Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Novel Domains and Problems for
Privacy-Preserving Multi-Agent Planning

Victoria Shmatova

Supervisor: Ing. Antonin Komenda, Ph.D.
Field of study: Computer and Information Science
May 2018

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4)
Student's name: Shmatova Victoria Personal ID number: 434726
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics
Study program: Open Informatics
Branch of study: Computer and Information Science

4

Il. Bachelor’s thesis details

~N
Bachelor’s thesis title in English:
Novel Domains and Problems for Privacy-Preserving Multi-Agent Planning
Bachelor’s thesis title in Czech:
Nové domény a problémy pro multi-agentni planovani s privatni znalosti
Guidelines:
The thesis will provide design, formalization and experimental analysis of new planning domains and problems for
domain-independent privacy preserving multi-agent planning. Such domains are needed in the multi-agent planning
community for benchmarking, competitions and testing and comparison of the existing and developed planners. The
student will propose novel domains based on existing puzzles, video games, and real-world problems. The domains will
be tested on a set of selected existing multi-agent planners.
1) Study literature in the area of multi-agent planning, especially the privacy-preserving variants.
2) Analyze existing domains and problems used for privacy-preserving multi-agent planning, find properties hard from the
planning and privacy preservation point of view, not covered by the existing domains/problems.
3) Propose novel planning domains and problems for privacy-preserving multi-agent planning (some of the domains and
problems should target the properties from 2)
4) Formalize the proposed domains and problems in a language used for multi-agent planning (e.g., MA-PDDL).
5) Experimentally compare selected existing multi-agent planners on the proposed domains/problems and analyze their
behavior.
Bibliography / sources:
[1] Malik Ghallab, Dana S. Nau, Paolo Traverso: Automated Planning: Theory & Practice. Morgan Kaufmann 2004.
[2] Stefan Edelkamp, Stefan Schroedl: Heuristic Search: Theory and Applications. Morgan Kaufmann. 2012.
[3] Raz Nissim, Ronen |. Brafman: Distributed Heuristic Forward Search for Multi-agent Planning. J. Artif. Intell. Res. 51:
293-332 (2014).
[4] Michal Stolba, Antonin Komenda: The MADLA planner: Multi-agent planning by combination of distributed and local
heuristic search. Artif. Intell. 252: 175-210 (2017).
[5] Jan Tozi¢ka, Michal Stolba, Antonin Komenda: The Limits of Strong Privacy Preserving Multi-Agent Planning. ICAPS
2017: 297-305.
Name and workplace of bachelor’s thesis supervisor:
Ing. Antonin Komenda, Ph.D., Artificial Intelligence Center, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 18.01.2018 Deadline for bachelor thesis submission: 25.05.2018
Assignment valid until: 30.09.2018
Ing. Antonin Komenda, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Ing. Pavel Ripka, CSc.
L Supervisor’s signature Head of department’s signature Dean’s signature)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.
Antonin Komenda, Ph.D. for his invalu-
able help and guidance throughout the
writing of this thesis.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instruction for observing the ethical
principles in the preparation of university
theses.

Prague, 24 May 2018

Abstract

The objective of this thesis is to pro-
pose, formalize and implement new plan-
ning domains and problems for domain-
independent privacy-preserving multi-
agent planning. The work focuses on for-
malizing and implementing multi-agent
planning problems by using multi-agent
extension of STRIPS model and multi-
agent extension of PDDL with privacy.
The proposed domains will complement
the small set of already existing multi-
agent domains and be used by multi-agent
planning community for benchmarking,
testing and possible future multi-agent
planning competitions.

Keywords: planning, multi-agent
planning, MA-PDDL

Supervisor: Ing. Antonin Komenda,

Ph.D.

vi

Abstrakt

Cilem této bakaldrské prace je navrh-
nout, formalizovat a implementovat nové
domény a problémy pro multi-agentni
planovani s privatni znalosti. Prace se
zaméfuje na formalizaci a implementaci
multi-agentnich planovacich problémi po-
moci multi-agentniho rozsiteni STRIPS
modelu a multi-agentniho rozsiteni PDDL
s privatni znalosti. Navrhované domény
doplni jiz existujici domény pro multi-
agentni planovani a mohou byt vyuzity
multi-agentni planovici komunitou pro
benchmarking, testovani a pripadné bu-
douci planovaci soutéze.

Klicova slova: planovani, multi-agentni
planovani, MA-PDDL

Preklad nazvu: Nové domény a
problémy pro multi-agentni planovani s
privatni znalosti

Contents

1 Introduction 1
Part |
From Automated to Multi-agent
Planning
2 Laying The Foundation 5|
2.1 Automated planning

2.2 Problems in Classical Planning .. [6|

2.2.1 Formulation of a classical

planning problem 6
2.2.2 STRIPS representation 0|
223PDDL ... i
2.3 Summary ... 9
3 Introducing a new dimension to
planning 11
3.1 Multi-agent planning
3.2 Multi-Agent Extension of

STRIPS 12
3.3 Multi-Agent Extension of PDDL

3.31 Privacy

3.3.2 A bit more about privacy ...
34 Summary ...
4 Competition of Distributed and
Multiagent Planners 19
4.1 Competition Tracks and

Benchmarks....................
5 Multi-agent Planners 21
51 MAPlan
52MADLA

Part Il
Novel domains and problems

6 Domains and Problems 25
6.1 Lanterns. 25]

vii

6.1.1 Description................
6.1.2 Formalization
6.1.3 Problems
6.2 Hierarchical Logistics..........
6.2.1 Description................
6.2.2 Formalization
6.2.3 Problems
6.3 Manufacturing
6.3.1 Description................
6.3.2 Formalization
6.3.3 Problems
6.4 Complexity of the problems

6.5 Summary

7 Experimental evaluation
7.1 Setup & Evaluation
72Results

8 Conclusion
Appendices
A Bibliography

B Tables

=

Figures

6.1 Illustration of the problems from

the lanterns domain. 28]
6.2 Ilustration of the problem from
the hierarchical logistics domain. . .

6.3 Interactions between agents in the
hierarchical logistics domain.

6.4 Hlustration of a problem from the

hierarchical logistics domain.
6.5 Illustration of the manufacturing

domain., 33
7.1 Number of solved problems over

time for lanterns domain. 39
7.2 Number of solved problems over

time for hierarchical logistics

domain.
7.3 Number of solved problems over

time for manufacturing domain. ..

viii

Tables

7.1 Coverage of the problems from the
lanterns domain.

7.2 Coverage of the problems from the
hierarchical logistics domain.

7.3 Coverage of the problems from the

manufacturing domain.
7.4 Plan costs of the problems from

the lanterns domain.
7.5 Plan costs of the problems from

the hierarchical logistics domain . .
7.6 Plan costs of the problems from

the manufacturing domain........
7.7 Coverage of individual domains.

B.1 Time required to solve individual
problems from the lanterns domain.

B.2 Time required to solve individual
problems from the logistics domain.

B.3 Time required to solve individual
problems from the manufacturing
domain.

52)

Chapter 1

Introduction

The objective of this work is to provide new domains and problems that will
be able to adequately assess the efficiency of domain-independent privacy-
preserving multi-agent planners. The work focuses on those issues that are
not sufficiently represented in the existing domains for multi-agent planning
and may be challenging for privacy-preserving planners.

There already exists a set of domains and problems that was used in the
Competition of Distributed and Multiagent Planners (CoDMAP) [KvK16],
but most of those domains and problems were initially designed for classical
single-agent planning and some of them do not precisely exploit the features
provided by multi-agent privacy-preserving planning. From this comes the
need to come up with new domains and problems that the multi-agent planning
community will be able to use for competitions, testing, and comparison of
multi-agent planners.

The work is structured as follows. First, we provide sufficient background
information on automated planning and describe the tools used to formalize
single-agent problems. Then we extend it to work with multi-agent problems,
discuss issues of privacy in multi-agent planning, and give a brief description
of CODMAP and some of the existing multi-agent planners. Then we propose,
formalize and test new domains and problems on selected multi-agent planners
and summarize the results.

This work will produce the implementation of novel domains and provide
sets of diverse problems to be used as benchmarks.

Part |

From Automated to Multi-agent
Planning

Chapter 2

Laying The Foundation

B 2.1 Automated planning

Automated planning is a branch of Artificial Intelligence that studies the
process of choosing and organizing actions for changing the state of a system
by anticipating their expected outcomes [NGT04].

There are two main approaches to planning:

Domain-specific approach uses techniques that are specifically designed or
tuned for a particular domain and are limited to being able to only work
with it. Although domain-specific planners can perform quite well on a
specific set of problems, they are generally expensive and time-consuming
to build, with questions thus concerning overall efficiency, given that the
planners are dedicated to doing just one thing.

Domain-independent approach, on the other hand, relies on abstract
and general models. Domain-independent planners have no specific
knowledge about the domain apart from the information provided in
problem description and can solve a wild range of problems. As a
downside, this flexibility of domain-independent planners may, at times,
come at the cost of lower performance.

For the most part, automated planning is drawn to determining a general
way to solve problems, but it is important to note that it is not opposed
to domain-specific planning [NGT04]. Domain-independent techniques can
serve as a foundation for domain-specific tasks and domain-specific tech-
niques may sometimes bring something new to domain-independent planning.
Nevertheless, from here on we will focus on domain-independent planning.

The essence of automated planning is in defining problems explicitly and
finding solutions to them automatically. This work concentrates on planning
from the perspective of formulating and representing problems, leaving out
the underlying mechanisms of solving the problem.

2. Laying The Foundation

B 2.2 Problems in Classical Planning

This section provides standard tools for formalization and implementation of
problems in classical planning. This will serve as a foundation for working
with multi-agent problems.

B 2.2.1 Formulation of a classical planning problem

Here we consider a finite system with deterministic non-durative actions and
complete information.

A planning problem can be represented as a state model 1" with:

a finite state space S,

an initial state s,

a set of goal states Sg C S,

a finite set of actions A,

a transition function ~(s,a) = s’, where s,s' € S and a € A, and

® a non-negative cost function C'(a), a € A.

A solution (plan) to a planning problem is a sequence of actions (aq, ..., ay)
corresponding to a sequence of transitions (s, ..., Sp+1), where sp,41 € S
and (s, ar) = sg+1. The optimal solution to a problem is a sequence of
actions (ag, ..., an) with minimal Y7 ; C(a;).

Following this, we can define a planning domain as a restricted state-
transition system X = (S, A, 7).

B 2.2.2 STRIPS representation

In planning, problems are defined implicitly using a declarative language.
One of the most popular ways of representing a problem is by using STRIPS
notation. STRIPS is a formal language that allows one to represent a planning

problem as [BG00]:

® a finite set of atoms (also called propositions) P, where states s € S are
collections of atoms from P, i.e. s C P,

B a state sy C P, that represents the initial state of the system,

B 3 set Sg C P, that represents the conditions required to reach a goal
state, and

2.2. Problems in Classical Planning
B a finite set of actions A.

Actions are the driving force of the STRIPS paradigm. Each action a € A
has:

preconditions pre(a), a set of atoms that needs to be true for the action
to be applicable.

effects that describe the changes in the system after applying the action a:

Del(a), a set of atoms deleted from the state.

Add(a), a set of atoms added to the state.

In other words, to apply an action a € A, pre(a) have to be a subset
of the current state of the system and the result of it is a new state s’ =

(s\Del(a)) U Add(a) [vO09].

B 223 PDDL

PDDL (Planning Domain Definition Language) is a language used in a
majority of planning systems. It is a standard language of the International
Planning Competition (IPC) [VCMI8| and many planners support one or
another version of PDDL (which includes STRIPS and various extensions).

In PDDL the problem is divided into two parts: domain description and
problem description. Domain description contains specific information about
a domain, such as the properties of objects (in form of predicates) and the
definition of possible actions. The problem description contains information
about a particular problem: the objects, initial state, and the specification of
goal states.

B Domain description

PDDL is a modular language. It consists of subsets of features (modules)
called requirements. Used modules have to be explicitly specified for every
domain in the :requirements part of the domain definition.

Every domain definition starts with (define (domain <domain name>)...).
Then it is followed by the specification of requirements for this domain.
:strips requirement means that the domain uses the STRIPS subset of
the language. :typing means that the object types are used. The type
hierarchy is specified at :types) in the form of <1list of types> - <parent
type>, where a type declared in <list of types> is either a final type or a
parent type for another <list of types> (see Listing|2.1, where movable and

7

2. Laying The Foundation

location extend the build-in supertype object; and thing and another-
thing extend movable).

The properties of objects and the relations between objects (atomic for-
mulas) are defined in the :predicates field. Each predicate has the form
(<predicate name> <argument 1> ... <argument n>), where an argument
defines a parameter that starts with a question mark and is followed by its
type (e.g., 7t - thing). This part only specifies names and arguments of
the predicates, while the predicates themselves are listed in the problem
description.

Listing 2.1: An example of a simple domain definition.
(define (domain simple-world)
(:requirements :strips :typing)
(:types movable location - object
thing another-thing - movable)

(:predicates

(at 7t - movable 71 - location)

(clear 71 - location)

The actions are defined with (i) the :parameters field that specifies argu-
ments and their types, (ii) the :precondition field that contains an atom or
a conjunction of atoms that need to be true to allow application of the action,
and (iii) the :effect field that describes the result of applying the action,
which can be an added atom of the format (<predicate name> <argument
1> ... <argument n>), a deleted atom of the format (not (<predicate
name> <argument 1> ... <argument n>)) or a conjunction of added and
deleted atoms (see Listing 2.2).

Listing 2.2: An example of an action in the simple-world domain. The action
describes moving the "thing" object from the ?from location to the 7to location.

(:action move-thing
:parameters (?t - thing 7from - location
?to - location)

:precondition (and (at ?t ?from)
(clear 7?to))

:effect (and (not (at ?t ?from))
(not (clear 7?to))
(at ?t ?to)
(clear ?from))

B Problem description

The problem description contains information about a particular problem.
It always starts with (define (problem <problem name>)... and follows

8

2.3. Summary

with the specification of the domain (:domain <domain name>). The object
instances and their types are then listed in the :objects section in the format
<object name> - <type> (see Listing [2.3)

The :init and :goal sections depict the initial and goal state respectively
with the predicates in the format of (<predicate name> <object name 1>
. <object name n>).

Listing 2.3: An example of a simple problem definition.

(define (problem simple-problem)
(:domain simple-world)

(:objects
simple-thing - thing
location-1 - location
location-2 - location
c)

(:init

(at simple-thing location-1)

(clear location-2)

ce)

(:goal
(at simple-thing location-2)
)

B 23 Summary

To summarize, in this chapter we described a formal way of working with
single-agent planning problems. Next, we will expand on this system with
the notion of multiple planning agents.

10

Chapter 3

Introducing a new dimension to planning

B 31 Multi-agent planning

Multi-agent planning (MAP) is a relatively recent field of study that introduces
a new perspective on automated planning. Instead of treating a problem
as a single-agent task, multi-agent planning employs multiple intelligent
agents that share a common goal. Knowledge about the world and action
capabilities may be distributed among the agents, but the objective is still to
find a solution that leads from the initial state to the specified goal.

Such distributed planning can be divided into:

B cooperative and distributed MAP that focuses on formulating a plan
among multiple agents in the distributed environment; and

® decentralized planning by multiple agents for multiple agents in a shared

environment [TnOKv17].

It is also worth distinguishing centralized planning for multiple agents.
The 2015 Competition of Distributed and Multiagent Planners (CoDMAP)
included both Decentralised and Centralised tracks, but the latter
was viewed as a “transitional” track toward "pure" multi-agent planning

lcod15].

Here we will concentrate on domain-independent deterministic cooperative
multi-agent planning, which concerns the collective effort of multiple agents
in finding a solution to the problem that the agents could not have solved
by themselves (as efficiently or at all) [Dur(l]. Here the planning agents are
considered not to be motivated by their own advantage, hence they work
together on reaching a common goal.

11

3. Introducing a new dimension to planning
B 32 Multi-Agent Extension of STRIPS

The majority of multi-agent planners to some extent adopt MA-STRIPS
[BDOS§] formalism, the minimal extension of STRIPS for multi-agent planning,
which is by far the most common way of describing problems in the multi-
agent community. MA-STRIPS extends STRIPS with two notions [vKKI16]:
factorization that defines what actions can be performed by which agents;
and privacy that defines the scope of atoms and actions.

A MA-STRIPS problem [BDO0S] for a set of agents ® = {¢;}}; is given by
a 4-tuple = <P, {A;}" 4, so, S¢>, where:

P is a finite set of atoms,

B sy C P is the initial state,

Sa C P is the goal state condition,

for i € {1,...,k}, A; is the set of actions of the agent ¢;. Each action is
defined, as in standard STRIPS, by its preconditions and effects. With
k =1 the problem is reduced to a standard single-agent problem.

A solution to the planning problem is a sequence of actions, each of which
is associated with an agent that performs it, which leads from the initial state
to the state that satisfies the task goals G.

Privacy comes from factorization by dividing actions into private and public.
An atom p € P is private to an agent ¢; if it is only used by this agent and
only affected by the actions that the agent ¢; can perform and no other agent
has any knowledge about it, otherwise the atom p is public to all agents in ®.
In cooperative planning, the goal G is assumed to be shared among all the
agents and therefore is always public.

The set of all public atoms and the set of private atoms of any agent ¢;
are disjoint. Together all public atoms and all sets of private atoms of the
agents form the entire P.

Similarly, an action a € A; is private if it only contains and affects atoms
private to the agent ¢;, otherwise the action is public. When a public action
is executed, all agents are aware of it and its public effects, while execution
of private actions is not revealed to other agents.

This extension of STRIPS is the bare minimum required to properly define
a multi-agent task. The definition of privacy here is rather strict and it
does not allow joint actions between multiple agents, but it is still a solid
foundation for formalizing the multi-agent model.

12

3.3. Multi-Agent Extension of PDDL

B 33 Multi-Agent Extension of PDDL

With a multi-agent extension of STRIPS comes a multi-agent extension of
PDDL. MA-PDDL was first proposed by Daniel L. Kovacs in [Kov| and later
was developed in line with MA-STRIPS for the 2015 CoDMAP competition
as an attempt to standardize problem specifications for multi-agent planners
in order to be able to test them on a common set of problems.

The CoDMAP version of MA-PDDL includes two main features of MA-
STRIPS: privacy and factorization [vKK16], and allows one to define agents
as world objects. There are two specifications of MA-PDDL:

® unfactored specification (:unfactored-privacy requirement) that
uses a single domain and problem description; and

m factored specification (: factored-privacy requirement) that requires
a separate domain and problem description for each planning agent.

B 3.3.1 Privacy

The definition of MA-PDDL privacy (for both factored and unfactored speci-
fications of privacy) complies with the following rules [VKK16]:

® That a public predicate grounded with public objects (a grounded pred-
icate means a predicate that has all parameters replaced with world
objects) is a public fact;

® That a public predicate grounded with at least one private object of an
agent is a private fact of this agent; and

® That a predicate private to an agent is always grounded to a private fact
of this agent.

B Unfactored privacy

Similarly to the PDDL description of the problem, in MA-PDDL the problem
is divided into a domain description that contains information specific to a
particular domain and a problem description with specifications of a particular
task.

To indicate that the problem uses unfactored privacy specifications, the
:unfactored-privacy requirement is specified (see Listing [3.1), as well as
the :multi-agent requirement for multi-agent planning.

In MA-STRIPS the agents are not defined as a part of the problem and
factorization is accomplished through the sets of actions that are associated

13

3. Introducing a new dimension to planning

with different agents. In the unfactored version of MA-PDDL, as all informa-
tion about the problem is specified in one place, it is logical to treat agents
as objects, for it is a convenient way to associate them with predicates and
actions.

The (:private <agent> ...) expression in the definition of predicates
denotes the predicates private to the specified agent.

Listing 3.1: An excerpt of domain definition from the unfactored version of the
depot domain used in the CoDMAP 2015 competition [KvK16].
(define (domain depot)
(:requirements :typing :multi-agent
:unfactored-privacy)

(:types
place locatable driver - object
depot distributor - place
truck hoist surface - locatable
pallet crate - surface

)

(:predicates
(at ?x - locatable 7y - place)
(on ?x - crate 7y - surface)
(in ?x - crate 7y - truck)
(clear 7?x - surface)

(:private 7agent - place
(lifting 7agent - place ?x - hoist 7y - crate)
(available 7agent - place 7x - hoist)

)

(:private 7agent - driver
(driving 7agent - driver 7t - truck)
)

The definition of actions is similar to regular PDDL with the addition of the
:agent <agent> field that specifies the agent that the action belongs to (e.g.,
ragent 7a - driver, where an object of the type driver is an agent that can
perform the action) (see Listing 3.2). There are no separate declarations of
private and public actions as this division unambiguously follows from the
definition of privacy.

Listing 3.2: An excerpt of action definition from the unfactored version of the
depot domain used in the CoDMAP 2015 competition [KvK16].

(:action drive
tagent 7a - driver
:parameters (?x - truck 7y - place ?z - place)
:precondition (and (at ?x 7y)
(driving %7a 7x))
teffect (and
(at ?x 7z2)
(not (at ?x ?y)))

14

3.3. Multi-Agent Extension of PDDL

In the problem description, the information private to an agent should also
be enclosed in (:private <agent name> ...) expression (see Listing 3.3).
It is recommended that the objects representing agents should be private
[KvK16], otherwise agents of the same type would be able to ground and use
each other’s actions.

Listing 3.3: An excerpt from the unfactored version of the depot problem definition
used in the CODMAP 2015 competition [KvK10].

(define (problem depotprob1818)
(:domain depot)
(:objects

truckl - truck

truckO0 - truck

(:private driverl

driverl - driver
)
(:private driverO
driverO0 - driver
)

B Factored privacy

In factored MA-PDDL, each planning agent is provided with a separate
domain and problem description that specifies information only relevant to the
particular agent [FK18], which includes public predicates, private predicates of
the agent and agent’s actions. According to this scheme, grounded predicates
and instances of the objects that are public, and thus are shared among the
agents, are denoted with the same names in every description file.

To indicate that the problem uses factored privacy specifications, the
:factored-privacy requirement is specified (see Listing |3.4).

In the domain description of the agent, the (:private ...) expression in
the :predicates section denotes the predicates private to the agent. In the
factored version of the language, it is not necessary to specify agents in the
:private field, as the scope of each agent is defined within a separate file.
The actions that the agent is capable of performing are defined as in regular
PDDL.

15

3. Introducing a new dimension to planning

Listing 3.4: Domain description for a driver in the factored version of the depot
domain used in the CoODMAP 2015 competition [KvK16].
(define (domain depot)
(:requirements :factored-privacy :typing)
(:types
place locatable driver - object
depot distributor - place
truck hoist surface - locatable
pallet crate - surface

)

(:predicates
(at ?x - locatable 7y - place)
(on ?x - crate 7y - surface)
(in ?x - crate 7y - truck)
(clear 7?x - surface)

(:private
(driving 7agent - driver 7t - truck)
)

In the problem description, the information private to the agent should
also be enclosed in the (:private ...) expression in the :objects section
(see Listing |3.5).

Listing 3.5: Problem description for a driver in the factored version of the depot
domain used in the CoODMAP 2015 competition [KvK16].

(define (problem depotprob1818)
(:domain depot)
(:objects

truckl - truck

(:private
driver0 - driver
)

Bl 3.3.2 A bit more about privacy

Privacy is one of the keystones of multi-agent planning. There are many
problems with sensitive information that planning agents for various reasons
cannot or do not wish to disclose. How to treat such information is generally
up to planners.

Some planners ignore the issue of privacy and provide no special treatment
of private information.

Privacy-preserving planning [NB14] aims not to disclose private information.
In the weak preservation of privacy, agents do not explicitly share any private
information (by the means of encrypting private information or sharing only

16

3.4. Summary

public "interfaces" of actions). Nevertheless some information can be deduced
by the agents during the execution time (e.g., by the agents of the same
"type"). In short, weak privacy preservation can be easily achievable, but it is
not considered secure [TnOKv17].

Preservation of privacy is considered to be strong if no agent can obtain any
information private to another agent from the public information available
during the execution time. At the moment, this matter is in literature more
theoretical than practical.

N 34 Summary

It is still in the early days of multi-agent planning and although the privacy
defined in MA-PDDL allows a certain degree of freedom in describing problems
[vKK16], many things can be added to its functionality, such as support of
facts and objects private to a group of agents or support of joint actions
between agents. On the whole, the tools described in this chapter are more
than sufficient to provide us with a formal way to work with multi-agent
problems.

17

18

Chapter 4

Competition of Distributed and Multiagent
Planners

The Competition of Distributed and Multiagent Planners (CoDMAP) [KvK16]
was a part of the 3rd Workshop on Distributed and Multi-Agent Planning
(DMAP) 2015. The competition was organized by Michal Stolba, Antonin
Komenda, and Daniel L. Kovacs and was regarded as "a preliminary version
of a possible future DMAP track at the International Planning Competition
(IPC) and focused on comparing domain-independent, offline planners for
multiple cooperative agents" |cod15]. The purpose of this competition was to
provide a common ground for the comparison of multi-agent planners [KvK16].
It was agreed that the prerequisites for planners to enter the competition had
to be compatibility with the MA-STRIPS model and support MA-PDDL as
the input language.

B a1 Competition Tracks and Benchmarks

The CoDMAP competition had two tracks: centralized and distributed,
without separation to satisficing and optimal (the goal of optimal planning is
to produce a plan with minimal cost, while in satisficing planning any plan
is acceptable, although less expensive plans are preferred). The Centralized
Track was run on a single multi-core machine. The memory space was shared
and no restrictions were placed on the means or form of communication
between agents [KvK16]. Planners were allowed to accept the unfactored as
well as the factored version of MA-PDDL and MA-STRIPS requirements in
this track were relaxed. The output in this track had to be a valid linear
plan. Such restrictions allowed a large number of planners to participate. The
Distributed Track was more strict, it was run on several independent machines
- one machine per planning agent with its own description of the domain and
problem (thus only factored MA-PDDL) with communication over a TCP /IP
network and without sharing any private information. The output had to be
a set of linear plans that each agent could execute in parallel [cod15]. This

19

4. Competition of Distributed and Multiagent Planners

track would serve as a prototype for the potential multi-agent ITPC track
(IPC, the International Planning Competition [VCMIS§| is an event organized
within the International Conference on Planning and Scheduling (ICAPS)
[BEMS17] to empirically compare "state-of-the-art" planning systems).

The benchmarks for the competition were comprised of ten multi-agent
versions of classical IPC domains and only two novel domains designed
specifically for multi-agent planning. From this comes the need to devise new
domains for multi-agent planning, as the planning community would benefit
from these and problems to test and compare the capabilities of multi-agent
planners.

20

Chapter 5

Multi-agent Planners

In this section we provide brief descriptions of the planners that will later be
tested on proposed domains and problems.

B 5.1 MAPIan

MAPIlan (Daniel Figer, Michal Stolba and Antonin Komenda) [FvK15| is
a complete (can be satisficing and optimal) multi-agent planner "based on
ideas introduced by the MAD-A* planner" (a distributed version of A*). It
supports multi-threaded as well as distributed planning and accepts both
factored and unfactored versions of MA-PDDL.

The planner employs weak privacy preservation and has altogether four
different heuristics, two of which are tested in this work: (i) the lazy variant of
distributed Fast-Forward (FF) heuristic [vK14], a heuristics based on finding
a plan to a relaxed problem, and (ii) the landmark cut (LM-cut) heuristic
[HD09], an admissible heuristic that iteratively computes the estimate value
from landmarks (landmark is a set of actions such that each plan for a problem
has to contain at least one of them) and their cost functions.

B 52 maDLA

MADLA (Michal Stolba and Antonin Komenda) [vK15| is a (satisficing)
multi-agent planner based on the greedy best-first search algorithm. The
planner runs in multiple threads (with separate thread for each agent) with
the agent communicating "either using in-process communication or via TCP-
IP local loopback". The planner accepts either plain PDDL with a list of
agents (ADDL) or an unfactored version of MA-PDDL that is then translated
into plain PDDL + ADDL.

21

5. Multi-agent Planners

The planner employs weak privacy preservation and combines two variants
of Fast-Forward heuristic: (i) projected, where the heuristic is estimated
locally for the part of the problem related to a particular agent, and (ii)
distributed (variant of the lazy Fast-Forward heuristic [vK14]), where a global
heuristic estimate is calculated by the means of coordinated computation of
multiple agents [vEK17].

22

23

5. Multi-agent Planners

Part ||

Novel domains and problems

24

Chapter 6

Domains and Problems

In this chapter we propose novel domains and problems inspired by existing
computer games and real world problems. The aim is to present and formalize
properties that are currently underrepresented in the benchmarks for privacy-
preserving multi-agent planning.

. 6.1 Lanterns

We decided to start with a multi-agent domain that puts emphasis on co-
ordination and cooperation between agents in its purest form. The first
domain was inspired by the two-player co-op puzzle TRYST developed by
Ryan Welham, Mike Gillespie, and Sean Leach [RW17]. The idea of the game
is to traverse a world obstructed with objects that can be distantly controlled
by the players. Getting through this world requires constant cooperation
and is impossible for the players to do by themselves, which is why it was a
perfect candidate for the first domain.

In this and following chapters, we will be using only the factored version of
MA-PDDL as it is a preferred version for distributed multi-agent planning.

We would also like to note that the initial game contains a lot of details
that serve well in engaging a human player, but are not necessary for solving
the puzzle automatically as they would certainly overcomplicate the imple-
mentation. In this work we aim for as simple and elegant solution as bulky a
language as MA-PDDL would allow, thus we decided to lean in the direction
of a much-simplified version of the puzzle.

B 6.1.1 Description

The lanterns domain is about multiple players traversing the world composed
of rooms and locked /unlocked doors. Their goal is to collect and light all the
lanterns scattered around.

25

6. Domains and Problems

B 6.1.2 Formalization

The objects in our implementation can be divided into two categories: (i)

the objects that describe the layouts of the world (door, window, room, and

switch) and (ii) movable objects (player, lantern) that can change their

position throughout the course of the game. The predicate (in 7o - thing
?r - room) specifies the position of the movable objects.

The world of the game consists of rooms connected to one another via doors.

A player can move from one room to the room adjacent to it. There also

has to be an unlocked (unlocked 7d - door) door connecting two rooms.

The fact that the two rooms are adjacent is marked with the static predicate

(static predicates are not changed by actions) (adjacent-rooms ?rl - room
?7r2 - room 7d - door).

Locked (locked 7d - door) doors can be unlocked distantly with a switch
located anywhere in the world. The static predicate (switch-to-door
?7sw - door 7s - switch) specifies which switch unlocks which door. For
simplicity, we decided to avoid the situation in which several doors can be open
with one switch, as this one-to-many situation can be easily translated into a
similar problem with several one-to-one switches located in one place. The
location of the switch is noted with the static predicate (adjacent-switch
?r - room ?s - switch). In order to unlock a door, a player has to stand
on the switch to that door. While the predicate (on 7p - player 7s -
switch) is true, the door is unlocked (see Listing [6.1]).

To illustrate this, let’s consider the following situation: if one player wants
to get from room a to room b and there is a door (locked with switch s)
between rooms a and b, the order in which things happen is as follows:

1. first player is in room a,

2. second player presses switch s,

3. corresponding door opens,

4. first player moves to room b,

5. second player releases the switch,

6. door closes.

There are also windows between rooms that allow players to pass lanterns
without the need to unlock the door between rooms. The fact that there is a
window between two rooms is denoted with the static predicate (window 7ril

- room ?7r2 - room). Lanterns can be either lit (1ighted 7?1 - lantern)
or not lit (not-lighted 71 - lantern). In order to light a lantern, the
lantern has to be in the room with fire (room-with-light ?r - room).

26

6.1. Lanterns

The goal is to light all the lanterns (1ighted 71 - lantern) present in the
problem. Players traverse the world, collect lanterns and bring them all to the
room with a fire to light them. A player holding a lantern is denoted using
the (holding-lantern 7p - player 7?1 - lantern) predicate. A player
without a lantern is denoted using the (without-lantern 7p - player)
predicate.

Listing 6.1: An excerpt from the lanterns domain action definition.

; an action describing stepping on a switch
(:action move-room-to-switch
:parameters (?p - player ?r - room ?s - switch
?7d - door)
:precondition (and
(in ?p 7r)
(adjacent-switch ?7r 7s)
(switch-to-door 7d 7s)
(locked ?d)
)
teffect (and
(not (in ?p ?r))
(on ?p 7s)
(unlocked 7d)
(not (locked 7d))
)
)
; an action describing releasing a switch
(:action move-switch-to-room
:parameters (?p - player ?r - room ?s - switch
?d - door)
:precondition (and
(on ?p 7s)
(adjacent-switch 7r 7s)
(switch-to-door 7d 7s)
(unlocked 7d)
)
:effect (and
(not (on ?p ?7s))
(in ?p 7r)
(locked 7d)
(not (unlocked 7d))

B 6.1.3 Problems

For this domain we designed a set of problems with various configurations of
players, lanterns and door-switches (initial states of some of these problems
are shown in Figure [6.1, where each switch corresponds to a door of the same
color) to see how different changes in the description of the problems affect
the ability of planners to solve them.

27

6. Domains and Problems

:
" A S-b e
= O |

_ ; -
3 A

Tm| ®]z[
-
= 1

Figure 6.1: Illustration of the problems from the lanterns domain.

28

6.2. Hierarchical Logistics

B 6.2 Hierarchical Logistics

The second domain concentrates on the issue of structural ordering in prob-
lems, which is currently underrepresented in the set of benchmarks for multi-
agent planners. This domain is a hierarchical variation of the classical logistics
domain.

B 6.2.1 Description

main

- regional — A
|—"‘ - J [] Gl R’
(Yl) oy ||

Figure 6.2: Illustration of the problem from the hierarchical logistics domain.

In this domain, the objective is to deliver packages from the main warehouse
to their destinations. Each package goes through the route from the main
warehouse to a regional warehouse to a local warehouse and finally to its
destination (see Figure [6.2). Each warehouse (main, regional, local) has
vehicles assigned to it that deliver packages one level down the line. From the
main warehouse, the packages are sent on a truck to a regional warehouse,
up to three packages at a time. From the regional warehouse, the packages
go via a car to a local warehouse, up to two packages at a time. From there
the packages are delivered by drones, one at a time.

AN AN N
\x/ \x/ \x/

Figure 6.3: Interactions between agents in the hierarchical logistics domain.

The agents of the hierarchical logistics domain are the vehicles (trucks,
cars, and drones) that deliver packages from one location to another. The
relations between the agents can be represented with the agent interaction
digraph (see Figure introduced in [BDO§|, where a directed edge from

29

6. Domains and Problems

agent ¢; to agent ¢; shows that there exists action a; € A; that can affect
the action as € A;. In this particular case, agent ¢; provides the condition
needed for the agent ¢; to execute its actions.

B 6.2.2 Formalization

The objects in the implementation can be divided into three categories: (i) the
objects that represent the vehicles (truck, car, and drone), (ii) the objects
that represent locations (destination and warehouse), and (iii) the packages
(package) that need to be delivered (see Listing |6.2).

Listing 6.2: An excerpt from the hierarchical logistics domain definition.

(define (domain hierarchical-logistics)
(:requirements :strips :factored-privacy :typing)

(:types
location vehicle package - object
warehouse destination - location
truck car drone - vehicle

)

(:predicates
(map ?from - warehouse ?7to - location)
(at ?m - package 7r - location)
(address ?p - package 7?d - destination)

(delivered 7p - package)

(:private

(depo ?v - vehicle 7w - warehouse)
(delivering ?v - vehicle)
(at-depo ?v - vehicle)

The structure of the world in the problem is described with the static
(map ?from - warehouse 7to - location) predicate, indicating that the
packages can move in one direction from ?from warehouse down the line to
7to (either warehouse or destination). A current location of the package is
denoted in the (at ?m - package 7r - location) predicate.

The final destination of each package is specified in the (address 7p -
package 7d - destination) predicate. The goal is to deliver all packages
to their destinations, and the fact that the package was successfully delivered
is denoted with the (delivered 7p - package) predicate.

The vehicles assigned to warehouses are specified with the static (depo 7v

- vehicle 7w - warehouse) predicate. A vehicle is either in its warehouse

(at-depo ?v - vehicle), or delivering (delivering ?v - vehicle) pack-

ages. The delivery of the package takes two steps: the actual delivery and
then the returning of the vehicle to its warehouse (see Listing 6.3)).

30

6.2. Hierarchical Logistics

Listing 6.3: An excerpt from the hierarchical logistics action definition for a car
agent.

; the action describing delivering of a package
(:action send-car-one
:parameters (?v - car 7from - warehouse
?7to - warehouse 7pl - package)
:precondition (and
(depo ?v 7from)
(at-depo 7v)
(map ?from 7?to)
(at ?pl ?from)
)
teffect (and
(not (at ?pl 7from))
(not (at-depo 7?7v))
(delivering 7v)
(at ?pl ?7to)
)

; the action describing returning of a car to its
warehouse
(:action return
:parameters (?v - vehicle)
:precondition
(delivering 7v)
:effect (and
(not (delivering ?v))
(at-depo 7v)

B 6.2.3 Problems

For this domain we designed a set of problems with various configurations
of warehouses, vehicles, and packages (initial states of one of the simplest of
these problems is showed in Figure to see how different changes in the
description of the problems affect the ability of planners to solve them.

31

6. Domains and Problems

regional regional

B E

local local

k! E!

A
M

Figure 6.4: Tllustration of a problem from the hierarchical logistics domain.

destination|

destination

Gestination)

N 63 Manufacturing

The last domain puts emphasis on interaction between asymmetrical agents,
another issue currently underrepresented in the set of benchmarks for multi-
agent planners.

This domain models car manufacturing process starting with production
of components and parts and finishing with putting all parts together on a
final assembly line.

B 6.3.1 Description

In the manufacturing domain, the objective is to produce a certain number of
cars from scratch. The process starts with suppliers who provide components
to factories to produce car parts, such as the engine, interior and chassis.
After that the parts are transferred to the assembly line, where the cars are
assembled (see Figure [6.5)).

B 6.3.2 Formalization

The objects in the implementation can be divided into three categories: (i)
objects that represent the agents (supplier, factory and assembly-line),
(ii) objects that represent locations (supplier-location, factory-location
and assembly-location), and (iii) components of the future cars (console,
cylinder, metal-plate and extra) plus ID numbers (id) assigned to cars
to differentiate between them (see Listing [6.4).

32

6.3. Manufacturing

suppliers

factories

assembly line

Figure 6.5: Illustration of the manufacturing domain.

Listing 6.4: An excerpt from the manufacturing domain definition.

(define (domain manufact)
(:requirements :strips :factored-privacy :typing)

(:types
agent location component id - object
supplier factory assembly-line - agent
supplier-location factory-location
assembly-location - location
console cylinder metal-plate extra - component
)

Each agent (supplier, factory and assembly-line) has its own location
specified with the following private predicates:

® (supplier-at 7s - supplier 7at - supplier-location),
® (factory-at ?f - factory 7at - factory-location),

® (assembly-line-at 7a - assembly-line 7at - assembly-location)

Transferring components and parts from one agent to another is realized
through these locations as it would not be possible (with current specifications
of MA-PDDL) to handle objects/predicates referring to components and parts
directly through agents.

33

6. Domains and Problems

Suppliers are in control of the starting components of manufacturing. To
note the fact that component 7c belongs to a supplier located at supplier
location 7at, the predicate (component-at-supplier ?c - component 7at

- supplier-location) is used. Suppliers ship components to factories
with :action ship-<x> (see Listing 6.5), where <x> refers to a compo-
nent (console, cylinder, metal-plate, extra). To ship component <x>
to a factory (located at 7f), it has to be specified that the factory uses
<x> to produce parts (uses-<x> ?f - factory-location) and does not al-
ready have <x> (no-<x>-at-factory ?f - factory-location). Predicate
(component-at-factory ?c - component 7at - factory-location) indi-
cates that component 7c was shipped to a factory located at 7at.

Listing 6.5: An excerpt from the manufacturing domain action definition for a
supplier agent.

(:action ship-<x>
:parameters (?s - supplier ?c - <x> ?7from -
supplier-location 7to - factory-location)
:precondition (and
(supplier-at ?s 7from)
(uses-<x> 7to)
(component-at-supplier 7c 7from)
(no-<x>-at-factory 7to)
)
:effect (and
(not (component-at-supplier ?c 7from))
(component-at-factory 7c 7to)
(not (no-<x>-at-factory 7to))

Factories use components to produce car parts. A private predicate
(factory-produces-<y> 7f - factory) indicates that factory 7f can pro-
duce a part <y> where <y> refers to a car part (engine, interior, chas-
sis). Different car parts require different components, e.g. an engine is
produced using a cylinder and a metal-plate (see Listing [6.6). Predicate
(no-part-at-factory 7f - factory-location) indicates that the factory
located at 7f does not have any produced parts. To specify that the
part <y> is at factory’s location, the predicate (<y>-at-factory 7f -
factory-location) is used. It was decided that for car parts it was more
suitable to use predicates instead of objects as there was no need to dif-
ferentiate between car parts of the same type (what mattered was the fact
that a particular car part was produced) and it significantly simplified the
implementation.

Listing 6.6: An excerpt from the manufacturing domain definition for a factory

agent.
(:action produce-engine
:parameters (?f - factory 7reql - cylinder
?req2 - metal-plate 7at - factory-location)

:precondition (and
(no-part-at-factory 7at)

34

6.4. Complexity of the problems

(factory-produces-engine 7f)
(component-at-factory ?7reql 7at)
(component-at-factory ?req2 7at)
(factory-at 7f 7at)

)

:effect (and
(not (component-at-factory 7reql 7at))
(not (component-at-factory 7req2 7at))
(not (no-part-at-factory 7at))
(no-metal-plate-at-factory ?at)
(no-cylinder-at-factory 7at)
(engine-at-factory 7at)

After that the parts are transferred to the assembly line, where they are
used to assemble a car. Predicate (<y>-at-assembly-line 7f - assembly-
location) indicates that <y> is at ?f and (no-<y>-at-assembly-line 7f -
assembly-location) indicates that the factory located at 7f does not have
part <y>. To assemble a car, the assembly line has to have in its dispo-
sition an engine, interior and chassis. To keep count of the number of
cars produces, the ID numbers (available 7id - id) are used. To indi-
cate that a car was produced and an ID was assigned to it, the predicate
(car-assembled-with-id ?id - id) is used.

B 6.3.3 Problems

For this domain we designed a set of problems with various configurations of
suppliers and factories, and numbers of cars to produce to see how different
changes in the description of the problems affect the ability of planners to
solve them.

| X Complexity of the problems

To speak about the complexity of multi-agent problems, there are two factors
to consider:

® A problem-specific factor involving such parameters as the size and
overall specifications of problems, the number of agents and their spatial
distribution within a particular problem.

® A domain-specific factor, which includes the structure of relations be-
tween agents and uniformity (homogeneous vs. heterogeneous) of the
agents.

Two intuitive parameters can also be adopted from [BDO08]. The domain-
specific measure of how much the agents have to coordinate with each other

35

6. Domains and Problems

and a problem-specific measure of how much agents influence each other’s
actions.

The lanterns domain concerns homogeneous agents with a high level of
coordination and no restrictions on interaction between them.

The hierarchical logistics domain concentrates on a hierarchical ordering of
the semi-uniform agents according to their capabilities.

The manufacturing domain is mainly focused on heterogeneous agents,
with each agent having a defined set of agents with which it can interact.

B 65 Summary

In this chapter we proposed novel domains, presented their implementation
in MA-PDDL, and designed problems that will be used to experimentally
compare selected existing multi-agent planners.

36

Chapter 7

Experimental evaluation

In this chapter we provide and evaluate the results of testing the planners
from Chapter [5| on the domains and the problems presented in Chapter |6 to
see how different algorithms and heuristics handle the problems of different
complexity.

B 71 Setup & Evaluation

All planners were run on one machine (from the command line on Ubuntu).
Each planner was given a 30-minute time limit and 1GB of memory limit per
problem.

The evaluation consisted of three metrics: the total number of problems
solved, an IPC quality score, and an IPC agile score adopted from [VCMIS].

The IPC quality score estimates the quality of the plans produced by
planners. For this metric, it only matters if a solution was found within 30
minutes and its cost. The quality score of a planner is calculated as follows.
Let Q* be the cost of the best found or optimal solution for the problem. Let
Q be the cost of the solution found by the planner, @ > Q* (if lower costs are
considered best). Higher sums of all quality ratios @Q*/Q are more desirable.

The IPC agile score allows the comparison of planning speed. In this metric,
the quality of solutions is ignored and it only matters whether a solution
to a problem was found within a 5-minute time limit or not and the time
required to find it. It is calculated as follows. If the problem was solved
within 1 second, the planner gets 1 score for the problem. If the problem
was not solved within 5 minutes, the planner gets 0. For problems solved
in the interval between 1 second and 5 minutes, the planner gets the score
1/(1+T/T%)), where T™* is the minimum time required to solve the problem
(by any planner). Higher sums of all scores are more desirable.

37

7. Experimental evaluation

. 7.2 Results

Tables 7.1-7.3 show the specifications of individual problems and whether or
not a particular planner was able to solve them with restrictions discussed
above. For convenience, the parameters of the problems were colored from
light blue to bright blue to indicate the gradation from lower to higher values
of parameters.

Tables 7.4-7.6 show the costs of solutions to individual problems found by
the planners.

As we can see from Table 7.1, Fast-Forward heuristics (MAPlan-FF,
MADLA-FF, MADLA-PPsaFF) had no troubles with homogeneous agents,
although as the individual parameters of the problems grow (and hence the
level of coordination required to solve these problems), it becomes obvious
that planners’ capabilities do not go beyond trivial problems.

From Table 7.2, it can be seen that hierarchical structure of the problems
(in this case the problems are extremely simple) is challenging for multi-agent
planners. Further, a correlation can be traced between the number of packages
in a problem (and hence the number of conditions for goal state to be reached)
and how many planners were able to solve it, whereas the number of agents
in this case does not play a big role.

The manufacturing problem is formulated in the way that it always takes
the same number of actions to produce a car (Table 7.6 reflects this fact)
and the challenge is to coordinate the actions between asymmetrical agents.
Table 7.3 shows that the MADLA planner is extremely good at it and this
can be attributed to its underling best-first search algorithm, as the variation
of Fast-Forward heuristic in MAPlan did not even remotely produce such
good results.

The graphs in Figures 7.1-7.3 show the number of solved problems over
time for each domain. The majority of the problems were solved withing
the 5 minute (300 second) time limit. There are also similarities noticed in
the shape of the curves of the heuristics of the same planners, which can be
explained by the same underlying algorithms used in the planners.

As can be seen from Tables 7.4-7.6, the results of the MAPlan with the
Fast-Forward (MAPlan-FF) heuristic are very close to the results of optimal
planning using the admissible LM-Cut (MAPlan-LM-Cut) heuristic. In con-
trast to this, the results of the MADLA planner in the case of the lanterns
domain (with both projected Fast-Forward (MADLA-FF) and distributed
Fast-Forward (MADLA-PPsaFF) heuristics) are very far from being reason-
able, albeit that nevertheless they were obtained in a much shorter time (see
Table 1.B in Appendix B) compared to MAPlan.

38

7.2. Results

15 T T

z 14— MAPlan-FF |

£ 15| | MAPlan-LM-Cut

& 9ot MADLA-PPsaFF

.o

90

s 8r

2ot

S 6

g 5

B4

S 31

z. 9|

1 | l l | |

1 5 10 50100 300 1,800
Time [s]

Figure 7.1: Number of solved problems over time for lanterns domain.

Finally, Table 7.7 shows the overall results of testing MAPlan and MADLA
on the proposed domains. The table contains the metrics for the evaluation
discussed above, with the total number of solved problems calculated from
Tables 7.1-7.3, quality scores calculated from Tables 7.4-7.6, and agile scores
calculated from Tables 1.B-3.B in Appendix B.

For the lanterns domain it can be said that MAPIlan produces higher quality
plans, while MADLA is better at planning time: this agrees with the overall
results of the CODMAP competition [vKK15].

The MAPlan with Fast-Forward heuristic performed significantly better in
terms of the quality of the plans and time required to solve the problems than
other configurations in the hierarchical logistics domain. The manufacturing
domain turned out to be challenging for MAPlan planner, while MADLA
solved all the problems from this domain within the 5 minute time limit.

The MAPlan with LM-Cut heuristic did not outperform other planners in
any category, which was expected from the only optimal configuration here
tested.

On the whole, the proposed domain and problems showed potential for
assessing multi-agent planners from different angles.

39

7. Experimental evaluation

15 S i
14| |- MAPlan-FF 8
131 MAPlan-LM-Cut]
—« MADLA-FF

10| | = MADLA-PPsaFF

Number of solved problems

R NWHE OOy 00 ©
T

|
) 10 50 100

Time [s]

1
300 1,800

Figure 7.2: Number of solved problems over time for hierarchical logistics domain.

15 T

. 14] x 1
g B —]
% 11 L 1
S o0) .

s 90 |
s 8r

o T i :
o6 / —— MAPlan-FF |-
R — MAPlan-LM-Cut | |
E 3l s‘ —— MADLA-FF | |
o5 ‘ ~+ MADLA-PPsaFF | |

1 v | | | 1
5 10 50 100 300 1,800

Time [s]

Figure 7.3: Number of solved problems over time for manufacturing domain.

40

7.2. Results

dJdesdd-VIAVIN

>SS

> S

JI-VTIAVIN

MH-INT-UB[dVIN

JAd-UB[dVIN

\

\

\

A

4
N

o[qUIAsse 0} SIR))

sorpddns jo ‘wmp

SOLI0}O®] JO "TNN

O A AN

Al R N N N N N N

10 [N | [N

O = A AN NS NS S

AT — (AN S S

= AN NS NS S

w01

“UTeWOP SULINORINURN 9T} O]

sureqoxd oY} JO 98eIaA0)) :€°) d|qel

S

ddesdd-VIAVIN

S

Jd-VIAVIN

MH-INT-Ue[dVIA

Jd-Ue[dVIN

sogeyoed Jo ‘wmN

SOUOIP JO "W

SIeD JO WMmN

IS ol RS NT AN N NG NS

© 0[O S S S

?HC\IC‘OI\ LN |

O D= 1N 1S NS S

AN (00 |

— N[O NS S S

wo[qoId

“UTRWIOP SOT)SIS0] TedIoIRISIY oY) wolj swe[qold oY) jo aSe

19A0)) :

¢’l3lqel

- A - A A

A

ddesdd-VIAVIN

A

~>

JAd-VIAVIN

MH-INT-Ue[dVIA

»
- - - - S
/S

Jd-Ue[dVIN

s1ofe[d Jo ‘wmpN

© AP NS S S

NoR I\l NS

SOO}MS JO "TUNN

SUIoJUE[JO "WINN

00 [00 [[N [N [N

M~ (<t (o | N

© MO DN NS S S

mm

O S [N NS S S

NN O (A NS NS 1S

— ([N [N NS NS [N

wa[qOIg

“UTRWIOP SUIYUE] 9} Wodj swajqoxd o) jo aferanro)) 1) djqel

41

7. Experimental evaluation

Table 7.4: Plan costs of the problems from the lanterns domain.

Problem 1 2 3 4) 6 7 8 9 10 11 12 13 14 15
MAPIlan-FF 36 27 47 36 52 31 40 41 58 54 46 47
MAPlan-LM-Cut 36 27 47 52 26 38 52
MADLA-FF 42 47 99 431 | 194 | 57 118 | 58 101 | 221 141 | 148 82
MADLA-PPsaFF 38 37 159 220 | 32 513 147 1 321 | 108 | 420 130
Table 7.5: Plan costs of the problems from the hierarchical logistics domain
Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MAPIlan-FF 18 24 22 28 22 17 16 24 25 18 21 26 -
MAPlan-LM-Cut 18 22 22 17 16 18 21
MADLA-FF 22 30 26 34 26 22 21 26 21 34 31
MADLA-PPsaFF 22 30 26 28 22 20 23 32
Table 7.6: Plan costs of the problems from the manufacturing domain.
Problem 1 2 3 4) 6 7 8 9 10 11 12 13 14 15
MAPIlan-FF 26 26 26 26 26 26 26 26 26 26
MAPIlan-LM-Cut 26 26 26 26 26 26 26 26
MADLA-FF 26 26 26 26 26 26 26 26 26 26 26 26 39 39 39
MADLA-PPsaFF 26 26 26 26 26 26 26 26 26 26 26 26 39 39 39
Table 7.7: Coverage of individual domains.
Lantens Hierarch.logistics Manufacturing
Solved Quality Agile Solved Quality Agile Solved Quality Agile
Total Score Score Total Score Score Total Score Score
MAPIlan-FF 12 11.73 5.01 12 12.00 10.68 10 10.00 5.69
MAPlan-LM-Cut 7 7.00 5.91 7 7.00 5.43 8 8.00 6.36
MADLA-FF 13 7.22 9.90 11 9.11 6.34 15 15.00 13.53
MADLA-PPsaFF 11 5.38 8.63 8 6.61 4.71 15 15.00 12.59

42

Chapter 8

Conclusion

The goal of the thesis was to provide novel domains for domain-independent
privacy-preserving multi-agent planning.

The theoretical part of the thesis presented standardized tools for for-
malizing and implementing domains and problems in classical planning and
expanded it for privacy-preserving multi-agent planning. The implementation
and testing of selected multi-agent planners is realized in the practical part
of the thesis.

Within this work, three new domains were proposed and implemented
using MA-PDDL:

® the lanterns domain that demands high levels of coordination between
planning agents,

® the hierarchical logistics domain that explores hierarchical structure of
the problems,

B8 the manufacturing domain that challenges multi-agent planners to effec-
tively work with asymmetrical agents.

An evaluation of the selected multi-agent privacy-preserving planners on
the presented domains showed potential for using the domains for assessment
of planners and how well they deal with the issues of different complexity.

The presented domains are to complement already existing multi-agent
domains and to be used by multi-agent planning community for benchmarking,
testing and possible future multi-agent planning competitions.

43

44

Appendices

45

46

Appendix A

Bibliography

[BDOS]

[BFMS17]

[BGOO]

[cod15]

[Dur01]

[Fis16]

[FK18]

Ronen I. Brafman and Carmel Domshlak, From One to Many:
Planning for Loosely Coupled Multi-agent Systems, Proceedings of
the Eighteenth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’08, AAAI
Press, 2008, pp. 28-35.

Laura Barbulescu, Jeremy Frank, Mausam, and Stephen F. Smith
(eds.), Proceedings of the Twenty-Seventh International Con-
ference on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017, AAAI Press,
2017.

Blai Bonet and Hector Geffner, Planning As Heuristic Search:
New Results, Proceedings of the 5th European Conference on
Planning: Recent Advances in Al Planning (Berlin, Heidelberg),
ECP ’99, Springer-Verlag, 2000, pp. 360-372.

Main page of the Competition of Distributed and Multiagent
Planners (CoDMAP), http://agents.fel.cvut.cz/codmap/,
2015.

Edmund H. Durfee, Mutli-agents Systems and Applications,
Springer-Verlag New York, Inc., New York, NY, USA, 2001,
pp. 118-149.

Daniel Fiser, MAPlan Planner, https://github.com/danfis/
maplan, 2016.

Daniel Fiser and Antonin Komenda, Concise Finite-Domain Rep-
resentations for Factored MA-PDDL Planning Tasks, Proceedings
of the 10th International Conference on Agents and Artificial
Intelligence - Volume 2: ICAART, INSTICC, SciTePress, 2018,
pp. 306-313.

47

http://agents.fel.cvut.cz/codmap/
https://github.com/danfis/maplan
https://github.com/danfis/maplan

A. Bibliography

[FNT1]

[FvK15]

[GKW]

[Has08]

[HDOY]

[Kov]

[Kov15]

[KvK16]

[NB14]

[NGT04]

[RW17]

Richard E. Fikes and Nils J. Nilsson, STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving, Pro-
ceedings of the 2Nd International Joint Conference on Artificial
Intelligence (San Francisco, CA, USA), IJCAT’71, Morgan Kauf-
mann Publishers Inc., 1971, pp. 608-620.

Damiel Fiser, Michal Stolba, and Antonin Komenda, Maplan,
ICAPS Proceedings of the Competition of Distributed and Multi-
Agent Planners (CoDMAP-15), 2015, pp. 8-10.

Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett,
Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden,
Scott Penberthy, David Smith, Ying Sun, and Daniel Weld, PDDL
- The Planning Domain Definition Language, 1998.

Patrik Haslum, Writing Planning Domains and Problems
in PDDL,|http://users.cecs.anu.edu.au/~patrik/pddlman/
writing.html] 2008.

Malte Helmert and Carmel Domshlak, Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway?, Proceedings of
the Nineteenth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’09, AAAI
Press, 2009, pp. 162-169.

Daniel L. Kovacs, A Multi-Agent Extension of PDDLS3.1, Pro-
ceedings of the 3rd Workshop on the International Planning Com-

petition (IPC), 22nd International Conference on Automated
Planning and Scheduling (ICAPS-2012), ICAPS, pp. 19-27.

Daniel L. Kovacs, Complete BNF definition of MA-
PDDL with privacy, http://agents.fel.cvut.cz/codmap/
MA-PDDL-BNF-20150221.pdf|, 2015.

Antonin Komenda, Michal Stolba, and Daniel L. Kovacs, The
International Competition of Distributed and Multiagent Planners
(CoDMAP), Al Magazine 37 (2016), no. 3, 109-115.

Raz Nissim and Ronen Brafman, Distributed Heuristic Forward
Search for Multi-agent Planning, J. Artif. Int. Res. 51 (2014),
no. 1, 293-332.

Dana Nau, Malik Ghallab, and Paolo Traverso, Automated Plan-
ning: Theory & Practice, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

Sean Leach Ryan Welham, Mike Gillespie, TRYST on itch.io,
https://welhaml4.itch.io/tryst) 2017.

48

http://users.cecs.anu.edu.au/~patrik/pddlman/writing.html
http://users.cecs.anu.edu.au/~patrik/pddlman/writing.html
http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf
http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf
https://welham14.itch.io/tryst

A. Bibliography

[TnOKv17] Alejandro Torreno, Eva Onaindia, Antonin Komenda, and Michal

[TnOS14]

[TvK]

[VCM18]

[vK14]

[VK15]

[VK17]

[VKK15]

[VKK16]

[vO09]

Stolba, Cooperative Multi-Agent Planning: A Survey, ACM Com-
put. Surv. 50 (2017), no. 6, 84:1-84:32.

Alejandro Torrefio, Eva Onaindia, and Oscar Sapena, FMAP:
Distributed Cooperative Multi-agent Planning, Applied Intelli-
gence 41 (2014), no. 2, 606-626.

Jan Tozic¢ka, Michal Stolba, and Antonin Komenda, The Limits
of Strong Privacy Preserving Multi-Agent Planning, Proceedings
International Conference on Automated Planning and Scheduling,
ICAPS. Association for the Advancement of Artificial Intelligence
(AAATI), 2017. pp. 297-305.

Mauro Vallati, Lukas Chrpa, and Thomas Leo McCluskey, What
you always wanted to know about the deterministic part of the
International Planning Competition (IPC) 2014 (but were too
afraid to ask), Knowledge Eng. Review 33 (2018), e3.

Michal Stolba and Antonin Komenda, Relazation Heuristics for
Multiagent Planning, Proceedings International Conference on
Automated Planning and Scheduling, ICAPS, vol. 2014, 06 2014.

Michal Stolba and Antonin Komenda, MADLA: Planning with
Distributed and Local Search, ICAPS Proceedings of the Compe-
tition of Distributed and Multi-Agent Planners (CoDMAP-15),
2015, pp. 8-10.

Michal Stolba and Antonin Komenda, The MADLA Planner:
Multi-Agent Planning by Combination of Distributed and Local
Heuristic Search, Artificial Intelligence, vol. 252, 08 2017.

Michal Stolba, Antonin Komenda, and Daniel L. Kovacs,
CoDMAP - Detailed Results, http://agents.fel.cvut.cz/
codmap/results/presentation-RESULTS. pdf| 2015.

Michal Stolba, Antonin Komenda, and Daniel L. Kovacs, Competi-
tion of Distributed and Multiagent Planners (CoDMAP), Proceed-
ings of the Thirtieth AAAT Conference on Artificial Intelligence,
AAAT16, AAAT Press, 2016, pp. 4343-4345.

M. van Otterlo, The Logic of Adaptive Behavior: Knowledge
Representation and Algorithms for Adaptive Sequential Decision
Making Under Uncertainty in First-order and Relational Domains,
EBSCO ebook academic collection, los Press, 2009.

Michal Stolba, MADLA Planner, https://github.com/stolba/
MADLAPlanner] 2016.

49

http://agents.fel.cvut.cz/codmap/results/presentation-RESULTS.pdf
http://agents.fel.cvut.cz/codmap/results/presentation-RESULTS.pdf
https://github.com/stolba/MADLAPlanner
https://github.com/stolba/MADLAPlanner

50

Appendix B

Tables
Problem 1 2 3 4 5
MAPIlan-FF 1.15 0.11 14.72 1553.71 123.82
MAPIlan-LM-Cut 0.53 0.01 9.28 144.12
MADLA-FF 2.91 2.22 5.58 17.85 13.16
MADLA-PPsaFF 3.17 3.85 12.12 14.47
Problem 6 7 8 9 10
MAPIlan-FF 14.72 106.20 14.72 511.7
MAPlan-LM-Cut 1.59 0.45
MADLA-FF 8.66 12.73 7.31 9.43 106.49
MADLA-PPsaFF 9.56 29.78 15.71 39.32
Problem 11 12 13 14 15
MAPIlan-FF 158.19 282.01 920.5
MAPIlan-LM-Cut 42.14
MADLA-FF 26.66 197.64 28.21
MADLA-PPsaFF 9.39 47.15 30.36

Table B.1: Time required to solve individual problems from the lanterns domain.

o1

B. Tables

Problem 1 2 3 4)
MAPIlan-FF 6.93 178.87 24.47 740.18 51.94
MAPIlan-LM-Cut 11.62 22.16 49.36
MADLA-FF 39.32 81.61 129.8 1556.25 282.37
MADLA-PPsaFF 32.56 83.73 338.4 173.64
Problem 6 7 8 9 10
MAPIlan-FF 7.35 5.7 47.17 209.84 4.35
MAPIlan-LM-Cut 22.00 27.08 5.40
MADLA-FF 165.54 335.97 392.00 5.39
MADLA-PPsaFF 159.27 281.33 47.63
Problem 11 12 13 14 15
MAPIlan-FF 2.53 228.53
MAPIlan-LM-Cut 56.71

MADLA-FF 17.8 22.44

MADLA-PPsaFF 42.36

Table B.2: Time required to solve individual problems from the logistics domain.

Problem 1 2 3 4 5
MAPIlan-FF 14.1 181.9 15.29 14.36 188.14
MAPlan-LM-Cut 4.33 72.65 6.94 6.43
MADLA-FF 18.54 5.65 9.58 17.76 6.23
MADLA-PPsaFF 5.39 7.32 25.9 13.24 6.09
Problem 6 7 8 9 10
MAPIlan-FF 68.00 14.46 230.45 64.36 274.67
MAPlan-LM-Cut 5.5 100.05 24.2 107.17
MADLA-FF 12.76 8.08 5.21 29.79 13.41
MADLA-PPsaFF 46.11 6.55 5.79 54.21 6.31
Problem 11 12 13 14 15
MAPIlan-FF

MAPIlan-LM-Cut

MADLA-FF 9.23 11.08 29.77 48.27 120.91
MADLA-PPsaFF 8.81 7.3 288.55 182.84 128.42

Table B.3: Time required to solve individual problems from the manufacturing

domain.

52

	Introduction
	From Automated to Multi-agent Planning
	Laying The Foundation
	Automated planning
	Problems in Classical Planning
	Formulation of a classical planning problem
	STRIPS representation
	PDDL

	Summary

	Introducing a new dimension to planning
	Multi-agent planning
	Multi-Agent Extension of STRIPS
	Multi-Agent Extension of PDDL
	Privacy
	A bit more about privacy

	Summary

	Competition of Distributed and Multiagent Planners
	Competition Tracks and Benchmarks

	Multi-agent Planners
	MAPlan
	MADLA

	Novel domains and problems
	Domains and Problems
	Lanterns
	Description
	Formalization
	Problems

	Hierarchical Logistics
	Description
	Formalization
	Problems

	Manufacturing
	Description
	Formalization
	Problems

	Complexity of the problems
	Summary

	Experimental evaluation
	Setup & Evaluation
	Results

	Conclusion

	Appendices
	Bibliography
	Tables

