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Abstrakt

Stále širš́ı využit́ı technologíı ve zdravotnictv́ı bude v budoucnu nevyhnutelné. Jednou z již
běžně použ́ıvaných technologíı je inteligentńı zdravotńı l̊užko. Tato práce prezentuje údaje
źıskané z inteligentńıho zdravotńı l̊užka a navrhuje jejich využit́ı pro detekci polohy těla
metodami klasifikace vzor̊u. Byla testována řada klasifikátor̊u jak v intrapersonálńım,
tak v interpersonálńım scénáři. V obou scénář́ıch bylo testováno několik klasifikátor̊u.
Pro oba byl nejlepš́ım klasifikátorem naivńı Bayesovský klasifikátor s pr̊uměrnou chybou
8.1% pro intra-personálńı a 23.1 % pro inter-personálńı klasifikaci. Nejhorš́ı klasifikačńı
chyby dosáhl rozhodovaćı strom s pr̊uměrnou chybou 19.8% pro inter- a 33.4% pro intra-
personálńı klasifikaci. Tato práce také diskutuje možné budoućı rozš́ı̌reńı. Konkrétńı tř́ıdy
poloh jsou porovnávány podle jejich rozlǐsitelnosti a výsledky jsou popsány a shrnuty.

Keywords: Chytré nemocničńı l̊užko, detekce poloh, klasifikátory.
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Abstract

The usage of technologies in medical field in future is indisputable. One of already com-
monly used technology is smart medical bed. This thesis presents and analyses the data
obtained from smart medical bed and proposes their usage for posture detection using
pattern classification methods. Two scenarios were examined. Intra-personal classifier is
trained on the same person on which it will be used. Inter-personal classifier can classify
data from person it has never seen before. Several classifiers were tested in both sce-
narios. For both the best classifier was naive Bayes with average error 8.1% and 23.1%
for intra-personal classification and inter-personal classification, respectively. The worst
classifier turned out to be decision tree with average error 19.8% and 33.4%, respectively.
The particular classes of postures are compared according to their discriminability and
all results are described and summarized.

Keywords: Smart medical bed, posture detection, classifiers.
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Tomáš Vobořil for their precious time spent on my experiments.

Last but not the least, I would like to thank my mother for supporting me throughout
my life.

vii



List of Tables

3.1 Process of repeatability test . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Correlation of strain gages . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Process of experiment with weight . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Set of postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Weight of subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Table of hold-out estimate of relative errors in percents on each class and

subject for Naive Bayes (NB) classifier implemented in Statistics and Ma-
chine Learning Toolbox (SMLT) . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Table of hold-out estimate of relative errors in percents on each class and
subject for k-Nearest Neighbour (kNN) (k = 1) classifier implemented in
SMLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 3) classifier implemented in SMLT . . . . . . . . . . 22

5.6 Table of hold-out estimate of relative errors in percents on each class and
subject for Decision trees (DT) classifier implemented in SMLT . . . . . . 22

5.7 Confusion matrix estimate for NB classifier implemented in SMLT . . . . . 22
5.8 Table of cross-validation estimate of relative errors in percents on each class

and subject for NB classifier implemented in SMLT . . . . . . . . . . . . . 24
5.9 Table of cross-validation estimate of relative errors in percents on each class

and subject for kNN (k = 1) classifier implemented in SMLT . . . . . . . . 24
5.10 Table of cross-validation estimate of relative errors in percents on each class

and subject for kNN (k = 3) classifier implemented in SMLT . . . . . . . . 25
5.11 Table of cross-validation estimate of relative errors in percents on each class

and subject for DT classifier implemented in SMLT . . . . . . . . . . . . . 25
5.12 Confusion matrix for NB classifier implemented in SMLT . . . . . . . . . . 25

B.1 Table of hold-out estimate of relative errors in percents on each class
and subject for DT classifier implemented in Pattern Recognition Tool-
box (PRTOOLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B.2 Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 1) classifier implemented in PRTOOLS . . . . . . . . 30

B.3 Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 3) classifier implemented in PRTOOLS . . . . . . . . 31

B.4 Table of hold-out estimate of relative errors in percents on each class and
subject for NB classifier implemented in PRTOOLS . . . . . . . . . . . . . 31

B.5 Table of hold-out estimate of relative errors in percents on each class and
subject for Linear Bayes (LB) classifier implemented in PRTOOLS . . . . . 31

viii



LIST OF TABLES ix

B.6 Table of hold-out estimate of relative errors in percents on each class and
subject for Support Vector Machine (SVM) classifier implemented in SMLT 32

B.7 Table of cross-validation estimate of relative errors in percents on each class
and subject for DT classifier implemented in PRTOOLS . . . . . . . . . . 32

B.8 Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 1) classifier implemented in PRTOOLS . . . . . 32

B.9 Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 3) classifier implemented in PRTOOLS . . . . . 33

B.10 Table of cross-validation estimate of relative errors in percents on each class
and subject for NB classifier implemented in PRTOOLS . . . . . . . . . . 33

B.11 Table of cross-validation estimate of relative errors in percents on each class
and subject for LB classifier implemented in PRTOOLS . . . . . . . . . . . 33

B.12 Table of cross-validation estimate of relative errors in percents on each class
and subject for SVM classifier implemented in SMLT . . . . . . . . . . . . 34



List of Figures

3.1 Approximate position of sensors . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Plot of the signals obtained from the sensors . . . . . . . . . . . . . . . . . 8
3.3 x and y position of the centre of mass . . . . . . . . . . . . . . . . . . . . . 9
3.4 Centre of mass position signals . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Both axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Only X-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Both axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Plot of fixed move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Scatter plots for Subject 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Scatter plots for Subject 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Scatter plots for multiple subjects . . . . . . . . . . . . . . . . . . . . . . . 20

A.1 Plots for Subject 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.2 Plots for Subject 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Plots for Subject 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

x



List of Acronyms

DT Decision trees. viii, ix, 14, 18, 21–23, 25, 30, 32

ECG Electro-cardiogram. 4

FCM Fuzzy C-Means. 4

FSR Force-Sensing Resistor. 3, 4

HO Hold-out. 15, 18

kNN k-Nearest Neighbour. viii, ix, 4, 13, 21–25, 30–33

LB Linear Bayes. viii, ix, 14, 18, 31, 33

NB Naive Bayes. viii, ix, 14, 18, 20–25, 27, 31, 33

nCV n-fold cross-validation. 15, 18

NN Neural Network. 4

PRTOOLS Pattern Recognition Toolbox. viii, ix, 13, 18, 30–33

PUP Pressure Ulcer Prevention. 3, 4

SMLT Statistics and Machine Learning Toolbox. viii, ix, 13, 18, 21, 22, 24, 25, 32, 34

SVM Support Vector Machine. ix, 3, 4, 14, 23, 32, 34

xi



Contents

Abstrakt v

Abstract vi

Acknowledgements vii

List of Tables viii

List of Figures x

List of Acronyms xi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related work 3

3 Data structure 6
3.1 Data from four strain sensors . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Strain gage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Data with centre of mass position . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Static weight experiment . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Moving weight experiment . . . . . . . . . . . . . . . . . . . . . . . 11

4 Main components 13
4.1 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 k -Nearest Neighbour Classifier . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Bayesian classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.4 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Hold-out validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 k -fold cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . 15

xii



CONTENTS xiii

5 Posture detection 16
5.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Posture classification algorithm . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3.1 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Intra-personal classifier . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.3 Inter-personal classifiers . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Summary and conclusion 26

A Scatter plots 28

B Tables of results 30
B.1 Intra-personal classification results . . . . . . . . . . . . . . . . . . . . . . 30
B.2 Inter-personal classification results . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 36



Chapter 1

Introduction

1.1 Motivation

In recent years, the demand for good healthcare services is growing. To increase the

quality of provided care, healthcare institutions (e.g. hospitals, nursing homes, etc.) are

expected to change with the help of rapidly evolving technologies. Another reason for

the intervention of technology is that nursing is a tiring, physically demanding and not

well paid job. Also, according to [1], there is a concern that as the population ages, a

relatively high proportion of nurses and caring professionals will retire. Possible solution

is to try to make nursing not so human dependent. For these and many other reasons,

the future importance of support devices in hospitals is indisputable.

One of such devices supporting medical staff in everyday practice is the smart hospital

bed. Recently, medical beds are more than a resting place for patients. They keep a record

about patient’s condition, and with such ability, they help healthcare workers to deliver a

better care. Variety of smart medical beds provides sundry of conveniences. Examples are

advanced bed positioning, temperature monitoring or pressure sensors, which are focused

in this thesis.

1.2 Problem description

The goal of this thesis is to explore, interpret and utilize the data obtained from smart

hospital bed LINET. There were many possible scenarios. After thorough evaluation of

data, the body posture detection was chosen. It is an important application for many

1



CHAPTER 1. INTRODUCTION 2

reasons that are detailed in chapter 2. The development of the posture detection algorithm

was considered as a common supervised machine learning task. A set of labeled data

(inputs assigned to a specific posture) was collected and used as training and testing data

for classifiers. Using the training data, a training algorithm creates a function that assigns

input data to particular posture. To obtain a better understanding about the detection

problem it was desirable to try more classifiers and make a comparison among them. Due

to a the lack of collected data, only simple classifiers were chosen and implemented in

MATLAB.

1.3 Structure of Thesis

The thesis is divided into six chapters. In chapter 2 there is a brief survey of posture

detection methods from other researchers and engineers. The exploration of useful data

that can be acquired from bed is described in chapter 3. A description of algorithms and

methods used in this work can be found in chapter 4. The experiments and their results

are presented in chapter 5. Finally, in chapter 6, the thesis is summarized and concluded.



Chapter 2

Related work

It has been demonstrated by various researchers that the detection of postures can be

useful and important in many applications. One example is Pressure Ulcer Prevention

(PUP) for elderly and bedridden patients - a major and costly issue in care institutions.

Detecting and keeping a record of the patient’s posture on bed helps care givers reposition

patient more efficiently and reduce the risk of developing a pressure ulcer [2]. Other ex-

amples are the vital signs monitoring, sleep quality assessment [3], sleep disorders analysis

[4] or patient safety and caregiving efficacy [5].

In [6], the authors proposed a detection method using Bayesian classification based

on kurtosis and skewness estimation. For data acquisition they used 16 long-narrow

Force-Sensing Resistor (FSR) sensors. Assuming that the prior probability of postures

is uniformly distributed, they adopted Gaussian distribution to model the bed postures.

With three different postures - Supine, Right Lying and Left Lying - they achieved an

average of 78.7% precision rate, that were critically influenced by the lying angle of the

patient.

The use of kurtosis and skewness estimation was also presented in [7]. Furthermore,

for sleeping posture classification they applied principal component analysis and SVMs.

Their pressure sensing beds consisted of 16 or 56 FSR sensor pads. For patients with

low mobility, 16-sensor pad was able to detect 3 positions with high accuracy (average

81.43%) which dropped when patients started to move and sleep in different positions.

In [2], an image based algorithm has been proposed. Authors used a flexible pad with

sensors distributed in 32x64 rectangular grid, that can be considered as gray scale pressure

image. Algorithm itself has three main steps: normalization, eigenvalue projection and

3



CHAPTER 2. RELATED WORK 4

kNN classifier. To evaluate their posture classification methodology they collected five

different postures: right foetus, left foetus, right yearner, left yearner and supine. The

most problematic posture was the right foetus as it was confused with the right yearner

in 5.1%. They managed to obtain total accuracy of 94.3%.

In [8], the authors introduced Neural Network (NN) for posture classification with

only four sensors, i.e. two piezoelectric and two pressure sensors. Postures of five classes

were considered: out of bed, sitting, lying down, lying left and lying right. The total

dataset consisted of 120 hours corresponding to 20 500 measurements (5 postures x 4100

measurements) from a single subject. The overall performance reached up to 98.3% of

accuracy.

NN was also proposed in [5]. Moreover, the authors introduced Fuzzy C-Means (FCM)

algorithm to transform the pressure contours and identify the regions of interest with high

pressure for PUP. Their sensor pad contained 18x12 array of FSR. To obtain the data,

six people were asked to perform six designed configurations of three lying postures and

stay in each for one minute. They collected 900 pressure images in total. Their average

posture recognition rate was up to 95.89%.

The authors in [4] developed a posture detector with usage of unconstrained measure-

ments of Electro-cardiogram (ECG) signals using 12 capacitively coupled electrodes and

a conductive textile sheet. They extracted features on the basis of the morphology of the

QRS and applied them to five different classifiers. The highest performance was obtained

for SVM with radial basis function kernels with an accuracy of 98.4% for estimation of

four body postures - supine, right lateral, prone, and left lateral.

The writers in [9] presented the use of a bed-based optical pressure sensor array to

recognize sitting, lie-to-sit, and lying postures. They collected data using a pressure

sensor array and video cameras and compared eight pressure signal features and three

classification techniques. The measured subjects were divided into 4 distinct groups:

young healthy, older healthy, older post-stroke, and older post-hip-fracture. The highest

accuracy reached feature called weighted number of active sensors, exceeding almost 90%

by all three tested classifiers - SVM, NN and kNN.

Alternative sensing techniques were proposed in [10], where authors used temperature

sensors and acoustic sensors. Authors stated that ”this method can be used standalone,

can augment other sensors, or can validate data from pressure or visual-based systems.”
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To remove noises enabling acoustic posture detection, a least mean square algorithm was

deployed. With the usage of thresholding algorithm, the postural changes events are then

recognized from audio records. In a controlled environment, they were able to detect over

90% of postural changes.



Chapter 3

Data structure

In this chapter it is described and explained what kind of data can be obtained from the

bed. There is also a description of demonstrative experiment that was made to evaluate

reliability and overall behaviour.

The data is sent by a standard packet formatted in 256 bytes. Majority of information

acquired from the packet is not interesting for posture detection and is not used in this

work. The interesting ones are described here.

3.1 Data from four strain sensors

The main data that can be acquired from the bed are quantities from analog-to-digital

converter of strain gages that are inserted into the body of the bed. There are four of

them in total and are labeled from 142 to 145, which is their position in sent packet.

Their approximate position is depicted in Fig. 3.1. The sensors are briefly described in

the next sections.

3.1.1 Strain gage

Strain gage is a passive metal sensor, firmly connected with the body of the bed, that

measures force applied on the bed. Metal sensor posses a ’strain sensitivity’ - ratio of

the relative change in electrical resistance of a conductor to the applied relative change

in conductor length. Strain sensitivity is a dimensionless quantity. [11]

6



CHAPTER 3. DATA STRUCTURE 7

Figure 3.1: Approximate position of sensors

3.1.2 Repeatability

In order to understand the strain gage data, demonstration measurements were performed.

Moreover, the experiment was used to test the repeatability of the strain gage data. The

process is described in Table 3.1. A measurement was repeated three times, two in a

row and last one five days after. Figure 3.2 shows the process of the experiment. As

expected, the experiments demonstrate that sensors returns similar quantities when the

same experiment is repeated.

Time Action
0s - 60s without any weight
60s - 90s subject sits on the left side of bed
90s - 120s subject lays down
120 - 150s subject sits on the left side of bed
150s - 210s without any weight

Table 3.1: Process of repeatability test
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Figure 3.2: Plot of the signals obtained from the sensors

3.1.3 Dependence

Because of the bed structure, it is probable that some strain gages are correlated. In

Table 3.2, there is a computed correlation coefficient for each strain gage from experiment

described in section 3.1.2. There is a significant correlation between sensors indexed 142

and 143. It seems that this is due to the fact that the sensors are inserted close to each

other in the upper part of the bed. There is also a negative correlation between sensors

indexed 144 and 145. Presumably this factor is because the sensors lie far from each other

on x - axis, so when one is loaded by down, the other one is unburdened. Conversely,

sensors indexed 142 and 145 and sensors indexed 143 and 145 appear to be relatively

independent.

142 143 144 145
142 1 0.9759 0.6810 0.2062
143 0.9759 1 0.6033 0.2938
144 0.6810 0.6033 1 -0.5409
145 0.2062 0.2938 -0.5409 1

Table 3.2: Correlation of strain gages
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3.2 Data with centre of mass position

Other data that can be acquired from the smart hospital bed is the centre of mass position.

It is represented as two separated signals - x and y position of the centre of mass - that are

computed from the quantities obtained from the strain gages. In Figure 3.3, it is outlined

where the x and y position lies.

Figure 3.3: x and y position of the centre of mass

To obtain a better understanding of the obtained quantities and to check their validity,

demonstration and validation measurements were performed and are described in the

following section.

3.2.1 Static weight experiment

In this experiment, each corner and center of the bed were loaded down by a weight u and

for a 15 seconds forced manually with extra weight v. The schedule of the measurement

is described in Table 3.3.

Time Weight
0s - 15s only weight u
15s - 30s extra force u + v
30s - 45s only weight u

Table 3.3: Process of experiment with weight

Following graphs show the change of the centre of mass during the experiment. First

thing that should be observed is that it may seem that the values have a large range.

This can be seen at the plot from the upper left corner Figure 3.4a. The centre of mass
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on the y-axis acquired value around 10 000 when the bed was weighted only with weight

u and overflowed to values around 100 when weighted with extra weight w. Comparing

the plots from the upper left and upper right corner from Figure 3.4, centre of mass on

x-axis acquire values around 10 000 on left side and around 100 on right side.
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Figure 3.4: Centre of mass position signals
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3.2.2 Moving weight experiment

Another experiment that was created to observe the centre of mass was with moving

weight. The weight was moved continuously horizontally (see Figure 3.5) and vertically

(see Figure 3.7) for several seconds. Moving horizontally, only on x-axis was observed a

changing signal (Figure 3.6). As can be seen, first 20 seconds the values descended, then

overflowed and started to ascend from 0. These tests revealed that the negative values

are encrypted reversely and as numbers higher than 10 000. The following pseudocode

fixes the problem, where centreOfMass denotes the position of centre of mass on x-axis

or y-axis and threshold is the value that centre of mass never exceeds as positive number.

In this application threshold is set to 9000. As illustrated in Figure 3.8, centre of mass

courses as could be expected.

if CMX ≥ threshold then

CMX ← CMX − 10000

end if
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Figure 3.5: Both axes
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Figure 3.6: Only X-axis
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Figure 3.8: Plot of fixed move



Chapter 4

Main components

This section describes the main components of this work including classifiers (section 4.1)

and error estimation (section 4.2) methods.

4.1 Classifiers

Classification is a task of classifying the data into previously known classes. The algo-

rithms that implement classification are called classifiers. Classifiers play crucial part in

this work. The particular implementation of used classifiers can be found in the docu-

mentation for the PRTOOLS toolbox and Statistics and Machine Learning Toolbox that

were used. Two different toolboxes were used in parallel to avoid invalidity of the results

caused by an incorrect implementation.

4.1.1 k-Nearest Neighbour Classifier

k-Nearest Neighbour is a simple classifier that always finds the k nearest (usually Eu-

clidean distance is used) training data instances which are the closest to the testing

instance and assigns the instance into the most frequent class amongst the k nearest

neighbours. When k = 1, the classifier simply finds nearest neighbour and assigns the

testing data to the found class.

4.1.2 Bayesian classifiers

Bayesian classifiers are based on Bayesian theorem - a rule that expresses a posteriori

probability for each class from the likelihood and class prior probability.

13
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p(l|x) =
p(x|l)p(l)

p(x)
,

where l denotes the class and x denotes the vector of input features. Further, it

assigns the feature vector into the class, which maximizes the a posterior probability. In

this work, uniform prior probabilities are considered.

Naive Bayes

Naive Bayes is called naive because it assumes that all features are conditionally inde-

pendent given class, which is an unrealistic assumption. However, the classifier is often

surprisingly effective [12].

Linear Bayes

Linear Bayes differs from NB in assumption of independent features. LB supposes that

the joint probability distribution of the features follows a multivariate normal distribution

[13]. It considers the same covariance matrix for all likelihoods, which leads to the linear

decision boundary.

4.1.3 Decision trees

Decision trees are one of the simplest, but popular classifiers. Their main advantages

are simplicity and illustrative nature. They are easily interpretable for people, even for

those who have no knowledge about machine learning. The creation of DT is described

in Algorithm 1.

Algorithm 1 Decision tree algorithm
repeat

1. Test the most important attribute and place it on top
2. Split the data set into subsets using the attribute values.
3. Build an independent tree for each subset.

until all leaf nodes of all branches are created

4.1.4 SVM

Support Vector Machine is a discriminative classifier which finds an optimal hyperplane

that separates the training data. The idea of this classifier is to find the elements with
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smallest distance between them from different classes called support vectors. Then find

the ideal hyperplane with the greatest possible margin between support vectors. This

guarantee the optimality of classifier.

4.2 Error estimation

Error estimation in an important part of pattern classification. The main tool is to split

data into training and testing part, train the classifier on the training set and test it on

the testing set. Different error estimation methods are suitable in different cases. Two

error estimation methods that fit for our task are described in the following subsections.

4.2.1 Hold-out validation

Hold-out (HO) is a simplest method of validation. It splits data set D into two disjunctive

subsets - training one T and testing one D−{T}. Classifier fits a function to the training

part only. Then tries to predict labels of testing part, which labels it does not know.

The empirical error is equal to a ratio of wrongly estimated samples to total number of

samples. In this thesis, HO estimate is used for evaluation of intra-personal classifiers

that can classify only postures from one particular person.

4.2.2 k-fold cross-validation

A little more sophisticated method is n-fold cross-validation (nCV) method. It divides

data set D into n disjunctive subsets {Di}i=1...N of similar size. At each of N steps, a

classifier is trained on the training part D \Di and than tested on the remaining part Di.

The empirical error is equal to the sum of wrongly estimated samples to total number of

samples divided by N . The nCV provides almost an unbiased estimation of true error.

In this thesis, a ”subject-based” nCV estimate is used for evaluation of inter-personal

classifiers, that can classify postures of any subject (also subject that it has never seen

before). The n was set to the number of subjects and each fold contained all data from

one subject. This enabled to estimate error of classifier trained on n − 1 subjects and

tested on data from subject that has never been used for training.



Chapter 5

Posture detection

The detection of posture was selected as the main task. In this section the whole process

is explained.

5.1 Data acquisition

In order to evaluate the posture classification methodology, a set of five different postures

was measured on five different volunteers whose weights are summarized in Table 5.1.

Each subject stayed for 30 seconds in particular posture, then changed the posture. The

set of five postures was repeated 10 times for each subject. In order to obtain only

posture data without samples that correspond to transitions between postures, just inner

23 seconds from each posture were taken. In total, 125 minutes of data were taken. The

experiments were acquired in the smart home lab in CIIRC, so they are not from real

hospital environment. The postures were - Out of bed (Figure 5.1a), Supine (Figure 5.1b),

Left log (Figure 5.1c), Right log (Figure 5.1d) and Sitting (Figure 5.1e).

Posture Time
Out of bed 30s

Supine 30s
Left Log 30s

Right Log 30s
Sitting 30s

Table 5.1: Set of postures

16
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(a) Out of bed

(b) Supine (c) Left log

(d) Right log (e) Sitting

Figure 5.1: Postures

Intentionally, subjects of different weights, body constitutions and sex were chosen. It

is intended for the classifier to be as universal as it can be, which can be supported with

high variance in the training dataset. The weight of each subject is described in Table

5.2.
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Subject Weight
S1 50 kg
S2 59 kg
S3 66 kg
S4 75 kg
S5 81 kg

Table 5.2: Weight of subjects

5.2 Posture classification algorithm

The Chapter 2 reported that variety of algorithms can be used for posture detection. In

this work, 5 classification methods were compared (Decision trees, 1-Nearest Neighbor,

3-Nearest Neighbor, Naive Bayes and Linear Bayes). These algorithms were selected be-

cause of their simplicity and illustrative nature. It was not desirable to use complicated

algorithms due to the limited amount of data. Moreover, the use of two different imple-

mentations - PRTOOLS and SMLT toolboxes in Matlab - helped to check the validity of

results. The features that were used as inputs for the classifiers were data from sensor n.

142, data from sensor n. 143, data from sensor n. 144, data from sensor n. 145, x-position

of the centre of mass (CMX) and y-position of the centre of mass (CMY).

In the following section only results for Decision trees, 1-Nearest Neighbor, 3-Nearest

Neighbors and Naive Bayes from SMLT toolbox are chosen to be described, since they

are the most demonstrative ones. Remaining results are summarized in Appendix B.

5.3 Results

Following sections describes the results of both inter- and intra- personal classification.

For intra-personal classification, i.e. testing and training on one subject, Hold-out er-

ror estimation method described in 4.2.1 is used. The results can be found further in

section 5.3.2. The error estimation method divides dataset D of one subject into two

disjunctive subsets of the same size, trains classifier on one subset and tests it on the

other one. For inter-personal classification, i.e. testing and training on different subjects,

n-fold cross-validation error estimation method described in section 4.2.2 is used. The

results are described in section 5.3.3. In our case with five subjects, it divides dataset D

into five parts Di=1..5, where each part contains solely data from one subject. For each

ith subject the classifier is trained on D \Di and then tested on Di.
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5.3.1 Scatter plots

Since it is not possible to plot all features from the dataset at once, the data can be

visualized using scatter plots - point graphs of dependence between features. The scatter

plot of the position of centre of mass and 3D scatter plot of sensor n. 142, sensor n. 144

and sensor n. 145 were created. These three sensors were chosen as they have smallest

correlation. Only scatter plots for two subjects were made to obtain better insight. The

two subjects were chosen because of their illustrative and different nature.

Subject S1 has gracile body type (the smallest weight and physique among all sub-

jects). This causes that its centre of mass has wider range of movement and data from its

postures (classes) have consequently higher spread than postures of the other subjects.

This phenomenon can be seen in Figure 5.2. On the other hand, centre of mass of subject

S4 does not vary so much. Although the subject S4 is not the heaviest among all sub-

jects, it has a rather robust body type and the movement of its center of mass is much

more limited, which can be seen in Figure 5.3.

The same scatter plots for all subjects in one are depicted in Figure 5.4. the ”Sitting”

posture is quite separated from the other postures. Because the majority of subjects

has their centre of mass in the middle, the ”Out of bed” posture can be separated from

tensometric data easily as can be seen in Figure 5.4b. Conversely, remaining postures

seem to be less separable.

-2 -1 0 1 2
CMX

-5

-4

-3

-2

-1

0

1

C
M

Y

Out of bed
Supine
Left log
Right log
Sitting

(a) Scatter plot of centre of mass

-315

-300

-310

n.
14

5

n.144

-305

-310 -315

n.142
-320 -320

Out of bed
Supine
Left log
Right log
Sitting

(b) 3D scatter plot of three sensors

Figure 5.2: Scatter plots for Subject 1
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Figure 5.3: Scatter plots for Subject 4
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Figure 5.4: Scatter plots for multiple subjects

5.3.2 Intra-personal classifier

This section describes experiments with classifiers trained and tested on the same subject.

It is expected, that this setting will reach higher accuracy than the inter-personal setting.

Its disadvantage is that they are not universal and can be used only for the subject on

which the classifier had been trained. It means that such system must be trained before

its application to a new patient.

The results are summarized in Tables 5.3- 5.6, where one can find the marginal errors

for particular subjects and classes. The last column describes averages computed over all

classes (i.e. average errors on each subject) and the last row contains averages computed

over all subjects (i.e. average errors on each class). Right bottom element of the tables

represents the overall error for particular classifier.

The first interesting point is the performance of the NB classifier summarized in Ta-
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ble Table 5.3. It has been mentioned above that a violation of the assumption of feature

independence can be a problem for NB. Moreover, it has been discussed in section 3.1.3

that some features are strongly dependent. Despite those facts, the best result was ob-

tained for NB classifier with an average error 8.1%. This may be caused by relatively

high independence of x and y position of centre of mass.

Slightly higher average errors were obtained for both kNN classifiers (see Table 5.4 and

Table 5.5). The biggest average error was made by DT as depicted in Table Table 5.6. This

is not surprising since DT generally tends to overfit, based on its greedy characteristic.

The high risk of overfitting is implied by lack of acquired data (for each subject, only 10

samples from each class were obtained).

As could be expected, classifiers did not have a problem with classifying ”Out of bed”

and ”Sitting” posture. As can be seen in the confusion matrix for NB - Table 5.7, ”Out of

bed” posture was wrong in only 1%. NB classified correctly all samples of the ”Sitting”

posture, whereas DT classifier 78.7% on average.

For all classifiers, the most confused posture was the ”Right log”. Neither kNN was

not able to detect any ”Right log” posture of S1. That is in contrast to S3, where both

kNNs and NB were able to classify ”Right log” posture with 0.0% error. This might be

caused by previous knowledge of S3 about the sensors in bed.The ”Right log” posture

was mostly confused with the ”Supine” posture as can be seen in Table 5.7.

Out of bed Supine Left log Right log Sitting Average error

S1 0.0 0.0 20.0 81.7 0.0 20.3
S2 2.5 3.3 0.0 30.0 0.0 7.2
S3 0.0 0.0 0.0 0.0 0.0 0.0
S4 0.8 0.8 20.0 20.8 0.0 8.5
S5 1.7 20.0 0.0 0.0 0.0 4.3

Average error 1.0 4.8 8.0 26.5 0.0 8.1

Table 5.3: Table of hold-out estimate of relative errors in percents on each class and
subject for NB classifier implemented in SMLT
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Out of bed Supine Left log Right log Sitting Average error

S1 0.0 0.0 34.2 100.0 0.0 26.8
S2 0.0 39.2 0.0 19.2 0.0 11.7
S3 0.0 10.0 0.0 0.0 0.0 2.0
S4 0.0 4.2 4.2 0.0 0.0 1.7
S5 0.0 10.8 0.0 0.0 8.3 3.8

Average error 0.0 12.8 7.7 23.8 1.7 9.2

Table 5.4: Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 1) classifier implemented in SMLT

Out of bed Supine Left log Right log Sitting Average error

S1 0.0 0.0 32.5 100.0 0.0 26.5
S2 0.0 23.3 0.0 11.7 0.0 7.0
S3 0.0 5.0 0.0 0.0 0.0 1.0
S4 0.0 19.2 4.2 0.0 0.0 4.7
S5 0.0 10.8 0.0 0.0 42.5 10.7

Average error 0.0 11.7 7.3 22.3 8.5 10.0

Table 5.5: Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 3) classifier implemented in SMLT

Out of bed Supine Left log Right log Sitting Average error

S1 0.0 40.8 65.0 80.0 20.0 41.2
S2 0.0 24.2 0.8 30.0 0.0 11.0
S3 0.0 0.0 1.7 80.8 25.8 21.7
S4 0.0 0.8 40.0 0.8 0.0 8.3
S5 1.7 20.0 0.0 0.8 60.8 16.7

Average error 0.3 17.2 21.5 38.5 21.3 19.8

Table 5.6: Table of hold-out estimate of relative errors in percents on each class and
subject for DT classifier implemented in SMLT

ESTIMATED LABELS
TRUE LABELS Out of bed Supine Left log Right log Sitting

Out of bed 99.0 0.5 0.0 0.3 0.2
Supine 0.0 95.2 2.2 0.2 2.5
Left log 0.0 0.0 92.0 4.0 4.0
Right log 0.0 17.8 8.7 73.5 0.0
Sitting 0.0 0.0 0.0 0.0 100.0

Table 5.7: Confusion matrix estimate for NB classifier implemented in SMLT

5.3.3 Inter-personal classifiers

As stated in Chapter 1, the main goal was to create a classifiers that would be able to

detect postures of previously unseen subject. This section describes the subject-based

cross-validation errors that estimate the errors in such scenario. In tables 5.8 to 5.11 is

accuracy for each classifier. As expected, these classifiers reached lower accuracy than
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those described above in section 5.3.2. Their advantage is that they are more robust and

general.

Again, the best overall performance was achieved by the NB classifier with an average

error of 23.1% as depicted in Table 5.8. In correspondance to section 5.3.2, the lowest

accuracy was reached by the DT classifier with the average error of 33.4% (see Table

5.11). This may be also caused by overfitting, as it is a significant practical difficulty of

DT. In contrast to the intra-personal scenario, the kNN classifiers performance is much

closer to DT classifier and are worse relatively to the NB classifier. This can be caused

by much higher overlap of the class distributions. (see tables 5.9 and 5.10). Both kNN

classifiers reached similar average error of approximately 30%.

As can be seen, the classification of ”Out of bed” posture was again easy. The only

error made on this class was made by NB on subject S1 and S4 which maybe caused by a

noise in data. The second most recognizable posture was ”Sitting”. This is not surprising

since the ”Sitting” posture vary a lot from the other ones.

The most confused posture was the ”Left log”. That differs from intra-personal clas-

sification scenario, where the most confused posture was the ”Right log”. (Posture ”Left

log” was a biggest complication for SVM classifier, reaching up to 63.3% error (see ap-

pendix B). Only for the NB classifier which made only 33.8%, the ”Left log” was not that

difficult to categorize, but simultaneously the NB is the only classifier that has a bigger

problem to classify the ”Supine” posture. This is because the ”Supine” posture data are

very close to ”Left log” and ”Right log” data.

Another interesting fact observed from tables 5.8 to 5.11 is that the majority of clas-

sifiers categorized subject S1 with smallest error. The biggest error for S1 was made on

class ”Supine”, which does not follow the trend described in previous paragraph. Also,

only for S1, the majority of classifiers had difficulties to classify the ”Sitting” posture.

The biggest average error was made by classifiers on subject S4. Not even one classifier

was able to detect its ”Left log” posture. The main cause of this phenomenon may be a

particular way of laying on the left side of S4 since for only one subject described in 5.3.2,

classifiers had not problems with classifying the ”Left log” posture. Another explanation

for this might be subject’s robust body type. It can be observed from scatter plot of

subject 4 and scatter plot of all data, that subject S4 data for ”Right log” and ”Left

log” postures differ from all the others. This corresponds to 100% error on class right
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log in Tables 5.8-5.11. This is an example of inter-personal variability which causes the

inter-personal classification more difficult.

In Table 5.12 can be seen the confusion matrix for NB classifier. For NB, the most

wrongly estimated position was the ”Supine” and was confused with ”Right log”. Postures

”Left log” and ”Right log” were estimated by classifier with a similar error, though the

”Left log” was mostly confused with the ”Supine” posture and ”Right log” with ”Left

log”. ”Sitting” and ”Out of bed” posture was detected without any error almost every

time.

Although less than 60% accuracy on some classes was obtained, it must be pointed out

that in a real-world application, the classifier will not be used directly, but will be post-

processed by a subsequent procedure that will confirm the posture change. For example,

the post-processing rule can be defined as: ”If last m samples were all classified as class C,

change the current system output to class C”. This majority rule can help to fluctuations

of the system output caused by occasional and short-missclassifications and noise.

Out of bed Supine Left log Right log Sitting Average error

S1 0.4 30.0 10.0 0.0 0.4 8.2
S2 0.0 30.0 11.7 40.8 0.0 16.5
S3 0.0 50.0 20.0 0.0 0.0 14.0
S4 6.2 27.1 100.0 100.0 0.0 46.7
S5 0.0 80.0 27.5 31.2 11.2 30.0

Average error 1.3 43.4 33.8 34.4 2.3 23.1

Table 5.8: Table of cross-validation estimate of relative errors in percents on each class
and subject for NB classifier implemented in SMLT

Out of bed Supine Left log Right log Sitting Average error

S1 0.0 30.4 7.9 0.4 18.8 11.5
S2 0.0 39.6 12.5 60.0 0.0 22.4
S3 0.0 80.0 49.2 36.3 0.0 33.1
S4 0.0 31.2 100.0 95.4 0.0 45.3
S5 0.0 57.9 100.0 16.7 10.4 37.0

Average error 0.0 47.8 53.9 41.8 5.8 29.9

Table 5.9: Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 1) classifier implemented in SMLT
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Out of bed Supine Left log Right log Sitting Average error

S1 0.0 30.4 0.0 0.4 15.4 9.2
S2 0.0 39.6 12.5 59.6 0.0 22.3
S3 0.0 80.0 50.4 52.1 0.0 36.5
S4 0.0 32.1 100.0 99.2 0.4 46.3
S5 0.0 63.7 100.0 19.6 10.0 38.7

Average error 0.0 49.2 52.6 46.2 5.2 30.6

Table 5.10: Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 3) classifier implemented in SMLT

Out of bed Supine Left log Right log Sitting Average error

S1 0.0 69.6 52.9 49.6 7.9 36.0
S2 0.0 23.7 10.8 90.0 4.6 25.8
S3 0.0 70.0 45.4 0.0 0.4 23.2
S4 0.0 46.7 100.0 99.6 5.0 50.3
S5 0.0 47.1 100.0 0.4 12.1 31.9

Average error 0.0 51.4 61.8 47.9 6.0 33.4

Table 5.11: Table of cross-validation estimate of relative errors in percents on each class
and subject for DT classifier implemented in SMLT

ESTIMATED LABELS
TRUE LABELS Out of bed Supine Left log Right log Sitting

Out of bed 98.7 0.0 0.0 0.0 1.3
Supine 0.0 56.6 17.2 24.2 2.1
Left log 0.0 24.1 66.2 7.8 2.0
Right log 0.0 14.1 20.3 65.6 0.0
Sitting 0.0 0.0 2.3 0.0 97.7

Table 5.12: Confusion matrix for NB classifier implemented in SMLT



Chapter 6

Summary and conclusion

Firstly, this thesis familiarizes reader with the data obtained from the smart medical

bed. In Chapter 3, a description of data is provided. Only the following relevant data

were picked, tested and described - 4 signals obtained directly from four strain gages

inserted into bed and x and y position of centre of mass. Next, in Chapter 4, algorithms

and methods of machine learning used in this work are detailed. The main components

are the classifiers and error estimation methods. Finally, in Chapter 5, the complete

description of posture detection experiment is provided. Firstly, the acquisition of data

is described. Then, the results for both one subject and multiple subjects are presented

and probable cause of the outcomes are explained.

The most important outcomes are:

• Intra-personal classifiers can classify the data with average error 8-19%, but must

be trained on each patient separately.

• Inter-personal classifiers can classify the data with average error 20-30%.

• There is an important impact of inter-personal variability if the inter-personal clas-

sification is considered. Any subject whose postures differ from the others, increases

significantly the error.

• Although it is extremely easy to classify ”Sitting” and ”Out of bed” postures, the

classification of the other postures is much more difficult.

• The real system must be accompanied by a post-processing procedure that will

probably increase the final classification performance. This will be the part of a

26
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future work.

With respect to other state-of-the-art techniques, the results for multiple subjects are

not as achieving as some of those described in Chapter 2. This can be due to our limited

number of sensors, since every reported work had at least 16 sensors. Nevertheless, the

results presented in this thesis are comparable with [6], where authors used Bayesian

classification as well and achieved 78.7% average precision rate. Naive Bayes classifier

presented in this thesis reached 76.9% precision rate.

Finally, it should be noted that all the goals of the thesis were fulfilled. First, the struc-

ture of data obtained from smart hospital bed LINET was explored and some demonstra-

tion experiments were presented in Chapter 3. Next, the posture detection was proposed

as a possible way of utilization of bed data in a real environment. The posture detection

system was implemented and evaluated. To accomplish all those objectives, many dif-

ferent data sets were measured in smart home laboratory of CIIRC in colaboration with

several volunteers.

The work has many possible future extensions. The examples are real-time implemen-

tation of the posture detection, classifier output post-processing system deciding about

the final state indication, extraction of different high level features for classification or a

classifier ensemble system combining different types of differently performing classifiers.



Appendix A

Scatter plots
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(b) 3D plot of three sensors

Figure A.1: Plots for Subject 2
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Figure A.2: Plots for Subject 3
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Figure A.3: Plots for Subject 5



Appendix B

Tables of results

B.1 Intra-personal classification results

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 0.0 60.0 80.0 0.0 28.0

S2 4.2 25.0 21.7 89.2 29.2 33.9

S3 0.0 20.0 0.0 25.8 60.0 21.2

S4 0.8 23.3 55.8 0.0 7.5 17.5

S5 0.0 0.8 0.0 4.2 40.8 9.2

Avg. error 1.0 13.8 27.5 39.8 27.5 22.0

Table B.1: Table of hold-out estimate of relative errors in percents on each class and
subject for DT classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 0.0 40.8 100.0 0.0 28.2

S2 0.0 25.0 0.0 18.3 0.0 8.7

S3 0.0 23.3 0.0 14.2 0.0 7.5

S4 0.0 0.0 2.5 0.8 0.0 0.7

S5 0.0 1.7 0.0 0.0 20.8 4.5

Avg. error 0.0 10.0 8.7 26.7 4.2 9.9

Table B.2: Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 1) classifier implemented in PRTOOLS
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Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 0.0 39.2 100.0 0.0 27.8

S2 0.0 23.3 0.0 20.8 0.8 9.0

S3 0.0 20.0 0.0 19.2 0.0 7.8

S4 0.0 20.0 2.5 0.8 0.0 4.7

S5 0.0 0.0 0.0 0.0 24.2 4.8

Avg. error 0.0 12.7 8.3 28.2 5.0 10.8

Table B.3: Table of hold-out estimate of relative errors in percents on each class and
subject for kNN (k = 3) classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0% 0.0 30.0 80.0 0.0 22.0

S2 0.0 22.5 0.0 25.8 4.2 10.5

S3 0.0 5.8 0.0 25.8 0.8 6.5

S4 0.0 20.8 20.0 0.8 18.3 12.0

S5 0.0 20.0 0.0 0.0 1.7 4.3

Avg. error 0.0 13.8 10.0 26.5 5.0 11.1

Table B.4: Table of hold-out estimate of relative errors in percents on each class and
subject for NB classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 0.0 20.0 80.8 0.0 20.2

S2 0.0 23.3 0.0 24.2 0.0 9.5

S3 0.0 0.0 0.0 0.0 0.0 0.0

S4 0.0 0.0 22.5 38.3 0.0 12.2

S5 0.0 0.0 0.0 0.0 53.3 10.7

Avg. error 0.0 4.7 8.5 28.7 10.7 10.5

Table B.5: Table of hold-out estimate of relative errors in percents on each class and
subject for LB classifier implemented in PRTOOLS
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Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 2.5 26.7 89.2 0.0 23.7

S2 0.0 25.8 0.0 24.2 1.7 10.3

S3 0.0 0.0 0.0 0.0 0.0 0.0

S4 0.0 0.0 20.0 5.0 0.0 5.0

S5 0.0 0.8 0.0 0.0 40.8 8.3

Avg. error 0.0 5.8 9.3 23.7 8.5 9.5

Table B.6: Table of hold-out estimate of relative errors in percents on each class and
subject for SVM classifier implemented in SMLT

B.2 Inter-personal classification results

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 30.4 75.0 49.2 19.6 34.8

S2 0.0 51.2 37.9 60.4 0.4 30.0

S3 0.0 100.0 50.0 10.0 0.0 32.0

S4 2.5 52.9 100.0 85.0 0.0 48.1

S5 0.0 40.4 99.2 19.2 10.0 33.8

Avg. error 0.5 55.0 72.4 44.8 6.0 35.7

Table B.7: Table of cross-validation estimate of relative errors in percents on each class
and subject for DT classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 30.4 10.0 0.0 19.6 12.0

S2 0.0 65.4 21.3 59.2 0.0 29.2

S3 0.0 70.0 56.2 45.8 0.0 34.4

S4 0.0 34.6 100.0 89.6 0.8 45.0

S5 0.0 41.2 99.6 20.0 8.8 33.9

Avg. error 0.0 48.3 57.4 42.9 5.8 30.9

Table B.8: Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 1) classifier implemented in PRTOOLS
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Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 30.4 10.0 0.0 19.6 12.0

S2 0.0 64.6 21.3 51.2 0.0 27.4

S3 0.0 70.0 59.2 32.1 0.0 32.3

S4 0.0 35.0 100.0 98.3 0.8 46.8

S5 0.0 67.5 93.8 20.0 8.8 38.0

Avg. error 0.0 53.5 56.9 40.3 5.8 31.3

Table B.9: Table of cross-validation estimate of relative errors in percents on each class
and subject for kNN (k = 3) classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 40.4 62.1 10.4 5.4 23.7

S2 0.0 29.6 11.7 60.4 0.0 20.3

S3 0.0 50.0 51.2 0.0 0.0 20.2

S4 0.0 33.8 100.0 99.2 0.8 46.8

S5 0.0 70.4 76.7 51.2 10.8 41.8

Avg. error 0.0 44.8 60.3 44.2 3.4 30.6

Table B.10: Table of cross-validation estimate of relative errors in percents on each class
and subject for NB classifier implemented in PRTOOLS

Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 50.4 0.0 0.4 40.4 18.2

S2 1.2 30.0 20.0 15.8 10.0 15.4

S3 0.0 0.0 60.4 32.5 0.0 18.6

S4 6.2 57.1 100.0 90.0 0.0 50.7

S5 0.0 50.0 20.0 40.8 10.4 24.2

Avg. error 1.5 37.5 40.1 35.9 12.2 25.4

Table B.11: Table of cross-validation estimate of relative errors in percents on each class
and subject for LB classifier implemented in PRTOOLS
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Out of bed Supine Left log Right log Sitting Avg. error

S1 0.0 40.4 14.6 9.6 20.4 17.0

S2 0.0 28.7 55.8 22.9 0.0 21.5

S3 0.0 30.0 60.4 30.4 0.0 24.2

S4 0.0 25.0 100.0 95.0 0.0 44.0

S5 0.0 90.4 87.5 0.4 10.0 37.7

Avg. error 0.0 42.9 63.7 31.7 6.1 28.9

Table B.12: Table of cross-validation estimate of relative errors in percents on each class
and subject for SVM classifier implemented in SMLT
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