EUR 0.85 (EUR) 0.0015 37938 (EUR)

0.0017 44665 (EUR)
0.0020 45391 (EUR)

GBP 0.74 (GBP) 0.0015 37985 (GBP)
0.0017 44718 (GBP)
0.0020 45454 (GBP)

CZK 22 (CZK) 0.0015 28907 (CZK)
0.0017 34428 (CZK)
0.0020 33335 (CZK)

Table 8.4: The amount of money spared by our detection system is depicted in the last
column. Second and third column show the veri�cation cost and detection threshold for
each of the three European currencies.

can calculate the net gain from using our detection system based on the incurred expenses to
verify the transaction authenticity. We will use the same average cost of 1$ per veri�cation
as Gadi et al. [14]. Note that we don't know the currency of transactions in our dataset, so
we use multiple European currencies (because the dataset is from European bank). The net
gain of our solution for various currencies and thresholds are shown in the Table 8.4.

8.3.1 Comparison to existing work

Kremnyov et al. [21] have examined the performance of several clustering unsupervised
techniques. We show the best performing techniques and their performance in Table 8.5
along with the performance of our detection system.

Since they do not describe in the article, how they have chosen the training and testing
dataset, we have used whole transactions dataset for training and evaluating the performance
(shown in the above Table 8.5) of our detection system along with the detection threshold
of 0.0065.

Although our detection system performs slightly worse than their examined methods, the
authors of the article used a supervised feature selection, based on point-biserial correlation (a
measure of association between a feature and transaction label), removing up to 23 features.
They have also selected the model hyperarameters by doing an exhaustive search, picking

8.3. CLASSIFICATION PERFORMANCE 39

algorithm recall (%) FPR (%)
our method (threshold = 0.0065) 82.72 0.51
multi variate outlier detection 84.55 0.41
BACON outlier detection 84.55 0.70
k,l means 84.95 0.55
DBSCAN 84.35 0.64

Table 8.5: Outlier techniques are listed in the �rst column. The performance is measured in
recall (middle column) and false postive rate (last column). Our algorithm performance for
the detection threshold 0.0065 is listed in the �rst row.

the one with best recall and false positive rate.

The reason we have picked this article, even though their approach is not unsupervised
from ground up, is that it still gives us as an anchor on what should we expect from ideally
set up unsupervised technique (with the right hyperarameters, applied to the most signi�cant
features). As can be seen from the Table 8.5, our solution performance is very close to it,
which is very promising.

We have also tried to look for an article using the same card transactions dataset detailing
an unsupervised method based on autoencoders, but not a single one had a good enough
performance (usually around 50% recall and 30% precision) to be mentioned in this section.

40 CHAPTER 8. EXPERIMENTS

Chapter 9

Conclusion

All goals were full�lled. We have researched related work and decided to use spectral based
detection technique. We have decided to use autoencoder based detection system because
of its advantages over other anomaly detection methods: fast classi�cation, low memory
consumption and.

Our unsupervised detection algorithm architecture was presented along with its imple-
mentation. We described each component of the detection system and explained the param-
eter choices for the autoencoder neural network.

We have presented and explained our own unsupervised feature scaling and selection
algorithm. Unlike the common �lter, wrapper and embedded feature selection algorithms,
we apply it at the end of the detection process, to the reconstruction error matrix obtained
from autoencoder. It has dramatically improved our classi�er performance by more than
50% for certain detection thresholds.

Finally, we applied our detection algorithm to a real credit card transactions dataset
from an unnamed European bank. Because the dataset was labeled, we could measure
the performance of our algorithm by several di�erent measures. We also compared our
unsupervised approach to existing algorithms, achieving comparable performance to the
best examined classi�ers.

9.1 Future work

Our dataset was rather simple, containing only one cluster of normal transactions. The next
logical step is to apply our solution on more complex dataset with multiple normal clusters,
possibly corresponding to di�erent normal classes, and improve our solution in case it does
not generalize well.

It is also pretty unfortunate, that the dataset we got does not include any categorical
features like some kind of id of the credit card holder, a place, from where tha transaction was
realized and the name of the target (e.g. salesman id). Because of that we had to completely
omit a very interesting part of credit card fraud detection called feature aggregation.

There is also another interesting use case for autoencoders which we peeked into during
our experimentation phase. The latent representation is technically a compressed version of

41

42 CHAPTER 9. CONCLUSION

the input dataset, which means only redundant data (like noise) are removed. Anomalies
should be therefore be present and most importantly separable even in the lower dimensional
projection. We can utilize this by using the hidden representation as an input to another
unsupervised technique which perhaps does not scale well to highly dimensional data.

Bibliography

[1] Matplotlib: Python plotting library. Page: <https://matplotlib.org/>.

[2] Pandas: Powerful Python data analysis toolkit. Page: <https://pandas.pydata.org/
talks.html>.

[3] The Theano deep learning library. Page: <http://www.deeplearning.net/software/
theano/>.

[4] Wikipedia: Recti�ed linear unit, May 2018. Page: <https://en.wikipedia.org/
wiki/Rectifier_(neural_networks)>.

[5] ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems, 2015. Page: <https://www.tensorflow.org/>.

[6] ALESKEROV, E. � FREISLEBEN, B. � RAO, B. Cardwatch: A neural network based
database mining system for credit card fraud detection. In Computational Intelligence
for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997, s. 220�
226. IEEE, 1997.

[7] AMER, M. � GOLDSTEIN, M. � ABDENNADHER, S. Enhancing one-class sup-
port vector machines for unsupervised anomaly detection. In Proceedings of the ACM
SIGKDD Workshop on Outlier Detection and Description, s. 8�15. ACM, 2013.

[8] AN, J. � CHO, S. Variational autoencoder based anomaly detection using reconstruction
probability. SNU Data Mining Center, Tech. Rep. 2015.

[9] DHEEPA, V. � DHANAPAL, R. et al. Analysis of credit card fraud detection methods.
International journal of recent trends in engineering. 2009, 2, 3, s. 126�128.

[10] DORRONSORO, J. R. et al. Neural fraud detection in credit card operations. IEEE
transactions on neural networks. 1997, 8, 4, s. 827�834.

[11] ERTÖZ, L. � STEINBACH, M. � KUMAR, V. Finding clusters of di�erent sizes,
shapes, and densities in noisy, high dimensional data. In Proceedings of the 2003 SIAM
International Conference on Data Mining, s. 47�58. SIAM, 2003.

[12] ESTER, M. et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, 96, s. 226�231, 1996.

43

https://matplotlib.org/
https://pandas.pydata.org/talks.html
https://pandas.pydata.org/talks.html
http://www.deeplearning.net/software/theano/
http://www.deeplearning.net/software/theano/
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://www.tensorflow.org/

44 BIBLIOGRAPHY

[13] FOWLER, J. E. � DU, Q. Anomaly detection and reconstruction from random projec-
tions. IEEE Transactions on Image Processing. 2012, 21, 1, s. 184�195.

[14] GADI, M. F. A. � WANG, X. � LAGO, A. P. Credit card fraud detection with arti�cial
immune system. In International Conference on Arti�cial Immune Systems, s. 119�131.
Springer, 2008.

[15] GHOSH, S. � REILLY, D. L. Credit card fraud detection with a neural-network. In Sys-
tem Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Conference
on, 3, s. 621�630. IEEE, 1994.

[16] GROUP, M. L. Credit Card Fraud Detection Dataset | Kaggle, 2015. Page: <https:
//www.kaggle.com/mlg-ulb/creditcardfraud>.

[17] GUHA, S. � RASTOGI, R. � SHIM, K. ROCK: A robust clustering algorithm for
categorical attributes. Information systems. 2000, 25, 5, s. 345�366.

[18] HINTON, G. E. � SALAKHUTDINOV, R. R. Reducing the dimensionality of data
with neural networks. science. 2006, 313, 5786, s. 504�507.

[19] HOSSEINPOUR, F. et al. Arti�cial immune system based intrusion detection: innate
immunity using an unsupervised learning approach. International Journal of Digital
Content Technology and its Applications. 2014, 8, 5, s. 1.

[20] HU, W. � LIAO, Y. � VEMURI, V. R. Robust Support Vector Machines for Anomaly
Detection in Computer Security. In ICMLA, s. 168�174, 2003.

[21] KREMNYOV OLEG, A. M. Dealing with Outliers, Feb 2018. Page: <https://www.
codeproject.com/Articles/1231386/Dealing-with-Outliers>.

[22] LIU, F. T. � TING, K. M. � ZHOU, Z.-H. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD). 2012, 6, 1, s. 3.

[23] MAES, S. m. et al. Credit card fraud detection using Bayesian and neural networks.
In Proceedings of the 1st international naiso congress on neuro fuzzy technologies, s.
261�270, 2002.

[24] MICROSOFT. The Microsfot CNTK neural network library. Page: <https://github.
com/Microsoft/CNTK>.

[25] NICOLAU, M. � MCDERMOTT, J. et al. A hybrid autoencoder and density estimation
model for anomaly detection. In International Conference on Parallel Problem Solving
from Nature, s. 717�726. Springer, 2016.

[26] PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research. 2011, 12, s. 2825�2830.

[27] �AHIN, Y. G. � DUMAN, E. Detecting credit card fraud by decision trees and support
vector machines. 2011.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.codeproject.com/Articles/1231386/Dealing-with-Outliers
https://www.codeproject.com/Articles/1231386/Dealing-with-Outliers
https://github.com/Microsoft/CNTK
https://github.com/Microsoft/CNTK

BIBLIOGRAPHY 45

[28] SHYU, M.-L. et al. A novel anomaly detection scheme based on principal component
classi�er. Technical report, MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRI-
CAL AND COMPUTER ENGINEERING, 2003.

[29] SMITH, R. et al. Clustering approaches for anomaly based intrusion detection. Pro-
ceedings of intelligent engineering systems through arti�cial neural networks. 2002, s.
579�584.

[30] SYEDA, M. � ZHANG, Y.-Q. � PAN, Y. Parallel granular neural networks for fast
credit card fraud detection. In Fuzzy Systems, 2002. FUZZ-IEEE'02. Proceedings of the
2002 IEEE International Conference on, 1, s. 572�577. IEEE, 2002.

[31] VIAENE, S. et al. A Comparison of State-of-the-Art Classi�cation Techniques for
Expert Automobile Insurance Claim Fraud Detection. Journal of Risk and Insurance.
2002, 69, 3, s. 373�421.

[32] VIAENE, S. � DERRIG, R. A. � DEDENE, G. A case study of applying boosting Naive
Bayes to claim fraud diagnosis. IEEE Transactions on Knowledge and Data Engineering.
2004, 16, 5, s. 612�620.

[33] ZHANG, D. et al. iBAT: detecting anomalous taxi trajectories from GPS traces. In
Proceedings of the 13th international conference on Ubiquitous computing, s. 99�108.
ACM, 2011.

46 BIBLIOGRAPHY

Appendix A

Content of the CD

The attached CD contains the eletronic version of our thesis, the source code of our algorithm
and saved weights of the autoencoder that we ran the benchmarks with.

The algorithm can be run by installing python programming language (e.g. with ana-
conda) and the required libraries (sklearn, numpy, pandas, keras, tensor�ow) and executed
from the command line as described in Readme.txt.

Folder / File Name Content
source Folder containing the python source code of our algorithm

along with the card transactions dataset
text Folder which contains the PDF version of thesis
weights Folder containing the weights we have used in our performance analysis
README.txt File that explains how to run our algorithm

Table A.1: Content of the CD.

47

	Introduction
	Goals of thesis
	Chapter description

	Related work
	Supervised techniques
	Artificial Neural Networks
	Decision Trees
	Bayesian Belief Networks
	Artificial Immune System
	Support Vector Machines

	Unsupervised techniques
	Nearest Neighbor techniques
	Clustering techniques
	Isolation based techniques
	Spectral techniques

	Technical Background
	Autoencoder
	Pretraining

	Data Description
	Problem definition
	Proposed solution
	Architecture
	Mean Squared Feature Recall
	Normalization
	Autoencoder hyperparameters
	Activation functions
	Optimization algorithm
	Loss function
	Layers
	Batch size

	Pretraining
	Feature selection and scaling

	Implementation
	Technology
	Code structure

	Experiments
	Number of layers
	Feature selection
	Performance improvement
	Learned feature weights

	Classification performance
	Comparison to existing work

	Conclusion
	Future work

	Content of the CD

