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Abstract and Contributions

The  rainfall-runof model  is  a  theoretical  physical  model  based  on  principles  of  water 
movement in a watershed. This thesis  focuses on the conceptual rainfall-runof SAC-SMA  
model which can estimate various aspects of modelled basins. The most common use of the 
model  is  to  assess  parameters  that  are  not  readily  measured  or  to  predict  the  future 
behaviour  of  the  modelled  basin.  The  model  should  be  well  calibrated  to  return  useful 
information. The model calibration is performed using dozens of parameters and their correct 
setting is a complex issue even for experienced hydrologists.

Therefore, it is necessary to use optimisation techniques which are able to fnd an appropriate 
setting of model parameters very fast. We aim to use the genetic algorithm (GA) which is one 
of the global search algorithms that use the heuristic procedures. The goal is to calibrate the 
model so that it returns the most accurate results.

Even though many optimisation methods already exist, there are still cases of calibrations 
where the current optimisation techniques fail. Moreover, some parameters are in correlation 
that is diferent for each modelled basin and period. Typically, these are parameters which 
describe continuous natural processes that are defned by discrete values. The continuous 
process  is  then  specifed  by  several  coordinates  that  are  deformed  by  the  optimisation.
The  result  is  an  inapplicable  calibration.  The  random  number  generator  (RNG)  plays 
a signifcant  role  in  this  since  it  estimates  values  of  optimised parameters.  However,  the 
software RNG just generates pseudo-random numbers (PRNG) which means that sequences 
of “random” numbers might begin to repeat. The goal of the thesis is to analyse and design  
a solution for the problems described above.

The SAC-SMA model  defnes  two hydrological  phenomena that  can be specifed by con-
tinuous functions instead of  the discrete values.  The continuous function is  expressed by 
parameters whose optimisation does not disturb the continuous course. Hydrological data are 
an appropriate source of real random numbers which can be a base for the PRNG. The new 
concept  of  the  RNG based  on  hydrological  data  (HRNG)  has  been  developed  for  the 
optimisation of the SAC-SMA model.

The results  indicate that parameters defned by the continuous function provide a better 
solution since the GA preserves a mutual relationship between the correlated parameters.
The optimisation using the HRNG brings a signifcant improvement of the model calibration.
The most signifcant contribution of the HRNG is acceleration of the optimisation and that 
the HRNG is able to fnd better solutions in comparison with the PRNG. Moreover, the 
HRNG reduces mutual dependence of the optimisation quality and GA parameter setting.

The achieved results contribute to efcient calibration of the rainfall-runof models. Hydro-
logical data can be used as a source of random numbers to improve the optimisation process. 
The newly designed methods and principles will be able to be applied to other optimisation 
problems which are  a subject  for  further research.  Furthermore,  the distribution function
of the HRNG can infuence the optimisation direction and thereby optimisation speed so that  
the additional research will be focused on the distribution function of the RNG and its efect  
on optimisation quality.
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Anotace

Srážko-odtokové modely jsou teoretické modely založené na fyzikálních principech pohybu vody. 
V této práci se zabýváme konceptuálním srážko-odtokovým modelem Sacramento Soil Moisture 
Accounting Model (SAC-SMA), pomocí kterého je možné, sledovat a odhadovat různé aspekty 
povodí. Model je také schopný odhadovat rozličné fyzikální veličiny, jejichž měření je fnančně
či  časově  náročné  a v některých  případech  dokonce  nemožné.  Aby  byl  model  schopen  vracet 
užitečné informace,  musí  být  model  správně kalibrován.  Kalibrace  modelu  se  provádí  pomocí
až desítek parametrů a jejich správné nastavení je velmi složitá úloha i pro zkušeného hydrologa.

Z těchto důvodů je nutné použít optimalizační techniky, které jsou schopné velmi rychle najít 
správnou  konfguraci  modelových  parametrů.  Největší  zastoupení  mají  globální  vyhledávací 
algoritmy, které využívají heuristické postupy. V této práci se zaměřujeme na genetické algoritmy 
(GA), které se ukázaly jako vhodný nástroj pro automatickou kalibraci srážko-odtokových modelů. 
Cílem je tedy nakalibrovat model tak, aby vracel co nejpřesnější výsledky.

Ačkoliv bylo vyvinuto několik optimalizačních postupů, stále se objevují případy kalibrací, kde 
současné optimalizační techniky selhávají. Analýzou bylo zjištěno, že některé parametry modelu 
jsou ve vzájemné korelaci, která je ovšem jiná pro každé modelované povodí a dokonce i období. 
Typicky jde o parametry, které popisují spojité přírodní procesy, které jsou defnovány pomocí 
diskrétních  hodnot.  Spojitá  vlastnost  je  pak  popsána  pomocí  několika  bodů,  které  ale 
optimalizační techniky deformují. Výsledkem je pak nereálná kalibrace modelu. Klíčovou roli také 
hraje generátor náhodných čísel, který odhaduje hodnoty optimalizovaných parametrů. Softwarové 
generátory  ale  pouze  generují  pseudo-náhodná  čísla  (PRNG),  která  se  důsledkem  konečného 
prostoru paměti počítače a sekvence generovaných čísel mohou začít opakovat. Cílem práce je tedy 
analyzovat a navrhnout řešení pro výše uvedené problémy.

SAC-SMA model zde defnuje dva hydrologické procesy, které lze popsat spojitou funkcí, místo 
množiny diskrétních hodnot. Spojitá funkce je defnována parametry, jejíchž optimalizace nenaruší 
spojitý  průběh  funkce.  Hydrologická  data  jsou  dobrým zdrojem  skutečných  náhodných  čísel.
Data mohou pomoci při optimalizaci tím, že budou podkladem pro PRNG. Pomocí těchto dat byl 
vyvinut  nový  generátor  náhodných  čísel,  který  je  založený  na  principu  hydrologických  dat 
(HRNG).

Výsledky naznačují,  že pokud jsou parametry defnovány pomocí spojité funkce, optimalizační 
algoritmus  udržuje  vzájemný  vztah  mezi  korelovanými  parametry  a výsledky  kalibrace  jsou 
použitelné v praxi. Optimalizace přináší výrazné zlepšení při použití HRNG. Velmi významným 
příspěvkem HRNG je zrychlení optimalizace a to, že HRNG je schopné najít lepší řešení. Navíc při 
použití HRNG se snižuje závislost kvality optimalizace na nastavení parametrů GA.

Dosažené výsledky přispěly  k efektivní  kalibraci  srážko-odtokových modelů.  Hydrologická data
je možné použít jako zdroj náhodných čísel a tím zlepšit optimalizační proces. Nyní zde navržený 
postup  je  možné  aplikovat  i  na  jiné  optimalizační  problémy,  což  bude  předmětem  dalšího 
výzkumu.  Navíc  se  ukázalo,  že  distribuční  funkce  HRNG  může  ovlivňovat  směr  a rychlost 
optimalizačního  procesu,  takže  dalším  předmětem  výzkumu  bude  vliv  distribuční  funkce 
náhodného generátoru na kvalitu optimalizace.
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Preface

Motto:

Water prerequisite for live
In tourism trio: sun – water – air

In global climate program: energy – water – food

 

Modelling of rainfall-runof models: parameter optimisation and 
ascertainment of evapotranspiration

The actual aim of the rainfall-runof modelling is to use the right tools for the  
evaluation of various changes of water regime. In this context, the desired missing 
information concerning the vegetation cover is compensated by optimal monthly 
values  of  expected  evapotranspiration.  The  intention  is  to  decrease  the 
uncertainties  in  the  water  regime  that  were  caused  by  diferent  oscillations.
It  requires  the  evaluation  of  the  appearing  natural  fuctuations  and  also  the 
seemingly  abrupt  random changes  in  the  basin.  This  sequential  variability  of 
water regime is usually infuenced by changes of vegetation cover (not only in the 
annual cycle), see Appendix B.

The long time series  of  precipitation and air  temperature have  been  used  for 
modelling the rainfall-runof process and mainly for the precise assessment of the 
evapotranspiration demand,  in  our case  for  the Czech Labe River  catchment.
The occasional fuctuations and random changes of vegetation cover are to be 
followed  as  an  indication  of  oscillations  in  the  development  of  evaporation.
The intention  is  to  appraise  such complicated time series  as  a relatively  long 
process.

The  modifed  version  of  the  conceptual  SAC-SMA  model  enables  a prompt 
simulation that creates the conditions for automatic calibration of this rainfall-
runof model.  The  prompt  simulation  is  applicable  primarily  to  partial  time  
intervals  with  diverse  expected  evapotranspiration.  So,  the  resulting  evapo-
transpiration is represented by the model outputs; such values could be hardly 
measured or computed.

The SAC-SMA model calibration is a complex issue. However, a well-calibrated 
model provides the best model output, such as ascertained evapotranspiration. 
The  optimisation  techniques  can  make  the  calibration  process  easier  since  it 
speeds up the whole process of rainfall-runof modelling.
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1  

Introduction

Conceptual rainfall-runof models are standard tools that can be used to predict 
the outfow or other hydrological characteristics in interest basins. A number of 
conceptual rainfall-runof models has been developed over the last few decades.  
These  models  have  a simpler  structure  than  their  physically  based  spatially 
distributed  alternatives  and  generally  have  fewer  input  data,  Wagener  et  
al. (2004). The models need to be correctly confgured by model parameters – this 
process is called the model calibration. One primary modelling task is validation 
of the model calibration which verifes that the model is able to return realistic 
results. It logically follows that useful hydrological information can be collected 
only  if  the  model  is  calibrated  in  the  most  suitable  way.  Dozens  of  model 
parameters calibrate the rainfall-runof models. However, combinations of model  
parameter values increase with the number of model parameters. Moreover, the 
vast majority of the model parameters are in the feld of real numbers; therefore, 
the search space is infnite. The best way to calibrate the rainfall-runof models is 
by  using  the  global  optimisation  techniques  that  can  fnd  optimal  model 
calibration, Gandomi et al.  (2015). Successfully calibrated rainfall-runof model  
provides practical and proftable information for a lot of sectors. Unfortunately, 
the optimisation techniques are not omnipotent and there is still no way how to 
efciently  calibrate  the  model  parameters  automatically  by  optimisation 
techniques.  Furthermore, there are several instances of hydrological  simulations 
where the optimisation of  the model  calibrations  fails  in  defance  of  the  high 
quality of the model validation, Buchtele et al. (2009).

This  dissertation  focuses  on  the  optimisation  of  the  rainfall-runof model  and  
simulation cases where the current optimisation techniques fail and do not provide 
satisfactory results. Long time series with a lot of important hydrological events 
(e.g. foods, vegetation and agricultural changes, insect’ss disasters, etc.) that are 
not stable across the whole series bring the most signifcant problem during the 
model calibration. Observed catchments of this study are Malá Ráztoka, Liz, and 
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the  Elbe  River  located  in  the  Czech  Republic.  Ráztoka  and  Liz  are  small 
experimental basins (approx. 2 km2) with many hydrological events that afect the 
model calibration because the events are monitored in the small area. In contrast, 
the Elbe River is a vast watershed with a hundred-year time series. A hydrological 
modeller must perform several model calibrations in order to achieve the required 
results. Additionally, the manual model calibration is a lengthy process and the 
quality  is  dependent  on  the  experience  and  intuition  of  the  modeller.
The optimisation of the rainfall-runof models is still a current topic according to 
Vrugt et al.  (2006), Wang et al.  (2010). Global search algorithms searching the 
infnite search space can provide the best results if applied to the rainfall-runof 
calibration, Gandomi et al.  (2015). The  genetic algorithms (GAs) are the most 
common group of optimisation algorithms for rainfall-runof models and are based 
on the principles of evolution, Holland (1992).

Further, this thesis describes the concept of a newly designed generator of random 
numbers  which  is  key  for  optimisation  algorithms,  Storn  and  Price  (1997). 
Randomness  and  independence  of  the  random  number  generators  (RNG) 
signifcantly afect quality and speed of the optimisation, Tigkas et al.  (2016), 
Abdulla et al. (1999). Therefore, the structure of the RNGs is one objective of this 
proposition. Rainfall-runof models specify the properties of modelled basins using 
discrete  values  which  mirror  certain  natural  phenomena  that  are,  of  course, 
continuous. However, the optimisation of the discrete defnition does not take into 
account the continuity of optimised parameters, so results of these optimisations 
may be  inapplicable.  Lastly,  we  introduce  an  approach  which  defnes  discrete 
model parameters by applying continuous functions.

1.1 Problem Statement and Research Objectives

The  model  calibration  of  the  rainfall-runof models  is  a  complicated  process.
It comprises many pieces of knowledge, like hydrology, statistics and combinator-
ics, optimisation, data mining, and computer science in general. The hydrological 
modeller must master mentioned science felds with diferent levels of knowledge. 
The  calibration  process  can  never  be  wholly  automated  since  the  modeller’ss 
experience and sense of modelling are always needed. Therefore, we categorise the 
problem  statement  into  several  separate  issues.  The  frst  class  is  the  model 
calibration itself.   The manual calibration is a lengthy process,  and the GA is 
a powerful  tool  to  improve  quality  of  the  model  calibration.  However,  the 
optimisation also has its own pitfalls which are another category of the problem 
statement. Finally, the model validation verifes the result of the model calibration 
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obtained  from  the  optimisation  process.  Nonetheless,  there  are  several  cases
of  rainfall-run  simulation  whose  model  validations  show a high  level  of  model 
verifcation but parameter values of the verifed model calibration are unusable for 
real application. The model validation issue is the last category of the problem 
statement.

Each category of the problem statement brings specifc problems which we strive 
to avoid because they prevent a successful model calibration.

1.1.1 Model Calibration

Specifc rainfall-runof processes and their mutual interactions are observed in each 
basin and they are objectives of  the rainfall-runof modelling. The goal of the  
rainfall-runof models  is  to  understand the  interactions  between the  processes.  
There  are  many  rainfall-runof models  with  diferent  structures  and  concepts.
We focus on the Sacramento Soil Moisture Accounting Model (SAC-SMA) which 
is a conceptual water balance physical model based on the physical principles of 
water movement in a watershed. The SAC-SMA model provides excellent results 
for long time series. However, there is still room to improve the model calibration 
quality.

The model input is a time series of  precipitation and air  temperature which are 
transformed  into  actual  simulated  runof.  The  model  is  confgured  via 
approx. 30 parameters  whose  values  afect  the  simulated  runof.  The  model 
calibration intends to approximate the simulated and observed runof as close as  
possible.  The SAC-SMA parameter  values also  produce information about  the 
character  of  the  modelled  basin;  e.g.  groundwater  capacity,  water  infltration, 
water consumption of the vegetation, etc. Therefore, the more accurate the model 
calibration,  the  more  precise  the  information  about  the  observed  basin, 
Burnash (1995).  The  SAC-SMA model  has  been  designed  for  use  in  a warm 
climate. The studied watersheds of this thesis are located in a mild climate where 
meteorological  conditions  delay  precipitations and thereby afect  the  simulated 
runof.  Hence,  a snow  model  must  be  connected  to  the  SAC-SMA  model.
The  snow  model  simulates  the  accumulation  and  melting  of  snow  cover  and 
transforms  precipitations into the snow cover and the snow cover into  emulated 
precipitation,  Anderson  (2006).  In  short,  the  snow  model  infuences  total 
precipitations falling to a basin area. Finally, the last supporting model is a unit 
hydrograph  describing  a hypothetical  response  of  a catchment  caused  by  jag-
gedness  of  the  watershed  terrain  (e.g.  mountains,  retention  tanks,  etc.)  which 
delay precipitation and thereby delay the simulated runof. Each supporting model 
brings other parameters to the model calibration.
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So,  there  are  dozens  of  model  parameters,  and  estimation  of  their  values  is 
a complicated issue.  Moreover,  certain parameters  are in correlation and afect 
each other. The whole problem is hindered by the fact that the correlation is dif-
ferent  for  each  modelled  watershed  and even  modelled  period,  Abdulla et  al.  
(1999). The modeller must have a good knowledge of the SAC-SMA model and 
the modelled basin. The quality of input data can also infuence the success of the 
model calibration since the input data are usually loaded with noise; especially for 
a long time series which are the focus of this study. We focus on the long time 
series  in  the  range  of  50-100 years.  Unfortunately,  there  is  a high  probability
of  data noise brought about by certain factors,  e.g.  exchanging the measuring 
instruments.  Furthermore,  character  and  behaviour  of  the  basin  environment 
change during longer periods of time; especially the water consumption of the 
vegetation cover, Hejzlar et al. (2003).

It is sometimes assumed that 5-10 years time period is sufcient for an accurate 
simulation because there are signifcant hydrological events contained, e.g. foods 
and low-fow periods caused by dry seasons. At the same time, it is expected that 
the  time  period  has  not  been  artifcially  changed,  e.g.  deforestation,  water 
buildings, dams, retention tanks, etc. Further, changes of vegetation cover play 
a serious role in water consumption since it brings about an alteration of evapo-
transpiration  demand,  so  there  is  a change  of  water  regime.  This  is  another 
instance  of  long  time  series  simulations  which  need  to  use  the  optimisation 
techniques  since  it  is  more  complicated  to  calibrate  the  model  manually.
Moreover, the modeller has to analyse this long period to do a successful manual 
calibration, and therefore the optimisation fundamentally simplifes the estimation 
of model parameters. An example is the Elbe River catchment which was observed 
for a period of approx. 100 years. Specifcally, high water consumption required for 
flling  the  new  water  reservoirs  and  dams  in  1955-1970 has  caused  a loss
in observed runof although the model does not react to this situation, Buchtele  
and  Košková  (2008).  Therefore,  it  is  necessary  to  perform  many  auxiliary 
simulations and calibrations to obtain the best information about the monitored 
watershed. The quality model output is for example useful for assessment of water 
storage variability. Thus, the optimisation approach can accelerate this calibration 
problem.

It is clear from the above that the model calibration is necessary to be performed 
for each catchment for the modelled period. The same must be done if the source 
of the input data is changed since the model calibration and input data are closely 
interlinked.  The  modeller  must  accomplish  several  manual  calibrations  during 
which the model parameters are tuned to make the output match the modelled 
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reality. In some cases, the manual calibration is often limited to trial and error 
method even for advanced modellers. This also applies to the model calibration
of the same basin but for various time periods, Buchtele and Tesar (2013).

It is evident that manual calibration is a very time-consuming process with many 
hitches.  The optimisation techniques are  used for  successful  model  calibration,
and they can speed up the calibration process signifcantly.

1.1.2 Genetic Algorithm and Random Number Generator

The  genetic algorithm (GA) is a heuristic process which attempts to apply the 
principles of evolutionary biology to fnd solutions to complex problems for which 
there  is  no  appropriate  exact  algorithm.  The  GAs  use  techniques  imitating
the evolutionary processes known from biology (e.g. inheritance, mutation, natural 
selection, and crossing). The modeller defnes the GA parameters which afect the 
optimisation course and the success rate. The population size and generation limit 
are parameters infuencing the computation time. The mutation, selection, and 
crossing rate impact the optimisation quality so the modeller should be informed 
about the parameter relevance, Holland (1992).

The random number generator (RNG) is a tool which generates series of random 
numbers.  The  most  important  applications  of  the  RNGs  are  in  the  felds
of  computer  simulation  and  modelling.  Bastos-Filho et  al.  (2010)  prove  that 
quality of the RNGs is critical for the optimisation quality. Another facet of the 
optimisation success is the distribution function of the RNG and the range for 
each optimised parameter which specifes in which interval these values of  the 
model  parameters  are  estimated.  The range  setting  is  crucial  for  optimisation 
quality,  and this issue is  introduced in  Section 1.1.3.  However,  the distribution
of generated numbers afects the method of how the GA explores the search space 
since  generated  numbers  have  diferent  probabilities  that  will  be  generated.
Thus, the GA with appropriate settings of the parameter ranges may scout the 
search space in the right direction.

Software RNGs are generators of pseudo-random numbers (PRNG) with certain 
limitations. One of the limitations is periodicity caused by the fnal memory of 
computers. The result of the periodicity is that the generated numbers eventually 
begin to repeat as soon as more numbers are needed. It follows that the number
of the SAC-SMA parameters increases the probability of the periodicity since the 
optimisation requires hundreds of thousands of random numbers. Therefore, we 
will investigate a hypothesis whether hydrological data (precipitation, temperature, 
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runof, etc.) which are an excellent source of random numbers can be used to 
improve the PRNG.

1.1.3 Optimisation of Model Calibration

The optimisation of the rainfall-runof models is the NP-complete problem whose 
solution is searched in a search space of real numbers that is infnite. It follows 
that we cannot fnd the optimal solution – the best model calibration. We can 
only approach the optimum solution. A large number of model parameters makes 
the optimisation problem more difcult; moreover, the supporting models (snow 
and unit hydrograph) increase the number of optimised parameter. All parameters 
are real numbers with diferent orders of magnitude of model parameter values 
which extends the scope of the search space.

Another barrier to a successful optimisation is the correlation between the model 
parameters, as we mentioned in previous subsection 1.1.1. The correlation is am-
biguous, and there is no way how to fnd and determine which parameters are in 
the correlation, Abdulla et al. (1999). The GA uses a so-called chromosome that 
keeps information about estimated model parameters. However, the GA optimises 
each chromosome item one by one, so the GA cannot take the correlation between 
individual  items  of  the  chromosome  into  account.  Moreover,  the  correlation 
between  model  parameters  is  diverse  for  each  basin  and  modelled  period; 
therefore, implementation of the GA would have to be diferent for each simulation 
instance which is unusable in practice. One of the issues that emerge from these 
fndings  is  determining  the  direction  of  the  optimisation  according  to  the 
parameter  correlation  would  require  a great  deal  of  efort  to  implement. 
Consequently, it is necessary to seek a broader part of the search space which can 
easily  cause that  the GA gets  lost  in  the search space  or  gets  stuck in  local 
minima. This means that there are instances of the model calibrations which were 
optimised by current optimisation techniques that can be easily improved by the 
manual calibration. Hence, these techniques do not contribute to efcient model 
calibration.

Another important fact is that the modeller must defne ranges for each optimised 
parameter since the search space is infnite and it is necessary to exclude parts of 
the search space where the optimal solution is probably not present. The inputs
of the GA are the ranges for each optimised parameter value which guide the GA 
to what extent to explore the search space. The GA user can restrict an area of 
the search space which the GA explores and where it fnds the optimal calibration. 
Due to this, the GA user might steer the optimisation way in the right direction 
but he/she can also restrict the search space, so the optimal model calibration
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is  outside  this  border,  and thus make it  impossible  to  fnd the best  solution.
One solution  to  this  problem is  to  use  wide  intervals  for  values  of  estimated 
parameters, but there is a high probability that the GA will not scan the entire 
designated area of the search space. Moreover, the longer the algorithm is looking 
for the optimal solution, the higher the probability of the GA degeneration which 
devalues found solutions, Holland (1992).

At frst  glance,  it  is  not clear  that  the modeller’ss  knowledge of  the computer 
sciences plays an important role in the quality of the optimisation. That is because 
the  right  confguration  of  the  GA parameters  afects  the  optimisation  quality 
directly. Most modellers are primarily hydrologists with basic computer skills, but 
detailed knowledge of  the GA architecture requires more advanced profciency. 
Users of the GA must have experience and should become acquainted with the GA 
parameters,  their  values  and relevance.  The GA can be confgured  by several 
parameters which signifcantly infuence the performance and optimisation results; 
typically, parameters determine the computation time and optimisation direction. 
The smaller the number of GA parameters which the user must confgure, the 
lesser the tendency to the GA degeneration, Holland (1992). Current solutions do 
not allow the number of the GA parameters which the user can confgure to de-
crease. Therefore, one of the goals of this thesis is not to add other parameters 
which would burden the modellers. Ideally, reduction of the GA parameters would 
be a step forward.

1.1.4 Model Validation

The model validation verifes the model calibration by comparing the simulated 
and observed discharges using statistical methods. If the diferences between the 
discharges are relatively small, then the model calibration and model output are 
valid. The product of each statistical method is an indicator expressing the degree 
of calibration quality, Anderson and Bates (2001). The basic indicators are the 
Root Mean Square Error (RMSE), Coefcient of Efciency (Nash–Sutclife), and 
Correlation Coefcient (R).

The indicators do not allow the verifcation of the model calibration whether it 
really is applicable despite the best value of the statistical indicators. In practice, 
this means that the optimisation result must be inspected by a hydrologist who 
assesses  the  relevance  of  the  model  calibration.  The  optimisation  process 
determines the solution quality using these indicators, and therefore the GA also 
cannot  evaluate  the  relevance  of  the  model  calibration.  Aspects  assessing  the 
calibration relevance are diferent for each basin and modelled period so there
is no general procedure to implement these aspects into the GA directly, Duan et  
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al. (2006). A user intervention to the optimisation progress is not possible since 
the  GA generates  thousands  of  simulations  and the  user  cannot  inspect  each 
simulation  and  determine  their  quality.  As  a consequence  of  the  calibration 
relevance it is evident that the GA can fnd the best solution (model calibration) 
based on the statistical indicators as validation tools, but values of the model 
calibration are inapplicable for real use. Unusable model calibrations do not refect 
the modelled reality since the model  parameters  show abnormal values;  which 
means  that  it  is  a false  positive  result.  Typically,  these  are  the  parameters
which are in correlation.

The  occurrences  of  false  positive  results  cannot  be  eliminated  completely.
The  modeller  can  only  defne  a range  of  parameter  values  which  limit  the 
abnormal values. Unfortunately, some parameters are in correlation and it is time-
consuming to  specify  which  parameters  might  cause  the  false  positive  results. 
Moreover,  problematic  parameters  are  again diferent  for  each basin  and time 
period. The issue about the range settings is described in the Section 1.1.2.

However,  there is  a group of  model  parameters  whose  correlation is  the same 
across  the  modelled  basins  and  even  time  periods.  Parameters  specifying  the 
evapotranspiration  (ET)  and  unit  hydrograph  (UNIT-HG)  are  defned  as  sets
of discrete values without mutual relations. Nonetheless, ET and UNIT-HG are 
continuous functions but they are defned as sets of discrete coordinates. These 
discrete values are optimised by the GA separately; hence the GA can disrupt the 
shape of these continuous functions since information about the correlation cannot 
generally be implemented into the SAC-SMA model and the GA.
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Figure 1.1: Distortion of curve shapes after optimisation: (a) evapotranspiration, (b) unit 
hydrograph
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Figure  1.1 illustrates  the  shape  distortion  of  ET  and  UNIT-HG  parameters.
The ET shape is expected to look like the Gaussian curve, but the optimised 
shape is approximately Gaussian only on the margins of the curve, as Figure 1.1a 
illustrates. Although, the model validation looks good because RMSE and R have 
satisfying values (see  Table 1.1), the decrease of ET in the 7th month does not 
mirror the modelled reality. This decrease in water consumption is not possible 
since there was not a signifcant change of vegetation cover on Ráztoka watershed 
in 1999. Similar case is the optimisation of the UNIT-HG where a 70 years long 
time series of the Elbe River is modelled.  Figure 1.1b shows a decrease in the 
4th day and a signifcant increase in 13th to 16th day. However, these deviations are 
impossible  in  spite  of  the  model  validation  (see  Table 1.1),  because  such 
a fuctuating course  of  discharge has  not  been found on this  long time series, 
Buchtele and Košková (2008).

Table 1.1: Model validation of false positive results

Indicator ET UNIT-HG

RMSE 0.0230 23.733
Nash-Sutclife 0.8179 0.7320
Correlation Coefcient 0.9111 0.8560

The examples described above are typical cases of the correlation between model 
parameters and their  unsuccessful  optimisation. Therefore,  another aim of  this 
dissertation is to adapt the SAC-SMA model so that the optimisation will take the 
parameter correlation into account.
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1.2 Hypotheses of the Thesis

We have summarised two objectives based on related works from felds of hydrol-
ogy and informatics.

The SAC-SMA model defnes continuous properties of a watershed using discrete 
parameters which are independent of each other from the point of view of the 
optimisation. However, the parameters are dependent on each other from the point 
of view of the model simulation which the GA cannot take into account.

Objective 1: There is a hypothesis that if the continuous property of the rainfall-
runof model is defned using a continuous function instead of discrete parameters, 
then the GA will respect the correlation between these parameters.

The  PRNG  afects  the  quality  of  the  optimisation.  Hydrological  data  could 
provide  the  information  useful  for  generating  the  random  numbers  whose 
randomness could be genuinely independent.

Objective 2: If the statement that hydrological data improve the quality of the 
PRNG is  valid,  then  this  enhanced  PRNG should  make  the  optimisation  of
the model calibration more reliable.

1.3 Motivation

The primary motivation of this work is to design a new concept of optimisation 
framework using the genetic algorithm with a newly constructed random number 
generator working on the principle of hydrological data.

The purpose of this framework is to fnd the best model calibration which refects 
the  reality  of  the  modelled  basin  in  the  best  way.  It  means  that  curves
of simulated and observed discharges are identical to each other. The best model 
calibration and thus model output provide useful information about monitored 
catchment and can estimate model parameters which cannot be measured directly. 
Further,  we expect that if  the hypotheses of  this  thesis  will  be verifed, these 
results should be applied to similar optimisation issues even in other scientifc 
felds.
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1.4 Structure of the Thesis

This thesis is organised as follows:

Chapter 1 introduces this work and the problem statement as well as the goals 
and contributions.

Chapter 2 provides an overview of the state of the art in model calibration, model 
optimisation,  quality  of  input  data,  and  previous  researched  results.  In  this 
chapter, we also describe several existing approaches to model optimisation using 
the global search algorithm.

Chapter 3 introduces  theoretical  background  of  hydrology,  the  rainfall-runof 
model and its modelling. Further, the use of the SAC-SMA model is described 
which is the aim of this thesis. The second part of this chapter is dedicated to the 
genetic algorithm (GA) and the generators of random numbers (RNGs).

Chapters 4 to  6 present  the approaches  and novel  contributions of  the thesis.
More precisely,  Chapter 4 introduces a framework for the SAC-SMA simulation 
and its optimisation using the GA. In  Chapter 5, we describe a newly designed 
random number generator based on hydrological data (HRNG), and its application 
to the GA. Finally,  Chapter 6 is dedicated to the design and application of the 
continuous functions for optimisation of discrete model parameters.

Chapter 7 introduces  basic  information  about  study  areas.  We  summarise  the 
following basins: Mala Ráztoka, Liz, and the Elbe River. All monitored watersheds 
are located in the Czech Republic.

Chapter 8 summarises main optimisation results obtained from the newly designed 
optimisation framework which uses the GA with the HRNG.

Chapter 9 concludes the thesis and the possibilities of further future work.
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2  

State of the Art

A considerable amount of literature has been published regarding the usage and 
development of the rainfall-runof model. These studies are focused mainly on the 
model calibration and its optimisation.  However, a disadvantage of these studies 
is the fact that objectives are only observed and pursued on certain catchments. 
Therefore, the results are not often generally applicable since used methods have 
been adjusted to the particular basin and environment, even though these results 
still  have been a valuable step forward. In this chapter,  we summarise related 
works concerning calibration, optimisation of hydrological models and facts which 
prevent the application of these results in the dissertation objectives.

Section  2.1 discusses  the  research  regarding  a general  model  calibration which
is the core of our efort.  Section  2.2 is the most extensive part of this chapter 
because the optimisation is a signifcant part of this thesis. The most used global 
search  algorithms  for  rainfall-runof optimisation  and  diverse  catchments  are  
summarised there. The next  chapters 2.3 and  2.4 analyse aspects that directly 
infuence the model calibration. The frst is quality of calibration data, especially 
for long time series. The second aspect is the uncertainty of model parameters 
which can change their values over time. The sections sometimes overlap since 
model  calibration,  optimisation,  and  data  quality  are  very  closely  related.
In the last chapter 2.5 we discuss which methods and algorithms can be applied
to our case study and why we cannot directly use the current state of the art.

2.1 Model Calibration

Numerous studies have attempted to explain and demonstrate how to efciently 
calibrate  rainfall-runof models  and  present  general  instructions  to  make  the  
models useful.
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STATSGO Soils Database

A recent study by Oudin et al. (2008) focuses on the fact that similar watersheds 
can quickly and efciently estimate model parameters which represent behaviour 
of an observed/monitored catchment in the vicinity of the modelled basin.

The frst step is to create a combination of model parameters from neighbouring 
river basins. The parameters are derived and based on their physical similarity 
and spatial proximity. The physical aspect provides better results compared to 
simple averaging of estimated parameters. However, this method is advantageous 
only in certain cases. There is still room for improvement of this regionalisation 
approach which is intuitively attractive. The success of this method depends on 
the density of the basin network.

In our case, this approach is inapplicable since the Czech basin network is not 
homogeneous and combining parameters from neighbouring catchments is not reli-
able;  moreover,  there  are  no  data  available  for  certain  basins.  Anderson et  
al. (2006)  use  a similar  approach  which  estimates  model  parameters  based  on 
STATSGO soils database. Initial parameter values, obtained from the database, 
avoid data quality problems of rainfall–discharge, Koren et al. (2003).

The STATSGO approach provides quality results even for manual calibration for 
large  catchments  (100–200 km2).  Quality  data  for  the  Czech  basins  are  not 
available as we only observe small catchments; therefore, this method is not appli-
cable to our case.

Distribution functions describing basin changes

The aim of our study is calibration of long time series, where the model param-
eters  had  been  changed  across  longer  periods  of  time.  Therefore,  the  model 
calibration is difcult. A similar issue has been resolved by Hartmann et al. (2012) 
since  near-surface  dissolution  of  carbonate  rock  afects  a spatial  and  time 
variability of groundwater recharge in karst systems. A reliable calibrated model 
represents the dominating recharge process between each zone of the calibrated 
model. The changes in the karst systems are similar to changes in the majority
of other basins but occur in diferent time periods. The changes are taking place 
within a few months. Meanwhile, in the typical catchment, the changes are taking 
place during several decades.

The authors developed simple distribution functions which represent the changes 
in the system. The functions determine total basefow of the calibrated system. 
The  Shufed  Complex  Evolution  Metropolis  algorithm  (SCEM)  developed  by 
Vrugt et al. (2003) was selected to identify parameter values. The results indicate 
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that  this  approach  is  able  to realistically  calibrate the model  but  only  if  the 
quality  information  about  the  calibrated  system  is  included  into  the  model.
It is not possible to prepare and verify the quality information for our case study 
since the series information from 100 years ago is not available because the certain 
measuring instruments were not available back then. 

2.2 Optimisation

In this chapter, we summarise the related works aimed at the optimisation focused 
on global search algorithms which provide the best results, Gandomi et al. (2015). 
Some  of  the  past  researches  that  deal  with  the  optimisation  problem  of  the 
rainfall-runof models by search algorithms have been focussed on various multi-
step procedures which calibrate the model parameters sequentially in a precisely 
defned sequence, Westerberg et al. (2011), Moriasi et al. (2007).

ADM model

Although Franchini et al. (1998) can be understood as outdated, we think that it 
is benefcial to introduce his conclusions. This study compares three global search 
algorithms that are applied to the ADM model, which is similar to many other 
rainfall-runof models.  Therefore,  these  results  can  be  relatively  generalised,  
Franchini (1996).

The  selected  objective  function  uses  the  sum  of  the  squared  errors  between 
observed and simulated discharges. The described analysis was applied to single 
and complex basins with areas of 822 and 340 km2. For a single basin, performed 
optimisations  were  more  consistent,  i.e.  the  optimal  parameter  settings  were 
always the same in spite of the fact that initial population was diferent. The more 
errors are present in a used dataset, the more unstable the parameter settings are 
and the easier  the algorithm gets  trapped in  local  a minimum. For a complex 
basin, the algorithms always stop with the smallest number of algorithm iterations 
and get stuck in a local minimum which then causes the relatively big value of the 
objective function. The more errors are present in the used dataset,  the more 
amounts of local minima are present.

The  results  can  indicate  that  complex  basins  are  a bit  afected  by  the  local 
minima; however, a modelled basin is only one factor which afects the automatic 
calibration of the rainfall-runof models. Franchini et al. (1998) summarise aspects 
afecting the quality of the fnal model parameters:
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1) a structure and conceptual base of used rainfall-runof model,

2) error rate and information quality of data used for calibration,

3) selection of the objective function, and

4) the defnition of parameter space which ranges of the feasible space and 
is defned with subjective criteria.

In fact, the mentioned aspects are slightly dependent on each other. For instance, 
the aspect no. 4, if a parameter range is not reduced enough, the algorithm can 
get stuck in a local minimum. On the other hand, if  a parameter range is too 
wide,  the  algorithm  may  not  fnd  the  optimum  calibration.  To  decrease 
uncertainty in the identifcation of the optimal model parameters, it is necessary 
to create and tune up a calibration strategy which includes the aspects mentioned 
above. This is a starting point for the optimisation in our case.

Stochastic optimisation methods

Arsenault et al.  (2013) compared ten stochastic optimisation methods. The per-
formance of an optimisation algorithm was compared for each used basin-model 
combination. For each combination, 40 calibration runs with the 10 optimisation 
algorithms  were  used.  The  studied  basin  Saguenay-Lac-St-Jean  is  located 
in Canada, with the area of 45,432 km2 and with mean annual fow of 850 m3/sec. 
Results of these experiments were evaluated using a multi-comparison procedure 
based on Friedman and Kruskal-Wallis tests, Friedman (1937).

This paper investigates several performances of the observed algorithms. The frst 
aspect  of  this  paper  is  that  all  algorithms  are  able  to  fnd  a credible  result.
The second aspect  is  the  complexity  of  the  model.  Model  parameters  can  be 
interdependent,  that is  a generally known problem, which complicates the per-
formance  of  many  optimisation  algorithms.  Next  aspect  is  the  fact  that  the 
selected basins do not afect the performance of the optimisation. This is true if 
the basins are in a similar environment (temperate climate, the presence of snow, 
etc.).

One of the most critical aspects of the optimisation is the convergence speed to 
the optimum as well as its ability to fnd the minimum of the objective function. 
The convergence speed is crucial  in any feld.  The speed is  dependent  on the 
length of simulated periods. The methods used for optimisation are: Adaptive Sim-
ulated  Annealing  (ASA),  Ingber et  al.  (2012);  Covariance  Matrix  Adaptation 
Evolution Strategy (CMAES), Hansen and Ostermeier (2012);  Dynamically Di-
mensioned Search (DDS), Tolson and Shoemaker (2007); Genetic Algorithm (GA), 
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Holland (2007); Pattern Search (PS), Abramson et al. (2004); and Shufed Com-
plex Evolution (SCEUA), Duan et al. (2006).

The results indicate that ASA, CMAES, and DDS are obviously the best methods 
for optimising large parameter space and SCEUA is best used for small space, but 
only  if  the  calibrated  watershed  has  a homogeneous  structure  from  the 
environmental  point  of  view.  The size  and location of  a modelled basin  afect
the algorithm performance very little. On the other hand, the complexity of a used 
model is crucial for optimisation quality and especially if model parameters are 
dependent. Because of all that, the ASA method requires a careful setup of the 
algorithm parameters and the ASE has many parameters.

We had selected six best methods and we evaluated these approaches from the 
point  of  view  of  our  problem instance.  Even  though  our  experiments  do  not 
correspond  with  the  results  mentioned  above,  there  are  several  possible 
explanations  for  this  outcome.  The  frst  explanation  could  be  that  a diferent 
observed basin and period can infuence the optimised model calibration. Another 
fact is the correlation between the calibrated parameters since we use supporting 
models that are increasing the total amount of calibrated parameters. Therefore, 
our aim is focused on the GA.

SCEM-UA algorithm

Vrugt et al.  (2006) use the Shufed Complex Evolution Metropolis (SCEM-UA) 
algorithm.  The  SCEM-UA  algorithm  is  a general  global  search  optimisation 
technique that provides an estimate of parameters as a set of most likely values 
and  its  probability  distribution  within  a single  optimisation  run.  The  method
is most efcient using parallel computing cluster where the set is subsequently 
partitioned  into  a number  of  complexes  and  launched  in  separate  threads.
This method was applied on the Leaf River watershed with the area of 1,950 km2 

and SAC-SMA model. This study optimises only 13 model parameters; however, 
we  need  more  than  20  parameters  since  the  snow  model  must  be  used. 
Furthermore,  commutating  time  despite  parallel  running  is  still  big  for  our 
objectives. This approach returns reliable results for relatively short and thermally 
stable  period.  However,  it  is  not  designed  for  long  periods  of  fuctuating 
temperatures and precipitations.

Efficiency criteria

Krause et  al.  (2005)  research  another  important  part  of  optimisations.
The selection of the optimised criterion is crucial for quality results. The opti-
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misation criteria evaluate simulated and measured streamfow at the catchment’ss 
outlet and determine the quality of model output.

This study describes basic statistical  functions determining diferences between 
observed  and  simulated  discharges  of  the  rainfall-runof model.  It  includes  
correlation functions which Legates (1999) excluded as inappropriate optimisation 
criteria. The main efciency criteria are the following characteristics: coefcient of 
determination,  Nash-Sutclife  efciency  and  Nash-Sutclife  efciency  with  loga-
rithmic values. The observed area and period are 13 km2 and period of 6 months.

Our  observed  basins  and  periods  contain  several  signifcant  foods  and  a dry 
season in which the mentioned efciency criteria react poorly. Extreme fuctu-
ations  during  the  short  seasons  infuence  the  optimisation  run,  and  the 
optimisation algorithm deviates  from the optimal  path.  Therefore,  we need to 
specify the efciency criteria for our objectives.

ARNO model

Many rainfall-runof models and their implementation have been limited because 
of a dearth of calibration and initialisation data in some cases on a large scale, 
Dumenil and Todini (1992). For this reason, Abdulla et al.  (1999) aim for the 
ARNO model or more precisely the soil drainage (basefow) model. This part of 
the model can complement the calibration and initialisation data but only for the 
deep soil. Therefore, the evapotranspiration is not modelled.

Evaluating of the basefow using the ARNO model depends on the initial  soil 
moisture content which must be known at the beginning. This approach completes 
the missing observed initial value of the basefow estimate which is determined 
from the sequence that is known. Several optimisation techniques were used there, 
among these were the Simplex method of Nelder and Mead (1965), the Newton–
Raphson method of  Gupta and Sorooshian (1985),  the pattern search method
of Hooke and Jeeves (1961), and the SCE genetic method of Wang (1991) which is 
the focus of this thesis.

Abdulla et al.  (1999) state that some problems occur due to the existence of 
multiple  optimal  model  calibration,  week  objective  functions  in  the  multi-
parameter  space,  and  a correlation  between  some  of  the  model  parameters.
This approach uses four objective functions: least squares, maximum likelihood, 
pseudo-maximum likelihood, and Bayesian methods. The sum of the squares of the 
diference between the observed and the simulated basefow is used.

For our objectives, the sum of the square poorly responds to fuctuations in long 
time  series.  The  SCE  method  starts  with  a population  which  is  randomly 
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distributed in the solution space. This population is divided into several units 
while each is optimised as the simplex local search optimisation. This procedure 
relies on one important factor – the efect of the seed random number generator. 
This  fact  was  checked  and  verifed  so  the  seed  value  together  with  objective 
function selection and bounds of modelled parameters infuence the optimisation 
quality.  Abdulla et  al.  (1999)  develop  a few  schemes  that  include  a suitable 
combination of the seed value, the bounds of the model parameters, and objective 
function.  Each  scheme was  applied  to  a diferent  time  period  and  the  results 
indicate that the schemas converge to the same values of the objective functions.

The  sensitivity  of  this  approach  is  diferent  for  each  optimisation  technique. 
Therefore,  this  method cannot  generally  be used. Despite  all  the benefts and 
achievements,  Abdulla et  al.  (1999)'s  approaches  do  not  produce  satisfactory 
results for our objective since the resulting calibration was possible to be improved 
after the SCE optimisation.

Prescreened Heuristic Sampling Method

Issues of large dimension optimisation have been researched by Bi et al.  (2015). 
This study analyses large instances of realistic problems which are related to the 
objectives of this thesis.

The frst one is low computational efciency which limits the use of the practical 
problem. The reason behind this is that the global optimal calibration is unlikely 
to be found within usable computing time. One of the solutions is an enhancement 
of computing power, such as distributed computing or parallel processing, Roshani 
and  Filion  (2012).  The  second analysed  problem is  a sophisticated  production
of the initial population of the genetic algorithm (GA) which can provide suitable 
solutions using a variety of analytical techniques.

The  main  achievement  of  Bi et  al.  (2015)  is  the  utilisation  of  engineering 
experience  of  the  modelled  watershed.  This  paper  introduces  a new  heuristic 
sampling method for determining the initial population of the GA that is based on 
engineering  experiences  or  domain  knowledge,  called  the Prescreened Heuristic 
Sampling  Method  (PHSM).  This  method  maps  the  watershed  network  to 
a network  graph  where  the  edge  represents  a pipe,  its  value  determines  the 
basefow  velocity,  and  the  node  of  the  graph  represents  the  groundwater 
confuence. Naturally, the pipe diameters get smaller, the further they are from 
the source. This model, based on the domain knowledge of the given watershed,
is divided into several areas corresponding with the main runof.
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The PHSM uses a three-step procedure:

1) for each area a realistic path of groundwater is  selected based on the 
domain knowledge,

2) it  dynamically  adjusts  the  velocity  threshold  to  take  account  of  the 
reality,

3) the  diversity  of  the  initial  population  is  controlled  by  sampling  from 
distributions using the heuristic procedures in steps 1 and 2.

The  advantage  of  this  approach  is  to  fnd  a better  initial  population  which
is crucial for GA success. The PHSM is independent of optimisation algorithm; 
therefore, it can be used with other optimisation techniques. However, this is not 
the domain knowledge for all catchments, especially small watersheds. Therefore, 
we cannot use the PHSM in our case.

Standardised Regression Equation

An attractive  approach which  studies  the  model  calibration of  the conceptual 
rainfall-runof model using a sensitivity analysis is introduced by Wu et al. (2012). 
These  authors  have  described  the  application  of  the  standardised  regression 
equation with use of a real-value coding in the genetic algorithm. The method 
estimates and optimises model parameters by a multinomial trial process, where 
values of the GA operations (selection, mutation and crossover) are based on the 
sensitivity analysis of the runof estimation. The method optimises 19 parameters 
of the SAC-SMA model during seven rainstorm records in Taiwan watersheds.

Most of the model parameters are sensitive to high basefow no matter which time 
scale and watershed is used. Tang et al.  (2006) analyse this dependency on the 
SAC-SMA model  and  its  evaluation  of  characteristic  basefow,  i.e.  the  runof 
volume, and the peak discharge. This analysis can be distinguished into these two 
types:

1) the regression method based on the linear regression of the model input 
on the output vector using regression coefcient (RC);

2) the  second  method  is  variance-based,  where  an  observed  variance  is 
sorted into components induced by variance-based variables.

Wu et  al.  (2012)  combine  these  two  types  together  so  that  the  greater 
RC coefcient has more signifcant efect on the model output. The positive value 
of RC indicates that the model input is directly connected to the model output 
and  the  sensitive  parameters  can  be  pontifcated  using  the  variance-based 
equation.
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The following methods are used for the model validation: the efciency coefcient, 
the error of peak discharge, and root mean square error. What is interesting about 
these results is that the correct settings of the GA operators, i.e. generation and 
population size,  crossover,  mutation, etc.,  can prove optimal model parameters 
and thereby the quality model outputs.

The  study  also  shows  that  their  approach  can  provide  the  optimal  model 
parameter which can capture the change in the runof, especially for the peak 
discharge. The method uses a single objective method that can ignore the efect
of  low  and  high  rainfall.  However,  some  correlations  should  exist  among 
standardised values of model parameters, which were manifested in this study (see 
Section 1.1.1).

Therefore, we are not able to obtain suitable results with this method. Moreover, 
the study optimises the peak discharge events in a separate period; these are not 
precisely known for our long-time series.

Medbasin-D model

A calibration of Medbasin-D model is the aim of Tigkas et al.  (2016)’ss research 
which compares two global search algorithms: Shufed Complex Evolution (SCE) 
and  Genetic  algorithms  (GA).  Medbasin-D  model  is  a daily  conceptual 
hydrological  model  developed for conditions of  the Mediterranean. A successful 
calibration of 14 model parameters is required for a reliable prediction of stream-
fow. The calibration is also based on measured streamfow data.

Both optimisation algorithms are embedded into the Medbasin-D model and the 
model user selects an objective function which the algorithms try to minimise.
The selection of the objective function is a subjective decision of the model user so 
the quality calibration result is not guaranteed since a wrong objective function 
causes an inefcient exploring of the optimal search space.

The optimisation process is semi-automatic so the user selects a set of calibrated 
model parameters and defnes a range for each parameter. However, this subjective 
decision  requires  the  user  to  have  advanced  knowledge  to  achieve  the  best 
calibration.  An  incorrect  decision  such  as  unnecessary  extension  of  the 
optimisation procedure or inefcient exploring of  the optimal search space can 
cause problems. On the other hand, an experienced model user can actively set the 
simulation for specifc needs of the study.

Gupta et al. (1998) demonstrate that a single objective function does not usually 
extract  the  maximum  information  included  in  the  calibrated  time  series. 
Therefore,  there had to be several objection functions used, namely: the Root 
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Mean Square Error, the Nash-Sutclife efciency (NSE), and the Mean Absolute 
Error (MAE). These functions are more sensitive to peak fow. Therefore, modifed 
versions of NSE and MAE had to be used, providing an even sensitivity, Krause et  
al.  (2005).  The workfow of  the  GA and SCE are  comparable  to  the  general 
genetic algorithm.

The  objective  of  the  Medbasin-D  model  is  Koutsoulidis  river,  located  in  the 
southern  part  of  the  island  of  Crete  in  Greece.  The  area  of  the  watershed
is 96 km2. What is interesting about this basin is the fact that the upper part 
consists of karstic limestone; therefore, the efective area is only 39 km2.

Ten independent simulations were performed for each optimisation criteria because 
of the probability character of the SCE and GA. The results showed that the GA 
is  computationally  more  efcient  but  the  calibration  results  are  worse.
We  have  deduced  several  conclusions  for  our  work.  The  GA  is  robust  and 
computationally efcient. We assume that the worse result can be improved by 
using another objective function and a suitable range of calibrated parameters.

Micro-Genetic Algorithm

A similar comparison, as Tigkas et al.  (2016) performed for Medbasin-D model, 
was performed by Wang et al. (2010) for the grid-based distributed rainfall-runof 
model (GBDM) published by Yu and Jeng (1997).

Authors  of  this  study  investigated  the  SCE  algorithm with  the  same  results
as Tigkas et al. (2016). This study makes several noteworthy contributions while 
using  the  Simple  Genetic  Algorithm (SGA)  and  the  Micro-Genetic  Algorithm 
(μGA) which despite their simplicity provide interesting results but only on short 
time series and storm events.

The SGA uses simple genetic operation, e.g. mutation, selection, crossover, and 
does  not  apply  sophisticated  methods  which  increase  the  computing  time  but 
provide better calibrations. The μGA is a light version of the SGA because it only 
uses  selection  and  crossover  operation.  Moreover,  the  population  size  is  sig-
nifcantly lower than the one of the SGA. The study has shown that the SGA and 
μGA have similar quality of calibration results and neither one of them is better in 
relation to performance indicator, i.e. computation time, calibration quality, etc. 
What is interesting about these results is that the seed value for random number 
generator,  which  generates  an  initial  population,  can  signifcantly  infuence 
calibration quality. Respectively, it afects time necessary to achieve the optimum 
calibration.
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It  is  difcult  to  interpret  this  result  generally  since  it  was  only  used  in  one 
objective function, but it might be related to the conclusion of Tigkas et al. (2016) 
since the selection of optimisation algorithm is not the main criterion.

Another optimisation approaches

Gupta et al. (2003) use a vector of the estimated model output generated by using 
model parameters. The goal is to fnd a vector with the best estimate parameters 
in  the  sense  that  observed  and  modelled  outputs  are  as  close  as  possible.
The entries  of  the  vector  are  various  statistical  functions  which represent  the 
quality  of  the  calibrated  model.  Gupta et  al.  (2003)  also  defne  diferent 
optimisation criteria which are then merged together into a single optimisation 
criterion, called the multiple-criterion ftness function, which indicates the quality 
of the model calibration.

Further,  Wang et  al.  (2012)  expound  a technique  which  combines  elements
of chaos and simulated annealing methods. The aim is to improve the calibration 
by using various hybrid GA techniques. Le et al.  (2016) defne three objective 
functions investigating the performance of the rainfall-runof model. An optimised 
period is divided into sets according to the weather; a diferent objective function 
is applied to each set. This season-dependent strategy can improve the calibration 
quality in some cases.

Another approach is based on two nested optimisation loops transferring their 
results by a transfer function which changes its attributes during the optimisation. 
This  decreases  the number of  model  evaluations  in  the initial  stage,  Klotz et  
al. (2016).

2.3 Data Quality and Parameter Uncertainly

The  quality  of  model  input  data  signifcantly  afects  the  condition  of  model 
output. Therefore, if input data are low quality, the calibration of rainfall-runof 
models is another important task.

Goodness and BALANCE indexes

Poor quality of rainfall data, mainly for long time series, decreases the accuracy
of  calibrated  models.  Andréassian et  al.  (2001)  deduce  two  indexes  which 
determine the quality  of  precipitations  via  computing  the  square  roots  of  the 
actual and reference precipitation input.

The frst index, the Goodness of Rainfall Estimation (GORE), uses the Nash and 
Sutclife  coefcient  as  a transformation  criterion.  The GORE can take  a value 
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between  minus  infnity  and  1.  When  the  estimated  precipitation  equals  the 
reference precipitation, the GORE index is 1; otherwise, the value is smaller than 
1  and  decreases  as  the  estimates  become  poorer.  The  second  index  called 
BALANCE classifes  whether  the  actual  precipitation  is  an  overestimation  or 
an underestimation of the reference precipitation.

These two indexes describe the quality of rainfall time distribution as this study 
indicates.  However, we cannot use this approach on such a small watershed as 
Ráztoka and Liz because their size is only approximately 2 km2. Moreover, the 
reference precipitation value cannot be assessed precisely for long-time periods 
since there are environmental events taking place which distort this value and it 
would have to be  recalculated for  each separate period.  However,  determining
of these periods is not an easy task.

Hydrological uncertainty

The analysis of hydrological uncertainty is an integral part and is closely related 
to  data  quality.  Hughes et  al.  (2010)  include  the  uncertainty  estimation  into 
a procedure  of  water  resources  assessment  in  the  regions  of  southern  Africa.
This  result  can generally  be  applied  on our  case  study.  The analysed  area  is 
a typical representative of low precision data.

Naturally, the primary source of uncertainty is the parameter estimation of hydro-
logical models.  This study designs a framework for determination of parameter 
values by investigation of the interdependence of parameters and determination
of uncertainty parameter bounds.

The Pitman model is widely used in these regions, Pitman (1973). The model is 
based  on  principles  of  sensitivity  and  uncertainty  analysis  which  are  well 
documented, but some limitations are decreasing the model performance, e.g. data 
scarcity and accuracy, model user knowledge, etc. This framework defnes bounds 
of  parameter  uncertainty,  but  no  experiments  have  analysed  a probability 
distribution  of  the  uncertainty  bounds  yet.  The  initial  estimation  of  model 
parameters is regarded as the most probable, while lower and upper bounds are 
least  probable.  At  this  stage,  it  is  not  clear  whether  a more  quantitative 
adaptation could resolve the bound problems.

The results also indicate that the bounds of the uncertainty could be too wide for 
the  efective  water  resources  assessment.  The  parameter  bounds  and  its 
uncertainty are very important for the quality parameter optimisation from our 
point of view.
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Shufed Complex Evolution

A  strong  relationship  between  data  quality  and  optimised  period  has  been 
reported in Zhang et al.  (2015). In short, we describe secondary methodology.
The Shufed Complex Evolution (SCE) was applied on the Xinanjiang (XAJ) 
model (Zhao et al. (1980)) for Yandu River watershed located in the Three Gorges 
Region of Yangtze River. The area of catchment is 601 km2 and the elevation drop 
is 2,800 m.

The  selection  of  a ftting  objective  function  is  crucial  for  a successful  model 
calibration. However, the choice is very subjective and can result in getting stuck 
in local minimum. Unfortunately, some model parameters can be in correlation 
and therefore  there  are  more  calibration sets  which  can be  optimal  solutions. 
Accordingly,  the  optimisation  results  are  ambiguous.  To  achieve  the  best 
calibration combination, it  is  necessary to use more objective functions at the 
same time. This study shows that the objective function infuences the parameter 
optimisation and results vary according to diferent objective functions. To avoid 
the infuence of errors in model input data, ideal data series were created.

Zhang et al.  (2015) use a multiobjective function which converts and combines 
several specifc qualitative functions together. One of the most commonly used 
functions is the total runof error and the water balance. The second part of the  
multiobjective  function  is  the  relative  error  of  the  calculated  discharge.
The last function is the Nash-Sutclife efciency coefcient that refects exactness 
of the simulated basefow.

The XAJ model is used for daily rainfall-runof simulation and food simulation. 
Diferent simulations call  for appropriate multiobjective functions.  Nevertheless, 
the primary objective of Zhang et al.  (2015) is comparison of the optimisation 
efect on various time series that are of diferent lengths, namely for ideal data and 
observed data burdened by error.

The  ideal  data  was  created  for  the  observed  basin  as  follows.  XAJ  model 
parameters  were  randomly  generated  within  the  parameter  search  intervals.
These parameters are taken as a set of “real” parameter values under which they 
have been generated as sequence of streamfows. It is evident that this ideal data 
is without error and does not infuence the optimisation processes.

As expected, the results are obvious. The ideal data does not afect the parameter 
optimisation for arbitrary lengths of time series. In case of the observed data, 
diferent lengths of time were used, specifcally 1, 2 and 3 years. When observed 
data are stimulated, errors in data structure cause signifcant uncertainties in the 
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parameter optimisation. All these results are conditioned by the use of an appro-
priate objective function.

In summary, errors contained in data structure lead to uncertainties of optimised 
parameters.  Moreover,  the objective  function cannot  be determined unambigu-
ously since the selection is always depended on a calibrated basin and used time 
series. The main advantage of a multiobjective approach is focusing on the per-
formance of the optimisation process. However, the selection of the multiobjective 
function is still impacted by a subjective sense, user’ss experience and knowledge.

Dynamic Identity Analysis

In short, we discuss the research performed by Abebe et al. (2010) which analyses 
individual  sensitivity  of  model  parameters  during  automatic  optimisation.
The Multi-Objective  Shufed Complex  Evolution  (MOSCEM) and the  Monte-
Carlo  algorithms  are  used  for  the  optimisation  of  the  HVB  model, 
Bergstrom (1976).  The case study is the Leaf  River catchment near Collins in 
Mississippi  with  the  area  of  1,924 km2.  Dynamic  behaviour  of  calibrated 
parameters is analysed using DYNIA (Dynamic Identity Analysis), Wagener and 
Kollat  (2007).  The  DYNIA  is  an  approach  for  identifcation  of  the  optimal 
parameters  and  which  values  are  changed  over  time.  A probabilistic  scale 
estimates the time changes of parameter values and their uncertain distribution. 
This approach helps to identify the parameter values and the model structure by 
improving the amount of information that can be obtained from the observed river 
basin variables. The optimisation algorithms with two objective functions (BIAS 
and RMSE) show that there are disjointed groups of parameters which afect the 
total  runof volume errors  and errors from the high-fow periods. The DYNIA  
analysis presents that parameters have specifc periods where they have higher 
identifability  of  the  parameter  values.  All  in  all,  the  uncertain  distribution
is variable and the optimisation algorithm should adapt accordingly.

2.4 Impact of Natural Infuences

It is worth mentioning that the diverse water changes caused by natural variability 
and  abrupt  events  are  signifcant  in  measuring  the  runof and  it  requires  
meaningful attention.

The historical changes in the land use (water reservoirs as fshing ponds, rivers 
regulations,  etc.)  should  be  re-considered.  In  current  conditions,  the  potential 
evapotranspiration and soil water content infuence each other. This matter should 
be  reconsidered precisely  during the  model  calibration.  It  could  be  recognized 
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during the simulation when long-term hydrological data series are to be analysed. 
It  is  necessary  to  ascertain  the  evapotranspiration  when  the  information  to 
provide geographic data for evaluation of the role of vegetation covers is missing. 

The natural variability of water regime is primarily infuenced by solar radiation, 
which is a critical phenomenon for terrestrial precipitation and evapotranspiration. 
The regular oscillation of solar activity is usually mentioned as a sunspot cycle 
which is repeated every 11 years, Beer (2005). It is worth mentioning, that this 
process occurs regularly in a period of approximately 9-13 years, Hathaway and 
Rightmire (2010).

Various random events arise during the rainfall-runof process and diverse tools  
are usually required for the long-term runof evaluation. In this context, the long-
term persistence and oscillations in long time series have been followed by diferent 
spheres and periods, Hurst (1951), Beer (2005). Three natural phenomena require 
evaluation of the input values to clarify the infuences on the variability of runof:

1) The periodic and more or less regular climatic oscillation and certain 
phenomena are the precipitation and evapotranspiration determining the 
water  consumption,  while  Beer  (2005)  clearly  shows  the  correlation 
between solar activity and climate variability, and some similar fuctu-
ations have also been pursued quite recently, Buchtele et al. (2009). 

2) Long-term evolution of the vegetation covers, including its possible ab-
rupt changes, i.e. the extraordinary wind disasters and even devastations 
by insects; those were the events in central Europe during the second half 
of 19. century, Vicente-Serrano et al. (2010).

3) Signifcant  and  fexible  geomorphological  conditions,  or  the  seemingly 
random diverse events;  those were caused by the growing agricultural 
production, Brown (1997).

Those  are  the  primary  processes  for  the  efcient  appraisals  of  the  active 
evapotranspiration.  The  deterministic  conceptual  water  balance  model  is  fre-
quently viewed as a convenient approach for the simulation of the rainfall-runof 
process. Such tool provides the outputs which can be helpful in the analysis of this 
complicated and long-term process. This modelling approach provides the runof 
simulation  without  requiring  geographic  data  for  its  calibration.  The  priority
of  long  time  series  is  supported  by  two  circumstances:  the  uncertainty  and 
complexity of evapotranspiration behaviour in the actually available hydro time 
series, and the possible automatic parameters optimisation, Kundzewicz (2002), 
Merz et al. (2006).
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2.5 Related Work Summary

At frst glance, it is evident that the optimisation of the rainfall-runof models
is still a current topic. There is no universal optimisation algorithm or approach 
which would successfully calibrate any catchment and period yet. We could fnd 
the parallels  in  physics  since  the theory of  everything  is  a universal  approach 
which is still waiting for its discovery.

The data quality is a great aspect of calibration quality which cannot be elim-
inated entirely. Therefore, we have to assume that model calibration cannot be 
perfect,  especially  for  long  time  series  where  model  parameters  are  changing.
The selection of a proper optimisation technique cannot be determined defnitely.
The  main  consensus  is  that  the  global  search  algorithms  must  be  used  for 
a successful  model  calibration  since  the  optimisation  problem  is  NP-complete, 
Arsenault et  al.  (2013).  However,  individual  parameter  settings  of  the  used 
algorithm are dependent on the modelled watershed or the period. Naturally, the 
settings are crucial for a successful model calibration. The bounds of the model 
parameter values are crucial when delimitating the search space. However, it can 
unreasonably  prolong  the  computation  time  without  other  noticeable  efects.
The  global  search  algorithm  may  not  fnd  a calibration  optimum  otherwise, 
therefore suitable settings of the parameter bounds are essential aspects as well. 
Another crucial aspect of a successful calibration is selecting the objective function 
which depends on a modelled basin and even on modelled time series. In terms
of the inner structure of global search algorithms, quality of used random number 
generator plays an important role in the value estimation of model parameters
as well.

In brief, we focus on aspects following from the related works. Particularly, we 
concentrate  on  used  global  search  algorithm,  parameter  bounds,  parameter 
uncertainty, objective function selection, and random number generator.
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3
Theoretical Background 

and Terminology

This  extensive  chapter  overviews  the  theoretical  background  of  the  methods, 
materials and data used in this thesis. The goal of this chapter is a conjunction of 
the hydrological and computer technology terms and approaches. After reading 
the  chapter,  readers  will  get  a comprehensive  overview  of  the  subject  and 
fundamental terms of hydrology and informatics.

Sections 3.1 and 3.2 introduce basic terms of hydrology, hydrological models and 
foundations use of computer sciences in hydrological modelling.  Sections 3.3 and 
3.4 describe rainfall-runof models,  their calibration and modelling. Sacramento  
Soil  Moisture  Accounting  Model  (SAC-SMA),  its  model  structure  and  used 
hydrological  sub-models,  are  described  in  Section 3.5 in  detail.  Section 3.6 
illustrates the structure of the Sacramento model, which is a union of all necessary 
hydrological sub-models, including SAC-SMA, together for the purpose of realistic 
simulations  on  a real  catchment  area.  Further  in  Section 3.7,  the  validation 
methods of the hydrological simulation are defned.

The most extensive  Section 3.8 focuses on global search algorithms, namely the 
genetic algorithm (GA). This section introduces basic terms of optimisation, GA 
structure, and its workfow in the context of the Sacramento model. In addition, 
the section  defnes  key features  of  the  GA as  a ftness  function,  Monte Carlo 
Simulation,  etc.  The  Section 3.9 is  purely  informative  since  it  deals  with  the 
random number generator (RNG) and statistical methods for its validation, which 
determines quality of randomness.
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3.1 Basic Terminology in Hydrology

In this chapter, we summarise the key terminology of hydrology. We focus on ter-
minology concerning rainfall-runof models. The primary sources of information in 
this chapter are Diersch (1990), Jandora et al. (2011), Kemel (1994), Říha (1999), 
and Sommer (1973).

Humankind  understood  the  meaning  of  water  for  our  lives  a long  time  ago. 
Observations of water movement and fuctuations have been related to agricultural 
and economic activity of man. The hydrology is a science which systematically 
discovers  the  law  of  occurrence  and  circulation  of  water  in  nature.  Obtained 
knowledge and information about water resources, creation, and distribution of 
runof on the surface and under the surface can be used to improve the living  
conditions  on  Earth.  Hydrological  data  that  contain  essential  water  regime 
characteristics are the basis for a design of conceptually correct, rational, and well-
functioning  hydraulic  structure.  Additionally,  hydrology  utilises  methods  and 
resources of theoretical sciences like mathematics, statistics, the theory of prob-
ability, physics, chemistry, and last but not least, computer sciences.

3.1.1 Fundamental Terminology

Basin

Basin (watershed, catchment) is a fundamental work unit in hydrology. It is an 
area  from which  all  water  fows  to  a certain  point  –  so-called  closure  profle.
The closure profle is a collection area of the surface and underground basefow, 
where  groundwater  slightly  deviates  from the  surface  basefow.  The  boundary
of basin area is determined from topographic maps.

Precipitation

The precipitation is production of atmospheric water condensation that falls to the 
ground due to gravity. If the atmosphere is cooled, the air saturation with water 
vapour increases. If air temperature falls below the dew point, a part of contained 
steam is precipitated around the condensation cores. There are slight droplets of 
water or snowfakes which create clouds and fog. Under certain conditions they 
grow and fall as airborne precipitation. Another kind of rainfall is precipitation, 
which arises directly on the Earth's surface; e.g. dew, frost, and ice. These phe-
nomena are called the horizontal precipitations whose yield is  relatively small. 
Generally, the rainfall is divided into liquid (rain, mist) and solid (snow, hail, ice, 
and frozen rain).
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Runof

The basefow from a basin can be characterised as the volume of water fowing out 
from the basin per unit of time. It includes several types of partial runofs:

1) Surface runof is part of the total basefow which fows directly over the 
terrain into the river network.

2) Subsurface or hypodermic runof is the amount of water that infltrates 
the subsoil and fows through the soil profle. However, the water fows 
just below the surface and it is not in contact with groundwater.

3) Underground runof is formed by the water that got infltrated and fows 
underground. It is signifcantly slowed down compared to the hypodermic 
and surface runof.

The  surface  runof and  the  hypodermic  runof,  which  occur  during  or  after  
precipitation,  create  so-called  direct  runof.  It  results  in  a temporary  increase
of the water-level. The underground runof together with the delayed hypodermic 
runof then forms the so-called basic runof. It is the runof that supplies water to 
the streams and rivers during periods without precipitation.

Evaporation

A constant movement of water molecules causes evaporation which is escalated by 
temperature rises. Evaporation is a process where some molecules overcome the 
attractive force of neighbouring atoms and pass into the atmosphere. The evapo-
ration  from a water  surface  is  relatively  simple  and it  is  the  most  important 
component of water loss. It is dependent on meteorological conditions and soil 
properties. A rough and wavy surface contributes to the evaporation more than 
a fat and smooth surface. Another aspect is the darkness of soils which afects the 
evaporation level. The infuence of location is also crucial since the enlarged slope 
increases  the evaporation on southern and eastern slopes while  it  reduces the 
evaporation on western and northern slopes.

Transpiration

Transpiration is a manifestation of plant life processes. The groundwater in which 
nutrients are dissolved is absorbed by plant roots. The nutrients and part of the 
absorbed water create the plant tissue. The amount of water in grams necessary to 
make 1 g of dry tissues is so-called transpiration factor.
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Evapotranspiration

Evapotranspiration  is  the  total  vapour  of  physical  vapour  (evaporation)  and 
physiological  vapour  (transpiration),  which  relates  to  a particular  territory.
In  other  words,  it  is  the  current  evapotranspiration  (ETact)  from  a certain 
catchment area which takes into account the current conditions of water status 
and energy supply. In addition to the actual evapotranspiration, we also defne the 
potential or demand evapotranspiration (ETdem), which is the maximum possible 
evapotranspiration that can be achieved in particular climates and certain climatic 
conditions.  The actual evaporation is much lower in the dry months than the 
potential evaporation. ETact and ETdem are equal only during precipitation periods. 
Evapotranspiration presents 70-80 % of the total water movement in many Czech 
catchments.  Knowledge  of  evapotranspiration  dynamic  is  therefore  essential  to 
a simulation of rainfall-runof processes.

The evapotranspiration, as one of the components of water balance, is one of the 
most important hydrological phenomena. It is one of the meaningful constituents 
of water regime, namely in basins with vegetation cover. The modelling of rainfall-
runof process is extensively used for the evaluation of that regime, Hanson (1991). 
However,  the measurement of  the evapotranspiration requires  relatively precise 
measuring devices and extensive network. Unfortunately, these measuring devices 
and networks are scarcely realistic for large river basins. If older and longer time 
series  are  analysed,  then  there  are  no  values  of  evapotranspiration  at  all, 
Kuczera (1997). Therefore, the simulation of rainfall-runof process has to be used 
to obtain the values of evapotranspiration.

The evapotranspiration is usually part of the rainfall-runof simulation. It needs  
substantial eforts to reach its realistic values in the framework of runof model-
ling. In this context, it might be expected that the actual evapotranspiration, as 
a complicated  process,  is  more  uncertain  phenomenon  in  comparison  with  the 
monitored precipitation and runof, Buchtele and Tesař (2009).

Rainfall-Runof Process

A rainfall-runof process is a subsequent transformation of precipitation falling to 
a basin to the total basefow of the closure profle. It is evident that this is a very 
complicated process which is infuenced by many factors. Above all, it is a group 
of climatic aspects. This includes time and space course of falling precipitation, 
atmospheric humidity, vapour, air  temperature, speed, and direction of the wind, 
atmospheric pressure, etc. For this group, meteorological variables mainly afect 
the total water evaporation from a catchment area. Another group are geographic 
factors of a river basin; particularly area, size, mean altitude, shape, relief, river 
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network, hydro-geological conditions, vegetation cover, etc. This group describes 
environment in  which the rainfall-runof process  is  taking place.  It  determines  
dynamic (transmission) properties of a catchment area which are crucial for the 
way how the time course of the precipitation is transformed into runof time at the 
closure profle.

The rainfall-runof process consists of two partial transformations. The frst one is 
a hydrological transformation. It represents hydrological losses which are gradually 
subtracted from the precipitation falling on a basin. Major losses consist of evapo-
transpiration (total evaporation from a surface of  vegetation cover,  plant pore, 
water retention on a surface of vegetation, and soil), loss by moistening, water 
infltration into a soil, loss of surface retention, and surface runof occurs only after 
flling  an  uneven terrain  with water.  Sequential  separation  of  the  hydrological 
losses  from the  time  series  of  the  precipitation results  in  an  efective  rainfall 
intensity. The amount of water that fell onto the basin surface then fows out as 
fat surface runof. This is the start of the second phase of the transformation.

The hydraulic transformation is the second stage of the runof transformation.
The fat  surface  runof is  gradually  concentrated  in  the  erosion  grooves,  river  
network, and the closure profle. This is not the total runof which fows through 
the closure profle. One part of the total runof is the underground runof, which is 
absorbed  underground  mainly  by  the  rainfall  infltration.  Thus  infltrated 
precipitation leaks from the underground either from unsaturated zones to the 
groundwater level or from saturated zones into the river network in the form of an 
underground fow. In unsaturated zones of an agricultural-cultivated watershed, 
the soil is very loosened up, therefore it has a much higher permeability than the 
soil that has not been cultivated. Water may leak out on the surface of the soil via 
this boundary; this efect is called hypodermic runof. Water fows in saturated 
zones on a relatively impervious bedrock.

Occasionally,  water  seeps  through  the  cracks  from  impermeable  zones  to 
considerable depths and then it can spring to the surface of another basin than 
where the precipitation fell. This penetration is called the percolation. The total 
runof from the basin  underground is  called fat  underground runof and it  is  
analogous to the fat surface runof.

The total runof for a watershed is the sum of the fat surface runof and fat  
underground runof, including the evapotranspiration. All these elements are part 
of the basic equilibrium equation describing the total catchment runof.
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3.2 Hydrology and Informatics

In  hydrology,  the  expansion  of  mathematical  models  is  closely  related  to 
information technology; namely simulations and optimisations. Development and 
research of hydrological models was a domain 10 years ago. Currently, the models 
are used operationally in actual case studies.

Nowadays,  the use  of  the hydrological  models  has broad scope of  application. 
Although the majority of the professional public associates the models with the 
feld of hydrological forecasts, the present need of a water management is focused 
on solving other hydrological problems. There are certain possibilities, needs, and 
areas  of  application,  as  follows.  One of  the  applications can be replenishment
and extrapolation (or as the case may be generation) of runof time series based  
on  another  hydrometeorological  data;  e.g.  precipitation and  air  temperatures. 
Another  application  is  the  evaluation  of  changes  in  runof caused  by  human  
activities;  i.e.  climate  changes,  vegetation  or  land  changes  of  basin  cover 
(deforestation, urbanisation, agricultural activity), and other interventions within 
the observed watershed. The additional application is the evaluation of resources 
and water supplies based on the relationship between surface/underground runof, 
evapotranspiration, and infltration; Bronstert et al.  (2002), Clark et al.  (2015), 
Shahin (2002), Vörösmarty et al. (2000), Wallace and McJannet (2012).

However,  several  assumptions  need  to  be  ensured  to  achieve  an  efcient  and 
routine  use  of  the  models.  It  is  necessary  to  have  an  overview  of  existing 
approaches to modelling of hydrological processes. It is related to a realistic idea 
of used models,  their  possibilities,  strengths,  and limitations.  And fnally,  it  is 
necessary to adopt a software for model calibration, Bergström (1991), Donigian 
and Huber (1991), Singh and Woolhiser (2002).

3.3 Rainfall-runof Models

The hydrological model of a watershed is an ambiguous term. Within our scope, 
the hydrological model is used for simulation of the rainfall-runof process. More 
precisely, the simulation of the conceptual, primarily balance, hydrological model 
with more or  less  detailed realistic  structure.  The structure of  the conceptual 
rainfall-runof model  is  vertically  organised  into  several  hypothetical  zones,
Liu et al. (2017). This model can be found in: Stanford Sacramento model (SAC-
SMA), Japanese Tank model, and Swedish HBV model.
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A  conceptual  rainfall-runof model  is  a  theoretical  physical  model  based  on 
principles of water movement in a watershed and describes simplifed hydrological 
processes  using  a mathematical  apparatus.  The  model  describes  the  relation 
between  rainfall-runof and  observed  watershed  area  or  drainage  basins.  This  
relationship represents surface runof hydrograph refecting a  response of catch-
ment according to rainfall events. A model output is total runof calculated from 
the  rainfall.  The  most  common  use  of  a rainfall-runof model  is  to  estimate  
parameters which are not readily measured, or to predict the future behaviour of 
the modelled catchment based on historical data. If the model is calibrated well, 
the model will provide quality results, Jayawardena (2014).

Unfortunately, using the rainfall-runof models is not an easy task, especially for 
large catchments and surface topography of basin terrain. Moreover, an imbalance 
of precipitation, evapotranspiration, and other model inputs induces the division of 
the area of interest into a number of sub-basins. Subsequently, the rainfall-runof 
simulations of the sub-basins are performed separately and the fnal closing profle 
of  the basefow is composed of  outfows from inter-catchments.  So, the overall 
algorithm for the rainfall-runof simulation includes the following steps. The frst 
step  is  quantifying  the  water  balance  including  the  feedback  between 
evapotranspiration and soil moisture. The second step is using a sub-model for 
a simulation of the creation of snow cover and its melting. The last important 
component  of  the  algorithm is  a model  of  water  movement  in  fow  channels,
i.e.  translational  and  transformational  processes,  and  eventually  procedures 
simulating  wave  retention  and  accumulation  of  water  in  tanks  or  lakes.
The method of the division of an observed watershed into the sub-basins and river 
sections depend on a confguration of a basin terrain, river network, variability
of  runof,  purpose  of  simulations,  etc.  A location  and  number  of  measuring 
stations often decide the method of the basin division; Buchtele and Tesar (2013), 
Dubrovský et  al.  (2004),  Hejzlar et  al.  (2003).  This  thesis  focuses  on already 
created sub-basins, so we will not discuss the issue of the division any further;
for more information, see Berga et al. (2006), Hamed (2008), Pykh et al. (2000).

3.4 Hydrological Modelling

In  sub-chapters  3.1 and 3.3, we introduced basic hydrology terms and the static 
and  dynamic  structure  of  the  rainfall-runof models.  In  this  sub-chapter  we  
describe the hydrological modelling, and we also discuss modelling difculty from 
the perspective of the users.
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Mathematical modelling of the rainfall-runof process is a very complex problem. 
There are models predominantly aimed at simulating the rainfall-runof process in 
a catchment  area;  however,  it  is  not  always  possible  to  deal  with  this  issue
in detail.  Therefore, it  is not possible to provide all  required information, and 
input data must be estimated. These facts reduce model quality and usability. 
Moreover, these problems signifcantly infuence the modelling of the rainfall-runof 
process in large basins. However, signifcantly simplifed models provide only very 
rough estimates of the runof rate at the closure profle. It is always necessary to 
seek an acceptable form of simplifcation, Diersch (1990).

The rainfall-runof model can also be understood as a  tool for organisation or 
transformation of existing information into other forms for specifc tasks. Useful 
information can be extracted from historical and current data about an observed 
catchment via the rainfall-runof model. Therefore, the hydrological models are  
always potentially more reliable means for an evaluation of future development
of  water  movement  and  balance.  These  models  provide  better  results  than 
sometimes more preferred intuitive and empirical approaches based on subjective 
knowledge and experience. On the other hand, less experienced users expect an 
auto-efciency of the models, and it is also expected that just use of the models 
can radically  improve the interpretation of  information which are and will  be 
available.  This  may  be  a source  of  misinterpretation  of  modelling  results. 
Therefore, preconditions upon which information is created or processed should 
always be taken into account. An example of such misunderstanding can be found 
in a situation where a model input is a time series of the average rainfall that
fell  in  the  basin.  However,  the  simulated  basefow  as  a model  output  is  sig-
nifcantly smaller than real basefow. It is rather trivial example but it illustrates 
the necessity of evaluating the simulation results.

Knowledge  and  experience  of  model  users  play  a non-negligible  role  in  the 
modelling process. It is true that the models provide more reliable simulation only 
if the model is in the hands of an expert. Experienced modellers declare that the 
ability to work efciently with the hydrological models is a long-term issue based 
on  practical  knowledge  and  skills,  just  like  playing  a musical  instrument, 
Bergström (1991), Montanari and Toth (2007), Pianosi et al. (2016). However, the 
statement that the hydrological modelling is an art rather than science is still 
applicable, Savenije (2009).

Another  goal  of  the  rainfall-runof modelling  is  mining  information  about  the  
possibility to discover the diverse changes in the fow simulation which infuence 
the  evapotranspiration  demands  and  consequently  the  complex  water  regime.
The  intention  to  decrease  uncertainties  in  the  water  regime  due  to  diferent 
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oscillations  requires  the  evaluation  of  occasional  natural  fuctuations  and  the 
abrupt  seeming  random changes  in  the  basins.  These  consecutive  variabilities
of water regime are usually infuenced by changes of vegetation cover during the 
annual cycle and also by its development in the span of decades during which 
other natural events occur as well; e.g. winds. The changes of vegetation cover and 
the  desirable  appraisals  of  the  existing  interaction  between  evapotranspiration 
demand and sub-surface water storage seem to be signifcant processes, this whole 
matter may appear signifcant, both at the local as well as at the regional scales. 
This is the motive for the rainfall-runof modelling carried out in small and large 
catchments. The conceptual SAC-SMA model enables the prompt simulation that 
creates the conditions for automatic calibration of this model, and simulations for 
individual  partial  time  intervals  with  diverse  expected  evapotranspiration.
The resulting evapotranspiration is represented as the outputs of the modelling. 
Hence, the values could be hardly gained as measured data or computed values, 
e.g. from other meteo-observations.

3.4.1 General Modelling Process of Hydrological Models

The modelling process is composed of several procedures following the exact order.

The frst step is selecting the right rainfall-runof model since each situation and 
case  study  requires  a diferent  approach  and  thereby  a diferent  hydrological 
model. Subsequently, the modeller must prepare all available information about 
the observed catchment; e.g. size of the basin area, forestation, elevation, etc.

The second step is the composition of supporting models. In some cases, certain 
sub-models are required for the most accurate results,  such as snow model  or 
transformation of  the total  runof depending on the terrain.  In  this  step,  the  
modeller must also estimate the parameters of all used sub-models. It is an initial 
estimate of the model parameters and it strongly depends on experiences of the 
modeller.

Another  step  is  running  the  simulation  calculations.  The  resulting  simulation
is further validated using a specifc set of statistical indicators comparing observed 
and simulated runof.  This  step is  repeated several  times even by experienced 
modellers since the initial calibration is important for achieving reliable results.
In  this  manner,  the  modeller  adjusts  the  model  calibration  several  times 
interactively until the simulation results have satisfactory quality.

All mentioned steps depend on experience, knowledge, and to some extent also on 
the sense and talent of the modeller.
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3.5 Sacramento Soil Moisture Accounting Model

The Sacramento Soil Moisture Accounting Model (SAC-SMA) is among the most 
widely used rainfall-runof models. It is a conceptual water balance physical model 
based on the physical principles of water movement in a watershed. The SAC-
SMA  model  simulates  runof within  the  catchment  using  spatially-focused  
parameters. The model provides excellent results for large drainage basins and 
long time calibration series. The model has been prepared as part of a library, the 
Modelling  techniques  of  National  Weather  Service  River  Forecast  System 
(NWSRFS), developed since the 1970s in the US, Burnash (1995). The NWSRFS 
uses the SAC-SMA model as a key rainfall-runof model to forecast the properties 
of watersheds across the country.

Figure  3.1 illustrates  the static  structure of  the SAC-SMA model.  The model 
operates with a system of hypothetical water reservoirs (tanks). The model input 
is water in the form of precipitation. In particular tanks, the water is:
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Figure 3.1: Static structure of the SAC-SMA model, Model Primer (2017)
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1) retained,
2) consumed by vegetation during evapotranspiration,
3) infltrated into low-lying system tanks,
4) fows into a river network.

The  total  runof is  the  sum  of  all  partial  runofs  of  the  tanks.  The  model  
distinguishes and divides the tanks according to the capacity of basin components 
into lower and upper zones located in diferent depths and defnes conditions for 
the  moisture  distribution.  There  are  two  types:  tension  water  (controlled  by 
evapotranspiration) and free water (controlled by gravitational forces). The model 
generates a total of 6 runof components, see Figure 3.1:

DIR direct  runof,  i.e.  outfow  from  areas  that  are  temporarily 
impervious due to the saturation of soil zones

IMP impervious runof, i.e. outfow from impermeable surfaces
SUR surface runof is meant as a fat phenomenon
INT interfoo,  i.e.  runof created by excess water  in zones connected  

with a vegetation cover
SUP supplementary underground runof, i.e. seasonal component of the 

total  underground  runof,  it  is  a relatively  variable  component 
formed from shallow groundwater collectors

PRM primary underground runof, which is generated from stocks with 
long delays in the catchment area, i.e. runof mainly from deep-
seated collectors

The model  uses  temperature and  precipitation records to estimate the amount
of water which enters and leaves a watershed. Additionally, the model takes the 
state  of  soil  moisture  and  relative  permeability  of  basin  terrain  into  account.
The model processes the input records at several time intervals (1, 2, 3, 4, 6, 8, 12 
and 24 hours). Small intervals are used to estimate the runof during food events
and large intervals to estimate long-term processes, e.g. vegetation cover or evapo-
transpiration development.

The SAC-SMA model  estimates  diverse  hydrological  processes,  such  as  evapo-
transpiration,  interfow,  percolation,  and  diferent  forms  of  basin  runof.
The usability of the model varies, mainly the runof forecasting, basin hydrological 
hazard estimation, climate change assessment, and water supply forecasting.

The success  of  the  SAC-SMA depends  on  the  quality  of  the  input  data  and 
a proper model calibration. The model usually needs to be calibrated by up to 
20 parameters,  grouped  according  to  zones.  The  evapotranspiration  (ET) 
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phenomenon  is  separately  defned  by  twelve  discrete  values.  These  values 
determine the expected evapotranspiration for  each  month,  which is  the total 
evaporation including the vegetation’ss consumption of water (transpiration) and 
the physical vapours (evaporation).

Model inputs

The SAC-SMA model frst requires a mandatory parameter,  precipitation, in the 
form of rain plus melt. Another optional parameter is a potential ET in the form 
of a 24-hour long time series. Last optional input is an areal extent of snoo in the 
form of time series representing relative snow coverage of a simulated basin.

Model parameters

The SAC-SMA model can be calibrated by parameters summarised in Table 3.1. 
The  following  circumstances  should  be  taken  into  account  for  a correct  inter-
pretation of the parameters.

The sizes of the model zones (UZTWM, LZFPM, LZFSM) are given in the water 
column equivalent of water supply (in millimetres). The LZPK, LZSK, and UZK 
parameters are coefcients determining the exhaust of the model zones. PCTIM
is  a percentage  of  the  catchment area  that  produces  runof from impermeable  
surfaces. The PCTIM value can be assessed from obvious precipitation episodes 
that  occurred  after  a dry  period.  Due to these  episodes,  the  zones  are  empty 
enough that the runof is produced only by impermeable surfaces (urbanised areas, 
roads, water areas, etc.). ADIMP is a percentage of the catchment area, which 
becomes temporarily impervious after a zone saturation. The ADIMP value can 
be based on the precipitation and runof which occurred after the preceding heavy 
rainfall  since the runof is  in temporarily  impervious zones (clayey or swampy  
land). The parameters ZPERC and REXP infuence the intensity of infltration. 
The group of  model  parameters  listed above  represent  quantity  which  can  be 
ascertained by historical records.

Special  mention  requires  data  on  evapotranspiration.  Actual  or  potential 
evapotranspiration  is  exceptionally  available  in  the  format  of  daily  series  for 
a given basin; especially for long time series where measuring instruments were not 
available.  The model  enables  us to defne the evapotranspiration in two ways.
The frst  way how to defne the evapotranspiration is  the time series of  daily 
evapotranspiration whose values can be adjusted using the adjustment coefcient 
for  each  month.  The  second  manner  is  defning  the  evapotranspiration  by 
12 values that are an estimation of long-term monthly totals (given in  mm/day) 
and daily values of assumed evapotranspiration computed by linear interpolation.
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Table 3.1: SAC-SMA model parameters

Parameter Description Units

UZTWM Upper layer tension water capacity mm
UZFWM Upper layer free water capacity mm
UZK Upper Zone Free Water storage coefcient -
ZPERC Maximum and minimum percolation rates mm
REXP Shape parameter of the percolation curve -
LZTWM The lower layer tension water capacity mm
LZFSM The lower layer supplemental free water capacity mm
LZFPM The lower layer primary free water capacity mm
LZSK Lower zone supplementary depletion rate mm
LZPK Lower zone primary depletion rate mm
PFREE Percentage percolating directly to lower zone of free water %
PCTIM Percentage of permanent impervious area %
ADIMP Percentage of additional impervious area %
SIDE Ratio of deep recharge water going to base-fow %

RSERV Fraction of lower layer free water not transferable to lower layer 
tension water -

ET ET-demand for the 16th of each month (January - December) mm/day

Model outputs

The model outputs contain 4 groups. The frst main output is a channel outfow 
(runof)  given  in  mm.  It  is  the  total  runof at  the  closure  profle  of  a  basin.
The second group represents  runof components  (DIR,  IMP,  SUR,  INT,  SUP,  
PRM) given in mm. The third group is 5 soil moisture storages for each simulated 
time interval; namely upper zone tension water defcit (UZTWM-UZTWC), upper 
zone free water contents (UZFWC), lower zone tension water defcit (LZTWM-
LZTWC), lower zone free supplemental contents (LZFSC), lower zone free primary 
contents (LZFPC). The last output group provides information about the actual 
and potential evapotranspiration.

3.5.1 Snow Accumulation and Ablation Model

The  SAC-SMA model  was  originally  developed  for  modelling  the  Sacramento 
catchment,  which  is  located  in  warm  climate  in  California.  Therefore,  some 
supporting sub-models must be connected to the SAC-SMA model because other 
parts of USA and Europe, the Czech Republic in particular, are located in a mild 
climate.
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In this study, we use the  Snoo Accumulation and Ablation Model (SNOW-17), 
which simulates the accumulation and melting of snow cover using a simple energy 
equation. The number of major calibrated parameters is 12. The SNOW-17 sub-
model  can  be  divided  into  several  height  zones,  where  the  amount  of  water 
accumulated in the snow cover is simulated separately as it better refects the 
distribution of snow reserves in a catchment, Anderson (2006).
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Figure 3.2: Flowchart of the SNOW-17 model
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Figure 3.2 illustrates the calculation of SNOW-17 model. In short, if the form
of precipitation is determined as rain (from a record of  precipitation and temper-
ature),  the  precipitation falls  directly  to  a basin  area.  If  the  precipitation
is in the form of snow, a complicated process of snow accumulation calculates the 
snow cover using the energy equations,  taking into account energy exchanging
of air, incoming solar, snow cover, and soil energy.

Model input

The model simulates the meltdown and creation of snow cover based on records
of precipitation and air temperature. The model does not require additional terrain 
information  about  the  basin  and  therefore  the  number  of  input  information 
required  for  quality  results  is  not  overwhelmingly  demanding,  and  the  snow 
simulation has favourable quality.

Model parameters

It is frequently convenient to distinguish main and additional kinds of parameters; 
those are sorted in Table 3.2 which summarises SNOW-17 model parameters.

PXTEMP parameter represents snow accumulation since it separates rain from 
snow. If the temperature is less than PXTEMP, the precipitation is expected in the 
form of snow and vice versa.

The  precipitation classifed  as  snow is  adjusted  by  the  SCF parameter  which 
equalises  losses  occurring  during  accumulation  periods.  The  SCF  balances 
sublimation  and  redistribution  of  snow  cover,  caused  by  blowing  snow,  and 
corrects transfers of precipitation fallen outside a basin district.

The temperature  melting  factors MFmax and  MFmin  are  the  most  important 
parameters  of  the  snow sub-model.  Those  determine maximum/minimum melt 
factor  during  non-rain  periods.  The  melt  variability  in  an  annual  cycle  takes 
diferent  duration  of  sunshine  and  total  solar  radiation  into  account,  e.g.  in 
January and May. Values of the MFmax and MFmin parameters depend on what 
kind  of  catchment  the  terrain  is  modelled  on;  e.g.  for  open  area
MFmax = 8.0 mm.day-1/1°C, or MFmax = 2.0 mm.day-1/1°C for forest.

Diferent  terrains  and  uneven  winter  conditions  in  mountains  and  lowlands, 
including  various  wind  conditions,  are  modelled  by  another  model  parameter. 
SI parameter is a value which determines the mean areal water equivalent above 
which there always is 100 percent areal snow cover (mm).
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Table 3.2: SNOW-17 model parameters

Parameter Description Units

MFmax Maximum of the melt factor mm.day-1

MFmin Minimum of the melt factor mm.day-1

SCF Snow coefcient correction factor mm.day-1

UADJ Wind function for the given region mm.day-1

SI The mean areal water-equivalent mm
ADC Areal depletion curve of the snow cover -
NMF The maximum negative melt factor mm.day-1

TIMP Antecedent temperature index parameter -
PXTEMP The temperature which delineates rain from snow °C
MBASE Base temperature for snowmelt computations °C
PLWHC Percent liquid water holding capacity %
DAYGM Melt rate of the snow-soil interface mm.day-1

Areal  Depletion  Curve (ADC)  defnes  the  areal  extent  of  the  snow  cover  as 
a function  determining  how  much  of  the  original  snow  cover  remains  after 
a signifcant area of bare ground appears, Anderson (2006). The ADC also refects 
a reduction in the mean areal melt rate, which occurs because fewer areas are 
covered with snow.

The Areal depletion curve (ADC) regulates the process of how the areal extent
of the snow cover is changed during the melt seasons. The ADC curve shows the 
correlation of the snow areal extent and the mean areal water equivalent. In other 
words, the ADC chart is a non-dimensional plot of the snow-covered area against 
water equivalent. ADC is used when the snow depth is less than the snow depth 
for 100% cove, see parameter SI. The fnal snow-covered area is computed using 
ADC.

The shape of  the ADC depends  on the physiographic  factors  in  a given area.
The model user specifes the areal extent of the snow cover for W/A i ratios; where 
W is the water equivalent, Ai is the area index of the areal extent of the snow 
cover. There are 11 ratios where W/Ai = 0.0 the snow coverage is 0.05, since 
a small amount of snow remains after the melting. It is typical for mountainous 
regions that small spots of dense snow remain throughout the summer but these 
are hydrologically insignifcant.
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Figure 3.3 represents the shapes of three ADC curves. The courses of all three 
ADC curves are becoming more similar as the quantity of bare ground begins to 
grow.

Model output

The main output is the total outfow from simulated snow cover. It is composed
of  the  rain  fallen  on  bare  ground  and  the  melted  snow cover,  given  in  mm.
The value is also referred to as rain+melt and is inputted into subsequent rainfall-
runof models, like the SAC-SMA in our case.

Another  output  group  provides  information  about  the  areal  snow  cover  in 
percentage, the snow depth (cm), and the simulated water equivalent of the ice 
portion of the snow cover (mm).

3.5.2 Unit Hydrograph

Another supporting model that we use is a Unit Hydrograph (UNIT-HG), which 
describes  the  hypothetical  response  of  a catchment.  The UNIT-HG is  a useful 
hydrology  tool  because  it  simplifes  the  algorithm for  the  runof distribution.
In technical terms, the UNIT-HG represents a linear and time-invariant system.
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Figure 3.3: Areal depletion curves for diferent years
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The  UNIT-HG  specifes  the  values  of  runof according  to  the  height  of  the  
precipitation and  characteristics  of  the  basin.  In  other  words,  UNIT-HG 
characterises  the  transformative  efects  of  a watershed.  These  efects  take 
infuences such as the size, slope, basin cover, and other geomorphological features 
into  account,  Sherman  (1932).  UNIT-HG  is  used  as  constant  transportation
of runof in most rainfall-runof models. The transformation defnes how the actual 
runof is distributed in the catchment in the form of several sub-runofs in time.
In other  words,  the transformation is  a continuous function, of  which the frst 
derivative with respect to t defnes the runof at time  t. The model calibration 
defnes the UNIT-HG as a set of points, where each point determines the ordinates 
of the UNIT-HG.

Model input

The only input is the runof obtained from a rainfall-runof model, the SAC-SMA 
in our case. The runof is given in mm.

Model parameters

The  BASE  parameter  adds  constant  basefow  to  computed  instantaneous 
discharges. It is usually used for instances when runof is not from a simulated 
basin but it is from a strange watershed.

The  AREA parameter  defnes  the  drainage  area  to  be  represented  by  a unit 
hydrograph, given in km2.

The  essential  parameter  is  the  defnition  of  the  unit  hydrograph.  The  frst
sub-parameter is the number of ordinates in the unit hydrograph. The second sub-
parameter  is  an ordered set  of  unit  hydrograph ordinates,  given in  m3s-1/mm. 
Figure  3.4 illustrates  an  example  of  a simple  unit  hydrograph  of  the  Elbe 
catchment. It is evident that the most signifcant runof occurs 2 days after the 
precipitation falls. The curve shape of the unit hydrograph usually corresponds to 
the Poisson distribution function which can be described by the difusion equation.

Model output

The only output is instantaneous discharge measured in  m3/s which is the fnal 
outfow at the closure profle.

46



3.6 Sacramento Model

At this  point,  we  have  defned  the  rainfall-runof (SAC-SMA)  model  and the  
supporting  models  (SNOW-17  and  UNIT-HG).  This  subchapter  describes 
the SAC-SMA  model  in  overall  view  including  the  dynamic  structure  of  the 
rainfall-runof simulation.

Records  about  air  temperature and  precipitation together  with  the  model 
calibration  (parameters)  constitute  the  inputs  into  the  Sacramento  model,  as
is  illustrated in  Figure 3.5.  The Sacramento model  is  a working name for the
SAC-SMA  rainfall-runof model  containing  the  SNOW-17  and  the  UNIT-HG  
supporting models. The model calibrations include all required model parameters 
as listed in the previous chapter (Section 3.5) in concerning sections.

The workfow of the simulation process, captured in  Figure 3.5, starts with the 
SNOW-17 model. Rain+melt and snow cover, which are input for the SAC-SMA 
model, are based on the temperature and precipitation as inputs of the SNOW-17 
model.  The SAC-SMA computes  the actual  runof which  is  the  input  for  the  
UNIT-HG model. The instantaneous discharge is the fnal runof from a basin and 
is used for the model validation. In this form, the Sacramento model provides 
complex information about a simulated catchment if the model is well calibrated.
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Figure 3.4: Unit hydrograph of the Elbe basin
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3.7 Validation of Hydrological models

The  diferences  between  the  observed  and  simulated  discharge  determine  the 
calibration success of the rainfall-runof models. In the context of the Sacramento 
model (Section 3.6), the simulated discharge is the output of the UNIT-HG, the 
observed discharge is obtained by a measurement at a closure profle of a simu-
lated catchment. If the diferences between observed and simulated discharges are 
relatively  small,  the  model  is  valid  and  all  sub-model  outputs  (SNOW-17,
SAC-SMA,  UNIT-HG)  of  the  Sacramento  model  are  realistic  and  usable  in 
practice.

There are diverse methods for model validation. However, the evaluation of the 
estimated  runof is  usually  performed  using  one  of  these  two  ways:  one  uses  
a statistical indicator, and the other is a graphical comparison. If the statistical 
indicators  cannot  be  evaluated,  the  second method can  be  used  but  only  for 
a subjective review, Sargent (2013).
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Figure 3.5: Sacramento model structure
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This thesis primarily focusses on the statistical method and uses 4 of the most 
fundamental indicators in basic form, as summarised below, Moriasi et al. (2007):

1. Root Mean Square Error (RMSE)

RMSE=√ 1n∑
i=1

n

(Qi−S i)
2  (3.1)

2. Bias

Bias=
∑
i=1

n

(S i−Qi )

∑
i=1

n

Qi

(3.2)

3. Coefcient of Efciency (Nash–Sutclife model efciency coefcient)

E=
∑
i=1

n

(Qi−Si )
2

∑
i=1

n

(Qi−Q )
2

(3.3)

4. Correlation Coefcient
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2

)
(3.4)

where,  S is the simulated discharge, Q is the mean of the observed discharge,
Q is the observed discharge, and  n is the number of events. Modifed forms of 
these equations can be useful for a diferent time scale (e.g. a monthly or daily).

Each  statistical  indicator  expresses  the  degree  of  calibration  quality.  Each 
indicator is  prone to a diferent set  of  model parameter values.  Therefore,  the 
model validation must be evaluated using more indicators and overall evaluation 
of model calibration quality is a complicated issue. Like the model calibration, the 
model validation is dependent on the user’ss knowledge and experience; since there 
are instances of simulations where statistical indicators show satisfactory values, 
but the model calibration is not possible.
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3.8 Global Search Algorithms

Optimising  such  a complex  problem  as  the  Sacramento  model  (Section 3.6) 
requires the use of a global search algorithm because there is  no deterministic 
algorithm for resolving this issue. Therefore, the stochastic approach needs to be 
applied.

This sub-chapter overviews heuristic methods which look for an approximately 
optimal solution. The main used algorithm is the genetic algorithm (GA) together 
with the Monte Carlo Simulation. Special attention is paid to the GA terminology, 
operations, and parameter representation of the optimised model; all regarding the 
Sacramento  model.  Another  part  focuses  on  the  ftness  function  (or  objective 
function) which determines optimisation quality of found solution; this is closely 
related  to  the  model  validation  (Section 3.7).  The  next  topic  targets  the 
delineation of optimisation framework for the Sacramento model and optimisation 
workfow. The fnal part of this subchapter aims at the random number generator 
(RNG) which is the core of the stochastic and global search algorithms.

3.8.1 Monte Carlo Simulation

The Monte  Carlo  simulation (MCS)  is  a numerical  method that  uses  random 
variables  and  the  theory  of  probability.  One  of  its  points  is  to  simulate  the 
possible  outputs  based  on  acceptable  inputs  using  statistics,  Mooney  (1997).
Its  advantage  is  its  simple  implementation,  as  is  illustrated in  Algorithm 3.1.
This occurs at the expense of relatively low accuracy, which can be increased by 
other stochastic techniques (e.g. the  genetic algorithm). One of its weaknesses is 
a weak random number generator leading to systemic errors in the MCS, Resende 
and Costa (1998).
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Algorithm 3.1: Monte Carlo Simulation

Input: n, number of simulation
Output: x, vector of the best model calibration
begin
1 Let f(x) be a defnition of a model validation, where x is a vector of the model’ss parameters
2 Repeat n times, where n is a parameter of MCS
3 Randomly generate values of the vector xn
4 Let yn = f(xn), where yn is the result of the model validation
5 end repeat
6 Let z = max(y1, …, yn) be the best model validation
7 return xz

end



In  the  context  of  the Sacramento  simulation and  Algorithm 3.1,  line 1  is  the 
defnition of the Sacramento model and its validation; line 3 randomly generates 
values of the Sacramento model parameters mentioned in Tables 3.1, 3.2, and the 
unit hydrograph coordinates; line 4 performs the Sacramento simulation followed 
by the model validation with the parameters from line 3; the outputs of the MCS 
are those values of the Sacramento parameters that have the best value of the 
model validation.

The initial manual model calibration (i.e. mostly iterative) is the starting point. 
The MCS then estimates the values of the vector x (see Algorithm 3.1) based on 
the initial values of the manual calibration. A range of the estimated parameters
is defned as an input parameter of the MCS. We use a percentage range for each 
optimised  parameter,  which  determines  the  absolute  range  for  the  model 
parameter.  The parameter value is  calculated accordingly:  Let  v be the initial 
value of parameter  p, let  r be the range of  p, then a new p is generated by the 
random number generator in the range  (v – r.v, v + r.v). However, the chosen 
range is crucial for the quality of the optimisation: if the interval is too small, the 
MCS can get stuck at a local minimum. On the other hand, the MCS may not be 
able to fnd the best model confguration in reasonable computing time if  the 
interval is too large.

3.8.2 Genetic Algorithm

The genetic algorithms (GAs) represent one of the evolutionary techniques which 
are inspired by processes in nature. The structure of the GA is based on Darwin's 
theory of natural selection. Each individual is a candidate for a solution to a given 
problem. The ftness function quantitatively expresses the quality of a candidate. 
The task of the algorithm is to “breed” an individual with the best ftness function 
value.  The GA evaluates  the population composed of  chromosomes  containing 
data  in  a similar  way  to  a biological  chromosome,  Gallagher  and  Sam-
bridge (1994). Each chromosome in the population is a set of genes, which are 
coded by binary or real values. The GA tries to discover a combination of the 
genes which maximises or minimises the ftness function. To achieve this, it uses 
equivalents  of  natural  genetic  operators,  for  instance:  selection,  crossover,  and 
mutation, Holland (1992).

New sets of chromosomes are appraised with each generation. The ftness value is 
calculated and assigned to each newly estimated chromosome. The ftness value 
provides information about a chromosome’ss quality, which is used for probabilistic 
selection  of  a chromosome  to  pass  on  to  the  next  generation.  This  selection
is analogous to natural selection. The GA is terminated if predetermined criteria 
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are met. Each new chromosome is the result of the genetic operations. The most 
signifcant genetic operations are crossover and mutation, both of these operations 
are random processes with defned probabilities. Crossover takes two chromosomes 
as parents and produces a new chromosome by exchanging their genes with each 
other.  Parts of  the exchanged chromosomes are randomly selected and can be 
determined  using  one  or  multiple  points.  The  GA  can  get  stuck  in  a local 
minimum despite the crossover operation. The mutation operation can avoid this 
disadvantage  because  it  randomly  changes  the  gene  value.  This  change  can 
discover a solution in another part of the search space. In other words, mutation 
prevents getting stuck in a local minimum, Holland (1992). The GA can be scaled 
by algorithm parameters summarised in Table 3.3. We introduce these parameters 
in  the following paragraphs,  which describe the GA operations in  the context
of the Sacramento model in more detail.

Table 3.3: Description of GA parameters and selected optimal values

Parameter Field value Description Optimal value

Generation limit integer Generations upper bound 400

Population size integer Dimension of population 175

Crossover One-point(p)
Two-point(p)

Crossover type; where p is 
crossover probability One-point(0.8)

Mutation <0.0-1.0> Mutation probability 0.03

Selection TournamentSelector
RouletteWheelSelector Selection method TournamentSelector

Elitism integer Number of individuals 
selected to next generation 7 (4% of population size)

Parameter Representation

Each individual  represents  one  model  calibration  of  the  SAC-SMA model,  in-
cluding  the  sub-models.  The  individual  stores  information  about  the  model 
calibration in a chromosome, which is defned as an array of real values, and each 
model parameter has a specifed position in this array. One element of the array
is called a gene.

The  Sacramento  model  is  not  just  a state  model;  the  model  parameters  are 
represented via real values. It follows the chromosome mirroring these real value 
parameters,  so  each  gene  of  the  chromosome retains  one  real-value  parameter
of the Sacramento model.  Figure 3.6 demonstrates an example of the individual 
chromosome characterising the parameter calibration of the Sacramento model. 

52



The  frst  part  of  the  chromosome  codes  parameters  of  the  SNOW-17  model.
The second part stores the SAC-SMA model parameters. Finally, the last section 
contains information about the UNIT-HG parameters. The last chromosome part 
is variable since the unit hydrograph is various according to a modelled basin. 
However, the number of unit hydrograph points is constants across the population, 
so all individuals have the same chromosome cardinality.

Individual, Population and Generation

In the context of the GA and the Sacramento model, an individual represents one 
model calibration of the Sacramento model. Values of the calibration are collected 
in the chromosome where one parameter value is stored in one gene. 

Population and generation look very similar at frst glance, but there seemingly
is a slight diference. Population is a set of individuals across generations, which 
means that generation is time-dependent. Normally, a generation defnes a subset 
of a population at specifc time since population is always evolving. Therefore, 
generation is actually a timestamp of a population.

Figure  3.7 illustrates  the  diferences  between  population  and  generation. 
A population is composed of every individual that is still active and can be used 
for reproduction. In this case,  the population consists of all  individuals in the 
previous,  current  and  next  generation.  So,  individuals  from the  previous  and 
current generation can be selected for the GA operations and a newly created 
individual  is  added into  the  next  generation.  While  population  is  a set  of  all 
potential individuals, generation is a subset of the population which is processed 
by one GA iteration. In this case, the current generation has been evolved and the 
next generation is prepared for the next GA iteration. After evolving the next 
generation,  the  previous  and  current  generations  are  shifted  so  that  the
current generation becomes the previous one, the next generation becomes the 
current one, and so on. The grey individuals represent inactive individuals which 
are  not  used  in  the next  GA iteration.  They are  the  ones  with a low ftness 
function or with invalid model calibration.

53

Figure 3.6: Sacramento chromosome
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Crossover, Mutation, and Elitism

Crossover is a GA operation which crosses two individuals (model calibrations)
of a current population in a defned manner. The output is a new individual of the 
next  generation  whose  chromosome  is  composed  of  both  input  chromosomes
in a particular ratio.  The manner and random probability of the ratio are the 
given  input  parameters.  The  ratio  is  usually  a higher  value.  In  other  words,
the ratio defnes the probability that the individuals will be crossed and a new 
individual will be created.

There are two ways a new individual can be created by the crossover operation:

1) One-point  crossover:  Let  p be  a real  number  generated  at  random.
The pointer p divides input chromosomes into two equal parts as follows:
x = x1...pxp+1...n and y = y1...pyp+1...n,  where  n is  the  chromosome length 
(number of  genes).   The new individual is  n =  x1...p|yp+1...n;  where |  is 
a concatenation operation.

2) Two-point crossover: Let o and p be real numbers generated at random. 
These pointers divide the input chromosome of each input individual into 
three parts: x = x1...oxo+1...pxp+1...n, y = y1...oyo+1...pyp+1...n. The new individual 
is n = x1...oyo+1...pxp+1...n.

See Figure 3.8 for the illustration of the crossover operation.

Mutation is  another  GA operation,  it  is  a unary operation applied to a single 
individual.  Each  gene  of  the  individual  chromosome  is  mutated  with  the 
probability p, which is the parameter of this operation. The MCS generates a new 
value  of  the  mutated  gene  which  prevents  getting  stuck  in  a local  minimum, 
Holland (1992).
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Figure 3.7: Illustration of individuals in generation and population
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The last GA operation that works with individuals is Elitism. The best individual 
(model calibration) from each generation should always be transferred to the next 
generation to preserve  the best  confguration across  all  generations.  Thus,  the 
Elitism guarantees that a certain number of the best individuals are preserved for 
the next generation, i.e. the individuals with the best ftness function value.

Reproduction and Selection

The task of  the  Reproduction and  Selection operations is  to  generate  a set  of 
individuals called a generation whose cardinality is defned by the GA parameter 
Population size. The MCS creates new individuals usually with a small parameter 
n of Algorithm 3.1. One generation corresponds to one iteration of GA in which 
the following steps form the population.

1) Certain number of individuals with the best model calibration is trans-
ferred  from  the  current  to  the  next  generation.  The  GA  parameter 
Elitism determines the number of the best individuals.

2) The crossover operation complements the rest of the individuals to the 
capacity  of  the  new  population.  The  capacity  is  defned  by  the  GA 
parameter Population size.

The following two methods  select  a pair  of  individuals  from the previous and 
current generation for the crossover operation. The probability of the selection 
ensures that an individual with a low ftness value can transfer a part of its chro-
mosome to the next generation, where the new individual can improve its ftness 
value.

The frst selection method is the  roulette oheel selection: it resembles a roulette 
wheel in a casino, where the selection probability is defned by Equation 3.5.
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Figure 3.8: Crossover operations, a) one-point, b) two-point
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pi=
f i

∑
j=1

N

f i
(3.5)

Here fi is the ftness of an individual i and N is the cardinality of the population.

The second selection method is the  tournament selection: the tournament takes 
the ftness values of all individuals into account and generates a random number 
in  the  interval  (0,1).  If  the  random  number  is  smaller  than  the  probability 
selection,  the ftter  individuals  are chosen;  otherwise the worse individuals  are 
selected. This step selects n individuals with diverse values of the ftness function 
while the best individual of this choice is the winner of the tournament, Ghanea-
Hercock (2013). It again ensures that an individual with worse ftness value can 
get  a chance  to improve itself  or  its  part  of  a chromosome can improve other 
individuals’s ftness value.

3.8.3 Fitness Function

As  discussed  above,  the  value  of  the  ftness  function  is  a scalar  quantity 
determining  the  condition  of  an  individual.  In  the  context  of  the  Sacramento 
model, the ftness function defnes the quality of the model calibration. The ftness 
function  uses  statistical  indicators,  such  as  the  RMSE  or  the  Correlation 
Coefcient to determine the ftness value. In general,  the ftness function uses 
mathematical functions which inspect diferences between observed and simulated 
fows. Mathematically the ftness function is function f mapping individual to R.

The ftness value determines the condition of each individual, which is necessary 
to be interpreted diferently for each ftness function since the smallest value of the 
ftness function does not always mean the best individual condition. For example, 
smaller RMSE means higher quality of the individual, but smaller Nash–Sutclife 
efciency  coefcient  means  lower  individual  quality.  Therefore,  the  GA 
minimises/maximises the value of the ftness functions. The GA can only reduce 
the  ftness  value,  even  for  efective  coefcients  (Nash–Sutclife  or  Correlation 
Coefcient), since the functions representing the efective coefcients are converted 
to a reverse value.

In the context of the Sacramento optimisation, choosing the right ftness function 
is crucial for the optimisation of the model calibration. However, the proper ftness 
function  can  be  diferent  for  each  catchment,  period,  or  input  data,  so  the
ftness function cannot be determined conclusively. Therefore, the ftness function 
will be represented by Equations 3.1-3.4, which will be used for the optimisation
of the study areas (see Section 7).
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3.8.4 Model Optimisation Framework

The  foundation  of  Sacramento  optimisation  is  the  GA,  as  is  illustrated  in
Figure 3.9. The initial model calibration and percentage ranges for each initial 
model parameter are the inputs for the GA component. The algorithm evaluates 
newly  improved  model  calibration,  which  is  input  for  the  Sacramento  model.
The model sets the model parameters according to the new model calibration, and 
the  simulation  is  performed  using  the  input  data  (precipitation,  temperature, 
runof, etc.). The simulated runof, being the output of the Sacramento simulation, 
put together with the observed runof are the inputs for the model validation.
The model validation generates statistical information describing the quality of the 
simulation.  Evaluation  of  each  individual  (model  calibration)  means  that
the  Sacramento  simulation  is  performed.  When  all  individuals  of  the  current 
generation are evolved, the GA compiles the ranking of the individuals based on 
the statistical information and creates the next generation.

In  this  section,  we  describe  the  GA optimisation  in  detail.  The  optimisation 
workfow is composed of 7 steps, which use the GA operations mentioned above 
(Table 3.3 in Section 3.8.2). The workfow consists of the following steps:

Step 1 (initiation): encode the initial model calibration of the Sacramento model 
into  the  genes  and  the  chromosome.  The  MCS  generates  an  initial 
population. The number of individuals is determined by the GA parameter 
Population size.

Step 2 (evaluation):  calculate  the  ftness  value  for  each  individual  of  the 
population and sort the individuals by their ftness values, from best to 
worst.

Step 3 (selection  into  a new  population):  transfer  the  x individuals  from  the 
current generation into the next generation, where x is the GA parameter 
Elitism.

Step 4 (crossover):  the  selection  operation  selects  two  individuals  from  the 
population.  The  GA  parameter  Crossover determines  the  crossover 
operation which creates a new individual of the next generation. Step 4 is 
repeated until new generation is flled.

Step 5 (mutation): apply the mutation operation to each individual of the next 
generation with probability p set by the GA parameter Mutation.
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Step 6 (continuation): if the current generation number is smaller than the GA 
parameter Generation limit, then increment the generation number and go 
to Step 2, otherwise continue to the next step.

Step 7 (completion): perform Step 2 and select the frst individual from the last 
generation. This individual is the best individual among all generations.
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Figure 3.9: Optimisation framework of the Sacramento model
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3.9 Random Number Generator

Although it may not be apparent at frst glance, the random number generator 
(RNG) is the core of the genetic algorithm and the Monte Carlo simulation, since 
the quality of generated random number afects how the GA searches the solution 
space.  In  other  words,  it  infuences  whether  the  GA  gets  stuck  at  a local 
minimum.  Most  of  the  available  optimisation  software  frameworks  contain 
a pseudo-random number generator (PRNG) with a uniform distribution.

Unfortunately, PRNGs are not sufciently random because the ideal randomness
is in confict with the determinants of the PRNG algorithms. The ideal RNG is 
infnite,  non-periodical,  with  a uniform  distribution  and  efcient  calculation. 
Primarily,  the non-periodicity is  the most fundamental problem of the PRNG.
The  periodicity  is  a consequence  of  bit  generation  in  the  fnite  space  of  the 
computer  memory.  For this  reason,  random number sequences begin to repeat 
after a while. The periodicity is evident in the second part of Figure 3.10.

The periodicity only arises with a small probability in small simulations (a small 
number  of  optimised  parameters),  L’sEcuyer  (2012).  However,  the  number
of calibrated parameters is  a signifcant factor infuencing the periodicity; since
the more pseudo-random numbers are needed, the higher the probability of the 
periodicity increases, Persohn and Povinelli (2012). There are many True Random 
Number  Generators  (TRNGs)  which  eliminate  the  defciencies  of  the  PRNG. 
Persohn and Povinelli (2012) prove that the periodicity is an integral part of the 
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Figure 3.10: Visualisation of randomness, a) TRNG b) PRNG, Haahr (2017)
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PRNG. The TRNG eradicates  the imperfection of  the PRNG entirely because 
they are based on processes like noise, measurement of photon motions, and other 
physical  processes,  and  these  TRNGs  usually  have  the  Gaussian  distribution. 
A few basic principles of the TRNG based on physical processes are the following:

1) Johnson’ss efect generates a random voltage at terminals of resistances with 
temperature higher than absolute zero.

2) Measurements of a physical system in chaos. Currently, chaos systems like 
optical, electrical or optoelectrical are mostly used.

3) Repeating the same measurement of the same quantity and random values 
are a consequence of the quantum theory.

All  examples  mentioned  above  require  expensive  hardware  equipment,  but 
a signifcant advantage is that they provide trueness and signifcant speed of gen-
erating, Stipčević and Koç (2014).

3.9.1 Pseudo-Random Number Generator

The Pseudo-random number generator (PRNG), as the name suggests, is the only 
artifcial number generator. Therefore, the PRNG is represented as a deterministic 
algorithm. We use the Mersenne Twister  generator  developed by Resende and 
Costa (1998) that is based on the Linear Congruential Generators described by 
the following Equation 3.6:

Xn=(aXn−1+c )modm  (3.6)

Here, m > 1 is the modulus, a ∈ {1, 2, ...,  m−1} is the multiplier,c ∈ {0, 1, ..., 
m−1} is a constant,  X0 ∈ {0, 1, …,  m − 1} is the initial value called a seed. 
Equation 3.6 represents the PRNG which is a partial diferential equation in prin-
ciple.

The seed variable introduces an element of randomness into the PRNG and its 
value is usually derived from the PC’ss system clock. A disadvantage of this PRNG 
is  periodicity,  which is  a consequence of  the bit  generation in  the fnite  space
of computer memory. So, the more pseudo-random numbers are needed, the more 
the probability of the periodicity increases, Persohn and Povinelli (2012). Barker 
and Kelsey (2007) have proved that the periodicity comes much sooner before 
a number of m requests for a random number. The optimisation of the Sacramento 
model  requires  hundreds  of  thousands  of  requests  for  a random  number.
The number of requests for a random number depends on the number of optimised 
parameters.
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The  following  example  illustrates  how  the  PRNG  described  by  Equation 3.6 
works. Let m = 11, a = 3, c = 4, X0 = 8. Equation 3.6 starts at seed X0 = 8 and 
generates the following sequence of random numbers: 6, 0, 4, 5, 8, 6, 0, 4, 5, 8, 6, 
0, 4, 5, 8, 6, …. At frst glance, the sequence is not random since the selection
of  the PRNG variables  determines a periodicity of  the PRNG as Persohn and 
Povinelli (2012) proved. They have shown that periodicity is an integral part of 
the PRNGs.

Mersenne Twister Generator

Practically usable PRNG like the Mersenne Twister Generator (MTG) involves 
a sophisticated mathematical apparatus. The MTG has several advantages, such 
as  long  periodicity,  so  random numbers  begin  to repeat  in  many requests  for 
a random number. Furthermore, the MTG has good distribution properties and 
efcient use of computer memory.

The power of the MTG is that the generator only uses bit operations (and, or, 
xor,  shifts)  and avoids arithmetic operations (multiplication, division, addition, 
subtraction). Although the generator algorithm is deterministic, all states of the 
MTG are defned by the seed variable which creates a bufer of random numbers 
that are used for a fnal random number generation. The seed variable initiates 
the  whole  process  of  generation.  Each  request  for  a random number  pulls  an 
integer number from the bufer. The pulled element is so-called tempered by using 
the  bit  operations  to  improve  the  randomness  of  the  element.  If  the  bufer
is empty, new elements are created by applying the bit operations, seed variable, 
and constants for bit masking. The embedded constants and the algorithm are 
regulated by the permutation and the tempering operations. Therefore, the period 
of the MTG is longer than any other PRNGs, which is one of the reasons for its 
popularity.

Function 3.2: RandomBufer(S)

Input: value of seed variable S
Output: initial bufer B
begin
1 B[1] ← S
2 for i ← 2 to |B| do
3 B[i] ←  0×6C078965 * B[i-1]
4 end
5 return B
end
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Function 3.3: UpdateBufer(B)
Input: used bufer of random numbers B
Output: new unused bufer B
begin
1 for i ← 1 to |B|-1 do
2 y ← (B[i] & UPPER_MASK) | (B[i+1] & LOWER_MASK)
3 B[i] ← B[(i+|B|/2) mod |B|] ^ (y >> 1) ^ MATRIX_A
4 end
5 y ← (B[|B|] & UPPER_MASK) | (B[1] & LOWER_MASK)
6 B[|B|] ← B[|B|/2)] ^ (y >> 1) ^ MATRIX_A
7 return B
end

UPPER_MASK = 0×80000000
LOWER_MASK = 0×7FFFFFFF
MATRIX_A = 0×9908B0DF

Function 3.4: nextInteger()

Output: integer random number
begin
1 if all items of B used? then B ← UpdateBufer(B)
2 y ← pull(B)

// tempering
3 y ← y ^ (y >>1)
4 y ← y ^ (y << 7) & 0×9D2C5680
5 y ← y ^ (y << 15) & 0×EFC60000
6 y ← y ^ (y >>> 18)
7 return y
end

Function 3.5: nextDouble()

Output: double random number in the interval [0, 1)
begin
1 y ← nextInteger()
2 z ← nextInteger()
3 return ((y >> 6) << 27) + (z >> 5) / (1 << 53)
end

The workfow of random number generating is defned by  Functions   3.2 -  3.5, 
those functions specify the core of the MTG. The initialisation of the MTG calls, 
among other things,  Function 3.2, which prepares the bufer of random numbers 
determined from the seed value. The size of the bufer is 624 items. Request for 
a random number invokes  Function 3.4 which tempers one bufer item using bit 
operations and constant masking.  Function 3.3 updates the bufer when this one
is empty. For more information, see Resende and Costa (1998). The Function 3.5 
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returns a real number in the interval [0,1). This algorithm uses tempering of two 
integers and their bit shifting which is divided by a real constant. This division 
then  returns  a double  value  that  is  in  the  proper  interval  using  the  shifting 
operation (see line 3 of Function 3.5), Oracle (2017).

3.9.2 Validation of the Random Number Generator

Computer simulations, computational number theory, and cryptography need good 
RNGs and the interest in the RNGs’s quality and suitability evaluation is still 
increasing.

No artifcial  generator is  ideal  and has all  attributes  of  the TRNG. For these 
reasons, validation of the PRNGs must be done so that the PRNGs are usable
in  practice.  Deciding  whether  generated  random data  are  high-quality  is  un-
doubtedly a complex statistical issue. Several analytical approaches can validate 
properties of the PRNG, like the periodicity, probability distribution of generated 
numbers, etc.

Diehard tests and statistical methods facilitate how to decide which RNGs are 
good.

Diehard tests

The Diehard  tests  are  suites  which  form criteria  and requirements  for  proper 
RNGs in the form of statistical tests. If these tests fail, the RNG does not have 
suitable properties for use in practice. If the tests pass, the RNG has pseud-ideal 
properties and can be used in practice. Individual tests difer in their complexity, 
so some tests may be easier to pass, Marsaglia (1995).

The following points introduce the primary Diehard tests.

1) Birthday Spacings Test

This test is based on the birthday paradox, Flajolet et al.  (1992), where 
random points are chosen on a large interval. The distance between these 
points should have an asymptotically exponential distribution. The random 
points are obtained using a tested RNG.

2) Overlapping Permutations Test

The  test  generates  fve  consecutive  random  numbers.  120  possible 
permutations should appear with the same probability. The test analyses 
106 integers of tested RNG.
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3) Binary Rank Test

Diehard tests use three variations of the Binary Rank Test applying the 
following general procedure. The test selects a defned number of bits from 
random numbers of tested RNG. The bits are arranged into a matrix over 
{0,1} and the test determines the matrix rank (number of independent rows 
or  columns).  The  value  of  the  rank  determines  the  RNG  quantity.
The variations are:  31×31, 32×32, and the 6×8 matrix.

4) Minimum Distance Test

The test operates with a unit square of 10,000×10,000. The test randomly 
places  8,000 points into the square and then evaluates the minimal  dis-
tance between the pairs of the placed points. The resulting square of the 
distance should have an exponential distribution.

5) DNA Test

DNA  test  is  computationally  the  most  demanding.  DNA  test  defnes 
4 characters:  C,  G,  A,  T;  similar  to  fragments  in  the  biological  DNA. 
Randomly  generated  integers  determine  a sequence  of  these  characters 
(string) based on two designated bits from the random integers. The test 
presupposes 10-character strings so there are 220 possible words, the mean 
number of the missing words is 141909. DNA test analyses the overlapping 
of these strings which determines the RNG quality.

6) Overlapping Sums Test

The Overlapping Sums test is very simple. It generates a long sequence of 
random foat numbers in the interval (0, 1), then adds another sequence
of  100  consecutive  foat  numbers.  This  sequence  should  not  disrupt 
a normal distribution with characteristic mean and variance.

Each  Diehard  test  returns  a p-value in  the  interval  [0,  1)  which  determines 
whether the RNG generates genuinely independent numbers. Hence, if the RNG 
generates  a number that is  considerably far from the acceptable  standard,  the 
Diehard tests declare that the RNG fails; it  usually results from a comparison
of p-value in used tests.

Let f(X), where f is a function with an expected distribution of a random variable 
X with  usually  normal  distribution.  The  predicted  distribution  is  merely  an 
asymptotic approximation. Therefore, if the p-value is on tails, randomness of the 
RNG is worse. In other words, the  p-value near 0 or 1 indicates that the RNG 
encountered a big fail, Marsaglia and Tsang (2002).

64



Chi-squared Test

Another property which we investigate for the RNG is its distribution function
of generated numbers. Chi-squared test (χ2) is used for this purpose.

The χ2 test sorts out a random variable of the tested RNG to k non-overlapping 
bins  determining  the  expected  and  actual  number  of  samples.  For  each  bin 
a probability  that  the  random  variable  gets  a value  of  k-th bin  is  assessed.
It performs N experiments and it determines how many values of the experiments 
originate  from the  defned  bins.  The  frequencies  of  these  bins  are  marked  as
X1, X2, … Xk.  After that, the expected frequencies in individual bin parts are 
compared with the frequencies obtained from the tested RNG. χ2  value is com-
puted by Equation 3.7.

χ
2
=∑
i=1

k (Xi−N pi
)
2

N pi
(3.7)

If a random tested variable X generated by the RNG has a predicted distribution, 
χ2 has approximately chi-square distribution. Then, the value of χ2 is compared 
with the critical value of the appropriate chi-quadrate distribution on the required 
signifcance level. Thus, χ2 test derives a single number representing a correspond-
ence of the expected and actual distribution, Zvára and Štěpán (2006).

3.10 Used Software

This chapter introduces used software, frameworks, and libraries. History of the 
SAC-SMA  development  and  implementation  is  described  in  Section  3.10.1.
The legacy software was reimplemented to Java platform since it was attached
to an optimisation framework, also written in Java. The optimisation framework 
Jenes is introduced in Section 3.10.2.

3.10.1 Hydrological Software

Currently,  software for hydrological  models such as SAC-SMA, SNOW-17, and 
UNIT-HG are managed and developed by the Hydrologic Research Laboratory, 
National Weather Service (NWS), National Oceanic Atmospheric Administration 
(NOAA).  The  rainfall-runof models  have  gone  through  long  and  interesting  
development. The frst version of the SAC-SMA model was developed at Stanford 
University in the USA under the name Stanford Watershed Model. The model was 
a product of professional needs of Ray Linsley and Norman Crawford.
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NOAA had taken over  the legacy model  including its  software and they have 
started their  own development with the guidance of professor R.J.C. Burnash. 
However, several developers from Stanford University were in professor Burnash’ss 
development  team.  The  frst  use  of  the  upgraded  model  was  applied  at  the 
catchment  of  the  Sacramento  River;  hence  the  name of  the  current  model  is 
Sacramento Soil Moisture Accounting. Burnash et al. created a model structure 
for solving tasks in the rainfall-runof evaluation processes that is more fexible  
and  more  generally  applicable  than  the  previous  version.  In  NOAA,  the  lead 
developer is Eric Anderson who updated the legacy software for newly designed 
model structures. The software was written in FORTRAN language. The SAC-
SMA model  has  also  become a full-fedged  alternative  to  the Japanese  TANK 
model which is simpler, Crawford and Burges (2004).

The  NOAA  conference  in  1983  convinced  the  Czech  representatives  of  the 
Institute of Hydrodynamics AS CR that the SAC-SMA model can be implemented 
at Czech watersheds and geographic conditions. Documentation including software 
of the SAC-SMA model was provided to the institute. The software was revived 
on the EC1030 mainframe, made in the USSR at that time. With the onset of 
personal competitors the software was converted to PC format in 1986. The bene-
fts of the PC version need not be mentioned explicitly. In the subsequent years, 
the  SAC-SMA model  was  integrated  into  Aqualog  system used  by  the  Czech 
Hydrometeorological  Institute  (CHI).  The  Aqualog  applies  the  SAC-SMA
to various simulations of water regime and simulations of the impact of expected 
climate changes on water resources.

Reimplementation to modern platforms

The  legacy  software  of  the  SAC-SMA model  written  in  FORTRAN  was  re-
implemented to Java platform using reverse-engineering. The main reason for the 
reimplementation is easier maintenance and the possibility of software expanding. 
Moreover, model platforms can be connected with other supporting frameworks as 
optimisation, parallel processing, graphic representation, etc.

3.10.2 Genetic Algorithm Framework

Jenes  2.0  is  an  open  source  library  for  problem  optimisation  using  genetic 
algorithms in Java. The library has been developed by the Intelligent Systems 
Engineering  Lab  (CISELab)  at  University  of  Sannio.  According  toTroiano et  
al. (2013), the main features of the library are the following:

66



Modular and highly reconfgurable

The framework is  a component designed tool  with stages.  The GA population 
passes  through  the  components  and  stages.  The  population  is  input  for  each 
component,  which  transforms  it  into  the  next  population.  All  parts  of  the 
framework are compatible, so the structure of the optimisation workfow can be 
arranged  accordingly  to  meet  the  problem  characteristic  and  user  needs. 
Framework user  can design  and assemble  his  own walk-through and structure
of the algorithm; e.g. GA operators, crossover method, reproduction, etc.

Architecture and memory

Population evolution requires a lot of objects to be present in computer memory. 
Jenes  framework  recycles  already  created  objects  continuously.  This  approach 
prevents the overhead of the garbage collection in Java virtual machine, which
is crucial for algorithm efciency. It follows that all necessary objects are created 
at  the  start  of  the algorithm,  when the memory occupation increases  and no 
object is created during the GA evaluation. The framework works on a level of 
single bits if the bitwise chromosome is used, which accelerates the computation.

Strong type checking

Data  types  of  the  Jenes  framework  are  strongly  typed so  that  all  used  data 
structures, e.g. chromosome, ftness function, genes, etc., can only work with the 
compatible types. It reduces runtime checks because parametric or generic classes 
are checked during compilation time which uses only the right data types. Hence, 
the runtime casting of the used objects is not needed. Therefore, the framework 
has better speed and accuracy.
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4
Sacramento Optimisation 

Framework

In  previous  Chapter 3,  we  introduced  the  used  hydrological  models  and  the 
software  framework.  This  chapter  describes  the  implementation  details  of  the 
Sacramento model including the optimisation framework. We focus on input and 
output data of the Sacramento and genetic algorithm components, as  Figure 3.9 
illustrates. This chapter summarises our approaches.

4.1 Implementation of the Sacramento model

In this chapter, we introduce the components of the Sacramento model illustrated 
in Figure 3.9. The workfow of the Sacramento model is described in Section 3.6.

Input data

The input  data  of  the  Sacramento  model  are  date,  precipitation,  temperature, 
observed foo, and evapotranspiration in the following form:

where F.4 is a real number with an accuracy of 4 decimal places. The last column 
is  applicable  only  if  evapotranspiration  data  are  available.  Otherwise,  evapo-
transpiration is specifed by 12 values (see Section 3.5).
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dd.mm.yyyy F.4 F.4  F.4 [F.4]

…
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Input parameters

Input parameters are in the form of INI fle1) in the following structure:

The  [sacramento] section  defnes  information  about  modelled  basin;  it  chara-
cterises the title of the project, especially date interval which delimits the time 
period of the simulation. This enables the setting of the simulated period within 
one input data fle without modifcation. Sections [snow17], [sacsma], and [unithg] 
determine the relevant model parameters described in Tables 3.1 and 3.2.

Properties  et,  etTS,  and  et12 in  section  [sacsma] describe  the  manner  how 
evapotranspiration  values  are  processed.  etTS (ET  time  series)  specifes  that 
evapotranspiration data are available for each day in the form of time series (last 
column  of  Input  data).  et12 means  that  12 discrete  values  defne  the  values 
determining  the  expected  evapotranspiration  for  each  month,  see  Section 3.5. 
Model user can set the manner of ET defnition via  et property in the section 
[sacsma].

Output data

There  are  two  kinds  of  model  output.  The  frst  form  is  a simple  text  fle 
containing the data of all used models, see sections of model output in Section 3.5. 
The fle can be easily imported into a Spreadsheet. The second one is a graphical 
output  illustrating  diferences  between  observed  and  simulated  discharges.

1) The INI fle format is a standard form for confguration fles. INI fle is simple text fle contains a structure 
composed of defned sections, properties, and values.
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[sacramento]
tile = Raztoka 1953-2011
from = 1.1.1953
to = 31.12.2011

[snow17]  
card1 = ELEV; ALAT
card2 = ITPX; PXADJ
card3 = IDT;  TAELEV; TALMAX; TALMIN
card4 = SCF;  MFMAX;  MFMIN;  UADJ;   SI
card5 = NMF;  TIPM;   MBASE;  PXTEMP; PLWHC;  DAYGM
adc = ADC01; ADC02; ADC03; ADC04; ADC05; ADC06; ADC07; ADC08; ADC09

[sacsma]
card1 = PXADJ; PEADJ; UZTWM; UZFWM; UZK;   PCTIM; ADIMP; RIVA;  IOPTET; EFC
card2 = ZPERC; REXP;  LZTWM; LZFSM; LZFPM; LZSK;  LZPK;  PFREE; RSERV;  SIDE
card3 = UZTWC; UZFWC; LZTWC; LZFSC; LZFPC; ADIMC
et = etTs | et12
etTs = 12 values as adjustment coefficient for each month
et12 = 12 values as estimation of monthly evapotranspiration
etGauss = σ; μ; m; a

[unithg]
card1 = BASE; AREA
uhg = ordinates of unit hydrograph



The graphical output is in HTML form which can be opened in almost all web 
browsers.  Among other things,  the HTML form illustrates monthly and yearly 
evapotranspiration  sums.  Figure  4.1 shows  an  example  of  HTML  output.
The advantage of HTML output is a user-friendly interface since it easily enables 
to zoom to a specifc area of a simulated period which allows a quick and efcient 
interactive modelling. The interactive chart supports logarithmic and linear scale. 
Logarithmic scale is a powerful tool for depth investigation of the diferences.

Another  output  is  statistical  information  about  the  simulation.  The frst  part 
includes  statistical  data  on  the  whole  simulated  period.  Values  of  statistical 
indicators are computed using the Equations 3.1-3.4. Table 4.1 introduces all used 
indicators which are based on  Equations 3.1-3.4 and their values determine the 
simulation quality.

Table 4.1: Statistical indicators of the Sacramento model

Global indicator
Monthly indicator

acronym description

drmse Daily RMS error Simulated mean runof
dabe Daily AVG ABS error Observed mean runof
aamve AVG ABS Monthly vol error Percentage bias
mvrmse Monthly volume RMS error Monthly bias
correlation Correlation Coefcient Percentage average absolute error
nash Nash-Sutclife coefcient
mbae Monthly ABS volume error
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Figure 4.1: HTML output of the Sacramento model



The second part of the statistical output is statistical information about monthly 
sums in  column 3 of  Table 4.1.  The indicators  applied to the whole simulated 
period are mentioned in column 2 of Table 4.1.

Appendix  A illustrates  the  examples  of  input  data,  model  parameters,  and 
statistical information.

4.2 Implementation of the GA Optimisation 
Framework

This chapter describes the genetic algorithm component of Figure 3.9.

The workfow of the GA is described in  Chapter 3.8.4. The GA parameters are 
defned in [optimisation] section in the INI fle with the following structure:

[optimisation]
OptimCriterion = mvrmse
Generator = hrng | prng
PopulationSize = 175
GenerationLimit = 400

OptimCriterion defnes which ftness function is used as the optimisation criterion. 
OptimCriterion property  can  take  values  listed  in  the  acronym column  of 
Table 4.1.  Generator property specifes the type of  the RNG used in the GA.
It  can  take  two  values:  hrng (see  Section 5)  and  prng (Mersenne  Twister 
Generator, see  Section 3.9.1).  PopulationSize and GenerationLimit are properties 
that represent the main GA parameters (see Section 3.8.2).

The rest of the GA parameters (see  Table 3.3) are embedded into the software. 
Therefore, the framework user cannot change their values. The user is shielded 
from  the  GA  parameters,  which  have  minor  impact  on  optimisation  quality.
It should simplify the usability of the framework.

Optimisation input

Initial  model  calibration is  one of  the GA inputs whose  form is  the  same as
the input parameter of the Sacramento model. This initial model calibration is the 
baseline for estimate model parameters using the MCS. This estimation requires 
percentage ranges for each model parameter which is next to the optimisation 
input. This input has the same form as the Sacramento  parameter input except 
that  instead  of  parameter  values  there  are  peregrinate  ranges  for  each  model 
parameter (see Appendix A).
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Optimisation output

The main GA output is an optimal model calibration in the same form as the 
input  model  calibration mentioned in  Section 4.1.  The rest  of  the  GA output
is equal to the Sacramento model output where the simulation is performed with 
the optimal model calibration.

Statistical  information about the simulation is expanded by a set  of  statistical 
information of the GA optimisation; e.g. total optimisation time, number of valid 
and invalid individuals. Another set of information is values of the highest, lowest, 
and deviations of the ftness function value.
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5
Hydro-Random Number 

Generator

As was mentioned several times, the random number generator (RNG) is the core 
of  the  genetic  algorithm (GA)  and  the  quality  of  the  RNG  is  crucial  for 
a successful optimisation. This chapter brings a detailed overview of our approach 
on how to improve the Mersenne Twister Generator (MTR) to achieve the optimal 
model  confguration  of  the  Sacramento  model.  We  summarise  an  architecture
of  a new  PRNG operating  on  the  principle  of  hydrological  data  with  normal 
distribution of generated numbers. We call this new random number generator the 
Hydro-Random Number Generator (HRNG).

The periodicity and the infuence of the seed variable are discussed in Section 5.1. 
It  specifes  the  contribution  of  hydrological  information  as  a good  source
of  random  data.  Section 5.2 introduces  a variability  of  an  interval  in  which 
random numbers are generated. HRNG generates random numbers with a normal 
density of probability, see Section 5.3. The fnal Section 5.4 discusses the efciency 
of the HRNG and its randomness validation.

5.1 Periodicity and Seed Variable

The periodicity is the only disadvantage of the PRNGs which is a consequence
of  the fnite  space  of  computer  memory.  Simulation of  the Sacramento model 
requires  up  to  hundreds  of  random  numbers.  Naturally,  a probability  of  the 
periodicity  increases  with the number of  optimised  parameters.  The Mersenne 
Twister Generator (MTG) is based on the Linear Congruential  Generators,  its 
principle is illustrated by Equation 3.6. The example in Section 3.9.1 demonstrates 
that  this  RNG has  the  periodicity.  Logically,  the example  is  very  simple  and
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is  only  for  periodicity  demonstration  but  this  fact  is  applicable  even  for  real 
problem instances with bigger numbers.

Periodicity of PRNG

The TRNG makes use of natural processes which can be mapped to a numerical 
value. This value is usually used as the seed variable in the process of generating 
random numbers. So, we can say that numbers generated in this way are truly 
random.  The  randomness  of  the  PRNGs  is  generally  dependent  on  the  seed 
variable.  The  PC  system  clock  often  initiates  a value  of  the  seed  variable. 
However, the PC clock is not a good source of random numbers. Moreover, each 
HW manufacturer has a diferent architecture infuencing the quality of the RNGs, 
Fischer  and  Drutarovsky  (2002).  In  several  applications,  the  seed  value
is  determined by programmes and the  value  is  often embedded into software, 
which is not the right way to increase the RNG efectiveness.

For reasons mentioned above, we want to use a new method that initiates and 
maintains the seed variable for the Sacramento optimisation.

Value of seed variable

Based  on  a theory  by  Lyon (2013),  who  defnes  randomness  as  a fundamental 
feature  of  nature  that  has  a normal  distribution,  we  fnd  data  with  normal 
distribution in the hydrology feld and we use them to generate random numbers 
based on natural events.

Hydrological  input  data  of  the  Sacramento  model  are  an  excellent  source
of  random numbers  but  not  in  its  raw form.  However,  hydro  data  can  inject 
interesting features of randomness into the PRNGs. We have found natural data 
which  show  normal  distribution.  Input  data  for  the  Sacramento  model  are 
precipitation,  temperature and  observed runof.  Figure 5.1 demonstrates courses
of  the input data.  It  is  evident  that  temperature has approximately periodical 
normal  distribution.  Data  were  being  collected  from  the  Ráztoka  basin  for 
a period  1959-1965.  Although  the  hydrological  data  show  an  asymptotic 
periodicity, there is no distinctive sequence of numbers being repeated. This fact 
has been tested in the 100-year long series on the Elbe catchment.
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The curve of temperature oscillates relatively dramatically. Therefore, we smooth it 
using a simple operation which adds temperature and precipitation values.
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Figure 5.1: Six-year course of hydrological data of Ráztoka basin

Figure 5.2: Course of the temperature and precipitation data while using addition and 
multiplication operations
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Let function f(t) be defned accordingly:

f (t)=P t+T t (5.1)
where t is the observed day and Pt/Tt is the observed  precipitation/temperature
of the day t.

If we use f(t) to add precipitation and temperature, the resulting course of f(t) is 
smoother than the individual curves of  precipitation and temperature. Figure 5.2 
illustrates that addition operation is more efcient than a multiplication operation, 
since it creates a smoother course.

As a result, we use the function f(t) for determining the seed variable because its 
functional values are based on natural events.

The following text  deals  with an integration of  f(t) into the algorithm of  the 
MTG. We have updated the MTG as follows. Each requirement for a random 
number updates the bufer B which means that each random number requires 
a bufer recalculation using the Functions 3.2 and 3.3. Although the bufer update 
prolongs the computation time, the randomness of generated numbers is increased. 
From the point of view of the implementation each request invokes Functions 3.2 
and 3.3. However, the index determining which item of the bufer B will be pulled 
next is not reset. Therefore, the bufer B must always be updated.

We try to test the example mentioned in  Section 3.9.1 again, where the Linear 
Congruential Generators (LCG) is described. This illustration is extended by f(t) 
and the results indicate that the function increases the randomness of generated 
numbers.  We use the same variable  values as in  the previous example,  so let
m = 11, a = 3, c = 4, X0 = 8. Further, let vector S = (8, 7, 7, 6, 5, 4, 3, 3, 3, 2, 2, 
2, 2, 2, 2, 3) be derived from the observed temperature, then f(n) returns the items 
of the vector S cyclically.

Xn=(af (n )Xn−1+c ) mod m (5.2)

The series obtained by using Equation 5.2 is as follows: 9, 6, 9, 1, 8, 1, 2, 0, 4, 6, 
7, 2, 5, 1, 10, 6, ….

It is evident that this sequence has no periodicity, although the vector  S is not 
random. Both examples are very simple illustrations of the LCG, which is a base 
for most PRNGs. However, the examples clarify the principle of complex PRNGs, 
like the MTG. Moreover, these examples support the view that additional natural 
based data can infuence the randomness of the RNGs.
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Values of precipitation and temperature for function f(t) are loaded from the input 
data  of  the  Sacramento  model,  see  Figure  3.5.  A number  of  required  random 
numbers  within  one  optimisation  is  in  the  order  of  hundreds  of  thousands.
Input data does not contain too many records so it is cyclically retrieved from the 
input fle. Nevertheless, the data cyclicality does not afect the quality of the RNG 
due to the “tempering” and inner states of the MTG. More specifcally, when input 
values of precipitation and  temperature (as a seed value) are repeated and their 
sum  is  used  to  generate  a random number,  then  the  value  of  the  generated 
random number is with very high probability diferent from the same combination 
of precipitation and  temperature values.  The reason is that the seed value goes 
through the states of the RNG and the bit operations change the fnal value of the 
generated number. Therefore, the probability that the states, constants, and inner 
variables of the RNG are the same as in the previous state with the same seed 
value is  very low. Moreover,  it  is  unlikely that the same states and the same
seed value are used for generating the same model parameter as in the previous 
GA generation.

5.2 Interval of Generated Random Numbers

The HRNG should generate real random numbers in the interval [0, 1) since the 
Sacramento model uses real-value coding of individual chromosomes. Function 3.5 
returns numbers in this range. However, model parameters are not only in [0, 1) 
interval.  If  a diferent  interval  is  needed,  a simple  mapping  described  by 
Equation 5.3 projects this interval into another one.

g (l,u )=X (u−l )+l (5.3)

Where X is a random number of the HRNG in the interval [0, 1) and l/u is the 
upper/lower limit of the required range.

5.3 Distribution

The change  of  the MTG internal  logic  using  f(t) (Equation 5.1) can infuence 
a distribution  function  of  generated  numbers.  The  original  architecture  of  the 
MTG has been designed with a uniform distribution whose random values have 
the same probability.
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The change of the MTG distribution function is illustrated by Figure 5.3. The ori-
ginal design of the seed variable has shown that the distribution function is ideally 
uniform in interval [0,1). If the seed variable is determined by f(t), the distribution 
is only asymptotically uniform, except for interval (0.7, 0.8) where the signifcant 
peak occurs. The distribution of Equation 5.1 has an asymptotic Gaussian shape 
with variance σ2=0.015 and mean μ=0.735.

We  follow  the  Lyon's (2013)  theory  that  natural  processes  have  normal 
distribution.  The  HRNG  will  be  used  for  simulation  of  the  rainfall-runof 
processes.  Therefore,  the  HRNG should  have  normal  distribution  because  the 
optimisation  of  the  Sacramento  model  is  an  optimisation  of  natural  systems.
The  parameters  of  normal  distribution  for  the  HRNG  are  derived  from 
Lyon (2013);  namely  variance  σ2=1.3  and  mean  μ=0.5.  The  next  step  is  to 
transform the distribution of f(t) into the required distribution.

The Box-Muller transformation is a method for number sampling which generates 
pairs of independent normally distributed numbers. The source of the numbers, 
which are transformed, is a uniformly distributed RNG. The method takes two 
random  numbers  form  a uniformly  distributed  RNG  and  maps  them  into
two numbers which are normally distributed. The method uses sinus and cosine 
functions, which derivate two coordinates of the new normally distributed number 
using the two-dimensional Cartesian system, Box and Muller (1958).
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Figure 5.3: Probability distribution of the MTG when the system clock or Equation 5.1 initiates the 
seed variable
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Figure 5.4 demonstrates the fnal result of the Box-Muller transformation where 
the distribution of f(x) is spread out; namely the interval (0.7–0.8) of Figure 5.3. 
The fnal distribution shows a slight fuctuation over the entire interval compared 
to the ideal  Gaussian distribution.  This  phenomenon is  caused by the HRNG 
which is not an ideal RNG but this is a consequence of using real random numbers 
as input data. However, the HRNG has a normal distribution with the required 
parameters.

5.4 Validation and Efciency

The asymptotic complexity is O(1) because the HRNG is based on the Mersenne 
Twister Generator  (MTG) and the Box-Muller transformation. Both methods are 
also O(1) but contain a large hidden constant. In absolute value, the speed of the 
MTG is approximately 25 Mreq/s and that of the HRNG is 7 Mreq/s, where req/s 
is the number of random numbers per second. The time ratio between the MTG 
and HRNG is approximately 3.5. However, the optimisation time using the HRNG 
is in minutes which is admissible.
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Figure 5.4: Final distribution of HRNG after the Box-Muller transformation

0

10

20

30

40

50

60

value

p
ro

b
a

b
ili

ty
 (

%
)

0.0  0.1   0.2   0.3   0.4   0.5   0.6    0.7    0.8    0.9    1.0



The  following  results  prove  that  the  HRNG  has  a normal  distribution  with 
parameters σ2 = 1.3 and mean μ = 0.5. Figure 5.4 represents the probable density 
in the interval (0, 1) for 100,000 random numbers from the HRNG. It is clear that 
the HRNG has approximately normal distribution except mild fuctuations, mainly 
on the top of the curve. The results of a χ2 test with the 95% signifcance level 
demonstrate that  the parameters  of  a normal  distribution correspond with the 
distribution of the HRNG. Let the hypothesis H be that the samples are normally 
distributed if the p-value is less than 0.05, Resende and Costa (1998). The p-value 
of the test was calculated for 108 samples and 100 bins in the interval  (0, 1).
The p-value is 0.5486 which proves that the HRNG is indeed normally distributed.

The last  validation tests  are the Diehard tests (see  Section 3.9.2),  which were 
performed  on  a dataset  containing  3.107 random  numbers  from  the  HRNG. 
Table 5.1 gives  the  performance  evaluation  of  the  Diehard  tests.  The  table 
compares both RNGs and shows average  p-values of these tests. It reveals that
the HRNG meets the requirements for randomness because the average p-value of 
the HRNG is 0.51.

Table 5.1: Results of Diehard tests

RNG Birthdays Permutations
Binary
Rank

Minimum
Distance

DNA Average

MTG 0.956 0.703 0.821 0.584 0.120 0.64

HRNG 0.182 0.406 0.868 0.930 0.182 0.51
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6
Evapotranspiration and UNIT-HG 

using Continuous Function

Evapotranspiration (ET) and Unit  Hydrograph (UNIT-HG) in the Sacramento 
model is defned by a set of coordinates specifying an appropriate mathematical 
function. The disadvantage of this approach is that functions are described by 
discrete values which are independent of each other. However, the functions of the 
ET and UNIT-HG are continuous, and their function values are in correlation. 
Typically, the course of the UNIT-HG is similar to the Poisson distribution so that 
the maximum value cannot be at the end of the distribution. Analogically, ET has 
an asymptotic Gaussian distribution.

The GA optimises the coordinates of the ET and UNIT-HG functions separately 
and does not take into account the correlation between the coordinates. Therefore, 
if  the GA user sets ranges of the coordinates inappropriately, the optimisation 
result of the ET or UNIT-HG may have an unrealistic course with an acceptable 
model validation.

As a result, our approach takes into account the correlation between coordinates 
of  discrete  model  parameters,  which  are  represented  via  continuous  functions.
We have identifed two continuous functions for defning the ET and UNIT-HG. 
The  following  sections  introduce  their  application  and  optimisation  in  the 
Sacramento model.

6.1 Evapotranspiration

We estimate the shape of the evapotranspiration course by using the Gaussian 
curve  and its  parameter  from long-term observations  and principles  of  annual 
weather cycle.  A real ET shape is not distributed that ideally.  The real shape 
varies  for  each  observed  period,  basin,  water  regime,  weather,  and  vegetation 
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conditions  (temperature infuences  water  consumption  and  thereby  ET).
The typical shape of ET is illustrated in  Figure 6.1.  It  is  evident that ET is 
highest in warm months, compared to being at its lowest during winter months. 
This phenomenon is caused by the growing season (ca. April – September).

Figure 6.1 also  demonstrates  the fact that  each period has a slightly diferent 
shape; however, the shape is asymptotically Gaussian.

The Sacramento model defnes ET using 12 discrete values. Each value specifes 
average ET value of a certain month, see Appendix A: section [sacsma] and key 
et12. The Sacramento model iterates in one day period, therefore the ET values 
for  each  day  are  computed  using  linear  interpolation  which  interpolates  the 
required value from the 12 discreet model parameters as follows:

ET (m,d )=ETm+d
ETm+1−ETm

f (m )
(6.1)

where  m is  month and  d is  a day for  which the ET value is  computed,  f(m) 
returns a number of days of the month m.

Figure  6.2 shows  fnal  interpolation  of  12 discrete  values  using  Equation 6.1.
There  are  evident  interpolation  sections  between  individual  months  which  are 
caused  by  the  interpolation  Equation 6.1.  On  the  other  hand,  the  Gaussian 
function has a smoother course.
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Figure 6.1: Evapotranspiration courses of Liz and Elbe catchments
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In Figure 6.2, it can be seen that the Gaussian function best copies the course of 
evapotranspiration. The function is defned as follows:

f g (x )=
1

σ √2π
e

−(x−μ )
2

2σ 2 (6.2)

where σ is a standard deviation with variance σ2, μ is a mean value.

Function  fg(x) is  generally  defned  in  interval  (‒∞,  ∞),  but  for  Sacramento 
objectives it is necessary to map the interval into interval (1, 2, …, 365) as a range 
of  x values; i.e. values 1...31 represent January, 32...60 represent February, etc. 
Therefore, this mapped function returns the ET values for each day of the year, 
more precisely the annual cycle. Function values of fg(x) must be adjusted for the 
purpose  of  the  Sacramento  model  since  ET values  are  in  the  order  of  units. 
Another variable  m is an adjusting factor which multiples values of  fg(x)  using 
m values. It enables function values to shift into desired values. Another constant 
is  an  addition  constant  a which  adds  a constant  value  to  the  function  values
of  fg(x). The addition constant implements phenomena that ET is not equal to 
zero in warm months; more precisely at the tails of fg(x).
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Figure 6.2: Evapotranspiration defned by Gaussian function and the 12 values
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Hence, the fnal function used in the Sacramento model for derivate ET value for 
each day is as follows:

f ET (x )=a+m 1

σ √2π
e

−(x− μ)2

2σ 2 (6.3)

where  a  is addition constant, and  m is multiplication constant. Model user can 
easily defne ET using Equation 6.3.

Regarding the legacy implementation of the SAC-SMA model, we have replaced 
the  code  implementing  Equation 6.1 by  code  which  implements  Equation 6.3. 
Therefore, the implementation process was very simple and with minimal impact 
on the whole model implementation. This process has a few advantages. Primarily, 
the ET parameter is now defned via 4 instead of 12 parameters, so the optimising 
problem is reduced by 8 parameters. It means that the optimisation time can be 
reduced as well. Another advantage is the continuity of the ET parameter, since 
the 4 ET parameters are in correlation and their individual optimisation estimates 
the ET curve as a whole and without signifcant deformation of the ET shape.

The new ET parameter defnition is simply defned in the parameter fle of the 
Sacramento  model.  The  INI  fle  has  been  extended  by  a further  property
of etGauss which contains variables from Equation 6.3, see the fowing structure:

[sacsma]
et = etTs | et12 | etGauss
etGauss = σ; μ; m; a

A model user can quickly convert the 4 parameters of  etGauss into 12 original 
values using Equation 6.3.

6.2 UNIT-HG

The  Unit  hydrograph  is  very  similar  to  the  evapotranspiration  from  the 
optimisation point of view. It means that the UNIT-HG is defned as a set of real 
discrete  values  but  the points  of  UNIT-HG are in  correlation.  For  UNIT-HG,
we have used the same principle of optimisation as in the previous Section 6.1.

In  Section 3.5.2,  we  illustrated  that  the  shape  of  UNIT-HG is  approximately 
similarly distributed by Equation 6.4, like the Poisson distribution:
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P (X=x )=
λx

x!
e−λ (6.4)

where x are all values of the random variable X, λ is a difusion parameter.

The difusion parameter λ describes a phenomenon of an observed event, which is 
represented  by variable  X.  The UNIT-HG is  characterized  by the  Translation 
Difusion  Equation (TDE)  based  on  Equation 6.4.  The  TDE is  applicable  as 
a transformation  procedure  in  the  rainfall-runof process  as  well  as  simulation
of water movement in various catchments. TDE is defned as follows:

f d (t )=
1

4πK
D
3
√t

e
−

(tC−D )2

t 4K (6.5)

where  t is time (day),  D is runof length (km),  C is velocity (km.h-1), and  K is 
difusivity (km-2h-1).

Function fd(t) must also be adjusted to the purpose of the Sacramento model as 
well as fg(x). Therefore, the fnal function used in the Sacramento model for UNIT-
HG is as follows:

f UH (t )=a+m 1

4πK
D
3
√t

e
−

( tC−D )2

t 4K (6.6)

where a is addition constant and m is multiplication constant.

The UNIT-HG is defned by all parameters of the Equation 6.6; namely K, D, C,  
m, a. However, it is necessary that another parameter p specifes how many points 
from fUH(t) are derived. The parameter p determines for how many days the runof 
is distributed to the river network (closure profle). Additionally, the p parameter 
defnes the adjustment of the value range in the interval [1..p]. In short, p specifes 
how  many  functional  values  describe  the  UNIT-HG.  In  the  context  of  the 
Sacramento model, p parameter is a cardinality of the set representing coordinates 
of the UNIT-HG, see Figure 3.4 for an example: p=16, codomain of fUH(t) is 1..p, 
and the set of coordinates S  = {fUH(1), fUH(2), …, fUH(p)} is used in this case. 
Figure  6.3 illustrates  an  example  of  two  UNIT-HGs  defned  by  fUH(t) for 
p parameter 16 and 5. There are two sets S16 and S5 with the following items:

S16={10, 100, 97, 79, 56, 45, 36, 28, 22, 18, 14, 11, 8, 8, 4, 2}
S5={10, 63, 25, 10, 2}.
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Generally,  Sacramento  modellers  are  able  to  properly  defne the  shape  of  the 
UNIT-HG using the parameters of fUH(t) including  p parameter. However, there 
are certain pitfalls that can be the reason for a legal model validation, but the 
shape of the UNIT-HG is utterly unrealistic. More precisely, fUH(t) does not mirror 
the  real  description  of  the  modelled  catchment  in  spite  of  a proper  model 
validation. The implication of  this possibility is  that the human factor is  still 
necessary.

Suitability for the use of fUH(t) is vindicated by several facts. Primarily, an initial 
estimation of  fUH(t)  parameters is relatively easy if background materials about 
a modelled  watershed  are  available,  like  the  topography  of  river  sections, 
a measured speed of  runof, retention points,  etc.  Fortunately,  this information
is available for most modelled terrains.

The new UNIT-HG parameters are defned in the parameter fle. New property 
uhgDif extends the section unithg in the INI fle as follows:

[unithg]
uhg = uhgDiff | uhgTs
uhgDiff = p, K; D; C; m; a
uhgTs = c1; c2; … ; c3

The model user can select which method for the UNIT-HG defnition will be used. 
The option  uhgDif defnes UNIT-HG using  Equation 6.6 and the option  uhgTS 
defnes UNIT-HG as a time series of instantaneous discharges for each day.

This approach has a signifcant advantage since the p parameter can be easily op-
timised. Therefore, the optimisation process is quicker because the framework tries 
many model calibrations with a various number of UNIT-HG coordinates. In other 
words, the optimisation estimates how long the response of a catchment for given 
runof and instantaneous discharge for given day are. Moreover, the UNIT-HG for 
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Figure 6.3: UNIT-HG defned by difusion Equation 6.6 for p = 16 and 5
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large basins can have dozens of coordinates so that the optimisation can be lim-
ited only to the optimisation of few parameters instead of dozens.

Implementation  of  this  approach  is  not  overly  complicated.  The  original 
Sacramento  model  uses  a double  array  which  represents  the  set  of  UNIT-HG 
coordinates.  The  new  implementation  creates  the  same  data  structure,  whose 
dimension  is  set  by  p parameters  and their  values  are  computed by applying 
Equation 6.6. Hence, the new implementation infuences the model minimally.

6.3 Areal Depletion Curve

The area depletion curve  (ADC) corresponds to a change  in  the actual  snow-
covered area that occurs after the snowfall. The user determines 11 ratios of the 
water equivalent (W) and the areal extent of the snow cover (A). ADC can be 
described as a non-declining function, so each value of the ADC must be greater 
than or equal to the previous value.

The course of the ADC does not resemble any continuous function with proper 
parameters and variations of the course. Therefore, we cannot use the principle
of continuous defnition as in the ET and UNIT-HG cases.

Parameters of ADC are defned using 9 discrete values. The two remaining values 
(0.05 and 1.0) are fxed, see Section 3.5.1. The GA optimises the parameters one 
by one, and the correlation between the individual parameters is not taken into 
account. This optimisation often breaks the condition of each value being greater 
than the previous one.

Function 6.1 illustrates an algorithm that fxes the ADC parameters according to 
the ADC condition. Lines 3 and 4 are given by the SNOW-17 model. Lines 6 to 12 
iterate the ADC array items one by one. If the condition is not met, the array 
items are adjusted using averaging and linear interpolation. The ADC parameters 
can be easily fxed by using this approach with O(1) of time complexity.

Function 6.1 just adjusts  the  ADC parameters  which  are  generated  randomly. 
Therefore, our approach does not change the model workfow. However, the shape 
(estimated  ADC  parameters)  of  the  ADC still  needs  to  be  inspected  by  an 
experienced modeller.

89



Function 6.1: correctADC(adc)

Input: adc - double array of incorrect ADC 
Output: double array of fxed ADC
begin
1 x ← adc
2 l ← lenght(x)
3 x[1] = 0.05
4 x[l] = 1.00
5 avgADC = average(x)
6 for i ← 2 to l-1 do
7 x[i] = average(x[i-1], x[i], x[i+1])
8 if x[i] < x[x-1] then
9 maxADC = max(x)
10 x[i] = average(x[i-1], maxADC, avgADC)
11 end if
12 end for
13 return x
end
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7
Study Areas and Data

Sudden rainfall and resulting runof are typical for small catchments and are also 
one  of  the  objects  of  this  study.  We  focus  on  experimental  watersheds 
Malá Ráztoka, located in the Beskydy Mountains, and Liz catchment, located in 
the Bohemian Forest (Šumava Mountains), both in the Czech Republic. Another 
objective is the Elbe River which is the representative for a large catchment.

7.1 Ráztoka Catchment

In  Malá Ráztoka  area  the  north-west  winds  capture  the  most  atmospheric 
precipitation, which consequently falls with the highest intensity. The area of this 
catchment is P = 2.08 km2. The basin elevation is around 840 m a.s.l, and the 
length of the watercourse is 2,000 m.

The length of the evaluated time series is usually signifcant and permits observing 
the infuence of the evolution of the vegetation. The changes in vegetation cover 
afect the demands of evapotranspiration and consequently the complex long-term 
water regime process. Therefore, the modelling of a relatively long series is not an 
easy and simple task because the values of the infuential model parameters of the 
basin  change  over  time.  There  are  daily  time  series  of  precipitation,  air 
temperature, and runof, which are used for the evaluation. The length of the time 
series  is  more  than  50 years  (1953–2011).  The  average  precipitation  is 
1243 mm/year,  and the average runof is  923  mm/year.  However,  the observed 
data  are  usually  burdened  with  errors,  especially  long  time  series  because 
measuring devices have been replaced or upgraded during these long periods.

These  additional  circumstances  contribute  to  a complicated  model  calibration
of this area. The original area of the Ráztoka catchment was covered with beeches, 
and in the second half of the 1960s its parts were gradually renewed by spruce 
stands on more than 75% of the land. This change infuenced the evapotranspira-
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tion and consumption of the water which also afected the inputs for the rainfall-
runof simulations. Further, the ratio of the observed and simulated fows during 
foods in 1960, 1966 and 1997 exhibit evident long-term tendencies that are in 
agreement with the changes of the vegetation cover in the basin. These foods also 
contributed to the vegetation cover changes. Thus, the values of the model para-
meters have changed since these food events, Buchtele and Tesar (2013).

7.2 Liz Catchment

The experimental catchment Liz is part of the southern Vimperk Highlands, which 
pass  into  the  Šumava  Mountains.  This  basin  area  represents  fully  forested 
watershed covered by mature forest, mainly spruce and beech. The catchment area 
is 0.99 km2, and the average altitude is 941.5 m a.s.l. The mean annual runof is 
324 mm/year,  annual  precipitation is  840 mm/year,  and annual  temperature is 
6.49 °C2).  Precipitation,  air  temperature,  and  water  level,  are  continuously 
measured at the closure profle. The time series of hydrological data are available 
for the season 1976-2006.

Liz is inclined and its geological subsoil forms an impermeable bottom. Despite 
the  soil  cover,  which  is  composed  of  several  horizons  with  diferent  water 
absorptions,  the rainwater mainly leaks down the ground. The soil  cover (acid 
brown soil - Cambisol) is also comprised of several soils with diferent hydraulic 
properties, but the infltrated water mostly fows downwards through the ground. 
So, the surface and subsurface runof sloping down is a rare phenomenon only in 
catastrophic rains, Buchtele et al. (2000).

7.3 Elbe River Basin

The Elbe River is one of Europe's largest rivers, springing in the Giant Mountains 
in the north of Bohemia. The Elbe River fows through Germany and enters the 
North Sea. The river is 1,094 km long, and its area is 148,268 km2. In the Czech 
Republic, its length is 371 km, and the area is 49,933 km2. The altitude of the 
river  spring is  1,387 m a.s.l,  and is  located in the peat  bog in  Labská Louka
(in proximity to the state border with Poland), Simon (2005).

Melting of the snow cover causes the highest water levels in spring. The water 
level descends in summer, but rainfall may cause a sudden rise in water levels 
during this warm period. The average water fow is 311 m3/s at the closure profle 

2) Values are determined for hydrological years 1976–2006
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in the Czech Republic. The mean annual precipitation is 1.82 mm, and annual 
temperature is 7.56 °C3).

The time series of hydrological data are available for season 1895-2000. There were 
many hydrological, climatic, and vegetation changes during this period. Therefore, 
the optimisation of this watershed is a complicated issue.

3) Values are determined for hydrological years 1895–2000
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8
Main Results 

and Discussion

This chapter presents the evaluation of the HRNG approach and discusses the 
achieved results across the informatics and hydrological felds. Sections 8.1 and 8.2 
introduce the results of genetic algorithm aspects. Distribution of the randomly 
generated  numbers  is  a major  part  of  the  results.  In  Section 8.3,  we  present 
experiments  with  the  PRNG  (uniform  distribution)  and  HRNG  (normal 
distribution)  and  dependence  of  the  range  value  on  the  optimisation  quality.
The  fnal  simulation  results  of  the  Sacramento  model  are  introduced  in 
Section 8.4. We analyse the results obtained using the PRNG and HRNG, and we 
discuss  the comparison of  observed/simulated discharge and evapotranspiration 
estimation. The last  Section 8.5 shows results of the approaches that apply the 
continuous functions for defning the UNIT-HG and evapotranspiration.

8.1 Fitness Function Selection

The crucial  aspect  of  the optimisation is  the selection of  the ftness  function.
The  optimal  GA parameter  confguration  is  shown  in  column 4  of  Table 3.3. 
Several  ftness  functions  were  applied  and  Table 8.1 summarises  their  results.
In this table, there are 8 statistical indicators and 5 ftness functions, all derived 
from  Equations 3.1-3.4.  At frst, RMSE, R, NASH, and BIAS, were evaluated.
If  R is  used  as  a ftness  function,  its  value  is  near  0.90  but  other  statistical 
indicators are unsatisfactory. However, RMSE as a ftness function results in low 
values of most statistical indicators except the Correlation Coefcient. This ftness 
function seems to be a good choice but the Monthly volume RMSE is still too big.
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Table 8.1: Testing of statistical indicators for various ftness functions

Statistic indicator RMSE R NASH BIAS MVRMSE

AVG ABS Monthly volume error (mm) 7.087 44.36 12.408 11.401 0.017

Monthly volume RMSE (mm) 32.221 160.776 51.453 46.251 0.073

Correlation Coefcient (–) 0.8851 0.8939 0.8763 0.8708 0.8281
Nash-Sutclife coefcient (–) 0.7329 0.6583 0.7613 0.7437 0.6652
Monthly ABS volume error (mm) 40.037 250.605 70.0946 64.4091 0.0946

RMSE (mm) 0.0411 0.0513 0.0429 0.0444 0.0508
Percentage bias (%) -6.311 -44.36 -11.863 -11.099 -0.001

Monthly bias (mm) -35.65 -250.61 -67.017 -62.703 -0.005

Number of the best cases 1 1 1 0 5

Consequently,  another  ftness  function  derived  from RMSE (Equation 3.1)  was 
constructed. This ftness function refects the high monthly volume RMS error. 
The new ftness function: monthly volume RMSE (MVRMSE) is

MVRMSE= √1n ∑
i=1

n
1

30 (MQ i−MS i )
2 (8.1)

where  MQ is  the  observed  monthly  discharge,  MS is  the  simulated  monthly 
discharge, and n is the number of monthly events.

The last column of Table 8.1 shows the results of the testing period. The column 
indicates that the MVRMSE as a ftness function produces the best results in 
comparison with other used ftness functions. In particular, the MVRMSE ftness 
function provides better results in 5 cases of the used statistical indicators. On the 
other hand, the Correlation Coefcient and the Nash–Sutclife coefcient report 
a slight  degradation  in  quality  but  not  by order  of  magnitude.  A consequence
of  MQ is  that  extreme fuctuations of  observed fows are averaged within the 
month. Because of this, the GA does not respond fexibly to those fuctuations 
caused by foods which can confuse the algorithm. Due to this fact, the MVRMSE 
has been selected as the ftness function for the optimising of the Sacramento 
model for the Ráztoka catchment.

When compared, these results suggest that there is an association between the 
ftness function and simulated watershed. Moreover, the length of the time period 
of the simulation of the basin is also a signifcant association aspect. There is no 
universal procedure how to determine the ftness function yet. It is still necessary 

96



to perform an analysis  determining which ftness  function is  optimal for given 
basin and even time period. For instance, the MVRMSE is the optimal ftness 
function for  the Ráztoka catchment,  while  the AAMVE (see  Table 4.1)  is  the 
optimal  ftness  function  for  the  Elbe  basin  but  only  for  long  time  periods.
There are some instances of simulations which require multiple optimisations with 
several kinds of ftness functions.

A similar statistical analysis as in the case of Ráztoka basin was used for the 
selection of the ftness function for the Elbe River as was the long period from 
1905 to 1970.

Table 8.2: Statistical indicators for the Elbe River with a sequential optimisation using 
diferent ftness functions

Statistic indicator Initial MVRMSE AAMVE

AVG ABS Monthly vol error (mm) 6.692 1.233 1.99
Monthly volume RMS error (mm) 61.992 14.333 23.733
Correlation Coefcient (–) 0.840 0.789 0.856

Nash–Sutclife coefcient (–) 0.695 0.607 0.732

Monthly ABS volume error (mm) 70.925 13.066 21.087
RMSE (mm) 9.611 10.087 9.327

Daily AVG ABS error (mm) 92.362 101.752 86.995

Percentage bias (%) -6.086 0.078 0.279
Monthly bias (mm) -64.503 0.826 2.962
Number of the best cases 5 4

However,  Table 8.2 shows  an  example  that  a sequential  optimisation  with 
a diferent ftness function can provide interesting results. The initial calibration 
has been derived from previous experiments, Chlumecky et al.  (2014). We select 
the MVRMSE as the ftness function for the frst optimisation run. The results 
(column 3)  indicate  an  interesting  improvement  beside  the  initial  calibration. 
There are low decreases of some indicators with minimal impact to the model 
output quality. The optimisation output of the frst run was used as an input for 
the next optimisation run but with the AAMVE (AVG ABS Monthly volume 
error) ftness function. In comparison with the MVRMSE, the AAMVE has only 
4 best cases of statistical indicators but the model output shows better results. 
The  second  optimisation  run  primarily  improved  the  Correlation  and  Nash-
Sutclife coefcients, so the course of simulated and optimised discharges is more 
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similar. It is apparent from the table that the selected ftness function does not 
guarantee that statistical indicator refecting the selected ftness function provides 
the best value. Specifcally, if MVRMSE is selected as the ftness function, the 
value of AAMVE is 1.233. By contrast, the value of AAMVE is 1.99 for AAMVE 
as the ftness function.

8.2 Optimisation using HRNG

This section describes results of the Sacramento optimisation from the point of 
view of the GA. In this section, we discuss the results of the sensitivity analysis
of  the  GA  parameters,  optimisation  speed,  and  other  observations.  Observed 
results  have  been  obtained  using  the  PRNG based  on  the  Mersenne  Twister 
generator and the newly presented HRNG. Ráztoka was selected as a simulated 
catchment  for  this  section  and the  modelled  period  was  10 years  (1953-1963).
The optimisation quality is measured by the MVRMSE ftness function.

8.2.1 Sensitivity Analysis of GA Parameters

The proper setting of GA parameters has a signifcant efect on the optimisation 
quality. We will demonstrate that the new HRNG can reduce this impact.

The most signifcant GA parameters are the Generation limit and the Population 
size. We analysed 15 combinations of x and y, where x is the Population size and 
y is the Generation limit;  x takes the values 100, 125, 150, and 175;  y takes the 
values 400, 450,  500,  and 550.  The optimisation was carried out  for following
x-y combinations and both RNGs.

Figure  8.1 illustrates  the  tendencies  of  the  MVRMSE  indicator  for  each 
combination (x-y). At frst glance, it is evident that the HRNG provides better 
values  of  the  MVRMSE  whose  tendency  is  approximately  equal  for  each
x-y combination in comparison with the PRNG. It is apparent that the GA with 
a PRNG signifcantly infuences the MVRMSE according to the  Population size 
parameter, as is shown in Figure 8.1. Another fact is that higher Population size 
does not mean higher optimisation quality. The beneft of the HRNG is a stable 
value  of  the  MVRMSE for  diferent  values  of  the  Population  size.  Moreover,
the value of the MVRMSE in the HRNG is one-sixth smaller than the same value 
in the PRNG. We selected the combination of 175-400 as optimal for Ráztoka 
catchment.
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Additional GA parameters are crossover, mutation, and elitism, whose infuence is 
illustrated in  Figure 8.2. One-point and two-point crossover operations have the 
same  tendency.  The  fgure  only  shows  the  one-point  operation  for  clarity.
The crossover operations have one argument p, where p is the probability of the 
crossover operation, and the  x-axis of  Figure 8.2a that represents the value of
the p argument. This value afects the ftness function equally, and therefore, the 
tendency is the same for both RNGs. The  p value is set to 0.8 for this study.
The x-axis of Figure 8.2b represents the probability p of the mutation. Again, it is 
evident that the trend of the ftness function is the same for both generators.
If  the  p value of the mutation is 0, the MVRMSE is higher by several orders
of  magnitude.  The  higher  value  of  the  mutation  unnecessarily  prolongs  the 
computing  time  with  zero  proft,  and  therefore  the  p value  is  set  to  0.03.
For elitism, the x-axis of  Figure 8.2c represents the percentage of the number of 
the  best  individuals  transferred  to  the  new generation.  It  is  evident  that  the 
tendency is also similar. The p value of the elitism is fxed to 0.04 since a higher 
value does not bring a signifcant improvement but prolongs the computing time.

The Sacramento users should only confgure the GA parameters which directly 
infuence  the  optimisation  quality  while  the  rest  of  the  GA  parameters  are 
screened  out  from the  users.  Thus,  Population  size and  Generation  limit are 
possible to be adjusted in contrast to crossover, mutation and elitism parameters, 
which are fxed.
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Figure 8.1: Tendency of MVRMSE indicators depending on the Population size and the 
Generation limit parameters using both RNGs
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Figure 8.2: Tendencies of the ftness function value depending on (a) crossover, (b) mutation, 
(c) elitism
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8.2.2 Optimisation Speed

The optimisation speed is the most interesting fnding of this study.  Figure 8.3 
illustrates the course of the ftness function (MVRMSE) depending on the progress 
of the GA. The GA’ss progress is expressed by the sequence number of processed 
interactions  (generation):  each  sequence  number  is  assigned  the  best  ftness 
function value of the current interaction. The horizontal axis displays the sequence 
number and the vertical axis shows the best ftness function of that interaction. 
The HRNG curve decreases almost quadratically; in absolute numbers: the PRNG 
needs approximately 90,000 iterations to achieve 4.64 of MVRMSE, whereas the 
HRNG needs only 10,000 iterations to achieve the same result.

However,  the  optimisation  speed  signifcantly  depends  on  the  GA parameters, 
namely the Population size and the Generation limit. Figure 8.4 demonstrates the 
optimisation speed in minutes. The same combinations of  x-y are used for this 
benchmarking,  as  in  Figure  8.1;  here,  x is  the  Population  size, and  y is  the 
Generation limit. The secondary y-axis shows time diferences in the optimisation 
speed between the PRNG and HRNG in percentages. The optimisation speed of 
the  HRNG  is,  on  average,  faster  by  30%  for  the  Population  size interval
<125,  175>.  For  the  Population  size <  125  the  HRNG is  slower  in  certain
x-y combinations  by  approximately  8%  but  only  for  small  absolute  values.
The biggest acceleration can be observed in the combination of 175-550 where the 
acceleration is  up to 40%. On the other  hand, if  the combination values rise,
the  opposite  efect  occurs  and  the  HRNG  drops  by  up  to  40 %,  see  the 
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Figure 8.3: Development of the course of MVRMSE depending on the number of iterations
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combination 200-450. Nevertheless, combinations higher than 200-y do not have 
any real use because they do not provide radical improvement of the MVRMSE, 
as is illustrated in Figure 8.1.

8.2.3 Multiple Optimisation Runs

Current simulation comparing HRNG to PRNG showed that the PRNG easily 
gets stuck in local minima. It is interesting to note that the value of the ftness 
function is the same in all optimisation runs with the same Sacramento and GA 
parameters;  namely initial  model calibration, GA parameter confguration, and 
input data. The value of the ftness function is the same but additional indicators 
of  the  optimisation  (e.g.  highest  score,  average  score,  deviation  score,  the
number  of  legal  individuals)  are  diferent,  so  the  optimisation  algorithm tries 
several ways. This fact has been tested for each defned ftness function. Figure 8.5 
only  shows  MVRMSE  values  for  10 optimisation  runs  for  clarity.  The  fgure 
reveals that the ftness function has constant values using the PRNG in contrast 
with HRNG. An implication of this might be the possibility that the HRNG can 
fnd a better solution whereas the PRNG gets stuck in local minima. However, 
these results need to be interpreted with caution because the HRNG does not 
guarantee the optimal solution to be found; but it can fnd a better solution than 
the PRNG. Section 8.3 explains this phenomenon.
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Figure 8.4: Time duration of the optimisation depending on the Population size and the 
Generation limit
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8.3 Range and Distribution Function

The Sacramento optimisation includes estimation of many model parameters in 
the  diverse  range  of  parameter  values.  Moreover,  there  are  model  parameters 
which are in diferent order of magnitude, which means that to determine the 
useful course of search space is a complicated issue.

The range determining the interval of estimated values for each model parameter 
is crucial for a successful model optimisation. The more extensive range interval, 
the more complicated optimisation, since the GA must search the large search 
space.  If  the  ranges  are  too  broad,  the  GA needs  more  time  to  achieve  the 
optimum.  However,  the  degeneration  of  processed  populations  can  occur, 
Holland (1992). On the contrary, if the range intervals are too narrow, the GA can 
get stuck in local minima, since the GA cannot continue to the more distant parts 
of the search space. It follows that the optimisation quality still depends on the 
Sacramento modeller experiences and, to a certain extent, also intuition.

The major part of the PRNGs operates with a uniform distribution of generated 
numbers. It has signifcant impact on the course of search space. If the range is set 
small  enough,  the  GA is  able  to  thoroughly  scan  the  whole  interval  because
it manages to generate most values in time. More precisely, it is able to do this 
within  one  GA  run,  which  is  limited  by  the  value  of  the  GA  parameter  – 
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Figure 8.5: Ten multiple-runs of optimisation with a diferent RNG
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Generation limit.  It should be noted that the GA can never search the whole 
interval  because  it  is  too  broad,  since  it  is  a set  of  real  numbers  and  the 
Generation limit stops the optimisation before the GA processes most values of 
the interval. If the Generation limit is increased, the computation time of the GA 
is unnecessarily prolonged and the probability of the degeneration is increased.
On the other hand, the PRNG estimates the parameter values in the interval
(a, b) using a uniform distribution. If the GA estimates a value near the optimum 
value, the probability that the PRNG will select the next value close to this is 
small; the exact probability is  1/(b-a). Therefore, the broader interval, the lower 
the probability that the GA fnds the optimal value.
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Figure 8.6: Infuence of probability distribution (a) probability distribution of HRNG and PRNG, 
(b) shifting of scanned intervals across the generations
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In  contrast,  the HRNG with  a normal  distribution brings  a diferent  approach
to  the  parameter  value  estimation.  The  large  interval  of  estimated  model 
parameters can be set while using the HRNG since random numbers are generated 
with normal probability. In other words, the whole potential interval of generated 
numbers is divided into several subintervals with a diferent probability according 
to  normal  distribution.  Thus,  there  is  one  interval  with  a higher  probability, 
approximately  60%;  it  is  based  on  the  probability  density  function  of  normal 
distribution, see Figure 8.6a. If the optimal value of the estimated parameter is in 
this  interval,  the  probability  that  the  optimal  value  will  be  selected  in  this 
interval, compared to the one with a uniform distribution, is higher. Naturally, the 
modeller  must  estimate  this  interval  properly.  However,  there  are  other 
subintervals with a small probability so that the GA can pass to a farther part of 
the search space represented by these unlikely intervals. In this manner, the GA is 
able to search signifcant parts of the search space.

For clarity,  Figure 8.6a delineates an example of the parameter estimation using 
both random number distributions. The modeller has a rough estimate that the 
parameter value is between 0.8 and 1.2, marked as interval  a. However, there is 
a possibility that the parameter value can be in the broader interval b (0.3-1.7). 
Taken together,  these  results  suggest  that  the  interval a and the PRNG with 
a uniform distribution do not provide acceptable model results because the op-
timal value may be in the interval b.  The problem is  that interval b with the 
PRNG is  too  wide  for  the  GA to  fnd  the  optimal  value  in  time.  Whereas,
the HRNG with normal distribution is able to process the interval b efectively, 
since the GA scans the interval a thoroughly. Moreover, the boundaries of inter-
val b have a non-zero probability compared to interval a.

There is a signifcant side efect of the HRNG approach. The interval, where the 
GA searches  for  the  parameter  values,  is  diferent  for  each  generation,  since
the current interval is based on current parameter value, which is shifted across 
generations.  Figure  8.6b illustrates  how  the  GA  shifts  the  scanned  interval
across the generations.

Figure  8.6b also  demonstrates  that  if  a less  probable  value  is  selected,  then 
a newly estimated value is  searched in  the proximity of  a point  with a higher 
probability than the one of the previous generation. Due to this, the GA gives the 
opportunity to the less likely value, since its area is scanned in depth in the next 
generation. Therefore, improbable values are searched in contrast with the uniform 
distribution, where these values have zero-probability of being selected due to the 
small size of the scanned interval. If  thus created individuals have high ftness 
values, the probability of selection into the next generation is higher. If not, these 
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valueless individuals are removed from the population, but they still have a chance 
to  be  selected  for  the  next  generation,  where  they  may improve  their  ftness 
values. These individuals would not have had an opportunity to be created, if the 
interval had been too small.

Specifcally, the mean value (μ1) of the estimated parameter in the frst generation 
is 1.4, so the scanned interval is (0.8-2.0) in case of 40 % range. If the best ftness 
value of the frst generation is 0.85, this value is set as the mean value (μ2) for the 
next generation. It has several consequences, as follows. In the next generation, 
the GA scours the proximity of μ2 more densely, in contrast with the uniform 
distribution. Therefore, if the optimal value is near μ2, there is a high probability 
that the GA fnds it. So, either the ftness value of μ2 will be improved or the more 
ftness mean value will be found in the next generation. On the other hand, the 
PRNG with a uniform distribution and with 40 % range has a high probability 
that the GA strays into the wrong parts of the search space. Thus, looking for the 
optimal value is prolonged.

In short, the HRNG adopts the advantages of the PRNG but wide intervals of 
estimated values do not make the optimisation quality worse. The HRNG inspects 
the most probable parts of the intervals in depth. However, the HRNG can select 
values from distant parts of the search space in contrast to the PRNG, since the 
HRNG operates with large intervals. The PRNG can also achieve this by outlying 
the values but at the expense of decreasing the probability to fnd the optimal 
value, since the optimal value is usually in the middle of the interval specifed by 
the modeller. The HRNG uses normal distribution and the probability that the 
next  value  will  be  in  small  proximity  to  the  previously  estimated  value  is 
approximately 60%. Although values at the bounds of the scanned interval have 
a low probability, they have a chance to make it to the next generation selection. 
The  HRNG  estimates  values  primarily  in  narrow  surroundings  but  does  not 
exclude  farther  surroundings.  Whereas,  the  PRNG  with  a small  interval  of 
estimated values never achieves same values as HRNG does. For model users, this 
fnding helps to make setting the parameter ranges easier because users can set 
greater parameter ranges without afecting the optimisation quality.

The shape, or more precisely the parameters of a normal distribution are of high 
importance  for  the  course  of  the  optimisation  since  they  determine  the 
probabilities  of  the  normal  distribution  subintervals.  The  shape  of  a normal 
distribution is the topic for a separate research.
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8.3.1 Using Two Distributions of the RNG

The  following  course  of  actions  shows  a practical  application  of  diferent 
distribution functions in the RNG. The observed basin for this example is Ráztoka 
and  the  time  period  is  1954-1964.  We  have  only  a rough  estimate  of  model 
parameter values from this period so that some optimal values might be far from 
these estimated values. The initial model validation (see column 2 of  Table 8.3) 
confrms  that  the  rough  estimate  has  big  monthly  RMS  errors  despite  the 
Correlation  Coefcient.  Figure  8.7 illustrates  that  the  curve  of  the  simulated 
discharge  is  very  similar  to  the  observed  discharge  but  has  signifcant 
transposition, hence the model validation shows the high error rate.

Table 8.3: Model validation for the Ráztoka basin using diferent RNGs

Statistic indicator Initial HRNG PRNG

AVG ABS Monthly vol error (mm) 57.135 0.960 0.200
Monthly volume RMS error (mm) 220.3 3.953 0.958
Correlation Coefcient (–) 0.8165 0.783 0.826
Nash–Sutclife coefcient (–) 0.4104 0.573 0.677
Monthly ABS volume error (mm) 322.772 5.421 1.129
RMSE (mm) 0.177 0.160 0.152
Daily AVG ABS error (mm) 0.031 0.025 0.023
Percentage bias (%) -57.135 -0.017 -0.024
Monthly bias (mm) -322.772 -0.095 -0.138

The frst phase of the Sacramento optimisation includes using the broader ranges 
of parameter values and the HRNG with a normal distribution. It is expected that 
the optimisation will  only fnd close values of model parameters; therefore, we 
have to use the wider ranges and the HRNG, namely 80% ranges for each model 
parameter value. The result of this frst phase indicates a signifcant improvement, 
see column 3 of  Table 8.3.  There was only a slight decrease in the Correlation 
Coefcient.  Now, the HRNG estimates the model  parameters  more accurately. 
Another phase is the optimisation using the PRNG with a uniform distribution 
but  with  narrower  ranges  of  model  parameter  values,  namely  10%.  The  con-
sequence of these ranges is that the GA just particularises the model parameters, 
and the probability that the GA being lost in the search space is minimal.
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Last  column  of  Table 8.3 and  Figure  8.8 illustrate  the  fnal  result  of  the 
Sacramento simulation for the Ráztoka catchment. The vast majority of the model 
validation indicates a quality improvement. Even the Correlation Coefcient has 
a higher rate than the initial value. In short, the sequential optimisation using 
diferent  RNGs  and  ranges  might  improve  the  simulation  of  the  Sacramento 
model.
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Figure 8.8: The fnal results of the Ráztoka simulation (1956-1957)

Figure 8.7: Simulation results for a rough estimate of model parameter values in the Ráztoka 
basin (1956-1957)
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8.4 SAC-SMA Results

First of all, we compare the model validations of both RNGs. The present results 
are  signifcant  because  the  HRNG  can  fnd  a better  solution,  as  Table 8.4 
illustrates. The statistical indicators used in the table are described in depth in 
Burnash (1995).  Column 2 lists the statistical values of the manual calibration 
which were used as the initial calibration. This result was expected because the 
iterative  manual  calibration  is  very  difcult  and  time-consuming.  Finally, 
columns 3 and 4 summarise the statistical results of the model optimisation with 
diferent  RNGs.  These  results  might  be  related  to  the  selection  of  a ftness 
function, which is one dimensional so that the other values of the indicators may 
become less favourable. The diferences between manual calibration and automatic 
optimisation calibrations are another interesting observation. In the case of the 
PRNG, some indicator  values  are worse  compared  to  values  with the  manual 
calibration: especially the Correlation Coefcient. On the other hand, the HRNG 
improves all values of indicators compared to the PRNG.

Table 8.4: Statistical indicators for various random number generators (PRNG, HRNG)

Statistic indicators
Manual 

calibration

Used RNG
Δ

PRNG HRNG

AVG ABS Monthly volume error (mm) 61.194 0.226 0.024 0.202
Daily AVG ABS error (mm) 0.038 0.041 0.036 0.005
Daily RMS error (mm) 0.196 0.204 0.0755 0.1285
Monthly ABS volume error (mm) 217.923 7.8018 0.8318 6.97
Monthly volume RMS error (mm) 220.30 4.572 0.240 4.332
RMSE (mm) 0.0751 0.0755 0.0641 0.0114
Correlation Coefcient (–) 0.8266 0.7823 0.7969 0.0146
Nash–Sutclife coefcient (–) 0.4015 0.3950 0.5643 0.1693

Figure 8.9 compares the results obtained for the Ráztoka simulation in the period 
1956-1966. It is one of the most variable periods concerning precipitation because 
there were several food events. Moreover, the development of diverse aspects of 
the vegetation cover (e.g. the strong infuence of forest changes due to the bark 
beetle  calamity, increased grain production) frequently occurred. These aspects 
make the model calibration during this period more complicated. In particular, the 
consecutive re-forestation in this catchment and the resulting decrease of evapo-
transpiration requires precision in the complex component of water balances.
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The shape of the HRNG curve is satisfactory towards the obtained results and it 
takes the nature of the period into account. In contrast, the PRNG yields high 
deviations from the observed fow, these deviations are apparent on most peaks. 
Figure 8.9 also illustrates that the HRNG creates smoother and more continuous 
shape of the simulated discharge compared to the PRNG. This is the result of the 
primal  optimisation  run  of  the  model  implementation,  and  an  additional 
calibration/optimisation can further increase the quality of the model validation; 
some  of  our  preliminary  experiments  for  partial  periods  have  indicated  this 
phenomenon as a possibility.
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Figure 8.9: Logarithmic scale of observed and simulated discharges using (a) PRNG and
(b) HRNG
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Figure 8.10 illustrates the annual trends of the evapotranspiration (ET) demand 
and  actual  evapotranspiration  using  both  RNGs.  The  trends  are  the  same. 
However, the actual ET of the PRNG is very volatile compared to the HRNG. 
Another important implication is that the GA with HRNG can more realistically 
calibrate the Sacramento model. The evapotranspiration of the HRNG refects the 
vegetation changes of the Ráztoka catchment, where the water consumption was 
decreased due to the gradual deforestation.

The abrupt disasters of vegetation cover and its long-term development should be 
stated  in  this  context  as  a reason  for  the  surprising  course  of  the  evapo-
transpiration on such occasions (see Appendix C).
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Figure 8.10: Annual trends of the evapotranspiration demand and actual evapotranspiration using 
both RNGs
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8.5 Continuous Function Optimisation

Evapotranspiration  (ET)  and  Unit  Hydrograph  (UNIT-HG)  are  defned  using 
discrete values, which are in correlation, but the GA does not take this fact into 
account.  This  section  describes  experiments  with  continuous functions,  defned
in  Section 6,  which improve the optimisation quality. We compare the original 
defnition  of  ET and  UNIT-HG with  the  new approach  using  the  continuous 
function.

8.5.1 Evapotranspiration by Gaussian Function

As we mentioned in the introduction (see Section 1.1.4), optimisation of ET can 
bring the unrealistic ET shape since it is defned by 12 discrete values that are
in the correlation, the GA is not able to take these account.

In this section, the Sacramento simulation was performed on Ráztoka basin for the 
year 1954 since this is a calm season from hydrological point of view. Therefore, 
we expect a smooth course of evapotranspiration.

Figure  8.11 and  Figure  1.1 illustrate  the  optimisation  issue.  The  blue  line 
represents optimised ET which is defned via 12 discreet values (et12). The course 
of  this  ET is  not  smooth at  frst  glance;  especially  in  the 7th month there is 
a signifcant  slump.  However,  there  is  no  reason  for  this  slump  because  the 
modelled period is hydrologically calm. Too loose ranges of et12 parameters can be 
a result of this unrealistic ET shape. The model user must defne the proper range 
for  each  value  of  et12 to  achieve  a realistic  ET  course,  which  is  very  time-
consuming. On the other hand, the red line in Figure 8.11 illustrates a realistic ET 
shape. It is a result of ET optimisation using Equation 6.3 (etGauss).

If we compare the simulated discharges of both ET defnitions (et12 and etGauss), 
the results are very similar and there are no deviations that debase the simulation 
quality, as Figure 8.12 illustrates. The visible diferences can be seen in the 6th and 
8th month but with a relatively small disparity. Moreover, the ET by Gauss course 
is more similar to the observed discharge than ET by 12 values.
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Figure 8.11: Optimised evapotranspiration using 12 discrete values and Gauss function

Figure 8.12: Simulated runof using 12 discrete values and Gaussian function
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Table 8.5: Model validation using 12 discrete values and Gaussian function

Statistical indicator et12 etGauss Δ

Daily RMS error (mm) 0.116 0.115 0.001
Daily AVG ABS error (mm) 0.013 0.013 0
AVG ABS Monthly vol error (mm) 0.701 10.533 -9.832
Monthly volume RMS error (mm) 1.268 13.743 -12.475
Correlation (–) 0.8699 0.8724 0.0025
Nash-Sutclife (–) 0.7555 0.7606 0.0051
Monthly ABS volume error (mm) 0.2679 4.0265 -3.7586

Table 8.5 summarises the model validation for both ET defnitions. As can be seen 
from the table, etGauss makes a few statistical indicators worse but not radically. 
Correlation and Nash coefcients evince a slight improvement in contrast to et12. 
However,  achieving the realistic shape of evapotranspiration is more important 
than these statistical indicators. This fnding has important implications for basin 
information obtained by the Sacramento model since ET infuences a flling of the 
model  zones.  Therefore,  if  the  evapotranspiration  mirrors  reality,  the  rest  of
the model parameter and model outputs could provide useful information.

8.5.2 Unit Hydrograph by Difusion Function

Discrete  values  also  defne  the  Unit  Hydrograph  (UNIT-HG).  Therefore,  the 
optimisation of the Unit Hydrograph (UNIT-HG) is similar to ET optimisation. 
Nevertheless, a number of discrete values defning the UNIT-HG variable make
the  UNIT-HG  optimisation  more  complicated.  Primarily,  the  more  points  of
UNIT-HG, the more ranges for each point must be defned. It brings a potential 
issue of an unrealistic course of the UNIT-HG similar to the subject illustrated in
Figure 8.11.

For this section, the Elbe basin was selected and its long period of 1905-1970, 
which  includes  many  hydrological  events  like  foods,  vegetation  changes,  etc. 
Furthermore,  the  UNIT-HG  of  the  Elbe  basin  needs  to  be  defned  by 
approximately 16 UNIT-HG coordinates.

114



As in previous  Section 8.5.1,  Figure 8.13 illustrates the UNIT-HG optimisation 
issue.  The initial  UNIT-HG expects  a smooth course with a discharge peak of 
100 m3/s on the 3th day, as the dashed line (initial) demonstrates. The blue line 
represents the UNIT-HG which was optimised using a set of discrete coordinates 
(uhgTs). The course does not meet expectations which might be caused by the 
ranges of the coordinates being too loose. It is challenging to set proper ranges 
even for an experienced hydrologist, since it requires several optimisation runs. 
Finally, the red line of Figure 8.13 represents a realistic UNIT-HG shape because 
the GA takes the correlation between UNIT-HG coordinates into account using 
Equation 6.6 (uhgDif). The beneft of this approach is that the course of  uhgTs 
and uhgDif is asymptotically same and the uhgDif can smooth out the optimised 
UNIT-HG.

Moreover, the model validation for both UNIT-HG optimisations is approximately 
same as Table 8.6 summarises. Diferences between uhgTs and uhgDif indicators 
are in the order of tenths, so the simulation quality is not afected by uhgDif.

What is interesting in UNIT-HG optimisation using  uhgDif is that the number
of UNIT-HG coordinates can also be optimised which is not possible in case of 
uhgTs.  The model user estimates a number of  coordinates based on modeller's 
experience and available  information about the simulated basin.  Our approach 
easily  optimises  this  number since it  defnes how many points are taken from 
Equation 6.6, see Section 6.2.
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Figure 8.13: UNIT-HG optimisation using coordinates and difusion equation
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Table 8.6: Model validation using discrete coordinates and difusion equation

Statistical indicator uhgTs uhgDif Δ

Daily RMS error (mm) 9.862 9.898 -0.036
Daily AVG ABS error (mm) 97.256 97.973 -0.716
AVG ABS Monthly vol error (mm) 3.178 3.086 0.092
Monthly volume RMS error (mm) 31.261 30.261 1
Correlation (–) 0.8188 0.8147 -0.0041
Nash-Sutclife (–) 0.6585 0.6515 -0.007
Monthly ABS volume error (mm) 33.6802 32.7069 0.9733
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9  

Conclusion

This thesis proposes the optimisation of the SAC-SMA model calibration using the 
genetic algorithm (GA) with a new random number generator based on hydro-
logical information (HRNG). Compared to the pseudo-random number generator 
(PRNG), which is the one most frequently used, the obtained results indicate that 
the HRNG could successfully be applied to the calibration of the rainfall-runof 
process. We also present a study of the hypothesis that discrete model parameters 
can be described by a continuous function as well as its optimisation. This fnal 
chapter presents and highlights the most important conclusions of the thesis.

The priority of the dissertation is the potential of the HRNG and range settings
of optimised model parameters. The HRNG meets the requirements of the PRNG, 
which among other things includes a reasonable level of randomness. Moreover, 
the core of the optimisation quality is the normal distribution of the HRNG which 
allows more extensive ranges for optimised parameters to be defned without the 
GA being  lost  in  the  search  space.  One of  the  more  signifcant  fndings  that 
emerged from this study is that the HRNG provides more stable results in spite of 
various GA confgurations. Further, the optimisation speed can be increased up 
to 30%. Multiple regression analyses revealed that the HRNG is more resistant to 
getting stuck in a local minimum because the PRNG returns the same result for 
multiple  runs  of  the  optimisation  with  the  same  confguration  of  the  model 
calibration and the GA settings. In contrast, the HRNG returns diferent results 
for each run of the optimisation.

Subsequently, the results of this study also indicate that the selection of the ftness 
function  considerably  afects  the  quality  of  the  optimisation.  The  analysis  of 
Ráztoka catchment has determined the MVRMSE as the optimal ftness function 
across all modelled periods. In contrast, the AAMVE is the optimal function for 
the  Elbe  River  but  only  for  long  time  periods.  There  are  several  instances 
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of simulations  which  require  multiple  optimisations  with  diferent  kinds  of  the 
ftness function.

The  second  signifcant  fnding  was  that  the  continuous  functions  specifying 
discrete  model  parameters  might  guide  the  optimisation  process  in  a more 
appropriate direction. These functions take into account the correlation between 
the model parameters. A more accurate estimate of the SAC-SMA model output 
has  been  achieved  using  these  functions  without  devaluation  of  the  model 
validation. Specifcally, the discrete defnition of evapotranspiration (ET) and unit 
hydrograph  (UNIT-HG)  has  been  substituted  by  the  Gaussian  function, 
respectively the difusion equation. The result is that the SAC-SMA model returns 
more useful information.

On the other hand, the results of this thesis are not a panacea for all instances 
of mentioned problems and also have some limitations. The modeller can smooth 
the shape of ET and UNIT-HG, but this might also distort the modelled reality 
since some fuctuations are realistic. Here an intervention of a hydrologist who has 
knowledge about the modelled watershed is necessary. The GA with the HRNG is 
able  to fnd quality solutions but only for one ftness  function.  Therefore,  the 
modeller  must  correctly  select  the  ftness  function  to  achieve  the  best 
optimisation. However, the right choice of the ftness function requires an analysis 
and several auxiliary simulations. In short, the presence of the hydrologist and his 
experience is still indispensable for the SAC-SMA optimisation.

The presented study makes  several  noteworthy contributions.  Results  obtained 
from our framework have a higher quality and are applicable in practice in terms 
of  hydrology.  Moreover,  the HRNG can be easily  implemented into the legacy 
framework because it has minimal infuence on this legacy framework and user 
interface. Therefore, this approach can be easily applied to the similarly structured 
optimisation  framework.  Another  signifcant  contribution  is  the  acceleration
of the optimisation speed. Another contribution from the point of view of the user 
interface is that the HRNG reduces the mutual dependence of the optimisation 
quality  and  parameter  setting  of  the  GA.  Hence,  the  modeller  with  basic 
knowledge  of  the  GA should  not  distinctively  afect  the  optimisation  quality. 
Additionally, the modeller can use wider ranges for optimised parameters while 
the optimisation quality is maintained.

This research has thrown up many questions.  Further investigation and exper-
imentation  into  the  HRNG  and  rainfall-runof optimisation  are  strongly  
recommended. More research is required to determine the efciency of the HRNG 
since  it  seems  that  the  shape  of  the  HRNG distribution  function  may  afect
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the quality of the optimisation. It is necessary to explore the correlation between 
the distribution function of the HRNG and the calibrated basin since the frst 
results indicate that a diferent distribution function can infuence the calibration 
quality for each period and basin. It would be interesting to assess the efects of 
multi-criteria ftness function when its value is computed using more statistical 
indicators. Such a multi-criteria ftness function could provide more stable results.
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Appendix A

Input Data
01.1.1954 3.1  -8.0 0.0032
02.1.1954 0.8 -12.0 0.0032
03.1.1954 0.2 -10.3 0.0032
04.1.1954 0.7  -7.2 0.0032
05.1.1954 0.0 -12.2 0.0037
06.1.1954 0.0  -9.8 0.0037
07.1.1954 0.3  -5.6 0.0037
08.1.1954 4.5  -8.3 0.0037
09.1.1954 2.3  -9.8 0.0037
10.1.1954 5.3  -8.0 0.0037
11.1.1954 0.6  -8.5 0.0037
12.1.1954 0.6  -7.9 0.0037
13.1.1954 1.8  -2.5 0.0037
14.1.1954 0.0  -0.5 0.0037
15.1.1954 0.0  -3.1 0.0037
16.1.1954 5.6  -3.0 0.0037
17.1.1954 0.0   1.7 0.0037
18.1.1954 1.1  -1.9 0.0037
19.1.1954 0.0  -1.8 0.0037
20.1.1954 6.1   0.0 0.0037

Statistical Information
Month Sim. Mean Obs. Mean % bias Mth bias % avg Abs err
-------------------------------------------------------------------
 [1] 0.023 0.023 0.256 0.049 23.812
 [2] 0.029 0.029 -1.244 -0.282 30.328
 [3] 0.063 0.062 0.547 0.291 74.025
 [4] 0.122 0.122 -0.222 -0.223 118.656
 [5] 0.086 0.085 0.261 0.190 63.571
 [6] 0.073 0.073 -0.343 -0.207 73.573
 [7] 0.072 0.072 0.228 0.141 63.833
 [8] 0.038 0.038 -0.729 -0.236 31.495
 [9] 0.023 0.022 1.989 0.368 22.566
[10] 0.028 0.029 -1.025 -0.250 25.849
[11] 0.035 0.034 0.703 0.200 23.975
[12] 0.036 0.037 -1.255 -0.394 36.958
-------------------------------------------------------------------
Total 0.052 0.052 -0.067 -0.353 49.075

Daily RMS error 0.160
Daily AVG ABS error 0.026
AVG ABS Monthly vol error 0.539
Monthly volume RMS error 1.829
Correlation 0.775
Nash-Sutcliffe 0.574
Monthly ABS volume error 2.830
RMSE-W 0.119
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Model parameters
[sacramento]
tile = Raztoka 1953-1954
from = 1.1.1953
  to = 31.12.1954

[snow17]
card1 = 880.00; 50.00; 
card2 = 24.00; 0.9640; 
card3 = 24.00; 242.0446; 0.6179; 0.3030; 
card4 = 0.8196; 0.2309; 0.3127; 0.1081; 32.2998; 
card5 = 0.1863; 0.0897; -0.9240; 1.4976; 0.4930; 0.00; 
  adc = 0.3724; 0.4777; 0.5839; 0.7920; 0.8960; 0.9480; 0.9740; 0.9870; 0.9935; 

[sacsma]
card1 = 0.3325; 3.3495; 674.8948; 12.1411; 0.3423; 0.00; 0.0404; 0.3046; 0.00; 1.00; 
card2 = 23.785; 2.603; 599.433; 66.4411; 22.5932; 0.0518; 0.0122; 0.129; 0.079; 0.00;
card3 = 76.4009; 0.00; 158.5981; 0.00; 8.0760; 169.3168; 
   et = et12
 etTs = 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00; 1.00
 et12 = 0.07; 0.44; 0.67; 0.25; 1.07; 1.73; 0.84; 1.48; 4.76; 0.53; 0.147; 0.01;
etGauss = 55.00; 35.00; 6800.00; 0.05 

[unithg]
card1 = 2.5400; 0.0
uhg = uhgDiff 
uhgDiff = 10.00; 3.15; 130.00; 0.65; 36.00; 0.01;
uhgTs = 0.0090; 0.0010; 0.0010

Parameter ranges
[snow17]
card1 = 0.00; 0.00; 
card2 = 0.00; 0.80; 
card3 = 0.00; 0.80; 0.80; 0.80; 
card4 = 0.80; 0.80; 0.80; 0.80; 0.80; 
card5 = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 
  adc = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 

[sacsma]
card1 = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.00; 0.80; 
card2 = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 
card3 = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 
   et = et12
 et12 = 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 0.80; 

[unithg]
card1 = 0.00; 0.00; 
  uhg = uhgTs
uhgTs = 0.00; 0.00; 0.00;
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Appendix B

Importance of Evapotranspiration

The evapotranspiration is one of the essential hydrological phenomena for model-
ling of the rainfall-runof process, which is needed and extensively used for the  
evaluation of water regime mainly in basins with vegetation cover, Hanson (1991). 
Unfortunately, the measuring devices for evapotranspiration are scarcely realistic 
and available for large river basins. If longer and older time series are analysed, 
then there are no values of evapotranspiration at all, Kuczera (1997). Therefore, 
the simulation of the rainfall-runof process still has to be used to obtain the ap -
propriate values of evapotranspiration.

However, the various water changes in runof caused by natural variability and 
unexpected events are signifcant and require further inspection. The historical 
changes in the land use should be reconsidered, due to the infuence of water 
reservoirs,  such  as  ancient  fshing  ponds,  canals,  rivers  regulations,  etc.
The illustration of the situation with the extraordinary large fsh-pond afecting 
water  regime  is  demonstrated  in  Figure  9.1,  which  was  built  500 years  ago.
The notion concerning the displayed destructive and extensive efect of the food is 
indicated in Figure 9.2, which also documents the extent of this food. Moreover, 
these pictures, together with Figure 9.5, document the retention and evaporation 
efects of the foods. 
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Figure 9.1: Retention of the Rožmberk pond during the food in August 2002, MACR (2003)

The total retained volume is estimated at about 70 million cubic meters. Infow Qmax=700 m3/s, 
runof Qmax=270 m3/s, i.e. ∆Q=430 m3/s. Achieved water levels: Hmax=860 cm, Hoverfall=571 cm.



Altogether, the instance in Figure 9.2 provides an example of a stage of the main 
stream of the Vltava river. It needs to be noted that the dams and reservoirs on 
the Vltava river play a signifcant role in food protection of Prague.

The intention to decrease uncertainties in the water regime caused by diferent 
oscillations requires the evaluation of the appearing natural fuctuations and the 
abrupt seeming random changes in the basin. This consecutive variability of water 
regime is usually infuenced by changes of the vegetation cover, its growth and also 
other natural events, e.g. wind and insect disasters.  Figure 9.3 and  Figure 9.4 
document long-term and random changes in both local and regional processes in 
the water regime.
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Figure 9.3: Czech forests stage and grain production during past more than 100 years

Figure 9.2: Water reservoir Orlík st Vltava - food August 2002, MACR (2003)
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The changes of vegetation cover and the desirable appraisals of the interactions 
between evapotranspiration demand (evapotranspiration needs)  and sub-surface 
water storage seem to be rather signifcant processes. The agricultural production, 
e.g. increased yields of grain, has already been labelled a signifcant phenomenon 
for water balance several years ago, Keller (1970). The desirable attention on the 
higher  variability  of  evapotranspiration  demands  is  caused  by  solar  radiation 
correlated with solar activity, Beer (2005).
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Figure 9.5: Main infows of reservoir Orlík at Vltava river

Figure 9.4: Forest disasters in experimental Liz basin in Šumava Mts., Buchtele et al. (2009)
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The length of evaluated time series is generally signifcant. When daily time series 
of  several  decades  to  the  past  are  available,  these  circumstances  enable  the 
observation  and  assertion  of  the  infuences  of  the  vegetation  development  on
the evapotranspiration demand and it could signifcantly infuence runof, Calder 
et al. (1982). In Great Britain, the role of ensuing deforestation has been viewed 
positively in terms of it providing more water for overall water supply. Figure 9.5 
is an illustration of expressive regional foods with high areal diversity caused by 
the activities of our ancestors, e. g. building dams, ponds, etc.

The evolution of the vegetation cover is usually perceived as one of the natural 
causes of the usual annual oscillations in water resources. However, another reason 
for these fuctuations could also be the development of the vegetation cover during 
decades.  It  means that this  might  afect  the long-term evaporation variability,
e.g. due to the wind disasters in forests. The precise modelling of the rainfall-
runof process appears helpful in the eforts to decrease uncertainties in the water 
regime. Figure 9.6 is a relevant example of the situation in the catchment where 
deforestation and other similar interventions, infuencing evaporation and runof, 
appeared.  The course  of  diferences  between observed and simulated  discharge 
helps us follow the dynamics in current modifcations. It helps to identify the 
intervals  for  which  the  evapotranspiration  demand  could  be  expected  to  be 
a stable  process.  Hence,  the model  implementation and optimal  simulation are 
attainable.
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Figure 9.6: Evapotranspiration decreasing and runof variation in Raztoka basin as respond to 
cutting trees in the forest
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Appendix C

Moreover, Figure 9.7 indicates that the changes in vegetation cover could be the 
reason for the changes in the parameters of conceptual models and not for the 
changes in evapotranspiration.
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Figure 9.7: SAC-SMA model parameters for the Labe River during diferent time periods
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Infuence of diverse parameters for partial intervals whole period years 1976–2011 of the Liz catchment (as is depicted by distinct 
colours in the graphs).
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Figure 9.8: Logarithmic scale of observed and simulated discharges of the Liz catchment
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Figure 9.9: ∆Q of the Liz catchment for two time periods with some changes in the basin 
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In  Figure  9.10 the runof changes  are  typical  for  the  year  2002  with three  fow waves  and one extraordinarily  strong food.
It indicates the realistic estimation of the main model parameters. Moreover, the Sacramento model searches for the reasons for  
corrections of the input data in some short intervals. This proves the quality of the model calibration in the year cycle in the frame 
2002–2003.
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Figure 9.10: ∆Q of the Liz catchment during the food event in 2002
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Diferentiated courses of Ráztoka evapotranspiration in sundry intervals. It suggests the development of the vegetation cover over 
the annual cycle and long-term courses.
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Figure 9.11: Annual development of Ráztoka evapotranspiration
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Figure 9.12 illustrates oscillations of the occurrence of the disaster periods caused 
by the insect  damage in  this  forested basin  (see  Appendix B,  Figure 9.3 and 
Figure 9.4).
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Figure 9.12: ETatc and ETdem of the Liz catchment
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Figure 9.13 represents the sum of evapotranspiration in annual cycle and a long-
term  tendency  in  the  forested  basin  of  the  Ráztoka  catchment.  Perhaps  it 
appeared due to consecutive re-forestation.
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Figure 9.13: Course of Ráztoka evapotranspiration in annual cycles
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Acronyms

AAMVE Average Absolute Monthly Volume Error

ADC Areal Depletion Curve

ET Evapotranspiration

ETact Current Evapotranspiration

ETdem Demand Evapotranspiration

GA Genetic Algorithm

HRNG Hydro-Random Number Generator

CHI Czech Hydrometeorological Institute

LCG Linear Congruential Generators

MCS Monte Carlo Simulation

MTG Mersenne Twister Generator

MVRMSE Monthly volume Root Mean Square Error

NOAA National Oceanic Atmospheric Administration

NWS National Weather Service

NWSRFS National Weather Service River Forecast System

PRNG Pseudo-Random Number Generator

R Correlation Coefcient

RMSE Root Mean Square Error

RNG Random Number Generator

SAC-SMA Sacramento Soil Moisture Accounting Model

SNOW-17 Snow Accumulation and Ablation Model

TDE Translation Difusion Equation

TRNG True Random Number Generator

UNIT-HG Unit Hydrograph
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