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Preface

The topic of this text is the study of higher-dimensional categorical universal algebra
algebra. We study two-dimensional algebraic theories and monads (and their properties),
and we are interested in generalising the results of categorical universal algebra outside
the setting of ordinary category theory.

The study of ordinary categorical universal algebra is well-established and it essentially
started with Lawvere’s thesis [61] in the 1960s, where he introduced the notion of an
algebraic theory for the first time. His notion corresponds to the universal-algebraic
notion of an equational theory that dates back to Birkhoft’s paper [16], which established
universal algebra as a field of mathematics. For an excellent introduction to the theory of
algebraic theories, we refer to a recent textbook by Adamek, Rosicky and Vitale [5] that
covers the main results concerning algebraic theories in the setting of ordinary category
theory.

Moving from ordinary category theory, we wish to study generalisations of the notions
of Lawvere’s algebraic theories and of monads using the theory of enriched categories.
Instead of ordinary categories, we consider categories enriched in a suitable monoidal
category ¥, say the category Pos of all posets and monotone maps, or the category Cat
of all small categories and functors. We are then able to study interesting structures of
algebraic nature that are equipped with an underlying poset or an underlying category,
instead of a set. The fact that the underlying “object” of an algebra has an additional
structure of categorical nature explains why we speak of “higher-dimensional” categorical
algebra.

The study of categorical universal algebra using the methods of enriched category
theory is not new either: the study of cocompletions of enriched categories by Kelly [41],
and the recent investigations of enriched algebraic theories of Lack and Rosicky [57],
recover large portions of the theory of ordinary algebraic theories in a very general setting.
Still, it is possible to find interesting parts of the ordinary theory that have not yet been
generalised in a satisfactory manner; and perhaps even more importantly, we want to
persuade the reader that even in the cases where there is a general result for enriched
algebraic theories, it is worthwhile to study its ramifications for concrete enrichments.

Going even further, some of the results that are definitely of algebraic flavour cannot
be stated with the methods of enriched category theory. We have to work in a yet weaker
setting of 2-dimensional categories, pseudofunctors and pseudonatural transformations
(see, e.g., [35]) instead of categories enriched in Cat. The “pseudo” prefix here indicates
that many of the requirements present as axioms in enriched category theory are relaxed
to fit the examples we have in mind.

We give a more detailed account of the contents of the text below.

4
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Structure of the text.

Chapter 1 In the first chapter we introduce basic notions of (categorical) universal al-
gebra and give a motivation for its study.

Chapter 2 We turn to generalising some of the basic notions of Chapter 1 to the setting
of enriched categories. The essentials of cocompletions of categories are reviewed
and their connection to categorical universal algebra is hinted at.

Chapter 3 Morita equivalence detects the situation in which two different theories give
rise to the same class of models. In this chapter we first quickly generalise the notion
of an algebraic theory to the context of enriched category theory, then we generalise
the result of Adamek, Sobral and Sousa concerning Morita equivalence of many-
sorted algebraic theories. The result is parametric in the choice of enrichment and
in the choice of the class of colimits in the theory. We apply the result to recover
some known Morita equivalence theorems and significantly extend them.

Chapter 4 Every theory map between two theories gives rise to a well-behaved algebraic
functor between the categories of algebras for the respective theories. An example of
this phenomenon is the “quotient” of the theory of groups to the theory of commuta-
tive groups, that gives rise to the inclusion of the category of commutative groups in
the category of all groups. In fact, there is a dual correspondence between (certain)
theories and algebraic categories that is usually dubbed Gabriel-Ulmer duality. We
give a very general account of the duality in this chapter.

Chapter 5 Sifted colimits are those colimits that commute with finite products in sets.
They play a major role in categorical universal algebra. For example, varieties
of algebras are precisely the free cocompletions under sifted colimits of algebraic
theories. In this chapter we give an elementary characterisation of sifted weights
for the enrichment in categories. We also provide a number of examples of sifted
weights using our elementary criterion.

Chapter 6 Birkhoff’s variety theorem from universal algebra characterises equational
subcategories of varieties. We give an analogue of Birkhoff’s theorem in the setting
of enrichment in categories. For a suitable notion of an equational subcategory we
characterise these subcategories by their closure properties in the ambient algebraic
category.

Chapter 7 When studying weak categorical notions such as pseudoadjunctions and pseudo-
monads formally, it is conveninent to consider them as constructions in ¢ Gray-
category instead of in a general tricategory. Gray-categories are a strict kind of
tricategories and known coherence results state that one does not lose any generality
working with Gray-categories, rather than in tricategories. We introduce Gray-
categorical notions and review the theory behind giving presentations of Gray-
categories.

Chapter 8 Using the theory of Chapter 7, we give presentations of important Gray-
categories: the free pseudoadjunction Gray-category psa, the free pseudomonad
Gray-category psm, and their KZ-variants.
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Chapter 9 The formal adjoint functor theorem states that a right adjoint is equivalently
a certain absolute left Kan extension. Naively reformulating this result from ordi-
nary category theory, we would presume that a pseudoadjunction is equivalently a
certain absolute left Kan pseudoextension, given the right notion of a Kan pseudoex-
tension. Such a notion already appeared in literature, and we show that using this
notion the expected formal pseudoadjoint functor theorem indeed holds.

Chapter 10 We turn to study the properties of KZ-pseudoadjunctions, KZ-pseudomonads
and their properties. We show that KZ-pseudomonads are property-like in a certain
technical sense, loosely meaning that pseudoalgebras for these pseudomonads are
objects “with additional properties” instead of objects “with additional structure”.

Chapter 11 Wreaths are a generalisation of the notion of a distributive law. We intro-
duce the notion of a wreath in a Gray-category and give an elementary description
of wreaths in this setting.

Original results contained in the text. The original results of the author are col-
lected (and properly cited) in the following list. Other results that are contained in the
text but not in the list are either not original, or easy /folklore.

1. Chapter 3 contains a refinement for many-sorted algebraic theories of the basic
Morita-type theorem. This chapter closely follows the exposition of [31].

2. Chapter 4 contains a proof of Gabriel-Ulmer duality for U-theories and W-algebraic
categories enriched in a suitable monoidal category #". The result has not yet been
published elsewhere.

3. Chapter 5 contains a coend characterisation of flat weights for a sound class of
weights in a general enrichment. In the special case of the enrichment in categories
and for the sound class of weights for finite coproducts, this yields an elementary
characterisation of sifted weights. The results of this chapter have appeared in [30)].

4. Chapter 6 contains a proof of a two-dimensional Birkhoff theorem. The results of
this chapter are contained in [28].

5. Chapter 8 contains presentations of Gray-categories psa, psm, kza, kza detecting
pseudoadjunctions, pseudomonads, KZ-pseudoadjunctions and KZ-pseudomonads,
respectively. These presentations are spelled out in detail.

6. Chapter 9 contains a proof of formal pseudoadjoint functor theorem. This is a novel
result contained in the preprint [29].

7. Chapter 10 contains a characterisation of KZ-pseudoadjunctions and KZ-pseudomonads
that expands the characterisation of KZ-pseudomonads already present in [67].

8. Chapter 11 contains a description of wreaths of 2-functors around pseudomonads.
This description is new and has not appeared anywhere in the literature.
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Enriched categorical universal algebra



Chapter 1

Introduction to categorical universal
algebra

The intention of this chapter is to introduce categorical universal algebra and to motivate
this subject by showing its connections to “ordinary” universal algebra. We give the basic
definitions pertaining to categorical algebra, and then reformulate and generalise them in
the setting of enriched category theory.

The topic of the remaining chapters of Part I of this thesis is “categorical universal
algebra in the enriched setting”. To give a very quick taste of the difference between
classical universal algebra and enriched universal algebra, consider

e The example of natural numbers. Natural numbers can be thought of as a set N
endowed with algebraic structure: certain operations on this set, such as addition or
multiplication, that are subject to laws or axioms: for example, for any two natural
numbers a, b the commutativity condition

axb=bxa
holds.

e The example of sets themselves. Consider (putting foundational issues aside) the
collection Set of all sets and mappings. This huge collection is also endowed with
algebraic structure in some sense. Similarly to the case of natural numbers, we can
take two elements of the collection Set and perform some operations on them. The
cartesian product of two sets is a well-known operation on sets, taking sets A and
B and producing the set

Ax B =1{(a,b)|ac A, be B}

of ordered pairs of elements from A and B. In fact, the operation x extends to pairs
f:A— A" and g : B — B’ of mappings, producing the mapping
fxg:AxB—» A xDB
(a,b) = (f(a), g(b))

and thus being “functorial”. This operation is also subject to axioms. For example,
for any two sets, their cartesian product is almost commutative. That is, the equality

AxB=BxA
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does not hold. However, the sets A x B and B x A are in an abstract sense almost
the same: there is a natural isomorphism (bijection) map

s:AxB—->BxA

that for each pair (a,b) returns the pair (b, a).

The need for study of the “higher-dimensional” algebraic structures in the sense of the last
example arises very often when we turn from studying concrete examples of algebras and
instead begin to study classes of algebras and relations between such classes of algebras.
In this chapter we give a basic overview of universal algebra in the sense of the first
example, and in subsequent chapters we study the theory of categorical universal algebra
in the enriched setting, motivated by the abundance of the examples of the second kind.

Structure of the chapter.

1. In Section 1.1 we will give the most basic definitions from universal algebra and
show examples from computer science that enlighten the importance of many-sorted
algebras.

2. Section 1.2 introduces the notion of an algebraic theory. This is the abstract struc-
ture generalising the usual notion of an equational theory from universal algebra. We
will argue that the level of generality of the definition allows interesting variations
of the notion of an algebra with almost no overhead in the difficulty of presentation.

3. Then we shall cover the notion of a sifted colimit in Section 1.3. Sifted colimits
are those colimits that commute with finite products, and they satisfy many useful
properties in categories of algebras for an algebraic theory.

4. Morita equivalence studies the situation when two different equational theories yield
the same category of algebras. We will deal with the basics of the theory in Sec-
tion 1.4.

5. Section 1.5 defines the notion of an equationally defined subcategory of an algebraic
category, and states Birkhoff’s HSP theorem in categorical language.

6. We shall sometimes use the monad approach for studying universal algebraic phe-
nomena. Monads give an alternative abstract definition of the notion of a theory.
We quickly introduce them in Section 1.6.

All the notions developed and all the results stated in this chapter are well-known and
standard. The exposition in this chapter is quick and it serves the role of settling the
notation rather than being completely self-contained.

1.1 Universal algebra

Universal algebra was founded by Garrett Birkhoff in 1935 in his seminal paper [16]. The
unifying strength of universal algebra quickly established it as an important field of algebra
that conceptually explains the similarities between various classes of abstract algebras.
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We shall give a short exposition of the basic notions of universal algebra using some
well-known structures from computer science. In anticipation of further generalisations,
our presentation of basic notions of universal algebra differs slightly from those given in
standard universal algebra textbooks (e.g. [26]). Namely, we intend to use category theory
notation from the very outset, since it makes the generalisation easy to grasp.

An example of an algebraic structure abundant in both pure mathematics and theo-
retical computer science is that of a monoid.

Definition 1.1.1. A monoid is a set A together with an identity element e € A and a
binary operation = : A x A — A, subject to the unit and associativity axioms

exa=a, axe=a, (axb)xc=ax(bxc)
holding for all elements a, b, c € A.

Example 1.1.2. Let us fix a finite set S = {s1,..., s,}, thought of as an alphabet with
symbols si,...,s,. If we denote by S* the set of all (finite) words in the alphabet S, we
can form a free monoid F'S = (S*,*,€) by defining the operation

1 8% x §* —» G§*F

as concatenation of strings, and denoting the empty word by e¢. The axioms of a monoid
are satisfied since concatenation is associative and e plays the role of unit with respect to
concatenation.

Observe that the free monoid F'1 on a one-element set 1 is isomorphic to the monoid
(N, +,0) of natural numbers with addition.

The example of monoids shows three main ingredients of an abstract algebra. It is a
set that comes equipped with some operations of a given signature, and the operations
satisfy certain prescribed azioms. Firstly we will introduce the notion of an algebra for a
general signature.

Definition 1.1.3. A signature X is a set of operation symbols together with an arity
function
ar: X — N

that assigns to each operation symbol o its arity ar(o).

An algebra for a signature ¥ is a set A together with with an n-ary operation o
A™ — A for every operation o € ¥ such that ar(c) = n. We often write 1 (the one-element
set) instead of A°.

A homomorphism of ¥-algebras from A to B is a function f : A — B that preserves
the operations: for every n-ary operation o € X, the square

A .

commutes.
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The introduction of axioms for algebras requires the notion of a Y-term. Without
being too technical, we will settle with saying that a X-term is a well-constructed algebraic
expression (a syntactic tree) constructed from variables and operation symbols from . A
Y-equation is then a formal equality [ ~ r between two Y-terms [ and r, and a -algebra
A satisfies the equation [ ~ r if the algebraic expressions [ and r, when interpreted in A,
yield the same output for every valuation of the variables in A.

Example 1.1.4. Using the notions defined above, a monoid is an algebra for the signature
%= {xe}
with ar(x) = 2 and ar(e) = 0, satisfying the formal equalities
e* T~ I, rrexx, xx(y=z)~ (r*y) =z

The algebraic structure of a monoid is one-sorted, since it involves essentially only one
set: namely the “carrier set” of the algebra. Many applications of algebra in computer
science (see, e.g., [81]) naturally demand a many-sorted approach to universal algebra, as
introduced in [17]. An elementary example of a many-sorted algebra is a directed graph,
since every graph consists of two sorts of data: the vertices, and the edges.

Example 1.1.5. A directed graph is a pair (E, V') of sets together with two maps s : £ —
Vand t : E — V, being the source and target maps, respectively. In a diagram, we have
a parallel pair

of sets and mappings.

A slightly more involved example of a many-sorted algebra is a stack. In this example
the two sorts of data considered are the alphabet sort and the stack sort. Unlike in the
example of a directed graph, we need operations with arities of mixed sorts: the operation
of pushing a symbol on top of a stack requires a symbol (that has the alphabet sort), the
stack involved (of the stack sort), and the operation returns a new stack. Moreover, we
need to specify axioms guaranteeing the stack behaviour of the algebra.

Example 1.1.6 ([81]). A stack is a pair (A, S) of sets, together with a nullary operation
empty : 1 — S, a unary operation pop : S — S, and a binary operation push : A xS — 5,
subject to axioms

pop(empty) = empty,  pop(push(a,s)) = s.

It is possible to give a formal definition of a many-sorted signature, many-sorted alge-
bra and a homomorphism of many-sorted algebras in the same spirit as in Definition 1.1.3.
These definitions are, however, more involved than in the one-sorted case. We shall intro-
duce the notion of an algebraic theory in the following section, showing how this approach
yields the expected definitions for free.
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1.2 Algebraic theories

The categorical notion of a one-sorted algebraic theory was introduced by W. Lawvere in
his PhD thesis [61]. We are going to introduce the notion of an algebraic theory and its
variants. We use the standard notation and basic notions of category theory; we refer to
the standard textbooks [10] and [64].

The set N will now be considered as a category (and denoted by N again). The
category N has natural numbers as objects, and the only morphisms in N are those that
guarantee the existence of all the finite coproducts of the formn=1+---+1=ne1.

Definition 1.2.1 (Lawvere [61]). A Lawvere theory .7 is a category with finite coprod-
ucts, together with a finite-coproduct-preserving functor 7' : N — .7 that is bijective on
objects.

Given a Lawvere theory .7, we denote by Alg(.7) the full subcategory of [.7 P, Set]
spanned by all finite-product-preserving presheaves. Every finite-product-preserving pre-
sheaf A : 7 °°7 — Set is called an algebra for the theory 7, a homomorphism between
two algebras A and B is a natural transformation f : A — B between the respective
presheaves, and the category Alg(.7) is called the category of algebras for 7. Any
category equivalent to Alg(.7) for some theory 7 is called an algebraic category.

Example 1.2.2. Define .7 to be the category that has as objects the free monoids F'n onn
generators for every natural number n, and as morphisms all the monoid homomorphisms
between them. This category has finite coproducts, because the isomorphism F(m) +
F(n) = F(m + n) holds for all pairs m,n of natural numbers. If we equip .7 with the
obvious finite-coproduct-preserving functor 7' : N — .7 that maps a natural number n to
the free monoid F'n, we observe that 7 is a Lawvere theory.

It is easy to prove that the category Alg(.7) of algebras for the Lawvere theory .7 is
equivalent to the category Mon of all monoids and monoid homomorphisms.

The introduced formalism of a theory as of a certain category with finite coproducts
admits a quick and natural generalisation.

To obtain a notion of an S-sorted theory, we replace N with .#*. Here, .* has the
set of all strings S* over an alphabet S as the set of objects, and the morphisms in .*
are such that any word vw € S* is a coproduct v + w in .*.

Remark 1.2.3. Let us slightly reformulate the above comments. Given a set S, we can
form the discrete category . consisting of the object set S, and the only morphisms in .%
being the identity morphisms for each object s € S. The above introduced category .#*
is obtained by “freely adjoining” finite coproducts to the discrete category .#. In more
precise terms, .#* is the free cocompletion of . under finite coproducts.

Definition 1.2.4 (Bénabou [14]). Let S be any set. An S-sorted theory 7 is a category
with finite coproducts, together with a finite-coproduct-preserving functor 1" : .* — 7
that is bijective on objects.

Given an S-sorted theory 7, the definition of an algebra, homomorphism and the
category of algebras is the same as in the case when .7 is a Lawvere theory.

Note that by the above definition, the notion of a Lawvere theory is a special instance
of the notion of an S-sorted theory for S being a one-element set 1. This follows from
observing that N ~ 1* where 1 denotes the one-morphism category.
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Example 1.2.5. The category Graph of directed graphs and their homomorphisms is
equivalent to the presheaf category [2°7, Set] for the category & defined by the following
diagram:

We may form a many-sorted algebraic theory 7 from &2 by freely adjoining finite co-
products to the category &. Then the presheaf category [2°, Set] is equivalent to the
category Alg(.7) of algebras for the theory 7.

The construction of an algebraic theory for the example of stacks is slightly more in-
volved, since the specification of the stack data type contains operations of with signatures
of mixed sorts. We, however, indicate the basic idea:

1. The two sorts (stack and alphabet) are denoted by s and a. The set of objects of
the theory consists is the set S* of the words in the alphabet S = {s, a}.

2. We consider the category .#* that endows S* with a finite coproduct structure, and
“freely adjoin” the “rewrite rules”

pop:s—s, push:s—as, empty:s—e

as morphisms in .*. Loosely said, to freely adjoin these morphisms means that we
consider the above three morphisms as rewrite rules on the words in the alphabet
S, and add also all “derived” rewrite rules that can be formed from the generating
rewrite rules. For example, the theory for stacks contains the morphism pop - pop -
push: s — s — s — as.

The conceptual ease in introducing many-sorted algebraic theories is one of the ad-
vantages of the categorical approach to universal algebra. Moreover, we can define a more
general notion of an algebraic theory that does not refer to any sorting whatsoever.

Definition 1.2.6. An algebraic theory is any category .7 with finite coproducts.

Remark 1.2.7. 1. The definition of an algebraic theory subsumes both the one-sorted
and many-sorted definition, and allows much of the theory to be developed without
any regard to sorts. This conceptual simplification often leads to simpler proofs, see

e.g. [5].

2. Some authors define the notion of an algebraic theory dually by taking it to have
finite products instead of coproducts. While this approach has the advantage of
being closer to the classical universal algebraic approach, the notion of theories
with coproducts usually gives notationally nicer proofs.

Another advantage of the categorical approach to universal algebra is that we can very
easily consider models of an algebraic theory in an ambient category different from Set.
Given an algebraic theory for a given type of an algebraic structure, we can e.g. retrieve
the ordered or topological variants of the algebraic structure.
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Example 1.2.8. Given an algebraic theory .7 and a category 2~ with finite products,
an 2 -model of 7 is a finite-product-preserving functor .77 — 2. The full subcategory
of the functor category [.7°P, 2] on all finite-product-preserving functors is called the
category of 2 -models of 7.

Denote by Pos the category of posets and monotone maps, and by Top the category
of topological spaces and continuous mappings. If .7 is the Lawvere theory of monoids,
the Pos-models of .7 are exactly the partially ordered monoids, and the Top-models of .7
are exactly the topological monoids.

1.3 Commutativity of limits and colimits

Computing limits of algebras is easy; they are computed essentially on the level of their
underlying sets due to the fact that limits commute with limits. Computation of colimits
of algebras is usually much harder. However, there is an important class of colimits of
algebras that can be computed easily as well. More specifically, colimits that commute
with finite products in Set are very well behaved in algebraic categories: they can also be
computed on the level of the underlying sets of the involved algebras. The importance of
such colimits has already been noted by Lawvere in [61].

Thus a very important aspect of the categorical approach to universal algebra is the
study of commutativity of limits and colimits.

Definition 1.3.1. Given two small categories Z and €', we say that Z-colimits commute
with € -limits in Set, if for any diagram D : 9 x ¥ — Set the canonical morphism

can : colim lim D(d, ¢) — lim colim D(d, ¢)
2 ¢ ¢ 2

is an isomorphism. Given two classes ® and ¥ of small categories, we say that W-colimits
commute with ®-limits if for every & in ¥ and % in ® it holds that Z-colimits commute
with %-limits in Set.

In practice, one often fixes the class ¥ of schemes for limits and defines the appropriate
class T of schemes for colimits by the commutativity condition.

The case that is most useful in the setting of algebraic categories is the case where we
set W to be the class of finite discrete categories in the above definition.

Example 1.3.2. We say that Z is a sifted category if Z-colimits commute with finite
products in Set. A colimit is called sifted whenever the domain of its diagram is sifted.

Similarly, we say that a category Z is filtered if Z-colimits commute with finite limits
in Set. A colimit is called filtered whenever its diagram is filtered.

The basic example of a sifted colimit is a reflexive coequaliser.

Example 1.3.3. Denote by Z the category
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and by %, the category

where the equalities
s-1r =1y, t-r=1,

hold. We call the colimit of a diagram D : ¥ — 2 a coequaliser of D, and the colimit of
a diagram D, : , — Z in X is called a reflexive coequaliser of D,.

We will see that the category &, is sifted, and therefore reflexive coequalisers are sifted
colimits. This is not the case for ordinary coequalisers, as the following example shows:
Let D; : 9 — Set be the diagram corresponding to a discrete graph on one vertex and
Ds : & — Set be the one-arrow graph. Then

colim(D; x Do) = 2, colim D; x colim Dy =~ 1,
so the canonical morphism
colim(D; x Ds) — colim Dy x colim Dy
cannot be an isomorphism.

There are many facets of the importance of sifted colimits in categorical universal alge-
bra. For example, they play a central role in the characterisation of algebraic categories.
We will note some easy facts concerning sifted colimits that are very handy in practical
computation with algebras.

Remark 1.3.4. The following two observations are direct corollaries of the definition of
a sifted colimit and are proved e.g. in [5].

1. Any algebraic category Alg(.7) is closed in [7 %, Set] under sifted colimits. Let 2
be a sifted category, D : ¥ — Alg(.7) a diagram landing in an algebraic category
for a Lawvere theory 7. Sifted colimits of algebras are computed on the level of
underlying sets. For example, if

Ds

7
Da < pr— Db

~_ "
Dt

is a reflexive pair of algebras, the reflexive coequaliser C' of the above reflexive pair
can be computed by computing the reflexive coequaliser C(1) of the pair

Ds(1)
T
Da(1) « pr(1)— Db(1)
~_

Dt(1)

and then observing that C'(n) = (C(1))" has to hold by siftedness of 2.
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2. Since sifted colimits commute with finite products in the category Set, they do so in
any presheaf category [.7 %, Set|, because there they are computed pointwise. Any
algebraic category Alg(.7) is closed under limits and sifted colimits in [.7°P, Set],
and thus sifted colimits commute with finite products in Alg(.7) as well.

Since sifted colimits enjoy many nice properties, it is very handy to have a usable
characterisation of sifted diagrams. The following characterisation goes back to [36].

Proposition 1.3.5 (Characterisation of sifted categories.). A small category P is sifted
if and only if it is non-empty and for every pair dy,dy of objects from & the category of
cospans on dy and dy is connected.

The proof, along with other observations about sifted colimits, is contained for example
in Chapter 2 of [5]. We also give another argument in Example 5.1.5

Remark 1.3.6. We recall that a cospan in a category ¥ is a diagram of the form

d
/ \
d; d

for some morphisms f; : di — d and f5 : do — d in Z. The category of cospans in Z on
dy and dy has diagrams of the above shape as objects, and given two cospans

d d
f1 / f2 13
dy do

the morphism f : d — d' is a morphism of the two cospans if the diagrams

d—7L d— 5

VN

commute. Then the connectedness of the category of cospans on d; and dy requires the
category of cospans to be non-empty and for any pair (f1, f2) and (f{, f5) of cospans on
dy and dy there has to be a zig-zag of cospan morphisms from (f1, f2) to (f1, f3).

1.4 Morita equivalence

Sometimes it is possible to describe some kind of an algebraic structure in two different,
yet equivalent ways.



1.4. Morita equivalence 17

Example 1.4.1 (|5]). Directed reflexive graphs can be seen as either two-sorted or one-
sorted algebras. This is a simple example of two “theories” having equivalent categories
of models. Let & be the category

K
e r—> v
1\t/
with the following equations satisfied:
r-s=1,, r-t=1,

The presheaf category [Z2°F,Set| of “models” of & is the category RGraph of reflexive
directed graphs. That is, the models are graphs that have for each vertex a distinguished
loop on that vertex. Now we can use the argument that each vertex is essentially definable
by its distinguished loop. Let 2’ be the subcategory

of . Both morphisms s -7 and t - r are idempotent: they satisfy the equations
§$-T-S-T=8"7, t-r-t-r=t-r

Given a model A : (2')°? — Set of &', we can construct a directed reflexive graph from
it by taking A(e) to be the set of edges of A and the image of A(e) under A(s-r) as the
set of vertices. Showing the equivalence |2, Set] ~ [(Z')°P, Set] is then easy.

The above example gives the gist of the basic motivation for studying Morita theory.
Given an algebraic theory .7, we study its category Alg(7) of algebras and ask whether
there is any other algebraic theory .7’ such that the categories Alg(.7) and Alg(.7") are
equivalent. A similar question asks for a characterisation of all algebraic theories .7’ that
have, up to an equivalence, the same category of algebras as a given algebraic theory 7.

Definition 1.4.2. We say that two algebraic theories .7 and .7’ are Morita equivalent if
their categories of algebras are equivalent as categories; that is, if

Alg(7) ~ Alg(T")
holds.

The original motivation for the theory of Morita equivalence comes from module the-
ory. There the question was the following: given two rings R and S, when are the
categories pMod and gMod of left modules over R and S categorically equivalent? This
problem was solved in the paper [70] by Morita.

Dukarm in [32] provided a characterisation of Morita equivalent Lawvere theories, and
this characterisation was generalised for the case of S-sorted theories in Adamek, Sobral
and Sousa [7]. We will state the more general result of [7].

Theorem 1.4.3. Two S-sorted theories 7 and 7' are Morita equivalent if and only if
T ~ 7, for some pseudoinvertible idempotent u in T .
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The notion of a pseudoinvertible idempotent used in the previous theorem is quite
involved; here we shall only comment that it is a generalisation of the phenomenon that
occurred in Example 1.4.1, where we constructed a new “theory” &’ from % using cer-
tain idempotents present in . We will give a proper generalisation of the notion of a
pseudoinvertible idempotent in Chapter 3, and it will coincide with the usual notion of a
pseudoinvertible idempotent for ordinary algebraic theories.

1.5 Birkhoff’s variety theorem

Birkhoff’s variety theorem is a celebrated result from [16] that characterises equationally
defined subcategories of a category of algebras. In short, let 3 be a (one-sorted) signature
in the sense of Section 1.1 and let us denote by Y-Alg the category of all ¥-algebras and
their homomorphisms. Given a set F of Y-equations, there is a full subcategory o of 3-Alg
of all ¥-algebras that satisfy every equation in the set E. Every such subcategory has
nice closure properties: it is closed under forming products of algebras, regular quotients
(homomorphic images) of algebras, and subalgebras. The surprising fact is that any full
subcategory 7 of ¥-Alg that satisfies these closure properties is essentially an equationally
defined subcategory of »-Alg.

We shall introduce the notions needed for formally stating the Birkhoff theorem. To
be able to speak about equationally defined subcategories, we first need a definition of an
equation in an algebraic theory.

Definition 1.5.1. Given an algebraic theory .7, an equation [ ~ r is a pair [,r : s — t of
morphisms in .7. An algebra A : J° — Set satisfies the equation [ ~ r if A(l) = A(r)
holds.

Example 1.5.2. If .7 is the one-sorted algebraic theory for monoids, the elements of
T (F1, Fn) correspond to words in an n-element alphabet. If we take 1 to be the one-
element set {z} and 2 to be the set {a,b}, then the two morphisms [ : F1 — F2 and
r: F'1 —» F2 defined by

l(x) = ab, r(z) = ba

constitute an equation in .. Monoids A : .7 °P — Set satisfying this equation are precisely
the commutative ones.

Definition 1.5.3. Let E be a set of equations in an algebraic theory 7. We say that
the full subcategory 7 of Alg(7) spanned by algebras satisfying the equations from E is
the variety generated by E.

Example 1.5.4. The category CMon of commutative monoids and their homomorphisms
is the variety in Mon generated by the equation [ ~ r from Example 1.5.2.

Varieties have nice closure properties in the category »-Alg of Y-algebras.
Remark 1.5.5. Any variety 7 in X-Alg is closed in Y-Alg under
1. regular quotients,

2. subalgebras,
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3. products,
4. filtered colimits.

Recall that an object B in 7 is a reqular quotient of an object A if there is a regular
epimorphism e : A — B in 7, that is, if there is a pair ;1 : X — A and 25 : X — A of
morphisms such that in the following diagram

the morphism e is a coequaliser of z; and x,. In algebraic categories, having a regular
quotient B of A corresponds to saying that B is (isomorphic to) the quotient algebra A/60
of A generated by the kernel congruence 6 of e.
For our needs, we say that in any algebraic category, an algebra A is a subalgebra of
B if there exists a mono m : A — B, that is, a morphism that has the right cancellation
property:
m-x =m-y implies z =y

for any pair of morphisms z and y. This definition coincides (up to an isomorphism of
algebras) with the usual notion of a subalgebra from universal algebra.

Since the (categorical) product of two algebras again coincides (up to an isomorphism
of algebras) with the notion of a cartesian product of algebras, the last interesting closure
property is the closure under filtered colimits. Recall from Example 1.3.2 that a category
2 is filtered if Z-colimits commute with finite limits in Set.

With these definitions, we can now state the Birkhoff theorem. Observe that, in
contrast to the original Birkhoff theorem from [16], the closedness requirements include
closure under filtered colimits.

Theorem 1.5.6 ([5]). Let o/ be a full subcategory of Alg(.7) for some algebraic theory
T . The category < is (equivalent to) a variety if and only if it is closed in Alg(7) under

1. regular quotients,
2. subalgebras,

3. products,

4. filtered colimits.

The closure properties 1.-3. from the above theorem are dubbed “HSP” conditions.
The additional requirement for closure under filtered colimits cannot be in general ex-
cluded. The reason this closure does not appear in [16] is that it is not needed in the
special case of a one-sorted theory. It is another of the successes of categorical algebra
that the need for this closure property, often mistakenly omitted, has been pointed out
in [6].
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Remark 1.5.7. Let E be a set of equations in an algebraic theory 7. For any such set
we can define a new set Con(E) of all consequences of E. The set Con(E) contains all
equations I’ ~ r’ such that any algebra A in Alg(.7) satisfying all equations [ ~ r from
E also satisfies I’ ~ /. This set Con(F) constitutes a congruence on the category 7.
That is, there is a quotient category .7 /Con(FE) defined as having the same objects as .7,
and for two objects ¢ and ', the hom-set .7 /Con(FE)(t,t') is the quotient of the hom-set

T (t,t') by the equivalence relation
{(L,r)|l:t >t r:t—>t andl ~re Con(F)}.

The fact that Con(FE) is a congruence precisely states that the identities and composition
in .7 /Con(E) can be defined on the equivalence classes of morphisms in the usual manner.
Moreover, there is a “theory map”

e: 7 — 7 /Con(E),

i.e., a functor preserving finite coproducts (the structure of the theory). Algebraic theories
and theory maps form a category, and e : J — 7 /Con(E) then is a regular quotient
of algebraic theories. The variety defined by the set E of equations is equivalent to the
algebraic category Alg(.7 /Con(E)).

With this observation we can rephrase Theorem 1.5.6 as follows: There is a one-to-
one correspondence between reqular quotients e : F — 7' of algebraic theories and their
morphisms, and full subcategories o/ of Alg(T) that are closed in Alg(T) under reqular
quotients, subalgebras, products, and filtered colimits.

1.6 Monads

Sometimes it is more convenient to use a different formalism capturing the notion of an
algebraic theory. We shall sometimes use the formalism of monads. As a first approxi-
mation, a monad can be thought of as the abstraction of the collection of all terms of an
algebraic theory, together with abstract rules concerning their substitution.

Example 1.6.1. Consider the example of monoids. Given a set X of variables, the set
of monoid terms in the set X of variables is

TX = X*,

i.e., the words in the alphabet X. As we can form the set X™* of all words for any alphabet
X, this gives us an endofunctor
T : Set — Set

of sets, acting on a mapping f : X — Y to give a mapping T'f = f*: TX — TY that
maps a word from alphabet X to a word from alphabet Y by “element-wise translation
using f”.
Since any letter in an alphabet X can be thought of as a one-letter word, we get a
unit mapping
nx : X »TX

for every alphabet X. Given a “word of words in alphabet X, i.e., the set TT X, we have
a “flattening” mapping
pux TTX - TX
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that concatenates all the words into a single one: for example,

px ((wy)(yze)(v)) = vyyzzoe.

The data in the above example satisfy many intuitively obvious laws, which we will
abstract into axioms in the following definition.

Definition 1.6.2. A monad (T,n, ) on a category 2 is an endofunctor T': 2" — Z
together with two natural transformations n: 14 — 7 and p : TT" — T, subject to the
following axioms:

1. The unit triangles

T " 77 T
p and g
1r 1r
T T

commute, and

2. the associativity square
TTT —*— TT

wr H

commutes.

Definition 1.6.3. An algebra for a monad (7,7, 1) on 2" is a morphism a : TX — X in
Z such that the diagrams

X X sTX

and

TXT>X

commute. Given two algebras a : TX — X and b : TY — Y for a monad (7,7, u), a
morphism h : X — Y in 2 is a homomorphism from a to b if the square

Tx T 7y

X —Y
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commutes.

Example 1.6.4. It is now straightforward to check that a monoid, as introduced in
Definition 1.1.1, gives rise to an algebra for the monoid monad (7,7, ) introduced in
Example 1.6.1, and that conversely any algebra a : T X — X for this monad is a monoid,
with the multiplication operation z =y being defined as a(xy), and the unit e being defined
as a(€). Analogously, homomorphisms of monoids in the sense of universal algebra are
exactly the homomorphisms of the respective algebras for the monoid monad.

We shall use the formalism of monads e.g. in our treatment of Birkhoff’s theorem in
Chapter 6.



Chapter 2

Preliminary notions

As we concern ourselves with categorical universal algebra in the setting of enriched
categories in this thesis, it is vital that we give a short overview of some of the basic
notions that will be used throughout the thesis. Since the theory of enriched categories
is very rich and broad, we shall not attempt to give a full account of it. Instead, we
introduce its basic notions more for the need of establishing the notation for the rest of
the text; and the choice of the topics covered in this chapter hints at what will follow in
the rest of the text.

Thus we give prominent examples of the categories in which we can enrich, review the
basics of limits and colimits (and colimit cocompletions) in the enriched setting, introduce
the basic algebraic notions and discuss some of the technical definitions that arise when
we study algebraic phenomena in this level of generality.

Structure of the chapter.

1. We recall some of the basic notions of enriched category theory in Section 2.1. We
shortly discuss cocompletions of enriched categories under weighted colimits, and
commutativity of limits and colimits.

2. In Section 2.2 we give definitions of a W-theory and W-algebra parametric in the
choice of a class ¥ of weights, and discuss the connection with cocompletions.

2.1 Colimits in enriched categories, cocompletions

In this section we quickly recall the notions of a limit and colimit for enriched categories,
and cocompletions of categories. For a deeper exposition of the enriched notions we refer
to [41].

Enriched categories

Assumption 2.1.1. From now on, whenever we speak of categories enriched in a cate-
gory ¥, this ¥ is assumed to be a complete and cocomplete symmetric monoidal closed
category ¥ = (%,®,1,[|—,—]). (I being the unit of the tensor and [—, —] being the
internal hom.)

23
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Notation 2.1.2. We shall denote by 7-CAT the 2-category of all ¥#'-categories, 7 -
functors and ¥ -natural transformations.

To avoid heavy notation concerning 7 -categories, #'-functors and 7 -natural transfor-
mations, we use the usual convention present, e.g., in [41].

Notation 2.1.3. Whenever the base category ¥ is fixed, we stop writing the prefix “7#-”
in ¥ -category, ¥ -functor, etc. Instead, we speak simply of a category, a functor, etc.
When it is necessary, we distinguish a 7 -category and a Set-category by dubbing the
latter one ordinary.

Example 2.1.4. In various parts of the thesis we use many examples of the categories
¥ in which we enrich.

1. As in Chapter 1, we denote by Set the category of all sets and mappings, the tensor
operation being the cartesian product, and the unit I = 1 being “the” one-element
set.

2. We denote by Pos the category of all posets and monotone maps equipped with the
cartesian product as tensor, and the one-element poset as unit. The category of all
preorders and monotone maps will be denoted by Pre.

3. We use Cat for the category of small categories and functors, with the cartesian
tensor and with the one-morphism category I = 1 as unit.

4. From the previous examples we can construct the categories Set, of pointed sets
and point-preserving maps, Pos, of pointed posets and point-preserving monotone
maps, and Cat, of pointed categories and point-preserving functors.

5. We denote by Ab the category of abelian groups and group homomorphisms, the
tensor ® being the tensor product of groups, and the unit I being the additive group
7 of integers.

6. Let 7 be a complete lattice equipped with a monotone, commutative and associative
tensor operation ® with unit e. If for all v € 74 the monotone map —®uv : %5 — %4
has a right adjoint [v,—] : %5 — ¥, we say that ¥ = (¥,®, e) is a quantale. For
example:

e The 2-element boolean algebra 2 forms a quantale with the tensor being the
conjunction operation A.

e The real half-line [0, 00] with the natural ordering > and addition as tensor
forms a quantale. (For the addition operation, o0 + x = = + o« = oo holds for
all z € [0,00].)

7. In Chapter 7 we shall work with the monoidal category Gray of 2-categories and
2-functors equipped with the Gray tensor product. As the Gray product is quite
involved, we defer its description for the later chapters.

Sometimes we will need to work with the underlying ordinary category of a ¥ -category.
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Notation 2.1.5. Given a ¥ '-category % , we denote its underlying ordinary category by
5. Analogously, given a #-functor H : % — £, we denote by Hy : J#y — % its
underlying ordinary functor.

Notation 2.1.6. We will denote by 1 the unit category with one object = and the hom
1(x,%) = 1.

Weighted limits and colimits When working with enriched categories, it is necessary
to introduce weighted limits and colimits, as they are the appropriate generalisation of
ordinary (conical) limits and colimits in ordinary category theory.

Notation 2.1.7. Given a small’ category 2, we denote by [2°P,¥] the category of
presheaves on . The objects of [2°P, Y] are functors ¢ : 27 — ¥, called weights, and
the hom [2°, ¥|(¢, 1) is computed by the end

L [o(d), 9],

an instance of a weighted limit; these are introduced below.

Definition 2.1.8 (Hat and tilde conjugates). Given a diagram D : ¥ — J# (with 2
a small category), we define its tilde-conjugate D : A — [2°P, V] by the assignment

X — #(D—, X)

for every X in . The action on morphisms is defined as expected. The hat-conjugate
D of the diagram D is the functor D : # — — [2,7]° defined by the assignment

X — X (X,D-)
on objects of £ .

Definition 2.1.9 (Weighted limits and colimits). A colimit of D : 9 — J# weighted
by 1 27 — ¥ is an object ¢ * D together with an isomorphism

H (p*D,X)=[2,¥](p,DX)

that is natural in X.
A limit of D : 9°° — & weighted by ¢ : °P — ¥ is an object {¢, D} together with
an isomorphism R
H (X, {p,D}) = [27,V]" (DX, p)
natural in X.

Remark 2.1.10. Note our use of a diagram D : Z°P — ¢ instead of D : ¥ — % in the
definition of a weighted limit. Using the opposite category of & as the domain category
of a limit diagram enables us to weigh both colimits and limits by presheaves of the form
w: 2°° — Y. This convention is useful when dealing with notions pertaining to classes
of weights. Of course, the “alternative” definition of a weighted limit of D : ¥ — J# and
©: 9 — V¥ as an object {¢, D} together with an isomorphism

H (X, {p,D}) = [2,7]7(DX, ¢)

natural in X is equivalent to ours.

T.e., a category having a set of objects.
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Example 2.1.11. We give an example of colimits and limits weighted by particularly
nice weights.

1. Given a diagram D : 1 — J# in J# with the domain being the unit category, the
diagram is determined by the image of the unique object of 1 under D. Say we
have a diagram D : 1 — J with D(x) = Z and a weight ¢ : 2°° — ¥ with
©(x) = A. The weighted colimit ¢ =D in ¢ is called a tensor of Z by A and is
denoted by A e Z. In this case the universal property defining the colimit reduces
to an isomorphism

H (A Z,X) = V(A H(Z,X))
natural in X.

2. The limit notion dual to the one above is called a cotensor. Given a diagram
D : 1% - % in # and a weight ¢ : 17 — ¥ with D(x) = Z and ¢() = B, a
cotensor of Z by B in  is the weighted limit {¢, D}, denoted by BhAZ (or ZP)
such that there is an isomorphism

H(X,BhZ) =V (B, #(X,2))
natural in X.

Definition 2.1.12. Given a class ¢ of weights, a category £ is called ®-cocomplete if
for any ¢ : 2 — ¥ from ® and any diagram D : 2 — £ the colimit ¢ » D exists
in . The category % is ®-complete, if # °P is ®-cocomplete, i.e., if for any weight
©: 2P - ¥ from ¢ and any diagram D : Z°P — ¢ the limit {p, D} exists in .

A functor F : & — £ is ®-cocontinuous if for any colimit ¢ » D weighted by ¢ in ®
the colimit ¢ x (F' - D) exists, and the canonical morphism

p* (F-D) - F(p*D)

is an isomorphism. Likewise, F' : & — £ is ®-continuous if for any limit {¢, D} weighted
by ¢ in @ the limit {, F'- D} exists, and the canonical morphism

F{@,D}H{QO,F-D}

is an isomorphism.

Free cocompletions of categories There is a deep interplay between the theory of
free cocompletions of categories and between the theory of (generalised) algebraic theories.
We refer again to [41] for a comprehensive account of cocompletions of categories and give
an outline of the basics here.

Remark 2.1.13. Recall that in Notation 2.1.7 we posited that for any small category ¥
there exists a category [2°P, ¥] of presheaves on &. Considering now a not necessarily
small category £, dealing with “category” [ °P,¥] runs into size issues: the homs
of [£°P,¥] may not be objects of ¥. However, this problem may be overcome by
considering the legitimate category P(.£") of small presheaves instead of [£ 7, ¥].

Definition 2.1.14 ([|27]). We say that a presheaf F': # P — ¥ is small if F' is of the
form Lan o for some weight ¢ : 2°° — ¥ and for some J : 2 — . (Recall that a
weight has a small domain).
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Remark 2.1.15. From the above definition we can quickly see that any weight is a small
preshaf. Moreover, given any category .# and an object X in £, the representable
functor # (—, X) : # 7 — ¥ is also a small presheaf.

Notation 2.1.16. We denote by P (") the category of small presheaves; we think of
P () as of a full subcategory of [.# °P, ¥'], even though the latter one is in fact illegitimate
due to size issues. We will use the notation

for the “Yoneda embedding” defined by the assignment
X — (-, X).

We abuse the notation slightly by denoting in the same way the restricted embedding into
the category of small presheaves and the proper Yoneda embedding Y : & — [J£°P V).

Remark 2.1.17. In fact, the embedding

exhibits P(%") as a free cocompletion of & under all colimits. That is, P(.#) is cocom-
plete and the embedding Y, : # — P(') has the universal property such that given
any cocomplete category . and any F : % — £, there exists, up to isomorphism, a
unique cocontinuous functor F* : P(#) — & such that the diagram

H —E P

~

<z

commutes up to isomorphism.

Example 2.1.18. For a small category &, the free cocompletion of & under all colimits
is the presheaf category P(Z) = [2°P, V], with the unit Y : 2 — [2°?, 7] being the
Yoneda embedding.

Given a class ® of weights, we may use the Yoneda embedding Y : # — P(%) to
introduce free cocompletion of JZ under colimits weighted by weights ¢ in .

Notation 2.1.19 (Free cocompletions). The free cocompletion
7% H — (X))

of the category £ under ®-colimits exists for any class of weights and any category
(see [41]), and it is given as the factorisation

Ji/iwb(%)

Yoo
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of the Yoneda embedding given by the closure of & in P(#") under ®-colimits. Since
it is given by a closure, ®(.#") can be thought of as a full subcategory of P(£") via the
fully faithful inclusion W$ : ®(¢) — P(X).

The free completion of % under ®-limits is then given by

(Z3%)? + A — (R(H7))"
using the free cocompletion construction.

Remark 2.1.20. Consider now the 2-category
®-COCTS

of all ®-cocomplete categories, all ®-cocontinuous functors and all natural transforma-
tions. There is an obvious forgetful 2-functor

Ugp : -COCTS — 7-CAT

Since the free cocompletion of a category under a class of colimits is determined only up to
equivalence of categories, we cannot claim that this 2-functor has a strict left (2-)adjoint.
However, there is a pseudofunctor?

Fg : V-CAT — ®-COCTS
given by the free cocompletion procedure that gives rise to an equivalence
O-COCTS(Fp(X), L) ~ V-CAT(# ,Usp (L))

of categories for any % and a ®-cocomplete .. Without delving too deep into the
technical issues, we comment that these data give rise to a pseudoadjunction

Fo 4 Usp : -COCTS — 7-CAT
with unit Z%, : # — &(%¢) for H# in ¥-CAT.
Classes of weights We now introduce some technical notions concerning classes of
weights, and some interesting classes of weights.

Definition 2.1.21. A class ® of weights is locally small (see [48]) if the free cocompletion
®(2) of Z under P-colimits is a small category for every small category Z.

When dealing with cocompletions, it will be sometimes easier for us to consider classes
of weights that are saturated:

Definition 2.1.22 ([8]). The saturation ®* of ® is the largest class of weights such that
the 2-categories ®-COCTS and ®*-COCTS coincide. In case ®* = ®, the class ® is called
saturated.

2A pseudofunctor is a “functor up to isomorphism”. As we will not delve into the technical details, we
omit the precise definitions here. See Chapter 7 or Chapter 7 of Volume 1 of [19].
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In more elementary terms, the saturation ®* of ® is the largest class of weights such
that whenever a category is ®-cocomplete it is also ®*-cocomplete, and whenever a functor
is ®-cocontinuous it is also ®*-cocontinuous.

Remark 2.1.23. Saturation of classes of weights induces a closure operator
o — O*

on the ordered collection of all classes of weights, since the conditions

o & P*

e whenever ® € W holds, then ®* € U* holds,

° (I)** — (I)*
all hold for any pair ® and ¥ of classes of weights.

For any class ® of weights and any category ¢ it is easy to prove that ®(#) =
®*(#); thus cocompletion-wise it does not matter if we deal with a class ® of weights or

with its saturation. Moreover, considering a saturated class ® of weights from the very
beginning allows for a nice description of the ®-cocompletion procedure for J#".

Notation 2.1.24. Let Z be a small category and ® a class of weights. We denote by
o]
the full subcategory of [2°P, ¥'| spanned by weights in .

Remark 2.1.25 ([48]). For saturated classes ® of weights, the ®-cocompletion of a cate-
gory % can be done in one step, i.e., the closure of J# under ®-colimits in P (") consists
of adding objects of the form ¢ Y D for a weight ¢ : ¢ — ¥ in ®[Z] and for some
diagram D : & — % .

For not necessarily saturated classes ®, adding the objects of the form ¢ =Y D is the
first (nontrivial) step ®; (") of the transfinite cocompletion process for the given category
. That is, we have a factorisation

A —L o () — s B(X)
of the unit Z%, : # — ®(¢"). Saturatedness of ® then implies the equality ®;(.%) =
O(H).

Example 2.1.26. Let us consider the case of ordinary categories (¥ = Set) and look at
some of the most important classes of weights.

1. There is the trivial empty class ¥ = ¢ of weights. It is clearly locally small.

2. The class of all weights will be denoted by P. This notation aligns with the fact
that for a category ¢ its free cocompletion under all (small) colimits is denoted by
P (), see Notation 2.1.16. This class is not locally small in general.

3. Let W be the saturated class of weights such that a W-cocomplete category is one
with finite coproducts. We shall denote this class by II. This is a locally small class
of weights, since it is small [41].

4. The saturated class ¥ of weights such that a W-cocomplete category is one with
finite colimits is also locally small.
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Commutativity of limits and colimits Recall from Section 1.3 that there is an
important connection between finite products and sifted colimits that is important in
categorical universal algebra. In the ordinary setting algebraic theories are categories .7
with finite coproducts and algebras are presheaves .7 °P — Set preserving finite products.
It is true that the algebraic category Alg(.7) is cocomplete, but the most important
and best-behaved colimits are sifted colimits, defined as those that commute with finite
products in the category Set. The importance of commutativity of limits and colimits for
categorical universal algebra extends to the enriched context and to W-theories.

Definition 2.1.27. Given classes ® and ¥ of weights, we say that ®-colimits commute
with V-limits in ¥ if for any ¢ : 2°7 — ¥ in ® the functor

o (=) [2,7] >
preserves W-limits.

With a class of weights there are two important classes of weights obtained by a
commutativity condition.

Definition 2.1.28. Consider two classes ® and ¥ of weights.
1. We denote by ¥U* the class of all weights ¢ such that -colimits commute with
U-limits in 7. We name this class the class of U-flat weights.
2. We denote by @~ the class of ®-presentable weights; those 1/ such that ®-colimits
commute with -limits in 7.
Flat and presentable weights are connected via a Galois connection.

Remark 2.1.29. Let ® and ¥ be classes of weights.

1. It follows straightforwardly from the definitions of flat and presentable weights that
the inclusion ® € W holds precisely when the inclusion ¥ < ®~ holds. This means
that the two assignments W — U+ and ® — &~ constitute a Galois connection on
the ordered collection of all classes of weights.

2. The equalities
UvH(2)=v"17], o (2)=2[7]
hold for every small Z; and thus the classes V" and &~ are saturated.
We will be especially interested in W-flat weights for various classes W.
Example 2.1.30. Consider again 7 = Set.
1. Take the empty class ¥ = @ of weights. For this class of weights, the class U* of
U-flat weights is the class P of all weights: every weight is F-flat.

2. Consider the (saturated) class II of weights for finite coproducts. This is a locally
small class of weights, since it is small [41]. The weights in ¥+ are precisely the
weights for sifted colimits [60]. We will study weights for sifted colimits in Chapter 5.

3. The class of W-flat weights for the class ¥ of weights for finite colimits consists
precisely of the weights for filtered colimits. The free cocompletion of J# under
filtered colimits is usually denoted by Ind(.%¢") [3].

4. Take the class P of all weights. The class P of all P-flat weights is denoted by Q; we
shall consider it again when dealing with small-projective weights in Definition 3.1.1.
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2.2 Enriched algebraic theories

In this section we give a reasonably general definition of a theory that will cover enough
interesting examples as instances of the definition. We also comment on soundness, a
technical condition of classes of weights.

Definition 2.2.1 (Theories and algebras). A small W-cocomplete category .7 is called
a W-theory. A W-cocontinuous functor between W-theories is called a W-theory morphism.

Given a W-theory .7, a .7 -algebra is a W-continuous presheaf A : .7 °? — ¥ . The full
subcategory of the presheaf category [ 7P, #| spanned by all J-algebras is denoted by
U-Alg(7).

Remark 2.2.2. Some authors prefer the limit definition of a theory: a W-theory .7 then
is a small W-complete category, and a 7 -algebra is a V-continuous functor A : 7 — V.
This approach can be seen e.g. in [5]. We stick to the colimit definition of a theory.
The reason is that the standard notation is biased w.r.t. colimits and free cocompletions
rather than limits and free completions. Of course, it is possible, although notationally
uncomfortable, to rephrase all the results with the dual definition of a theory.

Example 2.2.3. The definition of a W-theory covers many important concepts of ordinary
category theory (i.e., the case when ¥ = Set) as examples.

1. By taking the empty class ¥ = ¢F of weights, any small category .7 is a W-theory.
The category of algebras for an (J-theory .7 is the presheaf category [7 P, Set].

2. For the case of ¥ being the class II, a II-theory is a category .7 with finite coprod-
ucts. This is our Definition 1.2.6 of an algebraic theory, and the dual of the definition
of an algebraic theory from [5]. The algebras for .7 are finite-product-preserving
presheaves in [T %P Set].

3. Taking the class ¥ of weights for finite colimits, a U-theory is the (dual of the) notion
of an essentially algebraic theory [3]. The algebras for such a theory constitute a
locally finitely presentable category.

Remark 2.2.4. Since U*-colimits commute with W-limits, the category W-Alg(.7) of
algebras is closed in [.7°P,#] under U*-colimits for any W-theory 7. In other words,
there is always an inclusion

UH(T) < U-Alg(T).

We shall restrict our attention only to W-theories for those classes W of weights that
satisfy a technical notion called soundness. A class ¥ of weights is sound if the requirement
from Definition 2.1.28 for a weight ¢ to be W-flat can be weakened:

Definition 2.2.5 (Soundness [1]). A class ¥ of weights is sound if a weight ¢ : 27 — ¥
is in the class Ut of W-flat weights whenever the functor

pr(=): 2,77

preserves U-limits of representables.
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Remark 2.2.6. Soundness of a class ¥ of weights has pleasant consequences for studying
U-theories and their algebras. Consider the class ¥ to be sound. Given a W-theory .7,
the category of J-algebras is a free U-flat cocompletion of 7

U-Alg(T) = UH(7). (2.1)

First, we know that the inclusion ¥*(.7) < W-Alg(.7) holds always. Secondly, use that
Ut is always saturated (see Remark 2.1.29); for any Z-algebra ¢ : 77 — ¥ the functor
= (—) preserves W-limits of representables, and thus ¢ is W-flat by soundness of W. It
also follows from [48] that W*(.7) is complete and cocomplete.

Definition 2.2.5 is the abstract formulation of soundness from Remark 2.7 of [1]. In
contrast to the concrete formulation of soundness (see Definition 2.2 of [1]), the abstract
formulation generalises well to the enriched setting. For more details about soundness in
the ordinary setting, see [1].

Example 2.2.7. We will list some examples of sound classes of weights.

1. The empty class ¢ of weights is sound. Indeed, every weight ¢ : Z°? — ¥ is in the
class P = %, and also every such weight ¢ preserves @¥-limits of representables,
since this condition is void.

2. The class IT of weights for finite coproducts is sound [55]. For the case of ¥ = Set
this implies, by (2.1), that the category of algebras I1-Alg(.7) for a theory .7 is the
free cocompletion Sind(.7) of .7 under sifted colimits, see [5].

3. Similarly, the class ¥ of weights for finite colimits is sound as well. If in the ordinary
case (¥ = Set) we denote the class by U = Lex, we get by (2.1) the well-known
result

Lex-Alg(.7) = Ind(.7),

stating that the locally finitely presentable category Lex(.7°P,Set) of finite-limit-
preserving presheaves .7 %7 — Set (which coincides with the category Lex-Alg(.7) of
algebras for the Lex-theory .77) is precisely the free cocompletion of 7 under filtered
colimits, see [3].

To sum up, whenever VU is sound the categories of algebras W-Alg(.7) for a W-theory
T are given by a free cocompletion

7% 7 - utH(7)

under W-flat colimits. This fact plays an important role in the development of the theory
in the following chapters, and particularly when we deal with generalised Gabriel-Ulmer
duality in Chapter 4.
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Enriched Morita equivalence

The study of the following problem has a long and fruitful history: Given two theories,
when do they have the same models? In the context of general algebra, Morita was the
first to successfully solve this question in 70| for the case of theories being rings, and
models of the theory being modules over the chosen ring. More precisely: two rings R
and S are called Morita equivalent, when the respective categories pMod and gMod of left
modules are equivalent as categories.

Of course, the above question makes sense in a large variety of situations: consider,
for example, two monoids M and N and their respective categories Act(M) and Act(N)
of monoid actions. Again, the monoids M and N are called Morita equivalent if there
is an equivalence of categories Act(M) ~ Act(/N). This is the non-additive version of
the problem of rings, and it has been studied independently by Banaschewski [9] and
Knauer [49]. Perhaps more surprisingly, the characterisation of the most general situation
occurring in universal algebra (given two algebraic theories, when do they give rise to
equivalent categories of algebras?) is quite similar to the case of rings or monoids. Such
results are due to Dukarm [32| (for the case of algebraic theories being Lawvere theories),
and due to Adamek, Sobral and Sousa |7] (for the case of many-sorted algebraic theories).

For each of the above examples the theories can be seen as categories .7 (enriched in
a suitable ¥'), possibly with an additional colimit structure given by a class ¥ of weights,
and the models (or algebras) are the functors from .7 to ¥ preserving the additional
colimit structure: i.e., we deal with WU-theories and W-algebras in the sense of Chapter 2.
Rings are one-object categories enriched in the category Ab of abelian groups, modules
are additive functors from .7 °? to Ab. Monoids are ordinary one-object categories, the
category of actions over a given monoid is again the category of functors from the monoid
into sets. Algebraic theories are ordinary categories with finite coproducts, algebras are
presheaves preserving finite products.

In characterising Morita equivalence, one notion keeps reoccurring: namely the notion
of a pseudoinvertible idempotent. With the proper definition of a pseudoinvertible idem-
potent, all of the Morita equivalence results can be stated as follows: two theories .7’
and .7, having the same sorts, are Morita equivalent if and only if .7’ is an idempotent
modification of .7, given some choice of a pseudoinvertible idempotent in 7. In short,
this is the main result of this chapter.

We thus first prove this very general Morita equivalence result, and then we show
that the mentioned examples can be recovered very quickly. Moreover, we show some
variants of the standard results in other enrichments, as they can be proved almost for
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free. For example, we get the characterisation of Morita equivalent partially ordered
monoids, pointed categories, or algebraic theories that are 2-dimensional (i.e., enriched in
categories).

Structure of the chapter

e In Section 3.1 we introduce the notion of a Cauchy completion that is central to the
general theory of Morita equivalence, and we recall a basic enriched Morita-type
result.

e After having defined all the required notions, Section 3.2 provides us with the core
result of this chapter. We state what an .¥-sorted theory is, what an idempotent
modification of an .-sorted theory is in general, and what it means for an idempo-
tent to be pseudoinvertible. Then we prove that two .#-sorted theories are Morita
equivalent precisely when one is an idempotent modification of the other, provided
the idempotent is pseudoinvertible.

e The result of Section 3.2 is applied in Section 3.3 by looking at specific examples aris-
ing from the general theory. We characterise Morita equivalent monoids, partially
ordered monoids, monoids enriched in categories, .#-sorted categories in various
enrichments, and we observe that the case of enrichment in abelian groups gives the
classical result of Morita. Then we show how (enriched) algebraic theories fit into
the introduced framework by recovering the results of Dukarm and Adamek, Sobral,
Sousa, and proving their enriched variants.

The results of this chapter have been published in [31] by J. Velebil and the author.
The wording of the chapter is a slight modification of the text of the paper.

3.1 Cauchy completeness and basic Morita result

In order to introduce the basics of Morita theory, we will need to use the notion of
®-presentability of an object in a category. This notion generalises those of a finitely
presentable or perfectly presentable algebra from [5].

Definition 3.1.1. Given a class of weights ® and a ®-cocomplete category %, we say
that an object X in £ is ®-presentable if the functor

H(X, =) H -V

is ®-cocontinuous. In particular, if ® is the class P of all weights, we say that a P-
presentable object X is small-projective.

Notation 3.1.2. We denote by .#5 the full subcategory of # spanned by all ®-presentable
objects.

Example 3.1.3. Given a class ¥ of weights and a W-theory .7, we will be in particular
interested in W*-presentable objects of the category W-Alg(.7) of algebras for 7. Let
¥V = Set.
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1. When 7 is a J-theory, the & -presentable algebras in J-Alg(.7) are precisely the
small-projectives in J-Alg(.7) = [T °P, Set], since we know from Example 2.1.30
that @+ = P. Small-projectives are called absolutely presentable in [5].

2. Let Z be a Lex-theory, i.e., a small category with finite colimits (recall Exam-
ple 2.2.7). The Lex"-presentable (or Ind-presentable) algebras in W-Alg(.7) are
exactly the finitely presentable presheaves in [T °P, Set].

3. Similarly, when .7 is an Il-theory, the II*-presentable algebras in W-Alg(.7) are
exactly the perfectly presentable presheaves in [7 P, Set], see [5].

Now we can recall some known results of the theory of Morita equivalence. We will
formulate a basic Morita theorem (see Theorem 3.1.9 below) that we will build upon later.
Firstly, we introduce the class of all small-projective weights and study its properties.

Notation 3.1.4. The class of all small-projective weights is denoted by Q. The free
cocompletion of # under small-projective weights is then Z9 : # — Q(J#), or shortly
Q(x). We call it the Cauchy completion of % .

Remark 3.1.5. We shall often use that the free cocompletion of a category under col-
imits of small-projective weights is the same as its free completion under limits of small-
projective weights. That is, given a category %, there is an equivalence

QA) = (A7)

This equivalence is proved in Proposition 7.4 of [48|, and it explains why we can say that
Q(X) is the Cauchy completion of a category ¢ .

Some authors prefer the names Karoubi envelope or idempotent completion for what
we call Cauchy completion. We use the terminology of [20].

Example 3.1.6 (Examples of Cauchy completions). The class Q of small-projective
weights is always saturated: from Example 2.1.30 we know that @ = P7, and the class
Ut is always saturated for any class U of weights (see also [48]). Therefore, the Cauchy
completion of a given small category & can be described as the subcategory of the category
of presheaves [2°?, ¥] spanned by small-projective weights. In the case of the enrichments
in ¥ = Set, Set,, Pos, or Cat, a weight ¢ : 2 — ¥ is small-projective if and only if it
is a retract of a representable functor. The proof of this fact is standard and the case of
¥ = Set is shown e.g. in [41]. The other cases are easy reformulations of the ordinary
result.

In this example we show a more explicit description of the Cauchy completion of a
small category in the following cases:

1. 7 = Set: Given a small category &, its Cauchy completion Q(%) has as objects
the idempotents of &, and given two idempotents v : d — d and v : d — d’, the
morphisms f : u — v in Q(Z) are the morphisms f : d — d' in Z that make the
diagram

d—L

A

commute.
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. ¥V = Pos: We can describe the Cauchy completion of & again using idempotents.

In Pos-enrichment we only have to take care of the two-dimensional aspect. Given
two morphisms f : u — v and f':u — vin Q(Z), we define f < f’ if and only if
the inequality f < f’ holds in Z for the morphisms f:d — d and f':d — d'.

. ¥ = Cat: Given a Cat-enriched category &, its Cauchy completion is the Cauchy

completion of the ordinary underlying category %, (i.e., the ordinary category ob-
tained by discarding the 2-cells of 2), with the two-cells inherited from Z: the
2-cells B from f:u—vto f' :u— vin Q(2)(u,v) are precisely those of the form
v = a*u for some 2-cell o from f to f' in Z(d,d’) (where the product = denotes the
Godement product).

. ¥V = Set,: The Cauchy completion of & in Set,-enrichment is the same as in the

ordinary case, we need only to specify the distinguished point in Q(Z)(u,v) for
every pair u : d — d and v : d — d' of objects in Q(2). If the distinguished point
in 7(d,d’) is called p, then the distinguished point in Q(Z2)(u,v) is v-p-u. In fact, a
completely analogous statement holds for categories enriched in the categories Pos,
and Cat, of pointed posets and categories, respectively.

. ¥V = Ab: If & is a one-object category, it can equivalently be seen as a ring with

a unit. The situation is substantially different from the previous case: a weight
w : 2°° — ¥ is small-projective if and only if it is a finitely generated projective
left Z-module [20]. Then Q(Z) is the category of finitely generated projective
left Z-modules. Such modules are precisely the retracts of finitely generated free
modules.

In all the above examples, the Cauchy completion of a small category is again small.

This is not the case for every enrichment. Let CL be the monoidal category of complete
lattices with sup-preserving functions and the usual tensor product. The Cauchy comple-
tion of a small CL-category need not be small [40]. This is due to the fact that CL is not
a locally finitely presentable category: by results of [40], the class Q is locally small for
any ¥ whose underlying category is locally finitely presentable.

Assumption 3.1.7. In the rest of this chapter we use the following two assumptions.

1. The class Q is locally small.
2. The class ¥ is a fixed locally small sound class of weights.

We can now introduce the main concept used in this chapter: the notion of Morita

equivalent W-theories.

Definition 3.1.8. Let .7 and .7’ be two W-theories. We call .7 and .7 Morita equivalent,
if there is an equivalence

U-Alg(T) ~ U-Alg(7")

of their categories of algebras.

There is a very general result characterising Morita equivalent W-theories from [48],

which uses the Cauchy completions of the respective theories.
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Theorem 3.1.9 (Basic Morita theorem). For any two V-theories 7 and 7', we have
T is Morita equivalent to T iff the categories Q(T) and Q(T') are equivalent.

Proof. Once we prove that @ < ¥, the result follows immediately from Proposition 7.7
of [48]. But P* < W* holds, since ¥ < P does and P" = Q (see Example 2.1.30 or
Remark 6.21 of [48]). [ |

Remark 3.1.10. It is possible to add a third equivalent condition to the above theorem:
that the categories
[P, ¥] and [T, V]

are equivalent. Indeed, this again follows quickly from Proposition 7.7 of [48], since Q < P

and P(7) = [T, 7).

3.2 Morita theorem for .#-sorted theories

We shall sharpen the basic Morita theorem 3.1.9 for the case of many-sorted theories. We
will obtain a characterisation result for Morita equivalent theories that is similar in spirit
to those contained in [3, 7]: two many-sorted theories are Morita equivalent if one is a
certain idempotent modification of the other.

Remark 3.2.1. Recall that .¥ is called discrete if its homs are defined as

[ ifs=¢

1 otherwise,

S (s,5) 2{

where | denotes the initial object of ¥ and I denotes the unit of the monoidal structure
on ¥ (recall Assumption 2.1.1).

Definition 3.2.2. Suppose .7 is a small discrete category. A W-theory .7 is called .¥ -
sorted, if there is a functor

T:V()—> T

that is both identity on objects and a morphism of W-theories.

IfT7T:¥() - 7 is an S-sorted ¥-theory, then composition with 7" yields a faithful
functor of the form
U-Alg(7) — U-Alg(¥(¥)).

Due to the definition of W-algebras and since V(.#) is a free cocompletion of . under
W-colimits, the above functor is, up to equivalence, a “forgetful functor” of the form

U-Alg(T) — 7, 7].

This explains our terminology: W-algebras for an .-sorted theory “live” over [.#°P V],
i.e., over “.¥-sorted 7.

Example 3.2.3. The definition of an .#-sorted theory covers some important examples.
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1. Let 7 be arbitrary, and ¥ be the empty class of weights. Then to give an .¥-sorted
U-theory T : . — 7 is to give .7 having the same objects as .. If .¥ has only
one object, the .#-sorted theories are then monoids in the case of ¥ = Set, ordered
monoids in the case of 7" = Pos, and rings when 7 = Ab.

2. Let 7 = Set and consider the class Il of weights. The .#-sorted II-theories are the
(duals of) S-sorted Lawvere theories from [5].

For any W-theory .7 we can construct its respective “canonical theory” Q(.7). This
generalises the concept of the canonical theory of a Lawvere theory 7, see Chapter 8 of [5].
For a Lawvere theory .7, its canonical theory is given by the idempotent completion of
Z (which coincides with Q(.7), see Example 3.1.6 above).

Proposition 3.2.4. For any V-theory 7, the category Q(7) is a V-theory. The unit
7% T — Q(7) of the free Q-cocompletion of 7 is a morphism of U-theories.

Proof. We have to prove that 1. the category Q(.7) has W-colimits and that 2. the functor
7S . 7 — Q(7) preserves them.

1. By soundness of U we know that the equality W-Alg(.7) = U*(.7) holds, see (2.1).

We will show that the category W*(.7) is cocomplete: By using Theorem 8.11
of [48], we see that for any small category &, the closure of ¥*(2) in [2°, V]
under U*-colimits is all of [2°P, ¥, By Proposition 8.8 of [48|, each object of
[7°P, V] has a reflection in U*-Alg(.7) = V-Alg(7) = ¥*(7) and thus (7)) is
indeed cocomplete.

Because Q@ < U* holds (see the proof of Theorem 3.1.9 above), the category Q(.7)
is precisely the category of all W*-presentable objects of the category U* (7)), see
Proposition 7.5 of [48]. Thus Q(.7) has ¥-colimits and it is small since Q is locally
small by Assumption 3.1.7 above.

2. Consider the factorisation
z%"

- N
T — Q) — V()

The inclusion Z%" : .7 — U*(.7) preserves U-colimits (use the equality U-Alg(.7) =
Ut (7) again and Corollary 8.5 of [48]). Since H preserves and reflects W-colimits,
the functor Z{% preserves W-colimits.

The following definition is a generalisation of an idempotent modification of a theory 7
from [7]. As we will see in Section 3.3, the definition in fact covers many constructions that
appear in various characterisation theorems of Morita equivalence in different contexts.

Definition 3.2.5. Suppose T : V() — 7 is an .¥-sorted U-theory and suppose u :
& — Q(.7) is any functor.
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1. The closure under W-colimits in Q(.7) of the full subcategory of Q(.7) spanned
by objects of the form u(s) will be denoted by .7,. The W-theory .7, is called the
u-modification of 7.

2. The functor u is called pseudoinvertible if the closure of .7, under Q-colimits in

Q(7) is all of Q(7).

Example 3.2.6 (The canonical pseudoinvertible functor for a theory). Suppose
T:V(Y)— T is an .-sorted U-theory. Consider the composite

o)
Zz

=927 sy —L g

Q(7)

We claim that ¢ is pseudoinvertible. Moreover, the categories 7, and .7 are equal.

Recall from Proposition 3.2.4 that Q(.7) is a W-theory and consider the essentially
unique extension ¢ : ¥(.) — Q(.7) of ¢ to a morphism of W-theories. This extension
¢ is (isomorphic to) the composite Zg - T, since the latter functor preserves W-colimits.
Moreover, the categories .7, and .7 are the same, since 7 is closed in Q(.7) under
W-colimits.

The following lemma establishes the main ingredient in the first part of the charac-
terisation of Morita equivalent .#-sorted theories: a pseudoinvertible idempotent u in a
theory 7 gives rise to an idempotent modification of .7 that is Morita equivalent to .7 .

Lemma 3.2.7. For every pseudoinvertible u : ¥ — Q(.7), the V-theories T and F,, are
Morita equivalent.

Proof. Denote by E : 7, — Q(.7) the full inclusion from the definition of .7,. It suffices
to prove that F : .7, — Q(7) is a free cocompletion of 7, under Q-colimits. Indeed,
then Q(.7,) and Q(.7) would be equivalent as categories and the claim would follow from
the basic Morita theorem 3.1.9.

To finish the proof, observe that the following four conditions are satisfied:

1. FE is fully faithful. This is trivial.
2. Q(7) has Q-colimits. Again, this is trivial.

3. The closure of .7, in Q(.7) under Q-colimits is all of Q(.7). This is a restatement
of pseudoinvertibility of u.

4. Every object a of .7, is Q-presentable in Q(.7). Indeed, the functor Q(.7)(Fa, —) :
Q(T7) — ¥ preserves Q-colimits, since Q-colimits are preserved by any functor,
see [78].

By Proposition 4.2 of [48], the above four conditions prove precisely that E : .7, — Q(7)
is a free cocompletion of .7, under Q-colimits. [ ]

Now we are ready for the characterisation: Every theory .7’ Morita equivalent to .7
is essentially an idempotent modification of .7 .

Theorem 3.2.8 (The Morita theorem for many-sorted theories). Suppose T :
V(L) — T andT': V() — T are ./ -sorted U-theories. Then the following conditions

are equivalent:
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1. Theories 7 and 7' are Morita equivalent.

2. There is a pseudoinvertible u : & — Q(7) such that the categories 7, and T are
equivalent.

Proof. 1. implies 2. Due to the basic Morita theorem, one can choose an adjoint equiva-
lence

LA4R:Q(T)— Q(T).
Define u : ¥ — Q(.7) to be the composite

u=.7 —509(7") L5 9(7)

That is, u is defined as the canonical pseudoinvertible functor ¢ for the theory .7/ (see
Example 3.2.6), composed with L. The functor u is pseudoinvertible, since ¢ is and L is
an equivalence of categories. By Example 3.2.6 we know that .7/ = .Z’. Since L is an
equivalence of categories, it preserves all colimits; thus the image of 7/ under L in Q(.7)
is the u-modification .7, of 7.

Again using that L - R is an adjoint equivalence, the image of .7, under R in Q(.7")
is the R - u-modification 7, of .7’. The composite R - u is naturally isomorphic to the
canonical pseudoinvertible functor ¢ for .7’, and thus the categories .7’ and .7, are
equivalent as categories by construction. This establishes the existence of an equivalence
of categories between .7’ and .7,.

2. implies 1. Choose an equivalence 7, ~ .7'. Then the categories Q(.7,) and Q(7') are
equivalent. Furthermore, by Lemma 3.2.7, the categories Q(.7,) and Q(.7) are equivalent.
Use the basic Morita theorem 3.1.9 to conclude the proof. [ ]

3.3 Examples

In this section we are going to apply our general result in various contexts to show its
unifying nature. Namely, we can vary classes ¥ of weights (working thus with various
notions of theories) and we can vary the base category . We show both the one-sorted
and many-sorted case wherever this distinction is applicable.

However, the freedom of the choice of ¥ can be somewhat limited in some enrichments.
For example, when ¥ = Set it does not make much sense to consider classes ¥ that
contain weights for coequalisers. In fact, in this case any W-theory .7 has coequalisers
and is therefore idempotent complete [5]. Thus we have an equivalence Q(.7) ~ .7 of
categories. Given two W-theories .7 and 7’ that are Morita equivalent, we have a chain
of equivalences

T ~Q(T)~Q(T") ~ T

The above argument can be used for a general ¥ and any class ¥ of weights such that
Q < ¥ holds. Thus we conclude that for such a ¥, two W-theories .7’ and .7 are Morita
equivalent if and only if .7 and .7’ are equivalent as categories.
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3.3.1 The case of the empty class

Let 7 be arbitrary and let ¥ be the empty class of weights. Thus a W-theory is a small
category and W-Alg(.7) = [T, V].

We show how the choice of an empty class of weights affects the notion of a theory
and of Morita equivalence in various enrichments.

Example 3.3.1. Let 7 = Cat and let . be a discrete category on one object, say s. An
Z-sorted W-theory .7 is therefore a Cat-enriched monoid. Any functor u : .%¥ — Q(7)
chooses an object u(s) € ob(Q(.7)). This object corresponds to an idempotent in 7,
which we are going to denote by u : s — s for notational simplicity.

The u-modification .7, of 7 is the Cat-monoid Q(.7)(u,u) of morphisms f : s — s
from .7 that satisfy the equalities u - f = f = f - w:

N

S S
|\
u u
—
SfS

Equivalently, each such morphism f has to satisfy the equality - f-u = f. Let f and
f’ be two morphisms in Q(.7)(u,u). The 2-cells a : f — f"in J, are exactly the 2-cells
a: f— fin T for which u * a *u = «.

The functor u : .¥ — Q(.7) is pseudoinvertible if and only if any object p from Q(.7)
is a retract of u: s — s in the category Q(.7).

We shall now show that for u to be pseudoinvertible it is enough that 1, is a retract
of u. From this it will follow that any p is a retract of u: Suppose we have

with e - m = 1. The diagram

shows that p is a retract of 1, since p : s — s is the identity morphism in the hom-set
Q(T)(p,p). This allows us to conclude that p indeed is a retract of u by inspecting the

diagram
p m e p
5 s 5 s 5
S—5 S S S5 S
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and observing that p-e-m - p = p.

We have therefore shown that the only Cat-monoids Morita equivalent to .7 are those
of the form .7, for a pseudoinvertible idempotent u of 7. In detail, given an idempotent
u: s — s from 7 satisfying the equalities

eem=1 u-m=m e-u=u

for some morphism m and e in .7, we have a monoid .7, consisting of the morphisms
f s — s satisfying the equalities

wf=f=f-u

and equipped by the 2-cells u*a=wu : f — f’ derived from the 2-cells o : f — f’ from 7.
Such monoids are Morita equivalent to .7, and they are the only ones Morita equivalent

to I.

Example 3.3.2 (Morita equivalence of 2-categories). Slightly generalising Exam-
ple 3.3.1, let us consider the case of .¥ possibly having more than one object. An .#-
sorted theory .7 is any category with objects being precisely the sorts from .. A functor
u: . — Q(7) then chooses an object u(s) from Q(.7) for every sort s € ob(.”). This
amounts to choosing an idempotent u(s) : t; — t5 from .7 for every sort s.

The u-modification .7, of the theory .7 can be described either as a full subcategory
of Q(7) spanned by the objects of the form u(s) for s € ob(.#), or more concretely
as follows: The objects of .7, are the objects t; from .7 that are (co)domains of some
idempotent u(s) : t; — t;. The morphisms in 7, (ts,ty) are the morphisms f : t; — tg
from 7 for which the diagram

commutes in .7. And the 2-cells between f : t, — ty and [’ : t, — ty are the 2-cells
u(s') *axu(s): f— f' for every 2-cell av: f — f"in T (ts,ts).

The functor u : .¥ — Q(.7), that chooses the idempotents, is pseudoinvertible if and
only if there is an equivalence Q(.7,) ~ Q(.7). As in the case of . having one object,
every object p : t — t in Q(.7) has to be a retract of some u(s) : t; — t;. By the
same argument as in Example 3.3.1, it is enough to require that every identity morphism
l; 1t — t from . is a retract of some u(s) : t; — t5 in Q(.7). This is true because every
object p:t — t is a retract of 1; : t — ¢t in Q(.7). Thus u is pseudoinvertible if and only
if for every sort ¢ there is an idempotent u(s) and morphisms m; : t — t; and ¢; : t; — ¢
such that the diagram

U(S)

T

commutes in .7. The Morita theorem 3.2.8 then says that the only .#-sorted theories
Morita equivalent to .7 are those of the form .7, as described above. We have therefore
generalised the characterisation of Morita equivalent Cat-monoids and we have described
Morita equivalent Cat-categories over a fixed set of objects.
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Example 3.3.3. The results from the previous examples transfer directly to the case of
enrichments in Pos and Set.

For the enrichment in ¥ = Pos and the empty class ¥ of weights, an .%-sorted theory
T is a small (Pos-)category with the set ob(.”) of objects. Recall from Example 3.1.6
that the objects in Q(.7) are the idempotents of 7, a morphism f : k — k' in J is a
morphism from u to v in Q(.7) if

v-f=f=1Ff-u

and f < f" holds in Q(.7)(u,v) holds if and only if it holds in 7.

Given an .%-sorted theory 7, the functor u : . — Q(.7) is a choice of idempotents
u(s) : ty — ts from 7 for each sort s € ob(#). The u-modification .7, of the theory 7
has the set ob(.7;) = {ts | s € ob(#)} of objects, where t, is the domain of u(s) for each
s, and a morphism f : t; — ty from 7 (t,,ty) belongs to Z,(ts,ty) if and only if

u(s') - f=f=[-uls)

holds in 7. To say that wu is pseudoinvertible is to say that Q(7,) ~ Q(7) holds, and
this in turn means that any object p : t — t is a retract of some u(s) : t; — t5 in Q(.7).
Thus for each sort s the equality

. u(s) ;

!
t

has to hold for some morphisms m; : t — t, and e; : t;, — t in .7, and this condition
is sufficient for v : ¥ — Q() to be pseudoinvertible by the same reasoning as in
Example 3.3.2.

We have now generalised one of the results of [52] that discusses Morita equivalence
of partially ordered monoids. If we consider the one-object category .7 of sorts, an .-
sorted theory 7 is a partially ordered monoid. Translating the above characterisation
to the usual algebraic language, we get that an idempotent u of a partially ordered
monoid (N, -, 1, <) is pseudoinvertible if and only if there are elements m, e € N such that
e-u-m = 1. The Morita theorem 3.2.8 then says that a partially ordered monoid M is
Morita equivalent to N if and only if M = uNwu for some pseudoinvertible idempotent «
in N, where uNw is the partially ordered monoid with the underlying set {u-n-u | n € N},
multiplication operation defined as in N, and unit u.

The above arguments from the case of ¥ = Pos carry unchanged to the case of 7" = Set
by ignoring the 2-dimensional aspect: thus for 7" = Set, we get that all monoids Morita
equivalent to a given monoid (N, -, 1) are isomorphic to a monoid of the form (uNu, -, u)
for an idempotent u € N, where uNu = {u-n-u | n € N}, the operation - is the same as
in N, and there are elements m,e € N such that

t
my

t——
14

e-u-m=1

holds. We have thus reproved the result of |9, 49| characterising Morita equivalent ordinary
monoids.
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Example 3.3.4. In the case of the enrichment ¥ = Ab, the situation is as follows: If
< is a one-object category, then an .#-sorted W-theory .7 is a ring with a unit. An
object in Q(.7) is a retract of a finitely generated projective .7-module. Any 7-module
M in Q(7) yields a ring Q(.7)(M, M) of endomorphisms. This ring is pseudoinvertible
if .7, considered as a module over itself, is a retract of a finite coproduct [ [, M. By
this we recapture the original result of Morita from [70]: Let .7 and .7’ be two rings.
Denote by Z*] the ring of all k x k matrices over .7. For any idempotent u € .7, denote
by 7, the ring of elements r € .7 such that ru = r = ur, with neutral element u and
multiplication defined as in 7. Two rings .7 and .7’ are Morita equivalent if and only if
" is isomorphic to the idempotent modification T of the matrix ring 7 ¥ for some
k > 0 and a pseudoinvertible idempotent matrix u, that is, a matrix such that e-u-m =1
for some k x k matrices e and m.

3.3.2 The case of finite coproducts

We shall now consider the class II of weights for finite coproducts, see Example 2.1.26.
We know that II is locally small and that it is sound by the results of [45, 55]. Recall that
in 7 = Set, the free cocompletion I1(#") of # under is constructed by adding formal
finite coproducts to #: The objects of II(#") are finite words w = kg ...k, 1 over the
alphabet ob(.#"). Given two objects v = zg... 2,1 and w = kg ... k,—1 from II(%), the
morphisms II(¢)(v,w) are tuples (f,«) with f : m — n a function and a = (a;);<m
being a choice of morphisms o : 2; — ky(;). The identities and composition in II(%") are
defined as expected. In the case of ¥ = Pos and ¥ = Cat, we also need to describe the
2-cells of TI(#"). As we will be computing free cocompletions only for discrete categories
<, we shall not need to compute this 2-dimensional aspect, as the only 2-cells in II(.¥)
will be the trivial ones.
Specialising the enrichments we obtain the following examples:

Example 3.3.5. In the case of 7 = Cat and the class II of weights, a [I-theory is a small
category .7 with finite coproducts. The objects of an .#-sorted theory .7 are words over
the alphabet ob(.¥) equipped with the usual injection morphisms. We then specialise to
two cases:

1. In case that .# is the unit category 1 (i.e., one object, one morphism, one 2-cell),
an .#-sorted theory 7 is a 2-Lawvere theory, i.e. the Cat-enriched version of the
notion of a Lawvere theory [61].

A functor u : . — Q(.7) chooses one idempotent of the form wu(s) : t — t from T
(where t = n e s for some natural number n).

For a nontrivial choice of idempotents u (meaning that for u(s) : ¢ — t the object ¢
is not initial in .7), the u-modification .7, has finite coproducts n et of ¢ as objects.
Then a morphism f: m et — netis present in 7, (m et,n et) if and only if

mot—>not

mot—>not
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commutes. The identity morphism for m e ¢t is m e u(s) : met — m e t. Given
two morphisms f : met > netand f: met >netand f: met - netand
ffimet > netin Z(met,net), a2-cell f:f— f from T(met,net)isin
T(met,net) if and only if it is of the form (newu(s))*a=(mew(s)) for some 2-cell
a:f— f from T (met,net).

We shall now state the requirements for u : . — Q(.7) to be pseudoinvertible. By
definition, the equivalence Q(.7,) ~ Q(.7) must hold. Any object v : r — r from
Q(.7) thus has to be a retract of some object meu(s) : met — met from .7,. Since
every v :  — r is a retract of 1, : r — r in Q(.7), it is enough to show that every
object 1, : r — r from Q(.7) is a retract of some such object m e u(s). Further,
r = n e s for some natural number n, and thus we only need to check whether
1, : s — s is a retract of some m e u(s) : met — met. In elementary terms, this
says that there have to be two morphisms m : s — met and e : met — s such that

meu(s)

met——met

mT l (3.1)

5 1

commutes. Therefore the only .¥-sorted theories Morita equivalent to .7 are those
of the form .7, with u being an idempotent of .7 satisfying the pseudoinvertibility
condition of the diagram (3.1).

2. The second case is that of ob(.#) containing (in general) more than one element.
Then the notion of an .-sorted theory 7 corresponds to a category .7 with the
set ob(.7) of objects consisting of finite words over the alphabet ob(#) of sorts,
and every word w = s...s" being the coproduct s + - -- + s’ of sorts.

A functor u : ¥ — Q(.7) is a choice of an idempotent u(s) : t; — t; in 7 for each
sort s € ob(¥).

The wu-modification of .7 is defined as a closure under finite coproducts of the
subcategory of Q(.7) spanned by the objects u(s) for some s € ob(.%).

That is, the objects of .7, are of the form
u(ts) + - +ulty) its+ - +tyg > ts+ - + ity
for some n-tuple s, ..., s of sorts from .%, and the morphisms
frults) + - +ulty) = ulty) + - +u(ty)
are precisely the morphisms
fitst o dty >t g+ +ty
for which the following diagram
byt bty — sty by
u(ts)+~~-+u(tsx)l ! lU(tq)+-~-+u(tq/)
tot oty g+ g
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commutes in .7. A 2-cell §: f — f' from 7 is in .7, if and only if it is of the form
B =(ulty) + - +ully)) » ax(ults) +-- +ults))

for some 2-cell a: f — f' from 7.

Finding out when u : . — Q(.7) is pseudoinvertible is similar to the one-sorted
case. Any object v : r — r from Q(.7) has to be a retract of an object p :
ts+-+ty > ts+---+ty from 7,. Equivalently, any object 1, : r — r from Q(.7)
has to be a retract of an object p : t,+---+ty — ty+---+ty from Z,. This implies
that any object 14, : tg — to with ¢y € ob(.¥) has to be a retract of some p from .7,.
Thus for every sort tg € ob(.) there has to be an object p : ts+- - -+ty — ts+---+ilg
from .7, and two morphisms my, : tg — ts+---+ty and ey, 1 ts+- - +ty — to such
that

tot oty — bt Ly (3.2)

mtoT leto

s to

1t

commutes in 7. Moreover, this is a sufficient condition for pseudoinvertibility
of u, since a retract of a finite coproduct of identity morphisms coincides with a
finite coproduct of retracts of identity morphisms. We have therefore characterised
the .#-sorted theories Morita equivalent to .7 as the theories .7, for which the
pseudoinvertibility condition (3.2) holds.

Example 3.3.6. The cases of ¥ = Pos and 7 = Set are again simplifications of the
Cat-enriched case. We are going to spell out the details in the many-sorted case. Then
an .¥-sorted theory .7 is a category equipped with a finite-coproduct-preserving functor
V() — 7 that is bijective on objects. The objects of .7 can therefore be interpreted
as finite words w = s...s" over the alphabet ob(.#), with every w being the coproduct
s+ ---+ 5. When ¥ = Set, the notion of an .¥-sorted theory .7 corresponds to the
standard notion of a many-sorted algebraic theory over the set of sorts ob(.#) (as can be
seen e.g. in [7]).

As in the Cat-enrichment case, a choice of idempotents u : .¥ — Q(.7) is a choice of
an idempotent u(s) : ts — ts in 7 for each sort s € ob(.¥).

The u-modification .7, of 7 is defined as the closure under finite coproducts of the
subcategory of Q(.7) spanned by the objects u(s) for some s € ob(#’). The construction
of 7, proceeds as in Example 3.3.5. For ¥ = Set, this construction gives exactly the
notion of an idempotent modification of a theory .7 from [7|. For ¥ = Pos, we put the
inequality f < g between two morphisms f : u(ts) + -+ u(ty) — u(t,) + - + u(ty) and
I oults)+- - +u(ty) — ulty)+- - -+u(ty) if and only if there is an inequality f < g between
the underlying morphisms f : ts+---+ty — {4+ -+tyand f' i ts4+- - +tyg = L+ +1y
in 7.

The choice of idempotents u : . — Q(.7) is pseudoinvertible if for every sort ¢, €
ob() there is an idempotent p : ts+---+ty — ts+ -+ + 1ty from 7 and two morphisms
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My, 1t > ts+ - +ty and ey, 1t + -+ + ty — to such that

bttty ——tg+ - + by

mto/[ leto

to to

1t

commutes. Our notion of pseudoinvertibility therefore captures the notion of pseudoin-
vertibility as defined in [7], and for the one-sorted case, the pseudoinvertibility condition
from [5].

Thus we get the characterisation of .#-sorted theories .7’ ~ .7, Morita equivalent to
the theory .7 as it is present in [7], and its Pos-enriched variant.

Remark 3.3.7. Let us note that the technique and results of this section stay unchanged
if we change the enrichment from ¥ = Set to the enrichment in pointed sets (¥ = Set,).
Even more generally, the characterisation of Morita equivalent categories and II-theories
stays unchanged for the enrichment in pointed posets or pointed categories.
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Gabriel-Ulmer duality

Gabriel-Ulmer duality states that locally presentable categories are dually equivalent to
essentially algebraic theories. A similar result can be obtained for algebraic theories:
Cauchy complete algebraic theories are dually equivalent to algebraic categories. In the
context of ordinary categories, a general version of the theorem of Gabriel and Ulmer was
proved by Centazzo in [25]. We state and prove the generalisation of this result in the
setting of enriched categories.

Structure of the chapter

e We first recall in Section 4.1 the notions used in this chapter (theories, algebras etc.)
to make the chapter essentially self-contained. We then prove some elementary facts
about algebraic functors.

e In Section 4.2 we state and prove the duality theorem.

Various forms of Gabriel-Ulmer duality have appeared in the literature. It seems that
the main result of this chapter might be considered folklore. However, since the proof of
the result has (to our best knowledge) not appeared in the literature in such a general
form, and since the proof is very slick, we find it worthwhile to give our presentation of
it.

4.1 Preliminaries

In this section we introduce and recall the important notions that arise in the statement
and proof of Gabriel-Ulmer duality.

Finitely presentable objects and monoidal structure A category 7 is locally
finitely presentable as a monoidal category if ¥4 is locally finitely presentable (recall from
Example 2.2.3), and if finitely presentable objects (recall Example 3.1.3) of % are closed
under the tensor of 7" and the monoidal unit [ is a finitely presentable object.

To be able to state the duality, we shall also need a way to form duals of 2-categories.

Definition 4.1.1. Given a 2-category £, we define its horizontal dual £ °P by putting
HP(XY) = A (Y, X)

48
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and its vertical dual # “° by putting
H(X,)Y) = (H(X,Y))P.
Composition and identities in £ P and £ are defiend in a straightforward way.

Assumption 4.1.2. In the rest of this chapter, whenever we are given a class U of
weights, we assume it to be locally small and sound.

Algebraic categories

Definition 4.1.3. Given W-theories 7 and .7, the functor M : .7 — 7' is called a
U-theory morphism if it is W-cocontinuous.
We denote by
U-Th

the 2-category of W-theories, W-theory morphisms and all natural transformations. Thus
W-Th is a locally fully faithful sub-2-category of the 2-category #’-Cat of all small 7-
categories, ¥-functors and #-natural transformations, and there is a full inclusion

U-Th — ¥-COCTS

into the 2-category of W-cocomplete categories, W-cocontinuous functors and all (¥/-
Jnatural transformations.

Recall that given a W-theory 7, all J-algebras span a full subcategory ¥-Alg(7) of
the presheaf category [.7°P, ¥], and we denote the inclusion by

Wy : U-Alg(7) — [T, 7].

Any category equivalent to the category W-Alg(.7) of 7 -algebras for some W-theory 7 is
called W-algebraic. A functor H : # — &' between two W-algebraic categories is called
U-algebraic if it preserves limits and U*-colimits.

Remark 4.1.4. Recall from Remark 2.2.6 that the category W-Alg(.7) is (equivalent to)
the free cocompletion U*(.7) of .7 under ¥*-colimits for any W-theory 7. We thus have

the factorisation

T —27 L WAg(T) —Z s [Tor, ]

of the Yoneda embedding .77 — [P, ¥].
Any W-theory morphism M : .7 — 7' gives rise to a W-algebraic functor
U-Alg(M) : U-Alg(T") — T-Alg(7)
defined as the restriction

[(77yor,v] LI (7o

of the precomposition functor [M°P, ¥], as we show now.
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Algebraic functors and their left adjoints

Lemma 4.1.5. Given a V-theory morphism M : F — ', the functor W-Alg(M) :
U-Alg(T") — V-Alg(7) is algebraic: it preserves limits and W+ -colimits.

Proof. Let us first observe that in the diagram

[(g/)op’ ,y] [Mer,¥] [yop’ ,y]
ng)l\ ,I\Wg

the ﬁinctors W4 and W4 are in fact the functors Zq and Zq/, respectively. Both Zq
and Zg are fully faithful since Z5 and Z4 are dense. Moreover, U-Alg(.7) is closed in
[7°P, Y] under limits and W' -colimits, and so is U-Alg(.7”) in [7'", ¥]. That U-Alg(M)
preserves limits and U*-colimits then follows from the fact that [M°P, ¥] preserves both
limits and colimits: it has both a right and a left adjoint (given by right and left Kan
extensions, respectively). [

Algebraic functors that arise from a theory morphism have a left adjoint given by left
Kan extension.

Lemma 4.1.6. Given a V-theory morphism M : F — J', the functor V-Alg(M) :
U-Alg(T") — V-Alg(.7) has a left adjoint.

Proof. Let us take a functor L = Lany,, (Z M) which makes the square

Lan Z o1 M
U-Alg(7) 227 C7 M g g ()
Zg/)I\ ~ Z
T < m T

commute up to isomorphism. On objects L is defined as
LA = \Ij'Alg(y)(Z?_a A) * Zﬂ’Ma
and we thus get the following series of isomorphisms:
U-Alg(T")(LA, B) = {Z(A), U-Alg(T)(Z7M~—, B)}
= [T, V| Z7(A), Z7(B)M)
Zg

~ [T, V(Z7(A), Z7(U-Alg(M)B))
~ U-Alg(7)(A, V-Alg(M)B)

v
v

—_

This shows that L = Lany, (Z5 M) indeed is a left adjoint to W-Alg(M). [
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In fact, every algebraic functor has a left adjoint. This fact will be important in
showing that every algebraic functor is essentially of the form W-Alg(M) for some theory
morphism M. First we prove an auxiliary lemma.

Lemma 4.1.7. Suppose a functor F' : VH(T) — ¥ preserves limits and V" -colimits.
Such F' is representable.

Proof. This result follows quickly from a general representability theorem: see that by
Theorem 4.82 of [41] and by the fact that F' = Lany,, F'Z 7 is representable if and only if
the (small) limit {F'Z 7, Z 7} exists and if F' preserves this limit. But {FZ5, Z5} exists by
completeness of ¥*(.7) (recall Remark 2.2.6) and F' preserves this limit since it preserves
all limits. ]

Lemma 4.1.8. Any algebraic functor G : V-Alg(T") — W-Alg(7) has a left adjoint.

Proof. We first note that we can equivalently consider an algebraic functor G : U+ (.7’) —
Ut (7). This functor has a left adjoint if U*(.7)(A,G—) : VT () — ¥ is representable
for every A in U (7).

For W-presentable objects A in U (.7) we see that U (.7)(A, G—) preserves limits and
Ut-colimits, since both U (.7)(A, —) and G do. In fact, V(.7 )(A, G—) preserves limits
and WU*-colimits for any A in U*(.7), as any such A is a ¥*-colimit of W-presentable
objects. Since any functor F' : U (7) — ¥ that preserves limits and W'-colimits is
representable by Lemma 4.1.7, the proof is finished. |

Taking all W-algebraic categories, we can form a (non-full) sub-2-category
U-ALG

of the 2-category #-CAT of all ¥ -categories. The morphisms in W-ALG consist of all
WU-algebraic functors, and the inclusion W-ALG < #-CAT is locally fully faithful (that is,
any natural transformation between two W-algebraic functors is a 2-cell in U-ALG).

Definition 4.1.9. Given a class ¥ of weights, the assignment
T W—Alg(g)

mapping a W-theory .7 to its category of algebras can be extended to a 2-functor of the
form

U-Alg(—) : (U-Th)®* — U-ALG.

A W-theory morphism M : . — 7' is mapped to the algebraic functor W-Alg(M) :
U-Alg(7") — W¥-Alg(.7). Given two W-theory morphisms M, M’ : . — .7’ a natu-
ral transformation o : M — M’ is mapped to the natural transformation W-Alg(«) :
U-Alg(M') — W-Alg(M) whose component at an algebra A : (F')? — ¥ is A(«) :
A-(M)P = A M°P.

Remark 4.1.10. Let us observe that U-Alg(—) is indeed a 2-functor. Given two W-theory
morphisms M : 7 — 7" and N : 9" — 7" the composition on 1-cells is preserved by
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U-Alg(—) strictly, as it is seen from the diagram

[Ner ] [Mer v

(T, 7] [(T7)", 7] [T, 7]

Wg// ng Wo
V-Alg(T") s> W-NE(T) yoir U-Alg(F),

whose outer rectangle corresponds to

[(M-N)°P, 7]

[(T")r, 7] [T, 7]

Wi Wo

"
Likewise, for the 2-cells the 2-functoriality of W-Alg(—) follows quickly, since component-
wise W-Alg(—) acts as postcomposition.

Definition 4.1.11. We say that a W-theory is Cauchy complete if it is Q-cocomplete. We
denote the full sub-2-category of the 2-category W-Th spanned by all Cauchy complete
W-theories by U-Th,..

Remark 4.1.12. In the context of ordinary categories and algebraic categories, Cauchy
complete algebraic theories are called canonical theories. See, for example, Chapter 8
of [5] and Proposition 3.2.4. As in the case of Gabriel-Ulmer duality for algebraic theories
and algebraic categories in the ordinary setting, we need to restrict ourselves to “canonical
theories” only in order to obtain the duality result.

4.2 Gabriel-Ulmer duality

For ordinary categories, duality results consist of showing that two categories £ and .Z
of interest are dually equivalent, that is, there is an equivalence

HP — L

of categories. We shall need to be more careful in our formulation of Gabriel-Ulmer
duality, as the “categories” (2-categories in fact) W-Th. and W-ALG are not equivalent
in this sense. The theory morphisms in W-Th.. and algebraic functors in W-ALG are in
correspondence only up to equivalence; hence we need to use an adequately weakened
notion of an equivalence.

Definition 4.2.1 ([77]). Let .2 and .Z be 2-categories. A 2-functor T': # — £ is a
biequivalence if T is

1. essentially surjective, i.e., for each object Y in .Z there exists an object X in J&
such that T'X is equivalent to Y,
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2. locally an equivalence, i.e., the action
TX,X’ : %(X, X’) - .,%(TX, TX’)
is an equivalence of categories for each pair X, X’ of objects in J# .

Now we can state the main result of this chapter.
Theorem 4.2.2 (Gabriel-Ulmer duality). The 2-functor
W-Alg(—) : (F-The)*? — ¥-ALG
15 a biequivalence of 2-categories.
Proof. We will proceed in two parts:

1. We will prove that W-Alg(—) is essentially surjective on objects. That is, we will
show that each W-algebraic category % is essentially a category of W-algebras for
a Cauchy complete W-theory 7.

2. We will prove that for each pair .7 and .7 of Cauchy complete W-theories the action
(U-Theo(T, T"))P — U-ALG(W-Alg(.7"), U-Alg(.7))
of the 2-functor W-Alg(—) is an equivalence of categories.

Ad 1.: We need to show that given a W-algebraic category %, there exists a Cauchy
complete W-theory .7 such that W-Alg(.7) ~ ¢ holds.

We shall show here that 7 := g+ (the full subcategory of .# spanned by W-
presentable objects) is a Cauchy complete W-theory, and that W-Alg(#g+) ~ # holds.
(The proof is also contained in [48].)

First, %4+ has W-colimits, as it is closed in .# under W-colimits: consider a diagram
D : 9 — & that factorises through #g+, and a U-weight ¢ : 2 — ¥. Using
the natural isomorphism J (v D, X) =~ [2°, ¥V |(¢, # (D—, X)), we see that 1= D is
Ut-presentable since the functors ¢ (Dd, —) and [2°?, V| (¢, —) = {1, —} preserve ¥*-
colimits, and thus J# (¢ = D, —) preserves them as well.

Secondly, g+ is Cauchy complete. From the inclusion @ € W' we see that a similar
argument as above can be used to prove that g+ is closed in J# under Q-colimits.
Indeed, given a diagram D : ¥ — g+ — % and a weight ¢ : PP — ¥ from Q, the
functor J# (Dd, —) preserves W*-colimits for any d from &, and [2°F, ¥'|(¢), —) preserves
Ut-colimits, as it in fact preserves all colimits. Thus v D is WU'-presentable as we
needed.

Thirdly, from Q € U+ we infer that

QAT ) = V(T g+ = Ky,
and from this it follows that
U-Alg(T) = UH(T) ~ UH(Q(T)) ~ U-Alg(Ha ).
Ad 2.: Let us fix two theories .7 and .7’. The (ordinary) functor

(U-Theo( T, 7)) — U-ALG(W-Alg(7"), U-Alg(T7))
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is an equivalence precisely when it is fully faithful and essentially surjective.

For essential surjectivity we take an algebraic functor G : W-Alg(.7’) — W-Alg(7)
and construct an appropriate theory morphism M : .7 — 7. Since G has a left adjoint
(let us denote it by L : W-Alg(.7) — U-Alg(.7"')), we have the composite dotted functor
as in the following diagram:

U-Alg(.7) —E— U-Alg(.7")

Za Zg/

Since left adjoints preserve colimits (and map WU*-presentable objects to W*-presentable
objects), the dotted functor can be factored through 74 to the sought functor M:

U-Alg(7) —L— T-Alg(F")

Z Z g1

By construction L is left adjoint to W-Alg(M), and thus W-Alg(M) is isomorphic to G.
To show that

(U-Theo (T, 7)) — U-ALG(U-Alg(.7"), U-Alg(T))

is fully faithful, see that natural transformations

M
A
77 7
~__ 7
M/

correspond precisely to natural transformations

T (M)
/\

) b () (4.1)

\_/r

T+ (M)

as the cocompletion pseudoadjunction
U*-Cocts
4|

¥ -Cat
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has a locally fully faithful forgetful right adjoint. Now since W* (M) - W-Alg(M) and
U (M) o U-Alg(M) both hold, we can use the units and counits of these adjunctions
(say n™, ™ and n™" and ™’ respectively) to form mates

()
1
VZ M
q,+(M)n W-Alg(M) T-Alg(M')
/—\ /\
uvH(7) | gy = YAlg(T) | U-Alg(T)
~_ \_/
B-Alg(M') ‘1/+/(M’) U-Alg(M)
neM
Ut (7"

that are in one to one correspondence to the natural transformations of the form in
diagram (4.1). [ |

Example 4.2.3. Instantiating our general result, we obtain the following known dualities.

1. For ¥ = Set and ¥ being the class of weights for finite colimits, the general result
recovers the original result of Gabriel and Ulmer from [36] that essentially algebraic
theories are dually equivalent to locally presentable categories.

2. For 7 = Set and V¥ being the class of weights for finite coproducts, we recover the
duality of canonical algebraic theories and algebraic categories given in [2] and [25].

3. For U = (¥ being the empty class of weights, we obtain the “Morita duality”: the du-
ality of presheaf categories and small Cauchy complete categories. That is, functors
[T, V] — |7, 7] preserving limits (and trivially Q-colimits) essentially correspond
to (trivially Q-cocontinuous) functors 7 — 7.

4. For ¥ = Set and ¥ being weights for conical colimits, we obtain the results of
Centazzo [25]. We will study conical weights more in Chapter 5.

Varying the enrichment, we obtain the obvious variations of the above results for ordered
algebraic categories, ordered locally presentable categories, etc.

Remark 4.2.4. We can also vary the classes of weights: consider two classes ¥ and W’
of weights such that ¥ < W’ holds. This inclusion gives rise to an inclusion 2-functor

iy U-The — U-Th,

which has a left pseudoadjoint given by a V-conservative W' -cocompletion. More in detail,
we have for every W-theory .7 the restricted Yoneda embedding

7Y T - U-Alg(T)



56 Chapter 4. Gabriel-Ulmer duality

and this embedding can be factorised: Consider the closure .7 of .7 in W-Alg(.7) under
U'-colimits. We get a diagram

U-Alg(.7)
in which .7 is a W'-theory (since ¥’ is assumed to be locally small), the functor
A =
Zy; T T
preserves W-colimits and is the .7 -component of the unit of the pseudoadjunction

U'-Th,,
| e
U-Th.
Moreover, this pseudoadjunction induces via the biequivalences W-Alg(—) : (U-Th,.)“? —
W-ALG and ¥’-Alg(—) : (¥"-Th,.)®°? — W¥'-ALG the right-hand side pseudoadjunction in

the following diagram:
(U'-Thy )P oo T W-ALG

(R B L =

(U-The)% oy U-ALG

The right pseudoadjoint
U-ALG — U-ALG

has the expected behaviour on objects: given a W'-algebraic category W'-Alg(7) for a
U'-theory .7, we may consider this category as W-Alg(.7), since 7 is trivially also a
U-theory, and any W'-algebra .7 °? — ¥ preserves W'-limits, thus W-limits as well.
The left pseudoadjoint
U-ALG — U'-ALG

gives for a W-algebraic category W-Alg(.7) the W'-algebraic category W'-Alg(.7) with .7
being the W'-theory obtained from 7 by “conservatively adjoining W’-colimits”.

Example 4.2.5. Consider the case of ordinary categories 7 = Set and the classes ¥ = II
and U’ = Lex of weights. Taking an algebraic Cauchy complete (II-)theory .7, we may
consider 7 as a subcategory of II-Alg(.7) and form the closure under finite colimits.
This gives us the category .7 of finitely presentable objects of II-Alg(.7) (see [5]), and
T is an essentially algebraic theory, having all finite colimits. Moreover, the categories

Lex-Alg(.7) and II-Alg(.7) are equivalent, see Corollary 5.12 in [5].
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Sifted weights

The classical theory of locally presentable [36] and accessible categories [59], [65] (see also
the more recent [3]|) hinges a lot upon the interplay of two classes of categories: the class
of A-small categories for limits and the class of A-filtered categories for colimits, where A
is a fixed regular cardinal. The precise nature of the interplay is that

A-small limits commute with A-filtered colimits in the category of all sets and map-
pings.

The idea of |1] was to develop a more general theory of locally presentable and accessible
categories based on the fact that one has a fixed class ID of small categories that replaces
the class of A-small categories. The corresponding class of colimits, called D-filtered, is
then defined by the requirement that

D-limits commute with D-filtered colimits in the category of sets and mappings.

It has been showed in [1] that a great deal of the classical theory can be developed for
the concept of D-filteredness, provided that the class ID satisfies a side condition that is
called soundness in [1].

For example, the class D consisiting of finite discrete categories is sound. The cor-
responding D-filtered colimits turn out to be precisely the sifted colimits of [60]. Free
cocompletions of small categories under sifted colimits generalise the notion of a variety,
as shown in [4]. In fact, the notion of a sifted colimit turned out to be a cornerstone
notion in the categorical treatment of universal algebra, see [5].

The approach of [1] can be generalised further, as we hinted at in Definition 2.1.27.

That is, we can study commutativity of weighted limits and colimits in a general
enrichment, and look at “well-behaved” classes ¥ of weights that give rise to a nice notion
of a WU-theory. These are precisely the sound classes of weights as we defined them in
Definition 2.2.5.

The “ordinary” definition of soudness from [1] and our notion of soundness are closely
tied: they coincide when we consider ordinary categories and conical weights. We shall
then pass from categories to categories enriched in Cat and characterise sifted weights in
this environment. This characterisation is very much in the style of the characterisation of
sifted colimits for ordinary categories, and it allows for a “calculus” for detecting whether
a weight is sifted.

o7
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Structure of the chapter
e In Section 5.1 we recall some necessary basic notions and then show that

1. a weight is [I-flat precisely when its category of elements is sifted in the ordinary
sense of [5],

2. our definition of soundness coincides with the definition of soundness from [1].

e In Section 5.2 we give the elementary characterisation of sifted weights for " = Cat
and show the usage of this characterisation on an example of an interesting weight
by proving its siftedness.

e Having studied sifted weights in the enrichment ¥ = Cat, we get some observations
on sifted weights in the enrichment ¥ = Pre almost for free in Section 5.3.
The results contained in this chapter appeared in the manuscript [30] by J. Velebil
and the author. The wording of the chapter is a slight modification of the text of the
manuscript.

5.1 Preliminaries

Notation 5.1.1. In this chapter we denote the identity morphism on an object A by
idsy 1 A — A. As we shall be working with categories whose objects are natural numbers,
this notation prevents possible confusion. For the same reason the terminal object in a
cartesian closed category ¥ will be denoted by T.

In the setting of ordinary categories, we most often deal with conical limits and colim-
its. The notion of a conical limit or conical colimit can be introduced for any enrichment
in ¥, provided that 7 is cartesian closed.

Example 5.1.2. Suppose ¥ is cartesian closed. By constt : 2°? — ¥ we denote the
weight that is constantly the terminal object T. Such weights will be called conical. Any
class D of small categories induces a class

Up
of conical weights constt : 2 — ¥ with 2 in D.

1. Suppose ¥ = Set. Then to say that a small category & is D-filtered in the sense
of [1] is to say that the conical weight constr : 27 — Set is ¥p-flat. Indeed:
(co)limits of diagrams weighted by conical weights yield the usual notions defined
by (co)cones.

2. Suppose ¥ is arbitrary (but still cartesian closed). The class Wy for I consisting
of all finite discrete categories will be denoted by 11°°"°. The corresponding class of
[1e°me-flat weights will be called the class of sifted weights. Compare with Exam-
ple 2.1.30: we have extended the definition of sifted weights to enrichments other
than 7 = Set.
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Remark 5.1.3. Recall from Definition 2.2.5 that a class ¥ of weights is called sound if
a weight ¢ : 2P — ¥ is U-flat whenever the functor

ox (=) (2,7 >V

preserves W-limits of representables.

Recall (see, e.g., [64]) that in the enrichment ¥ = Set, every ¢ : Z°? — Set has a
category of elements elts(y): the objects are pairs (z,d) with x € p(d) and a morphism
from (x,d) to (2/,d') is a morphism ¢ : d — d' in & such that pt(z’) = = holds.

Recall also from 2.1.25 that for a class ¥ of weights we denote by W;(2) the first step
of the free W-cocompletion step for the category Z.

The following easy result shows that the “testing weights” for W-flatness can be taken
in a special form:

Proposition 5.1.4. For a class ¥ the following are equivalent:
1. U is sound.

2. The weight ¢ : 97 — ¥V is U-flat, whenever p=(—) preserves V,(Z)-limits of
representables, i.e., whenever the canonical morphism

can: {1, Y~} — {9, ¢} (5.1)

is an isomorphism, for every v : P°° — ¥ in V(D).

Proof. Let Y : 2°° — [2, 7] be the Yoneda embedding. Definition 2.2.5 requires the
canonical morphism

s {), YTP—} — {, 0 T}

to be an isomorphism, for every ¢ : 4°? — ¥ in ¥ and every T : ¢ — 9.

The weight Langet) : 2°° — ¥ is in V() and every weight in ¥;(2) has this form,
for some ¢ : 9P — ¥ in ¥ and some T : ¥ — 9.

Since there are isomorphisms

{0, YTP} = {Lanro), Y}, {0, T} =~ {Lange), @}
the equivalence of 1. and 2. follows. [ |

The canonical morphism in (5.1) can be rewritten using coends and Yoneda Lemma
as the morphism

can : f (277, V1Y d, ) @[22, V], Yd) = [2°, V](¢, ¢) (5:2)

that is given by composition in [Z2°P,#]. We illustrate now on two well-known classes
that this coend description yields precisely the “classical” description of flatness by means
of the category of cocones.

Example 5.1.5 (Sifted weights and flat weights for 7" = Set). Suppose ¥ = Set.
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1. The class I1°°" is a sound class of weights. The category I1{°*¢(2) is spanned by
finite coproducts of representables in [Z°7 Set]. Hence a general testing weight
Y P°7 — Set for II-flatness by Proposition 5.1.4 has the form [ [._; Y'd; where I is
a finite set.

We show now that (5.2) yields the well-known characterisation of sifted weights.

Indeed, given a general weight ¢ : 2°P — Set, the mapping can has the form

can [ 0@ x [ 2(did) > [T [ (8)] = (o)

el 1€l
Hence can is a bijection if and only if the following two conditions hold:

(a) The mapping can is surjective, i.e., for every element of [[._; ¢(d;), i.e., for
every I-tuple (x;) of elements of ¢ there is a d, an element x € ¢(d) and an
I-tuple t; : d; — d of morphisms in & such that pt;(x) = z;.

Briefly: on every I-tuple of objects of elts(p) there is a cocone.

(b) The mapping can is injective, i.e., for any pair (z,(¢;)), («/,(t})) such that
ot;(z) = pti(x’) holds for all 7, i.e., for any two cocones of the same I-tuple of
objects of elts(p) there is a zig-zag in & that connects these cocones in elts(ip).

To summarise: a weight ¢ : 27 — Set is [1°°"-flat if and only if its category of ele-
ments is sifted, i.e. every finite family of elements has a cocone and every two cocones
for the same finite family are connected by a zig-zag. (Recall from Proposition 1.3.5
and Remark 1.3.6 an equivalent characterisation of sifted categories.)

2. Let U be the sound class of finite (conical) colimits, i.e., let ¥ = Wy, for the class D
of finite categories.

The category ¥, (2) is spanned by finite colimits of representable functors in [ Z2°?, Set].
Thus, a general testing weight ¢ : 2°? — Set for U-flatness has the form ¢ =
colimYC for a diagram C' : ¢ — Z with € finite.

Given a general weight ¢ : Z°? — Set, the mapping can is a bijection if and only if
two conditions hold:
(a) The mapping can is surjective, i.e., every finite diagram in elts(p) has a cocone.
(b) The mapping can is injective, i.e., any two cocones for the same finite diagram

in elts(yp) are connected by a zig-zag in elts(ip).

The above two conditions together state that the category of cocones of finite dia-
grams in elts(p) is nonempty and connected. This means that the category elts(y)
is filtered. As expected, U-flat weights are precisely the flat ones.

We prove now that our definition of soundness from Definition 2.2.5 coincides with
the definition from [1|. The definition from [1] is condition 2 of the following proposition.

Proposition 5.1.6. Suppose ¥ = Set. For a class D of small categories, the following
conditions are equivalent:

1. The class Wy of conical weights consty : 2°P — Set with 2°7 in D is sound.
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2. A category 2 is D-filtered whenever the category of cocones for any functor T : 4 —
2 with 4°P in D is nonempty and connected.

Proof. We will use the canonical morphism (5.2). Observe first that [2°P, Set|(v), constr)
is a one-element set for any small category & and any 1 : 2°7 — Set, since consty is a
terminal object in [2°7, Set].

By Proposition 5.1.4 any testing weight ¢ : 2°? — Set for Up-flatness of constt :
2° — Set has the form Lanreconstt for some T : 4 — &, where constt : 47 — Set is
in Up. The left-hand side of (5.2) therefore has the form

d d
f [2°7, Set](Lanroconstt, Yd) =~ f [¢°P, Set|(constr,Yd - T)

d
~ f (97, Set](const~, Z(T—, d))
Observe that the category of elements of [4°,Set|(constt, Z(T—,d)) is precisely the

category of cocones for T' that have d as a vertex.
Thus (5.2) is a bijection if and only if

d
J (4P, Set|(constt, Z2(T—,d)) = T

holds. From this, the equivalence of 1. and 2. follows immediately. ]

We shall now analyse the isomorphism (5.2) in more detail for the enrichment in
Cat. We then turn the analysis into a useful elementary criterion of siftedness of weights
enriched in Cat.

Suppose that 7 = Cat. Let ¢, p : Z°? — Cat be any weights. Then the coend

d
| 19 catl(va ) x (9. cal(w. V) (5.
is a category that can be computed as a coequaliser in Cat of the parallel pair

[ {127, Catl(Yd @) x 2(d,d') x [2°, Cat] (1), Yd)

k k o

[ [12°, Cat](Yd, o) x [2°, Cat] (s, Y d)

d

of functors

L:(z:Yd ->p,fid>d,7:0>Yd)— (Z-Yf:Yd— p,7:9—>Yd)
R:(z:Yd ¢, f:d->d,7:¢0—>Yd)— (Z:Yd >, Yf -7:¢0—>Yd)

Thus the coend (5.3) has the following description (see, e.g., [61]):
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1. The objects are equivalence classes

[(@,7)]~

where Z : Yd — ¢ and 7 : ¥ — Yd are natural transformations. The equivalence is

generated by
(ianT) ~ ([/L'\Yf,T)

forallZ:Yd > ¢, 7:¢—>Yd f:d —din 9.
2. The morphisms are equivalence classes

[((u1,v1), .., (Un,vn))]~

of finite sequences ((uy,v1), ..., (un,v,)) such that every pair (u;, v;) is a morphism

in the category [ [,[2, Cat]|(Yd, ¢) x [2°7, Cat|(¢), Y d) and
cod(uy,vy) ~ dom(ug, v2), ..., cod(up_1,v,_1) ~ dom(uy,,v,)
The equivalence relation & is generated from the following two conditions
(uxYw,v) ~ (u, Yw=v), ((ug,vr),(ug,v2)) ~ (uz - uy,ve - v1)
by reflexivity, symmetry, transitivity and composition (concatenation).

It will be useful to work with the following graphical representation. The sequence

((ug,v1), ..., (un,v,)) as above is going to be depicted as
p=—9=—% = ¥ ¥ ¥
EDEDN
d~r—rdy=—=d, ~ d, ,=—=d, ~—d (5.5)
EEEEN
p—t—t - ¢ p—r

The above picture is called a hammock from (Z,7) to (z',7'). The wiggly arrow in the
above hammock, for example from (Z, 7) to (Z, 1), represents a zig-zag connecting d and
d; in Z that witnesses the equivalence (Z,7) ~ (Z1, 7).

The whole hammock (5.5) gets evaluated to the composite modification

(tp * V) » (Up—q * V) -+ e (up *vy) 27> -7

in [2°P, Cat]. Up to the equivalence ~, this is how the evaluation functor can works.
The functor can is an isomorphism of categories if and only if it is bijective on objects
and fully faithful. Hence, the following two conditions have to hold:

1. The 1-dimensional aspect. To give a : 1) — ¢ is to give a unique [(Z,7)]~ such that
-7 = «a holds.

2. The 2-dimensional aspect. To give a modification = : & — o’ is to give a unique
equivalence class [((u1,v1), ..., (Un,vy))]~ such that = is the composite (u, * v,) -
(g E ).



5.2. Siftedness for enrichment in categories 63

5.2 Siftedness for enrichment in categories

Let us now fix the class T1°"® of (conical) weights for finite coproducts for this section,
and study sifted weights in the enrichment 7" = Cat.

It is proved in [45] that the class I1{°"(2) of testing weights for siftedness of a weight
p : P°° — Cat can be reduced further to the empty coproduct consty : ¥ — Cat
of representables and to binary coproducts Z(—,d;) + Z(—,dy) : 2°° — Cat. Hence,
using (5.2), the following result holds:

Lemma 5.2.1. A weight ¢ : 2°P — Cat s sifted if and only if the following two conditions
hold:

1. The unique functor from Sd o(d) to the one-morphism category 1 is an isomorphism.

2. For any dy, dy in &, the canonical morphism

can f o(d) x D(ds,d) x D(ds, d) — p(dy) x 5(d)

s an isomorphism.

Remark 5.2.2. By analogy to the case 7 = Set, we may call the first condition above
connectedness of the weight ¢ : °° — Cat and the second condition expresses that the
diagonal 2-functor A : Z — 2 x & is cofinal in the sense that the 2-cell

op

QOP . Gop

\ A@ Y—=p(d1) xp(d2)

where 04 : p(d) — o(d) x p(d) is the diagonal functor, is a left Kan extension. Indeed, it
suffices to consider the isomorphism

f o(d) x D(dy, d) x D(d, d) ~ f o(d) x (27 x D7) (AP(d), (dy, o))

We apply the criteria of Lemma 5.2.1, together with the analysis of (5.2) using ham-
mocks, for giving elementary proofs of sﬁtedness of various weights.

Example 5.2.3 (A weight that is not sifted). We start with an example of a weight
p : P°P — Cat that is not sifted, although the ‘underlying’ ordinary functor

2" 22 Catg —2 Set,

where ob denotes the forgetful “object” functor, is sifted.

Consider the one-morphism category . with the only object s. Denote by Z° the
free completion of . under finite products. It follows immediately that the only 2-cells
in Z°7 are identities.

Let x : 2°° — Cat be the product-preserving functor defined by x(s) = 2, where
2 is the two-element chain, considered as a category. We define ¢ to be the following
modification of y: where x(s") = 2", we let p(s") = 2" for every n > 1. The structure
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on 2" is that of an almost discrete preorder with the only nontrivial inequality being
(0,...,0) < (1,...,1). The action of ¢ on morphisms is defined as for y. Of course, ¢
does not preserve products, but the composite

25" 2 Caty —2 Set

does; in fact, it is not hard to see that this ordinary functor constitutes an algebra for the
ordinary algebraic theory %, and thus it is a sifted weight by [5].

It is enough now to find pairs (z1, z9) and (y1, y2) from (s) x ¢(s) such that (x1,z2) <
(y1, y2) holds but there is no hammock to witness this inequality. Consider (xy,z5) = (0,1)
and (y1,y2) = (1,1). Firstly, we make use of the fact that there are no nontrivial 2-cells
in 2°°P. This implies that the ‘lax’ parts of the hammock consist only of inequalities
between the elements of ¢(s™) = 2" for some s". But these are precisely the diagonal
inequalities (0,...,0) < (1,...,1). Together with the fact that the only morphisms of the
form s — s in Z°P are the product projections, it is easy to see that there is no way how
any hammock could evaluate its right-hand side to (1, 1) and its left-hand side to (0, 1).

Remark 5.2.4. Siftedness of the composite ob - ¢y : Z;7 — Set establishes precisely
the 1-dimensional aspect of siftedness: the functor can is bijective on objects iff ob - ¢y
is sifted. From this it immediately follows that a weight ¢ : 2 — Cat with & locally
discrete (i.e., with only the identity 2-cells) and such that every ¢(d) is a discrete category
is sifted if and only if the composite ob - ¢y : Z5¥ — Set is sifted in the ordinary sense.

The 2-dimensional aspect of siftedness of ¢ : Z°? — Cat has to be verified in general.
Example 5.2.3 exhibits such a situation when & is locally discrete and Example 5.2.6
shows a conical weight constt : Z°? — Cat that is not sifted although the underlying
ordinary category %, is sifted in the ordinary sense.

Example 5.2.5 (Siftedness for weights based on the simplicial category). Recall
from, e.g., |[64], that the simplicial category A has finite ordinals as objects and monotone
maps as morphisms. It can be proved rather easily that the morphisms of A can be
obtained from id; : 1 — 1, 7:0 — 1 and p : 2 — 1 by ordinal sums subject to monad
axioms. Hence we will draw the morphisms of A as string diagrams that are generated
from the following strings

0—04—0:>—0

that represent id; : 1 — 1,7 :0 — 1 and p : 2 — 1, respectively, by vertical concatenation
that is subject to the unit axioms

and the associativity axiom

Do p

We show that both the conical weight on A and the weight given by inclusion of A
into Cat are sifted weights. In fact, from our reasoning it will be clear that the same holds
of almost any truncation A, of A. The truncated category A,, is just the full subcategory
of A spanned by finite ordinals up to n.
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. It is easy to show that constt : A — Set is an ordinary sifted weight, and therefore

even the conical weight constt : A — Cat is sifted due to the fact that there are no
non-trivial 2-cells in A, see Remark 5.2.4. Every truncation A™ (for n > 1) of the
simplicial category A gives rise to a conical sifted weight as well.

. Suppose the weight ¢ : A — Cat is given by inclusion. Here

AO & Cato O—b> Set

is an (ordinary) representable weight Ag(1, —) : Ay — Set. For each object n of A
the category ¢(n) is the free linearly ordered category on an n-element chain. We
will show an elementary proof that ¢ is a sifted weight. First of all, let us check
that the coend {" p(n) is isomorphic to the terminal object T, i.e., the one-morphism
category 1. Of course, the category Sn ©(n) has precisely one object: given any two
objects x € ¢(n) and y € p(m), they are equivalent by ~ if there exists a string
diagram o : p(n) — ¢(m) such that = gets mapped to y by o. A diagram like this
always exists; we illustrate this on an example situation with n = 4 and m = 3:

x.\o
.:>/—>_.y
°
Now given any morphism f : x — 2’ in ¢(n), we show that f ~ id,, where id, is
the identity morphism on the only object = of ¢(1). This is again immediate when
using the string diagrams: consider the only string diagram ! : p(n) — ¢(1). It

maps all morphisms in p(n) to the identity morphism, see for example the diagram
below.

/,

1 (z) = I(a)

So the category {" ¢(n) indeed has only one morphism. Now we show the isomor-
phism

Jn o(n) x A(n,ny) x A(n,ng) = p(n1) x @(nsy)

by showing that the canonical morphism is bijective on objects and fully faithful.
On objects, the canonical morphism takes an object x € p(n), two string diagrams
o:p(n) — p(ny) and 7 : p(n) — p(ns2), and computes the pair (o(x),7(z)). It is
immediate that for any pair (y, z) in ¢(n1) x p(ns) there exists a tuple (x, o, 7) that
is mapped to (y, z). More is true: we can always choose = = € ¢(1) and the string
diagrams o, 7 are the obvious diagrams choosing y and z, respectively.

Y

JIMZ

)

This proves that can is bijective on objects. In order to prove that can is full, we
will show that given any pair of morphisms g : y — ¢ and h : z — 2/ in ¢p(m) and
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©(p) respectively, there is a morphism f : x — 2’ in ¢(n) and two string diagrams
sending the morphism f to g and h, respectively. But there is again a canonical
such f : z — 2’ in p(2) with the obvious inclusions, as is shown in the example
diagram below.

Thus we have proved fullness and faithfulness of the canonical functor can. The
weight ¢ is sifted.

We have actually proved that any truncation ¢™ : A — Cat of the inclusion
weight is also sifted for n > 1.

The 2-dimensional aspect of siftedness is crucial for Cat-enriched weights even in the
case of conical weights, as we show in the following easy example.

Example 5.2.6 (A conical weight that is not sifted). Consider the diagram scheme
for reflexive coequalisers satisfying dy - 0 = &1 - 0 = idy, and adjoin freely a 2-cell « to it:

do

AR

g

2——1

%

01

The resulting 2-category 2, when considered as a conical weight, is not sifted (the 2-cell
is not reflexive), although the underlying ordinary category % is sifted in the ordinary
sense (see, e.g., Chapter 3 of [5]).

Example 5.2.7 (Siftedness for the weight for Kleisli objects). The weight ¢ :
2°° — Cat such that ¢-colimits yield Kleisli objects is described in [62]. We will recall
the definition of the weight ¢ and prove that it is sifted. That the weight ¢ is sifted is
known from Proposition 8.43 in [21]: in this example we show an elementary proof of this
fact.

The 2-category Z is the suspension 2 A of the simplicial category A. This means that
2 has a unique object, say do, and that the hom-category Z(dy, dy) is the category A.
Morphisms in & are finite ordinals, and the 2-cells are ‘monad-like’ string diagrams as
described in Example 5.2.5.

The category ¢(dp) is defined as follows: the objects are finite non-zero ordinals, that
is, objects of the form n + 1 for some natural number n. Every object n + 1 is understood
as a (n + 1)-element chain with a distinguished top element. The morphisms in ¢(dy) are
precisely the monotone maps that preserve the distinguished top element. This definition
of ¢(dy) again allows a pictorial description in terms of string diagrams. The morphisms
in ¢(dy) are string diagrams generated by the basic diagrams
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subject to monad axioms and the two axioms

< > T

that express the fact that the diagram ./ is an algebra for the monad given by the

unit €4—@ and multiplication :>—‘ .

The 2-functor ¢ : °° — Cat is defined on the morphisms and 2-cells of Z° by
concatenation: for a given morphism n : ey — eg, the functor ¢(n) : p(eg) — p(ep) maps
an object m + 1 € ¢(eg) to the object m + n + 1. A string diagram s in ¢(eg) is mapped
to the diagram ¢(n)(s), defined as the diagram s concatenated with n identity strings.
We show an example of this assignment for n = 1:

R

Likewise, given a 2-cell § : m — n in &, the natural transformation ¢(f) is defined
componentwise: for an object m + 1 in ¢(eg), the morphism ¢(6),,; is the concatenation
of the identity diagram on m + 1 with the diagram 6. For example, given the diagram

4—* 350 and m = 2, the component (f)3 is the following string diagram in o(dp):

o ———O0
o ———O

<4—o

Now to prove that ¢ is a sifted weight, we need to verify that there are canonical
isomorphisms

j old) =1, f o(d) x D(do,d) x D(dy, d) = p(dy) x p(dy)  (5.6)

proving that ¢ = (—) preserves nullary and binary products. We first analyse parts of a
general hammock (5.5) for the weight ¢ with the testing weight ¢ = [ [..; Z2(—,d;). The
left-hand side rectangle on the diagram below

el

%2 %2 7 7
IT Ty ° ey
60%60 Tre @]
T T ° ~ |e]
Si t;

| ® | L4 "
b=—v  Te ol

‘o 3

represents the information that for each ¢ € I and the morphisms given in the diagram
we have that equalities f +s; = ¢; and = y + f hold in natural numbers. This situation
is depicted on the right-hand side of the above diagram. In general, the tuples (z, s;) and
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(y,t;) are related by the equivalence relation ~ if and only if x + s; = y + t; holds for all
1el.
The rectangle of the form

SO _ SO
J:T X Ty
f
ep— €p
Sg lé Tti
’lp — ’lp

is represented by the concatenation of two string diagrams u and v; for each ¢ € I.

YN
TN

The above diagram is an example of string diagrams that are equivalent: the ‘sliding’ of
the division between the string diagrams generates the equivalence relation ~. Observe
moreover that morphisms in the coend are n-tuples of composable string diagrams. Any
such n-tuple is equivalent to a 1-tuple, but the fact that we are allowed to vertically
‘decompose’ any string diagram to n parts is important in the proof of siftedness for .

In the following diagram
:>*/

:+—0
Dl

we can see such a decomposition of a string diagram into a 2-tuple of shorter string
diagrams.

With the complete description of the weight ¢ and of the hammocks, we can conclude
that we have the canonical isomorphisms in (5.6):

1. The weight ¢ satisfies the isomorphism

Jd o(d) = 1.

Indeed, the coend Sdgo(d) has precisely one object: any pair n + 1 and m + 1 of
objects in (dy) is related by a hammock of length 2:

wa] ] e

dOTdOTdO
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To show that Sd ©(d) has a unique morphism, we will prove that any string diagram
oc:m+1— n+1is congruent by the equivalence relation ~ to an identity string
diagram idy, : k — k for some natural number k. We have to distinguish two cases.

If the diagram o does not contain / as a subdiagram, then it is trivially a
concatenation of two string diagrams oy = id; : 1 — 1 and o; : m — n, and

therefore o ~ id; holds. If o contains / , then it is necessary to factor it into a
composition of two diagrams (denote the red part of the diagram by w):

(=]

01

QA

-

idy,

This decomposition is unique. Take the identity morphism id,, and decompose it in
the same way into a concatenation of w with (71, id,,). By the first case we have that
T1 ~ 01, and the equivalence id,, ~ id, is trivial. This decomposition thus witnesses
the equivalence o ~ id,,.

2. The second isomorphism

f o(d) x Ddo,d) x D(do,d) = p(do) x 9(do)

is proved similarly to the case above. Given two objects m+ 1 and n+1 from ¢(dy),
there is a triple (1, m,n) that gets mapped exactly to (m+1,n+ 1) by the canonical
functor. For any other triple (k, m’,n') that is mapped to (m + 1,n + 1) we have
the equalities K +m' = m + 1 and k + n’ = n + 1. Therefore (1, m,n) ~ (k,m’,n’)
holds and the canonical functor is bijective on objects.

To prove that the canonical functor is full, we show that for any two string diagrams
o:m+1—->n+1land7:p+1— g+1 thereis a triple (w, o, ) getting mapped to
(o, 7). But again, as in the case of the first isomorphism, take w to be the diagram

\
C=rp

and factor the diagrams ¢ and 7 into pairs o = (04, 4d,) and 8 = (7, id,) in a way
that wxa = 0 and w=f = 7, where * denotes the horizontal composition. Faithfulness
of the canonical functor then comes easily from the fact that the morphisms in the
coend have the above mentioned ‘normal form’.

The proof of siftedness is complete.

5.3 Siftedness for enrichment in preorders

The enrichment in the category Pre of preorders and monotone maps is in many aspects
similar to the enrichment in Cat, but the computations are much simpler. In fact, we will



70 Chapter 5. Sifted weights

be able to give a full characterisation of sifted conical weights constt : Z°P — Pre, see
Example 5.3.1.
The crucial coend

J o(d) x [2°P,Pre| (v, Yd)

is computed as a coequaliser in Pre of two monotone maps L and R that are defined in
the same way as for ¥ = Cat, see (5.4). Moreover, the coequaliser of L and R can be
computed in two steps. First we compute the coequaliser on the level of underlying sets.
This yields a set of equivalence classes of the form [(Z, 7)]. with respect to the equivalence
~ generated by L and R. The set of equivalence classes is then equipped with a least
preorder = satisfying the following condition:

If (z,7) < (y,0), then [(Z,7)]. & [(¥,0)]~-

where < denotes the preorder of the coproduct [ [, ¢(d) x [2°7, Pre|(y,Yd).

Below, we will also use hammocks for the enrichment in Pre. These are pictures
like (5.5) but the 2-cells u;, v; are replaced by mere inequality signs.

We show now that for conical weights ¢ : Z°P — Pre the 2-dimensional aspect of sift-
edness is vacuous. That this is not true for general weights ¢ : 2 — Pre is demonstrated
by the weight of Example 5.2.3: all categories there are in fact enriched in Pre.

Example 5.3.1 (Sifted conical weights). The reasoning is similar to Example 5.1.5
above. Elements of I1{°**(2) are finite coproducts | [,.; Y'd; of representables in [2°?, Pre].
By Yoneda Lemma, every 7 : ¢» — Yd can be identified with a cocone t; : d; — d. Then
the requirement that for any two natural transformations 7 : ¢ — Yd and ¢ : ¢ — Yd
the equivalence 7 ~ ¢ has to hold, corresponds to the fact that the cocones t; : d; — d
and s; : d; — d (corresponding to 7 and o respectively) have to be connected by a zig-zag.
The 2-dimensional aspect of siftedness is vacuous in this case.
Thus a weight constt : Z°? — Pre is sifted if and only if the ordinary functor

constr)\o

Pre; —2— Set

7"
(with ob being the forgetful functor) is sifted in the ordinary sense.

Example 5.3.2 (Sifted weights in general). Consider a general weight ¢ : 27 — Pre.
To establish the isomorphism

d
can : J o(d) x H@(di,d) - ng(di)’

of preorders we need the monotone map can to be bijective and order-reflecting. As we
noticed earlier, the coend is computed as a coequaliser in Set equipped with a freely
generated preorder. More precisely, there are two conditions for a weight to be sifted:

1. To obtain bijectivity on objects of the can mapping we demand that

25" 2 Prey —2 Set

be an ordinary sifted weight.
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2. Order-reflectivity of can means that given any two tuples (z;) < (z}) from [ [,_; »(d;)
we can form a hammock

2 P 2 2
alT < z inT < Tﬂl T@f
dl

di - dy
T1 < T{ T

Z

=—=dp-1

such that its left-hand vertical side evaluates to (x;), and its right-hand vertical side
evaluates to (z}).

Remark 5.3.3. Observe that the characterisations of sifted weights for enrichments in
Cat and Pre are strongly related. This is because the computations of coequalisers are
essentially the same.

In fact, the requirements for a weight ¢ : 27 — Pre to be sifted (as enriched in Pre)
are exactly the requirements of siftedness for the weight ¢’ : 2°° — Cat, with ¢’ being
the weight ¢ considered as enriched in Cat.

The situation is rather different when considering sifted weights for the enrichment in
the category Pos of all posets and monotone maps. The computation of a coequaliser in
Pos runs in two steps: one computes the coequaliser in preorders and then performs the
poset-reflection. It is the second step that brings in additional identifications and makes
the characterisation of siftedness quite complex.



Chapter 6

Two-dimensional Birkhoff theorem

In this chapter we will state and give a proof of a 2-dimensional analogue of the Birkhoff
theorem from universal algebra. Recall from Theorem 1.5.6 that in the ordinary setting,
Birkhoff’s theorem characterises equational subcategories of algebraic categories. An al-
gebraic category can be viewed as a category Alg(T") of algebras for a strongly finitary
monad T on Set. (A monad is strongly finitary if its underlying functor is strongly fini-
tary, i.e., if it preserves sifted colimits [5].) A full subcategory 7 of Alg(T") is said to be
an equational subcategory of Alg(T) if it is (equivalent to) the category Alg(7”) of algebras
for a strongly finitary monad 7", where T” is constructed by “adding new equations” to
the monad T'. More precisely, we ask T” to be a quotient of 7', meaning that there is
a monad morphism e : T — T” that is moreover a regular epimorphism. The resulting
algebraic functor
Alg(e) : Alg(T") — Alg(T)

then exhibits Alg(7") as an equational subcategory of Alg(T"). Every such subcategory
Alg(T") — Alg(T) has nice closure properties with respect to to the inclusion into Alg(T).
The content of Birkhoff’s theorem is that equational subcategories can be characterised
by these closure properties (see, e.g., [81]). In essence, this theorem holds since algebraic
categories are well-behaved with respect to quotients (regular epis) — they are ezact
categories [5].

Taking inspiration from the ordinary case, we want to give a characterisation of equa-
tional subcategories of algebraic categories in the enriched setting. Namely, we shall
mainly work with categories enriched in the symmetric monoidal closed category ¥ = Cat
and we will accordingly use the enriched notions of a functor, natural transformation, etc.

Analogously to the ordinary case, in defining the notion of an equational subcategory
of Alg(T) the idea is again to consider “quotients” e : T — T" of strongly finitary 2-
monads. Any subcategory Alg(e) : Alg(T") — Alg(T) exhibited by a quotient e : T — T"
is an equational subcategory of Alg(T).

Unlike to the 7" = Set case, it is not immediately clear that some well-behaved notion
of a quotient of strongly finitary 2-monads should exist. In # = Set, the quotients
come as the “epi part” of the (regular epi, mono) factorisation system, and they are
computed as certain colimits, the coequalisers. The solution in #* = Cat is to mimic this
approach. Thus we should study factorisation systems on Cat (and the respective notions
of a quotient), and find out which factorisation systems “lift up” from the category Cat
to Cat-enriched algebraic categories. That is, we want to find factorisation systems that
render the algebraic categories over Cat ezact in some suitably generalised sense. This

72
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would allow us to talk about quotients of strongly finitary 2-monads while preserving the
good behaviour of quotients as in Cat.

Recent advances in the theory of 2-dimensional exactness (see [22]) show that there
are at least three notions of a quotient coming from three factorisation systems (€, M)
on Cat, for which algebraic categories over Cat are exact:

1. (surjective on objects, injective on objects and fully faithful),
2. (bijective on objects, fully faithful),
3. (bijective on objects and full, faithful).

(For the & parts of the above systems, we will use the standard abbreviations, namely
s.0. for surjective on objects, b.o. for bijective on objects, and b.o. full for bijective on
objects and full.) We show that the 2-category Mndg(Cat) of strongly finitary 2-monads
over Cat is exact in the sense of [22] with respect to all the three factorisation systems
above as well.

We focus on the factorisation system (b.o. full, faithful). Unlike the other two systems,
it corresponds to a meaningful notion of an equational subcategory, and it allows us to
prove the 2-dimensional Birkhoff theorem by arguments very similar to those used in
the proof of the ordinary Birkhoff theorem. For this factorisation system, the exactness
of Mnd(Cat) implies that a monad morphism e : T" — T” is a quotient if and only if
ec : TC — T'C is a b.o. full functor in Cat for every category C. We shall often use this
“pointwise” nature of quotient monad morphisms.

The main result of the chapter characterises equational subcategories of algebraic cat-
egories as those that are closed under products, quotients, subalgebras and sifted colimits.
This is a characterisation in the spirit of the ordinary Birkhoff theorem. In the univer-
sal algebraic formulations, only the first three closure properties are demanded, and are
dubbed “HSP” conditions. However, it was found out in [6] that even in the ordinary
case, the property of being closed under filtered colimits is necessary when dealing with
infinitely-sorted algebras. It is thus not surprising that the additional requirement of
closedness under sifted colimits might be needed in the 2-dimensional case: the finitary
and strongly finitary 2-monads no longer coincide in Cat (see Remark 6.2.4 for a dis-
tinguishing example), and we are dealing with the strongly finitary ones. The choice of
working with strongly finitary 2-monads is fairly natural, since the 2-category Mndgs(Cat)
is equivalent to the 2-category Law of Cat-enriched one-sorted algebraic theories (also
dubbed Lawvere 2-theories) [57].

Structure of the chapter.

1. We summarise the relevant parts of the theory of enriched factorisation systems
from [22] in Section 6.1. We also recall some basic notions of the theory of category-
enriched monads (2-monads).

2. In Section 6.2 we prove the 2-dimensional Birkhoff’s theorem (Theorem 6.2.3).

The results of this chapter were published in the paper [28] by the author. The wording
of the chapter is a slight modification of the text of the paper.
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6.1 Kernels and quotients in 2-categories

We shall make heavy use of factorisation systems in discussing and proving the Birkhoff
theorem. The study of factorisation systems in general 2-categories is more involved than
in the ordinary case. Following the exposition in [22]|, we first recall the definitions of
enriched orthogonality and enriched factorisation systems in a general ¥ '-category for a
symmetric monoidal closed base category #". Then we introduce kernel-quotient systems
that generalise the correspondence between regular epimorphisms and kernels in exact
categories, and we use this notion to introduce the (b.o. full, faithful) factorisation system
on Cat. This factorisation system lifts up to a large class of algebraic categories, as is
shown in Theorem 6.1.8. As an important corollary we show in Proposition 6.1.10 that the
2-category of strongly finitary monads on Cat inherits the (b.o. full, faithful) factorisation
system, allowing us to study quotients of monads.

Definition 6.1.1. A morphism f : A — B in a ¥ -category ¥ is ¥ -orthogonal to g :
C' — D (denoted by f L g) if the diagram

¢(B,9)

%(B,0) %(B,D)

<¢(f,0) <(f,D)

is a pullback in #". Given a class G of morphisms of %, we define two classes of morphisms
¥ -orthogonal to those in G:

e Gl:={m|VgeG:g L m}
o Gl:={e|VgeG:el g}

Given an object C' of €, the morphism f : A — B is orthogonal to C'if f is orthogonal
to 1¢, i.e., if the precomposition map

¢(f,C):¢(B,C)— %€(AC)

is invertible (i.e., an isomorphism). We denote this fact by f L C.
Let £ and M be two classes of morphisms of 4. We say that (£, M) is a ¥'-
factorisation system if

1. M =&Y,
2. &= M" and

3. every morphism f in € can be factorised as the composition m - e of a morphism m
in M and a morphism e in £.

Example 6.1.2. We examine when two morphisms f : A — B and g : C — D are
orthogonal in & for the case of 7" = Cat. Firstly, the morphisms have to satisfy the usual
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- ]

C’—>D

diagonal fill-in property

A1

for every pair x : A — C and y : B — D of morphisms in €. Let us denote by d: A — D
the diagonal fill-in for x and y, and denote by d’ : A — D the diagonal fill-in for 2’ and
y'. The second requirement on f and g to be orthogonal is that they satisfy the diagonal
2-cell property: for every pair o : x = 2’ and 3 : y = 1/ of 2-cells such that

A A—L B
e’ B
z| = |2 = yl =y
C—>g D D

there has to exist a unique 2-cell § : d = d’ such that the equalities

A B
o B

T = |z — Yyl = |y =
C D

hold.
Similarly, a morphism f : A — B in % is orthogonal to an object C' of ¥ if

1. for every g : A — C there exists a unique morphism h : B — C such that h- f = g,
and

2. for every 2-cell a : g = ¢’ there exists a unique 2-cell 5 : h = h' such that f* f = «
holds.

We now recall from [22] the notion of a kernel-quotient system. This notion generalises
the notions of a kernel and its induced quotient, and allows treating factorisation systems
in enriched categories parametric in the choice of the shape of “kernel data”. Importantly,
this approach covers the motivating ordinary (regular epi, mono) factorisation system on
Set as well as the three factorisation systems on Cat that are mentioned in the introduction
to this chapter.

In the following, we will restrict ourselves to #" being a locally finitely presentable
category as a monoidal closed category in the sense of [43], as we will need to impose a
finiteness condition on the kernel-quotient system.

Let us denote by 2 the free ¥'-category on a morphism 1 — 0. We let .# be a finitely
presentable 7 '-category containing 2 as a full subcategory. Then there is the obvious
inclusion J : 2 — % and the inclusion I : J# — % of the full subcategory J# of .%#
spanned by all objects of .# except 0. We call the data (J,I) a kernel-quotient system,
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and the role of J# is, informally, to give the “shape” of the kernels. Given a complete and
cocomplete ¥ -category %, there is a chain of adjunctions as in the following diagram:

[J,€] Lany
/—\ /‘\
2,¢] L+ [F.¢ L1 [X7]
~_ " ~_ A

Ran [[,%)]

We denote the composite adjunction by

and call it the kernel-quotient adjunction for %.

In [22] the authors give a weaker definition of kernel-quotient adjunction to capture the
cases where % is not complete and cocomplete. We do not need to introduce this weaker
notion, as the 2-categories ¢ in our examples always satisfy the completeness conditions.

Definition 6.1.3. Given a complete and cocomplete ¥ -category ¥ together with the
kernel-quotient adjunction for .%, we say that an object X in [, €] is an F -kernel if
it is in the essential image of K. Any arrow f: A — B in % is called an .% -quotient map
if it is in the essential image of ), and it is called % -monic if the morphism K (14, f) :
K(14) — K(f) is an isomorphism.

Example 6.1.4. The motivating example of a kernel-quotient adjunction in the ordinary
setting (¥ = Set) is given by taking the category % to be of the shape

e

~_ "

with J and I being the obvious embeddings. Here the adjunction () - K acts as follows.
The functor @ sends a parallel pair X = (f,g) to a coequaliser QX of the parallel pair
(f,9)- A morphism f: A — B in %, thus an object in [2, %], is sent by K to the kernel
pair Kf = (ki, ks) of f. The #-monic morphisms are precisely the monomorphisms in
this example.

The kernel-quotient system in the previous example allows factoring every morphism
in € as a regular epimorphism followed by a (not necessarily monomorphic) morphism.
Since both the functors [ : # — % and J : 2 — % are injective on objects and fully
faithful, the functors Ran; and Lan; can always be taken as strict sections of the functors
[/, %] and [I, €], respectively. Then the kernel-quotient adjunction @) 4 K may be taken
to commute with the evaluation functors [2, 4] — € and [ £, €] — € that evaluate at
the object 1. This results in the counit € of ) 4 K having the following form for all

objects f in [2,7]:
A
Bf

Ef B

1a
—

A
5f3QKf—’f = Qka
C
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Thus we have a factorisation
[=er-QKF,
and QK f is a regular epi, being a coequaliser of the parallel pair K f. If the morphism
7 is a mono for every f, we obtain a factorisation system (regular epi, mono) on €.
The above construction of the morphism ¢ is analogous in the case of enrichment in
a general 7. We say that .Z -kernel-quotient factorisations in € converge immediately
whenever € is .#-monic for each morphism f in 4. Whenever .#-kernel-quotient fac-

torisations converge immediately in €, we obtain a ¥ -factorisation system (#-quotient,
Z-monic) on € (by Proposition 4 of [22]).

Example 6.1.5. Given a 2-category Fpo generated by

S

9 alfr 1l —
~_

t

subject to the identity w*a = w = 3, we obtain the following kernel-quotient system. The
Fvor-kernel (or equikernel) of a morphism f: A — B is given by the following data:

s

E allptAa—7t p
~_ A

t

In Cat, the category F has as objects the parallel morphisms p, ¢ : @ — b from A for which
the equality f(p) = f(q) holds in B. The morphisms between objects p1,q; : a3 — b; and
P2,q2 : as — by in E are the pairs (m,n) of morphisms m : a; — ay and n : by — by,
satisfying the equalities n - p; = po-m and n - q; = ¢ - m. The functors s and ¢ then
act as “source” and “target” functors. That is, given p,q : @ — b as an object in E, we
have that s(p,q) = a and ¢(p, q) = b. The action of s and ¢ on morphisms is as expected:
using the above notation, s(m,n) = m : a; — ay and t(m,n) = n : by — by. The natural
transformations o and 3 then act as “morphism projections”, i.e., a(p,q) = p: a — b and
B(p,q) =q:a—b.

Given kernel-data X in [, €], its Fpor-quotient QX is its coequifier, i.e., a universal
morphism ¢ : X1 — C satisfying ¢ * Xa = ¢ X (see [44] or Section 5.3 in [22]). A
morphism in & is F,.-monic precisely when it is representably faithful (i.e., faithful when
% = Cat). As the coequifier morphisms are always bijective on objects and full in Cat, this
hints that the Z,o¢ kernel-quotient system gives rise to the (b.o. full, faithful) factorisation
system on Cat. This is indeed the case. In detail, given a functor f : A — B, we can
form its equikernel E and factorise f into two functors e : A - A/F and m : A/E — B.
The category A/E is the congruence category of A having the same objects as A, with
the congruence on morphisms of A generated by the pairs p,q : a — b that are objects of
E. Defining e as the canonical functor that assigns to each morphism of A its equivalence
class in A/FE, it is obviously bijective on objects and full. The functor m assigns to each
object a of A its image f(a), and to the equivalence class morphism [p : @ — b| the image
f(p): f(a) — f(b). It follows immediately from the definition of the equikernel that m is
well-defined and faithful.

To summarise, for ¥ = Cat the kernel-quotient factorisations for %, converge imme-
diately, and they give rise to the (b.o. full, faithful) factorisation system.
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The main focus of [22] is to study the generalised notions of regularity and exactness,
parametric in the choice of a kernel-quotient system .%#. This yields a theory of .%#-
regularity and .%-exactness. We do not need to introduce the theory of .#-exactness in
detail. In fact, we use the results of [22]| only to “lift” the (b.o. full, faithful) factorisation
system of Example 6.1.5 on Cat to any algebraic category Alg(T) for a strongly finitary
2-monad T on Cat.

Remark 6.1.6. We say that a diagram

s

E @ A (6.1)

t

of kernel data is reflerive if there exists a morphism 74 : A — FE as in the diagram

s

E ap) s> A
~_

t
A —

1A
that satisfies the reflexivity equalities

S'iAZt'iA=1A,

axig= =iy =1

In Cat, the equikernel (6.1) of any functor f : A — B is indeed reflexive. Recalling the
description of E from Example 6.1.5, we see that the assignment

defines a morphism 74 : A — F that satisfies the reflexivity equalities.

It follows from the above remark that each b.o. full functor is the coequifier of a
reflexive diagram: its equikernel. This observation is important because coequifiers of
reflexive diagrams (reflexive coequifiers) are examples of sifted colimits. In the ordinary
setting, sifted colimits are those colimits that commute with finite products in the category
of sets, recall Example 1.3.2 or see [5]. In particular, Theorem 2.15 of [5] contains a useful
characterisation of diagrams for sifted colimits. A diagram & is sifted if and only if it is
connected and the diagonal A : ¥ — & x & is cofinal. See also Proposition 1.3.5 above.
In the case of enrichment in Cat, sifted colimits are again those colimits that commute
with finite products, now in the category Cat, and it is possible to characterise them in

=

a manner similar to the ordinary characterisation, as we have shown in Chapter 5. A
weight ¢ : 27 — Cat is sifted if and only if

1. ¢ is connected, meaning that the unique 2-functor Sd wd — 1 is an isomorphism,
and
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2. the diagonal 2-functor A : Z — 9 x Z is cofinal, meaning that the 2-cell

op

QoD . Qop

\ / (6.2)
di,d2)—p(d1) xp(dz)

is a left Kan extension, where 0, : pod — d x @d is the diagonal functor.

This characterisation is contained in Remark 5.2.2.

Remark 6.1.7. A 2-functor T : € — € is called strongly finitary if it preserves sifted
colimits [45]. Using Remark 6.1.6 we see that every strongly finitary endo-2-functor
T : Cat — Cat preserves b.o. full functors, as they are coequifiers for some reflexive
diagram in Cat. We will use this fact very often in the following sections.

Let us denote by Cats the 2-category of natural numbers n = {0,1,...,n — 1} and
functions between them. There is an inclusion ¢ : Catg — Cat that represents n as
the discrete category with the object set n, and maps a function f : m — n to the
corresponding functor with object assignment f. Theorem 8.31 of |21] states that Cat
is the free cocompletion of Catg under sifted colimits. This observation is useful as
it shows that any category % is a sifted colimit of finite discrete categories. Indeed,
every discrete category is a filtered colimit of its finite discrete subcategories, and every
category is a sifted colimit (a special codescent object) of discrete categories (see, e.g.,
Chapter 1 of [21]). Moreover, strongly finitary 2-functors 7" : Cat — Cat correspond (up
to isomorphism) to 2-functors 7' - ¢ : Catgs — Cat, as the following diagram

Caty ——— Cat

A

is a left Kan extension. This correspondence is stated and proved in Corollary 8.45
of [21]. Via this correspondence we may identify the 2-category StrFin(Cat) of strongly
finitary endo-2-functors of Cat with the (2-functor) 2-category [Cats, Cat]. We will use
this identification in the proof of Proposition 6.1.10.

The factorisation system given by Z.¢ lifts from Cat to the categories of algebras for
a strongly finitary 2-monad 7". We will introduce the notion of an algebraic category and
then state the “lifting theorem” for Zps.

For a 2-monad T on a 2-category 2", we denote the 2-category of T-algebras and their
strict homomorphisms by Alg(7T). Recall that a morphism a : TA — A is a T-algebra if
it satisfies the axioms

A" TTA —To T4
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and a morphism h : A — B is a strict homomorphism between T-algebras (A, a) and
(B, b) if it makes the usual diagram

TA TR

Jf )

commute in 2. Let us recall the 2-dimensional structure of Alg(7"). Given two T-algebras
a:TA— Aand b: TB — B, and two homomorphisms h,h’ : A — B between (A4, a)
and (B, b), the 2-cells « : b’ = h between the homomorphisms b’ and h are exactly those
2-cells a : ' = h in 2 that moreover satisfy the following equality:

Th'
—
TA |Ta TB TA
~_ "
Th .
b - a
hl
B A |a’B
\_/r
h

For us, the algebraic 2-category Alg(T') is therefore what other authors commonly denote
by Alg,(T'), see [56]. As we do not deal with the weaker kinds of morphisms, we will talk
simply of homomorphisms instead of strict homomorphisms in what follows. We call the
2-categories equivalent to the 2-categories of the form Alg(T") algebraic.

Theorem 6.1.8. Let T be a strongly finitary 2-monad on [X, Cat| (with X an arbitrary
set). Then the Fpof kernel-quotient factorisations converge immediately in the 2-category
Alg(T) of T-algebras. These factorisations give rise to a factorisation system: the quotient
morphisms are precisely those morphisms whose underlying morphisms are pointwise bi-
jective on objects and full, and the monic morphisms are precisely those whose underlying
morphisms are pointwise faithful.

Proof. Observe that the forgetful 2-functor U : Alg(T) — [X, Cat] creates limits and
sifted colimits. In particular, U creates equikernels and coequifiers of equikernels, since
the equikernel is a reflexive pair in the sense of Remark 6.1.6, and therefore sifted. The
factorisation of any morphism h : (A,a) — (B,b) in Alg(T) is thus computed as in
[ X, Cat], and there the .%o factorisations converge immediately. The Fp¢ factorisations
thus converge immediately in Alg(7"). Moreover, any Fpoe-quotient morphism in [ X, Cat]
is pointwise bijective on objects and full, as it is a coequifier and these are computed
pointwise in [ X, Cat]. [

In the context of categories of algebras, the lifted factorisation system gives rise to
the notions of a quotient algebra and a subalgebra. Let T be a strongly finitary 2-monad
T on Cat, and take an algebra (A, a) from Alg(T). We say that (B,b) is a subalgebra of
(A, a) if there is a homomorphism m : (B,b) — (A, a) with m faithful, as in the left-hand
side of the diagram (6.3). By a quotient algebra of (A,a) we mean a T-algebra (B,b)
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together with a b.o. full morphism A : A — B in Cat that is a homomorphism, as in the
right-hand side of the diagram (6.3).

TB-1™TA TA- s TB
bl la al lb (6.3)

Let us remark that in the above diagram concerning quotient algebras, the morphism
Th : TA — TB is indeed b.o. full by Remark 6.1.7 since h is b.o. full and T is strongly
finitary.

Remark 6.1.9. Denote by N the discrete 2-category with natural numbers as objects.
We have an obvious inclusion J : N — Catg that is an identity on objects (recall the
description of Catg from Remark 6.1.7), and it induces a 2-functor

V = [J, Cat] : [Caty, Cat] — [N, Cat]
given by precomposition with J. Then let us denote by W the underlying 2-functor
W : Mndg(Cat) — [Cat, Cat] LG, [Catgs, Cat]

mapping a strongly finitary 2-monad (7, u,77) on Cat to its underlying endo-2-functor T’
and restricting it to the 2-functor 7" - ¢ : Cat¢s — Cat. An argument from [53] shows that

there is a chain
Mndsf(Cat)

Hl H |W
[Catgs, Cat]
G| - |V

[V, Cat]

of adjunctions with the composite adjunction

Mndsf(Cat)
F| - |U

[V, Cat]

being monadic. Thus Mnds(Cat) is equivalent to the 2-category [N, Cat]™ of algebras
for the 2-monad M = UF. The 2-category [N, Cat] is a locally finitely presentable
category (in the 2-dimensional sense of [43]), and so it is complete and cocomplete. We
will show that the right adjoint U preserves sifted colimits, and therefore M is strongly
finitary. Then, using Theorem 6.1.8, we will be able to conclude that Mndg(Cat) admits
the (b.o. full, faithful) factorisation system of Example 6.1.5.
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Proposition 6.1.10. The 2-monad M = UF given by the adjunction

Mndg(Cat)
F| H|U
[V, Cat]

1s strongly finitary.

Proof. In the notation of the previous remark, U is the composite of right adjoints W and
V. The 2-functor V, being defined as a precomposition with J (recall Remark 6.1.9), has
itself a right adjoint and is therefore strongly finitary. To deduce that U preserves sifted
colimits, and that M is thus strongly finitary, it is enough to show that W preserves sifted
colimits. The argument can be taken almost verbatim from Section 4 of [47|, where the
authors show a similar result for finitary monads. In the following we shall identify the
2-category [Catsr, Cat] with the (2-equivalent) 2-category StrFin(Cat) of strongly finitary
endo-2-functors of Cat as in Remark 6.1.7. Take a weight ¢ : 2°? — Cat for a sifted
colimit (i.e., a sifted weight), and a diagram D : 2 — Mndg/(Cat) sending d to a strongly
finitary 2-monad (T}, u7¢, n%@). Denote the weighted colimit object ¢« W D in [Caty, Cat]
by T'. For every strongly finitary S : Cat — Cat, both — - S and S - — are again strongly
finitary, the first by having a right adjoint, and the second one since colimits in [Catg, Cat|
are computed pointwise. Therefore the weighted colimit (¢ x )= D" of the diagram
D' : 92 x 9 — [Catg, Cat| sending (d,d’) to T, - Ty weighted by ¢ x ¢ : 2P x 27 — Cat
is the 2-functor T'T. Since the diagonal 2-functor A : ¥ — 2 x & is cofinal with respect
to the weight ¢ (recall diagram (6.2)), it follows that the weighted colimit ¢ * D'A is also
the 2-functor TT". This in turn induces a multiplication p : TT" — T, and similarly we get
the unit 1 : Id — T. Thus T carries a monad structure, and it follows that W preserves
sifted colimits. |

Consider now a quotient e : T — T’ of monads T" and 7" in Mndg(Cat). From
Theorem 6.1.8 it follows that e is pointwise b.o. full. That is, the functor e, : Tn — T'n
is b.o. full for every finite discrete category n. Of course, for strongly finitary monads we
may state an even stronger pointwise property of quotient monad maps: given a quotient
e: T — T’ its component ec : TC — T'C is b.o. full for each category C. This is true
since each category is a sifted colimit of finite discrete categories, and since T and T’
preserve sifted colimits, see Remark 6.1.7.

Using the above observations, we shall see that quotients of monads correspond to
equational subcategories of algebraic categories.

Remark 6.1.11. Let us give an algebraic meaning to the fact that a quotient e : T — T"
of strongly finitary 2-monads on Cat implies that every e, : Tn — T'n is b.o. full in
Cat. Viewing the objects of Tn as n-ary terms, bijectivity on objects of e, means that
the quotient e does not postulate any new equations between terms. On the other hand,
fullness of e,, means that T"n is obtained from 7T'n by only identifying morphisms in 7'n.
On the level of algebras, this imposes equations between morphisms of the underlying
category of an algebra. We will make the notion of an equation precise in Section 6.2.
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Example 6.1.12. Let & be the 2-category of categories C' equipped with the following
algebraic structure, subject to no axioms:

1. one nullary operation I and one binary operation ®,

2. natural transformations: the associator o with components agp. : (@ ® b) ® ¢ —
a®(b®c) and the “back-associator” o’ with components a;’bﬁ 1 a®(b®c) — (a®b)®c,

3. natural transformations: the left and right unitors A and p with the components
Ao i I®a— aand p, : a® I — a, together with “back-unitors” \" and p’ with the
components X, :a — I ®a and p, :a —>a®I.

In particular, the “back-associators” and “back-unitors” are not forced to be the inverses
of associators and unitors. The morphisms in &/ are those functors that preserve the
algebraic structure “on the nose”, and the 2-cells are monoidal natural transformations
between those functors. We can obtain from .27 a full subcategory % spanned by “monoidal
categories without coherence” that is, consider only those categories C' from &/ whose
associator and unitors are in fact natural isomorphisms, with their corresponding inverse
transformations being the “back-transformations”. In an informal sense, & is an equa-
tional subcategory of .« defined by the equations

a-o=d-a=1, X N=1, N-A=1, p-p=1, p.-p=1

Let MonCat be the 2-category of monoidal categories, strict monoidal functors and monoidal
natural transformations between those functors. Informally again, MonCat can be ob-
tained as an equational subcategory of # by considering those categories from # that
satisfy the usual triangle and pentagon identities.

The 2-category o/ can be easily seen to be the 2-category Alg(R) of algebras for a
strongly finitary 2-monad R on Cat. The results of Section 6.2 will show that there is a
chain

R—S—»T

of quotients of strongly finitary 2-monads R, S and T for which we have the correspon-
dences

of ~ Alg(R), % ~ Alg(S), MonCat ~ Alg(T).

Moreover, the monad morphism quotients induce the inclusions
Alg(T) — Alg(S) — Alg(R)

that correspond to the inclusions of equational subcategories MonCat € A < /. The
theory developed in Section 6.2 will make these correspondences precise.

We will end the present section with a remark stating that b.o. full morphisms are
epimorphisms with respect to morphisms and 2-cells. These properties will allow us to
prove a Cat-enriched Birkhoff theorem in the following section, with the proof being very
much in the spirit of the proof for ordinary Birkhoff theorem. Specifically, these properties
will be crucial in proving that quotients of monads induce 2-dimensionally fully faithful
algebraic functors (as defined in Definition 6.2.1).
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Remark 6.1.13. Given a b.o. full h: C' —> A in Cat, the functor
Cat(h, B) : Cat(A, B) — Cat(C, B)

is injective on objects and fully faithful for every B. The injectivity on objects of Cat(h, B)
corresponds to h being an epimorphism in Cat, faithfulness of Cat(h, B) states that h
is an epimorphism with respect to 2-cells, and fullness of Cat(h, B) corresponds to a

factorisation property of h w.r.t. 2-cells.
Consider the following diagram

—h 4

By l

—> B

K T e

o N R e E—|

C

in Cat with h being b.o. full. Denote by

t

the kernel-quotient pair of h. The morphism A is a coequifier of the kernel diagram since
Cat is Fpoe-exact. Both the composites f - h and g - h also coequify the kernel diagram.
By the 2-dimensional universal property of coequifiers the equality

C C—" A

o
h By ;= 9| <= |f
A—— B B

holds for a unique 2-cell a. This observation equivalently says that Cat(h, B) is fully
faithful.

6.2 Birkhoff theorem for the kernel-quotient system .%#,

In this section we first recall basic definitions concerning subcategories and equivalence of
categories in the Cat-enriched setting. After a short review of the properties of algebraic
categories and algebraic functors we state and prove the Birkhoff theorem for the Zpo¢
kernel-quotient system.

Definition 6.2.1. A 2-functor T : ¥ — 2 between 2-categories ¢ and Z is called fully
faithful if for any pair A, B of objects of € the action T4 5 : (A, B) - (T A, TB) is an
isomorphism of categories. We say that T' exhibits € as a full subcategory of 2. When
% is moreover closed in & under isomorphisms, we call € a replete full subcategory of
2. The 2-category € is closed in Z under isomorphisms if for any object A in € and any
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isomorphism 7 : TA — D in & there exists an isomorphism 7 : A — B in % such that
Tj =i.

The 2-categories € and & are equivalent if there is a fully faithful 2-functor 7' : € — 2
that is essentially surjective, that is, for any object D of & there exists an object A of €
with T'A being isomorphic to D, denoted by TA =~ D.

Remark 6.2.2. Recall that an algebraic 2-category is a 2-category that is equivalent to a
2-category Alg(T) for some 2-monad 7" on €. We will look at some important properties
of algebraic categories and algebraic functors (functors arising from a monad morphism):

1. Consider two 2-monads 7" and 7" on %, and a monad morphism e : 7" — T". This
monad morphism gives rise to an algebraic 2-functor Alg(e) : Alg(7") — Alg(T)
between the 2-categories Alg(7”) and Alg(T) of algebras for 77 and T'. On objects,
Alg(e) acts as follows:

TA

T A
Jo
a = T'A
le
A A

On morphisms and 2-cells Alg(e) acts as an identity. A homomorphism h : (A4,d') —
(B, V') between two T"-algebras o' : T"A — A and I/ : T'B — B gets mapped to a
homomorphism h : (A,a’-eq) — (B, b -ep) of the corresponding T-algebras. Indeed,
the outer rectangle in the diagram

TA-"TB
A ——B
clearly commutes. The same reasoning applies for the 2-cells o : h = h’ between

two homomorphisms h : (A,d") — (B,b') and b’ : (A,d’) — (B,V).

bl

The action of Alg(e) on morphisms and 2-cells is thus faithful for any e : ' — T".

2. The algebraic 2-category Alg(T) for a strongly finitary monad 7" on Cat is cow-
ellpowered with respect to quotient algebras. Indeed, for every small category A
there is, up to isomorphism, only a set of b.o. full functors of the form h: A — B in
Cat. Thus for a T-algebra (A, a) there is, up to isomorphism, only a set of quotients
h:(A,a) — (B,b) in Alg(T).

3. Given an algebraic 2-category Alg(T') for a strongly finitary 2-monad 7" on Cat, it is
a standard observation that the underlying 2-functor U : Alg(T) — Cat creates 2-
limits. See Theorem 6.8 of [15] for a proof that U preserves these limits and observe
that it can be easily modified to show that U in fact creates these limits. Since
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T is strongly finitary, the 2-functor U also creates sifted colimits. In particular, U
creates reflexive coequifiers. That is, given a reflexive diagram

f
T

(K k) U (A
Y
h
in Alg(7T), and the coequifier of the U-image of the above diagram

Uf
K7 2Aa— ¢
\U/r
g

Uh

there exists a unique algebra (C,¢) such that v is a homomorphism between (A4, a)
and (C,c).

We now turn to the proof of the Birkhoff theorem. The proof is a 2-dimensional
variant of the classical proof of Birkhoff’s theorem in the setting of ordinary categories.

The interested reader can compare the structure of the present proof with the proof of
Theorem 3.3.6 in [66].

Theorem 6.2.3. Let T be a strongly finitary 2-monad on Cat and let </ be a full sub-
category Alg(T') of the category of algebras for the 2-monad T. Then the following are
equivalent:

1. There is a strongly finitary 2-monad T" and a b.o. full monad morphism e : T — T’
such that the comparison 2-functor o/ — Alg(T") is an equivalence.

2. The category <f is closed in Alg(T) under sifted colimits, 2-products, quotient alge-
bras, and subalgebras.
Proof. We first prove the implication 1. = 2. in the following manner:
(a) Given the monad morphisme : T — 7", we get a 2-functor Alg(e) : Alg(T") — Alg(T)
that we show to be fully faithful.
(b) We show that Alg(e) preserves sifted colimits and 2-limits.

(c) Finally we show that Alg(7”) is closed in Alg(T") under subalgebras and quotient
algebras.

Ad (a): The action of Alg(e) on morphisms and 2-cells is faithful by point 1. of
Remark 6.2.2. We prove that Alg(e) is indeed fully faithful by showing that its action
on morphisms and 2-cells is full. The fullness on morphisms comes from observing that
given any diagram of the form

A%Tf

b/

~

H

T'A

g\
<_

s

—)B
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such that the outer rectangle commutes, the lower square commutes since e4 : TA — T'A
is b.o. full, and thus epi. Similarly, given a 2-cell « : h = k' in Alg(T), it is also a
2-cell in Alg(T") by 2-naturality of e (saying that ep * Taw = v = e4), and since e, is an
epimorphism on 2-cells by Remark 6.1.13. The algebraic 2-functor Alg(e) is therefore
indeed fully faithful.

Ad (b): Let us denote by UT : Alg(T) — Cat and by U” : Alg(T') — Cat the
underlying 2-functors of Alg(T) and Alg(7"). Then UT" = U” - Alg(e). The 2-functor
U’ preserves 2-limits and sifted colimits and U creates them. Therefore Alg(e) preserves
2-limits and sifted colimits.

Ad (c¢): Now we show that the 2-category Alg(T”) is closed in Alg(T") under subalgebras
and quotient algebras. To this end, consider a T"-algebra (A, a’) and its image (A, a) =
(A,a’ - ey) under Alg(e). Given any subalgebra (B,b) of (A, a) as in the diagram

TB-T"TA
[
b T A
B — A,
we can use the naturality of e
TB Im TA
\ ieA
eB
b T/B T> T A
J»
B> _ A

and define b’ as the unique diagonal fill-in with respect to ez and m in the above diagram.
(Recall that (b.o. full, faithful) is a factorisation system on Cat.) This & : "B — B is
a T'-algebra. We inspect the following diagrams to see that (B,V’) satisfies both algebra
axioms.

Te /
TB — TTB — s 17'B —™ TR
T
"B e er'p €B
! ¥ ¥ ¥
B , T e st T /
B——~T'B b BB T"l""B ———— T'B
b' #T’ b/
1B B
h ~ A , hd
B «— TB ——— TB—"— B

Consider the left-hand diagram. The upper triangle commutes by the unit axiom of the
monad morphism e, and the outer triangle commutes since (B,b) is a T-algebra. Thus
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the lower triangle commutes by virtue of eg being an epimorphism. In the right-hand
diagram, the outer square commutes since (B, b) is a T-algebra. The upper rectangle is an
instance of a monad morphism axiom, and the lower left square commutes by naturality
of e. The morphism Tep is b.o. full, as eg is and T preserves b.o. full morphisms by
Remark 6.1.7. Thus the composite morphism ep g - Tep is b.o. full as well. By the
cancellation property of b.o. full morphisms we obtain the commutativity of the square

7B " T'B
s v
T'B T> B,
and this proves that (B,b') is a T"-algebra. In conclusion, Alg(7") is indeed closed in
Alg(T) under subalgebras.
The closedness of Alg(7T”) under quotient algebras in Alg(T) follows from closedness

under limits and sifted colimits. Whenever we are given a T"-algebra (A, a’) and a quotient
homomorphism h : (A,a) = (A,a’ - e4) — (B,b) of T-algebras as in

TA-The TR
T'A b

A—h»B’

the kernel (K, k) of h lies in Alg(7”). This is true since (K, k) is easily seen to be a
subalgebra of the cotensor algebra (A, a)*=* (where e =3 o denotes the obvious category),
and (A,a)*>* is in turn a subalgebra of the product algebra (A, a)?. Since the kernel
(K, k) is reflexive and as Alg(7T") is closed in Alg(T") under sifted colimits, it follows that
(B, b) lies in Alg(T").

The second part of the proof is the implication 2. = 1. Given a strongly finitary
2-monad T" and a full subcategory

J o — Alg(T)

of Alg(T) that is closed under sifted colimits, 2-products, quotient algebras and subalge-
bras, we need to find a strongly finitary 2-monad 7" such that there is a monad morphism
T — T’ and the comparison &7 — Alg(T") is an equivalence. Observe that & is a replete
subcategory of Alg(T") as this follows from closedness under unary products.

We will proceed as follows:

(a) We will form an ordinary left adjoint to J by using Freyd’s adjoint functor theo-
rem [64].

(b) We will show that that J preserves cotensors with 2 and that the ordinary adjunction
is thus enriched in Cat, using Proposition 3.1 of [18].
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(c) We will construct a monad morphism 7" — 7" from the above adjunction and show
the equivalence 7 ~ Alg(T").

Ad (a): We will show that & has and J preserves ordinary limits. Since J is fully
faithful, it suffices to prove that o is closed in Alg(T") under ordinary limits. By as-
sumption, <7 is closed in Alg(T") under 2-products. It is therefore closed under ordinary
products as well, since 2-products and ordinary products coincide in Cat. We need to
show that it is closed also under equalisers. To this end, consider an equaliser diagram

Js
(Aya)—— JX _ CJY

in Alg(T). Equalisers in Alg(T") are computed on the level of underlying categories, which
implies that A — UJX is faithful. Thus (A, a) is a subalgebra of JX. Since the 2-category
</ is closed under subalgebras in Alg(T"), we proved that it is closed under equalisers as
well.

To establish the existence of a left adjoint for J, we now only need to find an ordinary
solution set for every object (A, a) of Alg(T). We claim that the solution set is the set
{hi: (A ,a) - JX; | i€ I} of all the (representatives of the) quotients of (A, a) that lie in
7. This is indeed a set due to the nature of b.o. fullness, recall point 2. of Remark 6.2.2.
Given any morphism f : (A,a) — JY, we can factorise it to obtain a triangle

(4, a) ! y JY

(B,b)

and moreover, since (B,b) is a subalgebra of JY, we have that (B,b) =~ JX holds for
some X from &7, and the solution set condition is satisfied. The unit of the adjunction is
constructed as follows: we take the product [ [,_; JX; of all the codomains of the quotients
in the solution set, and factorise the mediating morphism (h;) : (A,a) — [[,.; JX; as in
the following diagram.

(hs)
(A’ CL) ’ Hie[ JX;i

T(A,a)
JL(A,a)

Note that 74,q) is b.o. full for every algebra (A, a).

Ad (b): Take a T-algebra (A, a) that belongs to & and form its cotensor (4,a)2. By
means of the inclusion functor 2 — 2, we have a canonical homomorphism (A, a)? —
(A, a)? whose underlying functor is faithful, and thus renders (A, a)? as a subalgebra of
a product of algebras contained in /. By the closure properties imposed on .27, we have
that 7 is closed in Alg(7T") under forming cotensors with 2 as well.
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Ad (c): We can now define the 2-monad 7" and the monad morphism ¢ : 7" — T
for which we will show the equivalence &7 ~ Alg(T"). Let us first settle the notation and
write (L — J,n,¢) for the adjunction L -4 J : &/ — Alg(T), denote by (FT,UT, nT eT)
the adjunction F7 - UT : Alg(T) — Cat, and let u” : TT — T be the multiplication of
the 2-monad 7.

This allows us to define the 2-functor 7" := UTJLFT which is the underlying endo-
functor of a 2-monad (7", 7", u™") with the unit »” and the composition u”" defined by
the assignments

n'=UMFT gt yU = U JeLFT  UTJLeT JLFT.

Then there is a corresponding monad morphism e = UTnFT : T — T'. The proof that
e is indeed a monad morphism is standard and proceeds exactly as in the non-enriched
case. Moreover, € is a quotient, since

1. 74, is a quotient for each algebra (A, a), and

2. UT preserves quotients since T" does.

Let us denote by
of K > Alg(T")

urJ o’

Cat

the ordinary comparison functor. We will apply the ordinary Beck’s theorem to infer that
K is an ordinary equivalence. Since ./ has and UTJ preserves sifted colimits, 2/ has and
UTJ preserves coequalisers of reflexive pairs. Moreover, since U reflects isomorphisms
and J is fully faithful, the composite functor U?J also reflects isomorphisms. Therefore
K : of — Alg(T") is indeed an equivalence in the ordinary sense.

We will now show that on objects, the inclusion J : &/ — Alg(T) factorises, up to
isomorphism, as in the following triangle:

Alg(T")
V
o4 Alg(e)
\
Alg(T).
Indeed, for any object A of &7 the equality
KA=U"JA U  Je,-UTJLEY )

holds. The algebra K A gets mapped by the functor Alg(e) to an algebra with a structure
map

Ul Jea - UM JLEY - epryp = U Jey - UTJLeY - UTnpryra
=UTJey -UTnga-UTEL,

T_.T
:U 5],47
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where the first equality holds by the definition of e, the second one follows from naturality
of , and the third one comes from the triangle identity of L — J. But (UTJA,U"el,)
is isomorphic to JA, as (UTJA,UTeT,) is the image of JA under the trivial comparison
functor

I:Alg(T) — Alg(T).

Both J and Alg(e) are fully faithful in Cat-enriched sense: the 2-functor J is such by
assumption and Alg(e) was proved to be fully faithful for a quotient monad morphism e
in the first part of the proof. We can conclude that the ordinary equivalence K : &/ —
Alg(T") is enriched in Cat, thus finishing the proof. [ |

Remark 6.2.4. A point that needs to be discussed is that we demand <7 to be closed un-
der sifted colimits in Alg(7") in the characterisation of equational subcategories of Alg(7T).
It is true that in the original Birkhoff theorem there is no need to demand closedness under
any class of colimits whatsoever. However, even in the ordinary case of 7" = Set, closed-
ness under filtered colimits (or directed unions) is essential in the case of many-sorted
universal algebra, see [6]. In the case of ¥ = Cat, at least the requirement for closedness
under filtered colimits is arguably expectable. The reason why our version of the Birkhoff
theorem asks for an even stronger closure property, i.e., closedness under sifted colim-
its, is the following. While finitary and strongly finitary monads on Set coincide (every
finitary monad is strongly finitary), this is not the case for 2-monads on Cat: a finitary
2-monad need not be strongly finitary. For example, the 2-monad 7' that gives rise to
the 2-category Alg(T') of categories € equipped with one “arrow-ary” operation ¢? — ¢
is finitary, but T fails to preserve sifted colimits in general. Since we are dealing with
strongly finitary 2-monads on Cat, being closed under sifted colimits is the corresponding
closure property.

Remark 6.2.5. In our setting, the property of being closed under sifted colimits is equiv-
alent to being closed under conical filtered colimits and under codescent objects of strict
reflexive coherence data by Remark 8.44 of [21]. For our purposes, the only two important
points concerning codescent objects are that

1. they are the colimit objects for a certain sifted diagram, and

2. in the categories Alg(T') for a strongly finitary 2-monad 7' on Cat, the universal
cocone over such a diagram consists of a single bijective on objects homomorphism.

This allows us to state the conditions of our Birkhoff theorem in an alternative way. In
Alg(T"), define an algebra (B, b) to be a (b.o. )-quotient of (A, a) if there is a homomorphism
h: (A ,a) — (B,b) that is bijective on objects. Since every b.o. full functor is b.o., we
may strengthen the property of being closed under quotient algebras to the property of
being closed under (b.o.)-quotient algebras, and replace the requirement for closedness
under sifted colimits by closedness under filtered colimits.

It remains to argue that a full subcategory o7 of Alg(T") closed under 2-limits and
sifted colimits is closed under (b.o.)-quotients. Given a (b.o.)-quotient h : (A,a) — (B, )
with (A, a) contained in 7, it follows by the results of [22] (see Section 5.1 in particular)
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that h is the quotient of the kernel

TN T TN
h|h|lh —™— hlh +— (A, a),

~_ 7 >~ A

q c

where the component h|h is a certain subalgebra of (4, a)?, and the component h|h|h is
a pullback of ¢ and d. Without loss of generality, the above kernel can be considered
reflexive, and thus (B, b) belongs to <7, being a sifted colimit of algebras contained in <.

The following alternative statement of Birkhoff theorem is a direct corollary of the
above remark, and it may be more useful in practice for detecting equational subcategories
of algebraic categories.

Corollary 6.2.6. The full subcategory <7 of Alg(T) is an equational subcategory of Alg(T')
if and only if it is closed in Alg(T) under 2-products, (b.o.)-quotient algebras, subalgebras
and filtered colimits.

In the ordinary setting, full algebraic subcategories induced by a quotient monad
morphism can be characterised as a special kind of orthogonal subcategories. Without
substantial changes to the reasoning, the same characterisation can be obtained for the
case of 7 = Cat, as is shown below.

Given a 2-category 2" and a set S = {f; : X; — Y; | ¢ € I} of morphisms of 2", we
will denote by S+ the full subcategory J : # — 2 spanned by the objects Y that are
orthogonal to all morphisms in S.

Corollary 6.2.7. The equational subcategories
J o — Alg(T)

of the 2-category Alg(T) of algebras for a strongly finitary 2-monad T are precisely the
orthogonal subcategories of Alg(T) of the form

o ={f:F'n— (Crc)|fel}r=1"

for some set I of quotient morphisms in Alg(T). Moreover, each morphism in I has as
its domain a free algebra on a finite discrete category.

Proof. To see that one direction of this statement holds, observe that o7 is closed under
subobjects in Alg(7"): Given an algebra (B, b) in &/ and its subalgebra (A, a), we have for
any g: FT'n — (A, a) a situation

FTp —1 (C,¢)

L ~

(A a) —— (B, b)

where the unique morphism (C,¢) — (B, b) exists since f 1 (B,b), and the unique diag-
onal exists by the diagonal property of the factorisation system. The universal property
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of 2-products establishes that .o is closed in Alg(7") under 2-products. To see that &7
is closed in Alg(T) under sifted colimits we show that Alg(T)(F"n,—) preserves sifted
colimits. This is the case, since Alg(T)(FTn,—) =~ Cat(n,U”—) and both Cat(n, —) and
UT preserve sifted colimits. To show that .7 is closed in Alg(T") under quotients, observe
first that Alg(T)(FTn, —) preserves quotient maps since both UT and Cat(n, —) are easily
seen to preserve quotient maps. This property implies that F7n is projective with re-
spect to quotients, and that the factorisation granted by projectivity is unique. Consider
a quotient h : (A,a) — (B,b) with (A4,a) in &/. To prove that (B,b) is in <7, observe
that for any morphism ¢ : F'n — (B, b) there is a unique morphism p : FTn — (A, a):

FTn

~

(4,0) ——» (B,b)

Since (A, a) is orthogonal to f, we obtain a triangle

FTpn —1 (C,e)

K

(4, a)

The composite h - o then proves that f L (B,b). Indeed, given any other factorisation
g =1- f, the equality ¢ = h - 0 holds since f is epi.

In the opposite direction, recall that reflective subcategories are always orthogonality
classes. In our case we have that

o =N : (Aa) » JL(A,a) | (A a) € Alg(T)}*.

We need to take a subset of the above class of morphisms such that the codomain of each
morphism is a free algebra on a finite discrete category. For this, we first use that every
algebra (A,a) is a sifted colimit of free algebras on finite discrete categories. Indeed,
consider the full subcategory 4 — Alg(T) spanned by algebras of the form F'n for a
natural number n. By Proposition 4.2 of [48], Alg(7") is a free cocompletion of ¢ under
sifted colimits; the only interesting property to check being that the closure of ¢ in Alg(T)
under sifted colimits is the whole of Alg(T). Observe that a free algebra F7 X on a discrete
category X is a filtered colimit of free algebras on finite discrete categories, a free algebra
FTC on a category C is a sifted colimit (codescent object) of free algebras on discrete
categories, and any algebra (A, a) is a reflexive coequaliser of free algebras F7A on A.
The result follows from this reasoning.

Secondly, if an object is orthogonal to a given set of arrows, it is orthogonal to their
colimit in the category of arrows as well. Since JL preserves sifted colimits, we get that

{Na0) 1 (A,a) » JL(A,a) | (A,a) € Alg(T)}*
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is equal to the subcategory
{npry, : F'n — JLFTn | n € Cat,n finite discrete}™,
as we needed. |

The above result may be reformulated to resemble the original universal algebraic
formulation of Birkhoff’s theorem even more. Taking again

—{f: FTn—> (C.o) | fe I},

we know that any morphism f : FTn — (C,¢) as above is the coequifier of its kernel:

S

T
(K.k) v 0o F'n —L o (Co)
~____

t

Given an algebra (A, a), it is orthogonal to f precisely when each morphism g : F'n —
(A, a) coequifies the 2-cells v and §. Now consider the underlying discrete category K, of
the category K by means of the b.o. inclusion functor i : Ky — UT(K, k). Transposing
this functor, we get a homomorphism i* : FTKy — (K, k) defined as the composite

FTK,

FTUT (K, k)

of two homomorphisms that are surjective on objects. The morphism 56( k) is surjective

on objects since its underlying functor is a split epi k, and F74 is in fact b.o., because
T = UTFT as a strongly finitary monad preserves b.o. functors. A given morphism
g : FT'n — (A, a) therefore coequifies v and ¢ if and only if it coequifies the whiskered
2-cells v # % and § = i*:
] /i\
FTKy ——— (K k) vl F'n
\_/

t

As a left adjoint, F'7 preserves coproducts, and thus

FTKy =~ F( ]_[ ]_[ FT1

ob(Kp) ob(Kp)

||2

holds. This allows us to reduce the pair v and ¢ of 2-cells into ob(Ky)-many pairs 7. and
0. of 2-cells

Sc

N
FT1 ~. |l 6. F™n
\_/r

te
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such that a morphism g : FTn — (A, a) coequifies v and § precisely when it coequifies
all the pairs 7. and d.. In fact, let us call each such a pair (v.,d.) an equation in T
and observe that it corresponds precisely to a pair of morphisms in UT FTn. Let us now
say that an algebra (A, a) from Alg(T') satisfies the equation 7y, = 0. if every morphism
g : FTn — (A, a) coequifies . and 6.. We have just proved the following “universal-
algebraic” version of Birkhoff’s theorem.

Corollary 6.2.8. For a full subcategory o7 of Alg(T) for a strongly finitary monad T on
Cat, the following are equivalent:

1. of is closed under 2-products, subalgebras, quotient algebras and sifted colimits.

2. There is a set E = {y; = 0; | i € I} of equations in T such that </ consists of
algebras of Alg(T') that satisfy E.
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Chapter 7

Gray-categories and their presentations

In ordinary universal algebra, the notion of freeness can be given a precise meaning via the
categorical notion of an adjunction. For example, consider the free monoid construction

S F(S) = (S*, %, €)

which gives, for a set S, the monoid F'S given by the set of words S* over alphabet S with
concatenation as multiplication and the empty word as the unit (as in Example 1.1.2).
This construction gives rise to an adjunction

Mon

F{ H|U

Set

with U being the underlying set functor, and the components of the unit ng : S — S*
being the inclusion of the alphabet S into the set S* of words over S. Equivalently, this
construction satisfies a universal property: given a monoid (X, *, e) and mapping f : S —
X, there exists a unique way to lift f to a monoid homomorphism f*: F'S — (X, ¢)
such that the diagram

S —" s FS
Ut

X

commutes.

The notion of freeness reoccurs “one level of abstraction up” when we consider limits
and colimits in categories, and form free (co)completions of categories. Let us recall from
Remark 2.1.20 that given a class ® of weights and a category %", there exists the free
cocompletion ®( ") of A under the class of ®-colimits with the unit

7% H — d(X).

This cocompletion almost satisfies a universal property similar to the property of the free
monoid above. That is, given a ®-cocomplete category £ and any F : # — £, there

97
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exists, up to isomorphism, a unique ®-cocontinuous functor .#* : ®(#") — £ such that
the diagram

D
H — s ()
F F¥

Z

commutes up to isomorphism. Since the free $-cocompletion of a category is determined
only up to equivalence of categories, we cannot claim that there is a “free cocompletion
(2)-functor”

Fg : V-CAT — ®&-COCTS

which would be a left adjoint to the forgetful (2)-functor
Us : &-COCTS — 7-CAT

mapping a ®-cocomplete category to itself. However, Fg is a pseudofunctor and Fg and
Us form a pseudoadjunction

®-COCTS

Fs| - |Us

V-CAT

with unit n®, where the notions of a pseudofunctor and pseudoadjuction are the appropri-
ate generalisations of the “strict” notions of a functor and an adjunction. These notions are
appropriate in the sense that they abstract the example of free cocompletions, describing
precisely what the notion of freeness “up to equivalence of categories” should mean.

The above example of free cocompletions leads us to the field of higher category theory.
The setting for the study of pseudoadjunctions leads us to 2-categories, pseudofunctors
and pseudonatural transformations, all being bicategorical notions. However, working in
such a general setting yields substantial technical difficulties, since even the definitions
of the “pseudo versions” of basic categorical notions are quite involved. This observation
leads us to the study of Gray-categories, that is, categories enriched in the category 7 =
Gray of 2-categories and 2-functors, equipped with Gray-tensor product [39]. Without
Gray-categories we would have to study the collection of 2-categories, pseudofunctors,
pseudonatural transformations and modifications as a tricategorical structure. Such an
approach is considerably difficult. Gray-categories allow us to study the collection of
2-categories, pseudofunctors, pseudonatural transformations and modifications abstractly
in the context of enriched category theory. This motivation leads the topic of the present
chapter. We introduce Gray-categories and show a way to give presentations of Gray-
categories that will allow us to consider, for example, a pseudoadjunction P in a Gray-
category K as a certain Gray-functor with codomain K.

Purpose of the chapter. Since this chapter does not contain any new results of the
author, it may be safely skipped by the reader who is not interested in the technical details
of the theory behind presentations of Gray-categories. In fact, after reading Section 7.1
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on the basics of Gray-categories, the rest of this chapter can be summarised as giving
reasons for the claim

It is possible to give presentations of Gray-categories in the same spirit as we can
present ordinary categories, or 2-categories.

The reader who is content to believe this claim can move on to the next chapter which
gives concrete examples of presentations of Gray-categories after reading Section 7.1.

Structure of the chapter.

e We introduce Gray-categories in Section 7.1 and shortly discuss their importance
as “well-behaved” tricategories.

e In Section 7.2 we will introduce the notion of a presentation of an algebra, and show
that there is an adjunction between the category of algebras of a given type and the
category of presentations of the given type.

e In Section 7.3 we shall comment on the problems of presenting 2-categories and note
why such presentations are important. We sketch the approach of Street, namely of
his computads.

e To be able to give presentations of Gray-categories, we need to review some tech-
nically involved notions. Section 7.4 introduces globular operads via Kelly’s clubs.

e Globular operads underlie the notion of a globular computad, a generalisation of
Street’s computads. We treat globular computads Section 7.5.

This chapter serves as an overview of Gray-categories and their presentations. We do
not claim authorship of any of the results in this chapter.

7.1 Gray-categorical background

The collection of 2-categories, pseudofunctors, pseudonatural transformations and mod-
ifications' organises itself into a 3-dimensional categorical structure; we shall see that
it does mot form a (strict) 3-category. Rather, these data organise themselves into a
tricategory. Working in the environment of a tricategory poses substantial technical diffi-
culties. We shall introduce Gray-categories [38, 39| that are more pleasant to work with.
An important example of a Gray-category is the collection of 2-categories, 2-functors,
pseudonatural transformations and modifications. A coherence result states that every
tricategory is triequivalent to a Gray-category. Thus we lose no extra generality when
working with Gray-categories rather than with tricategories.

Example 7.1.1 (Difficulties in the composition of pseudofunctors and pseudo-
natural transformations [72]). The collection of of 2-categories, pseudofunctors and
pseudonatural transformations does not form a 2-category. Observe that the problem
arises when dealing with the middle-four interchange law, as can be seen e.g. in Exam-
ple 7.2 of [72]:

!The prefix pseudo roughly means that the equalities in the definitions of a functor and a natural
transformation are replaced by coherent isomorphisms. See for example Chapter 7 of Volume 1 of [19].
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Let us take the data

where o is a pseudonatural transformation (i.e., a collection ox : FX — GX of morphisms
of &7 such that there is a “coherent” isomorphism

FX — X + GX
Ff /O’f Gf
FY ——— GY

for any morphism f: X — Y in &), and take a morphism f : X — Y in the 2-category
/. The morphism f determines a pseudonatural transformation

If the middle-four interchange law held, then ¢ would be 2-natural with respect to f.
This would hold for all f, yielding that o is necessarily 2-natural, and thus ending in a
contradiction.

Remark 7.1.2 (Interchange law up to isomorphism [39]). Let us inspect the prob-
lems with “middle-four interchange law” for 2-categories, pseudofunctors, pseudonatural
transformations and modifications a bit further. Let us organise these data into a collec-
tion PSD; for 2-categories &7 and %, we get that the collection PSD(.e7, #) of pseudo-
functors, pseudonatural transformations and modifications forms a 2-category. Consider
the composition assignment (not claiming that it is a 2-functor itself)

¢z : PSD(B,€) x PSD(#, B) — PSD(, ).

Given the data
F H

o o) 2 1) e
\G/r \K/‘r

both ¢y z«(H,—) = H(—) and ¢y g¢(—, F) = (—)F are 2-functors; and both Ho and
TF are pseudonatural transformations. However, the square

HF —£  KF

Ho Ko (71)

HG’T:G>KG
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does not commute (as it should, were ¢, z¢ a 2-functor): it commutes only up to an
isomorphism

HF —E£ s KF

Ho %Tg Ko (72)

HGT:G>KG

(i.e., the pseudonatural transformations are “not ‘natural” in the sense that the middle-
four interchange law holds only up to a coherent isomorphism modification). This shows
that if we wanted PSD(<7, %) to be an internal hom of PSD, the monoidal product of
PSD cannot be chosen as the cartesian one.

The rather unfortunate situation in the above remark can be dealt with. We shall work
with Gray-categories: categories enriched in the category ¥° = Gray, which consists of
2-categories, 2-functors, pseudonatural transformations and modifications, and has a non-
cartesian monoidal product (Gray-tensor product). We shall introduce Gray-categories
explicitly in elementary terms.

Gray-categories A Gray-category K with objects o/, A, €, has a hom-2-category
K(o/, ) for each pair o, Z of objects, the unit 2-functor u, : & — K(o, /) sends
the unique i-cell (i = 0,1,2) to the identity (i + 1)-cell of &/ (e.g., the unique object * of
& gets sent to 1, : &/ — &), and the composition

K(%#,¢)9K (o, B) > K(A,%)
is essentially the composition cubical functor
K(#B,¢) x K(o,8) - K(F,6)
yielding, for any F' in K(«7, %) and any G in K(%, %), two 2-functors

(L)F:K(B,€) — K(A, )
G(—) : K(o, B) — K(,E)

(“precomposition” and “postcomposition”). Here, (—)F is acting on the data

to give
HF

/\

2 ar |5 pF* @
\_/’

KF
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and G(—) is acting on

to give

GH
v GGy
\GK/'
The 2-functors (—)F and G(—) are subject to the equality

(G)F = G(F) = GF

and for every pair

F G
/_\
o ol ® @B By @
~_ 7 ~_
F’ G’

there is an isomorphism

GF . G'F

Ga“ v Ba “G’ e

GF' ? G'F'

subject to the cubical functor axioms:

1. Composition axioms

GF == q'F GF == ¢'F
Ga Y Ba Gla Ga G
GF' — G'F = GF “%pBya GF
Gy Z B, G'y e G'y
GF" ——— G'F" GF" =——— G'F"

ﬂF” ﬂF”



7.1. Gray-categorical background

103

and

GF —2£ o op —2E . g

Ga“ )/I Ba “G’a )/I (Sa “G”a

GF’ ? G'F’ ? G"F’

BF

GF GF = q'F

Ga“ 7 (6-8), “G”a

GF' ? G'F’ ? G"F'.

2. “Modification” axioms

for any 3-cell s: o’ = o and

BF

GF :> G’ GF ——— G'F

Ga“ % B, G, G’ cu Gs “Ga, % By “G/a/
&

GF’:>G’F’ GF’?G’F’

B'F
tF ) ,
GF == G'F GF == @'F
Ga Y Pa Ga = Ga v, Ga
GF' = G'F o = o'
tF
BF
for any 3-cell t : g’ = S.
Given any triple
F /Q\ /ka
7
o al A B Bl € ¢ vl 2
~_ 7 ~_ ~_ 7

F’ G’ H'
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the associativity equalities

Yery = (1) F, Yee) = (VG)y,  H(Ba) = (HP),

hold, allowing us to relax the notation when working with the invertible 3-cells §,. Finally,
the unit equalities

IF=F, Gl=G

hold, where 1 can stand for the identity 1-cell, 2-cell or 3-cell on Z.

Example 7.1.3. Let us consider the category (2-Cat)y of all 2-categories and all 2-
functors. As in Example 7.1.2, when we equip this category with the 2-dimensional
structure consisting of pseudonatural transformations and the 3-dimensional structure
given by modifications, the resulting collection does not form a 3-category by the same
argument. If we denoted the collection by Gray, then we would need to have a compo-
sition 2-functor

co v Gray(B,€) x Gray(o, B) — Gray(«,€)
which is impossible by Remark 7.1.2. However, we do have a cubical functor
cone  Gray(#,€) x Gray(o, B) — Gray(«, )

where for every situation

F H
/_\
o ol 2B )t e
\5/ \I(v/

the relevant isomorphism is given by the 2-cell

HF —— KF
Ho ]/ITO- Ko
HG — KG

and this 2-cell satisfies the cubical axioms stated above.

Our interest in Gray-categories stems from the fact that they are the maximally
strict tricategories such that we lose no generality working with Gray-categories instead
of general tricategories.” This is not true of 3-categories:

Proposition 7.1.4 ([72], Example 7.4). Not every tricategory is triequivalent to a
3-category.

2Roughly speaking, a tricategory relates to a 3-category similarly to how a bicategory relates to a
2-category: various types of composition are associative and unital only up to coherent isomorphisms.
See [38] for the precise definition of a tricategory.
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The above fact gives the basic motivation for introducing Gray-categories. The reason
that Proposition 7.1.4 holds is that to give a one-object, one-morphism tricategory is to
give a braided monoidal category, while giving a one-object, one-morphism 3-category is
giving a strict monoidal category with a strict symmetry, and these in general need not
be equivalent. A concrete example is, e.g., Example 7.4 of [72]: the symmetric monoidal
closed category Set with finite products. The symmetry map X x Y — Y x X is almost
never the identity, and thus the symmetry is not strict.

In contrast to Proposition 7.1.4, the following coherence result holds:

Theorem 7.1.5 (Theorem 8.1 of [37]). Every tricategory is triequivalent to a Gray-
category.

This result allows us to work in the setting of Gray-categories instead of general tri-
categories. For example, proving a fact about pseudomonads in a general Gray-category
proves that the fact holds in the tricategory PSD. (See, e.g., the paper [67| developing
the formal theory of KZ-monads.)

We shall now recall the notions of a Gray-functor, Gray-natural transformation, and
the presheaf Gray-category.

Gray-functors A Gray-functor F : K — L consists of

1. an object assignment
o — Faof

2. and the action on hom-2-categories, i.e., a 2-functor

F((,j’g : K(JZ%, r%’) - L(FJZ{, F%)
defined by the assignment
H FH
m Fr
%@%»—»Fd Fal|= | F3 F#%

K FK

This assignment is subject to the following axioms:

(a) For each & of K the assignment F maps identity cells to identity cells.

(b) For all objects &7, B, €, a l-cell F: of — B, 1-cells H K : B — €, 2-cells
a,f: H= K and a 3-cell 7: a = 3, we demand the equalities

F(HF) = (FH)(FF), F(KF) = (FK)(FF)
on the level of 1-cells. Furthermore, we demand the equalities
F(aF) = (F)(FF),  F(BF) = (FB)(FF)
on the level of 2-cells, and
F(rF) = (Fr)(FF)

on the level of 3-cells; these are the axioms given by “precomposition with F”.
Analogous axioms are given for postcomposition.
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Gray-natural transformations A Gray-natural transformation

is a collection of 1-cells t., : F.o — G.o/ indexed by objects of K such that given a 1-cell,
2-cell or 3-cell z in K with 0-cell domain 7 and 0-cell codomain A, the equation

FH

F
Fo/ Fal|=|F3 FB  Fuo

FK kt@ = ktg{ GH
/G_N
GH Go Gal=|G8 GH
GK
holds. With these definitions, we can form for every pair of Gray-categories K and L
and Gray-functors F, G : K — L the hom-2-category [K,L|(F, G).
Definition 7.1.6. Given Gray-categories K and L and Gray-functors F,.G : K — L
we define the hom-2-category [K, L](F, G) as follows:

1. The objects are the Gray-natural transformations from F to Gj i.e., an object is a
collection t,, : Fof — G of 1-cells in L indexed by objects of K.

2. The 1-cells o : s — t consist of a collection of 2-cells
Oy Sy =ty

indexed by the objects of K, such that for any 1-cell f : & — % in K the equality

oAy
Fo/ asl G«  Fof
S

to
Gf = Ff
7

G# F# ap|l G
\t_/r
®

holds. (We say that « is a modification between s and t.)

3. The 2-cells p : a = [ consist of a collection of 3-cells p., : ay = [, indexed by the
objects of K satisfying for each 1-cell f: .o/ — % in K the equation

Sof

Y

Pt
Fo ay |28y GI Fo/

to Gf = ka .
/p,@\x

G# F# azl=|0s GH

te
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(We say that p is a perturbation between o and [3.)
The units and composition are defined componentwise.

In fact, given the above definition of the hom-2-categories, [K,L] forms a Gray-
category itself.

Definition 7.1.7. The composition cubical functor
[K,L](G, H) x [K,L|(F,G) — [K,L|(F,H)
is defined as follows:

1. The pair (t,s) is sent to the composite defined pointwise as tysy, : Fof - GoZ/ —
H.«7 for each object o7 of K.

2. The pair (8, a) given by f:t — t' and a : s — s’ is sent to the collection of 2-cells

Bers
t&{SW % tIQySM

tway /B&/ad t:z{a@{

!/ / !/
tﬂsp{ W t%S%

indexed by the objects of K.

3. The pair (t, p) with p : @ = ' gets mapped to the collection t ., p., of 2-cells indexed
by the objects of K.

4. The pair (o,s) with o : § = [ gets mapped to the collection o8, of 2-cells indexed
by the objects of K.

We refer the interested reader to the book [38] for further details on the well-definedness
of the Gray-category [K, L].

Remark 7.1.8. All Gray-categories, together with all Gray-functors and all Gray-
natural transformations form a 2-category that we will denote by Gray-CAT.

7.2 Equational presentations of algebras

To be able to define presentations of Gray-categories, we will need to cover a large amount
of technical notions. In this section we introduce the basics of presentations in the ordinary
setting before moving on to presentations of 2-categories and Gray-categories.

We will recall the notion of a presentation of an algebra. Building on the ideas of [51]
we introduce the category of algebraic presentations and their morphisms. We will also
describe the adjunction between a given category of algebras for a monad and the category
of presentations for the monad.

Given an adjunction

FAU: o - X
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of ordinary categories with unit 7 and counit ¢, let us denote by (7,7, ) its monad. We
say that the adjunction F' H U is of descent type if the canonical comparison functor
K : of — Alg(T) is fully faithful.

Equivalently, F' 4 U is of descent type if for every A in o/ the diagram

FUe
FUFUA ———= FUA —4 A

EFUA
is a coequaliser in 7.

Assumption 7.2.1. In the rest of this section we shall work with an adjunction F' 4 U :
o — A of descent type.

Definition 7.2.2. A presentation is a diagram

E:iiUFX
in 2.

Example 7.2.3. Let <7 be a finitary variety of one-sorted algebras. Then the adjunction
F < U : o — Set given by the free algebra functor and underlying set functor is monadic
and the comparison functor K : &/ — Alg(T) is an equivalence. Therefore F' - U is of

!
descent type. A presentation E —— < UFX then amounts to specifying an E-tuple
of pairs (I(e),r(e)) (where e € E), that is, an E-tuple of equations in variables X.

Example 7.2.4. The pair
FUey
FUFUA ——=< FUA
EFUA

can be transposed under F' 4 U to the pair

UFUexg

UFUA WEUA S URUFUA =4 UFUA.

t J

lurua

We call this pair the canonical presentation of A in <.

Definition 7.2.5. Given two presentations
E———= UFX B ——— UFX'

we say that f : X — UFX'is a morphism of presentations (1,7 ) and (I, ") if the following
property holds: whenever h : F X' — A coequalises the transposed pair

1t
FF l:; FX'
't
then h- f*: FX — FX' — A coequalises the transposed pair

#
FE l:; FX
i
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Observe now that we can define composition of morphisms of presentations: given
morphisms f: X - UFX' and g: X' - UF X", their composite is the morphism

x —r s urx Y ypuRxr UEEX" pXxT,

Such a composition is associative with identities of the form nx : X — FX. Presentations
and their morphisms thus form a category Pres.

Proposition 7.2.6. Given a category <7 with coequalisers and an adjunction F - U :
o — A of descent type, there is an adjunction

B +HC: 4 — Pres
between o/ and the category of presentations.

Proof. The functor C' is defined on objects as follows:

CA= UFUA A, URUFUA “2EY54, UFRUA,

t J

lurua

That is, C' maps A to its canonical presentation.
Given a morphism f: A — A’, we claim that

Cf= UA "2 L yrvaA Y vru A

is a morphism of presentations C'A and C'B. Since the transposes of the presentations

CA and CB are

FUe FUe 41
FUFUA ?:; FUA FUFUA’ ?:; FUA’

respectively, and since the transpose of C'f is FUf : FUA — FUA’, we may use that the
diagram

FUe
FUFUA ———= FUA

EFUA
FUFUf FUf
FUEA/
FUFUA" ——= FUA’
EFuU A/

commutes by naturality of e: therefore, for any h : FUA — A’ coequalising the pair

FUeg 41
FUFUA' ——= FUA’

Eru A/

the morphism h- FUf : FUA — FUA" — A’ coequalises the pair

FUe
FUFUA ———= FUA.
EFUA
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That C'is a functor follows immediately.
The functor B is defined on objects as follows: the presentation

E=——3 UFX
is sent to the coequaliser A as in the following diagram:
FE l:’:; FX —= A
Given another presentation
B — 3 UFX'

and a morphism of presentations f : X — UFX’, the morphism Bf : A — A’ is given by
the universal property of coequalisers as seen in the diagram

#
FE = FX —*— A
I By
4 V
FEE ——= FX' — s A
r/u C

Since the morphisms are defined by a universal property, it follows that B is a functor.
We will now check that B 4 C' holds. Observe that to give a morphism

h:B(E——3UFX ) A

is to give a morphism h : A — A’ if we denote by ¢: FFX — A the coequaliser of the pair
(1%, %), and by the coequaliser property, this amounts to giving a morphism h-c : FX — A’

I
that coequalises F'E :ﬁi FX . Then the transpose (h-c)’ : X — UA’is a morphism

!
from F ———< UFX to the canonical presentation of A’ as the following diagram

f
FEl:§FX;>A
o

F(h-c)’ h
FUEA/
EFuA!
shows. This concludes the proof that B 4 C' holds. [

Example 7.2.7. There is an adjunction F' - U : Cat — Graph consisting of the functor
U assigning to a category its underlying graph, and the functor F' assigning to a graph
the free category on that graph.
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Giving a presentation
!
E—=XUFX

amounts to giving a free category UF X on a graph X (the graph of "generating arrows"),
and to giving the pair (I,r) specifying the diagrams that are to commute in the resulting
category C' of the coequaliser

#
FE—/—= FX —°  C,
P

Example 7.2.8. Consider the graph X consisting of one node z and one arrow a : © — .
The category F'X consists of a node x and an arrow a” : © — x for all natural numbers
n such that a® = 1, and a’ - @/ = a'™/. If we take a graph E consisting of a node x and
an arrow e : x — x and a presentation

E:iiUFX

given by identity on nodes and by the assignments

the resulting category C' given by the coequaliser
i
FE —=FX ——C
o

is the “idempotent arrow” category consisting of a node x, the identity morphism on =z,
and one morphism a : x — x subject to the equation

a-a=a.

7.3 Presentations of 2-categories and beyond

In Example 7.2.7 we have seen that ordinary categories can be presented quite easily using
the monad arising from the category-graph adjunction F' 4 U : Cat — Graph. Indeed, the
only “equational data” that are needed to present a category are those that describe the
equalities between morphisms, i.e., commutative diagrams. In this sense, the equational
data are I-dimensional.

When presenting 2-categories, our aim is to mimic the approach for ordinary categories.
Of course, every locally discrete 2-category & can be presented by a graph and the
(generating) collection of diagrams commuting in &. However, if we want to specify
a 2-category % that has non-trivial 2-cells, we need to

1. specify a collection of “generating” 2-cells of €,

2. specify a collection of equations between diagrams of 2-cells, i.e., tuples of “pasting
diagrams” that are to be equal in %’; the pasting diagrams are generated by the
generating 2-cells specified earlier.
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In [76] Street introduces the notion of a computad which allows precisely such a pre-
sentation of 2-categories. That is, he defines computads to be graphs with a certain
additional structure, such that there is an ordinary underlying functor

U : (2-Cat)y — 2-Comp

to the category 2-Comp of computads and their morphisms, and U is monadic. Denoting
the left adjoint of U by F', this allows us to present every 2-category € as the coequaliser
of (the transpose of) some pair

) :ﬁ; UFG,

i.e., as a presentation given by computads. We shall describe computads in a much more
general context in Section 7.5: here we only sketch the structure of a computad that is
necessary for presenting 2-categories, and show a simple example of using computads to
present the “free adjunction” 2-category.

Example 7.3.1. To describe a computad, we are to give a graph

G = Glzj;Go,

form a free category ¢ on GG and take its underlying graph (denote it by H):

H = lej;Ho,

Now the elements of H; are the morphisms of ¥, i.e., sequences of formally composable
arrows in G. We need H to be able to specify 2-cells: let us say we want to specify a set
K of generating 2-cells. Each 2-cell has to have a source and target 1-cell (morphism), so
we are forced to specify a tuple

Ki&]ﬁ.
t

Moreover, the source and target 1-cells have to have a common source and target them-
selves. That is, in the diagram

K : Hy : Hy

we need that the equations s-s=s-tandt-s=1t-t hold.

Then the 2-category € generated by our computad has ¢ as its underlying ordinary
category, and the 2-cells in € are those generated by the ones specified in K via horizontal
and vertical composition. In this sense both the 1-dimensional and 2-dimensional structure
of € is freely generated by the specified data.

We shall postpone explaining the specification of 1-dimensional and 2-dimensional
equalities to Section 7.5. We only remark here that the presentation technique using
computads formalises and makes sound the following description of the “free adjunction”
2-category:
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Example 7.3.2 (The free adjunction). There is a 2-category adj such that, given a
2-category £, adjunctions in . correspond precisely to 2-functors adj — .

The 2-category adj is presented by specifying objects A and X, morphisms F': X — A,
U:A— X, 2cellsn:1— UF and € : FU — 1 and by specifying that the composite
2-cells

A
Xt l 1
g
n, Y
) U ! X —F L, x
7 n
7
X ——— 4 ) v
A

are equal to the identity 2-cells of F' and U, respectively.

The above “definitorial” approach is very useful in cases we do not want (or do not need)
to study explicitly the category that is being presented. Compare the above specification
of adj to the concrete description:

Example 7.3.3 (Description of free adjunction [73]). The 2-category badj is de-
fined as follows: the objects are finite ordinals p = {1,...,p — 1}. For a pair of objects
p, q, the morphisms m : p — ¢ correspond to finite ordinals p < m < ¢, and a 2-cell
0 : m = m' in badj(p, q) corresponds to an order-preserving function 6 : m — m’ such
that

0() {z’, for 0 < i < p,

m —m+1i, form—qg<i<m.

The composition functor badj(q,r) x badj(p,q) — badj(p,r) composes m : p — g and
n:q—rtom-—q+mn:p—r,and the 2-cells ¢ : n = n' and 0 : m = m’ are composed
to the 2-cell v : m — g+ n = m' — g+ n’ defined as

, 0(i), for i < m,
w(i) = { "V o
o(t—m+q)+m' —q, fori =m—q.
The full sub-2-category of badj spanned by the objects 0 and 1 is denoted by adj. This
2-category is the free adjunction 2-category.

7.4 Globular operads and clubs

When presenting Gray-categories, we will need to postulate equations not only between
1-cells of those categories, but between higher-dimensional cells as well. We shall need to
manipulate with higher-dimensional operations, that is, operations that have diagrams,
instead of tuples, as their input and output. For this we will introduce the notion of

an operad, or more concretely, a globular operad [63], via Kelly’s notion of abstract clubs
from [42].
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Remark 7.4.1. Recall from Example 1.1.5 the definition of a graph as a diagram

G4 :j; G
in Set. We will generalise this definition to give a notion of a higher-dimensional graph,
called a globular set.

Definition 7.4.2. A globular set G is a diagram

\ S \ S \ S \ S \
§G4 §G3 §G2 §G1 (Go
t t

t t

in Set, satisfying the equations ss = st and ts = tt for all parallel pairs (ss, st) and (¢s, tt)
in the above diagram.

Given a globular set GG, we can think of G,, as of the set of n-cells (n-dimensional
arrows) « having the (n — 1)-cells s(a) and t(«) as a source and target, respectively.

Remark 7.4.3. Consider the category Z generated by

S S S S
2 4 2 3 ) 21 2 0
t t t t

subject to the equations ss = st and ts = tt as above. Then the functor category [, Set]
has globular sets as objects, and homomorphisms of globular sets as arrows. We will
denote this category by Glob.

We note that by Appendix F of [63] there is a monadic adjunction

Fw
/\
Str-w-Cat 1 Glob
\_/r

Uu

between the category Str-w-Cat of strict w-categories® and strict w-functors and the cat-
egory of globular sets with the obvious forgetful functor. Denoting the monad of this
adjunction by (5,7, 1), the globular set S1 on the terminal globular set 1 will play a
crucial role as a (globular) set of the input shapes of higher-dimensional operations.

In [42], Kelly studies the adjunction

evy

S
XL A H]

\_/

A

where J£ is a category with finite limits (e.g., the category of globular sets), ev; is the
evaluation functor that evaluates at the terminal object, and A is the functor sending X

3Very informally, strict w-categories are the natural extension of the notions of a 2-category and a
3-category; an w-category has objects (0-cells), 1-cells, 2-cells, ..., and n-cells for every natural number
n. These cells can compose in a strict way: composition is strictly associative, there are strict identities
at every level of cells, and the “exchange laws” are strict at all levels of composition. See, e.g., [79].



7.4. Globular operads and clubs 115

to the functor AX constant at X. An easy inspection of the above adjunction shows that
A is fully faithful and that ev; preserves finite limits. Hence, in the terminology of [24],
the category % is a localisation of [, %] (see Definition 7.4.4). Thus there exists a
local factorisation system (€, M) on [, % | (explained in Definition 7.4.5).

If, for a fixed object H of [#,. %], we denote by M/H the full subcategory of
[#, % |/H spanned by X — H in M, there is a further adjunction

RS
M/H L [, %) /H.
~_ 7

In what follows, we shall prove that there is an equivalence
M/H ~ % /H1

of categories; this allows us to introduce the notion of a club (Definition 7.4.8): a club
on # is a monad (S,7n, ) on J such that the monoidal structure ®, I on [#, % ]/S
defined by

HK
H K axf3 1d
ak ® kﬁ - 55 I'= 1y
S S z S
S

restricts to M /S, or, equivalently, to % /S1.

We shall recall some results of [42] to see that the free strict w-category monad (S, n, )
on Glob (from Remark 7.4.3) is a club. It will then follow that there exists a monoidal
structure on Glob/S1 (where S1 is the free strict w-category on 1). Monoids in this
monoidal structure will be precisely the globular operads. From the general theory of [42],
it follows that there is a monoidal functor

Glob/S1 ~ M/S — [Glob, Glob]/S 2 [Glob, Glob]
or, equivalently, a monoidal action

@ : Glob/S1 x Glob — Glob (7.3)

Thus, for a monoid (P 2 51,4, m) in Glob/S1, the functor X — p@X bears canonically
the structure of a monad on Glob: the associated monad of a globular operad, admitting a
pullback description. We shall make the above more precise in the following subsections.

Localisations and local factorisation systems

In this subsection we will recall the notion of a factorisation system arising from a locali-
sation.
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Definition 7.4.4 (|24]). A localisation of a finitely complete category 4 is an adjunction
/E\
o L B
\1/
where [ is fully faithful and R preserves finite limits.

If we denote by p : Id — IR the unit of R - I, then one can define a factorisation
system (€, M) on £ in the following way:

1. e € &£ iff Re is an isomorphism,

2. me M iff

m

X ——Y

is a pullback.

Indeed, to factorise f : X — Y in &, consider the factorisation of the naturality square
through a pullback

Since R preserves finite limits (hence pullbacks) it follows that Re is an isomorphism.
Hence e is in £. Moreover, the diagram

P—"——Y

is a pullback, since the diagram

P m y Y

IRX I—Re> IRP W IRY

is a pullback and [ Re is an isomorphism.
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Definition 7.4.5. The factorisation system (£, M) on A is local, i.e., it satisfies the
following two properties:

1. Whenever g- fe £ and g€ &, then f € &,
2. £ is stable under pullbacks.

The results of [24] show that a local factorisation system on a finitely complete category
& yelds a localisation on #. In fact, the correspondence is bijective.

Notation 7.4.6. For a fixed C in 4, let us write M/C for the full subcategory of #/C
spanned by morphisms m : B — C in M.

Proposition 7.4.7 (see Paragraph 3.1 of [42]). Suppose R 4 [ : &/ — A is a
localisation of a finitely complete category %A and denote by (£, M) the corresponding
local factorisation system on ZB. Then the following hold:

1. For any object C' in B, the category M/C is a full reflective subcategory of B/C.

2. For any object C' in A, there is an equivalence

M/C ~ of /|RC.
Proof. 1. Denote by
B il y B*
f I*
C
the (£, M)-factorisation of f. Then the (£, M)-diagonalisation property shows that
ngf—f°

has the desired universal property of a reflection.

2. Define a functor M/C — &/ /RC by the assignment

B RB
C RC

and a functor o/ /RC' — M/C by the assignment

k - k

RC C
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where the morphism m is defined as the morphism in the pullback

B——C

Then, using that R - I is a localisation, one can see that the above pair of functors
establishes an equivalence M/C' ~ o/ /RC.
|

Very often it is much easier to work with the category 7 /RC' in place of the more
involved category M /C, as we will see in the following subsection.

Clubs on a finitely complete category

The results and notions of the previous subsection will now be applied to a localisation

evi

S
H L [, A

\_/(

A

where % is finitely complete, A sends X to AX — the functor constant at X, and ev;
evaluates a functor H : # — £ at the terminal object 1 of JZ".

Since A is fully faithful and since ev; preserves finite limits, the adjunction ev; 4 A
is a localisation.

By the previous subsection there exists a local factorisation system (€, M) on [, Z]
that is described as follows:

1. The natural transformation o : H — K is in & if and only if oy : H1 — K1 is
invertible.

2. The natural transformation o : H — K is in M if and only if the diagram

HX —** s KX
H! K!
Hl ——— K1

is a pullback for every X, or, equivalently, if and only if

HX —2* s KX
Hf Kf

is a pullback for every f: X — Y. Thus a: H — K is in M if and only if « is a
cartesian natural transformation.
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The unit of evy; 4 A, having the component pg : H — AH1 for an endofunctor

H: % — % is H: HX — H1 for every X in % .
The (€, M)-factorisation of a : H — K is given by the pullback

which means that we have for every X in J# a diagram

Hence, by Proposition 7.4.7 we have for every K : J# — J# an adjunction

RS
M/K 1L [, XK.

~_

where the reflection of o : H — K is given by the (£, M)-factorisation

as in Diagram (7.4).

(7.4)

Definition 7.4.8 (see Paragraph 3.3 of [42]). Suppose .# has finite limits and let
(S,7°, %) be a monad on .#". Consider the monoidal structure ®, I on [#, #]/S given
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by
HK
H K axf Id
S S w S
.

We say that (S, 7%, 1) is a club S if the above monoidal structure on [#, #]/S restricts
to M/S.

We shall now show that cartesian monads are clubs; this is useful since the example
of our interest is given by a cartesian monad.

Definition 7.4.9. Let J# be a category with pullbacks. A monad (5,7, 1) is cartesian
if S preserves pullbacks and both 1 and p are cartesian, i.e., for each f : A — B in J&
the naturality squares

A—7L . p SsA —>%1 598
nA 1B HA "B

are pullbacks.

Proposition 7.4.10 (see Proposition 3.1 of [42]). For a monad (S,n°, %) on ¥,
the following are equivalent:

1. The monad (S,n°, u%) is a club.

2. The natural transformations n° and p° are cartesian natural transformations, and
S preserves morphisms in M. FEquivalently, S preserves all pullbacks of the form

P——— SX

S!

YﬁSl

In particular, every cartesian monad (S,n°, u%) on H is a club.

Proof. 1 implies 2: Since I = n° : 1 — S, the natural transformation n° has to be
cartesian by the description of (£, M) on [, #]. Since 1g: S — S is in M, we need

S 8 SS
lsk ® kls : lus
S 8 S
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to be in M. Hence p° has to be cartesian. Since

HK

HE oK

H K a3 5:.}(
s S oSS

then it follows that if both o and 3 are in M, also ;i - SB3 - aK is in M. But we know
that both 1° and oK are in M. It would therefore suffice that S3 be in M. By taking
a = 1lg, this condition is also necessary. Therefore S has to preserve all pullbacks of the
form

KX —P% , sx

K! S
K1 — S1.
1

Since, by Proposition 7.4.7, there is an equivalence M /S ~ J#/S1, the above pullback-
preservation condition is equivalent to the condition that S preserves all pullbacks of the
form

P—— SX

S!

YT)SL

2 implies 1: This is trivial.
Finally, to assert that every cartesian monad is a club is trivial. |

Example 7.4.11. The free monoid monad (T, 7%, u?) on Set is a cartesian monad, and
consequently a club.

The category of collections for a club

In this subsection we fix a finitely complete category .# and a club S = (S,7°, u¥) on
Wy

Notation 7.4.12. Let us define

Coll(S) = .#/S1.
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and call Coll(S) the category of collections for S.

Roughly speaking, a collection X — S1 is an “abstract signature”; the composition of
collections that we are about to introduce, is a “substitution of signatures”. See Exam-
ple 7.4.13.

Since S is a club, there is a monoidal functor
HS1 =~ MJS — [, H]/S L [ ] (7.5)

with respect to a monoidal structure o, i on J#/S1, transported via the equivalence
H/S1 ~ M/S to the (restriction of the) monoidal structure ®, I on [, . #]/S.

We give an explicit description of o, 7 in this section and we also describe the monoidal
action

@Q: Coll(S) x # — &

resulting by uncurrying (7.5).
Since the equivalence of M /S and .#/S1 is, by Proposition 7.4.7, given by the functor
M/S — #/S1 acting by

H H1
S ST,

we define i to be the morphism 77 : 1 — S1. To define the composition

X Y
fl oo |
S1 51

in £ /S1, consider first the natural transformations o : H — S and § : K — S that
correspond to f and g via the equivalence % /S1 — M/S. That is, we have the pullbacks

H—=+ 8 K # S
ps Ps
AX —— AS1 AY —— AS1
Af Ag

and we evaluate the composite

HK 2% 55, g

at the terminal object.
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The above process can be understood better if we introduce the following notation:
For every collection f : X — S1 and every Y in % let us define (X, f)@QY to be the
vertex of the pullback

oly

(X, flay — 1 8§y

aéyk S! (7'6)

XﬁSl.

Then the pullback
H—>—— 8§

| F

is given by the pullback in Diagram (7.6) for every Y. Hence ay : HY — SY can be
defined by putting HY = (X, f)QY and by putting ay = 6{Y.

Clearly, the assignment Y — HY extends to a functor by the universal property of
pullbacks; for g : Y — Z we have

f
(X, flay ar . SY
(va)@g Sg
Yy s
f

(X, flaz az . SZ
%7 X ! 2 > 51

X > S1

f

Therefore, for a fixed collection (X, f), we have defined a functor (X, f)@Q— : # — &
that is the object assignment of the desired monoidal action

Q: Coll(S) x H# — X .

Observe that for any collection (X, f) we have a morphism f : (X, f) — (5S1,1s1) in
Coll(S), and that the equalities

(S1,157)QY = SY, (S1,1g1)Qg = Sg
hold for any Y and any ¢ : Y — Z. This allows us to define
f@—: (X, fla— — (51,1g1)Q@—
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by rewriting the pullback (7.6) as

(X, Hay —L 5 (81,141)QY

(X,f)a! (51,151)@!
(X, far —I 5 (81, 14)@1
X 7 > S1

since (51, 1g1)@1 = S1 and (X, f)@Q1 = X.

Since (S1,1g7) is the terminal collection, the above diagram defines

ha—: (X, fla— — (Y, g)Q—

for any morphism & : (X, f) — (Y, g) of collections by pasting pullbacks together

faz
(X, f[)@Z rrrrr M2y (Y, g)az 17y (S, il)@z
(X,f)a! (Y,g)@! (S1,1g7)@!
(X, fa1 (¥, g)01 (S1,151)@1

Thus, we have (see Proposition 3.5 of [42])

(X, flay
fQg

7| o |o = (S1,1g)@S1
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Example 7.4.13. Consider the club T = (T,n%, uT) on Set given by the free monoid
monad (T,n", u"). The set T1 is (isomorphic to) the set of natural numbers N The
category Coll(T) is the slice category Set/T'1 = Set/N having morphisms f : X — N as
objects, i.e., families (X;)n of sets. Given f: X — N and ¢g: X — N, their composition
fog: (X, f)QY — T1 is given by the family (Z;);cn, where

Zn= ] XixY, x-xY,.

ni+--+n;=n

Example 7.4.14 (Globular operads). We can use the above theory in the case when
H = Glob is the category of globular sets (see Remark 7.4.3) and S = (S, 7", u°) is the
strict-w-category monad on Glob. Since S is cartesian (see Appendix F of [63]), it is a
club on Glob by Proposition 7.4.10.

The category Coll(S) is Glob/S1 and monoids in (Coll(S), 0, %) are called globular oper-
ads. We will show examples of globular operads (and computads) in the following section.

7.5 Gray-computads via globular computads
In Section 2 of |76] Street introduces a monadic adjunction
F — U : (2-Cat)y — 2-Comp

between the category of 2-categories and 2-functors and the category of 2-computads.
As we hinted at in Section 7.3, one obtains an equational presentation of any 2-category
2, i.e., a coequaliser

F(§) == F(G) —“— &

for suitable 2-computads G (of “generators”, or “basic operations”) and £ (of “equations”).
We shall give a definition of 2-computads that is only formally different from the original
Street’s definition.

Assumption 7.5.1. Since we will work with various algebraic categories Alg(T") for mon-
ads on differing base categories 2”7, we will denote the algebraic categories Alg(T) as 2
in this section to stress the base category.

First we introduce truncated globular sets:

Definition 7.5.2. Let %, be the generated by

subject to the equations ss = st and ts = tt where applicable. Then we denote by
Glob,, = [Z,,, Set] the category of all globular sets truncated at stage n.

Let us denote by
Fy -4 Uy : Cat — Graph

the monadic adjunction between the category of all categories and all functors and the
category of all graphs and all graph homomorphisms.



126 Chapter 7. Gray-categories and their presentations

Observe now that Graph = Glob;: graphs are globular sets truncated at stage 1.
Similarly, sets are just globular sets truncated at stage 0 (i.e., Globy = Set). Then we

have an another adjunction
Ly
/\
GIObO 1 G|0b1

v
Ry

with

leXH(@:ng)
Rlz(GlzjiGo)HGo

(thus L; being the “free discrete graph” functor and R; being the “underlying set of
vertices” functor).

Let (M, m, it1) be the monad of F; - U on Glob; and consider the monad (M, 1o, £40)
on Globy that arises from (M, m, 1) by transport along Ry. That is, M is defined as
the dotted composite in

Globy -+ Globy
L1 Ry

G|0b1 T) G|0b1

the unit ng : Id = M, is defined as the composite

My
L /\ R1
Globy ——— Glob; 71 Glob; ——— Globy
~_ "

Id

and the multiplication ug : My - My = M, is defined as the composite

My
. /\ Rl
GIObO — G|0b1 ﬂ,ul G|0b1 _— GIObO
~_
My-M;

In this case (My, no, to) is the identity monad on Globy. There is a square
M R} M
Globy™® ¢<———— Glob;™
Up U1
Globy +——— Glob,
where R; sends the M;-algebra M; X % X to the composite

RiMie1 X
e

R,M,L R, X RMX — ™ s RIX
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(where £ is the counit of L; 4 Ry).
Observe now that the morphism

R1M1€1 . RlMlLlRl = RlMl

is an isomorphism, and denote it by 5, : MyR; = R;M; (compare to Definition 3.1
in [11]).

We can now iterate the above construction “one dimension higher”, i.e., we start with
an adjunction

Fy 4 U, : (2-Cat)y — Globs

where Globy is the category of globular sets truncated at stage 2: the generic object of

Globsy being a diagram
S S

€ ¢ Gy ¢ Go

t t

in Set satisfying the globularity conditions.
For a 2-category 2, the object Uy Z" is defined in an obvious way:

1. (Us Z)o is the set of objects of 27,
2. (UyZ"); is the set of 1-cells of 2,
3. (UsZ")s is the set of 2-cells of 2.

The maps s and ¢t are the domain and codomain maps; the globularity equations are
satisfied.

The free 2-category FbG on a 2-globular set is constructed in the same way as a
2-category is constructed out of a category-enriched graph.

This adjunction gives rise to a monad (Ms, 19, 112) on Globs. Since there is an adjunc-
tion

L2 — R2 . G|0b2 - G|0b1

we can transport M, along Rs: the resulting transported monad is M;, since
RQMQLQ( G1 :t; C10 )

is the graph of the free category on Gy :i; Gy .

As in the case of 81 : MyR, = R1Mi, observe that (8, : MRy = RyM>, defined as the
morphism RoMses @ RoMyLo Ry = Ry My, is again an isomorphism.

We therefore have a chain (My, My, M) of finitary monads on Globy, Glob; and Globy,
respectively. Following the development in [11], we can now define categories

Comp(Mo),  Comp(Mi),  Comp(My)

of computads together with monadic adjunctions

Glob} GlobM Glob)™
U | = | %o U | = | F U | = | F2

Comp(M,) Comp(M;) Comp(Ms)
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The monadicity of the above adjunctions follows from Theorem 5.1 in [11], since M, is a
cartesian monad on Globy and since both Sy and (; are isomorphisms (i.e., My is truncable,
see Definition 3.1 of [11]).

We shall now describe the above mentioned categories and adjunctions and show how
they give rise to Gray-computads.

We start at stage 0 and proceed up to 2.

1. The category Comp(My) is equivalent to Globy, i.e., it is just the category Set. The
underlying functor U : GIoby ® — Globy is the underlying functor Uy : Globéw 0 —
Globy (i.e., the identity). Therefore Fy = Fj is the identity as well.

2. An M;j-computad is a tuple (G, ¢, X) consisting of an object G in Glob; (i.e., G
being a graph G, :j; Gy ), the object X in Comp(M,) (thus being a set),

and
(Yol UofoX — RlG

being an isomorphism in Globy: ¢ is a bijection between X and G, stating that the
set of vertices of G is X.

A morphism from (G, ¢, X) to (G',¢', X’) is a pair (f, ®) where f : G — G is a
morphism in Glob; (a graph homomorphism), and ® : X — X’ is a morphism of
My-computads (a mapping) such that the square

UpFoX —20%5 UyFoX'
2 ¢
RlG T) RlG/

commutes.

3. An Ms-computad is a tuple (G, ¢, X) where G is an object in Globy, X is an M;-
computad and ¢ is an isomorphism

(Yol Ul.FlX — RQG
in Glob;. The morphisms in Comp(Ms) are defined analogously to the definition of
morphisms in Comp(My).

In order to define Comp(M;) we need to have a description of the free functor
Fi : Comp(M;) — Glob?'. By definition, Glob; =~ Comp(M;), and the category
Glob is the category Cat. Thus F is the functor that constructs from a graph a
free category on that graph.

Therefore, an Ms-computad is a 2-globular set

S S

Gs el 2 G
t t

such that
Gy ;; Go
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is the underlying graph of a free category on a graph

X1 i; Xo.

This means precisely that elements of G; are words of elements of X; and elements
of G5 can therefore be drawn as “2-cells”

Of course, G is (isomorphic to) Xg. Thus the category Comp(M,) is isomorphic to
the category 2-Comp of [76].

We need to establish the adjunction F» o Us : (2-Cat)g — Comp(Mz). This can be
done using adjunctions Fy - Uy, F1 - Uy, and using restriction functors

Rt R}
Glob)™ <~ Glob? <= Glob)™

Glob, S Glob, A Globs.

Our construction says that R*.2" is the underlying 1-category of the 2-category 2°. We
define U X = (G, p, X) as follows: First observe that the counit of F; - U; yields

ri: FULGRYY — RYZ
and we define the M;-computad X by X = ule%. That is, X is the graph
dom
X1 :d; Xo

with X; being the set of 1-cells of 2" and X, being the set of objects of 2". We now
want to define G in Globy such that

G1 :j; GO = Ulflule%

and we need to define

dom
Go :di Gi.
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Since Gy consists of words of 1-cells of 2", we define G5 to consist of 2-cells

with the obvious source and target maps. The above can be expressed as follows: we put
a d::; Go = U\ FULREY
and we consider 2~ as an algebra for M; on a 2-globular set Z:

MyZ

2 - k

Z.

In particular, there is a set mapping a; : (MyZ); — Z; and we form the pullback

s,t
Gy —0 s (M Z)1 x (Ma 2
‘/alxal
ZQ Zl X Zl

{dom,cod)

This yields the correct result since Ule% = RyU, X = 7 i; Zy , and hence

(MgZ)l = G1~
We put

UQ% = ( G2 : ¢ G1 j § G() ,id,ule%);

+ 7

and this is precisely how the forgetful functor (2-Cat)y — 2-Comp is defined in [76].
To define F, : Comp(Ms) — Glob)™, we first define

X Comp(MO) (G>90’X) Comp(M1> (G,QO,X) Comp(M2>

X GlObQ G G|Ob1 G G|0b2
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and truncation functors

Comp(Mp) <2 Comp(M;) <= Comp(M>)

X ¢——

X +— (G, X)

(G, X)

Further, we define natural transformations

Globj SR Comp(My)

.
Uo 0

<]

Globg

Glob)™ RN Comp(Ms)

<]

V.
Us 2

GlObQ

and we use them to construct coequalisers

. —— ¢ FV, ——— F;

Ui

GlobM LN Comp(M7)

Vi

<]

Glob,

i=0,1,2

The only interesting case is ¢ = 2, since both V; and V5 are identities.
To define the natural transformation ©5(2") : Vallo Z© — Uy 2™ at a 2-category 2,
we express 2 as an Ms-algebra a : MyZ — Z. Then we get that

Vallo 2 = Vo Gy =% Gy == Gy ,id, UL RY) = Gy =2 Gy =% Gy

and

UsZ = Us(MyZ 5 2) = Zy =% 71 = 7

and we define ©2(.2") to be the triple of horizontal morphisms in

G2 """"""""" > ZQ

|

Gy

H

~

p1

— 7

2

~

2

-

Gy —2— Z,

where (p1, po) = Uyr; and the dotted morphism is the pullback projection.
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Define the morphism =; by means of the following bijections
Vith =5 Uy
Vi— Uik
RV = F
and define ¥ as the dotted arrow in the following commutative diagram:

)
MlMl‘/lt’I“l """""""""" > RQMQ‘/Q
M U1ZE1tr Ro Mo

MU Fitrq M—w> RoMyLoRy

Then we can take the (non-commutative) pair of composites
m My Vitry v
Ml‘/ltTl : MlMl‘/ltT‘l e RQMQ‘/Q

Mim Vitry

that mates under L, - Ry with a pair
Lo M Vitry ———¢ M5V,
and that, in turn, mates under F, - U, with a pair

FyLo My Vitry ———— KV,

whose coequaliser is F.
We have thus recovered Street’s notion of a computad from [76] in a more general
setting.

7.5.1 Globular computads

We can generalise the above two-step procedure by induction to an n-step procedure:

1. Consider the obvious chain of adjunctions

L1 L2 Ln
Globg 1 Glob, 1 - . 1 Glob,,
T T
1 2 Rn

and a finitary monad (M, 1, it,) on Glob,, for a fixed n.

2. Transport M,, along the above adjunctions to obtain finitary monads (M, ng, i)
on Globy for all 0 < k£ < n. Furthermore, consider adjunctions Fy - Uy : GIobiW’c —
Globy, and lift the restriction functors

Uk—1 Uk

GlObk,1 <—Rk GlObk
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forall 1 <k <n.
3. Define Mj-computads for 0 < k& < n inductively:
(a) For k = 0:

Uy = Uy : Glob)™ — Comp(M,) = Glob,
Fi = Fy : Comp(My) — Glob)™

(b) For k > 0: An (k+ 1)-computad is a tuple (G, ¢, X) where G is in Globy,; and
X is an Mj-computad, and ¢ is an isomorphism

(ol kakX - Rk_,_lG

in Glob,. Morphisms from (G, ¢, X) to (G',¢', X’) are pairs (f,P), where
f: G — G isin Globy,q, ® : X — X' is in Comp(M}), and the following

square

UF X —222 1 FoX

Rp1G —— Rp1 G’
Riy1f
commutes in Globy.

The adjunctions Fp — U, are defined by induction in the same way as in the
previous section.

In [11], Batanin calls M,, truncable at k — 1 if the canonical morphism fy, : My_1 Rj —
Ry M, is an isomorphism. And M, is called truncable if it is truncable at every k < n.
The main result of [11]| then reads as follows.

Theorem 7.5.3 (Theorem 5.1 of [11]). If M,, is a truncable cartesian monad on Glob,,
then the adjunction

Fm < U, : GlobX" — Glob,
18 monadic.

Now we can almost describe the Gray-computads. To capture the 3-dimensional
structure of Gray-categories, we first introduce the operads for sesquicategories and for
Gray-categories.

7.5.2 The operad for sesquicategories

Recall from Example 9.3.4 of [63] that a category 2 is called a sesquicategory, provided
it comes equipped with a functor HOM : 27 x 2" — Cat such that the triangle

v x g —HOM . cat
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commutes. The objects and arrows of every 2 (X, X') are called 1-cells and 2-cells. More
prosaically sesquicategories are “2-categories without the middle-four interchange law”.

Let us now take S : Glob, — Globy to be the monad of strict 2-categories. Since
S = (S,7n%, u°) is cartesian, one can form the category

Coll(S) = Glob,/S1

of collections for S. Since S is a club, there is a monoidal structure on Coll(S) and we will
pick a particular monoid ((P,p), j, m).

1. The collection p : P — S1 is defined as follows:
(a) By = {a},

(b) po = id (since (S1)g = {e}),
(C> P = {f}7

(d) p1 = id (since (S1); = {e}),

)

(e) a typical element of P, can be drawn as

_ _
| an | am
_ _
[} [ [ [ )
_ _
| aix, | ang,
_ _

together with a total order on the disjoint union k; + --- + k,, that restricts
to the usual order on each k;. The total order represents the bracketing. For
example, the pasting diagram

f g
— 7

e Jan o lay e
~_ 7 ~_
f! g
together with the order 11 < 21 represents the bracketing

f g

/\ /\L
first o | any o — 7 e, then «—T L. | az; e
~_ " ~_ "
I q

Analogously, the ordering 21 < 11 represents the bracketing

g f
7 —
first 0%0 | as e, then o | ap e — 7 s oo
~_ ~_ 7

g I



7.5. Gray-computads via globular computads

135

2. The unit j : (1,77) — (P,p) is given by

S1
where the only non-trivial component is j; : 19 — P, with the action

f
/\L

3. The multiplication m : (P,p) - (P,p) — (P,p) is given by the diagram

> P
V \
I
S1

in Glob,, where

(P,p)

(P,pyap T, 5p
5(()P»P)p S!

P51

is a pullback in Globsy. Since both Fy and P; have only one element, we need to describe

my : ((P,p)@QP)y — P,. Since

9§P’p)P 2
(P,p)aP), 22 (sp),

(@57 P)a ()2

Py ————— (51),
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is a pullback in Set, an element of ((P,p)@QP), is a pair

" "
| an | am /f\L
. . e with bracketing, a | a a in (SP),
ll A1k, U Unk, !
" "

where Py = {a} and P, = {f}, and the pullback condition states that o : f* — f7 has “the
same pasting shape” as the left-hand-side diagram. The mapping ms : ((P,p)QP)y — P,
then substitutes « into the left-hand-side.

7.5.3 The operad for Gray-categories

We already know that the restriction functor Rs3 : Globs — Glob, has a left adjoint Ls, as
well as a right adjoint /3. In fact, R3 is given by composition with the inclusion

3
2 t||s
| |s 9
Eg:ngvlv — ¢l s = G3
| ]s 1
0 | [s
\6,

The functor L3 is thus given as a left Kan extension along Fs3. Therefore, given an object

X= X0 = X; = X,

in Globy, we get that (L3(X))(3) = SZEGQ G5(1,3)  X(1) = &, while L3(X)(j) = X, for
0<j<2

The functor I3 is given as a right Kan extension along Fs3. Therefore I3(X)(j) =
for 0 < j <2, and

(1(X))(3) = j

i€Ga

= {(a,b) € Xo x X5 | s(a) = s(b) and t(a) = t(b)}.

We can think of (I3(X))(3) as of the set par(Xy) of parallel pairs in X5. The source and
target maps are given by the projection maps:

S=m1
par(Xs) ?; Xo.

X

J

G5(3,) X (4)
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Let us denote by Sesq = (Sesq, n, i) the cartesian monad on Globs given by the operad

for sesquicategories from subsection 7.5.3
We can now transport Sesq along I35 : Globy — Globs since I3 is a right adjoint. More
in detail, the transported monad assigns to the 3-globular set

X= X3 =% X5 X X; =X X
the 3-globular set

Z = par(Za) =X Zy =% Z1 =X Z,

where Zy —X 7y =X Z;, is the 2-globular set underlying the free sesquicategory on X.

Let us denote the resulting monad on Globs by My = (M3, 73, pu3). Observe that Mgy is
cartesian since Sesq is (as Sesq comes from a 2-globular operad).

By construction, Mj is truncable. Thus Batanin’s theory from [11] applies and we can
describe Ms-computads. This is desirable, since Globg/13 = Gray. To see this, consider
an Msz-algebra a : M3(X) — X i.e., a morphism

par(ZQ) j ZQ j Zl :; ZO

as az ai ao

X3:;X2:;X1:;XO

of 3-globular sets subject to algebra axioms. The unit axiom states that trivial pasting
diagrams are computed trivially. The associativity axiom states the following:

0. Dimension 0: the condition is void.
1. Dimension 1: associativity axiom for the composition of 1-cells.
2. Dimension 2: associativity axiom for the composition of 2-cells.

3. Dimension 3: Given a 2-pasting diagram

f g
—~ —~

b llan o Uam L4
~_ 7 ~_ "
Vi g’

with 11 < 21 we get the pasting

given by composing
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with
g
PR
e e Yy .
\J

!

g

The same pasting diagram with ordering 21 < 11 yields

given by composing

with

o Jay; e ——— e
~_ "7
f/

Thus we get pairs (a, b) and (b, a) in par(Z,) that yield mutually inverse 3-cells a — b and
b — a in X3. The category Globg/k‘" is therefore the ordinary category of Gray-categories
and Gray-functors.

7.5.4 Gray-computads

By transport along restrictions we can form the chain (Mjz, Ma, My, Mg) with Globg/IO =
Globy = Set, GlobM* = Cat and Glob)™? = Sscat (the category of sesquicategories), and
Glob}™ = Gray.

By definition, an Mjz-computad C'is a triple (G, ¢, X) consisting of a 3-globular set

ngGQlejG()?

an Ma-computad X and an isomorphism
(p:UQfQX_)( ngGleo )

The Ma-computad X is a triple (H,v,Y) where H = ( Hy —¢ H; —¢ H, )is a 2-globular
set, Y is an Mj-computad and v is an isomorphism

lpiUlle—)(Hleo )

The Mj-computad Y is a triple (K,&, Z) where K = K; — Ky is a l-globular set
(graph), Z is an Mg-computad and £ is an isomorphism ¢ : UypFoZ — Ky. Thus Y is
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a l-globular set K; —X Ky with Z = K. The Mj-computad X is the 2-globular set

Hy, —X Hy =% Hy where the underlying graph of H is the graph of the free category on
K. Finally, the Ms-computad C' can be described by the following data:

G3jG2lejG0
H, =% H, =% H,
K, = K,

A

Y

Z being K, the underlying 1-globular set of H being the free category on K, and the
underlying 2-globular set on GG being the free sesquicategory on H.

Having Gray-computads at hand, we can give presentations of several important
Gray-categories in the following chapter.



Chapter 8

Pseudoadjunctions, pseudomonads and
their presentations

We have shown in Chapter 7 that Gray-categories can be presented in a manner similar
to presentations of ordinary categories, or 2-categories. In this chapter we give concrete
presentations of certain Gray-categories; these will be, e.g., Gray-categories psa and
psm that will play the role of “free pseudoadjunction” and “free pseudomonad” objects.
That is, a pseudoadjunction in a Gray-category K will correspond precisely to a Gray-
functor

psa — K.

The technique of presenting Gray-categories is very useful in situations as is the one
above. In this case we are more interested in the ewxistence of a Gray-category psa
with the property that it detects pseudoadjunctions than with the peculiarities of the
inner structure of the presented Gray-category psa. Some basic results on the relation
between pseudoadjunctions and pseudomonads can be deduced just with the presentations
in hand. Namely, we can show that every pseudoadjunction gives rise to a pseudomonad
by showing that there is a Gray-functor

psm — psa

given by a morphism of presentations of Gray-categories psm and psa. This is the
subject of the present chapter.

Structure of the chapter.

e In Section 8.1 we define pseudoadjunctions, pseudomonads, and their “KZ”-variants:
KZ-pseudoadjunctions and KZ-pseudomonads.

e In Section 8.2 we give examples of presentations of Gray-categories psa and psm
that detect pseudoadjunctions and pseudomonads in Gray-categories, and presen-
tations of Gray-categories kza and kzm that detect KZ-pseudoadjunctions and
KZ-pseudomonads.

The definitions contained in this chapter are standard and the results are known.
However, we have not found any explicitly computed example of a presentation of a
Gray-category, and we thus remedy this omission in detail.

140
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8.1 Pseudoadjunctions and pseudomonads

We will first state the notion of a pseudoadjunction and a pseudomonad in a general
Gray-category.

Definition 8.1.1 (Pseudoadjunctions in Gray-categories). Let K be a Gray-category.
We say that 1-cells U : & — Z', F : 2 — & together with the data

r —Lr o F:>FUF —— UFU
Ue
1 1y
x %Tuzf U

(with s and ¢ being isomorphisms) constitute a pseudoadjunction in K with unit n and
counit ¢ if these data satisfy two coherence identities: the 3-cell

UF lor

UFn

Y Us

UFUF =255 UF

y
UF

has to be equal to the identity 3-cell on 7, and the 3-cell

YsU /

FU =" FUFU

/\

14

J\UFt FUe

\/

1ru FU
has to be equal to the identity 3-cell on e. We write F' 4 U : &/ — 2 for this pseudoad-
junction.

Definition 8.1.2 (Pseudomonads in Gray-categories). A pseudomonad in a Gray-
category K on an object 2" of K'is a 1-cell T : Z° — 2 together with the data

Tn

J u
17 1r
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and

TTT — s T
uT Zm p
T :“> T

where 7 is the unit of the pseudomonad, p is the multiplication of the pseudomonad, and
[, r and t are isomorphisms subject to the following axioms:

1. The 3-cell
TTT — s T

7 N

TTTT —“— TTT T

UmT

puTT uT H

TTT ——== 1T
nT

is equal to the 3-cell

TTT —2 s 7T

TT

TTTT Wpr, ™! T —£t=T

Ty
pwIT m H

T

2. The 3-cell

Tu Iz

nT

ITT ——== TT1T Ym T

T
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is equal to the 3-cell

TTT
TnT T
Yrt
TT 1 TT —t—= T
YsT
nT puT
TTT

Such a pseudomonad will be denoted by (7,7, ).

We shall now introduce the notion of a KZ-pseudoadjunction and KZ-pseudomonad.
These notions will be studied in greater detail in Chapter 10.

Definition 8.1.3 (KZ-pseudoadjunction [23]). A pseudoadjunction F' 4 U : &7 — Z
is a KZ-pseudoadjunction if

1. the 3-cell
F— FUF
S
eF
1p
F

is the unit of the (ordinary) adjunction F'n 4 ¢F and if

2. the 3-cell
U — UFU
tv
Ue
lu
U

is the counit of the adjunction nU — Ue.

Definition 8.1.4 (KZ-pseudomonad [50, 82]). A pseudomonad (7,7, ) with the
triangle isomorphisms

T T2 7T
2 vt
17 1r

T T

is a KZ-pseudomonad if there is an adjunction Tn < p with unit s and an adjunction pu —
nT with counit ¢ (both s and ¢ being invertible by virtue of (7,7, 1) being a pseudomonad).
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8.2 Presentations of important Gray-categories

We know from Chapter 7 that every Gray-category K admits a coequaliser presentation

F(€) l:i; FoG) — 5 K

by means of a Gray-computad G specifying the data of “generators” of K, a Gray-
computad &£ of “equation data”, and equations

£ :i; u:;fg(g)

specifying the equalities that are to “hold freely” in K.

We are going to use these presentations to describe Gray-categories psa, psm, kzm
and kza for pseudoadjunctions, pseudomonads, KZ-pseudomonads and KZ-pseudoadjunctions
such that, e.g., Gray-functors psm — K into a Gray-category K are in bijection with
pseudomonads in K.

We use the notation of Subsection 7.5.4 when describing the Gray-computads in each
example.

Example 8.2.1 ( The Gray-category psa for pseudoadjunctions). The data for G,
the computad of generators for psa, consist of:

1. The set Z = {X, A} of designated 0-cells.

2. The set K; = {X 55 A, A% X} of designated 1-cells.

3. The set Hy = {n, e} of designated 2-cells, where n and ¢ are the 2-cells

X o4 A—Y 4 x
7 VE

) U ) F

X A

4. The set G3 = {T,w, 7', w'} of designated 3-cells

U —"— UFU F =" FUF
2T v w

1 Ue 1 eF

U F
nU Fn

U—— UFU F FUF
%7_/ %(A}/

Ue el
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The data for £ consist of Z, K;, Hy as in the case of G, and the set G5 consists of six
3-cells; four “invertibility” 3-cells

U —" UFU U—=1TU
nUH /%o “Ua 1“ 20 “1
UFU ——=U U=—=1U
F—2— FUF F—=F
FnH Py “z—:F 1“ 20 “1
FUF ——= F = F
and two 3-cells ,
U ue St 170 UF
g S~
The presentation
£ — =3 UsFs(9)

specifies the equalities to hold in psa; the 3-cells a and S postulate that 7 is invertible
with the inverse 7’.

U —"_ UFU U —Y . UFU
DT
L: nU /%ol Ue - 77U1 Ue
27
UFU?U UFU]?U
U—2" UFU U —2" UFU
T nU“ /Xe' “U& — “UU 7)1 “UE
UFU?U UFU?U
For 8 we define
1
U U -
. U—" Ury =Y ¢

<'_\:

Nt S

1

-
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U

N —L .U
:>U :>U

Similarly, we postulate that w is invertible:

F—" o FUF F—21" o PUF
2w
[ Fn 2y eF = Fn 1 eF
2w
FUF ——— F FUF ———— F
F—21 s FUF F—21 s FUF
r FU“ 2 “sF = F77|J 7/(1 “sF
FUF ——— F FUF ———— F
1
lzl“ 26 “1 — F =" FUF == F
Mw'’
F 1 F 1
F—=F F—=F
F == F F——=F

The 3-cells ¢ and 9 specify the pseudoadjunction identities

FU
ULW/U eFU €

FU ==Y FUFU e 1 = FU 1

WFr \ ’
1 FU
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and
UF 1
n Ukn YU
n
1 @ UF = 1 U, UFUF == UF
n WU F Yr'F
UF 1

The coequaliser

f
Fo(E) l:ﬁ; Fs(G) —— psa

then yields the category psa for which Gray-functors T : psa — K correspond precisely

to pseudoadjunctions F' < U in K.

Example 8.2.2 (The Gray-category psm for pseudomonads). The Gray-category

psm for pseudomonads is presented by the diagram

!
E ;; UsF3(G)
where the data for G consist of:

1. The set Z = {K} of designated 0-cells.

2. The set K; = {K KN K} of designated 1-cells.

3. The set Hy = {n, u} of designated 2-cells, where 1 and p are the 2-cells

; K—L 4K
K ﬂn Ka kT
~_ T
1
K

4. The set Gy = {T,w,m, 7", 0w, m'} of designated 3-cells

T —2 s T T 2L 77 TTT —2— 7T
w/ %7_/
7 Ko (1) wr Zm K

1 1

T T TT:M>T
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and
T — s 7T T L 77 TTT —2 77
v w 2T
1 B 1 B uT I/lm/ H
T T TT :M> T

The data for £ consist of Z, K, Hy as in the case of G again, and the set G35 of
postulated 3-cells has 8 elements:

Gs = {a17a27b1,52,61702,d1,d2}

The 3-cells a;, b; and ¢; specify invertibility of w, 7 and m respectively, and the 3-
cells dy and dy specify the coherence conditions for pseudomonads. Thus the 3-cells
must be of types

T — T

Tn 2 aq I 1“ 2 Qo Hl
TT ——— T T——T

T —— 1T T—=T

nT 2 b iz 1“ 2 bo H1
TTT —2 s 7T TTT =L T
Tu 7 H wr P Ca p
T :H> T T :#> T

TTT — s T
TTp H
TTTT Udy T
uIT H

TT] == TT
uT
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TTT —2— T
AN
TT d, T
N /
TTT ——— TT

puT

The 3-cells a; and ay are sent to the obvious composites in UsF3(G).

Za

Loy 2 aq p — | p
2w

T — T T — s T

Ty I/lal H = Tn I/l]_ H

TT:M>T TT:M>T
1 1

l: 2 g 1 = T:Tn T =T

e’

1 1

' —=T ' =——=T
7"31“ 2 Qs Hl = 1“ 21 “1
' —=—=T ' =——=T

1 1

The 3-cells by, by, c1, co are similarly sent by [ and r to the following composites in
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Us F3(G):

liby—1-7
by — 1
tby—> T T
tbg— 1
cby —m-m/
by — 1
tby—m' -m
by — 1

~ 3~ I =~ 3

<

The 3-cell d; gets mapped by [ and r as follows:

TTT —2 7T

7 N

L dy — TTTT ==L 77T

S, A

TTT M:> TT

TTT —2 7T

27NN
rdy — TTTT Wpry, ™ TT —=T
\ / - /
TTT —F TT
Similarly, the 3-cell dy establishes the condition that
TT

Tu Iz

ITT ——== TT1T Ym T

uT I

T
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equals

TTT

TnT Ty
yrr

T L T —£t=T

Yu'T

TnT uT
TTT

The resulting category psm then has the property that Gray-functors T : psm — K
amount precisely to specifying pseudomonads 7" in K.

Remark 8.2.3. Compare the above example specifying the category psm for pseudomo-
nads with the construction of psm in [54]. While proving the existence of psm in [54]
amounts to a considerable effort, with the Gray-computad presentation approach this
becomes easy.

Example 8.2.4 (The Gray-category kzm for KZ-pseudomonads). The Gray-
category kzm for KZ-pseudomonads (see Definition 8.1.4) is presented by the diagram

!
£ ;; UsF3(G)
where the data for G consist of:
1. The set Z = {K} of designated 0-cells.

2. The set K; = {K SN K} of designated 1-cells.
3. The set Hy = {n, u} of designated 2-cells, where n and p are the 2-cells
K—" o K

T 74y
K ﬂn Ka T

K

4. The set G3 = {W', 7", a,e,w, 7} G3 = {n, 5, a,¢,1, 5’} of designated 3-cells

T —" 7T N TT —£— T
w’i/( T/}Z &y
A Ko \ B 1 Tn
T T TT
and
T —" T T =" 7T TT —£— T
(A))Z Ti/( O[%
B B nT
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The data for £ consist of Z, K, Hy as in the case of G again, and the set G3 of
postulated 3-cells has 7 elements:

G3 = {a17a27d17d27617 €2, k}

The 3-cells ay, ay specify invertibility of w, and therefore they must be of types
T —2 T T —— T
1T =T I'=—=T

These 3-cells are sent to the following composites in Us F3(G):

T T 1
“o

l:Tn al% 42 = Tn w1 12
Z

T T T

Ty ali/( w — Tn 1% N
) 1

R I T =" 7T = T

ﬂTW/

T ——=T T ——T
I'——=T I'=—=—=T

The 3-cells dy, dsy specify that Tn and p form an adjunction with unit w’ and counit ¢,
and are of the form
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They are sent by [ and r as follows:

T —— TT T ——TT
w/
I dy 7 1
1 2 1 = M
1 £
Z,
Tn T
T pr T I 7
i dli/( 1 = 1 17/( 1
Tn Tn
TT
TT —Y— TT n .
7
- d% " = 7T
“
T :1> T 1 w
T
TT —— TT TT —— TT
Tl dzg( ju = u“ 17/( “u
Similarly, the 3-cells
T ———T TT —£—= T

€1 €2

nT 2 nT 1 2 1

IT —=——= 1T I'T == T

specify that p and T form an adjunction with unit o and counit 7.
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The 3-cell k is of the form

N
N’

and specifies the KZ-axiom

TT
/ \ nT T/J\Ur Iz
1
(1) TT —E—s T = 1| —2L 7T 1 T.
(JJ/
\ / Tn ~LU' 1%
TT

Example 8.2.5 (The Gray-category kza for KZ-pseudoadjunctions). When we
want to give a presentation for the Gray-category kza for KZ-pseudoadjunctions, the
data for G consist of:

1. The set Z = {X, A} of designated 0-cells.

2. The set K; = {X 5 A, A% X} of designated 1-cells.

3. The set Hy = {n, €} of designated 2-cells, where 7 and ¢ are the 2-cells

X —-E 4 A—Y 5 X
1 v 1 F
X A

4. The set G3 = {T,w,7",w’,0’, X'} of designated 3-cells

U—"" UFU F = FUF U —"— UFU

s “ Wy “ ’7'/% “
Ue eF Ue
1 1 1

U F U
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F = pUF U —Y— UFU

w' o

i Z

eF nU

F U

FUF === F

X

&z

Fn

FUF

The data for £ consist of Z, Ky, Hs as in G; the set (G5 consists of 3-cells o, 5,7, 6, v, Y
as in Example 8.2.1 together with 3-cells dy, ds, €1, €2 of the types

UFU —=2%£—= U U—=_—y
d% 1 nU dl nU

UFU?U

FUF —— FUF

e
el 61@ eF 1 2
>
F = F

UFU === UFU

F =1 pUF

F ——— FUF
Fn

that specify that 7’ is the counit of Us - nU (with d; and ds) and that ' is the unit of
Fn - eF (with e; and ey). The specification is analogous to that of specifying adjunctions
in Example 8.2.4.

Example 8.2.6 (Every pseudoadjunction gives rise to a pseudomonad). We show
that there is a Gray-functor

M : psm — psa

that gives for a pseudoadjunction A : psa — K in K a pseudomonad A - M : psm —
psa — K. Moreover, the approach via presentations shows quickly that such a Gray-
functor M : psm — psa indeed exists: consider the presentation

1
& r:1; UsF3(G1)

of the Gray-category psa from Example 8.2.1, and the presentation

£ =3 UsF4(G0)

of the Gray-category psm from Example 8.2.2. We can now define

m: Gy — UsF3(G2)
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by the following assignments:

K— X

T—UF

ne—n

pr— Uk
w— Uw

W U’

T—TF

7 TF

m— Ue.p.

It is immediately seen that m : G; — U3 F3(Gy) is a morphism of presentations. The

transpose m* : F3(G1) — F3(Gz) of m thus gives rise to the dotted arrow M in the
following diagram by the couniversal property of coequalisers:

Ih* 1
Fs(&1) :ﬁ; F3(G) —— psm

~

Io* .
F3(&) :ﬁ; F3(Gs) ———— psa.

Remark 8.2.7. The fact that m : G; — UsF3(Gs) was a morphism of presentations in
Example 8.2.6 corresponds to the observation that every pseudoadjunction gives rise to a
pseudomonad. The assignments by which m is defined correspond to the pseudoadjunction
data used to define a pseudomonad.

In the same spirit we could use the known fact that every KZ-pseudoadjunction gives
rise to a KZ-pseudomonad to define a Gray-functor

kzm — kza

which expresses that fact abstractly. Even further, there is a commutative square

psm ——— psa

kzm —— kza

of Gray-functors expressing that every KZ-pseudoadjunction gives rise a KZ-pseudomonad,
that every KZ-pseudoadjunction is a pseudoadjunction, that every pseudoadjunction gives
rise to a pseudomonad, and that every KZ-pseudomonad is a pseudomonad.

We will study KZ-pseudoadjunctions and KZ-pseudomonads in greater detail in Chap-
ter 10.



Chapter 9

Formal adjoint functor theorem in
Gray-categories

Bénabou showed in [13| that an adjunction

(with unit ) between categories &/ and 2~ can be characterised as an absolute left Kan
extension

2 —r
7n
U

Z

of 1 along F. In this chapter we are interested in proving a correspondence very similar
to the above: a pseudoadjunction F' 4 U : of — Z (below left)

o 2 —r
7

F| H|U 1 U

X X

in a Gray-category K is precisely an absolute left pseudoexension (above right) of 1 along
F in K. The notion of a pseudoextension already appears in [71].

Thus our aim is to reproduce Bénabou’s result for the weaker notion of a pseudoadjunc-
tion. Pseudoadjunctions are interesting: they abound, e.g., in the study of pseudomonads.
Recall from Example 8.2.6 that every pseudoadjunction gives rise to a pseudomonad. Im-
portant examples of pseudomonads arise in the theory of free cocompletions of categories,
see Remark 2.1.20 (and [41]).

157
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Instead of working with 2-categories, pseudofunctors and pseudonatural transforma-
tions and studying pseudoadjunctions in this setting, we work in the framework of Gray-
categories, that is, categories enriched in the category ¥ = Gray of 2-categories and
2-functors, equipped with Gray-tensor product [39] as introduced in Chapter 7.

Structure of the chapter.

e The necessary background and the definitions of pseudoextensions and pseudolift-
ings are covered in Section 9.1.

e The proof of the formal adjoint functor theorem appears in Section 9.2.

The results of this chapter appear in the preprint [29]. The wording of the chapter is
a slight modification of the text of the preprint.

9.1 Pseudoextensions and duality of Gray-categories
We first introduce the notion of a pseudoextension. It is the appropriate weakening of
the usual notion of a (left) Kan extension.

Definition 9.1.1 (Left pseudoextension [35, 71]). In a Gray-category K, we say
that
X —L o
71
L

B

exhibits L as a left pseudoextension of H along J if for each
X —t— o
7 f
K
B
(ie., f: H= KJ) there is a 2-cell f*: L = K and an isomorphism 3-cell

Z p(f) u
! U

KJ
such that for each k£ : L = K and a 3-cell

H—'— L]
v w

kJ

KJ
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there is a unique 3-cell & : k = f* such that

H——= LJ H=—2L= L]
p b 5 kJ T ; kJ
KJ J KJ

We say that the pseudoextension n : H = L.J is preserved by G : 8 — € if the 2-cell

2 —
Gn 7

L
GH ¢

€

exhibits GL as a left pseudoextension of GH along J.
The pseudoextension n : H = L.J is said to be absolute if it is preserved by any 1-cell
G:%—%C.

Remark 9.1.2. In the ordinary case a left Kan extension is a value of a certain left
adjoint (i.e., a “free object”). In the case of a left pseudoextension it is a value of a
left pseudoadjoint (i.e., a “pseudofree object”). See [35] for a detailed explanation of
pseudoadjunctions given by pseudofree objects.

Duality of Gray-categories Gray-categories admit dual constructions on a Gray-
category K, which we introduce now.

e The horizontal dual K° of K is defined by reversing the 1-cells of K. That is,
K (o, B) = K(AB, ).

Composition in K is defined by the symmetry of the Gray-tensor product, as is
usual in the context of enriched categories.

e The vertical dual K of K is defined by reversing the 2-cells of K. That is, we put
K (o, B) = (K(,RB))?,

observe that the 1-cells of K are not reversed. In this definition we use that K (<, %)
is a 2-category and that we can therefore form its opposite.

Duality operations with the Gray-category K transform pseudoadjunctions into pseudo-
adjunctions. The roles of the defining data have to be swapped accordingly.

Remark 9.1.3. Suppose we are given the category K as in Definition 8.1.1 and the data
for the pseudoadjunction FF 4 U : & — Z .

1. In K, the same data transform into a pseudoadjunction U o F' : 2 — o due
to the reversal of 1-cells. The unit  and counit ¢ stay the same, as well as the
coherence 3-cells s and t.
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2. In K, the same data transform into a pseudoadjunction U H F : 2 — &, but
with unit € and counit n; the coherence 3-cells s and ¢ stay the same, although their
role as witnesses for the triangle isomorphisms is swapped.

The various notions of duality for Gray-categories also allow us to express compactly
the definition of (left/right) pseudoextensions and pseudoliftings via the definition of a
left pseudoextension.

Definition 9.1.4. Given a left pseudoextension
X —t o

n 7
H

in a Gray-category K, we call it
1. a right pseudoextension of H along J in K.
2. a left pseudolifting of H through J in K.

3. a right pseudolifting of H through J in K.

9.2 The formal adjoint functor theorem

Let us first recall the ordinary formal adjoint functor theorem [13].
Theorem 9.2.1. For functorsU : &/ — 2 and F : X — & the following are equivalent:

1. F' 4 U holds with unit n.

NS

. n exhibits U as an absolute left extension of 14 along F.

Co

. n exhibits U as a left extension of 14 along F', and this extension is preserved by
F.

4. n exhibits F' as an absolute left lifting of 14 through U.

v

. n exhibits F as a left lifting of 19 through U, and this lifting is preserved by U.

The pseudo-version of the formal adjoint functor theorem can be stated in the same
way, changing the notions of adjunction and extension/lifting to the notions of pseudo-
adjunction and pseudoextension/pseudolifting.

Theorem 9.2.2 (The formal adjoint functor theorem in Gray-categories). Given
two 1-cells U : &/ — X and F : & — & in a Gray-category K, the following are
equivalent:

1. F' 4 U is a pseudoadjunction with unit 0.

2. n exhibits U as an absolute left pseudoextension of 14 along F.
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3. n exhibits U as a left pseudoextension of 14 along F', and this extension is preserved

by F.

4. m exhibits F' as an absolute left pseudolifting of 14 through U.

5. n exhibits F' as a left pseudolifting of 19 through U, and this lifting is preserved by

U.

The proof strategy in the ordinary case and in the pseudo-case is the same: it is enough
to prove the implications 1 = 2 and 3 = 1. This is because 2 = 3 is trivial, and
because the equivalence of 1, 4 and 5 follows by duality. Moreover, the ordinary proofs

can serve as a guidance for the proofs of the pseudo-case.

Lemma 9.2.3 (The implication 3 = 1). Suppose that

2 —Lr
7]/

1 U

Z

is a left (Kan) pseudoextension preserved by F'. Then n can be made a unit of a pseudo-

adjunction I 4 U.

Proof. Recall that

A Ny

n 7

) U
4

2 —Lr
f7

1

is a left pseudoextension if for each

K

Z

(ie., f:1x = KF) there is a 2-cell f*: U = K and an isomorphism 3-cell

Z u(f)

tF
f f

KF
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such that for each k£ : U = K and a 3-cell

Zw

kF

KF

there is a unique 3-cell @ : k = f* such that

ly =—=—= UF ly ——— UF
zu(f)| < 4%
. —
f I F(:)F kEF f kF
KF KF

For the purpose of establishing notation, we describe the data concerning the left pseu-
doextension

2 —r
Fn/’

FU
F

Given, e.g., the identity

(the 2-cell 1y : F = F), we have a 2-cell (1,)* : FU = 1, that we will denote by ¢ and
which will be the counit of the pseudoadjunction we construct. With this counit comes
an isomorphism

F =1 PUF
v st

1p

such that for each h : FU = 14 and a 3-cell

F = FUF
74V,

1p
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there is a unique 7 : h = ¢ satisfying

F =1 FUF F =1 UF
v st an
= _
15 eF ’y\F kE 1p hF
F F

Let us first observe that s=! (or, equivalently, its inverse s) witnesses the first triangle
axiom of a pseudoadjunction, see Definition 8.1.1. To obtain the second triangle isomor-
phism, consider that 1 : 1x = UF lifts to the identity 1y = n* : U = U with the identity

3-cell (pu(n) = 1p)
ly —— UF

Z ()

lur
n

UF

By the universal property of the left pseudoextension given by n we get that for the 2-cell

U= yry = U

and the 3-cell

U 4/ nuF

UF =" UFUF
v Us™ 1

UeF
lur

UF

there is a unique 3-cell

U —" UFU
ty

Ue

U

such that the 3-cell
1y —2— yF 2 UFUF
tFw

UeF
lyr

UF
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equals
n Zn, nuF
UF =22y UFUF
Us 'y
UeF
lyr
UF

or, written differently, that the 3-cell

UF lur
y \lﬂ Us
1y Y, UFUF =25 UF (9.1)
> W WiF
UF lur

is equal to identity. This is precisely the first coherence axiom for pseudoadjunctions.
For the other coherence axiom, we need the 3-cell

Lry FU
Y sU /
(8

FU =Y pUFU . 14

/

’LU' F't FUe

N\

1ru FU

to be equal to identity as well.
We shall use that for each h : FU = 14 and a 3-cell

F = FUF
vy

1p

T
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there is a unique U : h = ¢ satisfying

F =1 pUF F = UF
sty VY
e fr—
1 EF“ /V\F kEF 15 hEF
F F

Thus if we find two 3-cells a, 5 : h = ¢ with

F =1 pUF F =1 pUF
—1 )/1 8_1 % e
el kEF
aF 1r 8F
F

it means that a = . Take now the 3-cell

FU =Y FUFU

Fty “
FUe
lru

for o« and the 3-cell

FU =2 pUuFry =LY py

sTHU w
eFU e, ! e
lru

FU — 14
for . We ask whether the 3-cells
F =" pUF =22%L, FUFUF
FtF v
FUeF
lrur

vs 1 FUF

eF
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and

FUF =22ME, pUurpUF =£EE pU R

sTWUF v
Lrun eFUFyy e p~ ! eF

1p

are equal. Pasting s and F'n,, we can equivalently ask whether the 3-cells

F—"__ . pyp

Fn v F'n, FUFn

FrUF

FUF FUFUF

FtF v (9.2)

FUeF
lpur

FUF —£ s F

and

F—™__. pUF

Fn v F'n, FUFn
FUF ==Y, purUr =£YEy pUp (9.3)

sTTUF % |.rur

—1
el
lrur é?ggF

FUF :===i§§====> F
are equal. Using the first coherence axiom (9.1), the diagram (9.2) is equal to

F =0 pyp 2 pURUF

v FUs™!
FUeF

lrur
(9.4)
FUF —£ L
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Let us take diagrams (9.3) and (9.4) and paste e.p and ep,. The resulting diagrams

F—D__ o pUr
Fn v F'n, FUFy ek
FUF =25 FUFUF %ep, F (9.5)
% s 'UF ||cpur
1rur Fn

FUF :==i§§==$ F

and

eFUF
/l} m/ill ep N\ (9.6)

= pup Y pyRpUR =EUES pUp —E o R

YFUs™!
lrur
are equal by using the identities
FUF —— F FUF
EFrny “’F
N €
FUS™ purur FUF = o
-1
EeF 5 ﬁ%
% 1F eF
and
Fn
F ——— FUF
F S_l )/1
F €
Fn 7}2 “FUFn F]% Fn — F
FUF:ﬁﬁﬁ;>FUFUF:fﬁﬁ;>FUF Fn
U s'UF FUF

lrpur

The proof is therefore finished. |
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Lemma 9.2.4 (The implication 1 == 2). Suppose that F 4 U : o — Z is a
pseudoadjunction in a Gray-category K with

2 —F =" pur U= UFU
eF Ue
1 1p 1y
X %Tuzf F U
Then
2 —r
7 1
U
@

1s an absolute left pseudolifting.

Proof. We need to show that for each G : 2" — % and g : G = KF there is a 2-cell
¢*: GU = K and an isomorphism

satisfying that for each k : GU = K and

G =" QUF

wy
g kF
KF

there is a unique 3-cell & : k = ¢* such that

G =21 GUF G =21 GUF
WY

wF g kF

KF

We shall define ¢* : GU = K as the 2-cell

aUu —2Y . KFUy —K= . i
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Then, for the 2-cell g : G = KF we define pu(g) to be the 3-cell

-1
KF =% KFPUF

KeF

Now given a 3-cell

KF
we will show that the “lifted” 3-cell @ : k = ¢ is the 3-cell

QU —S% . QU

gU RwU GnU
KFU —— qury Gt |
KEU & v
Ke &k‘s_l GUe
K = GU -
Indeed, observe that the 3-cell
G =21 GUF
zig) || e
9 g”F@ 7 kF
KF
is the composite
—1
g“ In 7 gUF WZF GnUF
-1
KF = kFUF ——— qurur G e,
_1 =
v Ks .
L KeF Rkep GUeF
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which is equal to the 3-cell

G
9
W Gn
A\
KT’¢::E;:::GUF Gn
KFn N kg, tGUFY NG, !
—1
Ler K; KFUF <——— GUFUF <22 QUF
RGtF1
KeF N kep L GUEF o

— KF ——— GUF

and, transforming Ks™! to GUs™', the latter is equal to

leur

KF

The above diagram simplifies to w, showing that our choice of & was correct. Indeed, the
choice of & is even the only possible one: each diagram in the following series is equal to

A~

Ww.

=\
GU o K (9.7)
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lgu
Gt
GUFU
G 3
nU WGt GU
GU GU —2— K (9.8)
leu @
v %19U gu & Ke
KFU 1 KFU
KFU
leu
yGt!
GUFU
GnU “gUFU GUe
GU % guw ' KFUFU % gy.7' GU == K (9.9)
w
KFU - KFU
KFU
lau
|re
GUFU == GU
GnU _
! QUFU“ FU RO Yk 4
GU & g™ KFUFU ——— KFU ——= K (9.10)
U %KFL‘ D lliKg/
KFU

1kru
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lau
yGart

GUFU =—5% - qU

anU kFU ~1 k
wrol o k.
“ 9.11
GU ¢ g~ KFUFU === KFU =——= K (9.11)
ol YKsU!
KFU
Ke
GU —=S— QU
qU ug GnU
Gt 9.12
KFU <=z GUFU 7 |ltc (9.12)
k -1
Ke < GUe
AN
K = GU
The proof is therefore complete. [ ]

Remark 9.2.5. Having proved the implications 1 = 2 and 3 = 1, the proof of
Theorem 9.2.2 is complete.

Remark 9.2.6. An interesting area for further work would be to generalise the formal
adjoint functor theorem to a relative formal adjoint functor theorem in the sense of [80].
More in detail: a functor F' : # — &/ is a left adjoint of U, relative to J (F —; U), if
there is an absolute left lifting

@ oy o

Vi
U

Z.

The statement of the formal relative adjoint functor theorem in Gray-categories requires,
however, the concept of pointwise pseudoextensions. We defer this to future work.



Chapter 10

KZ-pseudoadjunctions and
KZ-pseudomonads

In this chapter we study the properties of a special class of pseudoadjunctions and
pseudomonads: the Kock-Zsberlein pseudoadjunctions and pseudomonads |50, 82|. KZ-
pseudomonads capture formally the essence of colimit cocompletions of categories. Recall
from Remark 2.1.20 the non-strict behaviour of the cocompletion process: the forgetful

2-functor
Ug : &-COCTS — 7 -CAT

from the 2-category of ®-cocomplete categories, -cocontinuous functors and all natural
transformations admits only a left pseudoadjoint, giving rise to a pseudomonad. In fact,
we get a KZ-pseudoadjunction and a KZ-pseudomonad as defined in Definition 8.1.3 and
Definition 8.1.4. By abstraction, KZ-pseudomonads and KZ-pseudoadjunctions thus give
us a way to study “colimit-like cocompletions” in a more general setting.

What is the interplay between KZ-pseudoadjunctions and KZ-pseudomonads? When
a pseudoadjunction gives rise to a KZ-pseudomonad, is it already a KZ-pseudoadjunction?
We shall study the interplay and see that the latter question has a positive answer.

Is the definition of a KZ-pseudoadjunction from literature “minimal” or does it contain
any redundancy? KZ-pseudoadjunctions are defined as those pseudoadjunctions whose
coherence data form (ordinary) adjunctions. We will show that only half of the usual
requirements are sufficient.

What special properties do pseudoalgebras for a KZ-pseudomonad have? In the
(stricter) 2-categorical setting Kelly and Lack have shown in [46] that KZ-pseudomonads
are property-like in a technical sense; we will show that the same characterisation is pos-
sible in our weaker setting.

Structure of the chapter.

e We introduce the notion of a pseudoalgebra in Section 10.1 and give a short account
of the construction of the Gray-category of pseudoalgebras for a pseudomonad, and
of the Eilenberg-Moore object in a Gray-category.

e In Section 10.2 we show that the definition of a KZ-pseudoadjunction can be weak-
ened and that a pseudoadjunction giving rise to a KZ-pseudomonad is a KZ-pseudo-
adjunction itself. In the proof we use some of the characterisations of KZ-pseudomonads
from Marmolejo [67].
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e In Section 10.3 we give a characterisation of KZ-pseudomonads as property-like
pseudomonads in the spirit of [46].

The results of this chapter are the “obvious weakenings” of the relevant classical results,
but they have not, to the best knowledge of the author, appeared in the literature. The
statement and proof of Theorem 10.2.3 were inspired by the nLab entry |74] dealing with
lax-idempotent 2-monads. (Some authors study KZ-pseudomonads under the name of
lax-idempotent pseudomonads.) Section 10.1 is a review section that draws from |68, 54].

10.1 Pseudoalgebras

Given a pseudomonad T on an object 2 of K, we want to define the Eilenberg-Moore
object 2T of algebras for T'. There are essentially two problems:

1. The algebraic structure a : TX — X cannot be a “I-cell in 2™ since there need not
be any 1-cells in 2". (Compare to the fact that an object of an abstract 2-category
might not have a “categorical” internal structure.)

2. The object 2T of K need not exist: we will see that the existence of 27 is a mild
completeness side condition that needs to be imposed on K.

The above problems can be remedied in the usual way:

1. We introduce algebras as 2-cells a : TX = X, where X : # — 2 is a generalised
element of “shape #7. In fact, this process yields a pseudomonad K(#,T) on the
2-category K(#', 2") and we define algebras (carried by elements of 2" of shape
W) as the 2-category K(#, 27 )X"T) of Eilenberg-Moore algebras for the monad
K(#',T) and their pseudohomomorphisms.

2. The above process is functorial in #, i.e., we obtain a Gray-functor
K(—, 2)¥=D . K - Gray

and the Eilenberg-Moore object .27 is an object that represents the above functor.
That is, we have K(#, 2Z'7) =~ K(#, 27)X"T) naturally in # .

Since representability of a functor is a limit condition, the existence of 27 in K
will amount to the existence of a certain limit in K, as we show later.

Fix now a pseudomonad 7" on an object 2" of K, and an object # of K. We will first
define a 2-category K(#, 27)X(#>T) of pseudoalgebras with “carrier 1-cells” # — 2, all

pseudohomomorphisms and all homomorphism 3-cells.

Definition 10.1.1. A pseudoalgebra for a pseudomonad (7,7, 1) is a tuple (X, a, ag, a1)
with carrier X : # — 2, structure 2-cell



10.1. Pseudoalgebras

175

and two invertible 3-cells

X —% . 7x TTX —ZLes TX
)/ICL()

h a > nX 1/1&1 a

X T —— X

that are subject to the following axioms:

TX
Ta a
TnX
TX ——TTX Yaq X
pX a
TX
is equal to
TTrX
TnX Ta
YTag
TX L TX —%—= X
PsX
TnX uX
TTrX

and the 3-cell

TTX == TX

/ WTa, ™ ¢

TTTX —2 TTX X

NN

TTX:>TX
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is equal to
TTX =Lm TX

7NN

TTTX TX —— X

S Ao

TrXx —— TX

We will now give the definitions of a pseudohomomorphism (and lax homomorphism)
between two pseudoalgebras, and of a homomorphism 3-cell (between two (lax) homo-
morphisms).

Definition 10.1.2. Given two pseudoalgebras (X, a, ag,a;) and (Y, b, by, by) with carriers
X, Y W — A, apair (h, p) consisting of a 2-cell h: X =Y and a 3-cell

TX =2~ Ty

A

is a lax homomorphism if the 3-cell

\
= ~
s

x - . 7rx

Ya

S

is equal to the 3-cell

TX

Th

A

Un

v
N

Wbo

=
~!

Y 1
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and the 3-cell
TTX —=LLh o TTY

/% ﬂh g Tb

TX == TY TY

DA

TTX =L TTY

N

We say that (h, p) is a pseudohomomorphism if p is invertible.
Given lax homomorphisms

is equal to the 3-cell

TX =~ TY TX —2 Ty

X ==Y X ==Y

a 3-cell

Th

h ﬁ
TX ——1TY TX o TY
\\—/.{
Tk
h %0_

holds.
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Remark 10.1.3. The above definitions form the data for a 2-category
K(W, %)K(VI/ T)

that has pseudoalgebras with carriers of the form # — 2 as objects, pseudohomo-
morphisms between pseudoalgebras as 1-cells, and homomorphism 3-cells as 2-cells. It
is straightforward to show that these data indeed form a 2-category with the obvious
definitions of composition. For any object # of K there is a forgetful 2-functor

URD) K, )X S K, 2)

mapping a pseudoalgebra to its carrier.
Consider another object 2 of K and a 1-cell Z : & — #'. This 1-cell induces a
2-functor

K(Z, 2VKED Ky, KD K (%, 20K

that acts as a change of base by precomposition with Z. Moreover, these assignments can
be extended functorially to yield a Gray-functor

K(—, 2)¥=D . K - Gray

The forgetful 2-functors UXY1) . K(w/, 2)X'T)  K(# ', Z") are the components of
a Gray-natural transformation UX(=7) : K(—, 2)KET) — K(—, 27). See Section 3
of [68] for more details concerning the constructions in this remark. (Marmolejo uses the
notation T-Alg for K(—, 2 )¥(=7) in [68].)

Having defined pseudoadjunctions and pseudomonads in a Gray-category K in Def-
initions 8.1.1 and 8.1.2, we recall from Chapter 8 that there exist Gray-categories psa
and psm, the “walking pseudoadjunction” and “walking pseudomonad” Gray-categories.
These categories have the property that Gray-functors of the form

P : psa— K, T:psm— K

correspond precisely to pseudoadjunctions and pseudomonads in K. We now give an
explicit description of these Gray-categories.

Definition 10.1.4 (]33, 54]|). The Gray-category psa consists of two objects a and z;
the hom-2-categories psa(a,a), psa(a, x), psa(z,z) and psa(z,a) are as follows:

1. The 2-category psa(a, a) is locally preordered and it is isomorphic to the augmented
pseudosimplicial scheme. That is, psa(a, a) is the 2-category on the graph

—d—
— 7 — —dy —

2] —dt— [1] =56 — [0] —d5— [~1]
— 52— —dl —

_d§_>
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that is equipped by the coherence isomorphism 2-cells

d?'d?H%d?_yd?H for0<i<j<n+1

it sl st for0<i<j<n-—1
d?+1.8?+1;8?_1.dn for0<i<j<
dn+1'3?+1§]—[n] fori:jandZ=j+1
d?“-s?“ész-"-d?,l for0<j+1l1<i<n+1

& dh > df - dl

that are encoding the pseudo-version of the simplicial identities. We shall use the
“adjoint notation”

— fufue -
< frufu— — fue —
fufufu — fuefu- fufu < fou— fu e—> 1,
< fufnu— —cfu—
—efufu -

for the objects and 1-cells of psa(a,a). With this notation, there is a unique iso-
morphism 2-cell between two 1-cells precisely when an equality between these 1-cells
can be derived from the triangle equations for n and .

2. The 2-category psa(a,x) is isomorphic to the augmented split pseudosimplicial
scheme. That is, psa(a, a) is the 2-category on the graph

—d:—
— 52— —di—
[2] — & — [1] +—sb— [0] —d3— [—1]
— s — —d; —
—di—
— 52— — st — — 59—

that is equipped by the coherence isomorphism 2-cells

d?-d?“g ?_1'd?+1 for0<i<ji<n+1
n+1 n o~ N+l n .
Sp Sy =S S for0<i<j<n-—1
d?H's?H;sn_ -dy for0<i<yj<
At s = gy fori=jandz=j+1
n+1 n+l  .n m
dit sy = st d for0<j+1l1<i<n+1
@0 dl =~ o - !
n+1 n+l  .n n .
di" -spi = sy - d; forO0<i<n
n+1 n+l
i Spi1 = 1)
n+1 n ~ n+1 n .
spT sy = s S for0<i<mn
Ssn st
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encoding the simplicial and splitting “pseudoidentities”. We shall again use the
“adjoint notation”

— fufue -
& foufu— — fue —
fufufu — fuefu= fufu < fru— fu e— 1,
< fufnu— —efu—
—efufu—
¢ rufufu - Coufu— e —

for the objects and 1-cells of psa(a, ). The unique isomorphism 2-cell between two
1-cells then again witnesses that these 1-cells can be derived to be equal by the
triangle equations for n and €.

3. The 2-category psa(x,x) is the opposite of psa(a,a):

psa(z,z) = psa(a,a)”.

4. The 2-category psa(x,a) is the opposite of psa(a, z):

psa(z,a) = psa(a, x)”.

Remark 10.1.5. We have shown in Chapter 8 (Example 8.2.1) that Gray-functors
P :psa— K

correspond precisely to pseudoadjunctions in K. This fact was first proved in [54].
We will use the notational convention that such a Gray-functor has as its image a
pseudoadjunction

with unit 7, counit ¢, and the coherence isomorphisms s and ¢.

Remark 10.1.6. The Gray-category psm can be regarded as the full subcategory of psa
spanned by the object . We have defined psm equivalently in Chapter 8 and denoted
the inclusion Gray-functor by

M : psm — psa

in Example 8.2.6. Recall that the Gray-category psm has the property that Gray-
functors

T:psm— K

correspond precisely to pseudomonads in K (see also [54].

We can now introduce the notion of the Eilenberg-Moore pseudoadjunction (and,
dually, the Kleisli pseudoadjunction) in a Gray-category.
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Definition 10.1.7. Given a pseudomonad T : psm — K in a Gray-category K, we say
that

1. T admits the Kleisli construction if LanyT : psa — K exists.
2. T admits the Eilenberg-Moore construction if RanyT : psa — K exists.

We can weaken the completeness and cocompleteness conditions in the above defini-
tions:

Lemma 10.1.8. Giwen a Gray-category K and a pseudomonad T : psa — K,
1. T admits the Kleisli construction if psa(M—, a) =T exists.
2. T admits the FEilenberg-Moore construction if {psa(a, M—), T} exists.

Proof. We know that T admits the Kleisli construction if and only if both psa(M—, a) = T
and psa(M—, z) =T exist. We will show that psa(M—, z) = T exists always. Since M is
fully faithful and z lies in psm, we have the following series of isomorphisms:

psa(M—,z)«T = psm(—,z) » T = T(x).

Dually, the limit {psa(x, M—), T} exists always as well, hence T admits the Eilenberg-
Moore construction whenever {psa(a, M—), T} exists. |

Remark 10.1.9. The above weighted colimits (and Kan extensions) are to be considered
as colimits in the 2-category Gray-CAT, see Remark 7.1.8

Remark 10.1.10. Suppose T : psa — K is a pseudomonad on 2, i.e.,, T(z) = 2 .
We introduce the notation KI(T) for the Kleisli object psa(M—, a) = T and the notation

2T for the Eilenberg-Moore object {psa(a, M—), T}. The pseudoadjunctions given by
Lanpy T and Ranpy T will be denoted by

KI(T) 27
Fr| - |Up> FT| A |UT
z z

with units and counits 1y, e7 and 07, €7 respectively, and similarly sp, t7 and s, 7 for
the coherence 3-cells.

In Remark 10.1.3 we have already introduced the notation K(—, 27 )¥(=7) for a Gray-
functor from K to Gray. In cases where T : psm — K does not admit the Eilenberg-
Moore construction, we may consider the Yoneda embedding ¥ : K — [K, Gray]
and form the Eilenberg-Moore object in the Gray-category [K°?, Gray] of presheaves
on K as the limit {psa(a, M—),Y - T}. This limit is, in elementary terms, precisely the
Gray-functor K(—, 2)X(=T) . K? — Gray. In cases where T : psm — K does admit
the Eilenberg-Moore construction, {psa(a, M—),Y - T} is representable and is precisely

K(—, ZT). See also Section 4 of [54].
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10.2 KZ-pseudoadjunctions

In this section we give a characterisation of KZ-pseudoadjunctions. Let us quickly recall
the notion of a KZ-pseudoadjunction.

Remark 10.2.1. A pseudoadjunction F' - U : &/ — 2 is a KZ-pseudoadjunction (see
Definition 8.1.3) if

1. the 3-cell
F—" 0 FUF
S
eF
1p
F

is the unit of the (ordinary) adjunction F'n 4 ¢F and if

2. the 3-cell
U —"_ UFU
1874
Ue
1y
U

is the counit of the adjunction nU — Uke.

Example 10.2.2. Given a class ® of weights, the pseudoadjunction

®-COCTS

Fy Us

V-CAT

(see Remark 2.1.20) giving rise to the free ®-cocompletion pseudomonad is a KZ-pseudo-
adjunction.

Observe that Definition 8.1.3 of a KZ-pseudoadjunction is tailored to prove that its in-
duced pseudomonad is a KZ-pseudomonad. Analogously to the case of KZ-pseudomonads
(see [67], Theorem 11.1), the definition of a KZ-pseudoadjunction also contains redun-
dancy. In fact, for a pseudoadjunction to be KZ it is enough to satisfy only one of the
requirements of Remark 10.2.1. In the following lemma we give various characterisations
of KZ-pseudoadjunctions that prove this fact.

Theorem 10.2.3 (A characterisation of KZ-pseudoadjunctions). For a pseudoad-
gunction F U : o/ — X the following are equivalent:

1. FAU : o — Z is a KZ-pseudoadjunction.
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2. The 3-cell
F—"0 FUF
S
eF
1r
F

is the unit of the (ordinary) adjunction Frn - eF.

3. The 3-cell

UF =22y UFUF
Usz

UF

is the unit of the (ordinary) adjunction UFn 4 UeF.

4. There is a 3-cell
UFn

7
UF yd UFUF

v?
nUF
satisfying the equalities
UFn 1 :>77 UF
n 7
l=———=UF d UFUF = 4 Ny ¥ UFn
N~~~
nUF
UF == UFUF
nUF
and
UFn
UFn UF ——— UFUF
7 U Us'yw
UF {d UFUF ——= UF = ,r ) UeF
N~ IF yw or

nUF
UFUF <7 UF.

5. There is a 3-cell
UFnU

=
UFU d UFUFU

nUFU
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satisfying the equalities
UFnU U 77:U> UFU

U="= UFU_ d UFUFU = 4| 50U ¢ UFgU

nUFU
UFU ﬁ UFUFU
and
UEnU UFU =22 UFUFU
- Us Uy
UFU ~LU—d/ UFUFU ——— UFU = nUFU Ly ru UeFU
t~'FU w

nUFU
UFUFUW UFU.

6. The 3-cell
U —"_ UFU
ty
Ue
1y
U

1s the counit of the adjunction nU — Ue.

Proof. We will prove the implication chain 2 = 3 = 4 = 5 = 6. The chain
6 — 5 = 4 — 3 = 2 follows from duality. Condition 1 is equivalent to the
conjunction of 2 and 6 by definition.

To have 2 is to have an adjunction F'n H ¢F with unit s and counit r,

F =1 pUF FUF —=E o
S 2 1874
1p F lrur Fn
F FUF

respectively. Applying U, we get the adjunction UFn — UeF with unit Us and counit
Ur,

UF == UFUF UFUF —YE£  F
Us 7 H Ur ¢ “
UeF UFp
1yr lyrur
F UFUF

respectively. Thus 3 holds.
From the data in 3 we can construct a 3-cell

UFn

7
UF {d UFUF
N~

nUF
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as in the diagram (2) of Marmolejo’s paper [67]: d is the composite

UF LU UF
-1 UeF UFn

UFUF UFUF

lurur

By Proposition 3.1 and Lemma 3.2 of [67] we know that the equalities
UFn 1 :>77 UF

n /A&
l=—==UF {d UFUF = 4 Ny % UFn
X~

nUF

[”7:7ﬁ;>UFUF

and
UEn UF ——=2— UFUF

v{ 1UF

= . “ly
UF Ud UFUF === UF = WF UeF
nUF 1]7 é?

UFUF::7§$i>UF

hold. This proves the implication 3 = 4.
Condition 4 implies 5 by whiskering, where d’ = dU.
To prove 5 = 6, we define the unit of Us 4 nU to be the composite

luru

UFnU UFt—l H
UFU dU UFUF% UFU

QF%%

Indeed, the triangle identities hold: the composite

luru

U—Y0 UFU YdU UFUF =2£Y UFU

nl[FUelu

nU

U
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is equal to

UFnU
/mu U\]Ft 1y

U —" UFU ————= UFUF =UIUe . UFU

t
nUrpye I

which in turn is equal to

and therefore equal to the identity 3-cell on U. For the second triangle equality see that

the 3-cell

luru

UFt— 1

UFnU

UFU L[ldU UFUF% UFU

nUFU nUpye U ™ Ue
t

U1:U>U
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is equal to

UFUFU =2 yru

UeFU

UFU lury UFU —2—= U

B UsFU
FU
nUFU ¢ Ue. /

UFUFU === UFU

Ue
nUrye U . t

1y

U

and by the properties of pseudoadjunctions this 3-cell is equal to

luru
t~I1FU
UFU =222 yrUFU =225 UFU
UFUe
vel|  nUrue % Ue. v Ue
U :Zzziﬁ?===$ UFU :===7i?===> U
ty
1y

which in turn is equal to the identity on Ue. We have thus proved the implication 5 =—
6. [ |

Remark 10.2.4. Suppose we have a pseudoadjunction F' 4 U such that its correspond-
ing pseudomonad T is KZ. A natural question arises: is F' - U necessarily KZ? Theo-
rem 10.2.3 gives a positive answer and the reasoning is as follows. Construct the 3-cell

UFn
7
UF {d UFUF
\—//7

nUF

as in [67]. By construction, the 3-cell d satisfies the equalities demanded in point 4 of
Theorem 10.2.3, and the implication 4 = 6 thus proves that F' - U is KZ.
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Example 10.2.5. It is perhaps more customary to say that the free ®-cocompletion
pseudomonad is KZ than to say that the pseudoadjunction

®-COCTS

Fy Us

V-CAT

is KZ. Theorem 10.2.3 states that these observations are equivalent.

10.3 KZ-pseudomonads and property-like pseudomonads

In this section we will give a characterisation of KZ-pseudomonads by means of properties
of their algebras and homomorphisms (or more precisely, of the “pseudo”™counterparts of
these notions). We will characterise KZ-pseudomonads as those pseudomonads that are
property-like: this means that to give a T-pseudoalgebra T'X = X for a KZ-pseudomonad
is to give an object with a certain property specified by 7'; the basic example being the
free ®-cocompletion pseudomonad @ : ¥'-CAT — ¥-CAT for a class ® of weights. We
shall need to introduce a technical condition called (AFEL) that was introduced in the
context of 2-monads in [46]

Definition 10.3.1. A pseudomonad (7,7, i) satisfies the (AFEL) condition if for all pseu-
doalgebras (X, a,ag,a1), (Y,b,b,b1), and all h : X — Y there erists a unique 2-cell

TX == TY
a %p b

making (h, p) a laz homomorphism.

Remark 10.3.2. The emphasized notions in Definition 10.3.1 explain the origin of the
name (AEL) for this condition.

Observe that the cocompletion pseudomonads have the (AEL) property: every functor
between ®-cocomplete categories can be thought of as a lax homomorphism. The 3-cell
p is then the pointwise canonical comparison ¢ * hD — h(p D).

Pseudomonads that satisfy the (AEL) condition should remind the reader of idempo-
tent monads: for idempotent (ordinary) monads 7' : 2~ — 2~ we know that the forgetful
functor UT : Alg(T) — 2 is fully faithful, i.e., that every morphism f : X — Y between
the carriers of the algebras a : TX — X and b: TY — Y is a homomorphism of these
algebras. The (AEL) condition is a weakening of this property.

We now turn to the characterisation theorem. Some parts of this characterisation are
already known from [67].

Theorem 10.3.3 (A characterisation of KZ-pseudomonads.). Let (T,n,u) be a
pseudomonad in K. Then the following are equivalent:
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1. (T,n,pn) is a KZ-pseudomonad.
2. (T,n,u) satisfies the (AEL) condition.

3. There is a 3-cell d : Tm = nT with

n
o
n
1:>T\~Uld%7T:n n, % ||Tm
nT
nT
and
Tn

T d
nT

4. Bvery pseudoalgebra (X, a,ag,a1) satisfies a 4 nX with

x —% . 7rx
%ao

1

as a counit.

Proof. The equivalence of the conditions 1, 3 and 4 follows from [67]. We begin by proving
that 2 = 1.
Observe first that we can deduce from the axioms of a pseudomonad that

T "L 77 TTT —2— 7T
N “ “ “
Iz uT vm H
1r
T TT:M>T

make (T, i, t,m) into a pseudoalgebra. Similarly, (TT, uT,tT, mT) is a pseudoalgebra via
the 3-cells

T =L 7 TTTT —=L 77T
tT v
) uT uTT v mT uT
TT

T TTrr — TT.
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Therefore, for the 2-cell nT": T' = T'T there exists a unique lax homomorphism
TT == TTT
i v nT uT

nT

from (T, u, t,m) to (TT, uT,tT,mT) by 2. By the properties of lax homomorphisms we
get that the 3-cell

Trr
TnT uT
T =" TT WnT TT
W\ "
1 T
is equal to the 3-cell
T
/ TnT
T Wipr TTT == TT
\ % Wtr
T 1
and the 3-cell
. TTTT
TuT
uT s / 1
Tr :> TrT Trr

\\ :
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is equal to the 3-cell

TTnT

TTTT
TuT
/ AN\ Ui
T T :> TTT

NP

We claim that

is the nvertible counit of p 4 nT" with the unit

T

u
nT

given by the pasting

1

L

7T =2 77T = TT

WA

7"
ty
17 u)/l

nT

Observe that



192 Chapter 10. KZ-pseudoadjunctions and KZ-pseudomonads

is, by definition of u, the 3-cell

1

L

TT =2 TTT == TT

S e A

and by the unit law for 17T this equals

/ U

N

which is (by virtue of 7" being a pseudomonad) equal to the identity 3-cell

tw “
m

1
T

is equal to
1

T
T =L 7 =L T

s
\MU_T - \ (10.1)
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Now since

T ==L L T
p v nT vt rm iz

T T T

nT o

i

1

equals

TTrT

T ! TT —t—= T,

=

the diagram (10.1) equals

Tt

T ==L 7 L

3 %fr]_T uT  wrm 7




194 Chapter 10. KZ-pseudoadjunctions and KZ-pseudomonads

and by 2 the above diagram in turn equals

TT 1 TT
M vl M
T - T
)
nT 1%

TT
tl

1

and thus is the identity 3-cell on p: 7T = T. Hence the implication 2 = 1 holds.

To complete the proof of the theorem, we prove the implication 4 = 2. Consider
two pseudoalgebras (X, a, ag,a;) and (Y,b, by, b;) We assume that a 4 nX and b 4 nY
have counits ag and by, and units v and v, respectively. Now consider a 2-cell h : X = Y.
To give

TX —Lh o Ty

a v p b
is equivalently to give its mate
TX —Lh o Ty x =X L px —Th 7y
NP = o Y !
nX P ny — a p b
! &0,
X :h> Y X =~ Y e TY.

Since any lax homomorphism (h, p) has to satisfy that

AN
A
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is equal to

we see that the only way to define p is to take it to be the mate of 7,; that is,

TX =+ Ty T

a Z p b= X Y Y o
N v !
TX == X ——

X:h>Y Y

Y

We now have to show that such a definition of (h, p) indeed gives a lax homomorphism.
One part follows easily: the 3-cell

TX —Lh o 7y —b L v
1 N bo X
nX nh nyY
N u !
TX = X - Y
CL(]&\[
nx
1
X

is equal to

since a 4 nX. For the second identity of lax homomorphisms we need to check that the
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3-cell
TTX LTh TTY == TY
Ypp ™t uy ) Hb
X TX —Lh o Ty —2L v (10.2)
1 bo&{
X Y Y f
U
TX == X =——= Y
equals

TX v a; TX —Lh o TY (10.3)

To prove this, we show that the mate of (10.2) is equal to the mate of (10.3), i.e., that

TX =X prx ITh TTY =L TY
Ypn ™ uy 2. .
&\,
% s X ux TX —Lh o Ty b Y == TV
! 1 b\
nX Y Y f
N %
TX - X — Y
equals

X =X prx —ITh ., 7Ty

28 Ny

TX = TY

\/W/
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The latter diagram is equal to

TTX = TTY

PN

TX == TY

by the unit axiom of the pseudoalgebra a. Expanding this diagram by substituting the
definition of p, we get the diagram

TX =X X

% TCLQ
1
1 Ta
v Tu
TX —2X . 77X
1
a z Ty,
v u TTh
h vz, Th
y —2 7y —2 . 77y
v by v Th,
) b . Tb
&

and since

TX —X . prX
]/I TCL() 1
! v Tu
TX TnX

- TX = 77X,

TrX
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we get
TX =X 77X
1
a Z T
Uu TTh

X =—=——=TX

h 7408 Th

v by v T'hy
1 b 1 Ty
Zv
ny
Removing the 3-cell
Th b
1 bo
Xl g\ Y f
Uu
TX ——— X ——— V

from both diagrams, we ask whether

TX —X  prx =L, 7y —L o TY
v s X .
1 hX 2 W vz by b
&0
TX = TY 3 Y — TY
equals
TnX

T —— 17X

Th % Thy TTh

Tny

Ty
v Tby

740
nyY
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Using that
TX

Th

TY 1 TY

YsY

Ty

equals
1

PsX

TX —2X . 7rx 2 TX
Th v I'np, TTh v [, Th
TY ? TTY ? TY,

we may equivalently ask whether

X —Th o py Y oy Ty

v slY
1 w b b
&l

TY Y TY

equals

TX =L py I Yy

v Tby
b Tb

v N\
ny

This follows from the unit pseudoalgebra axiom; therefore the proof is complete.

We can now state an extended characterisation of KZ-pseudoadjunctions and KZ-

pseudomonads.

Theorem 10.3.4 (A characterisation of KZ-pseudoadjunctions and KZ-pseu-
domonads). Given a pseudoadjunction F 4 U : of — 2, the following conditions are

equivalent:

1. FHU : & - Z is a KZ-pseudoadjunction.
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2. The 3-cell
F —="— FUF
S
eF
1r
F
is the unit of the (ordinary) adjunction Fn - eF.
3. The 3-cell
UF == UFUF
Us2z
UeF
lur
UF
is the unit of the (ordinary) adjunction UFn - UeF'.
4. There is a 3-cell

UFn
=
UF yd UFUF
X~
nUF
satisfying the equalities
UFn 1 :>7] UF
n 7 >
l ——— UF ~UJ-d UFUF = N nn% UFn
\\_—/7
nUF
UF ———— UFUF
nUF
and
UFn
UFn UF ——— UFUF
7 Uer Us 'y
UF ld UFUF == UF = ,r . UeF
\\_/7 t—lF % v

nUF
UFUF ? UF.

5. There is a 3-cell

UFnU

=
UFU d UFUFU

nUFU
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satisfying the equalities

UFnU U :>UU UFU
- //\\&
U=——=—= UFU {d UFUFU = .y U &% UFnU
nUFU

UFU ——— UFUFU

and
UEnU UFU =% UFUFU
N Us Uy
UFU l[ld, UFUFU ==——= UFU = ZUFU 0 UeFU
UFU
7T t'FU w
UFUFU W UFU.
6. The 3-cell
U —"_ UFU
tw
Ue
1y
U

15 the counit of the adjunction nU — Ue.
7. The pseudomonad (UF,n,UeF) induced by U < F is a KZ-pseudomonad.
8. The pseudomonad (UF,n,UcF) induced by U 4 F' satisfies the (AEL) condition.

9. The 3-cell
FU =Y FUFU
Fty

FUe
1ru

FU
is the counit of the adjunction FnU — FUe.

Remark 10.3.5 (KZ-pseudoadjunctions in Pos). When considering KZ-pseudoad-
junctions and KZ-pseudomonads in Pos-enriched categories, their definitions can be sig-
nificantly simplified. A KZ-pseudoadjunction in a Pos-category .# is an adjunction
F 4 U : A — X with unit » and counit € such that there is any of the following
two inequalities

FUF UFU

1 1
eF Ue

FT>FUF, U— UFU
n nU
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(and thus, by Theorem 10.3.4, both of them). Every such KZ-pseudoadjunction gives rise
to a KZ-pseudomonad, which is, in the case of Pos-enriched categories, a monad with
unit 1 such that Tn < nT holds (compare to condition 4 of Theorem 10.3.4). These
conditions are equivalent to the (AEL) condition, which is in the case of Pos-enriched
categories equivalent to the fact that that the obvious forgetful functor from the category
of algebras and lax homomorphisms for 7" is locally fully faithful.

Applications of KZ-pseudomonads (and the dual notion of co-KZ-pseudomonads, for
which nT" < Tn holds) in the context of Pos-enrichment arise in theoretical computer
science, e.g. in domain theory. See for example [34] and its study of semantic domains via
KZ-pseudomonads.
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Wreaths for pseudomonads

Consider the ordinary situation of a category 2~ together with a monad (T, 7%, u*) on
2. Suppose moreover that we are given an endofunctor H : 2~ — 2°. When does H
admit a lifting to a functor H : Alg(T) — Alg(T) such that the diagram

Alg(T) — 5 Alg(T)
z — T

commutes? In this ordinary situation the answer is easy: H admits such a lifting precisely
when there is a natural transformation

x:TH= HT
that satisfies the unit axiom
2z —1 7 Z
Tl ZX T<1<7:>1 = T<7<7i>1
g7 7
and the multiplication axiom
r —t 2 —t—x
r T ZXx T

H
T T X T
X ——— X X ——— X

203
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that make H together with xy : TTH = HT into a monad functor in the sense of
Street’s [75].

Suppose H is moreover equipped with the structure of a monad. When does the monad
structure lift to the category of algebras, i.e., when is H equipped with a monad structure
derived from the monad structure of H? The answer is well known: this happens precisely
when x : TH = HT is a distributive law [12].

Lack and Street studied an even more general situation in [58|: given H : 2" — 2~
(not necessarily carrying a monad structure itself), characterise the situations when the
lifted functor H carries a monad structure. The resulting notion of a wreath generalises
the notion of a distributive law.

In this chapter we will continue the study started by Marmolejo in [68] where distribu-
tive laws for pseudomonads were studied, and we will give a description of wreaths for
pseudomonads. We will first recall the ordinary theory of wreaths in Section 11.1 and then
use the approach taken in the ordinary setting in the setting of pseudomonads: we will
construct a Gray-category of liftings in a Gray-category K to define wreaths, and then
use a tricategory triequivalent to the Gray-category of liftings to obtain an “elementary”
description of wreaths.

Structure of the chapter.
1. We review ordinary wreaths in Section 11.1.
2. Section 11.2 introduces the Gray-category of liftings in a Gray-category K.
3. Section 11.3 introduces the tricategory of transitions in a Gray-category K.

4. We describe the triequivalence between the tricategories of liftings and transitions
in Section 11.4.

5. We use the triequivalence from Section 11.4 to obtain an elementary description of
wreaths in Section 11.5.

The description of wreaths for pseudomonads is novel and has not appeared elsewhere
yet.

11.1 Wreaths in ordinary categories

In this section we will give an overview of wreaths in the ordinary setting. No results are
original here; we only expand [58]. However, we proceed in such a way that will allow
us to generalise to wreaths in Gray-categories rather straightforwardly. We will consider
monads in a general 2-category K (satisfying a slight completeness property — having
Eilenberg-Moore objects). Then we will construct two isomorphic 2-categories out of K:
the 2-category LIFT(K) of liftings in K, and the 2-category TRANS(K) of transitions in
K.

The 2-category LIFT(K) will allow us to describe easily a situation when, given a
monad T, a 1-cell H : 2" — 2 in K admits a lifting H: 27T - 27 of H and a monad
(H,7,7) on the Eilenberg-Moore object 2T for the monad 7. That is, it will allow us
to describe when a wreath of H around T exists.
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The 2-category TRANS(K) (isomorphic to LIFT(K)) will then be used to obtain an
elementary description of wreaths.

The 2-category LIFT(K) of liftings in K Given a 2-category K that has all Eilenberg-
Moore objects [75], LIFT(K) is defined in elementary terms as follows:

1. The objects of LIFT(K) are the 1-cells
%T

UT

Z,

that is, the “forgetful” 1-cells from the Eilenberg-Moore object 27 to the underlying
object 2", where T is a monad on 2.

2. The 1-cells of LIFT(K) from U” to U, liftings, are pairs (H, H) with H and H
being N
H: 2 ->%, H:- 27 >%S

that make the following diagram

(11.1)

commute in K.

3. The 2-cells p: (H, H) — (K, K) in LIFT(K), lifting morphisms, are the 2-cells

in K.
The composition in LIFT(K) is retained from K.

Remark 11.1.1. We see that the 1-cells capture precisely the situations where a 1-cell
H can be lifted to a 1-cell “on algebras”. However, the 2-cells are defined in a perhaps
surprising way: they are not pairs (p, p) satisfying the “obvious” equality

H
/N
T lp S A
\/I
K Us = uT
/ﬂ\
’ 7 e
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meaning that p is a lifted 2-cell p. This definition is deliberate. We are interested in
situations where H admits a monad (H,d,7) “on algebras” even when there is not a
monad (H,o,v) of which (H,7,7) would be a lifting.

The 2-category TRANS(K) of transitions in K The 2-category TRANS(K) is defined

in elementary terms as follows:

1. The objects are pairs (£, T), where 2 is an object of K and T is a monad on 2.
2. The 1-cells (H,x) : (Z',T) — (#,S) are transitions that consist of the data
H:Z —>%, x:SH = HT

subject to the commutativity of diagrams
nSH

Hn™
HT

and
Sx xT

#SH H/LT

SH HT.

X

3. The 2-cells p : (H, x) = (K, k) are transition morphisms, i.e., 2-cells

p:H=KT
such that the diagram
SH > SKT
KT
X KTT
KuT

HT ——= KTT ———= KT
pT KuT

commutes.
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Given transitions
(H,x): (Z,T) = (#,9), (K,r) : (#,5) = (Z,U),
the composite transition is given by

(KH,Kx-xkH)

(2. 7) s (2,U).

It is easy to check that the required diagrams indeed commute.
Given a situation

(H,x)
m
(2, 1) &2 » (7. 9),
~_ Yo -~
(L7A)

the composite transition morphism o - p is defined as

H—t s k7 —T & 177 =2 T

It is again easy to check that this morphism satisfies the requirements of a transition

morphism.
Given
(H,x)
(G) T
\/‘r
(H'x')
i.e., having
p:H=H'S
satisfying
UH Ur UH'S
X'S
X HSS
H/,LLS

HS =—— H'SS =——— H'S,
pS H,NS

We describe the whiskering

/_\

(%’T> U (P, pl)(G’7) (ga U)

\_/’
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The domain morphism is (HG, Hy - YG) and the codomain is (H'G, H'y - X'G). The cell
(p, p1)(G,~) is defined as

HG =% psa =2 mor,

and it satisfies the transition morphism equation

UHG UG UH'SG == Um'GT
Y'SG Y'GT
Ne H'SSG =25 msar
H' s H'~yT
HSG =25 mssaq =126 wsq H'GTT
Hy “H/S'y Hy H'Gu™

HGT ——— H'SGT ——— H'GTT ———— H'GT.
oGT HAT H' Gl

Given a situation

the whiskering

(@,5) L (LNp  (F,V)

\_/

has the domain (LH, Lx - AH) and codomain (LH', Lx"- AH') and is defined as

LH —2— LH'S
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satisfying the transition morphism equation:

VLH VLe VLH'S
AH AH'S
LUH ol LUH'S
LxX'S
Lx LH'SS
LH' 1S

LHS — LH'SS ——— LH'S.
pS LH//J,S

These whiskerings give rise to horizontal composition of 2-cells in TRANS(K) that, to-
gether with the vertical composition of 2-cells, satisfies the middle-four interchange law.

The isomorphism between LIFT(K) and TRANS(K) The 2-categories LIFT(K) and
TRANS(K) are isomorphic. We will sketch a proof of this fact for K = CAT, the 2-
category of all categories, functors, and natural transformations, noting that the ideas
transfer to the general proof.

We will show that the objects, 1-cells and 2-cells of LIFT(CAT) and TRANS(CAT) are
in bijective correspondences. Showing the rest, i.e., that composition in both 2-categories
corresponds precisely, is easy and we omit the proofs.

Lemma 11.1.2. There is a biyjection
® : ob(LIFT(CAT)) — ob(TRANS(CAT)).

Proof. Immediate: forgetful functors UT : 2’7 — 27 are in one-to-one correspondence to
monads in CAT, i.e., pairs (2", T), where 2 is a category and 7" a monad on 2 . [ |

Lemma 11.1.3. Liftings (1-cells in LIFT(CAT)) correspond precisely to transitions (i.e.,
to 1-cells in TRANS(CAT)).

Remark 11.1.4. Unveiling the above lemma, we want to prove that to give a lifting
H: 2T >%Sof H: Z — %, ic., to give a pair (H, H) such that

2T M s
vt Us
Y s U

commutes is to give a 2-cell (natural transformation)

x:SH= HT



210 Chapter 11. Wreaths for pseudomonads

such that
S
H "7 gp
X
HnT
HT
and
Sx xT
SSH —=— SHT ——— HITT
NSH HMT
SH < HT
commute.

Proof. Consider the free algebra y7X : TTX — TX and denote H(TX,u"X) by aX :
SHTX — HTX. This way we obtain from the natural transformation u? : TT — T a
natural transformation a : SHT — HT.

Define x to be the composite

SHn™ a
SH —— SHT ——— HT.
Since
S
Hn™ SHnT

S
HT =22 SHT

HT

commutes, we have shown that
n%H

HnT

HT

commutes. Since by naturality I;T(TTX, pI'TX) = aTX : SHTTX — HTTX, and
since the homomorphism p?X : (TTX, 'TX) — (TX, ' X) is mapped to Su’'X :



11.1. Wreaths in ordinary categories 211

(HTTX,aTX) — (HTX,aX), the diagram

SHTTX 22X sprx

HITX —— HTX
HuTX

commutes, and therefore

SHTT =22 sHT

HTT =—=————= HT
HuT

commutes as well. Consider now the diagram

ssH S gogT —So . g ST ogTT —9T gTT
noH uSHT ! SHuT Hpt
SH SHT HT
SHnT a

that proves the commutativity of

SSH —2X sy =L HTT

MSH H/J'T

SH HT

X

Conversely, define H on objects as follows: an algebra a : T X — X is mapped to the
composite

sHx —X* s grx —Ho . gx

This is an algebra since the diagrams

ox "X spx

HnTXx
n X
\  HTX
Ha

HX
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and

SSHX —2*  ogrx —SHe | gpx

xTX X

WSHX HTTX —HTe, grx
HuTXx Ha

SHX — HTX — e px

commute. (We have used both axioms for a transition.) Given a homomorphism

TX —Th s TV

we define H(h) to be Hh : HX — HY': this is a homomorphism since

SHXx —Sih sy

Ha Hb
HX ———— HY
commutes.
The above two processes are clearly inverse to each other. ]

Lemma 11.1.5. Lifting morphisms (2-cells in LIFT(CAT)) correspond precisely to tran-
sition morphisms (2-cells in TRANS(CAT) ).

Remark 11.1.6. Unveiling again, we need to prove that to give a 2-cell (natural trans-
formation)

P H=K
in LIFT(CAT) is to give a 2-cell (natural transformation)

oc: H= KT
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in TRANS(CAT) such that the diagram

SH 55 SKT
wT

X KTT
KuT

HT ——= KTT ———= KT
pT KuT

commutes.

Proof. As in the proof of Lemma 11.1.3, denote the image of the free algebra (T'X, u” X) :
TTX — TX under H by a?X : SHTX — HTX and under K by a®*X : SKTX —

KTX. These assignments give rise to natural transformations o : SHT = HT and
a® : SKT = KT.

Given p : H = K, define p to be the composite

p

(i 3V

H ———= HT ———= KT.
HnT P

By naturality of p the diagram

HTT —2X— KTT

H,u,T“ “KNT

HT :ﬁ> KT
commutes. Since p is a 2-cell of LIFT(CAT),

SHT —22— SKT
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commutes. Therefore the diagram

sy =21 syr

SKT
SKnTT
SHnT 1
SHT 1 SKTT
SR T a®T
afl SKT KTT
oK
KuT

HT —2— KT

S~ A

HTT T KTT

also commutes; and the definition of p makes sense.

Conversely, given p : H = KT, define p to be

T =~ grr =X kT

Naturality of p is easy, and to show that for any algebra a : TX — X the diagram

SHX — 5% oxrx —SKe L g X

xX kX
HTX KTX
Ha Ka

HXT)KTXTKX
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commutes, observe that the diagram

SHX SeX s SKTX —5Ka y 9K X
rTX rX
v KTa v
XX KTTX —KTe  grx
KuTT
v T v
HTX "™ grrx 52X grx Ka
Ha KTa @
HX — s KTX s KX
pX Ka

commutes (as the diagram in the top right corner commutes by assumption).
The above two processes are clearly inverse to each other. |

Taking together these results, we may state the main theorem of this section.
Theorem 11.1.7. There is an isomorphism of 2-categories
® : LIFT(CAT) — TRANS(CAT).
We may now define wreaths in a 2-category K using the 2-category LIFT(K).
Definition 11.1.8. An (ordinary) wreath is a monad in LIFT(K).

Remark 11.1.9. More concretely, a wreath of H : 2" — 2" around a monad 7" on 2’
isal-cell H: 27T — 2T together with 2-cells

1 H-H
7 4 7
2T 15 27, 2T v 27
~_ ~_
H H

satisfying the usual monad axioms.

Since LIFT(K) and TRANS(K) are isomorphic, a wreath is equivalently a monad in
TRANS(K). This allows us to state an elementary definition of a wreath.

Remark 11.1.10. In elementary terms, we say that a wreath of H : 2" — 2 around a
monad 7 on 2 in a 2-category K is thus a transition (H, ), i.e., a 2-cell x : TH = HT
satisfying equalities (see [58])

o =" g TTH —2 . 7T =L gTT
- X wTH HpuT
HT TH HT,
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transition morphisms o : (1,1) — (H,x) and v : (H,x) - (H,x) — (H,x), i.e., 2-cells
0:1= HT and v : HH = HT satisfying equalities

T 1o THT THH L THT
xT xH xXT

1 HTT HTH HTT
HuT Hy HuT

T == HTT === HT HHT == HTT ——= HT,

subject to monad axioms

H =2 grH =~ gHT HHT <H2e— [
vT vT
- HTT HTT )
HuT HuT
HT, HT,
and
HHH e HHT
vT
vH HTT
Hu™

T
HTH = HHT ——— HTT LTSN

Remark 11.1.11. All the proofs in the current section used the fact that CAT admits
an Eilenberg-Moore object 27 for a monad 7. Working in a general 2-category K, one
need not (as we did) assume that Eilenberg-Moore objects exist. The trick is to pass to
“lifting diagrams” of the form

UK(=T) UK(-.5)
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and work within [K°P, CAT]. Of course, the above diagram reduces to

K(—, 2T) 250 K- #9)

K(frUT) K(frUS)

K(_’ %) K(—,H) K(_7@)7

i.e., to the image of diagram (11.1) under the Yoneda embedding. This approach allows
us to work with generalised elements.

The case of ordinary wreaths helps with gaining intuition for the case of wreaths of
2-functors around pseudomonads. There the axioms for ordinary wreaths become two-
dimensional data; and additional coherence conditions concerning these data need to be
specified.

We will now turn to the case of Gray-categories and to the notion of a wreath in this
setting.

11.2 The Gray-category LIFT(K) for a Gray-category
K

The purpose of this section is to define, in the spirit of Section 11.1, a Gray-category
LIFT(K) of liftings in a Gray-category K, generalising straightforwadly the ideas from
the ordinary case. The reason for introducing LIFT(K) remains the same — to be able to
define wreaths in K.

In [54] Lack defines a Gray-category PSM(K) of pseudomonads in a Gray-category
K using a nice and alterable construction. Having the Gray-category PSM(K) at hand,
it is then easy to define a distributive law between pseudomonads as a pseudomonad in
PSM(K). We shall define, by tweaking Lack’s approach, the Gray-category LIFT(K) of
liftings in K, and consequently define wreaths as pseudomonads in LIFT(K). This rather
abstract construction of LIFT(K) yields, when unfolded, the expected generalisation of
the 2-category LIFT(K) for a 2-category K.

Of course, our definition of wreaths around pseudomonads will need to be unfolded,
and we will give the elementary description of wreaths in the subsequent sections of this
chapter.

Let K be a Gray-category. Consider the Yoneda embedding

Y : K — [K?”, Gray]

and its factorisation
K—%2 K

w

[K°?, Gray]
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through the closure K of K in [K°, Gray] under psa(a, M —)-limits (i.e., the free com-
pletion of K under Eilenberg-Moore objects, recall, e.g., Remark 10.1.10).
Lack [54] defines PSM(K) as the object in the factorisation

Gray-CAT(psm, K) —2%— PSM(K)

(2, K]

where the dotted arrow denotes the Gray-functor that assigns to a pseudomonad T on 2~
the forgetful arrow UT : 277 — 2°. We shall define LIFT(K) via a similar factorisation

Gray-CATy(psm, K) —2% 5 LIFT(K)

two(K)

replacing [2, K] by the Gray-category two(K) which we define now.

Definition 11.2.1. For any Gray-category K, define two(K) as follows. Take the Gray-
functor 0" : 1 — 2 and consider ['0", K] : [2,K] — [1,K].

1. O-cells in two(K) are O-cells in [2, K].
2. 1-cells in two(K) are 1-cells in [2,K].

3. To define 2-cells and 3-cells in two(K), perform a factorisation

[2,K](U, V) —22 two(K)(U,V)

in 2-Cat, for every pair U, V of objects of [2,K].

To define composition in two(K), consider the factorisation

[2,K](V,IV)®[2,K](U,V) omp > [2,K](U,W) ——
b.o.
dom@dom  two(K)(V, W)étwo(K)(U, V) CEPL two(K;(U, W)  dom

f.f.

~ v

— [1,K](domV,domW) & [1, K]|(domU, domV') o [1, K](domU, domW) <~

com
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Thus we define composition in two(K) by the above diagonal. An easy verification
shows that we indeed obtain a Gray-category. Moreover, the construction shows
that there is an obvious Gray-functor [2, K| — two(K) that is an identity on 0-cells
and 1-cells.

Since both PSM(K) and LIFT(K) are defined by factorisation, we may now see that

there is a diagonal (dotted arrow D) in the following diagram:

Gray-CAT,(psm, K) —2>— PSM(K) —— [2, K]

‘D
b.o. :

This construction allows a slick definition of a wreath:

Definition 11.2.2 (Wreaths in Gray-categories). A wreath is a pseudomonad in
LIFT(K).

Remark 11.2.3. This definition is the obvious generalisation of ordinary wreaths. Recall
from Definition 11.1.8 that a wreath in a 2-category K is a monad in LIFT(K).

We may use the Gray-functor D : PSM(K) — LIFT(K) to show quickly that every
distributive law is a wreath: given a distributive law H : psm — PSM(K), its induced
wreath is given by

psm —2— PSM(K) —2— LIFT(K).

Remark 11.2.4 (Elementary description of LIFT(K)). We will show now in elemen-
tary terms the structure of LIFT(K) for a Gray-category K that has Eilenberg-Moore
objects. (In general, one would have to work with a free completion of K under Eilenberg-
Moore objects, working thus in a subcategory of [K°?, Gray]. We will not do that; the
transition is easy and not illuminating.)

1. The objects of LIFT(K) are the 1-cells
T
UT
Z,

the “forgetful” 1-cells from the Eilenberg-Moore object 2T to the underlying object
2", where T is a pseudomonad on 2.

2. The 1-cells of LIFT(K) are liftings, i.e., pairs (H, ITI) that make the following diagram
Jm/fT H y gS
g Us

Y Y
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commute.

~

3. The 2-cells of LIFT(K) are lifting morphisms, i.e., 2-cells p : (H, H) — (K, K) of

the form
"
T
%T ll [NJ gys
\N/r
K
in K.

4. The 3-cells of LIFT(K) are 3-cells 7 : p — p*

\>m

2T @S

iSY
e
Y
p—
R

|

in K.
The composition is inherited from K.

Remark 11.2.5. Recall that since we are working in the setting of an abstract Gray-
category K, the Eilenberg-Moore object need not have an “inner categorical structure”
consisting of algebras as objects, homomorphisms as arrows, etc. However, we may work
with generalised elements of .27 as with algebras: recall that this was the case in the
ordinary setting from Remark 11.1.11, and recall the definition of a pseudoalgebra and
pseudohomomorphism from Section 10.1 of Chapter 10.

Remark 11.2.6. As in the ordinary case, we now see that a wreath in K, or more
concretely, a wreath of H : 2 — 2 around a pseudomonad 7" on 2" is a pseudomonad
H on Z'T. We shall not expand the definition of a wreath further at this point. In the
following section we will introduce the tricategory TRANS(K) of transitions in K that
will allow us, as in the ordinary setting, to give an elementary description of wreaths.

11.3 The tricategory TRANS(K) for a Gray-category K

Recall from Section 11.1 that in the case of ordinary wreaths in a 2-category K we used
the 2-category LIFT(K) of liftings in K to define wreaths, and then we defined an another
2-category TRANS(K) of transitions in K that was isomorphic to LIFT(K) in order to
obtain an elementary description of wreaths.

We already started in Section 11.2 to use the same approach to define and describe
wreaths in the context of Gray-categories. We defined wreaths with the help of the
Gray-category LIFT(K) of liftings in a Gray-category K. A logical next step would be to
define a Gray-category TRANS(K) of transitions in K that would be Gray-isomorphic to
LIFT(K). However, while there is a way to define TRANS(K) in the spirit of the definition
of TRANS(K) for a 2-category K, the resulting structure is no longer a Gray-category,
but an honest tricategory.
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Working with tricategories poses substantial technical difficulties (compared to work-
ing with Gray-categories), but it is still possible to use the tricategory TRANS(K) to
obtain an elementary description of wreaths as TRANS(K) is triequivalent to LIFT(K).

As the definition of a tricategory (and of triequivalence) is quite involved, we will not
state it in full here. Instead, we will show the important data that constitute the tricate-
gory TRANS(K) in this section, and show how the triequivalence LIFT(K) ~ TRANS(K)
works in the next section.

In short, TRANS(K) consists of objects, 1-cells, 2-cells and 3-cells, where

1. the objects are pseudomonads in K (i.e., pairs (27, T) with 2" an object of K and
T a pseudomonad on Z7),

2. the 1-cells are transitions, the 2-cells are transition morphisms (similarly as in the
2-category of transitions in a 2-category K),

3. and higher transition cells between transition morphisms.

The homs of TRANS(K) will not be 2-categories as in the case of LIFT(K), but bicate-
gories. We will first describe the hom-bicategories of TRANS(K).

The hom-bicategory of transitions

Consider a Gray-category K, a pseudomonad 7" on an object 2 in K and a pseudomonad
S on % in K. Then there is a bicategory B = TRANS(K)((:Z",T), (%, 5)) of transitions,
transition morphisms and transition 2-cells between (2", T) and (%, S). We shall examine
the structure of this bicategory.

The underlying structure of B consists of

1. objects (H, x, Xo, x1) being transitions, consisting of H : 2~ — %, x : SH = HT
and isomorphisms

SSH —2X— SHT

S
g "7 gp T
Xo &
HT X pH x1% HTT
HT Hu”

SH:X>HT
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satisfying coherence conditions

s =21 oo —5X . gyT

v sSH1

uSH

SH v X1

xT

HT <———= HTT
Hu”

and

SSHT =21 spyrr =21, sHT

YSx1
o5 SSH
SuSH
SSSH ~LU—TTLSH wSH
wSSH
w>H

SSHT =T sprr =317 spyr

SS
/

SSSH Uu§ SH

Sx
N

x1TT

v xiT HTTT

HuTT

xT

Pxi

SSH%SH
pn> H

SnSH

SH

SHnT

Z XyT

HT HTnT

Sx

HTT

Ux:

HT

Z xu"

HTLT

v Hm™

HuT

X

Z SXo

xT

xT

HTT

SSH

Sx

(11.2)

xT

v HsT™"

Hu™

HT

HuT

(11.3)

HuT
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2. For each pair (H,x, X0, x1), (K, K, ko, k1) of transitions, a category of transition
morphisms and transition 2-cells, where:

(a) The objects are pairs
(p’ pl) : (H7 X5 X0, Xl) - (K7 R, Ko, Kfl)

where p: H = KT and p; is an isomorphism

Sp

SH SKT
KT

X Pz KTT
KuT

pT KuT

satisfying coherence conditions

S
H—"2 sg 50 SKT
Xo % X KT
e 128% KTT
KuT
HT =—— KTT ——— KT
pT Ku”
s (11.4)
nSH Sp
H Yns SKT
HnT ¢ KT kT
~LU—/€0T
T
HT ¢%py; KT —21= KTT
1 %KtT
A KTn™ KuT
P v Ks
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and
SSH 55 SSKT
SkT
Sx
SKuT
S H SHT ST SKTT =Xy sKT
%Xl NTT%K/MTil kT
T % T KTTT =225 kr
KuTT
T
SH HTT =22 g1 =228 k77 % KmT ||ko”
X HMT %p“T KT/LT %KmT_l K,U/T
HT ———— KTT KT
pT KuT
(11.5)
SSH 55p SSKT
SkT
WSH ZuS KT SKTT
)/IlilT rkTT SKut

SH 2 SKT KTTT %#,r~" SKT

T KuTT KTut KT

\ % pr KTT wEKm® KTT

KuT KuT
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(b) The morphisms are cells

(pvpl)

/\

(H7X7X07X1) U T (K7 K, ’%07’11%

\_/

(0*.0F)

where

is subject to the equality

Sp

A

SH YST SKT

vﬂ

Sp*
X Z py KTT

KuT

KT ——— KTT ——— KT
o*T KuT

= (11.6)

Sp

SH SKT
KT
X Z p1 KTT
KuT
pT
7
KT T KTT?KT.
I
Y

That these data form a category (together with the obvious definition of composi-
tion) is immediate. We denote the category by B((H, x, xo0, X1), (K, K, ko, K1))-

3. For each triple (H, x, x0, x1), (K, K, ko, k1), (L, A, Ao, A1) of transitions, a composi-



226 Chapter 11. Wreaths for pseudomonads

tion functor!
+: B((K, k), (L, A)) x B((H, x), (K, k) = B((H, x), (L, A))
This functor is defined on objects by the assignment

((O-’ 01)7 (107 pl)) — (O-’ Jl) * (p7 pl) = (7_7 7—1)7

where
T
r= H—f— KT —2L 77 =2 [T

and where 7 is the 2-cell

SH =—22— SKT SoT SLTT =2 spT
\NTTY /\#:r_1 AT
T % oy T LTTT =22 117
LuTT
| wp KTT =22 1777 =222 17T @ Im?  ||o
KuT % 0,r LTu” % LinT ™ Lt
KT =—— LTT — LT.
KuT No,rt |t X LmT T

HI —= KTT ——= L1T1TT ————= LTT
oT oT'T LT

On arrows, * sends a pair

14 o
=
(HZ W KT, K~ W LT)
\//7 =
p o
to
p A
T — H/iu/?\KT WT LTT =2“— 1T
V \\__T/?
P o*

4. For each object (transition) (H, x, Xo, x1) an identity functor

id (Hxxoma) - 1T = B((H, X, X0, X1)s (H, X, X0, X1))

1To make the rest of the chapter easily readable, we lighten up the notation: transitions, i.e., tuples
(H, x,x0,Xx1) are denoted only by the pair (H,x) (or even by H) whenever it is not important to stress
the additional structure.
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sending the unique element of 1 to the transition morphism

Hn' :H = HT,
SH SHy? SHT
X I/I X,,IT -1 xT
HT HTn? HTT
v H Tt
HnTT . HuT
% HtT ™}
HTT 7 HT

The underlying structure of B introduced above is equipped with the following
natural isomorphisms:

5. Natural isomorphisms

1 x B(((H, x), (K, K))

10

B(((H,x), (K, x))

id(Kv@Xll N () (K.) !

B(((K, r), (K, r)) x B(((H, x), (K, x)) —— B(((H, x), (K, x))

and

1R

(((H, x), (K » B(((H, x), (K, k) x 1

‘/ /T(((Hvx)v(Kvﬁ)) llxldH

((H,x), (K, k) +—— B(((H, x), (K, x)) x B(((H,x), (H, x))

i.e., for each transition morphism (p, p1) a pair

lppr) + i * p = p, Tlopr) * P * i = p;
The transition 2-cell r(, ,,) is defined as
H £ KT X
HnT“ 2 pyr " H 2 KTt
KTnT
_> _>
HT — KTT =———= KT

and the transition 2-cell [(, ,,) is defined as

H £ KT

1
KnTTH 2 KtT

KuT
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6. Natural isomorphism
B(K,L) x B(H,K) x B(G, H) =3 B(K, L) x B(G, K)
xx1 7 a6, 1K L *
B(H,L) x B(G,H) ——— B(G, L),
i.e., a transition 2-cell
o ((0,01) * (p, 1)) = (9, 01) = (0,01) * ((p, p1) * (0, 01))
defined for each triple ((o,01), (p, p1), (¢, 1)) of transition 2-cells as

pT

G —%— [T KTT =2 g

olT 7) UHT oT
LTTT ——— LTT
LTu™

-1
T\ 24 Lm” L™

LTT ——— LT.
LuT

7. These data are subject to the following equalities:

e The triangle

((0 01 * ZdK Pa Pl U 01 ZdK * (,0> ,01))
U 0-1 ;07 Pl

commutes. This triangle commutes since 7' is a pseudomonad: the diagram

H P KT il

LTT

_ -1
KnTT 2 oyrr A Ls™T

LroTT

LT
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equals
KnTT !
2 Kt
KTT :T> KT
Ku
oTT PO, oT
LTTT =22 1T
wtr| 4 LmTh |t

LuT
e The pentagon

((5%7) = B) xa =25= (3% (y+f)) »a === §+((y+ ) * )

(0x7y) = (Bxa) Z 0x (v (B +a))

commutes. This is again true since 7' is a pseudomonad.

The tricategorical structure of TRANS(K)

We have shown in the previous subsection that for any two fixed pseudomonads T on Z~
and S on % in K the collection of all transitions from (2°,7T) to (#/,5), all transition
morphisms and all transition 2-cells forms a bicategory. However, we can obtain additional
structure by observing that transitions themselves can be composed. This additional
structure turns out to make TRANS(K) an honest tricategory. That is,

1. the objects of TRANS(K) are pairs (27,T), where 2 is an object of K and T is a
pseudomonad (T, 1T, ¥, s7,tT, mT) on 2, and

2. given two objects (£, T) and (%, S), the hom-bicategory TRANS(K)((Z",T), (%, S))
is precisely the bicategory B described in the previous section, consisting of transi-
tions, transition morphisms and transition 2-cells.

The 1-cells (27, T) — (#,S) in TRANS(K) are precisely the objects of the bicategory
TRANS(K)((Z7,T),(#,5S)), the 2-cells are 1-cells of TRANS(K)((Z",T),(#/,S)), and
similarly the 3-cells are the 2-cells of the hom-bicategory.

We will now describe the most important structure that is added by considering tran-
sitions to be composable.
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Composition of 1-cells Given transitions (H,x) : (2,7) — (#,5) and (K,k) :
(#,S) — (Z,U), we define the composite transition (L, A, A\g, A1) as follows:

1. The 1-cell L is the composite KH : 2" — Z.
2. The 2-cell \: UKH = KHT is the composite

UKH —f— s —2X« KHT.

3. The isomorphism )\ is the pasting

A

8 )
UKH =28 sy —2X o k[T

&1 I{()H &{ KXO
KnSH
Y KH KHnT

KH

4. The isomorphism A; is the pasting

UKHT
UUKH =YL UKSH KSHT ==L KHTT
pU KH 7 k1 H KSSH 7z Kxi KHuT
KuSH
UKH — KSH = KHT

It amounts to a laborious computation to check that such a composite indeed yields
a transition again.

The composition of transitions is strictly associative and unital. This is immediate
from the definition of composition and from observing that the identity of the composition
is the identity transition (1,1,1,1).

Whiskering We shall need to compose 2-cells and 3-cells in TRANS(K) that are whiskered
from left or right with 1-cells.
Consider the situation

(H,x,x0,X1)

/\
(2. 7) EXY ( S) | (o) (2.U)

\/‘r

(H' X" x0-x1)
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i.e., having
p:H=H'S
and
UH Ue UH'S
X'S
X P1 )/1 HSS
H/MS

HS === H'SS =———= H'S.
pS H//JS

We wish to describe the whiskering

/_\

(’%7T) U (p, p1)<Ga7) (gv U)

\_/’

The domain morphism is (HG, Hy - xG) and the codomain is (H'G, H'vy - x'G). The cell
(p, p1)(G,7) is defined as

HG = wse =2 mor,

while ((p, p1)(G,7))1 is defined as

UHG UeG UH'SG =222 UH'GT
\'SG %X'{l \GT
\G % p1G H'SSG =22 1'SGT

H'uS H'AT

HSG =255 ssq =% msq wHvw HGTT

1y Z py “H/S7 2 Hy ™ N H'GuT
HGT —— H'SGT ———— H'GTT ——— H'GT.
pGT H'AT HGuT
Given a 3-cell T: (p, p1) = (p*, pi), i.e.,

p
H? H'S,
v

p*
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the whiskered cell 7(G, ) is defined as

pG

ﬁ Hy
HG G H'SG ——— H'GT.
\\_—/7
p*G
On the other hand, given a situation

(H7XaXO’X1)
/\ (L )\)
~_ A

(H' X", x0-x1)

(«,V),

we may form the whiskered cell

/\

(#,5) L (LN(p,p) (#,V)
~_

with the domain (LH, Lx - AH) and codomain (LH', L' - AH') which is defined as

LH —2— LH'S
with ((L, A)(p, p1))1 being

VLH YL VLH'S
AH 729 AH'S
LUH Lp LUH'S
LS
Ly v Lp LH'SS
LH'pS

LHS == LH'SS ———— LH'S.
pS LH,MS

Given a 3-cell T : (p, p1) = (p*, p}), i.e.,

the whiskering (L, A)7 is defined as

Lp

7
LH Lt LH'S.
\—//Z

Lp*
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The “Gray” 3-cells Consider now the situation of two horizontal 2-cells as in the
diagram
(Gy) (H,x)

PR Y
(Z.T) | (m,m) (Z,5) 1 (p,p1) (Z,U).
~_ ~_

(G/,,Yl) (H,7X,)
There are two ways in which (7, m) and (p, p1) can be horizontally composed. We may
compose (p, p1)(G,~) with (H', x')(7,m), i.e.,

HG =X psq =22 gGT

with
HG == ga'T

to obtain

HG =5 psq =22 por 222 o L o
or we may compose (H, x)(m,m) with (p, p1)(G’, %), i.e.,

HG =2— HG'T
with
oo =2~ msq¢ =22~ H'G'T

to obtain

HG =2 gor =7 msor =222 worr L4 o,

As in Gray-categories, these two ways of composing the 2-cells are related by a 3-cell
isomorphism. We denote it by (p, p1)(r,x) and define it to be the cell

HG —L% o — 9 o 1T T

HT(“ %pﬂ- H/STI'“ %Hlﬂ'l_l “H’G’,u,T

HGT —— H'SGT ——— H'G'TT ———— H'G'T.
pG'T H'Y'T H'G'uT

11.4 Triequivalence of LIFT(K) and TRANS(K)

In this section we will show how the Gray-category LIFT (K) and the tricategory TRANS(K)
are related. There is a homomorphism

@ : LIFT(K) — TRANS(K)

of tricategories that is a triequivalence. The notion of a homomorphism is a suitably weak-
ened analogue of the notion of a functor between categories, similar to homomorphisms of
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bicategories. The notion of triequivalence is a categorification of the notion of equivalence
of categories. We refer the reader to [38] for the technical details: here we only comment
that similarly to ordinary equivalence (where one needs to check that a functor is essen-
tially surjective and an isomorphism on hom-sets), to have a triequivalence is to have
a homomorphism that is a biequivalence on hom-bicategories, and that is triessentially
surjective. Since the objects of LIFT(K) and TRANS(K) correspond bijectively, the most
important part of checking the triequivalence corresponds to checking the biequivalence
on hom-bicategories.
Define @ to be essentially an identity on objects, i.e.,

ngVT

o — (2. T).

UT

Z
The biequivalence

®yr s : LIFT(K)(UT,U®) - TRANS(K)((2°,T), (%, S))

sends
2T 2, s
uT Us
to

(H7X7X07X1) : (%aT) - (@7 S)?
where x is defined in the following steps:

TT SHT
ﬁ[(%):“T — a ,0Qp,aq
T HT
where a¢ and a; are cells
nSHT Sa
HI ——— SHT SSHT ———— SHT
Z a,
) a pSHT v ay a
HT SHT =————= HT

and we put

_ SHUT a
Y= SH ——=— SHT —%— HT
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together with
S

S
HnT“ %TlHnT SHnT

S
HT =22 sHT

%ao

HT

and

SSH =M eHTX —Sy SHT SHTT —T— gTT

\% SH/
1 SHuT
% aq

SHnTT

nSH %uin{l WSHT SHT 2 HmT™" HuT
SH =——= SHT HT HT.
SHnT a 1

That (H, X, xo0,x1) is a l-cell from (27, T) to (#,S) is proved in [69] (in particular,
see Proposition 3.4 of [69)]).
Given

we define ®(p) to be the pair (p, p1), where we first consider

p(T.u™) o~

H(T, uT) £=£= K(T, 47)

which equals

SHT SKT
(ﬁ7 ﬁl) aH“ 7a’é{7 a{{ - aKH ) JG{( )
HT KT

and
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which equals

SHTT SKTT
(%7 %1) : aH 75(1){a E{{ - ak 766(7 E{(
HTT KTT

and the pseudonaturality square

~ 5 T ~
H(TT, 171y 22 R T, 1T

H(uT mT) Z P(uT mT) K (T mT)

H(T, ") K(T, u7).

A(Top™)
Then the above pseudonaturality square is

(afT,allT,a'T) RUILIKEN

(a®T,alfT,afT)
(HuT HmT) %ﬁ(pT,mT) (KpT . KmT)

(aHaaéfaa{{) Y (aK7a(l)(7a’{<)

(B,p1)

In particular, we have an isomorphism

HTT —2— KTT
HuT 4 ﬁ(MT’mT) KuT

HT:ﬁ>KT

and we define p to be the composite

HT KT




11.4. Triequivalence of LIFT(K) and TRANS(K)

237

and p; to be the pasting

sH =221 SHT SKT
SHT 1 SKnTT
SHT il SKtT  SKTT
v p1 KT akT
oH SKT w EmT 'KTT
ak T

1
Nﬂﬂ /wp m/

HTT — KTT

It is then easy to check that (p, p1) is indeed a morphism from (H, x, xo, x1) to (K, k, Ko, £1).

Given

\>m

A

U

|

2t 5
we have the equality
~, T ~
H(TT, 171y 221 R T, W77
%ﬁ T mT ~
(T mT) i R(u,mT)
H(T, u™) WHT,pT) K(T,p")

N~

F(T.u")

AT uTT)

>

H(TT,p"T) WF(TT,p™T) K(TT,u"T)
~ )/15( T mT)
H(T, u" £ K(T, u™
(T, u") ST (T u")
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In particular, we have the equality

T
ﬁT A
HTT —— KTT HTT YT KTT
Z Py mT) Y
HuT N KuT = HLT KuT
/ﬁ\x % O (T )
HT Ur KT HT — KT
\T//(
where we put 7 = 7(T, u”). Thus, if we define 7 to be
F
HnT @
7= H— HT |7 KT,
v
we have defined
(H7XuX01X1)

TN

(%’T> (p7p1) U = U (070-1) (@/78)

\/

(K,k,k0,K1)

That ® (4 1,2 s) is a biequivalence follows from [69], see in particular Theorem 3.5.

Remark 11.4.1. With the above assignments, the homomorphism
® : LIFT(K) — TRANS(K)

is a triequivalence. This will allow us to work with TRANS(K) in place of LIFT(K): given
a pseudomonad (}NI .7, 7,5,t,m) in TRANS(K), the image of this pseudomonad under ®
is again a pseudomonad. This new pseudomonad consists of data and axioms in K that
are necessary and sufficient to reconstruct (ﬁ, o, U, §,t~,7%), i.e., these are the data that
describe in an elementary manner what a wreath is.

11.5 Elementary description of wreaths

We have already introduced wreaths in Gray-categories in Section 11.2. However, the
definition of a wreath from Definition 11.2.2 is very abstract and does not immediately
show the data that are needed in K in order for a wreath of a 1-cell H : 2~ — 2 around
a pseudomonad T on 2 to exist. In this section we remedy the situation and give an
elementary description of wreaths.

The approach is straightforward. Since LIFT(K) ~ TRANS(K) and a wreath in K is
a pseudomonad in LIFT(K), a wreath is equivalently a pseudomonad in TRANS(K). We
will unveil the definition of a pseudomonad in TRANS(K); this will be what we call an
elementary description of a wreath in K.

To give a wreath in K is to give the following data from TRANS(K):
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1. An object (Z°,T). This amounts to specifying the monad around which the wreath
acts.

2. A 1-cell (a transition)
(%7 T) (H,x:X0,X1) (%—7 7-1)7

ie., a 2-cell

x:TH= HT
in K, and 3-cells

=" ryg
%Xo

X
HnT

HT

and

TTH —2— THT =2 g1
wTH % X1 HuT

TH HT

X

satisfying the transition coherence conditions. The choice of a transition specifies,
among other data, the 1-cell H : 2~ — 2. Thus in our case we have a wreath of H
around 7. Observe that the data xo and y; play the role of the transition axioms
from the ordinary case.

3. Transition morphisms

(1,1,1,1)
T
('%7T) ll (0701) (%,T)
~_ A

(H,x,x0,x1)

and

(H7X7X07X1)'(H7X7X0:X1)

~ T
(‘%'7T) U(V7V1) (%7T)7
~_ A

(H7X7X0 7X1)

i.e., 2-cells

oc:1=HT, v:HH = HT
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in K together with 3-cells

T i THT
xT

1 % o HTT
HuT

ol HuT

and
THH i THT
xH xT
HTH 2% HTT
Hy HuT

HHT —— HTT ——— HT
vT HuT

satisfying the transition morphism coherence conditions. Observe that ¢ and v are
precisely the 2-cells ¢ and v from the ordinary setting, where o and v were subject
to equations o1 and vy.

4. Isomorphism 3-cells

(H7 »X0> 1)
(‘%7T) % (‘%.7T) (H’X7X07X1)
M(VJ Vl) (H,x,X05X1) (LLLD) /\
t: —(0,01) = | (Z,7) lid (2,7 [,
(H,x:Xx05x1) ~_____
(%’ T) (H1X7X07X1)
(1,1,1,1)
U (Ua Ul)
2T (H,x,x0,X1) Q;’T
(H,x,x0,X1) ( ) ) E— ( ) )
/_\ M V7 U
s: (%7 T) U, Zd (%,T) 3 ( 1) (H7X7X07X1) ’
~__ (H,x,Xx0,x1)
(H7X,X0,X1) ((%;: T)
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and

(H,x)

(Z,T) (2°,T)
(2, 17) I 2y Y (9 Ty
/ (y7 Vl)
m: (Hx) | =
(2,T)
(H,x)
i.e., transition 2-cells
H —2 o grH —2X . ggr HHT <22 [
vt vT vT RS
- HTT HTT .
HuT HuT
HT, HT,
and
HHH Hy HHT
vT
vH %m HTT
HuT

HTH —— HHT ———> HTT LN

subject to the transition 2-cell coherence conditions. These cells correspond to the
wreath monad equations from the ordinary setting.

These data are subject to the pseudomonad equations (recall Definition 8.1.2):
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1. The unit coherence condition: the diagram

HH =22 gyrH 22X 0 HHHT

HoH

HH

vI'H

HI'TH ——— HTH ——— HHT —— HTT
HuTH Hx vT

is equal to the diagram

HvT

HHTT

HHuT

Hp

:T>HT

HH
HoH
T
HHTH 22 gHHT HyT HHTT ™% HHT
VT'T I/II/MT_I VT
-1 HTuT
VIH|| % Uy vHT zmT HTTT == HTT
HuTT
T
HTTH 22X grur 2% gurr 22 grrr 22X grre HmT e
N\ HpT
HuTH v Hy, HHuT v vyr HTW" ¢ HmT
HTH HHT —— HTT HT.
Hx vT Hu™
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2. The associativity coherence condition: the diagram
HHHH i HHHT =22~ HHTT =L HTTT
vHH v v, ! vHT
HTHH e HTHT % mT HuTT
HxH HxT
VI'T Hu™T
HHTH v Hu, HHTT ———— HTTT ——— HTT
HTuT 1
HHy HH T % VT \Z/ Hm™™ HuT
" \ N / /
HTHT HTTT :> HTT
HxT HTT
HHTT HTTT

vI'T
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is equal to the diagram

HHHH 22 gHHT AT HHTT Z% HTTT HTT
VHH HvH \ V,r HTpt v HmT ™
HTHH HHTH HHT =L HTT
o \ %V /
HHT HTTH%/ yx_lHHHT AL guTT L HTTT HyuT
v Hm” Hit
HLTT
HTHT
HuTH
HHY HTTH 22 571 ¢ i HHTT 25 grrr 8 grr 25 g
HHuT HTLT Hy?
1727%, UH mT HuT
% v, Y Hyy HHT =2~ HTT  ~Hm?  HTT
-1
(i BRC T H'T
HHHT — HTHT 5= HHTT = HTTT

Remark 11.5.1. Let us comment on the nature of the above coherence conditions. For
example, the first diagram of the associativity coherence conditions for a pseudomonad
(T, n, i, s,t,m) is the diagram

TTT —2s 77

/ \W\

TrrT Wpr, ™ TT —t—=T.
TrT — T

Due to the lack of honest associativity of composition in TRANS(K), we need to decom-
pose the above diagram into 3 parts.
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1. The first (“upper”) part is

TTT —2 s 7T

TTp I
T Um
TTTT TT == T.
2. The second (“middle”) part is
TTT
TTu uT
TTTT Wpr, ™ T —t=T.
pTT T
TTT
3. The third (“lower”) part is
TTTT T —£t=T.

N A

Trr — T

These three parts correspond to the following diagrams, respectively:

1. The upper part:

HHHH L HHHT =22~ HHTT =L HTTT
vHT
HTHT % mT HuT'T
HxT

HHTT =27 grrr =27 gt

HuT

HT.
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2. The middle part:

HHHH L HHHT
vHH v v, ! vHT
HTHH L HTHT
HxH HxT
HHTH % Hu, HHTT
HHx HHUT

HHHT =T g =2 g —* . grp =2 gr.

3. The lower part:

HHHH 22 grag 24 porg 2% gpar 22X g 25 HTTT

vHT

HTHT vz mT HuTT

HxT

T T
HHTT == HTTT e L ogrr 22 g

Then one uses the associators

T
HHTT =L g1 =228 grr
HTu™ 1
HHu™ 7275 v Hm"” HuT

T
HHT —Y o g7 2 g1
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for the above three diagrams (parts) to be composed. Whence comes the resulting diagram

HHHH

vHH

HTHH

HxH

HHTH

HHyx

HHy HHHT =22 g 2L OTTT
v v, ! vHT
HTy HTHT v mT Hu™T
HxT
% Hun HHTT =T g7 =T g1r
HTuT 1
HHuT % v, v HmT™ HuT

HHHT =22— HHTT :> HHT =—“— HTT :> HT.

vHT

HTHT

HxT

HHTT

e g AL

HTTT :> HTT

HuTT

HTTT

vIT'T

The rest of the diagrams is generated by a similar process.

Remark 11.5.2. The approach we used in this chapter to obtain an elementary descrip-
tion of wreaths can be used to obtain descriptions of other interesting structures. For ex-
ample, one could define a KZ-wreath to be a KZ-pseudomonad in TRANS(K); or we could
consider subtricategories of LIFT(K) and TRANS(K) spanned by KZ-pseudomonads, and
try to obtain simplified descriptions of wreaths around KZ-pseudomonads, or KZ-wreaths
around KZ-pseudomonads. We leave these investigations for future work.
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