Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Simulator of Unicellular Microorganism

Kristian Sencuk

Supervisor: Ing. Mgr. Marek Dvoroznak
Field of study: Open Informatics

Subfield: Computer and Information Science
May 2018

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 N\
Student's name: Sencuk Kristian Personal ID number: 456905

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Simulator of Unicellular Microorganism

Bachelor’s thesis title in Czech:

Simulator jednobunééného mikroorganizmu

Guidelines:

1. Familiarize yourself with the implementation of a suitable 2D rigid body and fluid simulation library such as [1].

2. Refer to the videos of the microscopic world [2, 3] and design and implement a simulator of a generic unicellular
microorganism that is able to move and interact in 2D environment including the ability to absorb surrounding objects. The
solution must be able to perform real-time simulation and must be visually faithful to the real-world videos.

3. Create at least two specializations of the generic microorganism that differ for instance in rigidity of its body and also in
visual appearance.

4. Utilize the simulator to create a prototype of a game in the style of [4] where the player increases score by controlling
the microorganism to consume objects in its surroundings.

Bibliography / sources:

[1] Google - LiquidFun - 2013, http://google.github.io/liquidfun/

[2] Rogers David - Crawling Neutrophil Chasing a Bacterium - 1950s,
https://www.youtube.com/watch?v=I_xh-bkiv_c

[3] Staifan Basel - White blood cells under the microscope 2000X - 2016,
https://www.youtube.com/watch?v=sYCUWqc_x3U

[4] Valadares Matheus - Agar.io - 2015, http://agar.io/

Name and workplace of bachelor’s thesis supervisor:

Ing. Mgr. Marek Dvorozinak, Department of Computer Graphics and Interaction, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 08.01.2018 Deadline for bachelor thesis submission: 25.05.2018

Assignment valid until: 30.09.2019

Ing. Mgr. Marek Dvorozriak doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.

Supervisor’s signature Head of department’s signature Dean’s signature

\ Y
lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to thank my supervisor Ing.
Mgr. Marek Dvoroznak for his assistance
and practical advice regarding this thesis.
I would also like to express my gratitude
to the Department of Cybernetics for al-
lowing me to work on this custom topic.
Last but not least, I thank my family and
friends for their constant support.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 21. May 2018

Signature

Abstract

This bachelor thesis engages the problem
of simulating unicellular microorganisms
in real time. It introduces the reader
to existing solutions and describes the
innovative methods used to implement
a playable simulation that outperforms
its competition in terms of visual resem-
blance to real life reference material. The
dominant component of this work is the
application showcasing the implemented
simulation features.

Keywords: simulation, cell biology,
Box2D, microscope

Supervisor:
Dvoroznak
FEE, Department of Computer Graphics
and Interaction

Ing. Mgr. Marek

vi

Abstrakt

Tato bakalarska prace se zabyva proble-
matikou real time simulaci jednobunéc-
nych mikroorganizmil. Seznamuje ¢tenate
se stavajicimi feSenimi a popisuje inova-
tivni metody pouzité pri implementaci
hratelné simulace, ktera prekonava kon-
kurenci z pohledu vizualni podoby realis-
tickym predlohdm. Dominantni ¢asti této
prace je aplikace, kterd demonstruje im-
plementované funkéni prvky v simulaci.

Kli¢ova slova: simulace, biologie bunky,
Box2D, mikroskop

Preklad nazvu: Simuldtor
jednobunééného mikroorganizmu

Contents

1 Introduction 1
2 Background 3|
2.1 Cellular biology
2.1.1 Multicellular organisms
2.1.2 Unicellular organisms........
2.2 Existing solutions..............
2.2.1 Video games
2.2.2 Scientifically precise solutions. [9|
2.3 Suitable libraries 9
231 Box2D.......o 9
2.3.2 LiquidFun.
233 LibGDX 11l
3 Solution and its methodology 13
3.1 Physical models
3.1.1 Soft-body model
3.1.2 Filled chain model 15
3.1.3 Absorption models
3.1.4 Models for other microscopic
objects it
3.2 Rendering methods
3.2.1 Rendering soft-bodies.

3.2.2 Rendering filled chain model

3.2.3 Rendering background
3.3 Application
3.3.1 Simulation mode
3.32Gamemode

26]
29
4 Results 31
4.1 Comparison
4.1.1 Visual comparison
4.1.2 Features comparison.
4.2 Limitations [34]
4.2.1 Performance...............
4.2.2 Stability
4.3 Future work. 138
41]

47

47

48

48]

5 Conclusion
Bibliography
A CD contents

B User manual

B1l1Modes

B.2 Game mode rules.............

B.3 Controls
B.3.1 Movement

vii

B.3.2 Absorption
B.3.3 Commands

1.1 In-game view of Agar.io

2.1 Onion cells under a microscope [I]

2.2 Examples of microorganisms with
cilia- or flagella-powered movement

2.3 Examples of amoeboid unicellular

OTgANISIMS . « o v v v e et 5|
2.4 In-game view of the cellular phase

inSpore (§
2.5 In-game view of Osmos

2.6 Deformative properties of the
soft-body (bottom right) in Agar.io
2.7 Unicellular organism in Cellcraft .

3.1 Single-layered soft-body structure
3.2 Dual-layered soft-body structure
3.3 Soft-body front assignment and

rotating movement 15|
3.4 Filled chain model structure. ... [16
3.5 Filled chain model partitioning and

movement 17
3.6 Platelets in real life [2]
3.7 Optimal soft-body structure for

platelets
3.8 Extended drawing surface

covering 23|

3.9 Triangulation process of a polygon

Bl oo

3.10 Rendered background
3.11 Supported simulation objects. .
3.12 Demonstration environment ... [29
3.13 Game mode screenshot 30/
4.1 General appearance comparison of
amoeboid cells.
4.2 General appearance comparison of
paramecium-inspired cells........
4.3 Deformative qualities comparison
of amoeboid cells 33l
4.4 Comparison of absorption in
amoeboid cells.................. 33
4.5 Environment comparison
4.6 Improper absorption bug
4.7 Amoeboid cell leakage bug

viii

Tables

4.1 Benchmarks on simulation

performance (physics only)

Chapter 1

Introduction

The aim of computer simulations is to reproduce the behavior of observed
natural systems by using mathematical models. Such simulations are plen-
tifully applied as tools in many scientific fields, such as physics, chemistry,
meteorology or biology. The purpose of such reproductions varies. Some
simulations serve as a way of accurately predicting impending occurrences,
such as the weather forecast. Others are used to support research and securely
test inventions before they are applied in real life situations.

From the point of view of a casual user, a simulation becomes particularly
interesting when a visualization program is implemented on top of its com-
putational logic. In such cases, the application can go beyond the scope
of science and acquire an educational or a recreational function (i.e. video
games).

A subset of biology-themed simulations deals with imitation of microscopic
life. Although it does not lack its uses in scientific research, it is mostly
demanded in the video game industry. Players from all over the globe have
shown great interest in the subject when the video game Agar.io [4] was
released. This game, which will be further described in Section 2.2.1 features
a playable generic unicellular microorganism which can move around in the
game’s environment and increase score by interacting with its surroundings.

Agar.io became an instant hit amongst casual players. In 2015, the game’s
name was the third most searched keyword on Google worldwide [5]. The
decisive factor in its success is debatable. Many reviews, such as the one from
technology blog Engadget [6], credit it to the game’s unusual and interesting
concept of natural selection in a microscopic environment, as depicted in
Figure |1.1}

1. Introduction

°
o
®
P ®
ol
player celll .
) ® ¢ s LAY
&

Figure 1.1: In-game view of Agar.io

It is apparent that Agar.io has become closely associated with this topic,
despite many flaws in its visual fidelity. Players deduce the connection between
the game and its theme primarily from its gameplay, not aesthetics. Just
by observing motionless screenshots of the game, it is difficult to accurately
recognize the resemblance to microscopic environment.

To this date, a lot of room is left for visual improvements and innovations in
this regard. This thesis sets its goal to design and implement a simulator of
the most complex and visually distinct actor in the microscopic world - the
unicellular microorganism, as well as its interactive environment. Put simply,
the resulting simulation must output a view that is visually comparable to
what can be seen under the microscope in real life. Needless to say, the
simulation will run in real time and thus provide broad interactability with
user input. As the highlight of this work, a game concept similar to Agar.io
will be devised in an attempt to show the visual superiority to its existing
counterparts.

Note that the key element in this work is visual resemblance to real life
references, namely from the perspective of a person unrelated to professional
biology.

Chapter 2

Background

B 2.1 cCellular biology

A cell is the fundamental structural and functional unit of a living organism.
Its dimensions usually range from 1 to 100 micrometers [7]. Thus, most cells
cannot be seen without a microscope.

From a scientific standpoint, cells can be divided into many classification
groups based on numerous criteria. The most apparent criterion observes
whether the cell functions as an independent organism on its own, or is part
of a greater aggregate. The former is known as a unicellular organism, while
the latter constitutes a multicellular organism.

B 2.1.1 Multicellular organisms

Multicellular organisms consist of multiple cells acting in unison. Animals,
plants and most fungal species are all multicellular organisms. Due to the
cells being bound to each other, not much mobility can be observed under
the microscope. An example of such organism is depicted in Figure [2.1

Figure 2.1: Onion cells under a microscope [I]

2. Background

B 2.1.2 \Unicellular organisms

Unicellular organisms consist of only one cell. They are much more mobile
than their multicellular counterpart. Two types of movement can be observed
in such organisms.

B Cilia- and flagella-powered movement

This type of movement involves auxiliary structures known as the cilium
(found in parameciidae) or flagellum (found in many kinds of bacteria or
animal spermatozoon), both of which are depicted in Figure These
structures propel the mass of the cell body in a fluid environment, causing
only a slight deformative effect on the cell body.

(a) : Bacterium with one flagellum [§] (b) : Paramecium with multiple cilia [9]

Figure 2.2: Examples of microorganisms with cilia- or flagella-powered movement

B Amoeboid movement

The second type — amoeboid movement, is much more visually distinct. The
methods behind it are related to complex chemical reactions, the details of
which are out of this work’s scope. Simply put, it involves an inner high-
density fluid called the cytoplasm that causes the cell to crawl as a result
of its protrusion. Such cells have very deformative properties, as seen in
amoebas or white blood cells (see Figure [2.3)).

In this work, a special type of white blood cells called the neutrophil will be
used as a central reference for unicellular organisms with amoeboid movement.
The alternative cilium-based movement will be modeled after parameciidae.

4

2.2. Existing solutions

(a) : Neutrophil cell [10] (b) : Amoeba cell [IT]

Figure 2.3: Examples of amoeboid unicellular organisms

B 22 Existing solutions

A number of existing solutions engaging the subject of microorganism simu-
lation can be observed in various fields of study. The following subsections
will list and describe the most distinct ones used for educational, recreational
and scientific purposes.

Bl 2.2.1 Video games

B Spore

Spore [12] is a commercial video game developed by Maxis. It is centered
around the idea of organism evolution.

While not focusing on the microscopic world alone, the game’s first phase
features a user controllable unicellular microorganism which can move in its
environment, consume nourishment and fight other organisms. Note that
the game is heavily stylized - the cells have a rather comical appearance (see
Figure . It does not attempt to simulate real-life references.

5

2. Background

Figure 2.4: In-game view of the cellular phase in Spore

Due to the commercial nature of the game, the methods used in the cell’s
body implementation are not open to the public. It is clear, however, that the
cell’s body is three-dimensional and does not seem to be physics-based. The
movement and consumption of nourishment is most likely strictly animated.

Although the game’s microbiological principles were often criticized to be
highly inaccurate, the playable microscopic simulation in Spore remains one
of the most memorable and advanced ones, as well as the only one developed
with a high budget.

Bl Osmos

In 2009, Osmos [13] by Hemisphere Games was released for desktop and
mobile platforms. The game took the "survival of the fittest" concept in
the context of microscopic life from Spore and kick-started a whole genre
based on it. The goal of this simple game was to absorb other organisms
and consequentially become larger. Osmos was marketed as a relaxing, single
player puzzle game.

2.2. Existing solutions

Figure 2.5: In-game view of Osmos

Although the visuals are minimalistic in their essence, they attempt to achieve
some degree of resemblance to real-life references by using special effects and
animations. The style is no longer comical like in Spore. It instead pursues
a scientific look inspired by cosmos (see Figure [2.5). Objects representing
unicellular organisms have a slightly distorted circular shape and don’t seem
to be collision-reactive.

B Agar.io

In 2015, Agar.io [4] developed by Valadares Matheus was released for web
browsers. Featuring similar concepts to the ones used in Osmos, it further
extended its gameplay mechanics to be compatible with online multiplayer.
Once again, the player controlled a unicellular organism. Its purpose was to
absorb and consume small circular objects known as agar, inspired by a real
life biochemical substance of the same name. The more absorbed agar has
been gathered, the larger the cell. This time, however, competitive elements
were added, and the player’s larger cell could absorb other players’ smaller
cells.

In this game, a simple soft-body model was used to represent a unicellular
microorganism. The model is somewhat physics-based and therefore manages
collision interactions with other objects in the simulation (see Figure|2.6). The
game’s many features, such as absorption, are not physics-based, however.

7

2. Background

pl@eel

Figure 2.6: Deformative properties of the soft-body (bottom right) in Agar.io

In consideration to the target platform, the style of the simulation is very
simplistic and does not include many effects, as opposed to Osmos.

B Cellcraft

Cellcraft [14] is an open-source Flash game primarily aimed at students.
It serves an educative and motivational purpose to raise interest in cellular
biology. It does not put emphasis on gameplay mechanics, instead, it attempts
to simulate real life references primarily from a visual point of view.

Objective:

= = .
MENUIPAUSE

Figure 2.7: Unicellular organism in Cellcraft

The game does not utilize any physics engine and has very limited collision
managment. The cell itself, however, is modeled to be much more deformative
(Figure and to achieve a higher degree of resemblance to real-life amoeboid
cells than the aforementioned games. Its body model consists of numerous
ordered vertices which define a closed area.

2.3. Suitable libraries
B 2.2.2 Scientifically precise solutions

Typical tasks in bioinformatics include simulations of complex biochemical
reactions. In terms of cellular biology, the dominant subjects of scientific
simulation include manipulation with RNA/DNA, methods of nourishment
consumption and cell division.

In the research paper Mechanics of neutrophil phagocytosis: experiments and
quantitative models [15] published in the Journal of Cell Science, a quantitative
model was devised for a relatively accurate simulation of phagocytosis. The
resulting simulation accounts for realistic biochemical factors, such as protein
coagulation.

The movement of amoebas was the subject of study in the research pa-
per Non-Brownian dynamics and strategy of amoeboid cell locomotion [16].
Besides using complex biochemical models, the work also researched and
consequentially simulated the strategy behind suitable protrusions of the cell
body.

Note that scientific simulations do not fit this work’s objective. Precise
solutions require computations that are heavier on performance, not to
mention the implementation itself is expected to be much more difficult.
For a common user, most of the scientifically precise features will remain
unnoticed. Thus, inspiration will be taken only from visually distinct factors.

. 2.3 Suitable libraries

The simulation will use certain free open-source instruments to implement
various physical models and their respective visual representation. The
libraries Box2D, LiquidFun and LibGDX have been chosen to power the
simulation.

B 2.3.1 Box2D

Box2D [17] is a C++ based two-dimensional physics engine library developed
by Erin Catto. With its initial release dating back to 2007, it has gone through
numerous revisions and ports to other programming languages since then.
The library is supported by many popular game engines and frameworks,
including Unity3D [18], LOVE [19], GameMaker: Studio [20], Cocos2d [21]
and LibGDX [22].

For the purpose of this project, a LibGDX supported Java wrapper around
the native C++ Box2D code will be used.

2. Background

B Features

Box2D offers a wide variety of features in the fields of simulating two-
dimensional kinematics and dynamics. Structurally, the library is composed
of three complex modules: Common, Collision and Dynamics [23]. The first
one serves as a utility encapsulation, general functionality such as memory
allocation and various mathematical calculations can be found there. The
collision module serves the sole purpose of managing shapes and their interac-
tion with the environment. Finally, the dynamics module utilizes the former
modules and defines key objects like the world, body, fixture and joint.

World. The world is a heavy object holding a set of bodies and joints capable
of interacting with each other.

Body. A body is a container of physical properties unrelated to collision that
affect the body‘s position and velocity. Such properties include its general
physical behavior (static, dynamic or kinematic), its ability to rotate, linear
and angular velocity modifiers in form of damping and lastly, the bullet
attribute which optimizes the body expected to move at very high velocities.

Fixture. Fixtures act as a link between a body and its shape. They also
define the shape‘s collision-related properties, such as friction and restitution.
Since mass is distributed along the shape of the body, Box2D accounts for it
with density — another fixture parameter. The final useful feature of fixtures
is collision filtering which allows the programmer to disable collision between
certain fixtures.

Joint. Joints define a relation between two bodies or a body and an arbitrary
point in the world. A wide variety of joint types is implemented in Box2D.
This work will only cover a selection of them that are applicable in the project.
One of the most commonly used joints is the distance joint. It implements
the relation of maintaining a constant length between two bodies. Note that
in case of extreme velocities acting on one of the connected bodies, the length
might temporarily extend beyond the set constant. A distance joint can also
be made to have spring-like qualities by setting its frequency and damping
ratio constants to non-zero values.

The rope joint is another joint type that puts a constraint on the distance
between two bodies. In this case, however, a maximum length can be set
to prevent it from stretching beyond a limit. Note that while similar, it is
not an extension of a distance joint, as it does not attempt to keep a fixed
distance between the connected bodies.

10

2.3. Suitable libraries
B Alternatives

Original C++ based Box2D is the basis for numerous ports to other program-
ming languages. One of the more distinct ports is jBox2D [24] — a Java based
implementation of this library. While having a generally lower performance
than the C++4 counterpart, it extends the original library’s functionality by
adding a number of exclusive features. One of them is the implementation
of the so-called constant volume joint, which spans across a closed string of
bodies. As the name suggests, the distances between the bodies are adjusted
in order to preserve the constant volume of the closed string‘s interior, as seen
n [25]. Such feature could prove useful in simulating cells with amoeboid
movement, but the performance issues outweigh its benefits.

Besides Box2D, there are other 2D physics engines that compete with it.
One of them is the C-based Chipmunk2D engine [26] developed by Scott
Lembcke. Since not as many game engines and frameworks support this
physics engine, it is not as widely used as Box2D. However, the latest release
shows performance superiority over Box2D. Feature-wise, both engines are
comparable.

B 23.2 LiquidFun

LiquidFun [27] is a Box2D extension developed by Google used for fluid
physics simulation. Its main component is the particle module which is fully
compatible with Box2D‘s base modules. In the context of this additional
component, a particle is a round atomic unit of the simulated fluid. Multiple
particles can be clustered in particle groups. Particles with common properties
reside within a single particle system.

Similarly to Box2D bodies, parametrized physical attributes can be assigned
to an individual particle or a particle group. LiquidFun features several
presets that define the general behavior of particles. For example, the water
particles preset is designed to provide a physical resemblance to the properties
of water. Elastic particles, on the hand, are closely bound together to form
a soft, gelatinous-like body. There is a total of 12 presets that can be tried,
most of which are further parametrized. For the purpose of this simulation,
only water particles will be used.

LibGDX does not support LiquidFun by default. Therefore, an external
LibGDX port [28] must be included to utilize its features.

B 233 LibGDX

LibGDX is a free, open-source framework designed to aid programmers in
the development of desktop and mobile applications. It is mostly used as

11

2. Background

a game-development tool. Although it is primarily written in Java, certain
sections are natively written in C or C++ to improve performance.

This framework offers certain mathematical utilities and simplifies work with
audio, user input and most importantly, graphics. Note that graphics handling
happens on a relatively low-level. Therefore, basic knowledge of OpenGL[29]
is expected.

One of the most apparent advantages of this framework is its compatibility
between desktop and mobile builds. The same core code can be effortlessly
interpreted by both platforms.

12

Chapter 3

Solution and its methodology

B 31 Physical models

B 3.1.1 Soft-body model

A soft-body refers to a physical model often used to simulate bodies with
slight deformative properties. It is based on the idea that the relative distance
between the body’s local center and any point on its boundary can be
dynamically adjusted, as opposed to a rigid body.

A cell simulated by such a model is expected to have strict limitations to what
shapes it can appear in. The general shape of the cell will not change, but
only slightly deviate from it. Therefore, objects modeled in accordance to this
design resemble real life cells with rigid-like properties, such as parameciidae
(Figure 2.2lb), which will further act as a real life reference in our attempt to
simulate it.

B Structure

satellite body

distance joint

kernel

Figure 3.1: Single-layered soft-body structure

13

3. Solution and its methodology

The general structure of a soft-body is depicted in Figure 3.1, Acting as the
center of a soft-body is the kernel — a circle shaped rigid body. One of the
distinct properties of the kernel is that it holds most of the soft-body’s mass,
so it is appropriate to assign a high density value to it. The kernel is then
connected to the satellites - evenly distributed rigid bodies of the same shape
which are surrounding the kernel. Satellite bodies constitute the soft-body’s
dynamic boundaries.

To ensure the dynamic attribute of the boundaries, the connection between
the kernel and its satellites must possess a spring-like property. In terms of
Box2D, we can achieve this by implementing such a connection as a distance
joint with a non-zero frequency and linear damping. It is also necessary to
bind neighboring satellite bodies to each other in order to bring stability
and closure to the dynamic soft-body shape. For this purpose, an ordinary
distance joint with default parameters is fitting.

A soft-body can be further augmented by adding another layer of satellites
to improve stability (Figure 3.2). A single layer of satellites may allow the
kernel to get outside the closed area — a situation that should be avoided at
all costs in our simulation.

Bl Structure

outer satellites

inner satellites

kernel

distance joint

Figure 3.2: Dual-layered soft-body structure

The second layer will be created in the same manner as the first one. To
connect the layers, respective bodies in the inner and outer layer must be
bound together. However, to fully utilize the extra layer, cross connections
will be created for the purpose of ensuring that the respective bodies in
opposite layers maintain their relative position.

B Movement

By referring to the microscopic footage of parameciidae [30], several properties
can be noticed when observing the cell’s movement. The cell possesses a
front part and it always moves in the direction it is facing. Since the cell is

14

3.1. Physical models

expected to change its direction during the simulation, our implementation
must support simple rotation of the soft-body.

First, we assign a single body in the outer-most satellite layer to serve as the
front part. When the soft-body receives a command to start moving towards
a certain point in the Box2D world, we simply calculate the difference vector
between that point and the front body. After normalizing it, we use this
vector as the velocity that will be applied to the front body (Figure |3.3)).

goal point

front satellites

velocity vector direction

Figure 3.3: Soft-body front assignment and rotating movement

Besides bringing the soft-body in motion, the described method also causes it
to rotate until it faces the direction of its goal. An exception to this method
will occur if it turns out that the goal point is closer to the front body‘s
counterpart on the opposite side of the entire soft-body. Such situation may
happen if the soft-body attempts to rotate over 90 degrees. In such cases, it
is necessary to set the counterpart to serve as the new front body.

B 3.1.2 Filled chain model

To achieve visual resemblance to realistic cells with amoeboid behavioral
patterns, such as a neutrophil, the design must fulfill certain properties. These
properties can be observed in real life microscopic footages showcasing neu-
trophiles moving in blood [10]. First, cells of this variety possess significantly
higher deformity attributes than those modeled after a soft-body. Second,
any deformity of the cell’s body is shaped by its contents — the majority
of which consist of cytoplasm, which can be further simplified as a mildly
viscous liquid. The filled chain model has been designed in order to meet the
behavioral requirements for this specific, visually distinct type of unicellular
organisms.

The physical representation of the filled chain model consists of two com-
ponents — the chain of circular fixtures and the interior filled with particles
(Figure [3.4).

15

3. Solution and its methodology

chain bodies

interior particles

distance joint

Figure 3.4: Filled chain model structure

B The chain structure

The chain serves the purpose of the cell’s perimeter which consequently acts
as a container for its interior particles. It is comprised of multiple dynamic
bodies with circular shapes which are initially distributed in an even manner
along a parametrized ellipse. Neighbouring bodies along the ellipse are then
connected with ordinary Box2D distance joints to ensure closure. It is advised
to create enough bodies to cover the whole perimeter without any large gaps
in between them to prevent the interior from leaking in rather unstable cell
body configurations.

It is also advised to choose rather small radii for the circular shapes to support
deformity properties. In the environment of the implemented simulation,
trials have shown that 0.78 (Box2D units) or 2.5 (simulation world units)
is the most reasonable value for the circle radius. Note that this value is
preferable for any scale of the chain — smaller radii may lead to a lot of
instability, while larger values will drastically lower the model‘s deformity.

B The interior structure

As proposed above, the interior should resemble a mildly viscous liquid, which
by colliding with the perimeter of the cell body, will play a key role in giving
shape to it. For this objective, LiquidFun particles provide a fitting solution.
Out of all possible particle types supported by this extension, water particles
with slightly modified parameters seemed to imitate the behavior of real life
cytoplasm the best.

It is expected to fill the majority of the inner area of the closed chain with

16

3.1. Physical models

such particles to prevent unstable cell body configurations. The interior,
however, should not be over-dense, as filling it with too many particles will
not allow the shape to deform. Finally, the particle radius should have a
reasonable value in relation to the length of gaps between the neighboring
circular bodies in the chain. If the particles are too small, they will most
definitely leak out of the larger gaps at some point in the simulation.

Bl Movement

In order to implement amoeboid movement compatible with this model, it is
necessary to feature dynamic partitioning of the cell body into different parts
— such as the front, the rear and the left and right wing. We simply assign
every body in the chain to one of these parts and then run different logic on
otherwise identical chain bodies based on this assignment. Note that every
time we update our simulation, we can also reassign the bodies to different
parts, thus making the partitioning dynamic.

front

front center

goal point

velocity vector directions (to
centroid) : 4o
velocity vector directions

(from front center to goal
centroid point)

Figure 3.5: Filled chain model partitioning and movement

Once the cell based on this model receives a movement goal vector (a point
in Box2D world towards which the cell should be moving), the closest body
on the chain to it becomes the center of the new front. A symmetric section
of close neighboring chain bodies in both directions also get assigned to that
front. Rear and wings assignment undergo the same process. For movement,
only front and rear parts are crucial.

Next, normalized linear velocities are set in all front bodies in the direction of
the movement goal vector and in all rear bodies in the direction of the chain’s
centroid. This approach ensures that the movement is smooth, unidirectional
in all parts of the cell and optimally sensitive to input change. This process
is depicted in Figure [3.5

17

3. Solution and its methodology
B Dynamic scalability

The filled chain model features simple scalability at run time. This includes
the extension of both the chain and the interior. The extension of the former is
achieved in a straight-forward manner — a new body with identical parameters
is added in between two others. In the process, the original distance joint
connecting the neighboring bodies is destroyed and replaced by two other
joints of the same length and properties, both of which connect the new body
with the recently disconnected neighboring bodies. This approach proved to
be stable and undemanding of an improvement.

As for the interior extension, a user-assigned amount of particles is added to
the existing particle system at the centroid of the chain. Most of the time, the
creation of new particles inside the chain will cause temporary overlapping
with older particles, to which Box2D responds by applying strong forces upon
these overlapping particles. A consequence of that is a visual effect resembling
sudden inflation of the cell which clearly signifies enlargement.

However, this behavior contributes to general instability of the simulation,
because in some extreme cases, particles with a high linear velocity can push
through the distance joints between the circle-shaped bodies of the chain and
thus leak. Therefore, it’s proper to set an upper bound to linear velocity for
all bodies in the chain to prevent such situations.

B 3.1.3 Absorption models

The filled chain model body described in Section [3.1.2| supports the ability
to absorb other simple and complex bodies (specifically soft-bodies). From
a biological standpoint, amoeboid cells mostly absorb other objects using
phagocytosis [31] — a very complicated process. It can be narrowed down
to two visually characteristic properties: first, the cell partially envelops the
absorbed object and after that, the cell fully absorbs it.

The goal of the simulated process is to move the absorbed body from outside
the chain to its interior as stably as possible. In this case, a stable process
ensures that it can only have two conclusions — either the whole absorbed
body is surrounded by the chain and thus becomes part of its interior, or it
remains outside the chain in its entirety. Emphasis must be put on preventing
intermediate states — such as partial absorption. For this reason, absorption of
simple single-fixture bodies and complex bodies should be handled differently.

Note that since the simulation is expected to perform with gameplay features,
it is appropriate to devise intuitive rules for when the cell can initiate absorp-
tion. Such rules define conditions that must be constantly met during a set
amount of time. General conditions include:

1. The absorbed object is in direct contact with the absorbing cell.

18

3.1. Physical models

2. The absorbing cell is moving towards the absorbed object (approxi-
mately).

Additional conditions may follow to increase the stability of this process.
Violating any condition before reaching the required time will result in a time
reset.

Once the cell successfully initiates the absorption process, the gateway into
its interior is opened by disabling collision between all of its current front
bodies and the absorbed object. As mentioned before, the next steps will use
different approaches depending on what kind of body is being absorbed.

B Absorption of single-fixture bodies

Single-fixture bodies consist of only one, simple fixture. In the implemented
simulation, it is always circle-shaped. Provided it is properly scaled to fit the
absorbing cell’s interior, this kind of absorption is expected to occur more
frequently. Thus, it is necessary to consider cases in which multiple objects
will be absorbed simultaneously.

The aforementioned general conditions are sufficient to start this type of
absorption. Once they are met for an individual object, the object becomes
absorption-ready and the collision is disabled so that it can enter the cell’s
interior. At the moment any object acquires this status, a time counter will
be initiated. At the end of its time limit, the object will lose its absorption-
readiness, collisions will be restored and the process will terminate with only
two possible outcomes:

1. The object is completely engulfed by the cell’s chain bodies.
2. The object remains entirely outside the cell‘s chain bodies.

Due to the simplicity of the fixture, any intermediate states are prevented.
For example, if it happens that the collision is restored right at the moment
when the object is overlapping with a chain body, Box2D’s inner logic will
simply push that object either inside or outside the chain. Thus, unstable
partial absorption is impossible in this case, as desired in our simulation.

The simulation should be able to determine which of the two outcomes took
place. From this, the necessity of an algorithm emerges. This algorithm
should be capable of providing an unambiguous answer to whether the object
being absorbed is in the interior or exterior of the cell.

The ray-casting algorithm [32] is a fitting solution.

Ray-casting algorithm. A set of polygon-defining vertices and the tested
point are its input. In terms of the filled chain model body, the coordinates
of these vertices correspond to the centers of individual chain bodies. The
tested point matches the center of the absorbed body.

19

3. Solution and its methodology

A horizontal ray is cast in one direction from the tested point. The number
of its intersections with the polygon edges is then counted. If this number is
odd, the tested point belongs to the interior of the polygon. If it is even, it is
part of the exterior.

To improve efficiency, this algorithm only tests objects that are in the state
of absorption-readiness (i.e. objects that have met the aforementioned condi-
tions). Note that such objects maintain their status for a limited amount of
time. As a result, the number of times the algorithm should be executed in
one frame is constantly reset and does not exceed extreme values.

B Absorption of soft-bodies

A soft-body’s structure is complex and consists of multiple joint bodies.
Furthermore, they are generally expected to be of a larger scale. Both of
these assumptions could prove very problematic in terms of the absorption
process stability.

An additional precondition must be met in order for the process to start
- the filled chain model-based cell must now have at least several collision
contacts with the soft-body. Once the process is initiated, the absorbing cell
temporarily interrupts its movement and does not react to user input. This
significantly limits the span of possible shapes the cell can appear in at that
moment. Many shapes may unpredictably cause problems during this stage,
so it is suitable to prevent them.

The object of absorption loses its independent mobility and moves towards
the centroid of the absorbing cell for a limited amount of time. The time is
set so that the soft-body is guaranteed to reach its goal before the limit. In
the duration of this process, the soft-body also continuously shrinks to stably
fit into the interior. Once the limit expires, the soft-body is then marked as
absorbed, collision is restored and the absorbing cell regains its movement.

B 3.1.4 Models for other microscopic objects

B Platelet

The proposed models for unicellular organisms in the simulation require a
fitting environment to interact with. To make the simulation more diverse, a
suitable object acting as an obstacle can be designed.

So far, the simulation has been shaped in accordance to real life references
from the microscopic life. Many of these references originate from microscopic
footages of mammalian blood. Besides neutrophils, an apparent presence of
numerous objects called blood platelets (also known as thrombocytes) can be
observed in Figure [3.6. It is noticeable that neutrophils often move through

20

3.1. Physical models

the gaps between platelets when chasing other organisms — a fitting potential
feature for our simulation. Furthermore, platelets seem to have very similar
properties to those of a simulated soft-body. It stands to reason that a blood
platelet makes for a suitable reference when designing the form of an obstacle
object.

Figure 3.6: Platelets in real life [2]

In the simulation, platelets are expected to constitute the most numerous
category of microscopic objects. Thus, emphasis must be put on performance,
which is dependent on the total number of simulated bodies. As mentioned
above, the only criterion for visual resemblance to the reference material is to
include soft-body attributes. However, a double-layered soft-body is a model
that is very demanding of a large number of circular bodies that constitute it.
Reducing it to a single layer cuts the number in half, but lowers its overall
stability — an important feat, considering its function as an obstacle.

A modified soft-body model specifically optimized for platelet simulation has
been devised to address these issues (Figure 3.7). It consists of a single layer
of satellites, the kernel and two new additions in the form of the so-called
interlayer and anchor point. The interlayer serves as a performance-friendly
alternative to the second layer in soft-bodies, providing comparable stability
at the sole cost of lesser deformity.

It is represented by a dynamic rigid circle-shaped body. The center of it is
aligned with the center of the kernel. Overlapping is ignored due to collision
disablement between both bodies. The design shows best results when the
interlayer’s radius is large enough for it to almost reach to the satellite bodies.

21

3. Solution and its methodology

satellite body

distance joint

interlayer
Kernel o anchor point
rope joint
with a
maximum
length limit

Figure 3.7: Optimal soft-body structure for platelets

The soft-body‘s kernel is bound to a non-colliding static point called the
anchor point. The purpose of this concept is to set an upper bound to the
distance between a platelet and a static point in the Box2D world. Not
only does this limit the platelet‘s free movement in the environment, it also
allows unicellular organisms to push through the platelets — a realistic feature
resembling the reference footage.

In Box2D, we can realize this type of connection by using a rope joint. Unlike
distance joints, rope joints support upper bounds on their length. With
further customization, rope joints in the simulation have been set to have a
tendency to contract to minimal length. This means that platelets that have
been pushed from their initial position will eventually return to it.

B Agar

Besides other unicellular organisms serving as a source of absorbable nour-
ishment for the controlled cell, it is suitable to design a more common and
numerous unit meant for casual absorption. In the referenced game Agar.io,
such role was assigned to small colored circles that were densely arranged on
the map. These objects have been inspired by agar [33], a real life source of
nutrients in the microscopic world. Analogically, simple small circle-shaped
rigid bodies can be placed to serve the same purpose in a physics-based
simulation, such as the subject of this work.

Considering the fact that agar objects are expected to be absorbed very
frequently and in larger quantities, the simplicity of the representation allows
the use of a more stable absorption process, such as the one mentioned in
Section [3.1.3l

22

3.2. Rendering methods

B 32 Rendering methods

The models of various microscopic objects proposed in Section [3.1]only include
their physical representation. The following section describes the applied
methods of binding visual representation to its physical counterpart in Box2D,
as well as secondary visual elements contributing to the broad vivacity of the
simulation view.

All used methods will utilize basic functionality from the LibGDX library.

Bl 3.2.1 Rendering soft-bodies

All simulation objects modeled after the soft-body pattern use a two-dimensional
LibGDX mesh [34] as its main component for rendering. It is configured to
hold four-dimensional vertices in the following format — the first pair describes
the horizontal and vertical coordinates of the vertex on screen, while the
second pair refers to texture coordinates. Note that every vertex in the mesh
corresponds to exactly one physical body that is part of the outermost layer
in the soft-body.

The vertex coordinates are in alignment with the centers of these physical
bodies. However, if it happens that the circular shapes of these bodies possess
a relatively large radius, visual imperfections in form of significant gaps will
become evident during collisions. In Figure 3.8, it is visible that the rendering
would only reach the red points inside the circles if not adjusted. It is therefore
useful to extend the drawing surface all the way to the yellow points to cover
the area beyond the circle centers.

.

Figure 3.8: Extended drawing surface covering

23

3. Solution and its methodology

For each circle-shaped body, an adjustment of this sort can be achieved by
setting a local center point inside the soft-body. In Figure 3.8 the green
point acts as a local center. After that, the direction from that local center to
the center of the target circle is calculated. Finally, a vector of that direction
is scaled to match the radius of the circle shape in length and added to the
body’s positional vector.

Using the texture coordinates, certain points in the texture image can be
bound to physical bodies. If properly mapped, the drawn texture will auto-
matically transform in response to the detected deformations in the physical
representation. Note that these coordinates will not change throughout the
simulation, therefore no additional managment is necessary besides initial-
ization. When designing the texture, it should be taken into consideration
that the soft-bodies used in this simulation are either circle- or ellipse-shaped.
In order to simplify the initial mapping, square textures with an inscribed
circle are recommended. That way, simple trigonometry is sufficient to bind
circle-shaped bodies in the outermost layer of the soft-body to the same
amount of evenly distributed points along the inscribed circle. The center of
the texture is then mapped onto the position of the soft-body’s kernel.

After setting up the mesh vertices, indices referring to them will be used to
render the contents of the mesh in a triangular layout. Each triangle will
be described with an index triplet corresponding to three specific vertices
in the mesh. Since the soft-body’s layout is triangular by definition, these
indices will remain static throughout the whole simulation. Every triangle
will feature one vertex bound to the soft-body’s kernel, as well as two others
bound to neighboring circle bodies in the soft-body‘s outermost layer. The
kernel of the soft-body is partially mobile within its boundaries, therefore it
is suitable to equip it with a separate visual representation. Using a properly
scaled sprite based on a texture for that purpose is sufficient to conclude the
graphics of a soft-body.

B 3.2.2 Rendering filled chain model bodies

Similarly to soft-bodies, filled chain model bodies also use a two dimensional
LibGDX mesh. However, the first difference can be observed in its vertex
format. In this case, the vertices are simply two-dimensional. They only hold
their horizontal and vertical coordinates on the screen which are managed the
same way as in the soft-body. In a filled chain model body, these coordinates
adjust to the positions of individual chain bodies.

The absence of texture-mapping relates to the fact that the mesh indices
are expected to change very frequently, as opposed to being immutable like
in the soft-body mesh. Due to a generally higher deformity rate, the filled
chain model body lacks an inner point, such as the soft-body kernel, that
serves as a common vertex for all triangles in the layout. Thus, the complex
shape cannot follow a predetermined triangular layout. A triangulation

24

3.2. Rendering methods

algorithm must be applied instead. LibGDX offers an implementation of
the Ear clipping algorithm [35] which can be used to divide the complex
shape area into triangles and output respective index triplets (Figure [3.9). If
texture-mapping was applied in such layouts, it would not produce smooth
transformations and only come across as a visual shortcoming. Instead, the
triangulated area is simply filled with one color.

p4 p4 p4
p2 p6 D/Z p6 D/Z -=""~_p6
/ /7
7 % 7 4 7
p1 Pl b1 ¢ Pl b1 ¢ .
\\\ \\\
P ps P ps PP ps
p4
P2 _-=><_ p6
/, S
4 > p7
1
p(\\ //
~ 7’

Figure 3.9: Triangulation process of a polygon [3]

Atop that color, inner particles will be used to create visual complexion. For
the purposes of this simulation, the default Color particle renderer, which
is included in the LiquidFun extension, will suffice. It is capable of drawing
every individual particle as a filled circle of respective radius and color with
reasonable performance.

Since the inner particles represent real life cytoplasm in the simulation, their
visual representation should resemble a continuous fluid. Such result can be
achieved by applying a simple Gaussian blur to the rendered particles.

B 3.2.3 Rendering background

Although it seems that the view under a real-life microscope is two-dimensional,
microscopic life is certainly three-dimensional. Therefore, it is suitable to add
another layer of objects to simulate some degree of depth in the simulated
view. When rendering the objects in the background, it is needless to include
their physical representation — their purpose is strictly visual. They are
simply represented by a two-dimensional point in the Box2D world and a
sprite reference. The sprite’s position is then aligned with that point every
time it changes its coordinates. In the implemented simulation, this position
changes randomly. The resulting rendering can be seen in Figure [3.10.

25

3. Solution and its methodology

Figure 3.10: Rendered background

N 33 Application

The physical models and their visualization methods proposed in the previous
sections will serve as tools to create an application showcasing the resulting
simulation.

Although the application should be runnable on multiple platforms due to the
advantages of the LibGDX framework, note that its development is mainly
aimed at desktop platforms. The application does not put emphasis on
optimization and mainly prioritizes visual appeal over potential efficiency
gain. As a result, the application is designed to run stably at 60 frames per
second on most desktop platforms, but further improvements in performance
might be necessary for platforms such as mobile.

The application consists of two closely related components — the simulation
and game mode. The former serves as a sandbox mode, fulfilling the purpose
of demonstrating all features included in the proposed models. It can be seen
as a pure simulated view under a microscope. The latter is an extension of
the former. It adds rules, gameplay and general meaning to the simulation
by utilizing its features.

B 3.3.1 Simulation mode

To set the Box2D-based simulation in motion, its world must be filled with
simulated objects. These objects have the shape of the proposed physical
models and thus support their functionality. This stage establishes relations
between these individual features and adds logic to when they are triggered

and what consequences they cause. A number of supporting processes are
defined.

26

3.3. Application
B Simulation objects

The simulation’s environment is filled with various objects (Figure
directly derived from the proposed physical models. These include living
unicellular organisms, which are expected to periodically receive movement
input, and static auxiliary structures. The input is either directly received
from the user, or generated by a trivial random artificial intelligence.

amoeboid cell

platelet

rigid cell

Figure 3.11: Supported simulation objects

Rigid cells. Represented by the soft-body model, rigid cells constitute one
of the living organism varieties inhabiting the simulation environment. These
cells serve the purpose of adding vivacity to the simulation, as well as potential
nourishment for amoeboid cells.

Amoeboid cells. Filled chain model bodies are used to simulate cells of the
amoeboid variety. Due to a higher rate of deformity, elaborate functionality
and visually distinct interactions with its environment, it is the most suitable
simulation object for user control. Relating to the supported features of the
filled chain model body, an amoeboid cell can absorb agar and rigid cells,
move around in the environment and increase in scale.

Obstacles. To fully demonstrate the deformity features of the filled chain
model body, numerous soft-body obstacles are placed within the simulation.
They are represented by the implemented platelet model.

Agar. Agar is another non-living object contained in the simulation. Agar
serves as a common unit of absorption and consumption for amoeboid cells.

Walls. Rectangular boundaries demarcate the active part of the simulation
and thus prevent any object from leaving them.

27

3. Solution and its methodology
B Object consumption

Once an amoeboid cell absorbs a foreign object, it remains in its interior.
Since these objects may accumulate over time, it is suitable to devise a process
that would eliminate such objects. By making this process manual, it may
simultaneously serve as a potential game mechanic.

The process shrinks the object until a certain scale is reached and consequen-
tially, the object is fully deallocated from memory. The interior extension
described in Section [3.1.2] is bound to the end of this process. As a result,
the only possible way of enlarging an amoeboid cell is by consuming objects,
not just absorbing them.

B Absorption management

The simulation considers the potential instability that might occur during
the absorption of complex bodies and is therefore equipped with a simple
system that puts dynamic constraints on what rigid cells can be absorbed at
a certain time.

These constraints mostly refer to the sizes of both actors in the absorption
process. Size of a complex body is related to the area defined by its outline
vertices. Since the area should remain constant unless the complex body is
dynamically scaled (such as the amoeboid cell after consuming an object),
deformations will be ignored in the resulting area calculations.

Rigid cell area. In terms of our simulation, the area of rigid cells corresponds
to the area of the initial ellipse shape. Only minor deformations occur in
soft-body based objects. Therefore, this constant value describes its size quite
accurately at all times.

Amoeboid cell area. Area of an amoeboid cell is defined as the sum of its
inner particles’ areas. While mathematically inaccurate, it is sufficient for
the purposes of this simulation. As the scale of an amoeboid cell grows, the
chain of its body is extended and its interior is filled with more particles at
the same time. It is more difficult to make adjustments to the area based on
the extension of the cell‘s perimeter alone, therefore its filling is applied in
calculations instead.

A ratio is established between the area of the amoeboid cell and the rigid cell.
The simulation allows the player cell to absorb only those rigid cells which
meet this ratio. Even though rigid cells are scaled down when they enter the
player cell, they still take up much more space than agar units. Thus a limit
is set so that the player cell can hold at most one absorbed rigid cell in its
interior until it is consumed.

28

5 E B B EEEEEEESEEESSESE S S EEESSEEESEEEES 3.3.Application
B Demonstration environment

The implemented application includes a manually designed environment
(Figure for the purpose of demonstrating its entire functionality. It
features all of the supported objects with different parameters that determine
their size, behavior and other properties.

Figure 3.12: Demonstration environment

B 3.3.2 Game mode

A prototype of a game has been implemented as part of this thesis to show the
utilization potential of the proposed solution. Although the prototype is single
player, it adapts many gameplay mechanics from the critically acclaimed
Agar.io [4] game.

Bl Rules

The user plays as an amoeboid cell that has 90 seconds to increase its score.
Score is increased by consuming an absorbable object - agar or rigid cells.
Agar can be absorbed and consumed in any instance, but its consumption only
adds a small amount of points. Since rigid cells require the player cell to reach
a certain size in order to allow their absorption, the following consumption
earns more points.

Once an object is absorbed, the player can devise a strategy on when to
consume it. Consumption is a manually initiated process that significantly
slows down the cell for the entirety of its duration.

As previously mentioned, the simulation associates the amoeboid cell enlarge-
ment with the successful termination of the consumption process. Besides

29

3.SO/UtiOHanditSmethOdO/OgylIIIIlIlIIIIIIIIIIIIIIIIIIIlIl

the acquired points, the player cell will also become larger and thus capable
of absorbing rigid cells of greater scale.

B HUD and other visual elements

Score: 0
1:09

Figure 3.13: Game mode screenshot

HUD (head-up display) refers to a game’s user interface. It contains static
visual elements that display the game’s status variables. These include the
score view and the time limit.

Other visual elements are rendered by the game mode on top of the simulation
(Figure 3.13) to futher assist players. The list contains:

1. Green arrow. It points to rigid cells that are ready to be absorbed by
the player cell.

2. Score gain view. A number will show the amount of points the player
has received after consumption.

3. Consumption marker. It will point to absorbed objects that will be
consumed upon holding the displayed key.

30

Chapter 4

Results

The following chapter evaluates the resulting simulation in terms of its visual
fidelity, performance and stability. It lists its advantages and disadvantages
over rivaling simulations, known imperfections and ways of usage in future
work.

B a1 Comparison

B 4.1.1 Visual comparison

B General appearance

The amoeboid cell implemented in this work clearly surpasses its competition
in terms of visual fidelity, as seen in Figure [4.1. Compared to the real life
example, however, it still lacks complexion in its interior. A closer resemblance
can be achieved by making the individual interior particles have different
sizes and colors.

31

4. Results

(a) : Thesis result (b) : Real life [10]

(c) : Agar.io [4] (d) : CellCraft [14]

Figure 4.1: General appearance comparison of amoeboid cells

Rigid cells, which were inspired by real life paramecium cells, do not have a
counterpart in competition. Figure shows that although the shape bears
sufficient resemblance to a paramecium cell, the complexion is different in
both style and structure.

(a) : Thesis result (b) : Real life [30]

Figure 4.2: General appearance comparison of paramecium-inspired cells

B Deformative qualities

Deformative properties are best seen in amoeboid cells. Similar configurations
are shown in Figure [4.3] as both cells are shaped by their surroundings.

32

4.1. Comparison

b) : Real lif
(a) : Thesis result (b) eal life [10]

Figure 4.3: Deformative qualities comparison of amoeboid cells

B Absorption

All existing non-scientific solutions mentioned in Section [2.2.1] only support
absorption on a logical level. It means that once a collision is detected with
an absorbable object, it instantly disappears instead of actually entering the
cell. The thesis result, however, adds physical level to the absorption process.
The absorbed object can become part of its interior. This contributes to
realism, as seen in Figure 4.4,

(a) : Thesis result (before) (b) : Thesis result (after)
(c) : Real life (before) (d) : Real life (after)

Figure 4.4: Comparison of absorption in amoeboid cells

4. Results

B Environment

Platelets constitute the main component of the simulated environment. In
terms of the objects themselves, a rather high degree of visual fidelity has
been reached (Figure . Further improvements can be made by slightly
distorting the shape of the simulated platelets. Differences in the quantity of
platelets are caused by performance issues that will be mentioned in Section
4.2

(a) : Thesis result (b) : Real life [2]

Figure 4.5: Environment comparison

B 4.1.2 Features comparison

Game mechanics aside, the implemented simulation supports all but one
critical feature found in Agar.io [4]. The player cell can move, absorb other
objects and get larger, all with a greater degree of visual fidelity. In Agar.io,
however, the player cell can also be divided into multiple smaller ones, referring
to real life cell reproduction. It is possible to implement a likewise feature in
the Box2D environment by fittingly breaking and reattaching distance joints.
This feature goes beyond the scope of this thesis, however.

. 4.2 Limitations

Physics-based simulations tend to be generally more advanced in terms of
visual fidelity, but many simulations choose to deliberately avoid the inclusion
of physics to save on performance and increase stability. The limitations of
the simulation implemented within the scope of this thesis relate to general
problems of physics engines - in this case, specifically Box2D.

B 4.2.1 Performance

The application was run on the following hardware components when observ-
ing its performance:

34

4.2. Limitations

® GPU: NVIDIA GeForce GT 630M with 2 GB Dedicated VRAM
® CPU: Intel Core 15-3210M

[| Physics

The application predominantly uses the CPU to simulate dynamic bodies
contained in the Box2D world. It follows that the number of dynamic bodies
in the simulation constitutes the decisive criterion for performance.

Most dynamic bodies belong to the numerous platelets inhabiting the simula-
tion environment. In the current revision, platelets are based on soft-bodies.
With parameters that grant a decent degree of visual fidelity, each platelet
is expected to add 20 to 30 dynamic bodies to the total number. Without
platelets, the environment leaves an empty impression. Therefore, the scale
of the simulation map can be closely associated with the number of platelets
in it.

Simulated unicellular microorganisms tend to increase the total count of
dynamic bodies as well. In fact, the double layered soft-body featured in
rigid cells has the highest number of dynamic bodies per simulation object.

However, these objects are not expected to be densely placed within the
simulation.

The following benchmarks depicted in Table 4.1 have been observed when
running the simulation without rendering:

Number of dynamic bodies | Number of platelets | Frames per second
3000 90 60
4000 120 60
5000 150 50
6500 200 30

Table 4.1: Benchmarks on simulation performance (physics only)

The first line in the table approximately relates to the scale of the simulation
map used in the application’s demonstration. Issues started to appear when
Box2D simulated over 4000 dynamic bodies, roughly corresponding to a 50%
increase in map scale.

Surpassing the 6500 dynamic bodies mark, frames per second started to drop
drastically under the value of 30 - leaving the simulation in an unplayable
state.

If map scale is of essence, platelets can be optimized to be represented by a
single dynamic body instead of a complex soft-body. By significantly cutting
the number of bodies contained in one platelet, the simulation can achieve
massive scales while maintaining stable performance.

35

4. Results

As a last resort solution, simulation objects that are not visible to the user
can be set to sleep mode. This way, the Box2D internal logic will temporarily
not consider them in its collision and velocity calculations. Once they enter
the vicinity of the camera again, they are awoken. Note that such solution
brings many other limitations to the simulation and can be used only in case
of a single player game.

B Rendering

LibGDX offers a variety of automatic optimizations to render calls. A lot of
room is left for further manual improvements, such as limiting render calls by
disabling managment of objects outside the camera vicinity. For the purpose
of our simulation, however, automatic features suffice in providing reasonable
performance. Rendering issues are strongly overshadowed by the difficulty of
physics-based computations.

B 4.2.2 Stability

When building complex custom structures in Box2D, it is sometimes a difficult
task to predict their behavior during interactions with other objects. As a
rule, the more primitive an object’s structure is, the more stable it acts in
the simulation.

Primitive objects are not sufficient for this work’s purposes, however. As
a downside, the simulation struggles with virtually unavoidable potential
instability. Although most of its instances have been suppressed, some of
them remain unresolved. Note that these imperfections are generally unlikely
to happen and are mostly caused by unfit controlling schemes. In the entirety
of the testing process for this application, not a single program-crashing error
was detected.

Two most apparent problems will be described. Note that other potential
problems are not excluded, numerous trials might unveil bugs that were
previously unheard of.

B Improper absorption

This problem occurs when the user-controlled cell continuously pushes a rigid
cell. Normally, rigid cells are absorbed when pushed by an amoeboid cell.
Exceptions might arise if the user is improperly controlling the cell, the rigid
cell cannot be absorbed or the player cell already has an unconsumed rigid
cell in its interior.

When the front part of the chain in the amoeboid cell constantly pushes the
outermost layer of satellites in the rigid cell, the distance joints between two

36

EE s EEsEssEsEEsEsssssnsnnnnnnnnnonannanan 42 Limitations

chain bodies eventually extend and allow the rigid cell to enter the player’s
interior (Figure . Note that this action is not handled by the absorption
process. Therefore, the improperly absorbed rigid cell still maintains motion
and cannot be consumed, even if physically inside the amoeboid cell.

Figure 4.6: Improper absorption bug

A possible solution might be a custom implemented distance joint that will
respect a maximum length limit.

B Amoeboid cell leakage

Although the exact causes of this problem are left unknown, in some very rare
occurrences possibly related to amoeboid cell enlargement, inner particles
may be discharged under pressure (Figure . Unlike the former problem,
this only causes a visual inconvenience and should not affect the gameplay in
any way.

37

4. Results

Figure 4.7: Amoeboid cell leakage bug

A possible solution is to limit the maximum velocity of the particles so that
they cannot penetrate though the distance joint between the individual chain
bodies of the amoeboid cell’s filled chain body.

. 4.3 Future work

The project leaves a lot of space for further improvement. In addition to
fixing some of the limitations mentioned in Section 4.2, the implemented
prototype of the game can be used to develop a fully-fledged game, possibly
with multiplayer support.

By optimizing the code and simplifying some features, the simulation can
also be ported to mobile devices and web browsers.

By adding some educational commentary, the simulation can also be used as
an introductory tutorial lesson to cellular biology in primary and secondary
schools.

38

Chapter 5

Conclusion

This thesis provided a brief introduction to the topic of microscopic simula-
tions, their niche and potential uses in educational, recreational and scientific
fields. By analyzing existing solutions with imperfect visual fidelity, innova-
tive methods were devised to surpass its competition. In contrast to rivaling
solutions, the chosen methods strongly relied on two-dimensional physics
simulation. Several physical models were designed to represent various objects
from the microscopic world. Special emphasis was put on shaping the form
and functionality of simulated unicellular microorganisms, especially those of
the amoeboid variety.

The dominant output of this work is the implementation of a desktop ap-
plication that utilizes the designed theoretical models. A broad variety of
capabilities were demonstrated within the implemented simulation, one of
which is the option to be used in video games.

Although the proposed solution has successfully reached its goal of achieving
the highest degree of visual fidelity amongst existing non-scientific simulations
of this sort, an honest assessment of its disadvantages was given.

39

40

Bibliography

[1] Umberto Salvagnin. Onion cells 2. https://www.flickr.com/photos/
[kaibara/3839720754/| 2009. Accessed: 2018 May 18.

[2] Kim Ulvberget. White blood cells and bacteria. https://www.youtube|
|com/watch?v=DXANDu083J4] 2014. [online video] Accessed: 2018 March
20.

[3] Amrita Vishwa Vidyapeetham. Polygon triangulation.

lamrita.ac.in/swaminathanj/cg/PolygonTriangulation.html. Ac-
cessed: 2018 May 18.

[4] Valadares Matheus. Agar.io. http://agar.iol 2015. Accessed: 2018
May 16.

[5] Google trends. https://trends.google.com/trends/topcharts#vm=
|cat&geo&date=2015&cid, 2015. Accessed: 2018 February 20.

[6] John Fingas. Agar.io brings massively multiplayer games to the petri dish.
https://www.engadget.com/2015/06/01/agar-io/, 2015. Accessed:
2018 February 19.

[7] N.A. Campbell, B. Williamson, and R.J. Heyden. Biology: Exploring
Life. Pearson Prentice Hall, 2006.

[8] Kenneth Todar. Structure and function of bacterial cells.
|/ /textbookofbacteriology.net/structure_2.html|, 2008-2012. Ac-
cessed: 2018 May 18.

[9] Blanka Skrabalové. Prvoci [protozoal. http://www.mikro. jaknahmyz |

lcz/prvocil Accessed: 2018 May 18.
[10] David Rogers. Crawling neutrophil chasing a bacterium.

iyoutube.com/watch?v=I_xh-bkiv_c, 1950s. [online video] Accessed:
2018 February 2.

[11] Keanna Burns. Otherwordly amoebas. Future Science Leaders, 2014.

41

https://www.flickr.com/photos/kaibara/3839720754/
https://www.flickr.com/photos/kaibara/3839720754/
https://www.youtube.com/watch?v=DXANDu083J4
https://www.youtube.com/watch?v=DXANDu083J4
https://www.amrita.ac.in/swaminathanj/cg/PolygonTriangulation.html
https://www.amrita.ac.in/swaminathanj/cg/PolygonTriangulation.html
http://agar.io
https://trends.google.com/trends/topcharts#vm=cat&geo&date=2015&cid
https://trends.google.com/trends/topcharts#vm=cat&geo&date=2015&cid
https://www.engadget.com/2015/06/01/agar-io/
http://textbookofbacteriology.net/structure_2.html
http://textbookofbacteriology.net/structure_2.html
http://www.mikro.jaknahmyz.cz/prvoci
http://www.mikro.jaknahmyz.cz/prvoci
https://www.youtube.com/watch?v=I_xh-bkiv_c
https://www.youtube.com/watch?v=I_xh-bkiv_c

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

21]
[22]

23]

[24]

[25]

[26]

[27]

28]

Maxis Games. Spore. http://www.spore.com/, 2008. Accessed: 2018
May 18.

Hemisphere Games. Osmos. https://www.osmos-game.com/, 2009.
Accessed: 2018 May 18.

Lars A. Doucet, Chris Gianelloni, Anthony Pecorella, and Hibiki
Haruto. Cellcraft. |https://www.biomanbio.com/GamesandLabs/|
(Cellgames/cellcraft.html, https://github.com/larsiusprime/|
[Ce11Game--0pen-Source-fork-of--CellCraft--/, 2014. Accessed:
2018 May 18.

Marc Herant, Volkmar Heinrich, and Micah Dembo. Mechanics of
neutrophil phagocytosis: experiments and quantitative models. Journal
of cell science, 119(9):1903-1913, 2006.

Shin I Nishimura, Masahiro Ueda, and Masaki Sasai. Non-brownian
dynamics and strategy of amoeboid cell locomotion. Physical Review F,
85(4):041909, 2012.

Erin Catto. Box2d. http://box2d.org/. Accessed: 2018 May 18.

Unity Technologies. Unity3d. http://unity3d.com/. Accessed: 2018
May 18.

Youzu Stars. LOVE. https://love2d.org/. Accessed: 2018 May 18.

YoYo Games. Gamemaker: Studio. https://www.yoyogames.com/

Accessed: 2018 May 18.
Cocos2d. www.cocos2d-x.org/, Accessed: 2018 May 18.

Badlogic Games. Libgdx. https://libgdx.badlogicgames.com/. Ac-
cessed: 2018 May 18.

Erin Catto. Box2d v2.3.0 User Manual. http://box2d.org/manual . pdf,
2013. Accessed: 2018 May 10.

jBox2D. http://www.jbox2d.org/. Accessed: 2018 May 18.

webfanatic. Constant volume joint for boxweb2d - get jiggly with
it. https://www.youtube.com/watch?v=TmB6KAxzues|, 2013. [online
video] Accessed: 2018 April 20.

Chipmunk2d. https://chipmunk-physics.net/| Accessed: 2018 May
18.

Google. Liquidfun. http://google.github.io/liquidfun/, 2013. Ac-
cessed: 2018 May 18.

Finnstr Productions. Libgdx LiquidFun extension. https://github)
lcom/finnstr/gdx-liquidfun-extension, 2014. Accessed: 2018 May
18.

42

http://www.spore.com/
https://www.osmos-game.com/
https://www.biomanbio.com/GamesandLabs/Cellgames/cellcraft.html
https://www.biomanbio.com/GamesandLabs/Cellgames/cellcraft.html
https://github.com/larsiusprime/CellGame--Open-Source-fork-of--CellCraft--/
https://github.com/larsiusprime/CellGame--Open-Source-fork-of--CellCraft--/
http://box2d.org/
http://unity3d.com/
https://love2d.org/
https://www.yoyogames.com/gamemaker/
https://www.yoyogames.com/gamemaker/
www.cocos2d-x.org/
https://libgdx.badlogicgames.com/
http://box2d.org/manual.pdf
http://www.jbox2d.org/
https://www.youtube.com/watch?v=TmB6KAxzues
https://chipmunk-physics.net/
http://google.github.io/liquidfun/
https://github.com/finnstr/gdx-liquidfun-extension
https://github.com/finnstr/gdx-liquidfun-extension

Bibliography

[29] Khronos Group. OpenGL. https://www.opengl.org/. Accessed: 2018
May 18.

[30] cathlee35. Paramecium. https://www.youtube.com/watch?v=fmwN_|
2007. [online video] Accessed: 2018 May 14.

[31] Wikipedia. Phagocytosis. https://en.wikipedia.org/wiki/
Accessed: 2018 May 17.

[32] Rosetta Code. Ray-casting Algorithm. https://rosettacode.org/
wiki/Ray-casting_algorithml Accessed: 2018 April 25.

[33] Wikipedia. Agar. https://en.wikipedia.org/wiki/Agar. Accessed:
2018 May 17.

[34] Matt DesLauriers. LibGDX Meshes. https://github.com/mattdesl/
[lwjgl-basics/wiki/LibGDX-Meshes|, 2014. Accessed: 2018 April 28.

[35] David Eberly. Triangulation by ear clipping. Geometric Tools, 2008.

[36] PondWaterWorld 2.0. Paramecium discharging trichocysts.
[/ /www . youtube . com/watch?v=kHOOtPhf6EM, 2012. [online video| Ac-
cessed: 2018 March 21.

43

https://www.opengl.org/
https://www.youtube.com/watch?v=fmwN_mD7TvY
https://www.youtube.com/watch?v=fmwN_mD7TvY
https://en.wikipedia.org/wiki/Phagocytosis
https://en.wikipedia.org/wiki/Phagocytosis
https://rosettacode.org/wiki/Ray-casting_algorithm
https://rosettacode.org/wiki/Ray-casting_algorithm
https://en.wikipedia.org/wiki/Agar
https://github.com/mattdesl/lwjgl-basics/wiki/LibGDX-Meshes
https://github.com/mattdesl/lwjgl-basics/wiki/LibGDX-Meshes
https://www.youtube.com/watch?v=kHOOtPhf6EM
https://www.youtube.com/watch?v=kHOOtPhf6EM

44

Appendix A

CD contents

sencukri__bthesis.pdf. Thesis text in .pdf format.

simulation.jar (located in app folder). An executable program that
contains the application showcasing the implemented simulation. Java
Runtime Environment is required to run this program. Supported by
Windows and Linux.

Asset files (located in app folder). Various asset files required by
the application (shaders, images, fonts). They need to be in the same
directory as simulation.jar.

Project source codes (located in source folder). A Gradle-based
project and its source codes. Implemented logic can be found in Unicel-
lularOrganismSimulation\core\src.

45

46

Appendix B

User manual

. B.1 Modes

The application allows the player to choose from two modes.

® Simulation mode: A free mode without any game elements or rules. No
hints enabled. Suitable for debugging and demonstrative purposes.

8 Game mode: This mode includes gameplay features.

. B.2 Game mode rules

You have 90 seconds to increase your score. Score can only be increased by
absorbing and consequentially consuming agar or rigid cells (refer to Figure
for their appearance). Agar can be absorbed at any time, but to absorb
certain rigid cells, your cell must become larger. A green arrow will appear
above the rigid cell if it is ready to be absorbed.

Your cell becomes larger once an absorbed object is consumed. Simply
absorbing an object is not enough - it will remain inside your cell until you
completely consume it. Note that the consumption process slows down the
cell, so pick a suitable time for it. Since the newly added inner particles are
differently colored than the initial onces, you can see how much your cell has
grown since the beginning.

Note that only one rigid cell can be inside the player cell at one time. If
you have one inside, you will not be able to consume other rigid cells,
even if a green marker is over them. Quickly consume it to free space,
get bigger and get a large amount of points!

47

B. User manual

. B.3 Controls

B B.3.1 Movement

You control the cell by holding the left-mouse button. The cell moves towards
the cursor, regardless of how far it is is from the cell (i.e. the speed does not
change depending on mouse position). It is recommended to keep the mouse
cursor not too far away from the cell, as some processes, such as absorption,
are very sensitive to mouse cursor position.

B B.3.2 Absorption

As mentioned before, agar can be absorbed at all times, while rigid cells only
at times when a green arrow is over them. To absorb an object, the player’s
cell must push against it with its front part for a short period of time.

When pushing against larger rigid cells, aim for their centroid (it does not
necessarily correspond to their kernel). If you have trouble with initiating
absorption while pushing against it, try to move away from it and approach
it anew.

B B.3.3 Commands

® Hold Left-mouse button: Move around.
® Hold Q: Consumes an absorbed object (if present).
® A: Zoom out.

® D: Zoom in.

48

	Introduction
	Background
	Cellular biology
	Multicellular organisms
	Unicellular organisms

	Existing solutions
	Video games
	Scientifically precise solutions

	Suitable libraries
	Box2D
	LiquidFun
	LibGDX

	Solution and its methodology
	Physical models
	Soft-body model
	Filled chain model
	Absorption models
	Models for other microscopic objects

	Rendering methods
	Rendering soft-bodies
	Rendering filled chain model bodies
	Rendering background

	Application
	Simulation mode
	Game mode

	Results
	Comparison
	Visual comparison
	Features comparison

	Limitations
	Performance
	Stability

	Future work

	Conclusion
	Bibliography
	CD contents
	User manual
	Modes
	Game mode rules
	Controls
	Movement
	Absorption
	Commands

