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Abstrakt / Abstract
Schizofrenie je jednou z nejzávažněj-

ších psychiatrických poruch, která posti-
huje přibližně 0,5-1 % populace ve vy-
spělých zemích, s příznaky jako zkres-
lení reality, bludy a halucinace, má ni-
čivý dopad na životy pacientů, jejich ro-
diny a okolí.

ITAREPS (Information Technology
Aided Relapse Prevention Programme
in Schizophrenia) představuje řešení
telemedicíny založené na týdenním
vzdáleném sledování pacientů mobilním
telefonem a zvládnutí onemocnění při
schizofrenii a psychotických poruchách
obecně. Zdravotníci dostávají upozor-
nění, když se stav pacienta zhorší, což
indikuje budoucí relaps. To umožňuje
včas intervenovat a vyhnout se zbyteč-
ným hospitalizacím.

Tato práce popisuje úsilí o zlepšení
přesnosti detekce relapsu zavedením
komplexnějšího návrhu klasifikátoru.
Data byla získána z klinického pro-
gramu ITAREPS. Data v souboru jsou
nejprve označena, abychom vydělili dvě
nevyvážené třídy a získali sadu doda-
tečných atributů, na základě nichž lze
sestavit binární klasifikátor. Vymode-
lujeme klasifikátor založený na metodě
gradient boosting, který je pak natré-
nován a vyhodnocen za účelem získání
dostatečné senzitivity, aniž bychom pře-
hlíželi méně reprezentovanou kritickou
třídu.

Klíčová slova: ITAREPS, schizofre-
nie, klinický program, binární kla-
sifikace, gradient boosting, analýza
časových řad

Schizophrenia is one of the most
severe psychiatric disorders affecting
around 0.5–1% of the population in
developed countries, with symptoms
such as reality distortion, delusions
and hallucinations, it has a devastating
impact on lives of patients and of their
families, and surroundings.

The Information Technology Aided
Relapse Prevention Programme in
Schizophrenia presents a mobile phone-
based telemedicine solution for weekly
remote patient monitoring and disease
management in schizophrenia and psy-
chotic disorders in general. Healthcare
professionals receive alerts when the
patient’s condition worsens which indi-
cates a future relapse, to enable early
intervention and avoid unnecessary
hospitalisations.

This thesis presents an effort to im-
prove relapse detection accuracy by
introducing a more complex classifier
design. The data is obtained from the
ITAREPS clinical programme. The
dataset is first labelled in order to ex-
tract two unbalanced classes as well as
to extract a set of additional features
upon which a binary classifier can be
built. The classifier based on a gradient
boosting machine is modelled, and then
trained and evaluated with the aim of
yielding sufficient sensitivity as to not
overlook the under-represented critical
class.

Keywords: ITAREPS, schizophrenia,
clinical programme, binary classifi-
cation, gradient boosting, time-series
analysis
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Chapter 1
Introduction

1.1 Schizophrenia
Schizophrenia is one of the most severe psychiatric disorders affecting around 0.5–1% of
the population in developed countries [22]. Due to its tendency towards chronicity and
the nature of its symptoms ranging from thought disorders to various forms of reality
distortion, such as delusions and hallucinations, the illness has a devastating impact on
lives of patients and of their families, and surroundings.

The onset of schizophrenia is typically within the ages of 20–39 years, but it may
occur before puberty or in later years, as well. There is a greater relative risk of
developing the illness in people born or brought up in inner cities [11], in people with
a lower socioeconomic background [23] and in people who have close relatives suffering
from schizophrenia [12].

Its symptoms can be divided into two categories: positive and negative. Positive
(surplus, excess) symptoms include hallucinations and delusions, i.e. false perceptions
and false personal beliefs held with absolute conviction. They frequently remain in
chronic schizophrenia. Negative (deficit) symptoms include social withdrawal, apathy,
self-neglect, poverty in form and content of speech etc. They tend to precede the onset
of positive symptoms and may also be seen in acute episodes.

Figure 1.1. Four typical patterns in the course of schizophrenia and their prevalence ac-
quired in a five-year follow-up [22][18] of 102 patients with schizophrenia.

A five-year study [18] conducted in the UK produced four typical patterns in the
course of schizophrenia, as seen in Figure 1.1. All patterns have one thing in common:
relapse—a return or worsening of symptoms—preceded and followed by periods of rel-
ative stability—remission. The first pattern is that a patient, after suffering a relapse,

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
returns to normality with minimal impairment. The second is similar to the first, with
the exception that relapses reoccur. The third pattern also features recurring relapses,
however there is persistent impairment after the first relapse—the patient doesn’t re-
turn to normality. In the fourth pattern, the patient’s condition worsens after each
relapse; 47% of the participants in the study follow this pattern.

Given that roughly a half of patients suffer a worsening of their condition after each
relapse, it is desirable to predict prodromal symptoms and thus prevent relapses by
adjusting the doses of antipsychotic medication or other appropriate mechanisms of
early intervention.

2
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1.2 ITAREPS

The Information Technology Aided Relapse Prevention Programme in Schizophrenia
presents a mobile phone-based telemedicine solution [21][19][20] for weekly remote pa-
tient monitoring and disease management in schizophrenia and psychotic disorders in
general. Healthcare professionals receive alerts when the patient’s condition worsens
which indicates a future relapse, to enable early intervention and avoid unnecessary
hospitalisations. The patient and, optionally, a family member are instructed to fill out
and send via SMS (in the future via mobile application, which is currently under test-
ing) a 10-item Early Warning Sign Questionnaire (EWSQ), which differs for patients
and family members. The questionnaire consists of the items described in table 1.1.

No. EWSQ Patient Version EWSQ Family Member Version

1 Has your sleep worsened since the
last evaluation?

Change of the sleep pattern

2 Has your appetite decreased since
the last evaluation?

Marked behavioral changes

3 Has your concentration, e.g.,
ability to read or watch TV,
worsened since the last evaluation?

Social withdrawal

4 Have you experienced fear,
suspiciousness, or other uneasy
feelings while being around other
people since the last evaluation?

Deterioration in daily activities
and functioning

5 Have you experienced increased
restlessness, agitation, or
irritability since the last
evaluation?

Deterioration in personal hygiene

6 Have you noticed that something
unusual or strange is happening
around you since the last
evaluation?

Loss of initiative, motivation

7 Have you experienced loss of
energy or interest since the last
evaluation?

Eccentric thought content, marked
preoccupation with strange ideas

8 Has your capability to cope with
everyday problems worsened since
the last evaluation?

Marked poverty of speech and
content of thoughts

9 Have you experienced hearing
other people’s voices even when
nobody was around since the last
evaluation?

Irritability, restlessness, agitation,
aggressivity

10 Have you noticed any other of
your individual early warning
signs since the last evaluation?

Have you noticed any other
individual early warning signs
since the last evaluation?

Table 1.1. EWSQ 10 items for patients and family members

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The participants receive an SMS alert to fill the questionnaire, which they do by

replying to the SMS message with ten integer score values ordered correspondingly to
the items in the questionnaire. The integer values are explained in Table 1.2.

Score Meaning

0 No changes or improved condition
1 Slight deterioration
2 Medium deterioration
3 Significant deterioration
4 Extreme deterioration

Table 1.2. Meaning of EWSQ 10 response values

The questionnaire is designed to monitor changes in the patient’s condition on a
weekly basis. Should the participant-submitted response values cross a posited thresh-
old, the patient’s psychiatrist is notified by e-mail. The psychiatrist, on the basis of
the Early Intervention Algorithm, proceeds to increase the patient’s dose of antipsy-
chotic medication by 20% for a twenty-four hour period—an approach shown to be
effective [20].

After the issued alert, a three-week alert period follows in which the participant is
prompted to fill the questionnaire twice per week. If the threshold is crossed in this
period, the alert period is extended by three more weeks, otherwise the psychiatrist is
notified that the patient’s state is not deteriorating and that his/her dose of medication
can be lowered to usual levels.

4



Chapter 2
Methodological Review

This chapter provides an overview of the methods used in analysis, data preprocessing,
feature and classifier modelling, and performance evaluation of the task at hand. The
main environment used to carry out the work is MATLAB; other used libraries will be
listed throughout this chapter.

2.1 Principal Component Analysis
Principal component analysis (PCA) is a procedure that orthogonally transforms a set
of vectors to uncorrelated principal components [15] [7]. It can be used to reduce dimen-
sionality with minimal information loss and for noise reduction. In other words, PCA
is designed to compute the dimensions of largest variance in a multi-dimensional space,
which is often used in data preprocessing to reduce dimensionality and redundancy of
the dataset, while still maintaining most of the original data variance.

Figure 2.1. An example of a scree plot, where the principal components and their re-
spective eigenvalues are plotted [9]. The principal components with higher eigenvalues

contribute to larger variance.

As an optimisation problem, PCA can be algebraically defined [24] as the task of
finding a linear subspace X ⊆ Rn, dimX = k, such that the sum of squares of distances
of the points a1, . . . , am ∈ Rn to the linear subspace X is minimal. Practically, PCA
is done by singular value decomposition of ATA = (USV T )TUSV T = VSTSV T , where
A = [a1 . . . am]T ∈ Rm×n. STS ∈ Rn×n is a matrix where, after ordering the diagonal
elements—the eigenvalues of the matrix ATA—and correspondingly their respective
eigenvectors in V , the orthonormal base of the subspace X and its orthogonal comple-
ment X⊥ are acquired from the column vectors of the latter matrix. Using those bases,
a1, . . . , am can be projected into the k-dimensional principal component subspace X.

5



2. Methodological Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For the task at hand, PCA will be used to project EWSQ score values to a lower-

dimensional space.

2.2 Decision Tree Learning
Decision trees [13], used for the purpose of classification, are a means of representing
a conditional algorithm whose goal is to split an input data set into mutually disjunct
subsets which belong to different classes. Nodes represent subsets and branches rep-
resent the conditions by which subsets are split until reaching the leaf nodes of the
decision tree, at which point a class label is assigned to them. Decision trees can also
be used for the purposes of regression, the difference from classification being that at
the leaf nodes of the decision tree a real number value, instead of a classification label, is
assigned to the resulting subset. As the outcome of a learning algorithm, decision trees
are an intuitive way to represent a decision model and they are easily interpretable, as
is illustrated below in Figure 2.2.

Figure 2.2. An example of a decision tree that splits a dataset into two classes—positive
(P) and negative (N). Branches are labelled with conditions, internal branch nodes are
labelled with the attribute names that are subjected to a condition check and the leaf
nodes shaped as triangles are labelled with the class assigned to the resulting subset [13].

When learning decision trees, an important factor is choosing the criterion or metric
by which conditions are selected to best split the set of training feature vectors, i.e. the
splitting function. Another aspect of learning decision trees is that it occurs in two
phases: a growth (top-down) phase, in which the splitting conditions are determined
on the basis of the previously mentioned metrics, and a pruning (bottom-up) phase,
in which the tree is pruned with the goal of improving some evaluation criterion, e.g.
reducing the estimated error.

One such metric is information gain—a measure of the expected reduction in entropy
when a set is partitioned into disjunct subsets. Given that a set P is partitioned into

6
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disjunct subsets P1, . . . , Pk on the basis on attribute A, the information gain IG(A) can
be expressed as follows

IG(A) = H(P )−
k∑
i=1

|Pi|
|P |

H(Pi), where

H(P ) = −
∑
j

|P (j)|
|P |

log |P
(j)|
|P |

and H(Pi) = −
∑
j

|P (j)
i |
|Pi|

log |P
(j)
i |
|Pi|

represent the entropy of P and Pi respectively, and P (j)
i represents the set of points of

class j in set Pi. A better split is a split that best divides a set into more homogenous
subsets, and such a split will yield higher information gain. To maximise information
gain, the sum of the entropies of the resulting subsets after the split are to be minimised,
i.e. the resulting splitting function S : P, θ 7→ {P1, . . . , Pk}, where θ is a vector of
splitting parameters, can be defined as the optimisation task

S = argmin
θ

(
|P1|
|P |

H(P1) + . . .+ |Pk|
|P |

H(Pk)
)
.

Another commonly used metric in determining the splitting function is Gini purity—
an impurity based criterion that measures the divergences between the probability
distributions of the target attribute values [13]. It is defined as

GI(A) = Gini(P )−
k∑
i=1

|Pi|
|P |

Gini(Pi), where

Gini(P ) = 1−
∑
j

(
|P (j)|
|P |

)2
and Gini(Pi) = 1−

∑
j

(
|P (j)
i |
|Pi|

)2
.

2.3 Gradient Boosting
Gradient boosting [4] is a classification method that relies on sequentially constructing
an ensemble of weak classifiers, the weighted sum of which determines the class of a
given feature vector:

F (x) =
M∑
m

αmhm(x),

where H(x) = sign
(
F (x)

)
is a classifier function which assigns a class to a feature vector

x, hm(x) is a function that represents the m-th weak classifier in the ensemble and αm
is a learned weight applied to the outcome of the weak classifier hm(x).

Gradient boosting is a sequential learning algorithm, because in each learning step,
i.e. the latest weak classifier being learned depends on the performance of the earlier
weak classifiers; and the earlier weak classifiers and their weights are not modified.
Given a set of training features and their respective classes T = {(xi, yi)}Ni , the (m+1)-
th weak classifier is being learned, i.e. the equations

Fm(x1) + hm+1(x1) ≈ y1

Fm(x2) + hm+1(x2) ≈ y2

. . .

Fm(xN ) + hm+1(xN ) ≈ yN

7



2. Methodological Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
are being solved so as to best approximate training classes. In principle, this is done
by minimising a loss function L(y, Fm(x) + hm+1(x)) in order to better fit the training
set

Fm+1(x) = Fm(x) + arg min
hm+1

N∑
i=1

L(yi, Fm(xi) + hm+1(xi)),

however, this an impractical optimisation problem to solve for each iteration of the
learning algorithm. Instead, a step of gradient descent is performed on the loss function,
which generates a set of pseudo-residuals

gm(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm(x)

for i = 1 , . . . , N,

which constitute a new training set {(xi, gm(xi))}Ni that is used to learn the (m+ 1)-th
weak classifier (e.g. a decision tree). The weight αm+1 applied to the weak learner is
also acquired by single-variable minimisation of the loss function, i.e.

αm+1 = argmin
α

N∑
i=1

L(yi, Fm(xi) + αhm+1(xi)).

The loss function L must be differentiable but otherwise the choice is arbitrary. In
the solving of this task an exponential loss function was used with the following form

L
(
y, F (x)

)
= e−yF (x),

∂L
(
y, F (x)

)
∂F (x)

) = −ye−yF (x).

The implementation of the gradient boosting method used in the solving of this
task was written by Carlos Becker [2] and can be found at https://sites.google.
com/site/carlosbecker/resources/gradient-boosting-boosted-trees. An alter-
native that was considered was using Matlab’s Classification ensembles from its Statis-
tical and Machine Learning Toolbox, which, although having a wider choice of options
and tools, performed more slowly than the solution used.

2.4 Performance Evaluation

2.4.1 k-fold Cross-validation
Supervised learning is the task of learning a classifier using a given set of features for
which the true classes are known. The classifier can be both trained and tested on
the whole given set, however, since the classifier is tested on the same data it has
been trained on, the performance measurement that arises from such testing does not
account for the fact that the training set is almost never necessarily representative of
the total set of possible features, i.e. the classifier might be overfitted to the training
dataset and insensitive to data outside of it.

An approach to account for this is separating the given set of features and their
classes into a training and testing set. k-fold cross-validation [10] is a technique that
builds upon this approach and therefore tests the ability of a classification model to
generalise to an unknown dataset.
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The given finite dataset T = {(xi, yi)}i is partitioned, to some extent randomly, into
k similarly-sized mutually disjoint folds F1, . . . ,Fk ⊂ T , such that T = F1

⋃
. . .
⋃
Fk.

Then, for each value i = 1, . . . , k, Fi is used as the testing set for a classifier trained
on an union of all folds except Fi, and a misclassification error rate εi is calculated for
each testing fold. The resulting average misclassification error ε = 1

k

∑k
i=1 εi is a good

measure of how well the classification model generalises over unknown data, especially
in comparison to other classification models relative to the dataset T .

Stratification within the context of k-fold cross-validation is a scheme of stratifying
the folds so that they contain approximately the same proportions of labels as the
original dataset [10]. Stratification is used in the implementation of cross-validation for
the task at hand, however it is limited due to the fact that data provided by individual
patients is self-similar and time-dependent. In order to ensure fold independence, data
for individual patients is contained in a single fold.

2.4.2 Confusion Matrix
A classifier maps features to classes. When testing a trained binary classifier, we assume
that the true mapping of a set of testing features to classes is known and that the
classifier’s mapping can be generated. The classifier is more accurate the closer its
mapping is to the true mapping. One way to measure the difference between the two
is by counting true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) classifications. Positive and negative represent the two classes in binary
classification, while true and false represent whether the true and trained mappings
coincide or differ, respectively.

These values can be used, for example [16], when expressing the classifier’s

accuracy = TP + TN

TP + TN + FP + FN
or its

misclassification rate = FP + FN

TP + TN + FP + FN
.

Another use of these values is to express the classifier’s

sensitivity = TP

TP + FN
and specificity = TN

TN + FP
.

Sensitivity (or true-positive rate) can be interpreted as the proportion of correctly
classified positive examples; specificity as the proportion of correctly classified negative
examples.

These measures will be useful, among others, in comparing the performance of dif-
ferent classifiers.

2.4.3 Class Imbalance
An imbalanced classification task is such where a single class significantly outnumbers
the rest. A practical problem in such tasks is that, given a class that comprises 99% of
a dataset, a classifier can yield 99% accuracy by merely classifying all observations as
belonging to the outnumbering class.

In tasks where the goal is detection of an outnumbered critical class, measures have to
be taken to amplify the presence of the critical class. One such measure is resampling—a
term covering a wide variety of methods [17] that undersample an overrepresented class
or oversample an underrepresented class. A synthesis of both is applied at a certain
point in the task at hand, see Section 4.2.
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2.4.4 Relative Feature Importance

Relative feature (or predictor) importance in the context of a gradient boosting ma-
chine [14] is a consequence of the gradient boosting learning process, which offers insight
into the relative contribution of individual features towards splitting a labelled dataset.
A feature with greater relative importance was selected more often to split a dataset,
to split a dataset of a greater size, or both.

For the gradient boosting library at hand, relative feature importance is implemented
as the sum of the count of data vectors that a feature is selected to split, across all
decision trees in the ensemble, normalised to sum to one.

2.4.5 Labelling Time Series
In the presented case, the events to be detected—relapses—are events in time, rather
than fixed labels. In order to be able to use standard machine learning models for
supervised classification, it was decided to divide time series into discrete time windows,
each assigned with a class label. The issue is discussed in Section 3.3.
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Chapter 3
Data Overview and Analysis

3.1 Exploring the Data Set
The available data set contains all EWSQ participant submissions from both patients
and family members, including periods of patients’ hospitalisations. All in all, 62002
SMS were sent by a total of 349 patients.

59%

(349)

41%

(247)

Patients

Family Members

Figure 3.1. Division of participants by
type.

   62%  

(38339)

   38%  

(23663)

Sent by Patient

Sent by a Family Member

Figure 3.2. Share of all sent messages by
type of participants.

Since participation of a family member is recommended but not obligatory, there are
more patient participants than family members as seen in Figure 3.1 and both types
send survey answers by a roughly equal rate as seen in comparison with Figure 3.2.

Times hospitalised No. of patients

1 54
2 15
3 4
Σ 73

Table 3.1. Hospitalisation count per patient

Of all patients, 73 have been hospitalised with a total of 96 hospitalisations recorded
in the programme, i.e. out of those who have been hospitalised, most patients have

11



3. Data Overview and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
been hospitalised only once, as is evident in Table 3.1. These patients will provide
useful data of the EWSQ answer trend in the relapse period preceding hospitalisation.
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Figure 3.3. Empirical cumulative density function of number of days between rehospital-
isation, gathered from the 19 patients with at least 2 hospitalisations.

By examining the empirical cumulative density of inter-hospitalisation periods, gath-
ered from rehospitalised patients shown in Figure 3.3, it can be concluded that 50% of
such patients have less than cca. 140 days or 20 weeks between hospitalisations. This
trend may be useful in better understanding individual patients’ transitions from re-
mission into relapse, especially when this occurs within a relatively short timespan of
20 weeks, while filtering out such trends in patients whose course in the development
of their illness follows a different pattern.
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Figure 3.4. EWSQ sent SMS density per week.

Looking at the histogram of all submitted EWSQ questionnaires, including those
sent by patients and family members, two clusters are clearly visible—those who sent
one SMS weekly, probably patients who send messages irregularly or who do not have
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family members participating in the programme, and patients and family members who
send reports regularly twice per week.
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Figure 3.5. Empirical cumulative density function of the sum of all questions of each
submitted SMS, including all SMS by both patients and family members. The theoretical

maximum sum of scores is 40.

Looking at the scores of both patient and family member submitted questionnaire
entries, one thing is immediately noticeable—most of the entries are composed of all
zeros, in fact 68.75% of all entries’ scores sum to zero, as is evident in Figure 3.5. One
side of this matter is that since a sum-zero SMS entry is the minimum possible value
that an entry can have, we can immediately classify it as remission, were we to classify
questionnaire entries as such. The other side is that by doing so, we discard more than
two-thirds of our data. This provides incentive to explore strategies that consider more
features than just the contents of a single questionnaire entry.

3.2 The Factor of Time
The ITAREPS programme instructs patients and family members to submit an SMS
questionnaire entry once weekly if they are in a stable state or twice weekly if in an
alert state of possible relapse. This influences the dataset in a way that differentiates it
from that of a hypothetical study of the state of schizophrenic patients before a relapse,
as it contains the self-corrective factor that when the current classifier indicates an alert
state, the patient receives an increase in the dose of antipsychotic medication, which
might defer a possible relapse: the easily detectable relapses, marked correctly by the
current classifier and successfully treated are thus not a part of our dataset.

An attempt could be made to account for this self-correcting feedback loop by using
the current classifier to mark the points in which a patient received an increase of dose
in their medication and treat these points in the time series of submitted questionnaire
entries as pseudo-relapses, which might enrich the training set. Aside from this factor,
the dataset is linear in time.
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Figure 3.6. Timeseries of the sum of EWSQ scores of a patient containing both the pre-
and post-hospitalisation period. There is a rise of the sum before the relapse and a fall

some time after the relapse as the patient stabilises.
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Figure 3.7. Varying growth of both pa-
tient and family member score sums before

relapse.
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Figure 3.8. A varyingly constant sum of
scores in both patient and family member

before relapse.
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Figure 3.9. A sudden increase in sum of
scores before relapse.
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Figure 3.10. Constant sum-zero in both
patient and family member before relapse.
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Figure 3.11. Continuous sum-zero in pa-
tient and higher score in family member

entries.
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Out of all patients, only 73 have been hospitalised at least once. For the purposes
of learning a classifier, we will consider them to have experienced a relapse and the
rest to be in uninterrupted remission. Since the point of interest is the relapse, the
questionnaire entry data should be considered relative to the point of relapse in time,
i.e. all patients that have been hospitalised at least once provide us with two time-
series of data per hospitalisation: pre-relapse and post-relapse data. In Figures 3.6–3.12
seven examples of such time-series are shown where both patients and family members
participated. The presented examples document the high variability in patient and
family member behaviour that needs to be taken into account when performing feature
extraction for training.
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Figure 3.13. The development of the weekly sum of EWSQ scores before and after relapse
in percentiles. Zero on the x-axis represents the event of relapse, i.e. hospitalisation.

According to a follow up paper on the ITAREPS study [25], the worsening of symp-
toms is evident in the EWSQ score as early as two months before a relapse occurs.
The percentile graph as seen on Figure 3.13 portrays this trend of growth of the sum
of scores before the relapse, and the stabilisation of the patient after the relapse, i.e.
after discharge from hospitalisation of varying length.

The 50th percentile, i.e. the median, is nearly zero, which reflects the factor in the
dataset discussed before, that two-thirds of all sums of scores are zero, even before
relapse. This could be accounted for by a combination of any of the following possible
factors: the lack of adherence of some patients to the study guidelines, to a possible
paranoid delusion related to the disclosure of such personal data to a third party, or in
the worst case, the diminished capacities of self-reflection in pre-relapse schizophrenic
patients. In the third case, the family member’s scores might prove to be useful over
the patient’s self-evaluation, as is apparent by the mean score value shift by cca. one
in Figure 3.14.

3.3 Splitting Data in Periods
An approach in predicting relapses in patients is binary classification, i.e. either the
patient will have a relapse in a certain period of time (e.g. n weeks) or the patient is
in remission. In the former case, the patient is considered to be in a critical period,
otherwise he/she is in remission.

In order to render differences in the individual developments of patients’ EWSQ
scores negligible, padding or safe periods can be introduced between the pre-relapse and
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remission periods, namely: a pre-critical safe period, in which the patient transitions
from a remission to a pre-relapse state, and a post-hospitalisation safe period, in which
the patient, having been until recently hospitalised and medicated, might continue to
be under this extraordinary influence that otherwise differs from his/her usual state.

Figure 3.14. Simple visualization of prodromal onset time point detection results for mean
EWSQ sum score for patients (left) and family members (right). The solid line represents
weekly population mean (significant region in red), the dashed line indicates the 95th
percentile of the resampled bootstrap population means. (Source: [25]) The method chosen
for colouring the solid line representing the weekly population mean was, that all adjacent
weekly data points and the lines connecting them are coloured red if they are continuously

above the 95th percentile line.

According to a recent study on ITAREPS data [25], the mean sums of weekly EWSQ
scores achieve statistically significant increase four weeks before relapse, as is seen in
Figure 3.14. The beginning of the critical period can thus be safely set as late as
four weeks before relapse. It is also noted in the study that for the individual EWSQ
questionnaire entries as well as for their sum, there are observable long-term rising
trends that range up to nine weeks (for individual EWSQ questions) or eight weeks
before relapse (for the sum). Therefore, the critical period used for learning the classifier
can be safely set at some point between eight and four weeks before relapse.

For the purpose of training a classifier, the period lengths as described in Table 3.2
have been chosen.

Name of Period Interval in Weeks EWSQ Entry Count

Remission (−∞, −10] 9950 (16.05 %)
Pre-critical Safe (−10, −5] 610 (0.98 %)

Critical (−5, 0] 713 (1.15 %)
Post-relapse Safe (0, 5] 535 (0.86 %)

Remission (5, ∞) 9950 (16.05 %)
No-Hosp. Remission n/a 50091 (80.79 %)

Discarded n/a 103 (0.17 %)
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Table 3.2. Separation of hospitalised patients’ relapse-relative EWSQ score timeline in
periods to be used for learning a classifier. Relapse occurs at the zeroth week in the
timeline, i.e. when the patient is hospitalised. The pre-relapse and post-relapse remission
periods are considered to be as a single category with the same entry count. Percentage of

the whole dataset are given in parentheses after the count value.

Considering patients’ timelines relative to the date of relapse and attempting to
partition it in fixed-length time periods implies that there exist EWSQ entries in the
dataset that can be considered to belong to more than one time period. E.g. supposing
a patient is released from hospital care, in the first week he/she submits an EWSQ
entry and is rehospitalised the next week—does the submitted EWSQ entry fall into
the critical period or the post-relapse safe period? In order to avoid these ambiguities,
all such data is discarded.

As was already stated and evident in Figure 3.5, sum-zero entries—EWSQ entries
whose scores sum to zero—amount to 68.75 % of the whole dataset. Having the dataset
partitioned into discrete periods, the share of sum-zero entries in all periods can be
inspected.

Period Name Critical Remission Hosp. Remission No-Hosp.

Total 713 9950 50091
Sum-Zero Count 346 6487 34992
Percent of Whole 48.53 % 65.20 % 69.86 %

Table 3.3. Share of all EWSQ entries in the dataset that contain only zeros per period.

As is evident in Table 3.3, the critical period contains a lesser share of sum-zero entries
than the other categories used for classification, which is in line with expectations: when
patients feel worse they are less likely to submit an EWSQ entry with all zeros.

Furthermore, two conclusions can be made from this observation. The first is that if
only the ten EWSQ score values are used to classify it into a period, sum-zero entries
will always be classified as in remission and the a priori misclassification rate for the
critical period will be roughly at least a half. The second conclusion is that the two
periods are unbalanced in size, i.e. there is significantly more data for remission than
for the critical period. This is why over-fitting to the majority class should be avoided
and monitored with methods such as cross-validation and either resampling of critical
period data or random undersampling of remission data should be undertaken.

3.4 Applying PCA
Since the dataset has been separated into classes and the critical period and remission
period data has been labelled, principal component analysis can be applied to the
dataset.

From previous studies on the ITAREPS programme [25][8] and as is shown in Fig-
ure 3.15, a single component contributes to a majority of variability in the dataset. In
order to test this hypothesis, i.e. that a single component represents responses from the
remission and critical period, the component with the greatest contribution to variance
begins to lose its major role to the benefit of other components. Learning a classifier
based on the first several principal components may thus bring increase in classification
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accuracy if this assumption were true. Thus, the principal component subspace will
be generated using remission period data and relapse period EWSQ score data will be
projected to the remission principal component subspace using the parameters acquired
from generating the principal component subspace.
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Figure 3.15. Contribution by percentage to variance by each principal component acquired
by applying PCA to remission period data.

As is evident in Figure 3.15, the first principal component accounts for more than
55% of the variance in remission data and the rest individually contribute 10% and
less. Looking at the weights applied to score values when projecting them to a dimen-
sionally reduced PC subspace in Table 3.4, the first component (the component most
contributing to variance) applies a nearly uniform vector of weights to the score values.
The second principal component is already more peculiar in that it applies negative
weights to most score values except the first and the last two question scores, which are
arguably in themselves good predictors of the worsening state of a schizophrenic patient
(worsening of sleep, auditory hallucinations and general worsening of symptoms). The
second principal component also diminishes the impact of the second question (loss of
appetite) by applying a near-zero weight of −0.0012 to its score value.

Principal component
Question no. First Second Third Fourth Fifth

1 0.3102 0.5084 0.6889 -0.1239 -0.3761
2 0.2419 -0.0012 -0.0939 0.0037 -0.0633
3 0.3125 -0.2091 -0.0560 0.0622 0.0617
4 0.3603 -0.2574 -0.1855 0.1050 -0.4834
5 0.2780 -0.2997 0.0908 0.2186 -0.1460
6 0.3266 -0.0712 -0.2627 0.0082 -0.1708
7 0.3484 -0.2436 0.3303 -0.2658 0.6552
8 0.3406 -0.2659 0.1201 -0.1125 0.0541
9 0.3262 0.4649 -0.5151 -0.5365 0.0919

10 0.3002 0.4365 -0.1133 0.7421 0.3549

Table 3.4. Coefficients or weights that make the basis of the principal component subspace.
When projecting EWSQ score vectors to the subspace, weights are individually multiplied
with the appropriate weight and summed, and as such their position vector in the principal

component space is determined. For question numbers, see Table 1.1.
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Chapter 4
Preparation for Learning

4.1 Feature Extraction
Considering what other features to use, this section will follow the principle of more
is better, since the learning technique used is boosting of decision trees, which rely
on the dataset being well separated by introducing splits dependent on the features.
Thus more features enable more potential data splits and therefore a potentially better
separated dataset. Another reason for the necessity of augmenting the feature set is
that, as is apparent in Table 3.3, a large portion of data from the ten questions of the
EWSQ consists solely of zero scores and as such can only be immediately classified
into the remission class, thus by adding more features, sum-zero entries will be more
meaningfully separable.

The data acquired from the ITAREPS study includes two data tables: one where
each row represents a submitted SMS with EWSQ entries and the other where each
row represents a patient’s hospitalisation with some additional metadata. The classifier
will be based on individual SMS entries as feature vectors, so for every feature vector,
the following usable data is made available:.EWSQ score values: either the ten score values as they are or by projecting them

to an uncorrelated and possibly lesser-dimensional space using PCA.. sum of EWSQ score values: in the state of the art classifier used to indicate an alert
state, not only are the individual scores considered but also their sum, to account for
possible general fluctuations in a single SMS entry, that may not be accounted for,
given that decision trees split values only depending on the value of a single feature.. is the SMS sent by a patient or a family member: a binary categorical variable
that can separate the dataset in two within a decision tree, which will be useful since,
as evident in Figures 3.6–3.12, patient and family member submitted data may and
do differ and this can provide useful insight into the patient’s condition timeline.. time since the previous hospitalisation: patients who have been previously hospi-
talised, i.e. have experienced a relapse, might have a greater probability of repeated
relapse and this might again aid in better separating the dataset to perhaps more
easily classify such patients as in an alert pre-relapse state. This variable is either
a continuous real value, i.e. elapsed days since the previous hospitalisation or a null
type value, such as NaN in MATLAB.

4.1.1 Accounting for History
Since a patient’s data is given in time and the definitions of the questions in the EWSQ
are related to the history of the patients condition—the general formulation in the
questionnaire always references the patient’s state in the past with constructions in
the mode of have you noticed something new since the last evaluation, as can be seen
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in Table 1.1—the patient’s history has to be accounted for and it should lead to an
improvement in accuracy as opposed to a past-ignorant feature set. One variable that
accounts for time since the previous hospitalisation has already been described above,
however this feature does not provide sufficient separability on the basis of a patient’s
history, since it together all unhospitalised patients categorises—276 out of a total of
349—that make up a large share of the whole dataset of questionnaire values.

One problem of accounting for history of a patient’s EWSQ entries is in a limitation
of the classification method, i.e. that it does not support timeseries of data by design
and thus the feature vector length must be limited and equal for all entries in the
classification set. Assuming a simple approach of a single feature corresponding to a
single submission, this would mean that, if patient A has a history of 5 entries and
patient B has a history of 100 entries, the feature vector could either account for only
five entries, and therefore ignore patient B’s previous 95 entries, or account for all of
patient B’s entries and fill patient A’s history with 95 counts of null, missing data
values (represented by NaN in MATLAB), which might flood the decision tree boosting
process and feature space with features irrelevant for most patients and require an
impractical increase in the number of boosted trees and thus increase training time and
hinder optimisation efforts.

The solution to this is to use the first strategy, which effectively means that each
feature vector based on a submitted EWSQ SMS will contain a trail of n previous
submissions, i.e. their EWSQ score sums. This means that the first n will have less
than n entries in their history, and they could therefore be removed from the dataset,
which practically means that relapse detection will not occur in the first n entries
(practically first n weeks of the patient’s participation in the programme) and they
will be automatically classified to be in remission. Because of the differences between
submissions sent by patients and family members, the historical trail should reflect this
and be kept separate for patients and family members. The value that will be used in
training is n = 3. Given that value and the method described above, 2171 out of a total
of 62002 (3.5%) submissions are discarded from the dataset on the basis of not having
at least n = 3 previous trailing SMS.

For each i-th SMS, there is a value Si—the positive integer sum of the ten EWSQ
scores submitted in the SMS, and the values Si−1, Si−2, Si−3—the positive integer sums
of the ten scores from the trail of three previous SMS. The three trail sum values
can be introduced as features as such, however, when interpreting the meanings of the
questions in Table 1.1, since the questions refer to the patient’s previous state, it would
be better to introduce cumulative sums for each trailing SMS in the manner below:

trailing cum. sum 1 := Si−3
trailing cum. sum 2 := Si−3 + Si−2
trailing cum. sum 3 := Si−3 + Si−2 + Si−1
trailing cum. sum 4 := Si−3 + Si−2 + Si−1 + Si

(1)

where each row represents the value of a single feature.

Another use of the trailing sum values could be calculating the difference between
consecutive SMS in the manner below:

trailing cons. diff. 1 := Si−3 − Si−2
trailing cons. diff. 2 := Si−2 − Si−1
trailing cons. diff. 3 := Si−1 − Si

(2)
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where each row represents the value of a single feature. Since the trailing features rep-
resent change of the patient’s state between submissions, an interpretation of including
the difference of consecutive sums would be to signify the rate of change of the patients
state between consecutive responses.

4.1.2 Resulting Feature Vector
The considerations above result in the structure of the feature vector that will be used
for learning and prediction described in Table 4.1.

Order Data type Description

1–10 integer or real (PCA) The ten EWSQ score values. If PCA is
applied and the score values are
dimensionally reduced, then there will be less
than 10 values in the feature vector.

11 integer Sum of the ten EWSQ score values.

12–15 integer Trailing SMS cumulative sums, see (1).

16–18 integer Trailing SMS consecutive differences, see (2).

19 categorical Was the SMS sent by the patient or a family
member?

20 real or NaN Days since the previous hospitalisation if any,
else NaN.

Table 4.1. Final layout of the feature vector.

4.2 Resampling
As can be seen in Table 3.2 in the column EWSQ Entry Count, the dataset is signif-
icantly unbalanced having cca. 85 times more data for the remission class as opposed
to the critical class. The boosting decision tree method used for training a classifier in
this task is sensitive to unbalanced data, so an effort is to be made to equally represent
both classes in the training dataset.

Given that the remission class is overrepresented in the dataset, random undersam-
pling can be applied by randomly discarding elements of this class, which can balance
the ratio of the classes in the dataset. The penalty of this approach is that a large
amount of data is randomly discarded—the training dataset will be reduced to cca.
1500 entries.

On the other hand, relapse data can be oversampled either by simply duplicating or
copying it without changes until the dataset is equally representative of both classes, or
by randomly generating new relapse samples similar to the ones acquired in the study.

A synthesis of both approaches will be applied in resampling the dataset, namely,
critical class data will be identically copied as many times as it is necessary until it
almost reaches the same count as remission class data, and then the remission dataset
will be minimally randomly undersampled so that both classes have an equal count of
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entries in the dataset and therefore equal representation, as is illustrated in Figure 4.1
below.

step 1 step 2 step 3 step 4

Figure 4.1. Illustration in four steps of how the classes are resampled. The bar graphs do
not represent the actual size ratios of the critical and remission classes.

Due to also performing k-fold cross-validation and its requirement that critical class
data for a single patient is contained in a single fold, as described in the next section,
there is one further limitation placed on the resampling method, namely that resampling
has to be performed only after the data has been separated into folds for cross-validation
and it can be copied only a certain amount of times so not to actually exceed the count
of remission data in any individual fold. After the resampling approach is applied, the
effect of the transformation is described in Table 4.2.

Class Pre-resample Post-resample

Critical 713 44919
Remission 60041 44919

Σ 60754 89838

Table 4.2. Effect of the resampling procedure on the dataset. The critical class has been
copied 62 times while the remission class has been randomly undersampled to approxi-

mately 74.81% of its data.

4.3 Cross-validation
Usually k-fold cross-validation for binary classification, the k folds are stratified so
that all folds contain similar proportions of data representative of both classes. When
applying cross-validation to this classification task, there is one more factor that needs
to be considered to better divide data into folds, namely that a patient’s pre-relapse data
is not separated into different folds so that it does not occur that a classifier is trained
and tested on the same patient’s data, which would lend an additional opportunity for
the classifier to overfit to the testing set.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Hyperparameter Optimisation

Figure 4.2. Illustration of the method of cross-validation used in the task. The dataset is
divided in seven folds. The first five are used in grid search for optimal hyperparameters
in which each fold is tested on exactly once. The last two folds are used in the evaluation

phase to assess the optimised classifier and compare it to different ones.

Otherwise, standard k-fold cross-validation is used in this task and, assuming that
resampling as described in the previous chapter has been applied. Two of the folds are
not used in the training and testing phase of hyperparameter optimisation and are left
for the last stage of evaluating the resulting optimised classifiers. The dataset is divided
into k = 7 folds, since there are 73 hospitalised patients and so each fold will have data
for at least 10 patients’ critical periods. Table 4.3 displays the division of data in folds.

Fold Critical c. Remission c. Σ Remission undersampled c.

1 6867 6867 13734 1844
2 6804 6804 13608 2290
3 8883 8883 17766 80
4 6489 6489 12978 1404
5 5103 5103 10206 3012
6 6111 6111 12222 2213
7 4662 4662 9324 4279
Σ 44919 44919 89838 15122

Table 4.3. Count of elements in each cross-validation fold. The sixth and seventh folds are
left to be used for later evaluation of the resulting classifiers. The third fold has a count
of 80 remission elements removed in undersampling, which is the reason why critical class
data was oversampled only 62 times, i.e. were it copied more times, it would exceed the

number of remission class elements in its fold.

4.4 Hyperparameter Optimisation
Boosting decision trees require a few parameters to be set before training, so called
hyperparameters. Those that will be optimised will be:. the learn rate—ν or learnRate—determines the impact of individual trees on the

final classifier produced by the ensemble boosting model. Values range in the interval
(0, 1] and when the value is set too high, the trained classifier may tend to overfit to
the training data and may thus fail to generalise well to previously unknown data. In
the gradient boosting method, it is expressed as an additional weight that decreases
the contribution of the weak classifiers, i.e. for ν ∈ (0, 1]

Fm+1(x) = Fm(x) + ναm+1hm+1(x).
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. the maximum tree depth—d or maxTreeDepth—constrains the depth of the decision

trees used as the weak learners in the boosting ensamble, e.g. if it is set to 0, then the
decision tree is actually a decision stump with only one node that, on the basis of a
single condition, splits the feature set into the two classes of the binary classification
problem.. the number of trees for learning rate ν—Mν or numOfTrees—is the number of weak
classifiers being boosted in the learning ensemble. The number of trees should usually
increase when decreasing the learn rate to counter overfitting and bad generalisation
on previously unknown data.. the subsampling factor determines a percentage of observations that are randomly
sampled in training each tree. It helps reduce variance, i.e. overfitting.. the number of features considered for splitting a node—mtry— reduces the number
of features and may influence feature importance.

Figure 4.3. An illustration of the grid search method used in hyperparameter optimisation.
The number of cubes for numOfTrees does not represent the actual value of the parameter
but is simplified to reflect that for lower learning rates a higher maximum numOfTrees

value is considered.

The following approach to optimising these parameters for the task at hand
will be used. The dataset is divided into seven folds and the first five are
used for cross-validation, i.e. for performing a grid search to find the opti-
mal values for maxTreeDepth = 0, 1, 2, 3, 4, learnRate = 0.1, 0.05, 0.01
and a range of numOfTrees respectively for each learning rate numOfTrees =
1..3000, 1..5000, 1..7000 as illustrated in Figure 4.3. The metric for deter-
mining the optimal value of the first two parameters is the minimum misclassification
rate across all values of numOfTrees, averaged for all five cross-validations. The
misclassification rate is implicitly balanced for both classes, given that the folds have
been resampled to contain an equal count of relapse and remission data. The number of
features considered for splitting a node is fixed: mtry = ceil(

√
number of features)

and subsample = 0.8.

In order to further clarify the employed method for grid search optimisation of the
two parameters, the previous paragraph will be expressed in notation:

ν∗, d∗ = arg min
ν,d

min
m

ε̄m(ν, d), 1 ≤ m ≤Mν ,

where ε̄m(ν, d) is the mean misclassification rate evaluated on 5 cross-validation folds,
i.e.

ε̄m(ν, d) = 1
5

5∑
i=1

εm,i(ν, d),
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where εm,i(ν, d) is the misclassification rate evaluated on the i-th cross-validation fold
(trained on the four remaining folds) for a count of m weak learners (decision trees),
given learnRate = ν and maxTreeDepth = d.

The resulting values ν∗, d∗ acquired by grid search are finally used to train a classifier
with numOfTrees = Mν∗ .

4.5 Classifier Model Variants
The approach described in the previous section will be applied to three different feature
sets, i.e.

.All the features as described in Table 4.1, referenced below as No PCA..The features as described in Table 4.1, except with the EWSQ scores projected to a
k = 5 dimensional principal component space..The features as described in Table 4.1, except with the EWSQ scores projected to a
k = 10 dimensional principal component space.

For each feature set there will be two resulting classifiers:

. single—one trained on the whole training dataset and evaluated on the whole eval-
uation set, and.dual—a compound classifier composed of two classifiers, each trained exclusively on
patient and family member data and evaluated on the respective evaluation data
sets, in order to guarantee that the disparity between patient and family member
datasets is captured in the classification model.

Additionally, for each feature set, there will also be provided a fitted decision tree
for reference with the same evaluation measurements applied to it as are to the gradi-
ent boosting ensembles as well as a single ensemble classifier, which does not contain
historical features—trailing sums.

4.6 State of the Art Classifier
Additionally to the trained classifiers, the state of the art classifier (henceforth referred
to as alertInds) used in the ITAREPS programme is introduced to compare with the
trained classifiers. It is again worth noting, as was already done in Section 3.2, that
the dataset used for training and evaluation has influenced itself via the alertInds
classifier, as patients who participated in the programme may have received an increase
in their dose of antipsychotic medication upon being classified as in an alert state by
alertInds. Thus the remission class might contain entries that, without the inter-
vention of alertInds, would have resulted in a hospitalisation and thus would have
actually belonged to the critical class. Until a dataset without such an influence is
provided, any classifier trained on it will be most useful as a secondary classifier to
alertInds.

Another consideration worth noting when comparing alertInds to the trained clas-
sifiers is that alertInds was modelled several years ago when far fewer data were
available from the ITAREPS programme.
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The alertInds classifier classifies based on a disjunction of three conditions which

rely on three parameters: whether an entry was submitted by a patient or family
member, time difference between entries and EWSQ score sums. Firstly, if the sum of
scores 4, 6, 9 for a patient submitted entry or 2, 7, 9 (see Table 1.1) for a family member
submitted entry is greater than 3, then the patient is classified as in an alert state.
Secondly, if the sum of all scores exceeds 8, the patient is classified as in an alert state.
Finally, if the sum of scores of each entry and its preceding (though not more than 14
days apart) entry exceeds 12, the patient is classified as in an alert state.
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Chapter 5
Results and Discussion

This chapter follows the training of several classifiers optimised with the method de-
scribed in the previous chapter and evaluated on the evaluation dataset.

5.1 Classifier Evaluation
As is evident in Table 5.1, the classifier models which detected all detectable relapses
when predicting on the evaluation set are the single models with no principal component
dimension reduction applied to the EWSQ scores. In comparison with alertInds, other
than the notable difference in relapses predicted from patient and family member data,
there is also a considerable difference in the false positive rates.

The gradient boosting classifier has a higher false positive rate and lower accuracy
that correspond to a trade-off between sensitivity and specificity. The alertInds clas-
sifier has half the sensitivity of the gradient boosting classifier while having a higher
specificity rate by cca. 10%. The necessity behind the existence of the sensitivity–
specificity trade-off is due to both classes not being fully separable and also because
one of the goals of constructing the gradient boosting classifier was to increase the sen-
sitivity of detecting the critical class, for which there is a low amount of data—1.15%
of the whole dataset, see Table 3.2. This was accomplished by optimising the model’s
hyperparameters on the balanced misclassification rate, produced by measuring it on a
resampled testing set, and then learning the model on a resampled training set, where
the critical class had been oversampled and the remission class undersampled.

The classifiers in which EWSQ score features were projected to principal component
space yielded interesting results. When the EWSQ scores are projected to a k = 5
dimensional principal component space, the sensitivity of the classifier further increases,
while given k = 10, the sensitivity decreases and the predicted relapse counts approach
those of alertInds.
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5.2 Feature Evaluation
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Figure 5.1. Relative predictor (feature) importance for the final classifier. In terms of
classification with a gradient boosting machine, relative importance for a feature can be
interpreted [1] as the mean count of observations, summed across all decision trees in the
ensemble, that reach a non-leaf node which splits the observation set on the basis of the

feature.

The dual classification models, which rely on training and then using for prediction
two gradient boosting classifiers separately for EWSQ score submitted by patients and
family members, exhibit weaker performance than the single classifiers and seemingly
do not contribute anything more than the single classifiers. Moreover, when inspecting
the relative predictor importance rates for each feature in the gradient boosting clas-
sification model, as can be seen in Figure 5.1, it is evident that the feature extraction
approach to account for the patients EWSQ score history, described in Subsection 4.1.1,
was effective and significantly contributed to data separability in the gradient boosting
classification model, so much so that the categorical predictor is sent by patient was not
significantly employed in separating the dataset in decision tree learning, possibly due
to low information gain. This stands in contrast to the difference between the questions
offered to patients and family members in the questionnaire that share the same order.
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Figure 5.2. Relative predictor (feature) importance for the classifier that does not account
for the trail of historical data.

However, in opposition to the enthusiastic claim in the previous paragraph, stands
the evaluation of the classifier that does not take account of the patient’s previous
EWSQ submissions—see the penultimate row and compare with the first row in Table
5.1. When the historical trails generated by previous submissions are removed, the
boosting ensemble compensates by relying more on individual EWSQ scores and the
previously ignored is sent by patient predictor, as can be seen in Figure 5.2. While both
approaches yield similar results on the given evaluation set, which might lead to a claim
towards the redundancy of historical data, the no-history classifier still relies mostly
on the sum of scores predictor for data separability as opposed to individual EWSQ
score predictors. Comparably, the classifier that takes history into account (Figure 5.1)
further relies mostly on the sums of scores not only of the current but even more so
of the previous submissions, in comparison to all other non-sum features. This implies
that in both cases, sums of scores yield greater relative importance than other types of
predictors, and assuming that having more predictors that lead to better separability,
as opposed to less, yields a better classifier in the long run, then the inclusion of and
reliance on historical predictors is justified and might be shown to perform better on
new evaluation sets in the future.

5.3 Discussion and Limitations
The task at hand could be summarised as an effort of labelling a dataset in order to
extract two unbalanced classes as well as extract a set of features upon which a binary
classifier is modelled, and then trained and evaluated with the aim of yielding sufficient
sensitivity as to not overlook the under-represented critical class.

The labelling of the dataset is accomplished using findings presented in a paper [25]
studying the window of predictability of patient relapse before it results in hospitalisa-
tion. In addition to hospitalisation data being the only provided events present in the
dataset that imply that a patient is experiencing relapse, it is also known and has been
discussed that the dataset is influenced by the state of the art alertInds classifier,
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which, serving its purpose, has surely prevented hospitalisations by causing adjustment
of patients’ medication doses. However, in labelling the dataset, this has not been
taken into account as the original provided dataset does not contain information on
whether and when a potential relapse might have been prevented. A future study on
the ITAREPS programme in Bavaria, Germany should provide more patient data that
have not been influenced in such a way, which should lead to a better labelling scheme
and therefore an improvement of the solution of the task at hand.

Regarding feature extraction, there are two areas of interest: working with data
dependent in time (time-series) and principal component analysis. In a certain way,
both areas present two sides of a coin. The employed method of integrating time
dependence into the feature set was somewhat successful, yet not optimal. It was
successful because it produced a set of features which yield high relative predictor
importance in the resulting classifier. However, it was not optimal because it does not
regard sequences of more than three consequent submissions for each observation or, in
other words, it is short-sighted. On the other hand, the employed method of applying
PCA did not reflect the time-dependent nature of the dataset. In other words, perhaps
instead of considering the principal components of individual EWSQ score submissions,
it would be better to consider the decomposition of the development of the scores in
time, modelled as an autoregressive model.
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Chapter 6
Conclusion

The goal of this thesis is to improve the detection of relapses in patients suffering from
schizophrenia, in order to foresee their worsening state and treat it timely and accord-
ingly, so that long and possibly unnecessary stays in psychiatric hospitals are minimised,
following a trend of decentralisation of psychiatric care from big institutions to local
community centres [6]. The classifier model that is the outcome of the thesis achieves
the goal to increase sensitivity of detection, predicting all practically predictable re-
lapses. As such, it could be put into practice and integrated into the broader workings
of the ITAREPS programme to help advance its long-term objectives.
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6.1 Future Work
Regarding time-series analysis, future attempts should utilise more advanced methods
that integrate time-series decomposition, such as singular spectrum analysis [3]. The
reason why this method was not employed in this thesis is due to the nature of the chosen
gradient boosting ensemble technique that, at least to the extent of what has been
discussed in previous chapters, could not handle time-sequence data more effectively.
In future works and given more relapse patient data is rendered available, another
interesting learning technique could be researched and employed—that of classification
of time-series images using convolutional neural networks [5].
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Figure 6.1. Relative predictor (feature) importance for partial sums. The ten partial
sums with the highest relative feature importance are sums of the following EWSQ scores:
4,6,10; 6,7,8; 4,9,10; 3,7,10; 3,5,6; 2,7,8; 2,4,6; 3,4,10; 1,3,5; 3,6,10.
The most represented combinations in all partial sums are 3, 5, 10 with five counts each.

Another feature extraction technique that could be further researched in the future
and which might be of interest to the architects of the ITAREPS study, pertains to
partial sums of scores and their relative importance in improving class separability. For
the purpose of demonstrating this, a feature set is constructed where, for each EWSQ
score submission a feature is generated from the sum of scores of all question combi-
nations of three, of which there are

(10
3
)

= 120. Then, a gradient boosting ensemble
is trained on the generated feature set and the resulting predictor importance values
might resemble those in Figure 6.1. It is evident that some partial sums contribute
more towards separability than others, and the ten topmost ones are enumerated in the
caption below Figure 6.1. Unfortunately, this feature extraction technique was formu-
lated too late in the process of working on the task and writing the thesis and so it was
not implemented.
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Appendix A
Abbreviations

EWSQ . Early Warning Sign Questionnaire

ITAREPS . Information Technology Aided Relapse Prevention Programme in
Schizophrenia

NaN . Not a Number

PCA . Principal Component Analysis

SMS . Short Message Service
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