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Abstract

Deployment of commercial computer networks sets high requirements for procedures,

tools and approaches for comprehensive testing of these networks. However, in spite of

the great efforts of many researchers, the process of test design/generation still tends

to be unstructured and bound to the personal experience and/or intuition of individual

engineers. To address this problem, the main research objective of this thesis is the

automated design of abstract test specifications (test cases) for computer networks using

the detailed design documentation (end-user requirements and technical specifications)

as the data source. Based on the notions of: (1) model-based testing; and (2) system

methodology, this thesis covers the following main goals:

− A formal model for test generation missions based on the concept of multilayer

networks. Different layers (four layers in the case of basic releases and six layers

in the case of extended releases) represent different (hardware, software, social,

business, etc.) aspects of system architecture.

− A test case generation strategy which covers structural test cases. Test cases of

this kind: (1) cover the system infrastructure including individual components

and component-to-component interactions on all coexisting architectural layers;

and (2) provide information for subsequent analysis to ensure that the used formal

model is consistent with respect to test requirements.

− A test case generation strategy which covers nonfunctional test cases to ensure

that: (1) system dependability mechanisms (fault tolerance or high availability)

have been implemented correctly on all coexisting architectural layers; and (2) the

system is able to provide the desired level of reliable services.

In turn, the quality of formal methods based on abstract models is limited by the quality

of these models. Thus, to get the full advantages of model-based testing, it is necessary to

completely eliminate the human factor from the process of model generation. To address

this problem, a possible appropriate presentation format of architecture descriptions that

allows automated development of the formal models is defined as a necessary part of the

detailed design documentation of complex commercial computer networks.



Abstract

Využ́ıváńı komerčńıch poč́ıtačových śıt́ı klade vysoké nároky na procedury, nástroje

a př́ıstupy pro jejich d̊ukladné testováńı. Navzdory velkému úsiĺı mnoha výzkumných

pracovńık̊u však proces navrhováńı a vytvářeńı test̊u stále z̊ustává sṕı̌se nestrukturovaný

a spoč́ıvaj́ıćı na osobńıch zkušenostech nebo intuici jednotlivých inženýr̊u. S ohledem

na vyřešeńı tohoto problému je hlavńım výzkumným ćılem této práce automatizované

navrhováńı abstraktńıch specifikaćı test̊u (testovaćıch př́ıpad̊u) pro poč́ıtačové śıtě s

použit́ım detailńı projektové dokumentace (požadavky koncového uživatele a technické

specifikace) jako zdroje dat. Na základě myšlenek: (1) testováńı model̊u; a (2) systémové

metodologie zahrnuje tato práce následuj́ıćı hlavńı ćıle:

− Formálńı model pro účely generováńı test̊u, vycházej́ıćı z konceptu v́ıcevrstvých

śıt́ı. Různé vrstvy (čtyři vrstvy v př́ıpadě základńıch verźı a šest vrstev u verźı

rozš́ı̌rených) představuj́ı r̊uzné aspekty (hardwarové, softwarové, sociálńı, obchodńı

atd.) systémové architektury.

− Strategie generováńı testovaćıch př́ıpad̊u, pokrývaj́ıćı strukturálńı testovaćı př́ıpady.

Testovaćı př́ıpady tohoto druhu: (1) zahrnuj́ı systémovou infrastrukturu včetně

jednotlivých složek a interakćı mezi těmito složkami na všech koexistuj́ıćıch vrstvách

architektury; a (2) poskytuj́ı informace pro následnou analýzu potvrzuj́ıćı, že je

použitý formálńı model konzistentńı s požadavky na testy.

− Strategie generováńı testovaćıch př́ıpad̊u, pokrývaj́ıćı nefunkčńı testovaćı př́ıpady,

aby bylo zaručeno, že: (1) mechanismy spolehlivosti systému (tolerance chyb nebo

vysoká dostupnost) byly správně implementovány na všech koexistuj́ıćıch vrstvách

architektury; a (2) systém je schopný zajistit požadovanou úroveň spolehlivých

služeb.

Na druhou stranu, kvalita formálńıch metod založených na abstraktńıch modelech je

omezena kvalitou těchto model̊u. Pro plné využit́ı všech výhod modelového testováńı

je tedy nezbytné zcela vyloučit lidský faktor z procesu generováńı model̊u. Za účelem

vyřešeńı tohoto problému je jako nutná součást detailńı projektové dokumentace kom-

plexńıch komerčńıch poč́ıtačových śıt́ı definován vhodný formát prezentace popis̊u ar-

chitektury, který umožňuje automatizovaný vývoj formálńıch model̊u.
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Chapter 1

Introduction

1.1 Background

The world we’ve made as a result of the level of thinking we have done thus far creates

problems that we cannot solve at the same level at which we created them.

—Albert Einstein

Computing systems have come a long way from a single processor to multiple distributed

processors, from individual-separated systems to network-integrated systems, and from

small-scale programs to sharing of large-scale resources. Moreover nowadays, virtualiza-

tion and cloud technologies make another level of system complexity. In turn, computer

networks that support these systems have evolved to incorporate more and more sophis-

ticated capabilities [1] (see Figure 1.1). To paraphrase Einstein, nowadays we have the

ability to create networks that are so complex that when problems arise they cannot

be solved using the same sort of thinking that was used to create the networks [2]. In

fact, computer networks created with this complexity often do not perform as well as

expected and do not match end-user/customer requirements.

On the other hand, the consequences of failure and downtime have become more severe.

Their failure may endanger human lives and the environment, do serious damage to

major economic infrastructures, endanger personal privacy, undermine the viability of

whole business sectors and facilitate crime [3]. As a consequence, the most difficult part

of computer network deployment is the question of assurance (whether the network will

1
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4th GENERATION
NETWORK SYSTEMS

WITH RUDIMENTARY DECISION-MAKING CAPABILITY

3rd GENERATION
NETWORK SYSTEMS

BASED ON SERVICE ORIENTED ARCHITECTURE

2nd GENERATION
COMPLEX NETWORKS (NETWORKS OF NETWORKS)

1st GENERATION
SIMPLE INDEPENDENT NETWORKS

COMPLEXITY

Figure 1.1: Generations of Networking [1].

work) and verification. If assurance is difficult, verification is even more difficult: it

is a question of how to convince end-users/customers (and, in extremis, a jury) that a

system is indeed fit for its requirements.

Generally, there is a practical means of failure detection (finding observable differences

between the behaviors of implementation and what is expected on the basis of the tech-

nical specifications [4]) which can be highly effective if performed thoroughly. Despite

the major limitation of testing1, it is a necessary verification technique (it would be

better to talk of a necessary and sufficient technique, but unfortunately in the case of

complex systems a sufficient condition is theoretically unreachable [3]).

Hence, appropriate comprehensive testing plays a vital role in computer network devel-

opment - it is necessary to determine a formal list of control objectives during the design

phase of the System Development Life Cycle (SDLC) (see Figure 1.2) and, as the next

step, to show that each component of this list undergoes a suitable amount of tests (at

least one) during the implementation phase of the SDLC: i.e. it is necessary to have

checklists [6].

1Testing is able only to show the presence of errors and never their absence [5].
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Figure 1.2: System Development Life Cycle [7].

1.2 Problem Statement

It isn’t that they can’t see the solution. It is that they can’t see the problem.

—Gilbert Keith Chesterton

Applying a system methodology to network analysis [1] is a relatively new approach, par-

ticularly in the Internet Protocol (IP) world. The fundamental concept is that network

architecture should take into account services/applications which this network provides

and supports.

Historically, services/applications are the domain of system and software engineers. Re-

spectively, computer networks are the domain of network engineers. As a consequence,

system, software and network engineers have few common models or approaches and

even their vocabularies (definitions) are different [3].

In fact, one of the most universal formal definitions of distributed systems, which was

given by Tanenbaum and van Steen as a collection of independent computers that appears

to its users as a single coherent system [8], can denote:
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− a collection of components/products (hardware and software) - the viewpoint of

the vendor community;

− a collection of the above plus external communication infrastructure - the view-

point of the network engineer community;

− a collection of services/applications - the viewpoint of the software/system engineer

community;

− all of the above plus end-users/customers - the viewpoint of the business commu-

nity.

In practice, the confusion between these definitions is a fertile source of vulnerabilities

in comprehensive testing. Broadly speaking, vendors focus on individual component

testing problems only - but, in general, testing or qualification of elements of a system

does not cover the system itself.

In turn, network engineers usually focus on network testing. In this case, ignoring

services/applications influence is one of the most common causes of system problems [9]:

− If the network subsystem is not solid, services/applications cannot be responsive

and reliable by definition.

− If the network subsystem is solid, but the services/applications do not provide

required performance or functionality, end-users could perceive the network sub-

system as unavailable or unreliable.

On the other hand, distributed systems differ from traditional software because com-

ponents are dispersed across a network. Very often software/system engineers do not

take this dispersion into account and this leads to the following false assumptions about

computer networks [8]:

− networks are always reliable;

− latency is zero;

− bandwidth is infinite, etc. . .
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In fact, the business (or integration) viewpoint brings all of the detailed elements of

computer networks and the distributed systems they support together through a process

of testing (or qualification) to achieve the valid systems for meeting the ultimate needs of

the end-users/customers [10]. Hence, even if the main goal is the comprehensive testing

of a computer network, analysis should cover the whole system.

It is important to note that this concept is completely supported by the most recent

practical approaches such as Business-Driven Design [11] and Application Centric De-

sign [12].

1.3 Work Objectives

Beware of false knowledge: it is more dangerous than ignorance.

—George Bernard Shaw

Despite the great efforts of many researchers, in the area of commercial system (specific

areas such as the military, nuclear or aerospace industries are beyond the scope of this

work) the process of test generation tends to be unstructured, barely motivated in the

details, not reproducible, not documented, and bound to the ingenuity of individual

engineers [4]. But in the case of complex or non-standard systems, personal experience

and/or intuition are often inadequate. As a consequence, in the real world many systems

have failed because:

− engineers had tested the wrong things;

− engineers had tested the right things but in the wrong way;

− some things had been just simply forgotten and had not been tested.

On the other hand, formal methods are mathematical techniques for developing software

and hardware systems and can be used to conduct mathematical proofs of consistency

of specification and correctness of implementation. Mathematical rigor enables users to

analyze and verify abstract models at any part of the system life-cycle: requirements

engineering, architecture design, implementation, maintenance and evolution [13]. These

methods are particularly suitable for complex heterogeneous systems and are becoming
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more and more important even if working engineers usually consider formal methods to

be theoretical exercises that are widely taught in universities and not used anywhere in

the real world.

The main research objective of this thesis is the automated design of test specifications

for computer networks based on end-user requirements and technical specifications as a

necessary part of detailed design documentation, i.e. during the design phase of SDLC

(it is important to note that in practice computer networks are usually built not from

scratch but from commercial off-the-shelf (COTS) hardware and software components).

In this context, this thesis lies in the area of model-based testing (MBT).

The basic idea of MBT is that, instead of creating test cases manually, a selected algo-

rithm generates them automatically from an abstract formal model (see Figure 1.3). In

general, MBT involves the following major activities [4]:

− building the formal model from informal requirements or existing specification

documents;

− defining test selection criteria and transforming them into operational test speci-

fications or test cases;

− generating executable tests based on test cases;

− executing the tests (including conceiving and setting up adaptor components).

Based on the analysis of the overall tests development process, the resulting contributions

of this thesis cover the first two major activities of MBT in three main areas:

− A formal model based on technical specifications to cover both hardware-based

(system equipment) and software-based (system activities) aspects of a system

under test (SUT). To evaluate the SUT as a whole, these aspects should be com-

posed in such a way that their properties can be considered together. As a conse-

quence, this composition has to: (1) preserve the properties of each aspect; and (2)

represent interaction between aspects. On the other hand, the model must be suf-

ficiently precise to serve as a basis for the generation of meaningful test cases [4],
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Figure 1.3: General model-based testing setting [14].

in other words the quality of model-based tests is limited by the quality of the

model2.

− A test case generation approach based on requirements coverage criteria. The test

selection criteria are defined by: (1) end-user requirements; and (2) requirements

derived from technical specifications, i.e. defined by technological solutions used

to build the SUT. Generally, the test specifications should cover [15]: (1) struc-

tural tests which aim at the structure of the SUT; (2) functional tests3; and (3)

nonfunctional (or extra-functional) tests which aim at assessing nonfunctional re-

quirements such as reliability, load, and performance. In turn, test specifications

scopes should cover [15]: (1) individual components; (2) component-to-component

interactions; and, as a consequence, (3) the complete system.

− A formal model automated development approach. Generally, a SUT model must

be correct in order to generate test case specifications accurately (as mentioned

above, the quality of model-based tests is limited by the quality of the model).

2It is important to note that the model of the SUT can be used as the basis for test generation, but
also can serve to validate requirements and check their consistency [4].

3In the case of COTS components, functional tests are usually prepared by vendors
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Thus, to get full advantages of MBT, it is necessary to alleviate the burdens of

learning model development and checking techniques for engineers and other non-

technical stakeholders [16] or, ideally, completely eliminate the human factor

1.4 Terminology

A mistake is to commit a misunderstanding.

—Bob Dylan

In order to avoid misunderstandings and confusions, this section clarifies the usage of

some key terms in this thesis.

In computer science, a system is: (1) a combination of interacting elements organized to

achieve one or more stated purposes; or (2) an interdependent group of people, objects,

and procedures constituted to achieve defined objectives or some operational role by

performing specified functions [17]. The engineering definition is simpler: a system is

a collection of components which cooperate in an organized way to achieve the desired

result - the requirements [18]. It is important to note that this definition completely

covers both computer networks and distributed systems. As a consequence, in this thesis

the term system under test (SUT) (or just system) is used to denote a whole/complete

system, i.e. a computer network and the distributed computing system that this network

provides and supports, together.

There is no standard definition of model-based testing. In practice, the term model-

based testing (MBT) is widely used today with subtle differences in its meaning. The

most generic definition used in this thesis denotes MBT as the processes and techniques

for the automatic derivation of abstract test cases from abstract models, the generation

of concrete tests from abstract tests, and the manual or automated execution of the

resulting concrete test cases [4].

In other words, the definition of MBT relates to the following definitions (see Figure 1.4

and Figure 1.5):

− Formal or abstract model. In computer science, a model is a representation of

a real world process, device, or concept [17]. The engineering definition is quite
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similar: a system model is an abstract representation of certain aspects of the

SUT [15]. In this thesis the term formal model (or just model) is used to denote

the architecture viewpoint [20] as a simplified representation of the system with

respect to the structure of the SUT.

− Test selection criteria. There is no definition based on standards. The engineering

definition is quite simple: test selection criteria define the facilities that are used

to control the generation of tests [15]. Generally, test selection criteria can relate:
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one (see also the test bed definition [17]).

(1) to a given functionality of the system; (2) to the structure of the model; (3) to

data coverage heuristics; (4) to stochastic characterizations; or (5) to properties of

the environment [4]. In this thesis the term test requirements is used to denote

requirements coverage criteria4 which relate to the structure of the system model.

− Test cases or abstract tests. In computer science, a test case5 is a document

specifying inputs, predicted results, and a set of execution conditions for a test

item (an object of testing) [17]. The engineering definition denotes test cases as

a collection of tests derived from a formal model on the same level of abstraction

as the model6 [14]. On the other hand, the most accurate definition of the nature

of test cases (or abstract tests) in the area of model-based testing relates to the

definition of test templates as formal statements of a constrained data space, i.e.

test templates define sets of bindings of input variables to acceptable values [21].

As a consequence, in the context of this thesis the term test case is used to denote

4Other test selection criteria (data coverage criteria, random and stochastic criteria, fault-based
criteria, etc. . . [15]) are beyond the scope of this thesis.

5It is important to note that the standard Std 24765:2010 does not distinguish between the definitions
of test case and test case specification [17].

6These test cases are collectively known as an abstract test suite [14].
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the result of application (binding) a test requirement (input variable) to a formal

model (acceptable values).

− Test procedures or executable tests (test scripts). In computer science, test pro-

cedures are the detailed instructions for the setup, execution, and evaluation of

results for a given test case [17]. The term is strictly relevant to the MBT defini-

tion but not used in this thesis (the process of executable test generation is beyond

the scope of this thesis).

In computer science, dependability is trustworthiness of a computer system such that

reliance can be justifiably placed on the service it delivers [17]. The original definition

of dependability determines the system ability to deliver service that can justifiably be

trusted [22] (this definition stresses the need for justification of trust). The engineering

definition which is used in this thesis: dependability is the ability of a system to avoid

service failures or the probability that a system will operate when needed [22].

The major category of dependability that relates to MBT is fault tolerance. In computer

science, fault tolerance is the ability of a system or component to continue normal

operation despite the presence of hardware or software faults [17]. We need to state here

the difference between fault tolerance and high availability : a fault tolerant environment

has no service interruption, while a highly available environment has minimal service

interruption.

1.5 Thesis Goals

A goal is a dream with a deadline.

—Napoleon Hill

As mentioned above, the main research objective is the automated design of test spec-

ifications for commercial computer networks using the detailed design documentation

(end-user requirements and technical specifications) as the data source. Based on the

analysis of the model-based tests development processes, the resulting contributions of

this thesis can be divided into four main goals that should be solved separately, but not

in isolation:
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− A formal model for test generation missions based on the concept of hierarchical

multilayer networks. Different layers represent different (hardware or software)

aspects of system architecture.

− A test case generation strategy7 that covers structural/functional tests. Test cases

of that kind: (1) cover the system infrastructure including individual components

and component-to-component interaction on all coexisting architectural layers;

and (2) check the internal consistency of the system technical specifications with

respect to the end-user requirements.

− A test case generation strategy which covers nonfunctional tests to ensure that

system dependability mechanisms (fault tolerance or high availability) have been

implemented correctly on all coexisting architectural layers and the system is able

to provide the desired level of reliable services.

− An appropriated presentation format of system architecture descriptions as a nec-

essary part of the detailed design documentation (technical specifications) that

allows automated development of the formal model for analysis and verifying of

the system.

To accomplish these goals the thesis defines the methodology of system test case design

based on the following general steps:

− At first, the system under test is modeled as a weighted graph structure. Ver-

tices represent: (1) software components (such as application software and oper-

ated systems); and (2) hardware components (such as routers, switches, servers

and PCs). Based on the concept of multilayer networks, edges represent: (1) in-

terlayer component-to-component relations (such as web-browser-to-web-server or

router-to-switch/server-to-switch interconnections); and (2) intralayer component-

to-component relations (operated systems should fit application software and hard-

ware platforms should fit operated systems). The graph labels represent the sets

of facts (attributes) about their entities. The labels of the vertices determine the

sets of communication protocols supported by the system components which are

represented by the vertices (for example a WEB server can support http and https

7A test strategy (or test philosophy) establishes what should be tested and why [9].



Chapter 1. Introduction 13

protocols and a switch can support 10/100/1000BASE-T and 10GBASE-SR pro-

tocols). In turn, the labels of the graph edges determine the sets of communication

protocols used for interlayer component-to-component interconnections which are

represented by the edges (for example a web-browser-to-web-server interconnection

uses the https protocol and a switch-to-switch interconnection uses the 10GBASE-

SR protocol). Based on their nature, intralayer component-to-component relations

do not have labels.

− Next, test requirements (test selection criteria) should be specified. The test re-

quirements determine: (1) the system components which should exist in the SUT

and their attributes (for example a system should contain a web-server and this

web server should support the https protocol); and (2) the paths between sys-

tem components which should exist in the SUT and their attributes (for example

a router-to-switch path should exist and this path should use 1000BASE-T pro-

tocol). In general, the sets of attributes can be empty sets - in this case test

requirements determine the fact of components or paths existence only.

− Finally, the test cases are the result of recursive applying of test requirements

to the model. In general (based on the concept of multilayer networks), each test

requirement can induce more than one test case. Firstly, a test requirement induces

a test case for a given layer. Secondly, the test requirement propagates on the layer

below using the intralayer component-to-component relations and induces a test

case for this layer, and so on. As a consequence, each test requirement defined for

the top architectural layer of the system model initiates at least one test case on

all coexisting architectural layers (for example a test requirement for a web server

induces test cases for: (1) the web-server itself; (2) its operated system; and (3)

the hardware or virtualization platform which support the operated system) and

cover computer networks and distributed computing systems, which these networks

support, as whole systems.
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1.6 Thesis Organization

To write simply is as difficult as to be good.

—William Somerset Maugham

This thesis is organized as follows. This chapter gives an overview and scope of the

research topics of this thesis. It introduces the problems that the work is dealing with,

its objectives, contributions and structure. Chapter 2 introduces the background and

related work. Chapter 3 represents the formal system model based on the concept of

multilayer networks. Next, Chapter 4 focuses on the test case generation strategy to

cover structural/functional tests. Based on the previous chapters, Chapter 5 considers

the test case generation strategy to cover fault-injection experiments based on analytical

tools for system reliability assessment. Chapter 6 introduces the presentation format

of architecture descriptions as a necessary part of the detailed design documentation

(technical specifications), which allows automated development of the formal model,

and the correlation between the formal model and this presentation format. Chapter 7

represents a case study. Finally, conclusion remarks and future research directions are

given in Chapter 8.



Chapter 2

Related Work

Get your facts first, then you can distort them as you please.

—Mark Twain

The research presented in this thesis focuses on the automated design of test templates

(specifications) for computer network comprehensive testing and thus spans the areas

of:

− formal models of complex systems;

− model-based testing;

− dependability testing;

− presentation formats of system architecture description (design documentation).

This chapter presents the background and prior related research in each of these areas.

2.1 Formal Models

Over the years a lot of effort has been invested in creating formal models of complex

systems. However, each model typically represents only one aspect of the entire system.

To evaluate the system as a whole, these models must be composed in such a way that

their properties can be considered together. As a consequence, this composition has to:

15
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− preserve the properties of each individual model;

− represent interaction between individual models.

Nowadays, the modeling of complex systems can be roughly classified into two categories:

− decomposition of complex models (tree structures);

− multi-layer (composed) models.

2.1.1 Decomposition of Complex Models

Liu and Lee [23] and Eker et al. [24] represent a structured approach - hierarchically

heterogeneous. Using hierarchy, they can divide a complex model into a tree of nested

submodels (see Figure 2.1), which are at each level composed to form a network of

interacting components (each of these networks are locally homogeneous1, while differ-

ent interaction mechanisms are specified at different levels in the hierarchy). One key

concept of hierarchical heterogeneity is that the interaction specified for a specific local

network of components covers the flow of data as well as the flow of control between

them.

The three dimensional analysis (Yadav et al. [26]) decomposes a system structure into

its physical elements and shows, in detail, how functional requirements can be fulfilled

by individual product elements or groups of elements (see Figure 2.2). The functional

requirements propagate from the requirements for the complete product down to the

elements in a hierarchical manner. The mapping between physical elements and func-

tional requirements shows which physical elements have impact on the same function

or which single element has an impact on different functions. The time dimension (or

damage behavior) helps in identifying which failure mechanisms have impact on physical

elements and, as a consequence, on system functions.

Benz and Bohnert [27] define the Dependability Model as a model of use cases that

are linked to system components they depend on. These models are constructed by

identifying user cases or user interactions and then finding system functions, services

and components which provide them. Once all system parts are found, the provision

1Homogeneous is uniform in composition or character (i.e. the type of components in a system and
their interactions); one that is heterogeneous is distinctly nonuniform in one of these qualities [25].
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Fig. 2. A hierarchical model for the engine control systems.

consisting of hierarchies of finite-state machines and differential equations.
Each individual layer of models may be relatively well understood. But, when
integrating these models, the interaction among them requires further study.

3. THE ACTOR METAMODEL

The actor metamodel provides an abstract architecture for components and
their composition. Actors encapsulate components; ports represent the com-
munication among components; directors implement models of computation
that guard the interaction styles among actors. A more formal and complete
discussion of the actor model can be found in Eker et al. [2003] and is beyond
the scope of this article. However, we focus on two specific aspects—modal mod-
els and signal type systems—which are essential for modeling mixed-signal and
hybrid systems.

3.1 Actors and Ports

In the actor model, the basic building blocks of a system are components called
actors. Actors encapsulate executions and provide communication interfaces to
other actors. Our notion of actors, called Ptolemy actors due to its implemen-
tation in the Ptolemy project, differs from Agha’s actor model [Agha 1986] in
the sense that Ptolemy actors do not necessarily associate with a thread of con-
trol. An actor can be an atomic actor, at the bottom of the hierarchy. An actor
can be a composite actor, which contains other actors. A composite actor can be
contained by another composite actor, so hierarchies can be arbitrarily nested.

Actors have ports, which are their communication interfaces. A port is an
aggregation of communication channels, which are established when ports
are connected. Ports support message passing at an abstract level. Exactly

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.

Figure 2.1: A hierarchical model for the engine control systems [23].

component or sub-system is subjected to each test category.

How do we utilize reliability assessments to identify weak

spots or links in the design if there is no failure during testing?

To answer these questions, one requires a thorough under-

standing of system concept (or structure), failure behavior,

criticality of each element of system, and a mechanism to

identify the weak spots in the design, which may need further

analyses, design changes, and/or testing. In order to develop

more effective testing plans, there needs to be a transition to a

science-based approach by understanding the physical,

functional, and damage behavior—time dependent degradation

process or failure mechanism—aspects of the system.

The successful development and demonstration of

reliability requirements requires hierarchical analysis of

physical and functional dimensions, which enables one to

see, in detail, how functional requirements can be fulfilled by

each individual element and which failure mechanism might

affect their capability to do so. Therefore, the primary goal of

any PD process is to design the physical structure of the final

system or product, which is capable of fulfilling all functional

requirements of the customer over a specified period of time.

This time-dependent aspect of functional requirement is known

as reliability. This three dimensional understanding of a system

shows that each dimension is equally important. Fig. 1

illustrates three dimensions of a system design.

The consideration of three dimensional analyses in design

and development process serves as the basis for answering

questions which were raised earlier. These questions can be

answered by understanding physical relationship between

various elements of the system, their role in performing

different functions, and identifying potential failure mechan-

isms affecting each element and function. The following

paragraphs give a brief understanding of importance and

suitability of this approach in formulating reliability demon-

stration strategy based on three dimensional thinking or concept.

The three dimensional analysis decomposes product

structure into its physical elements enabling one to see, in

detail, how functional requirements can be fulfilled by

individual product element or by a group of elements. It also

allows one to trace properties of an element which are essential

to perform certain functional requirements. In principle, the

functional requirements also propagate from the requirements

for the complete product down to the elements in a hierarchical

manner. This hierarchical decomposition of product and

functional requirements will help answering the following

question:

Which physical element(s) is responsible for the fulfillment

of a specific functional requirement?

The mapping between physical elements and functional

requirements will show up, which physical elements have

impact on the same function or one element has an impact on

different functions. This information provides answer to the

question; which component or sub-system to test?

For time dimension (or damage behavior), the under-

standing of conditions of operation and time in application

plays an important role. The knowledge of failure mechanism

and results of failure analysis will help in identifying which

failure mechanisms have impact on the same physical element

or one failure mechanism has impact on various physical

elements. This understanding will answer one of the important

questions: what types of test to perform?

In order to answer the questions regarding the sample size

and duration of each test, we propose to use the existing

knowledge and information such as warranty data and impact

of corrective actions and design changes to assess the current

estimates of reliability parameters and hence determine test

duration and sample size [12]. The difference between current

reliability estimate and reliability target might influence the

decision of determining the amount of test duration or sample

size requirement for reliability demonstration. The effective

correlation and mapping between three dimensions, while

planning reliability demonstration strategy, ensures that if

reliability targets can be achieved, then functional require-

ments will also be achieved [8].

This paper proposes a comprehensive framework, which

facilitates the development of reliability test plan by bringing
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Figure 2.2: Three dimensions of system structures [26].
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of use cases is modeled as links which show the dependability of user interactions on

system components. Dependability models are shown either in a dependency table or

in a dependency graph (see Figure 2.3) to show the different dependencies between user

interactions, system functions, services and system resources.

C. Dependency graph and dependency table

The dependency graph in [Fig. 1] demonstrates how end user
interactions depend on functions, services and resources. The graph
consists of 4 rows which represent the model levels: user interactions,
system functions, system services and system components. Elements
of each level are connected to elements of nearby levels by 1:N
relations from top to bottom (whereby the connections represent
dependencies).

FIG. 1: Dependency Graph.

The construction of such a dependency graph is done by first
creating a dependency table (see [Fig. 2]). The graph consists
in system requirements, use cases (user interactions), functions,
services and components. As a first step a list of requirements for
the modeled system is created and filled in the first column. Then
for each element in the first column the user interactions that are
needed to fulfill the requirement are drawn in the second column.
Once the second column is filled up, all system functions that enable
user interactions the second column are drawn in the third column.
The same procedure is repeated recursively on the system functions,
system services and components.

FIG. 2: Dependency table construction.

Once the dependency table is finished the dependency graph can
be derived by transferring all elements of the table in a graph. Each
cell in the table represents a node in the dependency graph. Nodes
are never drawn multiple times. Each row shows a path from one
user interaction to one function, one service and one component.
This path is represented as sequence of arrows which connect the
nodes. Each arrow must be drawn iteratively until all rows of the
table are represented in the dependency graph. The result is a model
of system components and user interactions which depend on the
system components (see [Fig. 3]).

D. Simulation of outages

Outages can be simulated by using a tool that shuts down the
components listed in the dependency graph. One such tool is the

“Chaos Monkey” [14] from Netflix, which is able to randomly shut
down IT services. This random shutdown is called an “attack”.
In order to observe occurence of attacks one should define an
observation time frame. For reasons of practicality we assume the
observation time frame to be equal to one day, because we are
interested in outages, not small failures which make the user perceive
performance degradations only.
For the simulation of outages we could use something similar to a
“Chaos Monkey”, e. g. a Python script which attacks the components
of the cloud operating system that we want to test. If we want
outages to occur in a realistic setup we must assign probabilities to
the component attacks. Realistic outage probabilities of components
could only be obtained by regularly measuring downtime of the
commercially available components over a long time frame and
assume that we will achieve the same downtime probabilities for
the components we use. Since there is no such data available, one
must estimate the outage probabilities and use this estimation as the
parameter we want to use for the probability of attacks.

FIG. 3: Dependency Graph Construction.

Basically the probability of an outage in a given observation
time frame depends on the observed time frame, the steady state
availability of the component and the average recovery time needed
for repairing the system component. [15] The mathematical formula
for the outage probability is:

Outage Probability =

(100− Steady State Avail.) ∗Obs. T ime Frame

Avg. Recovery T ime

(2)

If we assign steady state availabilities and average recovery times
to each component listed in the dependability graph, we can derive
the probabilities for the attacks we run in the simulation. If we e. g.
assume that component A is observed for one day (=86’400 seconds),
has a steady state availability of 90 % and an average recovery time
of one hour (=3’600 seconds), the outage risk per day is 0.6 %. We
can then programmatically advise the script to attack component A
with a probability of 0.6 % in order to simulate an accidental outage
of the component.

E. Measurement of downtime and outage impacts

The simulation should not only run attacks on the components, but
also register outages and measure their impact. In order to measure
downtime, we could use a program that checks availability of system
components. For this reason we must poll the tested system for

Figure 2.3: Dependency graph [27].

2.1.2 Multilayer Networks

One of the major goals of modern physics is providing proper and suitable representa-

tions of systems with many interdependent components, which, in turn, might interact

through many different channels. As a result, interdisciplinary efforts of the last fifteen

years with the aim of extracting the ultimate and optimal representation of complex

systems and their underlying mechanisms have led to the birth of a movement in sci-

ence, nowadays well-known as complex networks theory [28] [29] [30]. The main goals

are [31]:

− the extraction of unifying principles that could encompass and describe (under

some generic and universal rules) the structural accommodation;

− the modeling of the resulting emergent dynamics to explain what can be actually

seen from the observation of such systems.
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The traditional complex network approach is concentrated on cases when each system

elementary unit (node or entity) is charted into a network node (graph vertex), and

each unit-to-unit interaction (channel) is represented as a static link (weighted graph

edge) that encapsulates all connections between units [32] [33] [34]. However, it is easy

to realize that the assumption of encapsulation of different types of communication into

a single link is almost always a gross oversimplification and, as a consequence, it can

lead to incorrect descriptions of some phenomena that are taking place on real-world

networks.

In turn, multilayer networks [34] [35] [31] explicitly incorporate multiple channels of

connectivity and constitute the natural environment to describe systems interconnected

through different types of connections: each channel (relationship, activity, category,

etc. . . ) is represented by a layer and the same node or entity may have different kinds

of interactions (different set of neighbors in each layer). Assuming that all layers are

informative, they can provide complementary information. Thus, the expectation is

that a proper combination of the information contained in the different layers leads to a

formal network representation (a formal model) which will be appropriate for applying

the system methodology to network analysis.

Recent surveys in the domain of multilayer networks provided by Kivela et al. [35] and

Boccaletti et al. [31] give a comprehensive overview of the existing technical literature

and summarize the properties of various multilayer structures. However, it is important

to note that the terminology referring to systems with multiple different relations has not

yet reached a consensus - different papers from various areas use similar terminologies

to refer to different models, or distinct names for the same model.

The significant case, which should be highlighted, is the multilayer model for studying

complex systems introduced by Kurant and Thiran [36]. For simplicity, only a two-layer

relationship is used (but the model can be extended to multi-layers). The lower-layer

topology is called a physical graph and the upper-layer is called a logical graph (the

physical and logical graphs can be directed or undirected, depending on the application).

The number of nodes is equal for both layers. Every logical edge is mapped on the

physical graph as a physical path. The set of paths corresponding to all logical edges is

called mapping of the logical topology on the physical topology [36] (see Figure 2.4).
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FIG. 1: Illustration of failure propagation, multiplication, and
correlation in a two-layer system. A single failure in the phys-
ical graph results in three correlated failures in the logical
graph.

trains in central Europe with the algorithm described
in [17]. The resulting physical graph reflects the real-
life infrastructure that consists of 4’853 nodes (stations)
and 5’765 edges (rail tracks). The logical graph contains
7’038 edges, each connecting the first and the last station
of a train. The logical edge weight is the number of trains
following the same route. The route itself is the mapping
of this edge on the physical graph.

The second data set, called ‘Gnutella’, is an example
of a large Peer-To-Peer (P2P) application in the Inter-
net. In a P2P system the links between users are virtual
and therefore they are usually created independently of
the underlying Internet structure, forming a very differ-
ent topology. Due to its immense size and dynamics, the
exact map of the Internet at the IP level (i.e., where the
nodes and IP routers and hosts) is still beyond our reach.
Therefore we focus on its aggregated version, where each
node is an Autonomous System AS (usually an Internet
Service Provider), and where edges reflect the connec-
tions between the ASes. The topology of such AS-level
Internet is well known thanks to numerous Internet map-
ping projects such as DIMES [18] or CAIDA [19]. For our
physical graph we take the 09/2004 topology provided by
CAIDA, which consists of 16’911 nodes and 37’849 edges.
For the logical graph we take a snapshot of the Gnutella
P2P network collected in September 2004 by the crawler
developed in [20]. It consists of around 1 million users,
connected by several million links. In order to obtain the
AS-level version of this network, we translated the IP ad-
dresses of the users into the corresponding AS numbers.
All users with the same AS number become one node in
the logical graph, and all links connecting the same pair
of ASes become one edge of weight equal to the number
of contributing links. As a result we obtain an AS-level
logical graph of Gnutella with 1’214 nodes and 31’193
edges. The mapping of each logical edge is obtained by
the shortest path in the physical graph connecting its

end-nodes.

Our third data set, called ‘Brain’, captures the large
scale connectivity of the human brain. It was inferred
from MRI scans with the approach described in [21]. In
particular, the brain cortex and the brain white matter
are partitioned into a set of compact regions of compa-
rable size. There are 1’013 regions in the cortex and
3’432 regions in the white matter. Every region becomes
a node in the physical graph. The logical edges in this
data set are the long distance axonal connections between
the 1’013 regions in the cortex. Each such connection eλ

traverses the white matter; the sequence of white mat-
ter regions on its path defines the mapping M(eλ). At
the physical layer, two nodes are connected by a phys-
ical edge eφ if they appear directly connected (i.e., are
consecutive in the sequence of regions) in at least one
mapping M(eλ). By this procedure we have obtained a
two-layer structure, where the logical graph consists of
the long-range connections in the brain and is mapped
on the physical layer that reflects the ‘3D white matter
structure’ used to establish these long-range connections.

Of course, many real-life systems have mechanisms to
partially or fully recover from failures. For instance, the
Internet consists of several (seven layers in the classic
view) layers that are specified in the ISO/OSI network
model [22]. Some of these layers, e.g., the ‘network layer’
with its IP protocol, attempt to find an alternative path
around a failing link or node. This requires, among oth-
ers, the physical graph to be connected. The situation
gets more difficult in railway networks, because for a train
its entire path is important, not only the end-points. Al-
though it is sometimes possible to slightly change the
itinerary of the train or to organize alternative means of
transportation (e.g., a bus) around the failing section,
the common practice is to halt all the trains that use it.
In order to keep our analysis general and to cover the
whole spectrum of possible situations, in this paper we
study two extreme policies: no rerouting, and full rerout-
ing. In the former case we delete immediately all logical
edges affected by a physical failure. In the latter case,
we delete any affected logical edge eλ only when there is
no path in the physical graph Gφ between the end-nodes
of eλ (i.e., end-nodes of eλ belong to different compo-
nents of Gφ). Otherwise, the logical edge eλ remains in
the graph, and its mapping is updated by the shortest
path in Gφ. Consider the example in Fig. 1. Under the
no rerouting policy, three logical edges are removed after

the failure of eφ1 . However, as the physical graph Gφ is
still connected, under the full rerouting policy all these
three logical links can be rerouted and thus remain in the
logical graph.

By studying the two extreme policies, no rerouting and
full rerouting, we also capture the specific features of our
three data sets. For instance, in the railway system every
rail track has a limited capacity that cannot be exceeded.
Therefore, even if we allow for rerouting, some routes will
be forbidden due to a possible overload. In the Gnutella
data set, the AS graph routing depends on the internal

Figure 2.4: Multilayer model [36].

In the context of this thesis, the taxonomy of multilayer networks can be completely

covered by four main dimensions [37] (see Figure 2.5):

− intralayer definition;

− intralayer topology;

− interlayer definition;

− interlayer topology.

Moreover, in terms of MBT (a formal definition of multilayer structures as the key

component of MBT) the two dimensions which represent structural properties can be

shown as a grid [37] (see Figure 2.6). The main intersection point denotes the basic

formal definition [31]. In turn, the other three points can be described as special cases

of the basic definition. It is important to note that this grid covers the majority of

multilayer structures presented in the surveys [35] [31] (see Figure 2.6).

Despite the fact that the basic formal definition [31] (like the general form [35]) mainly

targets transport, biologic (epidemic) and social networks, it can be used as a starting

point and adapted and extended accordin to the goals of this thesis.
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Figure 2.5: Taxonomy of multilayer networks [37].

IDENTICAL SETS OF NODES
ON ALL LAYESRS

MULTIPLEX NETWORKS

EXPLICITLY DEFINED
INTERLAYER STRUCTURE

UNIQUE SETS OF NODES
ON ALL LAYESRS

IMPLICITLY DEFINED
INTERLAYER STRUCTURE

MULTIDIMENSIONAL NETWORKS

MULTILEVEL NETWORKS

HYPERGRAPHS

INTERACTING NETWORKS

LAYERED NETWORKS

NETWORK CENTRIC OPERATIONS

TEMPORAL NETWORKS
INTERDEPENDENT NETWORKS

HETEROGENEOUS NETWORKS

MULTITYPE NETWORKS

INTERCONNECTED NETWORKS

NETWORK OF NETWORKS

HYPERNETWORKS

MULTIWEIGHTED GRAPHS

MULTIVARIATE NETWORKS

MULTINETWORKS

MULTIRELATIONAL NETWORKS

MULTISLICE NETWORKS

OVERLAY NETWORKS

BASIC FORMAL DEFINITION

Figure 2.6: The grid of structural properties [37]. Data sources: Multiplex net-
works [34] [38]; Multivariate networks [39] [40]; Multinetworks [41]; Multirelational
networks [42]; Multidimensional networks [43]; Multislice networks [44] [45]; Overlay
networks [46]; Temporal networks [45] [47]; Multiweighted graphs [48]; Multilevel net-
works [49] [50]; Hypernetworks [51] [49]; Hypergraphs [52] [49]; Network centric op-
eration [53]; Multiple networks [54] [55]; Layered networks [36] [56]; Heterogeneous
networks [42] [57]; Interconnected networks [58] [59]; Interacting networks [60]; Inter-

dependent networks [61] [62]; Network of networks [63].
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2.2 Model-Based Testing

Recent surveys by Broy et al. [64], Dias-Neto et al. [65] and Hierons et al. [66] provide a

comprehensive overview of the existing technical literature in the MBT field. MBT re-

search in the domain of complex (hardware/software integrated) systems can be roughly

classified into three categories [67] [66] [13]:

− MBT general approaches;

− MBT based on explicit models;

− MBT based on formal specifications.

MBT general approaches. El-Far and Whittaker [68] give a general introduction to

principle, process, and techniques of model-based testing. Stocks and Carrington [21]

define the term test templates and suggest that test templates can be defined as the base

for test case generation and large test templates should be divided into smaller templates

for generating more detailed test cases. In turn, Din et al. [20] represent the approach

for architecture driven testing (ADT). A taxonomy of model-based testing approaches

is provided by Utting et al. [4] (see Figure 2.7) and Zander et al. [15].

MBT based on explicit models. Offutt and Abdurazik [69] describe an approach to gen-

erating test cases from UML Statecharts for components testing. Hartmann et al. [70]

extend the approach for integration testing and for test automation. Abbors et al. [71]

represent a systematic methodology in the telecommunication domain. In turn, Pe-

leska [72] introduces approaches to hardware/software integration and system testing.

MBT based on formal specifications. Bernot et al. [74] set up a theoretical basis for

specification-based testing, explaining how formal specifications can serve as a base for

test case generation. Dick and Faivre [75] propose to transform formal specifications

into a disjunctive normal form (DNF) and then use it as the basis for test case gener-

ation. Donat [73] represents: (1) a technique for automatic transformation of formal

specifications into test templates; and (2) a taxonomy for coverage schemes (see Fig-

ure 2.8). Hong et al. [76] show how coverage criteria based on control-flow or data-flow

properties can be specified as sets of temporal logic formulas, including state and tran-

sition coverage as well as criteria based on definition-use pairs. A systematic method
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A TAXONOMY OF MODEL-BASED TESTING APPROACHES
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Figure 2. Overview of the Taxonomy.

The choice of these six dimensions directly reflects the process introduced in Section 2. Step 1
(building the model) is reflected by the three dimensions within the model specification category:
scope, characteristics, and modelling paradigm. Steps 2 and 3 (choosing test selection criteria and
building test case specifications) are reflected by the test selection criteria dimension within the
test generation category. Step 4 (generating tests) is reflected by the technology dimension with
the test generation category. Step 5 (running tests) is reflected by the on/offline dimension of the
test execution category.

Other perspectives that give rise to a taxonomy of MBT and that do not start from the process
can, of course, also be justified. For instance, one could also start from the different artefacts that
are developed or used in that process, e.g. models, test specifications, test drivers, properties, tests,
etc. The rationale for the decision to use the process as a basis is that it is easier to agree on the
activities of the process, and thus to justify the completeness of the taxonomy, than to agree on the
different relevant artefacts. This, of course, does not mean that such a different taxonomy would
not be valuable as well.

3.1. Model scope

The first dimension is the scope of the model, which is classified into a binary decision: does the
model specify only the inputs to the SUT, or does it specify the expected input–output behaviour
of the SUT? The input-only models are generally easier to specify, but they have the disadvantage
that the generated tests will not be able to act as an oracle. The generated tests may implement an
implicit ‘robustness’ oracle, such as checking that the SUT does not crash or throw any exceptions,
but they cannot check the correctness of the actual SUT output values, since the model does not
specify the expected output values. So input-only models produce weak oracles that are incapable
of verifying the correctness of the SUT functional behaviour.

Input–output models of the SUT not only model the allowable inputs that can be sent to the
SUT, but must also capture some of the intended behaviour of the SUT. That is, the model must

Copyright q 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/stvr
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Figure 2.7: Taxonomy of model-based testing [4].
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least one of the selected prime implicants. 

The differences between these coverage schemes can be illustrated by consid- 
ering the number of terms produced when applied to the expression in Figure 1. 
This figure shows the points where the expression is true and compares the Kar- 
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Term coverage is of interest since it is linear with respect to the size of 
the specification rather than exponential, as are the others. Note that term 
coverage does not produce test frames that cover two of the eight all-points 
cases, W A X A Y A Z and -1W A X A Y A --,Z. This is the compromise made in 
order to produce fewer tests. 

7 C o n c l u s i o n s  

The technique described in this paper addresses the process of deriving test 
frames from formal requirements specifications. A prototype has been constructed 
that demonstrates that this process can be automated for specifications written 
in a predicate logic with universal and existential quantification. Augmenting 
existing test suites will be implemented in the near future. 

Figure 2.8: Taxonomy of coverage schemes [73].
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presented by Liu and Shen [77] can be used for (1) identifying all possible scenarios; (2)

formalizing informal requirements into formal operation specifications; and (3) testing

based on these formal specifications (scenario-coverage strategy).

In the context of this thesis, the general principles of model-based testing provide the

following basic notions:

− The MBT framework that defines major processes (see Figure 2.9): (1) building

the formal model from detailed design documentation (technical specifications);

(2) defining test selection criteria, i.e. transforming informal end-user and tech-

nical requirements into formal test requirements; (3) generation test cases (test

specifications) based on formal test requirements; and (4) checking the internal

consistency of the formal model with respect to the test requirements.

− Test scopes that cover: (1) individual components; and (2) component-to-component

interactions.

− Test goals that cover: (1) structural tests; and (2) nonfunctional (or extra-functional)

tests.

It is important to note that in the case of COTS components or groups of components,

i.e. commercial products2, functional tests are usually prepared by vendors. In the

real world engineers are always under great financial and timing constraints and, as a

consequence, have to rely on:

− vendors’ and/or independent laboratories’ information about products;

− vendors’ conclusions of products’ compliance with end-users’/customers’ require-

ments;

− vendors’ documentation (includes test descriptions).

On the other hand, model paradigms and test generation technologies that are based

on formal specifications do not cover computer networks and distributed computing

systems, which these networks support, as whole systems. Hence, they should be re-

defined according to the goals of this thesis.

2Commercial product is a product that can be sold, rather than one still being developed [78].
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Figure 2.9: MBT framework in the context of this thesis.

2.3 Dependability Testing

The key factor of fault tolerance (or fault transparency [8]) is preventing failures due

to system architectures and it addresses the fundamental characteristic of dependability

requirements in two ways [79]:

− replication, i.e. providing multiple identical instances of the same component and

choosing the correct result on the basis of a quorum (voting);

− redundancy, i.e. providing multiple identical instances of the same component and

switching to one of the remaining instances in case of a failure (failover).

As a consequence, a system must be validated to ensure that its replication/redundancy

mechanism has been correctly implemented and the system will provide the desired

level of reliable service. Fault injection (the deliberate insertion of faults into a system

to determine its response [80] [81]) offers an effective solution to this problem. Fault-

injection experiments provide a means for understanding how these systems behave in

the presence of faults (the monitoring of the effects the injected faults have on the

system’s final results).

Fault injection research in the domain of computing systems can be roughly classified

into three categories [80] [82] [83]:

− physical fault injection [84] [85];
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− software fault injection [86] [87];

− fault simulation (environment fault injection) [88] [83] [89] [90].

The mixed-mode simulation, where the system is hierarchically decomposed for simula-

tion at different abstraction levels, is particularly useful in the case of complex distributed

systems.

In turn, strategies for the fault-injection experiments are generally based on methods

for assessing system reliability (identifying potential faults and determining the resulting

error effects) [26] [91] [27] [92].

Nowadays, models for assessing reliability of distributed systems can be roughly classified

into [93]:

− user-centric models;

− architecture-based models;

− state-based models.

2.3.1 User-centric models

Generally, user-centric models can be defined as the top-down or service-oriented ap-

proach (i.e. the viewpoint of the business/end-user community) to the reliability of

distributed systems [94] [95] [96]. As reliability of any system has direct impact on the

system usage, so these models focus on user/subscriber and provider behavior and ba-

sically work on the principle of evaluating transmission time to compute the execution

time of each file or program under real conditions running in a distributed environment.

As a consequence, the system reliability is based on the operational or usage profile of

the given set of services.

The common analytical tool for user-centric models is time-based models (founded on the

queueing theory) [97] [96]. User-centric approaches can be characterized as multi-stage

problem solving processes where the system is conceived in terms of user behavior.
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2.3.2 Architecture-based models

In contrast to the user-centric models, architecture-based models can be defined as the

bottom-up or hardware-based approach (the viewpoint of the engineering community) to

the reliability of distributed systems. In turn, they can be classified into: (1) component-

oriented models; and (2) communication-oriented models.

Component-oriented models represent distributed systems as a composition of multiple

processors but completely ignore the failures of communications and assume that the

communication channels (links) among the processors are perfect [98] [99] [100]. Without

considering communication failures, the exchanged information between components

(software and hardware) must always be correct. In this case, the problem of distributed

system reliability can be reduced to a parallel-series structure. In turn, the parallel-series

reliability is easy to calculate [101] [100] [102] [103]. Such condition may be a good

approximation for a system that exchanges only a little information among nodes, such

as those where the processors do only their own jobs (no intensive data transmission).

The analytical tool for component-oriented models is reliability block diagrams (one of

the conventional and most common tools of system reliability analysis [102] [103]).

In contrast to the component-oriented models, communication-oriented models consider

the communication failures and assume that the components themselves (the nodes of

networks) are always perfect [104] [100] [103]. They suppose that the system failures are

caused by communication failures on channels (links) while the components (or nodes)

cannot fail during the executing of programs. Such condition is a good approximation

for cases where the communication time dominates the time of program execution or

the components are highly reliable in comparison to the channels.

The analytical tool for communication-oriented models is network diagrams (commonly

used in representing communication networks consisting of individual links [100]).

An additional effective analytical tool for architecture-base models is fault tree diagrams

(the underlying graphical model in fault tree analysis) [105] [100] [102]. Whereas the

reliability block diagrams and network diagrams are mission success oriented, the fault

tree shows which combinations of the component failures can lead to system failures.

And fault tree diagrams can describe the fault propagation in systems. However, repair
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and maintenance (two important operations in system analysis) cannot be expressed

using a fault tree formulation.

2.3.3 State-based models

The first generation of state-based models that considered both node failures and link

failures have a common assumption - the operational probabilities of nodes or links are

constant without considering bandwidth and content (constant-reliability models) [106]

[107] [108]. However, this assumption of the constant-reliability of elements is not suit-

able in practice. Intuitively, downloading a larger file from a remote site will have a

higher risk of failure than downloading a smaller file through the same link [109].

The most recent models relax this assumption for the elements (nodes and links). In-

stead, they assume that the failures of elements follow Poisson processes, so that the

more time an element works (including execution and communication), the less reliable

that element is [109] [110] [111]. In addition, the traditional models study the net-

work topology by physical links and nodes that are static without considering dynamic

changes of components and logic structures. To solve these problems, recent models use

a virtual structure instead of physical structure [110] [111].

The analytical tool for state-based models is Markov models [100] [102]. To deal with all

sorts of errors such as time-out failures, blocking failures, network failures, etc. (which

can occur during operations of execution and communication), a hierarchical model must

be used. This model suggests tackling various errors in different layers and uses Markov

state principle to map layers into different physical states [93].

The general approach (common to all types of models) is to treat reliability as a complex

problem and to decompose the distributed system into a hierarchy of related subsystems

or components. Rebaiaia and Ait-Kadi [112] provide a survey of methods, algorithms

and software tools. However, it is important to note that the reliability evaluation

problem is NP-complete and, as a consequence, the generation of an exact solution is

very problematic.

In turn, Kurant et al. [56] represent the dynamic analysis (or fault-injection simulation)

which provides a means for understanding how two-layer complex systems which come
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from the fields of communication (the Internet), transportation (the European railway

system) and biology (the human brain) behave in the presence of faults. It includes:

− successive removals of vertices/edges from the model on the physical layer;

− impact assessments of those removals (disruption on the physical layer might de-

stroy a substantial part of the upper logical layer which is mapped on it, rendering

the whole system useless in practice).

Despite the fact that the dynamic analysis [56] mainly targets two-layer complex systems,

it can be used as a starting point and adapted and extended according to the goals of

this thesis

2.4 Presentation Formats

The universal requirement for design documentation is simple - the documentation

should be based on standards like each and every formal document. Generally, the

choice between international and regional standards depends on the state and/or cor-

porate legislation but, fortunately, the majority of regional standards replicate their

international predecessors.

The Formal Description Techniques (FDT) [113] are based on a technical language for

unambiguous specification and description of the behavior of telecommunication sys-

tems. The main FDTs include: Specification and Description Language (SDL) [114],

Message Sequence Chart (MSC) [115], User Requirements Notation (URN) [116], and

Testing and Test Control Notation (TTCN) [117]. However, FDTs are intended to spec-

ify the behavioral aspects of software-intensive systems, not their architectures [114].

Furthermore, they do not cover the structure of design documentation.

The current revision of IEEE Std 1362-1998 (R2007) [118] standard represents a Concept

of Operations (ConOps). ConOps is a user-oriented document that describes charac-

teristics of to-be-delivered systems from the end-users’ (or integrated systems) point of

view. It also specifies recommended graphical tools (charts and diagrams).
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The standard ISO/IEC Std 15288:2015 [119] establishes a common process framework

for describing the life cycle of man-made systems. It defines a set of processes and asso-

ciated terminology for the full life cycle, including Architectural Design Process (or the

process of elaboration of design documentation). In turn, the standard ISO/IEC Std

15289:2011 [120] specifies the purpose and content of service management information

items (documentation). It defines the life cycle data of ISO/IEC Std 15288:2015 by

relating tasks and activities to the generic types of information items such as descrip-

tions and specifications (the main information components of design documentation).

Furthermore, conceptualization of system architectures assists the understanding of the

system essence and key properties pertaining to its behavior, composition and evolution,

which in turn affect concerns such as the feasibility, utility and maintainability of the

system. As a consequence, the standard ISO/IEC Std 42010-2011 [121] specifies archi-

tecture viewpoints, architecture frameworks and architecture description languages for

use in architecture descriptions.

The latest revision of IEEE Std 1233-1998 [122] and ISO/IEC Std 29148:2011 [123] stan-

dards specify the engineering processes of the identification, organization, presentation

and modification of system requirements. These processes address conditions for incor-

porating operational concepts, design constraints and design configuration requirements

into technical specifications.

In the context of this thesis, it is important to note that these international standards

establish what should be contained in design documentation but not how : possible

formats of information items or, at least, guidance on selecting appropriate presentations

are not included in the scope of these standards. As a consequence, an appropriated

presentation format of system architecture descriptions as a necessary part of the detailed

design documentation (technical specifications) that allows automated development of

the formal model should be defined according to the goals of this thesis.
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Formal Model

The journey of a thousand miles begins with one step.

—Lao Tzu

The multilayer approach for the modeling of complex systems covers two main areas:

− multilayer models (architecture formal representation);

− reference models (layers definition).

3.1 Multilayer Model

A type of multilayer network of particular relevance for computer networks is a hierar-

chical multilayer network [35], in which the bottom layer constitutes a physical network

and the remaining layers are virtual layers that operate on top of the physical layer.

Hence, the formal definitions of multilayer networks [31] [35] can be used as a starting

point. However, these definitions support a wide spectrum of arbitrary relationships

between different layers1. The necessary condition of top-down consistency can be pro-

vided by the concept of layered networks [36]. In turn, this concept is based on the

facts:

1The arbitrary relationships between different layers are not a common case in the domain of com-
puting systems. For example: in general, services/applications cannot communicate with hardware
components directly [124].

31
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− for each node on a given layer there is a corresponding node (or nodes) on the

layer below;

− for each path between two nodes on a given layer there is a path (or paths) between

the corresponding nodes on the layer below.

As a consequence, the formal basic definitions [31] (see Figure 2.6) should be adapted

to the hierarchical top-down approach:

Definition 1. Let the graph M denote the system under test (SUT) as a multilayer

projection network:

M =
(
V,E

)
where M is a multi-layered 3D graph (see Figure 3.1), derived from the SUT specification;

V (M) is a finite, non-empty set of components of SUT; and E(M) is a finite, non-empty

set of component-to-component interconnections. In turn:

V =
L⋃
α=1

V α

and:

E =

(
L⋃
α=1

Eα

)⋃(
L⋃
α=2

Eα,(α−1)

)

where V α is a finite, non-empty set of components of SUT on layer α; Eα is a finite, non-

empty set of intralayer component-to-component interconnections on layer α; Eα,(α−1) is

a finite, non-empty set of interlayer relations (so called projections) between components

of the layer α and the layer below (α−1); and L is the number of SUT layers (1 ≤ α ≤ L).

Therefore, two main elements of multilayer networks are (1) intra-layer graphs and (2)

inter-layer graphs [35].

In general, the intralayer subgraph Gα of M can be represented as [31]:

Gα =
(
V α, Eα

)
where V α is a finite, non-empty set of components on layer α; and Eα ⊆ V α × V α is

a finite, non-empty set of intralayer component-to-component interconnections on layer

α. However, in practice, intralayer subgraphs Gα are usually not monolithic structures:
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Figure 3.1: Hierarchical multilayer model [125] [126].

a set of protocols is predefined for each (physical or virtual) layer2. Moreover, these

protocols can support different topologies. As a consequence, each intralayer subgraph

Gα consists of a fixed set of components connected by different types of information

links.

Types of multilayer network of particular relevance for this case are multiplex [34] [38] [31]

or multidimensional [43] [31] networks, in which different layers represent different types

of component-to-component interconnections. In the context of this thesis, specific types

of interconnections and their properties are described by graph labels which, in turn,

are represented by subsets of attributes. Hence:

Definition 2. Let the subgraph Gα denote a layer of SUT as:

Gα =
(
V α, Eα, SαV , S

α
E

)
where Gα is a labeled intralayer subgraph of M ; V α is a finite, non-empty set of com-

ponents on layer α; Eα ⊆ V α × V α is a finite, non-empty set of intralayer component-

to-component interconnections on layer α; SαV is a vertex label set for layer α; and SαE

2For example: a wireless access point (AP) must support at least two different protocols: (1) one for
wired and (2) one for wireless communications.
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is an edge label set for layer α. In this case:

SαV =
⋃

vαi ∈V α
Sαi

where Sαi ⊂ Sα is a finite non-empty set of specifications of SUT components (a set of

supported communication protocols) that defines the label of the vertex vαi of Gα; and Sα

is the universal set of all possible communication protocols on layer α. Let Sαi,j ⊂ Sα

be a finite non-empty set of specifications of component-to-component interconnections

(the set of used communication protocols) that defines the label of the edge
〈
vαi , v

α
j

〉
of

Gα. Also, let Gαβ be a sub-subgraph which is defined by a given communication protocol

sαβ ∈ SαE ⊂ Sα; and Eαβ ⊆ Eα be a finite, non-empty set of intralayer component-to-

component interconnections on sub-layer β of layer α. In this case, Gα is represented

as a multiplex network (see Figure 3.2):

Gα =

|SαE |⋃
β=1

Gαβ

and:

Gαβ =
(
V α, Eαβ

)
In turn:

SαE =
⋃

〈vαi ,vαj 〉∈Eα
Sαi,j

and:

Sαi,j =
⋃

〈vαi ,vαj 〉∈Eα
sαβ∈S

α
i

sαβ∈S
α
j

{
sαβ
}

If an edge
〈
vαi , v

α
j

〉
∈ Eα belongs to Gαβ then both components vαi and vαj support this

protocol, i.e. sαβ ∈ Sαi and sαβ ∈ Sαj (each pair of components vαi and vαj can be connected

by at most |SαE | possible edges).

The following assumptions can decrease the complexity of interlayer subgraphs in prac-

tice:

− In the context of this thesis, loops (or edges 〈vαi , vαi 〉 of Gα) represent the internal

structures of components (internal data flows) which are beyond the scope of this
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MULTIPLEX NETWORK

SUB-LAYER α
1

SUB-LAYER α
2

SUB-LAYER α
3

LAYER α

LAYER α

Figure 3.2: Intralayer subgraph representation as a multiplex network [126].

work, i.e. 〈vαi , vαi 〉 ≡ vαi (loops are disallowed).

− All multiple component-to-component interconnections between the same compo-

nents vαi and vαj of Gα that are based on the same communication protocol (the

representation of link combining/aggregation technologies [127]) should be repre-

sented as an edge
〈
vαi , v

α
j

〉
of Gα. In the context of this thesis, the label of the

edge Sαi,j represents both: (1) the used communication protocol; and (2) the used

aggregation protocol.

− Also in the context of this thesis, in the case of the analysis of an intralayer sub-

graph Gα as a whole (i.e. without separation Gα into constituent sub-subgraphs),

all multiple component-to-component interconnections between the same compo-

nents vαi and vαj of Gα that are based on different communication protocols is
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represented as one edge
〈
vαi , v

α
j

〉
of Gα. In turn, the label of the edge Sαi,j repre-

sents all used communication protocols.

Hence, pro forma intralayer subgraphs can be defined as simple graphs3.

In order to avoid misunderstandings, the following examples clarify the usage of label

symbols:

− The vertex label S3
1 represents the set of communication protocols that is supported

by the component v31 ∈ V 3 on the layer 3. In turn, the label S3
V represents the set

of communication protocols that is supported by all components v3i ∈ V 3 on the

layer 3, i.e. S3
1 ⊂ S3

V . Moreover, the set S3 represents all possible communication

protocols (standard and proprietary) that can be used on the layer 3, i.e. S3
1 ⊂

S3
V ⊂ S3.

− The edge label S3
1,5 represents the set of communication protocols that is used for

communication between adjacent components v31 and v35 (the edge
〈
v31, v

3
5

〉
∈ E3)

on the layer 3. In turn, the label S3
E represents the set of communication protocols

that is used for communication between all adjacent components
〈
v3i , v

3
j

〉
∈ E3

on the layer 3, i.e. S3
1,5 ⊂ S3

E ⊂ S3.

Definition 3. Let the subgraph Gα,(α−1) denote a cross-layer of SUT as

Gα,(α−1) =
(
V α, V (α−1), Eα,(α−1)

)
where Gα,(α−1) is an interlayer bipartite subgraph of M ; V α is a finite, non-empty set of

components on layer α, V (α−1) is a finite, non-empty set of components on layer (α−1);

and Eα,(α−1) ⊆ V α×V (α−1) is a finite, non-empty set of interlayer relations (all sets of

projections) between components of the layer α (2 ≤ α ≤ L) and the layer below (α− 1).

The degree (or valency) of vertices of Gα,(α−1) represents the technological solutions

which were used to build the system [125]:

− d (vαi ) > 1; vαi ∈ V α - clustering technology representation (see Figure 3.3);

− d
(
v
(α−1)
j

)
> 1; v

(α−1)
j ∈ V (α−1) - virtualization and replication technologies rep-

resentation (see Figure 3.4 and Figure 3.5);

3A simple graph is an undirected graph in which both multiple edges and loops are disallowed [128].
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− d (vαi ) = d
(
v
(α−1)
j

)
= 1;

〈
vαi , v

(α−1)
j

〉
∈ Eα,(α−1) - a special case of dedicated

components.

Hence, pro forma computer networks cannot be defined as hierarchical multilayer net-

works4 but just multilayer networks.

- Host (Cluster Member)

LOGICAL LAYER

PHYSICAL LAYER

VM_02

COS_01

Server_01

VM_XX

COS_XX

Server_XX

- Console Operating System (Host Operating 
  System)
- Virtual Machine (Guest Operating System or 
  Container)

NAS_XX - Network-Attached Storage (Network File System)

Server_02

COS_02

NAS_01VM_01

Figure 3.3: Hardware cluster example [125].

Based on Definition 2 and Definition 3, SUT can be represented as:

M =

(
L⋃
α=1

Gα

)⋃(
L⋃
α=2

Gα,(α−1)

)
=

 L⋃
α=1

|SαE |⋃
β=1

Gαβ

⋃(
L⋃
α=2

Gα,(α−1)

)

From the perspective of MBT, intralayer subgraphs Gα are the main source of initial

data for the test case generation process; and interlayer subgraphs Gα,(α−1) make this

process consistent on all layers of the formal model (see Section 4.1).

4Hierarchy is a structure in which components are ranked into levels of subordination; each component
has zero, one, or more subordinates; and no component has more than one superordinate component [17].
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VLAN_1

- Multilayer Ethernet Switch

LOGICAL LAYER

PHYSICAL LAYER

VLAN_10

VLAN_20

VR_01

COS_01

L3_Switch_01

VLAN_XX

COS_XX

VR_XX

L3_Switch_XX

- Console Operating System (Firmware)

- Virtual Local Area Network

- Virtual Router

Figure 3.4: Network virtualization example [125].

VLAN_1

LOGICAL LAYER

PHYSICAL LAYER

VLAN_10

VLAN_20

VR_01

COS_01

VLAN_XX

COS_XX

VR_XX

- Virtual Local Area Network

- Virtual Router

- Virtualization Host

VM_XX

Server_XX

- Console Operating System (Hypervisor or 
  Host Operating System)
- Virtual Machine (Guest Operating System)

VM_01

VM_02

Server_01

Figure 3.5: Host virtualization example [125]. The existence of virtual routers
(VR) depends on implementation details: OpenStack [129] supports them but VMware

vSphere [130].
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3.2 Reference Models

The ISO/OSI Reference Model (OSI RM) [131] was developed years ago for application

developers, equipment manufacturers and network protocol vendors as an open standard

for constructing network devices and applications/services that can work together. The

model partitions computing systems into seven abstraction layers:

1. Physical Layer;

2. Data Link Layer;

3. Network Layer;

4. Transport Layer;

5. Session Layer;

6. Presentation Layer;

7. Application Layer.

However, this conceptual model has never been implemented in practice. Instead, the

increasing popularity of TCP/IP based networking has led hardware and software devel-

opers to use the TCP/IP Protocol Suite (or Five-layer Reference Model) [132] [133] [134],

the five layers of which are based on OSI RM - Layers 5 through 7 are collapsed into

the Application Layer (see Figure 3.6).

On the other hand, network architecture representation should be as clean and simple

to understand as it can be. As a consequence (in contrast to the developer community)

the business community (end-users) faces the following challenges [125]:

− Physical Layer and Data Link Layer cannot be separated in the case of commercial

off-the-shelf (COTS) network equipment.

− Transport Layer and Application Layer cannot be separated in the case of COTS

software.

Moreover, end-users do not need services and applications themselves - they need tools

to solve their business problems. However, neither OSI RM nor TCP/IP Protocol Suite
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OSI RM

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

TCP/IP
Protocol Suite

Physical Layer

Data Link Layer

Internet Layer

Transport Layer

Application Layer

Figure 3.6: ISO/OSI Reference Model [131] and TCP/IP Protocol Suite (Five-layer
Reference Model) [132] [133] [134].

provides a layer to represent the increased viewpoint of end-users (business goals). In

fact, a common joke is that OSI RM should have three additional layers [6]:

8. User Layer;

9. Financial Layer;

10. Political Layer.

In practice, computer networks focus on solving problems at Layer 10 (but they are

usually limited by Layer 9).

As a consequence, we should define an additional layer that can represent the increased

system functionality or business goals. The basic multilayer reference model is shown in

Figure 3.7. From the viewpoint of the hierarchical multilayer network, the physical layer

constitutes a physical network and the logical, service and functional layers are virtual

layers that operate on top of the physical layer.



Chapter 3. Formal Model 41

Unfortunately, the basic model does not take into account the environment impact

that might be critical in some cases5. The problem can be solved by two additional

layers [136]:

− The engineering environment layer. This layer defines external engineering systems

that are vital for normal operation of physical networks.

− The social environment layer (or Layer 8 of OSI RM [6]). This layer defines

organization infrastructures or human networks [53].

It is important to note that all these additional layers - functional, social and engineering

- lie beyond the ISO/OSI RM and the TCP/IP Protocol Suite but they provide a

necessary complement to it with regard to applying the system methodology to network

analysis.

Hence, the extended multilayer reference model can be stated as follows (see Figure 3.7):

− The functional (or ready-for-use system) layer defines functional components and

their interconnections – the increased viewpoint of end-users/customers. This layer

is based on functional models [1]:

− service-provider architectural model [1];

− intranet/extranet architectural model [1];

− single-tiered/multi-tiered architectural model [1];

− end-to-end architectural model [1].

The number of sub-layers (see Definition ??) reflects the number of system business

goals. In turn, the lower bound of the sub-layer number strictly relies on the fact

that each and every computing system must completely satisfy the two following

viewpoints:

− the viewpoint of the business community (end-users) - a system must be

useful, i.e. it must solve (not create) business problems;

5For example in the case of security testing. It is obvious that security testing should cover all threats
defined by the current revision of ISO/IEC 27005:2011 standard [135]. It is important to note that this
list of typical threats covers both aspects (software-based and network-based) of computing systems but
not only these aspects
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Figure 3.7: Multilayer reference models [126].

− the viewpoint of the IT personnel - a system must be fully controlled, main-

tainable and repairable.

On the other hand, the experimental psychological work based on a large number

of experiments related to sensory perception concludes that humans can process

about 5-9 levels of complexity [137]. This result can be used as the upper bound.

− The social layer (optional) defines organization infrastructures or human (social)

networks [53]. It represents people or groups of people and their working rela-

tionships based on electronic communications (other types of communications are

beyond the scope of this thesis). The layer is based on flow-based models [1]:
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− centralized architectural model [8];

− decentralized architectural model [8].

Social sub-layers represent different types of electronic communication such as

video- and audio-conference, instant messaging and electronic mail, etc. As a

consequence, the number of social sub-layers is defined by the institution/corporate

requirements and/or state legislation.

− The service layer defines software-based components (services/applications) and

their interconnections. It is based on flow-based models [1]:

− client-server or centralized architectural model [8];

− peer-to-peer or decentralized architectural model [8];

− hybrid architectural model [8].

In this case, sub-layers reveal services/applications and their associated TCP/UDP

data flows (each sub-layer represents data flows for a particular number of TCP/UDP

ports). In general, the upper bound is strictly defined by IANA as the range of

TCP/UDP ports6 [138].

− The logical layer defines logical (virtual) components and their interconnections.

It is based on topological models [1]:

− LAN/MAN/WAN architectural model [139];

− core/distribution/access architectural model [140].

Two main sub-layers represent logical topologies defined by IPv4 [141] and IPv6 [142]

protocols. In turn, each logical topology might be divided (but it is not required)

into subnets and their associated VLANs.

− The physical layer defines hardware (physical) components and their interconnec-

tions. Like its predecessor, this layer is based on topological models [1]. Two

main sub-layers represent topologies defined by wired [143] and wireless [144] in-

frastructures. In turn, each physical topology might be decomposed (but it is not

required) in accordance with used protocols and their associated technologies.

6In the domain of computer networks the upper bound can be defined by the range of standardized
(well-known) and registered TCP/UDP ports only.
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− The engineering layer (optional) defines external engineering systems (power sup-

ply systems, climate control systems, physical security systems, etc.), that are

vital for normal operation of physical networks, and their relation with the phys-

ical networks. It is based on topological models [1], where engineering systems

and physical networks are represented as individual components. In general, engi-

neering sub-layers should represent different types of external engineering systems.

However, in contrast to the logical and physical layers, the engineering layer usu-

ally does not require complicated architecture solutions, i.e. there are no reasons

to divide it into sub-layers.
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Structural Test Case Generation

Strategy

If you can’t describe what you are doing as a process, you don’t know what you’re doing.

—William Edwards Deming

According to the goals of this thesis (see Section 1.5), the description of the structural

test case generation strategy covers the following areas:

− The framework of the test case generation strategy including the detailed descrip-

tion of key elements.

− The formal definitions of the key elements and their relations.

− The formal definitions of test case generation strategy based on requirements cov-

erage criteria which aim at the structure of the SUT.

4.1 Framework of Test Case Generation Strategy

The MBT framework which is used in this thesis is shown in Figure 2.9. In turn,

Figure 4.1 represents the framework of structural test case generation strategy for a

given layer of the formal model. The key elements of the both frameworks are:

− the formal model;

45
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− test requirements;

− test cases.

According to the goals of this thesis (see Section 1.5), the formal model and test re-

quirements are completely based on the SUT detailed design documentation (the unam-

biguous relations between these elements and the design documentation are discussed in

Chapter 6). Unfortunately, design documentation might contain mistakes (it happens

very often in practice). In turn, the proposed approach enables data processing based

on wrong input representations (not the correct only). As a consequence, the criteria

of consistency which allow selection of correct representations (errors/bugs detection)

should be defined in conjunction with the framework key elements.

MODEL STRUCTURAL
TEST CASES

TEST REQUIREMENTS

R(α+1),α

α
GRα,α

α,(α-1)GRα,(α-1)

TαRα

Figure 4.1: The framework of the structural test case generation strategy for a given
layer α of the formal model where Gα is an intralayer subgraph; Gα,(α−1) is an in-
terlayer subgraph; R(α+1),α is a set of interlayer projections of test requirements from
upper layers to layer α; Rα,α is a set of intralayer test requirements (or the set of test
requirement defined for layer α); Rα is a resulting set of test requirements for layer α);
Rα,(α−1) is a set of interlayer projections of test requirements from layer α to the layer
below; and Tα is a set of test cases (abstract test specifications) which relate to the

structure of the formal model on layer α.
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4.1.1 Formal Model

As mentioned above (see Section 1.3), the quality of formal methods based on abstract

models is limited by the quality of these models. Hence, the internal consistency of

the formal model (as a part of the model validation report - see Figure 2.9) should be

verified during the structural test case generation activities.

In the context of this thesis, the definition of the model internal consistency strictly

relies on the following notions:

− The definition of consistency as the ability of parts of a system or component to

be asserted together without contradiction [17].

− The definition of a communication protocol as a set of conventions that govern the

interaction of processes, devices, and other components within a system [17].

− The concept of layered networks [36], i.e. the fact that a node on a given layer

depends on a corresponding node (or nodes) on the layer below (with the exception

of the bottom layer).

− The fact that the existence of isolated components is strictly against the definitions

of computer networks [132] and distributed systems [8].

These ideas are formalized in Criterion 1:

Criterion 1. The formal model based on the concept of multilayer networks is internally

consistent on a given layer α iff:

− each vertex vαi of intralayer subgraphs Gα is incident with at least one edge of Gα,

i.e. d (vαi ∈ Gα) ≥ 1;

− each pair of adjacent vertices vαi and vαj of Gα which are incident with the edge〈
vαi , v

α
j

〉
of Gα supports at least one common communication protocol, i.e. Sαi,j ⊆

Sαi ; Sαi,j ⊆ Sαj and Sαi,j 6= ∅;

− each vertex vαi of interlayer subgraphs Gα,(α−1) (2 ≤ α ≤ L) is incident with at

least one edge of Gα,(α−1), i.e. d
(
vαi ∈ Gα,(α−1)

)
≥ 1.

In general, there are two possible results of applying Criterion 1:
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− The formal model is internally consistent on a given layer. In this case, the model

consistency with respect to the test requirements (the model external consistency)

on the given layer should be checked during the structural test case generation

activities (see Section 4.1.3).

− The formal model is internally inconsistent on a given layer. This case explicitly

represents the existence of errors/bugs (at least one) in design documentation

(technical specifications). As a consequence:

− the design documentation should be corrected;

− the formal model should be re-built and then re-checked using Criterion 1.

Limitations:

− The formal model based on the concept of multilayer networks is intended to

specify heterogeneous structures and their properties. The behavioral aspects of

computer networks have to be described using different techniques (these aspects

are beyond the scope of this thesis).

− The SUT detailed design documentation should cover all coexisting architectural

layers (according to the basic or extended multilayer reference model - see Sec-

tion 3.2). Otherwise, the building (generation) of the formal model and, as a

consequence, the application of the system methodology to network analysis is

impossible.

4.1.2 Test Requirements

In general, formal models can define an infinite number of potential test cases due to

their internal structures [64]. It turn, test selection criteria define the conditions that

are used to control the generation of test cases, i.e. they determine what kind of test

cases should be extracted from a possibly infinite universal set of all possible test cases.

Based on the fact that the usefulness of network/distributed systems does not depend

on any particular part of these systems, but emerges from the way in which their compo-

nents interact [23] [145], the structural model coverage criteria (which use the structure

of formal models to select the test cases [15]) can be used as a starting point. In this case,



Chapter 4. Structural Test Case Generation Strategy 49

the strongest coverage criterion is the path coverage criterion1. Nevertheless, the full

path coverage is in general impossible to achieve and impractical for real life testing [64].

In practice, different categories should be combined to complement one another so as

to achieve the best test coverage [15]. The system methodology (see Section 1.2) allows

eliminating the disadvantages of the path coverage criterion by using the requirements-

based criteria. In this case, the test suite should cover only the paths which are defined

by: (1) end-user requirements; and (2) requirements derived from technical specifica-

tions, i.e. defined by technological solutions used to build the SUT2.

In turn, the standard ISO/IEC/IEEE Std 29148:2011 [123] defines:

− the term requirement as a statement which translates or expresses a need and its

associated constraints and conditions;

− the term condition as a measurable qualitative or quantitative attribute that is

stipulated for a requirement.

As a consequence, in the context of this thesis formal test requirements should determine:

(1) objects as associated elements of the SUT structure; and (2) associated conditions

of these objects (or requirement attributes). As mentioned above (see Section 3.1),

the interlayer relations: (1) determine how the topological properties on different layers

affect each other and, as a consequence, (2) represent technologies used to build the

system (virtualization, clustering, replication, etc.). As a consequence, the result of

applying the concept of layered networks [36] to the definition of the test requirements

(see Section 1.4) introduces two sources of test requirements for a given layer of the

formal model (see Figure 4.1):

Rα =
(
Rα,α ∪R(α+1),α

)
where Rα is a set of test requirements for the given layer α; Rα,α is a set of intralayer

test requirements (or the set of test requirement defined for the layer α); and R(α+1),α is

1The path coverage criterion is satisfied by a test suite iff for selected paths in a formal model, the
test suite contains at least one test case which covers this path [64].

2Requirements of that kind are defined by technological solutions that are used to build the SUT (i.e.
they can be derived from technical specifications). For example: The technological solution represents
the virtualization platform as VMware vSphere 6.0. As a consequence, the derived technical requirements
state that ESXi instance on the service layer must communicate with: (1) Dynamic Name System (DNS)
service; and (2) Network Time Protocol (NTP) service [146].
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a set of interlayer projections of test requirements from upper layers to the layer α. In

the context of this thesis, R(α+1),α, Rα,α (and Rα,(α−1) - see Figure 4.1) have the same

formal operational specifications (the same presentation format).

Limitation:

− The techniques of automated transforming of informal end-user requirements into

formal test requirements are beyond the scope of this thesis. The problem requires

a separate analysis - even in the case of relatively simple systems, it may not be a

routine exercise in practice.

− Pro forma, the set of intralayer test requirements might be an empty set for all

coexisting architectural layers of the formal model with the exception of the top

layer (in practice, this layer usually represents the system business goals - see

Section 3.2). The absence of formal test requirements for this layer makes applying

the system methodology to network analysis impossible - there is no starting point

for the test case generation strategy.

4.1.3 Test Cases

As mentioned above (see Section 1.4), test cases (or abstract test specification) are the

results of applying (binding) test requirements to the formal model. As a consequence:

− Similar to the test requirements, the test cases should determine:

− objects as associated elements of the formal model;

− associated specifications of these objects.

− The presentation format of the test requirement objects (or elements of the SUT

structure) should be fully compatible with the presentation format of the test case

objects (or elements of the formal model).

− The presentation format of the requirement attributes should be fully compatible

with the presentation format of the specifications of the formal model.

In the context of the thesis, these ideas are formalized in Criterion 2:

Criterion 2. A test requirement induces a test case on a given layer α iff:
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− the object defined by the test requirement for the layer α binds an element (at least

one) of the formal model on the layer α;

− the specifications of the bound element match the requirement attributes on the

layer α.

In turn, system decomposition into objects which interact is a common baseline for all

technologies for the design and implementation of distributed systems [121]. These

two aspects (components and links) of knowledge can be defined as associated elements

of the intralayer subgraphs: (1) SUT components as vertices; and (2) SUT links (or

communication channels3) as paths.

It is important to note that communication channels should be represented by the paths

in the multilayer (3D) graph, i.e. two SUT components can communicate iff there is a

path between these components. Cycles and, as a consequence, trails and walks4 cannot

exist in computer networks which usually have the necessary protection mechanisms

(such as Spanning-Tree Protocols and Routing Protocols [2] [132] [133]).

Also in the context of this thesis, the definition of the model consistency with respect

to the test requirements (the model external consistency) strictly relies on the following

notions:

− The definition of consistency as the ability of parts of a system or component to

be asserted together without contradiction [17].

− The definition of a system as a collection of components (machine, software, hu-

man, etc.) which cooperate in an organized way to achieve a desired result - the

end-user requirements [18].

These ideas are formalized in Criterion 3:

Criterion 3. The formal model based on the concept of multilayer networks is externally

consistent on a given layer α with respect to the test requirements iff each test requirement

defined for the layer α initiates at least one test case on the layer α.

3A communication channel (or channel) is a configuration of stubs, binders, protocol objects and
interceptors providing a binding between a set of interfaces to basic engineering objects, through which
interaction can occur [17].

4A (v0, vi)–walk in a graph G is an alternating sequence [v0, e1, v1, e2, . . . , v(i−1), ei, vi] of vertices and
edges from G with el =

〈
v(l−1), vl

〉
. In a closed walk v0 = vi. A trail is a walk in which all edges are

distinct. A path is a trail in which also all vertices are distinct. A cycle is a closed trail in which all
vertices except v0 and vi are distinct. [128]
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In general, there are two possible results of applying Criterion 3:

− The formal model is externally consistent with respect to the test requirements on

a given layer. In this case, all test requirements defined for the layer are covered by

test cases (abstract test specifications) which relate to the structure of the formal

model on the layer. The set of test cases should be included in the SUT design

documentation.

− The formal model is externally inconsistent on a given layer. This case explicitly

represents the existence of errors/bugs (at least one) in design documentation (test

requirements and/or technical specifications). As a consequence:

− the design documentation should be corrected;

− the formal model should be re-built and then re-checked using Criterion 1 (if

necessary) and Criterion 3.

Criterion 4. The formal model based on the concept of multilayer networks is consistent

with respect to the test requirements iff:

− there is at least one test requirement defined for the top architectural layer of the

formal model;

− the formal model is internally consistent on all coexisting architectural layers;

− the formal model is externally consistent with respect to the test requirements on

all coexisting architectural layers.

In the context of the thesis, Criterion 4 defines the model validation report - see Fig-

ure 2.9.

Limitations:

− The quality of test cases is limited by the quality of formal models and test re-

quirements.
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− Based on Criteria 1 and 3 it is possible to detect the potential sources of primary

(incorrect design) and secondary (incorrect requirements) faults5. The potential

sources of command faults (the behavioral aspects of computer networks) are be-

yond the scope of this thesis due to the properties of the formal model.

4.2 Formal Definitions

The following formal definitions should be determined according to the framework of

structural test case generation strategy (see Figure 4.1):

− model-based definitions;

− definitions of test requirements;

− definitions of test cases.

These definitions will be used later as integral components of test generation strategies.

4.2.1 Model-Based Definitions

As mentioned above (see Section 4.1.3), two SUT components can communicate if there

is a path in the formal model between these components. In turn, dependable computing

systems incorporate protection mechanisms to tolerate faults that could cause systems

failures (see Section 2.3). As a consequence, in general, there are some paths (at least

one) between each pair of components which can communicate.

Definition 4. Let Pαi,j denote the set of communication channels (data flows) between a

pair of SUT dedicated components vαi and vαj of Gα which can communicate as follows:

Pαi,j =

Kα
i,j⋃

k=1

{
pαi,j,k

}
5In the domain of computers: primary faults occur when errors result in the computer output not

meeting its specification (incorrect design); secondary faults occur when the computer gets input that
differ from what was anticipated or designed (incorrect requirements); and command faults occur when
the computer responds to erroneous inputs that are expected but occur at the wrong time or in the
wrong order. [3]
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where pαi,j,k is a kth (vα0 , v
α
i )-path6 in Gα; and Kα

i,j is the finite number of duplicated

(parallel/redundant) paths pαi,j,k.

In other words, each pair of SUT components vαi and vαj can be connected by at most

Kα
i,j possible

(
vαi , v

α
j

)
-paths (the value of the variable Kα

i,j is dependent on the layer

topology)7. In turn:

Pα =
⋃
Pαi,j

where Pα is the completed set of communication channels on a given layer α.

4.2.2 Definitions of Test Requirements

As mentioned above (see Section 4.1.2), the framework of structural test case generation

strategy for a given layer of the formal model introduces two sources of test requirements

(see Figure 4.1):

Rα =
(
Rα,α ∪R(α+1),α

)
where Rα is a set of test requirements for the given layer α; Rα,α is a set of intralayer test

requirements (or the set of test requirements defined for the layer α); and R(α+1),α is a set

of interlayer test requirements (or the set of interlayer projections of test requirements

from upper layers to the layer α). It is important to note that Rα represents the union

of test requirements. The possible test requirement aggregation is beyond the scope of

this thesis.

Moreover, test requirements should cover (see Section 4.1.3): (1) SUT components;

and (2) SUT communication channels. Hence, the sets of test requirements Rα,α and

R(α+1),α on layer α can be defined as:

Rα,α =
(
Rα,αcomp ∪R

α,α
link

)
and:

R(α+1),α =
(
R(α+1),α
comp ∪R(α+1),α

link

)
6A (vα0 , v

α
i )-path in a graph Gα is an alternating sequence [v0, e1, v1, e2, . . . , v(i−1), ei, vi] of vertices

and edges from Gα with el =
〈
v(l−1), vl

〉
in which all vertices and edges are distinct [128].

7In the real engineering world under financial constraints commercial systems are usually based on
redundant architectures [147], i.e. in most cases Kα

i,j = 2.
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where Rα,αcomp is a set of intralayer test requirements of SUT components; Rα,αlink is a set

of intralayer test requirements of SUT communication channels; R
(α+1),α
comp is a set of

interlayer test requirements of SUT components; and R
(α+1),α
link is a set of intralayer test

requirements of SUT communication channels. In turn:

Definition 5. Let Rα,αcomp =
{
rα,αn,comp

}
denote the set of intralayer test requirements for

SUT components as a set of triplets (3-tuples):

Rα,αcomp =
{(
vαi , A

α
i , A

α,(α−1)
i

)}
where vαi is a component of SUT on layer α; Aαi ⊂ Sα is a set of required attributes for

vαi ; and A
α,(α−1)
i ⊂ S(α−1) is a set of required attributes for any interlayer projection

of vαi on layer (α− 1).

Definition 6. Let Rα,αlink =
{
rα,αn,link

}
denote the set of intralayer test requirements for

SUT communication channels as a set of quadruples (4-tuples):

Rα,αlink =
{(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)}
where vαi and vαj is a pair of SUT dedicated components on layer α which must communi-

cate; Aαi,j ⊂ Sα is a set of required attributes for
(
vαi , v

α
j

)
-path; and A

α,(α−1)
i,j ⊂ S(α−1)

is a set of required attributes for any interlayer projection of
(
vαi , v

α
j

)
-path on layer

(α− 1).

Definition 7. Let R
(α+1),α
comp =

{
r
(α+1),α
n,comp

}
denote the set of interlayer projections of

test requirements R
(α+1),(α+1)
comp =

{(
v
(α+1)
k , A

(α+1)
k , A

(α+1),α
k

)}
for SUT components from

layer (α+ 1) to layer α as a set of triplets:

R(α+1),α
comp =

{(
vαi , A

α
i , A

α,(α−1)
i

)}
where v

(α+1)
k is a component of SUT on layer (α+1); vαi is a corresponding component of

v
(α+1)
k on layer α; Aαi ⊂ Sα is a set of required attributes for vαi ; and A

α,(α−1)
i ⊂ S(α−1)

is a set of required attributes for any interlayer projection of vαi on layer (α− 1).

Definition 8. Let R
(α+1),α
link =

{
r
(α+1),α
n,link

}
denote the set of interlayer projections of test
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requirements R
(α+1),(α+1)
link =

{(
v
(α+1)
k , v

(α+1)
l , A

(α+1)
k,l , A

(α+1),α
k,l

)}
for SUT communica-

tion channels from layer (α+ 1) to layer α as a set of quadruples:

R
(α+1),α
link =

{(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)}
where v

(α+1)
k and v

(α+1)
l is a pair of SUT dedicated components on layer (α + 1) which

must communicate; vαi and vαj is a pair of corresponding components of v
(α+1)
k and v

(α+1)
l

on layer α; Aαi,j ⊂ Sα is a set of required attributes for
(
vαi , v

α
j

)
-path; and A

α,(α−1)
i,j ⊂

S(α−1) is a set of required attributes for any interlayer projection of
(
vαi , v

α
j

)
-path on

layer (α− 1).

The presentation format of the requirement attributes (see Definitions 5 - 8) should be

fully compatible with the presentation format of the specifications of the formal model

(see Definition 2), i.e. Aαi , A
α
i,j ⊂ Sα and A

α,(α−1)
i , A

α,(α−1)
i,j ⊂ S(α−1).

In general, a set of requirement attributes can be an empty set. In this case, the

test requirement expresses the need for object (component or communication channel)

existence only.

As mentioned above (see Section 4.1.2), the interlayer relations (projections) determine

how the topological properties on different layers affect each other. In the context of the

thesis, this fact is represented by the following functions:

Definition 9. The function µ
(α+1),α
comp : R

(α+1),(α+1)
comp ×G(α+1),α → R

(α+1),α
comp is defined as

follows:

µ(α+1),α
comp

((
v
(α+1)
k , A

(α+1)
k , A

(α+1),α
k

))
=

⋃
〈
v
(α+1)
k ,vαi

〉
∈G(α+1),α

{(
vαi , A

α
i , A

α,(α−1)
i

)}
;

Aαi = A
(α+1),α
k , A

α,(α−1)
i = ∅

In other words, for each test requirement
(
v
(α+1)
k , A

(α+1)
k , A

(α+1),α
k

)
∈ R(α+1),(α+1)

comp on

layer (α+ 1) the function µ
(α+1),α
comp determines the finite set of all possible corresponding

triplets
(
vαi , A

α
i , A

α,(α−1)
i

)
∈ R(α+1),α

comp on layer α where Aαi = A
(α+1),α
k and A

α,(α−1)
i =

∅. If this set is an empty set then the formal model M is inconsistent according to

Criterion 1.
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Definition 10. The function µ
(α+1),α
link : R

(α+1),(α+1)
link ×G(α+1),α → R

(α+1),α
link is defined as

follows:

µ
(α+1),α
link

((
v
(α+1)
k , v

(α+1)
l , A

(α+1)
k,l , A

(α+1),α
k,l

))
=

⋃
〈
v
(α+1)
k ,vαi

〉
∈G(α+1),α〈

v
(α+1)
l ,vαj

〉
∈G(α+1),α

{(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)}
;

Aαi,j = A
(α+1),α
k,l , A

α,(α−1)
i,j = ∅

In other words, for each test requirement
(
v
(α+1)
k , v

(α+1)
l , A

(α+1)
k,l , A

(α+1),α
k,l

)
∈ R(α+1),(α+1)

link

on layer (α+1) the function µ
(α+1),α
link determines the finite set of all possible correspond-

ing quadruples
(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)
∈ R(α+1),α

link on layer α where Aαi,j = A
(α+1),α
k,l and

A
α,(α−1)
i,j = ∅. If this set is an empty set then the formal model M is inconsistent

according to Criterion 1.

The sets of test requirements Rαcomp and Rαlink can be defined as:

Rαcomp =
(
Rα,αcomp ∪R(α+1),α

comp

)
Rαlink =

(
Rα,αlink ∪R

(α+1),α
link

)
where Rαcomp is the set of test requirements of SUT components for the given layer α;

and Rαlink is the set of test requirements of SUT communication channels for the given

layer α.

4.2.3 Definitions of Test Cases

Similarly to test requirements, test cases should cover (see Section 4.1.3): (1) SUT

components; and (2) SUT communication channels, i.e. the completed set of test cases

Tα for a given layer α (see Figure 4.1) can be defined as:

Tα =
(
Tαcomp ∪ Tαlink

)
Hence:
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Definition 11. Let Tαcomp =
{
tαn,comp

}
denote the set of test cases of SUT components

on layer α as a set of pairs:

Tαcomp =
{[(

vαi , S
α
i

)
, Aαi

]}
where vαi is a component of SUT on layer α; Sαi ⊂ Sα is the set of specifications of vαi ;

and Aαi ⊂ Sα is the set of required attributes for vαi .

In other words, each test case of that kind represents a SUT component whose character-

istics or configuration should be verified according to corresponding required attributes.

The next definition is based on the fact that if there is a set of required attributes for a

path then each set of specifications (labels) of edges which constitute this path should

match the set of required attributes8.

Definition 12. Let Tαlink =
{
tαn,link

}
denote the set of test cases of SUT communication

channels on layer α as a union of pairs:

Tαlink =



 ⋃

〈
vα
(l−1)

,vαl

〉
∈pαi,j,k

(〈
vα(l−1), v

α
l

〉
, Sα(l−1),l

) , Aαi,j




where pαi,j,k is a kth
(
vαi , v

α
j

)
-path between the pair of SUT dedicated components vαi and

vαj on layer α; vα(l−1) and vαl is a pair of adjacent components on layer α which constitute

the path pαi,j,k; Sαi,j,k ⊂ Sα is the set of specifications of the edge
〈
vα(l−1), v

α
l

〉
∈ pαi,j,k;

and Aαi,j ⊂ Sα is the set of required attributes for
(
vαi , v

α
j

)
-paths.

In other words, each test case of that kind represents a SUT communication channel

whose characteristics or configuration (as entity) should be verified according to corre-

sponding required attributes. In practice, if a communication channel is functioning as

entity (i.e. (1) the channel is in operational state; and (2) all its characteristics match the

required attributes) then the assumption can be made that all elements which constitute

the channel are also functioning and, as a consequence, they should not be verified indi-

vidually due to financial and time constraints. Otherwise, if the communication channel

is not functioning then the test case of that kind provides the necessary information

8This fact is based on the max-flow min-cut (Ford-Fulkerson) theorem [128].
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about elements which constitute the channel to narrow the field of potential problems

according to the Follow-the-Path Troubleshooting Method9 [148].

In some cases, diagnostic tools do not allow the testing of paths on the physical archi-

tectural layer [148]. As a consequence, each test case of SUT communication channels

on this layer should be divided into subset of test cases of component-to-component

interconnections which constitute the channels, i.e.:

tαn,link =


 ⋃

〈
vα
(l−1)

,vαl

〉
∈pαi,j,k

(〈
vα(l−1), v

α
l

〉
, Sα(l−1),l

) , Aαi,j


=

⋃
〈
vα
(l−1)

,vαl

〉
∈pαi,j,k

[(〈
vα(l−1), v

α
l

〉
, Sα(l−1),l

)
, Aαi,j

]

where layer α represents the physical architectural layer according to multilayer reference

models (see Figure 3.7).

The next definitions are completely based on Criterion 2 (see Section 4.1.3):

Definition 13. The function ϕαcomp : Rαcomp ×Gα → Tαcomp is defined as follows:

ϕαcomp

((
vαi , A

α
i , A

α,(α−1)
i

))
=


[(
vαi , S

α
i

)
, Aαi

]
if Aαi ⊆ Sαi

∅ otherwise

In other words, for each test requirement
(
vαi , A

α
i , A

α,(α−1)
i

)
∈ Rαcomp on a given layer α

the function ϕαcomp determines the pair
(
vαi , S

α
i

)
∈ Gα whose characteristics match the

required attributes, i.e. Aαi ⊆ Sαi . If this pair does not exist then the formal model M

is inconsistent according to Criterion 3.

Definition 14. The function ϕαlink : Rαlink ×Gα → Tαlink is defined as follows:

ϕαlink

((
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

))
=

⋃
pαi,j,k∈P

α
i,j

{
t̂αn,link

}
9The follow-the-path approach first discovers the actual traffic path all the way from source to desti-

nation. Next, the scope of troubleshooting is reduced to just the links and devices that are actually in
the forwarding path. [148]
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where:

t̂αn,link =


tαn,link if ∀

〈
vα(l−1), v

α
l

〉
∈ pαi,j,k : Aαi,j ⊆ Sα(l−1),l

∅ otherwise

In other words:

− For each test requirement
(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)
∈ Rαlink on a given layer α

the function ϕαlink determines the finite set Pαi,j of all possible
(
vαi , v

α
j

)
-paths

pαi,j,k ∈ Pαi,j between the pair of SUT dedicated components vαi and vαj which should

communicate. If this set is an empty set then the formal model M is inconsistent

according to Criterion 3.

− In turn, for each path pαi,j,k of Pαi,j the function ϕαlink determines the finite set of all

possible pairs
(〈
vα(l−1), v

α
l

〉
, Sα(l−1),l

)
∈ Gα whose elements

〈
vα(l−1), v

α
l

〉
constitute

the path pαi,j,k and whose characteristics match the required attributes, i.e. Aαi,j ⊆

Sα(l−1),l. If this set does not cover the path pαi,j,k completely then the formal model

M is inconsistent according to Criterion 3.

4.3 Structural Test Case Generation Strategy

The detailed framework of the structural test case generation strategy is shown in Fig-

ure 4.2. Two main steps of the strategy on a given layer α can be defined as follows:

− The set of interlayer test requirements R(α+1),α (see Definitions 7 and 8) is the

result of recursive applying of: (1) the intralayer test requirements R(α+1),(α+1)

(see Definitions 5 and 6); and (2) the interlayer test requirements R(α+2),(α+1) (see

Definitions 7 and 8) to the interlayer subgraph G(α+1),α (see Definition 3):

R(α+1),α = µ(α+1),α
(
R(α+1)

)
= µ(α+1),α

(
R(α+1),(α+1) ∪R(α+2),(α+1)

)
The process is described by Definitions 9 and 10 and Criterion 1.

− The set of system infrastructure test cases Tα on the layer α (see Definitions 11

and 12) is the result of applying of: (1) the intralayer test requirements Rα,α
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Figure 4.2: Graphical representation of the structural test case generation strategy.
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(see Definitions 5 and 6); and (2) the interlayer test requirements R(α+1),α (see

Definitions 7 and 8) to the intralayer subgraph Gα (see Definition 2):

Tα = ϕα (Rα) = ϕα
(
Rα,α ∪R(α+1),α

)
The process is described by Definitions 13 and 14 and Criterion 3.

The important properties of the structural test case generation strategy are represented

by the following propositions:

Proposition 1. If the formal model based on the concept of multilayer networks is

consistent with respect to the test requirements then the set of test requirements Rα

defined for a given layer α cannot be an empty set on all coexisting architectural layers.

Proof. Let a formal model M be consistent according to Criterion 4. Hence, there is

at least one test requirement defined for the top architectural layer L of the model (see

Criterion 4), i.e.:

RL = RL,L 6= ∅

Each test requirement covers: either (1) a SUT component as a vertex of M (see Defini-

tion 5); or (2) a SUT communication channel as a pair (initial and terminal) of vertices

of M (see Definition 6). In turn, each vertex of M on a given layer has at least one

corresponding neighbor on the layer below (see Criterion 1). Hence, for each test re-

quirement for a given layer there is at least one corresponding test requirement on the

layer below, i.e. if RL 6= ∅ then RL,(L−1) = µL,(L−1)
(
RL
)
6= ∅. As a consequence:

R(L−1) =
(
R(L−1),(L−1) ∪RL,(L−1)

)
6= ∅

The result of sequential repetitions of these steps on all coexisting architectural layers

can be formally represented as follows:

Rα 6= ∅; 1 ≤ α ≤ L
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Proposition 2. If the formal model based on the concept of multilayer networks is

consistent with respect to the test requirements then the set of test cases Tα generated

on a given layer α cannot be an empty set on all coexisting architectural layers.

Proof. Let a formal model M be consistent according to Criterion 4. Hence, there is

at least one test requirement defined for a given layer α on all coexisting architectural

layers (see Proposition 1), i.e.:

Rα 6= ∅; 1 ≤ α ≤ L

In this case according to Criterion 3:

Tα = ϕα (Rα) 6= ∅; 1 ≤ α ≤ L

Proposition 3. If the formal model based on the concept of multilayer networks is

consistent with respect to the test requirements then each test requirement defined for the

top architectural layer of the formal model initiates at least one test case on all coexisting

architectural layers.

Proof. Let a formal model M be consistent according to Criterion 4. In this case:

− (according to Proposition 1) for each test requirement defined for the top archi-

tectural layer of the model there is at least one corresponding test requirement on

all coexisting architectural layers below;

− (according to Criterion 3) each test requirement for a given layer initiates at least

one test case on the given layer.

In the context of this thesis, the part of the SUT covered by test cases on layer α can

be represented by the induced subgraph Ĝα of Gα as follows:

Ĝα =
(
V̂ α, Êα

)
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where V̂ α ⊆ V α is a set of SUT components covered by the set of test cases of SUT

components Tαcomp on layer α; and Êα ⊆ Eα is a set of SUT component-to-component

interconnections covered by the set of test cases of SUT communication channels Tαlink

on layer α.

In general, each intralayer subgraph should be completely covered by test cases, i.e.

Ĝα ≡ Gα. In this case, the fact Ĝα ⊂ Gα might explicitly represent the existence of

errors/bugs (at least one) in design documentation (test requirements and/or technical

specifications), i.e. the fact that the set of test requirements is inconsistent with respect

to the formal model. Unfortunately, in the case of upgrading existing infrastructures,

these infrastructures: (1) should be covered by formal models; but, on the other hand,

(2) should be verified with respect to the new components only (not completely) due to

financial and time constraints. As a consequence, it makes this possible criterion useless

in practice.



Chapter 5

Nonfunctional Test Case

Generation Strategy

You know you have a distributed system when the crash of a computer you’ve never

heard of stops you from getting any work done.

—Leslie Lamport

In the context of this thesis, the nonfunctional tests should ensure that system depend-

ability mechanisms have been implemented correctly and, as a consequence, the SUT is

able to provide the desired level of reliable (dependable) services.

As mentioned above (see Section 2.3), fault-injection experiments provide a means for

understanding how the SUT behaves in the presence of faults (the monitoring of the

effects of the injected faults). As a consequence in practice (or in the world of imper-

fect sensing and switching components1), the nonfunctional (dependability) tests are

represented by fault-injection experiments as follow:

− Component fault injection to ensure that:

− the sensing mechanism is able to (1) detect a component failure, and (2)

trigger the switching mechanism, i.e. sensing mechanism verification;

1Perfect sensing and switching devices are just a mathematical abstraction. In practice, system
reliability is totally dependent on the quality of the sensing and switching components [102].

65
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− the switching mechanism is able to reconfigure SUT topology (reroute commu-

nication channels) in the case of component failure, i.e. switching mechanism

verification.

− Component repair (or inverse fault injection) to ensure that:

− the sensing mechanism is able to (1) detect a component resurrection (suc-

cessful replacement or recovery), and (2) trigger the switching mechanism (if

necessary);

− the switching mechanism is able to restore SUT initial topology (if necessary).

Hence, the nonfunctional (dependability) test case generation strategy defines the set

of SUT components which should be targeted by fault-injection experiments (fault-

injection targets) as a set of fault-injection test cases. In turn, in the context of the

formal model, each fault-injection experiment represents the removal of a fault-injection

target (a SUT component) and its incident edges from the formal model.

According to the goals of this thesis (see Section 1.5), the description of the nonfunctional

(dependability) test case generation strategy covers the following areas:

− The framework of the test case generation strategy.

− The formal definitions of the key elements and their relations.

− The formal definitions of test case generation strategy.

5.1 Framework of Test Case Generation Strategy

Figure 5.1 represents the framework of test case generation strategy for a given layer of

the formal model. In general, this framework is based on the concept of the dynamic

analysis represented by Kurant et al. [56]. Nevertheless, it is important to note that the

successive dynamic analysis of all components of the formal model can be impractical

for real life testing (even in the case of relatively simple systems) due to computational

complexity. In this case, the structural test case generation strategy (see Chapter 4)

provides information for subsequent analysis with respect to the test requirements.
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MODEL FAULT-INJECTION
TEST CASES

STRUCTURAL
TEST CASES

G (α+1),α T(α+1),αRG(α+1),α

P(α+1)

Pα

Figure 5.1: The framework of the nonfunctional (dependability) test case generation
strategy for a given layer α of the formal model whereG(α+1),α is an interlayer subgraph;
P (α+1) is a set of communication channels (data flows) on layer (α + 1); Pα is a set
of communication channels (data flows) on layer α; RG(α+1),α is a recovery group on

layer α; and T (α+1),α is a set of fault-injection test cases on layer α.

As mentioned above (see Section 1.4), the original definition of dependability determines

the system’s ability to deliver service that can justifiably be trusted [22]. In the context

of this thesis, the system’s ability to deliver a service is represented by a path (or paths)

between the corresponding SUT components (see Section 4.1.3).

In turn, the concept of layered networks [36] strictly relies on the fact that a path between

two nodes on a given layer depends on a path (or paths) between the corresponding nodes

on the layer below. In general, there are three possible results of applying the concept:

− A path on a given layer has exactly one corresponding path on the layer below.

In this case, SUT components which constitute the corresponding path represent

single points of failure2. In the context of the formal model, the removal of any

SUT component which represents a single point of failure and its incident edges

completely destroys the corresponding path.

− A path on a given layer has more than one (at least two) corresponding paths on

the layer below. Furthermore, these corresponding paths have no common com-

ponents (i.e. the corresponding paths are totally independent). In this case, SUT

2A single point of failure (SPOF) is any single component in a system that can fail and cause a service
to become unavailable [91].
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components which constitute the corresponding paths represent a recovery group3.

In the context of the formal model, the removal of any SUT component which rep-

resents a member of a recovery group and its incident edges: (1) destroys only

one corresponding paths; and, as a consequence, (2) leaves the other correspond-

ing paths unaffected. In other words, recovery groups represent SUT components

which constitute corresponding parallel/redundant paths, i.e. provide topological

redundancy4 for the path on a given layer.

− A path on a given layer has more than one (at least two) corresponding paths on

the layer below. In turn, these corresponding paths have common components. In

this case:

− common components represent single points of failure (the removal of the

component of that kind and its incident edges destroys all corresponding

paths);

− other remaining components represent a recovery group (the removal of the

component of that kind and its incident edges destroys only some correspond-

ing paths).

These results are formalized in Criterion 5:

Criterion 5. A vertex vαl represents a single point of failure for the set of communication

channels (data flows) Pαi,j between a pair of SUT components vαi and vαj iff vαl and its

incident edges
〈
vα(l−1), v

α
l

〉
and

〈
vαl , v

α
(l+1)

〉
are integral parts of each path pαi,j,k ∈ Pαi,j.

The important property of single points of failure is represented by the following propo-

sition:

Proposition 4. If a formal model based on the concept of multilayer networks is consis-

tent with respect to the test requirements then the removal of a vertex which represents a

single point of failure and its incident edges renders this model inconsistent with respect

to the test requirements.

Proof. Let: (1) a formal model M be consistent according to Criterion 4; (2) Gα be an

intralayer subgraph of M ; and (3) rα,αn,link =
(
vαi , v

α
j , A

α
i,j , A

α,(α−1)
i,j

)
be an intralayer test

3A recovery group is the granularity at which a service can be recovered after service failures [91].
4Redundancy is the presence of auxiliary components in a system to perform the same or similar

functions as other elements for the purpose of preventing or recovering from failures [17].
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requirement defined for layer α. In this case, according to Criterion 2, rα,αn,link binds a set

of
(
vαi , v

α
j

)
-paths (at least one) in Gα between the pair vαi and vαj . In turn, according

to Criterion 5, vαl and its incident edges
〈
vα(l−1), v

α
l

〉
and

〈
vαl , v

α
(l+1)

〉
are integral parts

of each
(
vαi , v

α
j

)
-path. Hence,

(
vαi , v

α
j

)
-paths do not exist in graph Gα − vαl and, as

a consequence, rα,αn,link does not bind an object in Gα − vαl . Hence, the formal model

M − vαl is inconsistent according to Criterion 4.

In the context of this thesis, the definition of the fault-injection targets (SUT components

which should be targeted by fault-injection experiments) strictly relies on the following

notions:

− The fact that single points of failure do not define any dependability mechanism

that should be verified.

− The fact that a component of SUT which is a member of a recovery group for one

service can be a single point of failure for another service (or services). In this

case, the component should be defined as a single point of failure.

These ideas are formalized in Criterion 6:

Criterion 6. A vertex vαi of the formal model M which is consistent with respect to

the test requirements represents a fault-injection target on a given layer α iff the formal

model M − vαi is also consistent with respect to the test requirements.

In general, there are three possible results of applying Criterion 6:

− (1) SUT is announced as a dependable system; and (2) there are a finite number

of fault-injection targets defined by the dynamic analysis. This case represents a

dependable (at least partially) design. The set of fault-injection targets should be

included in the SUT design docu-mentation as fault-injection test cases.

− (1) SUT is announced as a dependable system; (2) there is no one fault-injection

target defined by the dynamic analysis. This case explicitly represents the existence

of errors/bugs (at least one) in design documentation (test requirements and/or

technical specifications). As a consequence:

− the design documentation should be corrected;
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− the formal model should be re-built and then re-checked using Criterion 4 (if

necessary) and Criterion 6.

Limitations:

− The formal model based on the concept of multilayer networks is intended to

specify heterogeneous structures and their properties. The user-centric aspects

of dependability (see Section 2.3 have to be described using different techniques

(these aspects are beyond the scope of this thesis).

− The announcement about system dependability should be made explicitly as a

part of end-user requirements.

5.2 Formal Definitions

As mentioned above (see Section 5.1), in the context of the formal model, recovery groups

on a given layer represent SUT components which provide topological redundancy for

the upper layer. In this case:

Definition 15. Let RG(α+1),α denote the recovery group on layer α as set of SUT

components:

RG(α+1),α =
{
vαi

}
where vαi is a component of SUT on layer α which provides topological redundancy for

layer (α+ 1).

A special case of recovery group components is end-user components (hardware and

software) as a part of end systems5. As mentioned above (see Section 5.1), the system’s

ability to deliver a service is represented by paths between: (1) the SUT component

which represents the service and its projections on the layers below; and (2) the end-

user components (as service subscribers) and their projections on the layers below6.

5The formal definition of end systems (or hosts) includes: (1) servers; (2) desktop computers; and
(3) mobile computers [133]. In the context of this thesis, the definition of end-user components covers
desktop and mobile computers only.

6In the context of this thesis, a service is available until there is at least one path between the service
(and its projections on the layers below) and an end-user component (and its projections on the layers
below) on all coexisting architectural layers.
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However, dependability mechanisms (replication or redundancy) are normally not used

for end-user components. This statement is based on two main reasons:

− economic reason - dependability mechanisms tend to increase the system cost;

− technical reason - dependability mechanisms might increase complexity to the point

where the dependability mechanisms themselves contribute to accidents [3].

In practice, end-user components and their projections should be removed from the

recovery group and, as a consequence, eliminated from the analysis7.

As mentioned above (see Section 5.1), the successive dynamic analysis of all components

of the formal model can be impractical due to the fact that single points of failure do not

define any dependability mechanism that should be verified. In turn, the structural test

case generation strategy (see Chapter 4) provides information to determine recovery

groups. As a consequence, the next function is completely based on: (1) the formal

definition of the set of SUT communication channels (see Definition 4); and (2) the

definition of the symmetric difference of sets as the set of elements which are in either

of the sets and not in their intersection [149]:

Definition 16. The function ω(α+1),α : P (α+1)×Pα×G(α+1),α → RG(α+1),α is defined

as follows:

ω(α+1),α
(
p
(α+1)
l,m,n , P

α
)

=



⋃
〈
v
(α+1)
l ,vαi ∈G(α+1),α

〉
〈
v
(α+1)
m ,vαj ∈G(α+1),α

〉
p
(α+1)
l,m,n ∈P

(α+1)

pαi,j,k∈P
α

V α
i,j,k



∖


⋂
〈
v
(α+1)
l ,vαi ∈G(α+1),α

〉
〈
v
(α+1)
m ,vαj ∈G(α+1),α

〉
p
(α+1)
l,m,n ∈P

(α+1)

pαi,j,k∈P
α

V α
i,j,k


where p

(α+1)
l,m,n ∈ P

(α+1) is a nth
(
v
(α+1)
l , v

(α+1)
m

)
-path on layer (α + 1); pαi,j,k ∈ Pα is a

corresponding path of p
(α+1)
l,m,n on layer α; and V α

i,j,k is the set of SUT components which

constitute the path pαi,j,k on layer α .

7In the context of this thesis, end-user components are completely covered by structural test cases
(see Chapter 4).
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In other words, for each path p
(α+1)
l,m,n ∈ P

(α+1) on layer (α+1) the function ω(α+1),α deter-

mines the finite set of components vαi on layer α which provides topological redundancy

for the path p
(α+1)
l,m,n on layer (α+ 1).

In the context of this thesis, fault-injection test cases represent SUT components which

should be targeted by fault-injection experiments. Hence:

Definition 17. Let T (α+1),α denote the set of fault-injection test cases on layer α as a

set of SUT components:

T (α+1),α =
{
vαi

}
where vαi is a component of SUT on layer α which should be targeted by fault-injection

experiments.

As mentioned above (see Section 5.1), a component of SUT which is a member of a recov-

ery group for one service can be a single point of failure for another service (or services).

To address this problem, the next definitions are completely based on Criterion 6:

Definition 18. The function θ(α+1),α : RG(α+1),α → T (α+1),α is defined as follows: A

SUT component vαi of M is targeted by fault-injection experiments, i.e. vαi ∈ T (α+1),α

iff:

− graph M is consistent with respect to the test requirements (according to Crite-

rion 4);

− vαi is a member of the recovery group on a given layer α, i.e. vαi ∈ RG(α+1),α;

− subgraph M − vαi is also consistent with respect to the test requirements (according

to Criterion 4).

In other words, the function θ(α+1),α eliminates single points of failure from the recovery

group on a given layer α.

5.3 Test Case Generation Strategy

The detailed framework of the nonfunctional (dependability) test case generation strat-

egy is shown in Figure 5.2. Two main steps of the strategy on a given layer α can be

defined as follows:
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Figure 5.2: Graphical representation of the nonfunctional (dependability) test case
generation strategy.
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− The recovery group RG(α+1),α on the layer α (see Definition 15) is the result of

applying of: (1) the set of SUT communication channels P (α+1) ⊆ G(α+1) on the

layer (α + 1) (see Definitions 4 and 14); and (2) the set of SUT communication

channels Pα ⊆ Gα on the layer α (see Definitions 4 and 14) to the interlayer

subgraph G(α+1),α (see Definition 3):

RG(α+1),α = ω(α+1),α
(
T
(α+1)
link , Tαlink

)
The process is described by Definition 16.

− The set of fault-injection test cases T (α+1),α on the layer α (see Definition 17) is the

result of the dynamic analysis of the recovery group RG(α+1),α (see Definition 15)

on the layer α:

T (α+1),α = θ(α+1),α
(
RG(α+1),α

)
The process is described by Definition 18 and Criterion 6.

In general, recovery groups (after elimination end-user components and their projections)

should not contain single points of failure (i.e. T (α+1),α ≡ RG(α+1),α). In this case, the

fact T (α+1),α ⊂ RG(α+1),α might explicitly represent the existence of errors/bugs (at

least one) in design documentation (technical specifications). Unfortunately, the partial

implementation of dependability mechanisms (for important services only) can be often

met in practice due to financial constraints. As consequence, it makes this possible

criterion useless in practice.
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Presentation Format

What you do today can improve all your tomorrows.

—Ralph Marston

In practice, model analysis requires specialized training, both: (1) in the models devel-

opment (a model must be completely relevant to a system - a trusted model); and (2) in

the interpretation of the analysis results. The human work involved in data transforma-

tion represents a major bottleneck due to its tendency to be relatively unsophisticated

and repetitive, but persistently tricky and time-consuming at the same time [150]. Chal-

lenges in the analysis process that repeatedly occur in analysis efforts are

− discover necessary data;

− wrangle data into a desired format;

− profile data to verify its quality and suitability;

− report procedures to consumers of the analysis.

Thus, to get the full advantages of model analysis and verifying in the domain of complex

systems, it is necessary to alleviate the burdens of learning model development and

checking techniques for engineers and other non-technical stakeholders [16] or, ideally,

completely eliminate the human factor.

There have been some attempts to make model development accessible to those who

are not trained in formal methods. These include Formal Description Techniques [113]

75
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based on a technical language for unambiguous specification and description of the be-

havior of telecommunication systems (see Section 2.4). However, FDTs are intended to

specify the behavioral aspects of software-intensive systems only; the general parame-

ters, which determine heterogeneous architectures and properties, have to be described

using different techniques.

To address this problem, this section presents a possible appropriate presentation format

of architecture descriptions as a part of detailed design documentation that provides

unambiguous interrelation between the design documentation and the multilayer formal

model. As a consequence, this presentation format could allow automated development

of formal models for analysis and verifying of computer networks.

6.1 Presentation Format

As mentioned above (see Section 2.4), the current revisions of international standards

establish what should be contained in design documentation but not how exactly. Nev-

ertheless, Appendix I of ITU-T Recommendation L.72 [151] represents an example of a

currently used presentation format of optical access network infrastructure descriptions1.

It is important to note that this format covers the physical architecture completely and

the logical architecture partially. However, this format is optimized for representation

network infrastructures and, as a consequence, cannot be used: (1) to define a whole/-

completed system (i.e. a computer network and services/applications which this network

provides and supports); and (2) to represent technological solutions (hardware and soft-

ware clusters, virtualization platforms, etc.) which are used to build the system.

To fill the gap, this section represents a set of design patterns2 for unambiguous archi-

tecture description as a possible part of the detailed design documentation [153] [154].

Based on the concept of layered networks [36], the architecture of complex computer

networks can be represented by three main design patterns (tables) on each layer:

Layer component specification. The layer component specification design pattern is used

for the components detail representation. This design pattern should cover: (1) system

1This appendix does not form an integral part of the Recommendation.
2The term design pattern [152] aims to explicitly represent design knowledge that can be understood

implicitly by skilled engineers and other non-technical stakeholders.
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Table 6.1: Design Pattern of Layer Component Specifications.

Table columns

No. Name Description

1 T1.α.1 Record Number Record identification number (component index)

2 T1.α.2 Layer Identifier
Engineering (optional), physical, logical, service, social
(optional) or functional layer (similar to T2.α.2
and T3.α.2)

3 T1.α.3 Component Assignment Component functional description (if necessary)

4 T1.α.4 Component Identifier Component name

5 T1.α.5 Vendor Identifier Vendor contact name (for COTS components)

6 T1.α.6 Component Attributes
Component technical specifications (according to
T2.α.8), i.e. supported protocols, IP addresses
and masks, TCP/UDP ports, etc.

7 T1.α.7 Notes Additional information (if necessary)

Table 6.2: Design Pattern of Intralayer Topology Specifications.

Table columns

No. Name Description

1 T2.α.1 Record Number Record identification number (link index)

2 T2.α.2 Layer Identifier
Engineering (optional), physical, logical, service, social
(optional) or functional layer (similar to T1.α.2
and T3.α.2)

3 T2.α.3 Link Assignment
Component-to-component interconnection functional
description (if necessary)

4
T2.α.4 Source Component

Component name according to T1.α.4
Identifier

5 T2.α.5 Source Port Identifier Component communication interface

6
T2.α.6 Target Component

Component name according to T1.α.4
Identifier

7 T2.α.7 Target Port Identifier Component communication interface

8 T2.α.8 Link Attributes

Technical specifications of component-to-component
interconnection (according to T1.α.6), i.e. used
protocols, IP addresses and masks, TCP/UDP ports,
etc.

9 T2.α.9 Notes Additional information (if necessary)

business goals for the functional layer; (2) persons or groups of persons for the social

layer (optionally); (3) software-based components (services/applications) for the service

layer; (4) virtual components (VM, VLAN, etc.) for the logical layer; (5) hardware-based

components (equipment) for the physical layer; and (6) external engineering systems for

the engineering layer (optionally). The unified table column structure specifies the

necessary component properties and, therefore, includes (see Table 6.1):

− Record Number.

− Layer Identifier.

− Component Assignment.
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Table 6.3: Design Pattern of Interlayer Topology Specifications.

Table columns

No. Name Description

1 T3.α.1 Record Number Record identification number (projection index)

2 T3.α.2 Layer Identifier
Engineering (optional), physical, logical, service, social
(optional) or functional layer (similar to T1.α.2
and T2.α.2)

3 T3.α.3 Projection Assignment
Components interlayer relation functional
description (if necessary)

4
T3.α.4 Source Component

Component name according to T1.α.4
Identifier

5
T3.α.5 Target Component

Component name according to T1.α.4
Identifier

6 T3.α.6 Distribution Index

Cross-layer technologies:
(1) Nn : 1n−1 - virtualization and replication;
(2) 1n : Nn−1 - clustering; and
(3) 1n : 1n−1 - a special case of dedicated
components

7 T3.α.7 Projection Attributes

Technical specifications of components interlayer
relation (resources distribution across the network)
technical specifications such as capacity metrics and
modes (active/active, active/standby, etc.

8 T3.α.8 Notes Additional information (if necessary)

− Component Identifier.

− Vendor Identifier.

− Component Attributes.

− Notes.

Intralayer topology specification. The intralayer topology specification design pattern is

used for the layer topology detail representation. This pattern should cover architecture

descriptions of: (1) functional models [1] for the functional (or ready-for-use system)

layer; (2) flow-based models [1] for the social (optionally) and service layers; and (3)

topological models [1] for the logical, physical and engineering (optionally) layers. The

unified table column structure determines the intralayer links and, therefore, includes

(see Table 6.2):

− Record Number.

− Layer Identifier.

− Link Assignment.

− Link Identifier:
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− Source Identifier:

− Component Identifier.

− Port Identifier.

− Target Identifier:

− Component Identifier.

− Port Identifier.

− Link Attributes.

− Notes.

Interlayer topology specification. The interlayer topology specification design pattern

is used for the resources distribution (cross-layer topology) detail representation. This

pattern strictly relies on the concept of layered networks [36] that a node in a given

layer depends on a corresponding node (or nodes) in the layer below. The unified table

column structure defines the necessary properties of interlayer projections and, therefore,

includes (see Table 6.3):

− Record Number.

− Layer Identifier.

− Projection Assignment.

− Projection Identifier:

− Source Identifier:

− Component Identifier on a Given Layer.

− Target Identifier:

− Component Identifier on the Layer Below.

− Distribution Index

− Projection Attributes.

− Notes.
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Table 6.4: Formal Model and Design Pattern of Layer Component Specifications.

No. Design pattern record
Formal model symbol
Gα =

(
V α, Eα, SαV , SαE

)
1 T1.α.1 Record Number i

2 T1.α.2 Layer Identifier α

3 T1.α.4 Component Identifier vαi ∈ V α
4 T1.α.6 Component Attributes Sαi ⊂ SαV ⊂ Sα

In turn, each table header structure should include: (1) Table Identifier; (2) Project

Identifier; and (3) Facility Identifier.

In practice, these tables can be used (1) as independent documents or (2) as a database

structure similar to ITU-T Rec L.72 [151].

6.2 Formal Model and Design Pattern Correlations

A model is any incomplete representation of reality - an abstraction [10]. In practice

it means that design documentation usually contains much more data than we need to

create models. In our case, from the perspective of the formal abstract model:

− The layer component specification is a node list (see Table 6.1): each row represents

a node (vertex) in the graph and columns contain attributes (node labels). Data

structures correlation between the formal model and this design pattern is shown

in Table 6.4.

− The intralayer topology specification is an adjacency list or a relational table (see

Table 6.2): each row represents an edge in the graph and columns contain incident

(source and target) nodes among other attributes (edge labels). Data structures

correlation between the formal model and this design pattern is shown in Table 6.5.

− The interlayer topology description is an adjacency list or a relational table (see

Table 6.3): each row represents an edge in the graph and columns contain incident

(source and target) nodes among other attributes. Data structures correlation

between the formal model and this design pattern is shown in Table 6.6.

As mentioned above (see Section 1.3), the quality of formal methods based on abstract

models is limited by the quality of these models. In the context of this thesis, complex
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Table 6.5: Formal Model and Design Pattern of Intralayer Topology Specifications.

No. Design pattern record
Formal model symbol
Gα =

(
V α, Eα, SαV , SαE

)
1 T2.α.1 Record Number n

2 T2.α.2 Layer Identifier α

3 T2.α.4 Source Component Identifier vαi ∈ V α eαn =
〈
vαi , v

α
j

〉
∈ Eα

4 T2.α.6 Target Component Identifier vαj ∈ V α
5 T2.α.8 Link Attributes Sαi,j = (Sαi ∩ Sαi ) ⊂ SαE ⊂ Sα

Table 6.6: Formal Model and Design Pattern of Interlayer Topology Specifications.

No. Design pattern record
Formal model symbol

Gα,(α−1) =
(
V α, V (α−1), Eα,(α−1)

)
1 T3.α.1 Record Number n

2 T3.α.2 Layer Identifier α

3 T3.α.4 Source Component Identifier vαi ∈ V α e
α,(α−1)
n =

〈
vαi , v

(α−1)
j

〉
∈

4 T3.α.5 Target Component Identifier v
(α−1)
j ∈ V (α−1) ∈ Eα,(α−1)

Table 6.7: Test Requirements for SUT Components and Design Pattern of Layer
Component Specifications.

No. Design pattern record
Formal model symbol

Rα,αcomp =
{(

vαi , A
α
i , A

α,(α−1)
i

)
n

}
1 T1.α.1 Record Number n

2 T1.α.2 Layer Identifier α

3 T1.α.4 Component Identifier vαi ∈ V α
4 T1.α.6 Component Attributes Aαi ⊂ Sα;A

α,(α−1)
i ⊂ S(α−1)

Table 6.8: Test Requirements for SUT Communication Channels and Design Pattern
of Intralayer Topology Specifications.

No. Design pattern record
Formal model symbol

Rα,αlink =
{(

vαi , v
α
j , A

α
i,j, A

α,(α−1)
i,j

)
n

}
1 T2.α.1 Record Number n

2 T2.α.2 Layer Identifier α

3 T2.α.4 Component Identifier vαi ∈ V α
4 T2.α.6 Component Identifier vαj ∈ V α
5 T2.α.8 Component Attributes Aαi,j ⊂ Sα;A

α,(α−1)
i,j ⊂ S(α−1)

network architecture can be unambiguously represented using a set of tables (design pat-

terns) that should be included as a necessary part of the detailed design documentation

of a computer network. In turn, this set of tables provides unambiguous definition of

the formal model (3D graph) for analysis and verifying of the network structure. As a

consequence, the human factor can be completely eliminated from the data transforma-

tion processes during the formal model generation activities - the process can be done

in automated mode using the detailed design documentation as input data. In this case,
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the formal model is completely relevant to the design documentation (a trusted model

from the viewpoint of network/system designers).

It is important to note that MBT techniques can be used for automated validation the

formal model internal consistency with respect to the end-user requirements [4]. In

the case of successful validation, the formal model is completely relevant to the end-

user requirements (a trusted model from the viewpoint of end-users/customers). To

accomplish such a goal and to make the model being completely applicable to the test

generation strategies (to ensure full compatibility), the formal operational specifications

of: (1) end-user requirements; and (2) derived technical requirements (see Figure 2.9)

must be based on the same design patterns that the technical specifications (see Table 6.1

and Table 6.2). Data structures correlation between the test requirements and the design

patterns is shown in Table 6.7 and Table 6.8.

Limitations:

− Similar to other formal methods, the proposed approach has no future outlook

without the support of standardization communities (at least as a corporation

standard).

− As mentioned above (see Section 4.1.2), the techniques of automated transforming

informal end-user requirements into formal operation specifications are beyond the

scope of this paper. The problem requires a separate analysis - even in the case of

relatively simple systems, it may not be a routine exercise in practice.



Chapter 7

A Case Study

The most effective way to do it is to do it.

—Amelia Earhart

In 1845 (developing a new world view), Karl Marx introduced the definition of practice

as the criterion of truth1 [155]. According to the criterion, this chapter represents a

case study which is based on a project performed within the framework of development

activities at the company SPC TRIGGER s.r.o. [156]. In the context of this thesis, the

case study represents the part of the project which covers the viewpoint of the business

community (see Section 3.2) - the virtualization platform. In turn, the viewpoint of the

IT personnel which covers:

− replacement of x86 desktop PCs by thin clients;

− using of the existing centralized management tool for the new infrastructure;

is beyond the scope of the case study2.

7.1 Project Description

The project background was based on the following notions:

1The question of whether objective truth can be attributed to human thinking is not a question of
theory but is a practical question. Man must prove the truth, i.e. the reality and power, the this-
worldliness of his thinking in practice. [155]

2These parts of the project contain sensitive information and cannot be presented in the public
domain.

83
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− the customer is an industrial institution;

− the vision for the future of IT is the transformation of the existing infrastructure

based on virtualization technologies to increase its agility and availability;

− the project was initiated by the local IT unit as a pilot project for detailed ac-

quaintance with VMware vSphere virtualization platform;

− the initial consolidation project targets 16 x86 servers and 48 x86 desktop personal

computers (personal computers are replaced by thin clients).

The main goals of the project were:

− reduction of hardware cost through the consolidation of physical servers;

− improvement of operational efficiency by increasing uptime and resiliency of ser-

vices/applications and reducing services/applications recovery time;

− providing high availability of services/applications.

The following figures represent the used design requirements (partially):

− end-user requirements - see Figure 7.1;

− end-user constraints - see Figure 7.2;

− design assumptions - see Figure 7.3.

In turn, Figure 7.4 represents the example of the requirements derived from techni-

cal specifications, i.e. defined by technological solutions used to build the SUT (see

Section 4.1.2).

7.2 Architecture Design

As mentioned above, the case study covers the viewpoint of the customer business com-

munity which includes3:

3Due to lack of space, this case study covers only one application server and two desktop personal
computers. In practice, the project covered sixteen application servers and forty-eight thin clients.
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ID End-User Requirements

R101 Business agility and flexibility should be increased
R102 Cost of doing business should be decreased
R103 Interaction delay (INTD) must be less than human response time (HRT)
R104 Availability of services is defined as 99.9 percent during core business hours
R105 Consolidate the existing 16 physical application servers down to 3 servers
R106 Centralized management tool must be used for the new infrastructure
R107 Separate management VLANs must be used for management traffic
R108 Server hardware maintenance should not affect application uptime
R109 Provide N+1 redundancy to support hardware failure during normal operation

Figure 7.1: A Case Study - Example of End-user requirements.

ID End-User Constraints

C101 VMware vSphere Essentials Plus Kit has been preselected as the virtualization platform
C102 Dell servers have been preselected as the compute platform
C103 Two 10G ports should be used per server
C104 VMware Virtual SAN tool has been preselected as the storage solution
C105 D-Link managed switches have been preselected as the network platform

Figure 7.2: A Case Study - Example of End-user constraints.

ID Assumptions

A101 Sufficient power, cooling, and floor/rack space is available in the existing datacenter to support the new
infrastructure during normal and maintenance operations

A102 Sufficient 10G ports are available in the existing core switches to support the new infrastructure

A103 System services (DNS, NTP and DHCP) are available in the existing infrastructure to support the new services and
applications

Figure 7.3: A Case Study - Example of Design assumptions.

ID Source Derived Technical Requirements 

C101
A103
C101
A103
C101
R106
R108
R109
C101
R106
C101
R106
C101
R107
C101
R107
R108
R109
C101
C104
R107
R108
R109

All components of the virtualization platform must communicate with DNS serviceT101

T106 Separate management VLAN must be used for the virtualization platform (vSphere) management traffic

T107 Separate management VLAN must be used for the live migration (vMotion) management traffic

T108 Separate management VLAN must be used for the storage area network (vSAN) management traffic

Selected components of the virtualization platform - hyperviser (ESXi) and managenet (vCenter) servises - must 
communicate with NTP serviceT102

T104 Hyperviser services of the virtualization platform (ESXi) must communicate with vSphere Desktop Client with Update 
Manager
vSphere Desktop Client and vSphere Web Client must communicate with the managemnt service of the virtualization 
platform (vCenter)T105

Hyperviser services of the virtualization platform (ESXi) must communicate with the managemnt service of the 
virtualization platform (vCenter)T103

Figure 7.4: A Case Study - Example of Derived technical requirements.
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− VMware vSphere 6.0 virtualization platform [130];

− Application server based on Apache HTTP Server 2.4.17 [157] and Ubuntu Server

14.04 LTS [158];

− Two end-user components based on:

− Internet Explorer 11.0.24 and Microsoft Windows 7 Professional SP1 [159];

− Mozilla Firefox 51.0.2 for Ubuntu [160] and Ubuntu Desktop 14.04 LTS [158];

− Supporting network infrastructure.

The architecture design used for this test case according to the basic multilayer reference

model (see Figure 3.7) is represented by the following figures:

− functional architectural layer - see Figure 7.5;

− service architectural layer - see Figure 7.6;

− logical architectural layer - see Figure 7.7;

− physical architectural layer - see Figure 7.8.

Provider - App_Services
(Web_Server)

Subscribers - End_Users
(Desktop_01 - 02)

Figure 7.5: A Case Study - Functional architectural layer.

Next, the following figures illustrate the examples of detailed design documentation -

technical specifications - based on the predefined design patterns (see Section 6.1):

− layer component specifications - see Figure 7.9;

− intralayer topology specifications - see Figure 7.10;

− interlayer topology specifications - see Figure 7.11.
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DNS_Server
(OS_03)

NTP_Server
(OS_04)

vCenter_Server
(VM_01)

ESXi_01 - 03
(COS_01 - 03)

vCenter_Web_Client
(OS_02)

vCenter_Desktop_Client
(OS_01)

UDP_123 NTP

UDP_53 DNS

UDP_902 ESXi Management

TCP_443 HTTPS

TCP_902 ESXi Management

Web_Server
(VM_02 - 03)

Desktop_01 - 02
(OS_05 - 06)

Figure 7.6: A Case Study - Service architectural layer.

COS_01 - 03
(Server_01 - 03)

OS_01 - 02
(WS_01 - 02)

OS_05 - 06
(WS_11 - 12)

VLAN_110
vMotion

VLAN_120
vSAN

VLAN_130
DC_Management

OS_03 - 04
(Server_11 - 12)

VLAN_140
DC_Data

VLAN_10
Management

VRF_01

VLAN_20
Services

VLAN_50
Users

IPv4 VLAN_XXX   <=>   192.168.XXX.0/24

VM_01
(Server_01 - 03)

VM_02 - 03
(Server_01 - 03)

Figure 7.7: A Case Study - Logical architectural layer.
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Server_01 Server_02 Server_03

Switch_11 Switch_12

 EtherChannel
2 x 10GBase-X

10GBASE-T

Switch_01 Switch_02

10GBASE-SR

Redundant Stack

Local Area Network

WS_01 - 02
 IT Terminals

10GBASE-X (SFP+ Direct Attachment)

480G Physical Stacking (Dual CXP Direct Attachment)

Server_11 - 12
System Services

WS_11 - 12
End-user Terminals

Figure 7.8: A Case Study - Physical architectural layer.

Type Index

- - -

T1.La .01 T1.La .02 T1.La .03 T1.La .05 T1.La .07
1 4 Provider of Application Services Provider 01 - HTML/XML INTD=100ms Tasks=64 -

… … … … … … … … … …
1 3 Apache HTTP Server WEB 01 Apache Software Foundation TCP 443 - - -

UDP 53 - -
UDP 123 - -
TCP 443 - -
UDP/TCP 902 - -
UDP 53 - -
UDP 123 - -
UDP/TCP 902 - -

… … … … … … … … … …
IPv4 192.168.110.11 255.255.255.0
IPv4 192.168.120.11 255.255.255.0
IPv4 192.168.130.11 255.255.255.0

2 2 SUSE Linux Enterprise Server 12 VM 03 Novell IPv4 192.168.140.12 255.255.255.0 -
3 2 VLAN vMotion VLAN 110 - IPv4 192.168.110.0 255.255.255.0 -
4 2 Virtual Router VRF 01 - IPv4 192.168.0.0 255.255.0.0 -

… … … … … … … … … …
1 1 Dell PowerEdge R730xd Rack Server Server 01 Dell 10GBASE-T Full Duplex - -

10GBASE-X Full Duplex -
10GBASE-SR Full Duplex -
120G CXP - -

Record 
Number

Layer 
Identifier Component Assignment

Component Identifier
Vendor Identifier Notes

T1.La .04 T1.La .06

Component Attributes (3-tuples)

-

3 3 VMware ESXi hypervisor 6.0 ESXi 01 VMware -

2 3 VMware vCenter Server vCenter 01 VMware

-

2 1 DXS-3600-32S 10 Gigabit Managed Switch Switch 01 D-Link -

1 2 VMware ESXi hypervisor 6.0 COS 01 VMware

𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝑺𝑺𝒊𝒊𝜶𝜶 𝒊𝒊 

Figure 7.9: A Case Study - Example of Layer component specifications.
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Type Index Type Index Type Index Type Index

-

T2.La .01 T2.La .02 T2.La .09
1 4 Provider 01 - - Subscriber 01 - - HTML/XML INTD=100ms Tasks=64 -

… … … … … … … … … … … … … …
1 3 ESXi 01 UDP 53 DNS 01 UDP 53 UDP 53 - - -
2 3 ESXi 01 UDP 123 NTP 01 UDP 123 UDP 123 - - -
3 3 ESXi 01 TCP/UDP 902 vCenter 01 TCP/UDP 902 UDP/TCP 902 - - -

… … … … … … … … … … … … … …
1 2 OS 01 IPv4 192.168.10.101/24 VLAN 10 IPv4 192.168.10.0/24 IPv4 192.168.10.0 255.255.255.0 -
2 2 COS 01 IPv4 192.168.110.11/24 VLAN 110 IPv4 192.168.110.0/24 IPv4 192.168.110.0 255.255.255.0 -
3 2 VM 01 IPv4 192.168.130.1/24 VLAN 130 IPv4 192.168.130.0/24 IPv4 192.168.130.0 255.255.255.0 -
4 2 VLAN 140 IPv4 192.168.140.0/24 VRF 01 IPv4 192.168.0.0/16 IPv4 192.168.0.0 255.255.0.0 -

… … … … … … … … … … … … … …
1 1 Switch 01 120G CXP 01, 02 Switch 02 120G CXP 01, 02 120G CXP - - Stacking Ring
2 1 Switch 01 10GBASE-X 16 Switch 11 10GBASE-X 09 10GBASE-X Full Duplex - EtherChannel 1
3 1 Switch 11 10GBASE-T 01 Server 01 10GBASE-T 01 10GBASE-T Full Duplex - -
4 1 WS 01 1000BASE-T 01 LAN 00 1000BASE-T 00 1000BASE-T - - -

Notes
Source Identifier Target Identifier

Component Identifier Port Identifier Component Identifier
Record 
Number

Layer 
Identifier

Link Identifier

Link Attributes (3-tuples)Port Identifier

- -

T2.La .04 T2.La .05 T2.La .06 T2.La .07 T2.La .08
𝜶𝜶 𝑺𝑺𝒊𝒊,𝒋𝒋𝜶𝜶  𝒗𝒗𝒋𝒋𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝒏𝒏 

Figure 7.10: A Case Study - Example of Intralayer topology specifications.

Type Index Type Index

- - - -

T3.La .01 T3.La .02 T3.La .03 T3.La .06 T3.La .07 T3.La .08
1 4 - Provider 01 WEB 01 1:1 - -

Desktop 01 1:2 - -
Desktop 02 1:2 - -

… … … … … … … … … …
VM 02 1:2 Active/Standby AppServer Cluster 1
VM 03 1:2 Standby/Active AppServer Cluster 1

2 3 - ESXi 01 COS 01 1:1 - -
3 3 - vCenter 01 VM 01 1:1 - -

… … … … … … … … … …
1 2 - OS 01 WS 01 1:1 - -
2 2 - COS 01 Server 01 1:1 - -

Server 01 1:3 -
Server 02 1:3 -
Server 03 1:3 -
Switch 01 1:4 -
Switch 02 1:4 -
Switch 11 1:4 -
Switch 12 1:4 -

Projection Assignment

-

-

-

-

4 2 VLAN 110 -

-

1 3 WEB 01

3 2 VM 01

T3.La .04 T3.La .05

2 4 Subscriber 01

Record 
Number

Layer 
Identifier

Projection Identifier
Distribution                 

Index
Projection                          
Attributes NotesSource Component Identifier Target Component Identifier

𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝒏𝒏 𝒗𝒗𝒋𝒋
(𝜶𝜶−𝟏𝟏) 

Figure 7.11: A Case Study - Example of Interlayer topology specifications.

7.3 Test Cases

The multilayer model derived from the detailed design documentation is shown in Fig-

ure 7.12.

The examples of detailed design documentation - technical specifications - based on the

predefined design patterns (see Section 6.1) are illustrated by the following figures:

− test requirements for SUT components - see Figure 7.13;

− test requirements for SUT communication channels - see Figure 7.14;

Finally, Figure 7.15 - 7.17 represent the examples of the application of test generation

strategies (check lists):

− test cases of SUT components - see Figure 7.15;
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Figure 7.12: A Case Study - Multilayer model.
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Type Index

- -

T1.La .01 T1.La .02 T1.La .03 T1.La .07
1 4 R105 Provider 01 HTML/XML - - - - - End User Requirement
2 4 R105 Subscriber 01 - - - - - - End User Requirement

… … … … … … … … … … … …
1 3 R105 WEB 01 TCP 443 - - - - - End User Requirement
2 3 C101, R106, R108, R109 vCenter 01 - - - - - - End User Requirement
3 3 C101 ESXi 01 - - - - - - End User Requirement

… … … … … … … … … … … …
1 2 C101 OS 01 - - - - - - End User Requirement
2 2 C101 COS 01 - - - - - - End User Requirement
3 2 C101, R108, R109 VM 01 - - - - - - End User Requirement
4 2 C101, R107, R108, R109 VLAN 110 - - - - - - End User Requirement

… … … … … … … … … … … …
1 1 C102, C103 Server 01 10GBASE-T - - - - - End User Requirement
2 1 C102 WS 01 - - - - - - End User Requirement
3 1 C105 Switch 01 - - - - - - End User Requirement

T1.La .04 T1.La .06

NotesRecord 
Number

Layer 
Identifier Requirement Assignment

Component Identifier
Requirement Attributes (3-tuples)

𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝑨𝑨𝒊𝒊𝜶𝜶 𝑨𝑨𝒊𝒊
𝜶𝜶, 𝜶𝜶−𝟏𝟏  𝒊𝒊 

Figure 7.13: A Case Study - Example of Test requirements for SUT components.

Type Index Type Index

- -

T2.La .01 T2.La .02 T2.La .03 T2.La .09
1 4 R103, R104, R105 Subscriber 01 Provider 01 HTML/XML INTD ≤ 200ms Tasks ≥ 16 TCP 443 - - End User Requirement

… … … … … … … … … … … … … …
1 3 T101 DNS 01 ESXi 01 UDP 53 - - IPv4 - - Technical Requirement
2 3 T102 NTP 01 ESXi 01 UDP 123 - - IPv4 - - Technical Requirement
3 3 T103 vCenter 01 ESXi 01 UDP/TCP 902 - - IPv4 - - Technical Requirement
4 3 T105 vCenter 01 vSpere 01 TCP 443 - - IPv4 - - Technical Requirement

… … … … … … … … … … … … … …
1 2 T107 VLAN 110 COS 01 IPv4 192.168.110.0 255.255.255.0 10GBASE-T - - Technical Requirement
2 2 T108 VLAN 120 COS 01 IPv4 192.168.120.0 255.255.255.0 10GBASE-T - - Technical Requirement

T2.La .04 T2.La .06 T2.La .08

NotesSource Identifier Target IdentifierRecord 
Number

Layer 
Identifier Requirement Assignment

Link Identifier

Requirement Attributes (3-tuples)

𝑨𝑨𝒊𝒊,𝒋𝒋𝜶𝜶  𝑨𝑨𝒊𝒊,𝒋𝒋
𝜶𝜶, 𝜶𝜶−𝟏𝟏  𝒗𝒗𝒋𝒋𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝜶𝜶 𝒏𝒏 

Figure 7.14: A Case Study - Example of Test requirements for SUT communication
channels.

− test cases of SUT communication channels - see Figure 7.16;

− fault-injection test cases - see Figure 7.17.

Record 
Number

Layer 
Identifier Component Identifier

1 1 Server, 01 10GBASE-T Full Duplex - 10GBASE-T - -
10GBASE-X Full Duplex -
10GBASE-SR Full Duplex -
120G CXP - -
10BASE-T - -
100BASE-T - -
1000BASE-T - -

… … … … … … … … …
1 2 OS, 01 IPv4 192.168.10.101 255.255.255.0 - - -

IPv4 192.168.110.11 255.255.255.0
IPv4 192.168.120.11 255.255.255.0
IPv4 192.168.130.11 255.255.255.0

3 2 VLAN, 110 IPv4 192.168.110.0 255.255.255.0 - - -
… … … … … … … … …
1 3 WEB, 01 TCP 443 - - TCP 443 - -

UDP 53 - -
UDP 123 - -
TCP 443 - -
UDP/TCP 902 - -
UDP 53 - -
UDP 123 - -
UDP/TCP 902 - -

- - -

- - -

- - -

- - -

Requirement Attributes (3-tuples)

Test cases of SUT components on layer α

- - -

Component Attributes (3-tuples)

Switch, 0112

ESXi, 01

22

3

3

2

3

WS, 0113

COS, 01

vCenter, 01

𝑺𝑺𝒊𝒊𝜶𝜶 

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝜶𝜶 = 𝒗𝒗𝒊𝒊𝜶𝜶, 𝑺𝑺𝒊𝒊𝜶𝜶 , 𝑨𝑨𝒊𝒊𝜶𝜶 𝒏𝒏  

𝒏𝒏 𝜶𝜶 𝒗𝒗𝒊𝒊𝜶𝜶 𝑨𝑨𝒊𝒊𝜶𝜶 

Figure 7.15: A Case Study - Example of Test cases of SUT components.
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Record 
Number

Layer 
Identifier Path Identifier

(Switch, 01; Switch, 11) - - -
     <Switch, 01; Switch, 11> 10GBASE-X Full Duplex -
(Switch, 11; Server, 01) - - -
     <Switch, 11; Server, 01> 10GBASE-T Full Duplex -
(WS, 01; LAN, 00) - - -
     <WS, 01; LAN, 00> 1000BASE-T - -

… … … … … … … … …
(VLAN, 110; COS, 01) - - -
     <VLAN, 110; COS, 01> IPv4 192.168.110.0 255.255.255.0
(VM, 01; COS, 01) - - -
     <VM, 01; VLAN, 130> IPv4 192.168.130.0 255.255.255.0
     <VLAN, 130; COS, 01> IPv4 192.168.130.0 255.255.255.0
(OS, 01; COS, 01) - - -
     <OS, 01; VLAN, 10> IPv4 192.168.10.0 255.255.255.0
     <VLAN, 10; VRF, 01> IPv4 192.168.10.0 255.255.255.0
     <VRF, 01; VLAN, 130> IPv4 192.168.130.0 255.255.255.0
     <VLAN, 130; COS, 01> IPv4 192.168.130.0 255.255.255.0

… … … … … … … … …
(DNS, 01; ESXi, 01) - - -
     <DNS, 01; ESXi, 01> UDP 53 - -
(vCenter, 01; ESXi, 01) - - -
     <vCenter, 01; ESXi, 01> UDP/TCP 902 - -
(vSphere, 01; vCenter, 01) - - -
     <vSphere, 01; vCenter, 01> TCP 443 - -
(Desktop, 01; WEB, 01) - - -
     <Desktop, 01; WEB, 01> TCP 443 - -

32

TCP 443 - -33

2 3 - - -

- -

- - -

21

22

-31

IPv4

3 2 IPv4

13

2 1 -

Test cases of SUT communication channels on layer α

- - -11

- -

Attributes of component-to-component interconnections 
(3-tuples) Requirement Attributes (3-tuples)

- - -

- -

192.168.110.0 255.255.255.0

IPv4 - -

𝑺𝑺 𝒍𝒍−𝟏𝟏 ,𝒍𝒍
𝜶𝜶  

𝑻𝑻𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝜶𝜶 = � 𝒗𝒗 𝒍𝒍−𝟏𝟏
𝜶𝜶 ,𝒗𝒗𝒍𝒍𝜶𝜶 ,𝑺𝑺 𝒍𝒍−𝟏𝟏 ,𝒍𝒍

𝜶𝜶

𝒗𝒗 𝒍𝒍−𝟏𝟏
𝜶𝜶 ,𝒗𝒗𝒍𝒍

𝜶𝜶 ∈𝒑𝒑𝒊𝒊,𝒋𝒋,𝒌𝒌
𝜶𝜶

,𝑨𝑨𝒊𝒊,𝒋𝒋𝜶𝜶

𝒏𝒏

 

𝒏𝒏 𝜶𝜶 𝒑𝒑𝒊𝒊,𝒋𝒋,𝒌𝒌𝜶𝜶 = 𝒗𝒗 𝒍𝒍−𝟏𝟏
𝜶𝜶 ,𝒗𝒗𝒍𝒍𝜶𝜶  𝑨𝑨𝒊𝒊,𝒋𝒋𝜶𝜶  

Figure 7.16: A Case Study - Example of Test cases of SUT communication channels.

Record 
Number

Layer 
Identifier Recovery Group Fault-Injection Test Cases

1 1 Server, 01; Server, 02; Server, 03; Switch, 11;  Switch, 12; Switch, 
01; Switch, 02;  WS, 11; WS, 12

Server, 01; Server, 02; Server, 03;  Switch, 11; Switch, 12; Switch, 
01; Switch, 02

2 2 VM, 02; VM, 03; OS, 05; OS, 06 VM, 02; VM, 03

3 3 Desktop, 01; Desktop, 02 -

Fault-injection test cases on layer α

𝑹𝑹𝑹𝑹(𝜶𝜶+𝟏𝟏),𝜶𝜶 

𝑻𝑻(𝜶𝜶+𝟏𝟏),𝜶𝜶 = 𝒗𝒗𝒊𝒊𝜶𝜶  

𝒏𝒏 𝜶𝜶 𝑻𝑻(𝜶𝜶+𝟏𝟏),𝜶𝜶 

Figure 7.17: A Case Study - Example of Fault-injection test cases.

In general, the result of applying test generation strategies shows that a surprisingly

large number of test cases are required to fully cover the structure of this extremely

simple model - see Table 7.1.

As mentioned above, the case study covers only one application server and two desktop

personal computers. In practice, the project covered sixteen application servers and

forty-eight thin clients4. The results of the application of test generation strategies in

practice is shown in Table 7.2.

By and large, this result can easily reflect the existence of the large amount of potential

faults in commercial systems. Increasing system complexity and fierce market com-

petition on time-to-market and cost make comprehensive testing of complex network

4One of the main project goals was the replacement of desktop personal computers by thin clients.
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Table 7.1: The result of applying test generation strategies.

No.
Model Cardinality Test Case Numbers

Architectural layer α |V α| |Eα| |Tαcomp| |Tαlink| |T (α+1),α|
1 Functional layer 4 2 1 – – –

2 Social layer – – – – – –

3 Service layer 3 11 22 7 20 –

4 Logical layer 2 20 23 13 28 2

5 Physical layer 1 14 19 9 15 7

6 Engineering layer – – – – – –

Total:
29 63 9
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Table 7.2: The result of applying test generation strategies in practice.

No.
Test Case Numbers

Architectural layer α |Tαcomp| |Tαlink| |T (α+1),α|
1 Functional layer 4 – – –

2 Social layer – – – –

3 Service layer 3 70 258 –

4 Logical layer 2 139 312 16

5 Physical layer 1 57 63 7

6 Engineering layer – – – –

Total:
266 633 23

922

systems very difficult (or even impossible) without appropriate formal methods.



Chapter 8

Conclusion and Future Work

Aim for the moon. If you miss, you may hit a star.

—W. Clement Stone

The last chapter of this thesis is divided into two sections. The first section contains a

general summary (i.e. what was done in accordance with the thesis goals). Then, the

second part emphasizes two aspects of future work - the next and future possible steps

8.1 What Was Done

Who seeks shall find.

—Sophocles

Deployment of commercial computer networks sets high requirements for procedures,

tools and approaches for comprehensive testing of these networks. At the same time,

despite the great efforts of many researchers, the process of test design/generation still

tends to be unstructured and bound to the personal experience and/or intuition of in-

dividual engineers. However, in the case of complex or non-standard networks, personal

experience and/or intuition are often inadequate. As a consequence, in the real world

many computer networks have failed because:

− engineers had tested the wrong things;

94
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− engineers had tested the right things but in the wrong way;

− some things had been just simply forgotten and had not been tested.

To address this problem, the main research objective of this thesis is the automated

design of test specifications (test cases) for computer networks using the detailed design

documentation (end-user requirements and technical specifications) as the data source.

Based on the model-based approach, the following main goals have been solved sepa-

rately, but not in isolation:

− A formal model for test generation missions was defined based on the concept of

multilayer networks. The model is the layered 3D-graph which can be derived

directly from the SUT technical specification. Different layers (four layers in the

case of basic releases and six layers in the case of extended releases) represent

different (hardware, software, social, business, etc.) aspects of SUT architecture.

In turn, interlayer relations: (1) represent the technological solutions which were

used to build the SUT; and (2) make the layered model consistent. This model

completely covers all layers of OSI Reference Model (moreover, it covers some addi-

tional layers beyond the OSI RM) and, as a consequence, both software-based and

network-based aspects of computer networks with regard to applying the system

methodology to network analysis.

− Using the models of this kind and the graph theoretical metrics, both static and

dynamic network anal-yses were performed. In the context of this thesis, the static

analysis determines the structural test case generation strategy. This strategy is

based on the top-down approach and uses test requirements as source data. The

top-down approach utilizes the concept of layered networks the concept of layered

networks, which strictly relies on the facts that: (1) for each node on a given

layer there is a corresponding node (or nodes) on the layer below; and (2) for each

logical path between two nodes on a given layer there is a path (or paths) between

the corresponding nodes on the layer below. As a consequence, test cases of this

kind: (1) cover the system infrastructure including individual components and

component-to-component in-teraction on all coexisting architectural layers; and

(2) provide information for subsequent analysis to ensure that the formal model is

consistent with respect to the test requirements.



Chapter 8. Conclusion and Future Work 96

− In turn, the dynamic analysis (or fault injection simulation) provides a means for

understanding how the SUT behaves in the presence of faults. In the context of

this thesis, the dynamic analysis determines the nonfunctional (dependability) test

case generation strategy. The strategy is also based on the top-down approach and

uses structural test cases as source data. The analysis includes two main steps:

(1) successive removals of vertices and their incident edges from the formal model

(fault injection experiments); and (2) impact assessments of those removals on the

model consistency – disruption on an arbitrary layer might destroy a substantial

part of the upper layer (or layers) that are mapped on it, rendering the whole

network useless in practice. In other words, test cases such as these define SUT

components on all coexisting architectural layers as objects of fault injection ex-

periments. In general, they provide information for subsequent analysis to ensure

that: (1) system dependability mechanisms have been implemented correctly on

all coexisting architectural layers and, as a consequence, (2) the system is able to

provide the desired level of reliable services.

− It is important to note that the quality of formal methods based on abstract

models is limited by the quality of these models. Thus, to get the full advan-

tages of model-based testing, it is necessary to alleviate the burdens of learning

model development and checking techniques for engineers and other non-technical

stakeholders or, ideally, completely eliminate the human factor. To address this

problem, a possible appropriate presentation format of architecture descriptions

was defined as a necessary part of the detailed design documentation of computer

networks: complex network architecture can be unambiguously represented based

on the set of tables (design patterns). In turn, this set of tables provides an unam-

biguous definition of the formal model (3D graph) for analysis and verification of

the network structure. As a consequence, the human factor was completely elimi-

nated from the data transformation processes during the formal model generation

activities – the process was done in automated mode using the detailed design doc-

umentation as data source. The resulting formal model is completely relevant to

the design documentation (a trusted model from the viewpoint of network/system

designers).

Conclusions:
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− The unambiguous formal presentation of a completed computing system (i.e. a

computer network and the distributed computing system that this network pro-

vides and supports) based on the concept of multilayer networks (the layered formal

model) is possible.

− Applying the system methodology to network analysis based on the layered for-

mal model en-sures that computer network architecture is completely consistent

with respect to: (1) distributed computing system architecture which this network

provides and supports; (2) system functional (business) goals.

− Formal model automated generation using the detailed design documentation as

data source is possible.

− Test case automated generation based on the layered formal model is possible on

all coex-isting architectural layers. The resulting test cases can be used for: (1)

verification of a complet-ed computing system (or a computer network only); (2)

validation that the system (or network) technical specifications are consistent with

respect to the end-user requirements.

− The techniques of the transformation of informal end-user requirements into formal

operation specifications (test requirements) require a separate detailed analysis1 -

even in the case of relatively simple systems, it is not a routine exercise in practice.

8.2 Future Work

The more we do, the more we can do.

—William Hazlitt

In general, the goals of this thesis do not cover the problem of cybersecurity in spite of

the facts that: (1) the problem exists; and (2) it is growing every year [162]. Nowadays,

computer networks have critical security requirements. As mentioned above, their failure

may endanger human lives and the environment, do serious damage to major economic

infrastructures, endanger personal privacy, undermine the viability of whole business

sectors and facilitate crime [3]. As a consequence, future work will target the problem

of security testing.

1A possible solution might lay in the domain of Artificial Intelligence - Ontological Engineering [161]
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The preliminary analysis shows that test cases of SUT communication channels (see

Definition 12) contain information (see Figure 7.16) which can be used for the following

purposes:

− Automated generation of network security rules (access lists and firewall configu-

rations).

− Checking the network security rules consistency with respect to system functional

(business) goals2.

This result can be used as a basis for the next possible steps. On the other hand, it is

important to note that these network security rules do not cover all possible threats. In

turn, the current revision of ISO/IEC 27005:2011 [135] standard contains a list of typical

threats, which covers both aspects (software-based and network-based) of computer

networks, but not only these aspects.

The preliminary analysis [136] shows that the set of typical threats can be partitioned

with regard to the extended multilayer reference model (see Section 3.2) and the pro-

tected objects - SUT components and SUT communication channels (see Figure 8.1).

The result of the layer-by-layer mapping from the set of typical threats to the set of

protected objects might be a basis for the necessary security checklists - a set of security

(penetration) test cases.

2Generally, it is impossible to separate: (1) components/communication channels failures; and (2)
components/communication channels security misconfiguration. In both cases, these components/com-
munication channels are in failure state.
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1 2 3 4 5 1 2 3 4 5
T 0.01 Fire x
T 0.02 Unfavorable climatic conditions x
T 0.03 Water x
T 0.04 Pollution, dust, corrosion x
T 0.05 Natural disasters x
T 0.06 Environmental disasters x x
T 0.07 Major events in the environment x x
T 0.08 Failure or disruption of the power supply x
T 0.09 Failure or disruption of communication networks x x
T 0.10 Failure or disruption of mains supply x
T 0.11 Failure or disruption of service providers x
T 0.12 Interfering radiation x x
T 0.13 Intercepting compromising emissions x x
T 0.14 Interception of information / espionage x x
T 0.15 Eavesdropping x x
T 0.16 Theft of devices, storage media and documents x
T 0.17 Loss of devices, storage media and documents x
T 0.18 Bad planning or lack of adaptation x x
T 0.19 Disclosure of sensitive information x  x 
T 0.20 Information or Product from an unreliable source x
T 0.21 Manipulation of hardware and software x
T 0.22 Manipulation of information x
T 0.23 Unauthorized access to IT systems x x
T 0.24 Destruction of devices or storage media x
T 0.25 Failure of devices or systems x
T 0.26 Malfunction of devices or systems x
T 0.27 Lack of resources x x
T 0.28 Software vulnerabilities or errors x x
T 0.29 Violation of laws or regulations x x
T 0.30 Unauthorized use or administration of devices and systems x x x x x x
T 0.31 Incorrect use or administration of devices and systems x x x x
T 0.32 Abuse of authorizations x x x x
T 0.33 Absence of personal x
T 0.34 Attack x
T 0.35 Coercion, extortion or corruption x
T 0.36 Identity theft x
T 0.37 Repudiation of actions x
T 0.38 Abuse of personal data x
T 0.39 Malicious software x
T 0.40 Denial of service x
T 0.41 Sabotage x
T 0.42 Social Engineering x
T 0.43 Replay of messages x
T 0.44 Unauthorized entry to premises x
T 0.45 Data loss x
T 0.46 Loss of integrity of sensitive information x

THREATS

EXTENDED REFERENCE MODEL LAYERS

Components Communication channels

Figure 8.1: Partitioned list of typical threats [136].
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