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Abstract

Extensive-form games are an important model of finite sequential interaction between
players. The size of the extensive-form representation is, however, often prohibitive and it
is the most common cause preventing deployment of game-theoretic solution concepts to
real-world scenarios. The state-of-the-art approach to solve this issue is the information
abstraction methodology. The information abstraction reduces the size of the original
large extensive-form game by removing information available to players; hence merging
the information sets which from their decision points. Since the players have to play iden-
tical strategy in the merged information sets, the size of the strategy representation in the
abstracted game can be significantly smaller than in the original game. The abstracted
game is then solved and the small resulting strategies are used in the original game. The
majority of existing information abstraction approaches create abstracted games where
players remember all their actions and all the information they obtained in the abstracted
game – a property denoted as a perfect recall. Remembering all the actions, however,
causes the number of decision points of a player (and hence also the size of his strategy) to
grow exponentially with the number of actions taken in the past. In this thesis, we focus
on imperfect recall information abstractions which allow players to forget and hence have
the potential to result in exponentially smaller abstracted games. We provide three major
contributions to the state-of-the-art of solving extensive-form games. First, we present a
complete picture of the complexity of solving imperfect recall abstractions. Second, we
introduce the first family of domain-independent algorithms capable of approximating the
strategies with the best worst-case expected value in imperfect recall abstractions. Third,
we provide two domain-independent algorithms which can start from arbitrary imperfect
recall abstraction of the given extensive-form game and then simultaneously solve and
refine this abstraction until guaranteed convergence to the desired approximation of Nash
equilibrium of the original game. Finally, we experimentally demonstrate that our algo-
rithms using imperfect recall information abstractions require significantly less memory to
solve large extensive-form games compared to the current state-of-the-art algorithms, and
hence that they greatly enhance the scalability of solving extensive-form games.





Abstrakt

Hry v extenzivńı formě jsou d̊uležitým modelem konečné sekvenčńı interakce hráč̊u. Ex-
tenzivńı reprezentace her je však často př́ılǐs velká, což je hlavńım d̊uvodem zamezuj́ıćım
aplikaci herně teoretických koncept̊u řešeńı do situaćı z reálného světa. Nejúspěšněǰśı
př́ıstup řeš́ıćı tento problém je metodologie informačńıch abstrakćı. Informačńı abstrakce
zmenšuj́ı velikost p̊uvodńı extenzivńı hry odeb́ıráńım informaćı, které maj́ı hráči k dis-
pozici. To vede ke sjednocováńı informačńıch set̊u tvoř́ıćıch jejich body rozhodnut́ı. Je-
likož hráči musej́ı hrát identickou strategii ve sjednocených informačńıch setech, velikost
strategie v abstrahované hře může být výrazně menš́ı než v p̊uvodńı hře. Tato abstraho-
vaná hra je vyřešena a malé strategie źıskané jej́ım řešeńım jsou aplikovány do p̊uvodńı
hry. Většina existuj́ıćıch př́ıstup̊u využ́ıvaj́ıćı informačńı abstrakce vytvář́ı abstrahovanou
hru, kde si hráči pamatuj́ı všechny své tahy a veškeré informace, které během hry źıskali
– vlastnost nazvaná perfect recall. Pamatováńı si všech akćı však zp̊usobuje exponenciálńı
r̊ust počtu bod̊u rozhodnut́ı (a tedy i velikosti strategie) vzhledem k počtu těchto akćı. V
této práci se zaměřujeme na imperfect recall informačńı abstrakce, které umožňuj́ı hráč̊um
zapomı́nat. Tyto abstrakce maj́ı tedy potenciál vést k exponenciálně menš́ım abstraho-
vaným hrám. V této práci poskytujeme následuj́ıćı tři hlavńı kontribuce k řešeńı her v
extenzivńı formě. Zaprvé poskytujeme ucelený popis složitosti řešeńı imperfect recall in-
formačńıch abstrakćı. Zadruhé představujeme prvńı tř́ıdu doménově nezávislých algoritmů
schopných aproximovat strategie s nejvyšš́ı očekávanou hodnotou v nejhorš́ım př́ıpadě v
imperfect recall informačńıch abstrakćıch. Zatřet́ı představujeme dva doménově nezávislé
algoritmy, které mohou být inicializovány jakoukoliv imperfect recall abstrakćı řešené hry
v extenzivńı formě. Tyto algoritmy současně řeš́ı a zlepšuj́ı danou abstrakci, dokud neńı
dosaženo garantované konvergence k požadované aproximaci Nashova ekvilibria p̊uvodńı
hry. Na závěr experimentálně demonstrujeme, že naše algoritmy využ́ıvaj́ıćı imperfect
recall informačńı abstrakce použ́ıvaj́ı mnohem méně paměti na vyřešeńı obrovských her v
extenzivńı formě oproti paměti použ́ıvané současnými nejúspěšněǰśımi algoritmy pro řešeńı
extenzivńıch her. Z toho plyne, že námi představené algoritmy umožňuj́ı zásadńı zvýšeńı
škálovatelnosti řešeńı extenzivńıch her.





Contents

1 Introduction 1

1.1 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Theoretical Properties of Imperfect Recall Abstractions . . . . . . . 4

1.2.2 Approximating Maxmin Strategies in Imperfect Recall Games Using
A-Loss Recall Property . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Algorithms for Constructing and Solving Imperfect Recall Abstrac-
tions of Large Extensive-Form Games . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Introduction to Extensive-Form Games 9

2.1 Extensive-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Strategy Representation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Coarsest Perfect Recall Refinement . . . . . . . . . . . . . . . . . . . 11

2.2.2 Mapping between Games . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Relevant Subclasses of Imperfect Recall Games . . . . . . . . . . . . 13

2.3 Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Maxmin Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Nash Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Solving Extensive-Form Games 19

3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Representation of Nash Equilibrium and Maxmin Strategies . . . . . . . . . 22

3.3 Best Response Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Algorithms Solving Perfect Recall Games . . . . . . . . . . . . . . . . . . . 26

3.4.1 Sequence-Form LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Double Oracle Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.4 Regret Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Algorithms for Perfect Recall Games in Imperfect Recall Games . . . . . . 32

3.6.1 Sequence-Form Linear Program . . . . . . . . . . . . . . . . . . . . . 32



3.6.2 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Regret Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.4 CFR in Chance Relaxed Skew Well-Formed Games . . . . . . . . . . 35

4 Approximating Maxmin Strategies in Imperfect Recall Games Using A-
Loss Recall Property 37

4.1 Comparison to the Current State-of-the-Art . . . . . . . . . . . . . . . . . . 37

4.2 NE and Maxmin Strategies in A-Loss Recall Games . . . . . . . . . . . . . 39

4.2.1 Existence of NE in A-loss Recall Games . . . . . . . . . . . . . . . . 39

4.2.2 Computational Complexity in A-loss Recall Games . . . . . . . . . . 40

4.3 The Mathematical Program for Approximating Maxmin Strategies in Im-
perfect Recall Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Exact Bilinear Sequence Form Against A-loss Recall Opponent . . . 44

4.3.2 Player 2 without A-Loss Recall. . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Approximating Bilinear Terms . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Upper Bound MILP Approximation . . . . . . . . . . . . . . . . . . 48

4.3.5 Theoretical Analysis of the Upper Bound MILP . . . . . . . . . . . 49

4.4 Algorithms for Approximating Maxmin Strategies in Imperfect Recall Games 54

4.4.1 Iterative Precision Refining MILP . . . . . . . . . . . . . . . . . . . 55

4.4.2 Branch-and-Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Double Oracle IRABnB for Imperfect Recall EFGs . . . . . . . . . 61

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Constructing Imperfect Recall Abstractions to Solve Large Extensive-
Form Games 75

5.1 Comparison to the Current State-of-the-Art . . . . . . . . . . . . . . . . . . 75

5.2 Algorithms for Constructing and Solving Imperfect Recall Abstractions . . 76

5.2.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Fictitious Play for Imperfect Recall Abstractions . . . . . . . . . . . 77

5.2.3 CFR+ for Imperfect Recall Abstractions . . . . . . . . . . . . . . . . 87

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.2 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.3 Convergence of CFR+IRA . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.4 Memory Requirements of Algorithms . . . . . . . . . . . . . . . . . . 105

5.3.5 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.6 Experiment Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion and Future Work 113

6.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Theoretical Properties of Imperfect Recall Abstractions . . . . . . . 113

6.1.2 Algorithms using Imperfect Recall Abstractions . . . . . . . . . . . . 114

6.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.1 Better Automatically Built Initial Abstractions . . . . . . . . . . . . 114
6.2.2 Domain Dependent Implementation of CFR+IRA . . . . . . . . . . 115
6.2.3 Domain Specific Initial Abstractions for FPIRA and CFR+IRA . . . 115
6.2.4 Parallelization of CFR+IRA . . . . . . . . . . . . . . . . . . . . . . 115
6.2.5 NP-Completeness of Computation of Maxmin Strategies and NE in

A-loss Recall Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Supplementary Material for Chapter 3 123
A.1 Experimental Evaluation of Strategies Computed by FP in Imperfect Recall

Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Experimental Evaluation of Strategies Computed by CFR in Imperfect Re-

call Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B Publications 125
B.1 Publications Related to the Thesis . . . . . . . . . . . . . . . . . . . . . . . 125

B.1.1 Journal Publications (with IF) . . . . . . . . . . . . . . . . . . . . . 125
B.1.2 Conference Publications . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.2 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.2.1 Journal Publications (with IF) . . . . . . . . . . . . . . . . . . . . . 126
B.2.2 Conference Publications . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.3 Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Chapter 0

xvi



Chapter 1

Introduction

The non-cooperative game theory is a tool for modeling and solving strategic interaction of
rational players. It provides a notion of optimal behavior in such interaction in the form of
solution concepts. The most widely known such solution concept is the Nash equilibrium
(NE, [46]), which forms a prescription of strategies to players with a guarantee that no
player can benefit by deviating from the prescribed strategy. The popularity of NE is
caused by its desirable properties in the class of two-player games of pure competition,
also known as two-player zero-sum games. The most important of these properties is that
the NE strategy guarantees the highest possible payoff against a rational opponent. In
games with 3 or more players and games where the utility structure is not competitive
(general-sum games), this property no longer holds. Hence, to provide a guaranteed payoff
for a player in these classes of games, strategies with the best worst-case payoff (maxmin
strategies) need to be used.

Game theory offers two widely used representations for formal modeling of the strate-
gic interaction of players. Simple one-shot scenarios are naturally modeled as normal-form
games (NFGs) where all players simultaneously choose an action. After that, each player
immediately receives utility based on his choice and the choice of the rest of the players.
For more complex sequential interactions with stochastic events and partial observabil-
ity, extensive-form games (EFGs) are a more suitable representation. EFGs can model
recreational games, such as poker [50], as well as real-world situations in physical security
[42], auctions [14], or medicine [51]. Hence, in this thesis, we focus on EFGs. EFGs are
visualized as game trees where nodes correspond to states of the game and edges to actions
of players. Imperfect information of players is represented by grouping indistinguishable
states of a player into information sets, which form the decision point of the player.

There are two approaches to making decisions in EFGs. First, there are online (or
game-playing) algorithms which given the observation of the game state compute the ac-
tion to be played. Second, there are offline algorithms which compute (approximate) the
strategy in the whole game and play according to this strategy. The offline algorithms
typically provide a better approximation of equilibrium strategies in large games compared
to the online algorithms [5]. One exception is the recently introduced continual resolving
algorithm used in DeepStack [45], which provides less exploitable strategies than existing
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offline algorithms in heads-up no-limit Texas Hold’em poker. The main caveat of this
algorithm is that it exploits the specific structure of poker where all actions of players are
observable, and its generalization to other games is not straightforward. Another advan-
tage of offline algorithms is that they simplify the deployment in real-world applications
since the strategy (a probabilistic distribution over actions in each information set) is
precomputed and can be simply stored on any device. It can then be accessed by de-
ployed units such as park rangers (see, e.g., [17]) without the need of large computational
resources necessary when using online algorithms. We thus focus on offline algorithms.

Most of the existing offline algorithms [58, 61, 28] require players to remember all the
information gained during the game – a property denoted as a perfect recall. This require-
ment comes with a significant disadvantage: The number of decision points, and hence
both the memory required during the computation and the memory required to store the
resulting strategy, grows exponentially with the number of moves. The reason behind the
exponential growth is that the perfect recall allows the player to condition his behavior on
all his actions taken in the past (the number of these histories is exponential). For example,
the perfect recall extensive-form representation of the heads-up limit Texas hold’em poker
has more than 1014 decision points [6], storing strategy for a game of this size requires 262
TB of memory [6]. Therefore, a popular approach is to use information abstractions [21].
The information abstraction reduces the size of the original large extensive-form game by
removing information available to players; hence merging their information sets. Since the
players have to play identical strategy in merged information sets, the size of the strategy
representation in the abstracted game can be significantly smaller than in the original
game. The abstracted game is then solved, and the small resulting strategies are used in
the original game. The majority of the existing algorithms (e.g., see [20, 37, 10, 9]) create
perfect recall abstractions. However, the requirement of perfect recall in the abstraction
severely limits possible memory savings, since the number of decision points in the ab-
stracted game still grows exponentially with the increasing number of moves. To achieve
additional memory savings, the assumption of perfect recall may need to be violated in
the abstracted game resulting in an imperfect recall.

Solving imperfect recall games is known to be a difficult problem [34, 24]. Hence, there
is only a limited amount of work that relaxes the perfect recall restriction in abstractions.
Very specific imperfect recall abstractions that allow using perfect recall solution tech-
niques are chance relaxed skew well-formed games [40, 38] and normal-form games with
sequential strategies [4, 42]. Chance relaxed skew well-formed games only merge infor-
mation sets which satisfy strict restrictions on the structure of the game tree above and
below them. These restrictions imply that for all possible strategies of the opponent, a
strategy which is optimal in one of the merged information sets must have bounded dis-
tance from the optimal strategy in the rest of the merged information sets. Even though
these restrictions simplify solving of the abstracted game, they prevent us from creating
sufficiently small and useful abstracted games and thus fully exploit the possibilities of
imperfect recall. In normal-form games with sequential strategies, players cannot observe
actions of the opponent at all. As a consequence, only specific scenarios can be modeled
as normal-form games with sequential strategies. Existing methods for using imperfect
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recall abstractions without severe limitations cannot provide any guarantees of the quality
of computed strategies [59].

1.1 Research Goal

The main goal of this thesis is to demonstrate that imperfect recall information abstrac-
tions can be used to introduce domain-independent algorithms for solving large EFGs,
which require significantly less memory than the current state-of-the-art algorithms. This
goal was achieved by taking the following steps:

(1) We provide a complete picture of the complexity of solving imperfect recall games.
Most importantly, we provide the analysis of the properties of imperfect recall abstractions
which make them hard to solve.

(2) Based on this theoretical analysis we introduce two families of algorithms which
use imperfect recall abstractions to reduce the memory required to solve large EFGs and
to store the resulting strategies.

The first family of domain-independent algorithms is capable of approximating the
strategy with the best guaranteed expected value (maxmin strategy) in the given imperfect
recall abstraction. We show that the algorithms are significantly more scalable in the case
where we restrict the minimizing player to have a special case of imperfect recall called A-
loss recall. We demonstrate that solving this type of abstraction allows us to significantly
reduce the memory required to store the resulting strategy.

The second family consists of two domain-independent algorithms which can start
with an arbitrary imperfect recall abstraction of the given two-player zero-sum EFG with
perfect recall and then simultaneously refine and solve this abstraction until guaranteed
convergence to the desired approximation of Nash equilibrium of the original unabstracted
EFG. These algorithms have the following differences compared to the first class of algo-
rithms. Both algorithms directly benefit from the reduced size of the solved game also
during the computation and not only in the size of the resulting strategies. The algorithms
can start from arbitrary imperfect recall abstraction, e.g., provided by domain experts.
If no such abstraction is available for a given domain, the algorithms can start from a
trivial coarse imperfect recall abstraction (we provide a domain-independent algorithm
for constructing such initial abstraction). And finally, the choice of the initial abstraction
does not influence the quality of the resulting strategies, since the abstraction is refined
during the run of the algorithm to guarantee that the algorithms compute the desired
approximation of the Nash equilibrium of the original game.

1.2 Contributions

In this section, we provide a more detailed description of the contributions of this thesis.

3
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1.2.1 Theoretical Properties of Imperfect Recall Abstractions

We provide a complete picture of the complexity of solving imperfect recall games. We
demonstrate that the mixed strategy and behavioral strategy representation have different
descriptive power in imperfect recall games and show that this difference leads to the loss
of the guarantee of the existence of Nash equilibrium in behavioral strategies in imperfect
recall extensive-form games. Furthermore, we discuss the numerical representation of Nash
equilibrium and maxmin strategies in perfect and imperfect recall games. Next, we present
known subsets of imperfect recall games: A-loss recall games and Chance relaxed skew
well-formed games. We show that most of the hardness results known for imperfect recall
games also extend to A-loss recall games. On the other hand, we provide sufficient and
necessary (i.e., if and only if) condition for the existence of Nash equilibrium in A-loss recall
games. This result makes A-loss recall games the only subset of imperfect recall games,
where such conditions are known. Additionally, we show that A-loss recall property allows
us to compute a best response in polynomial time (computing best response is NP-hard in
imperfect recall games). Next, we discuss the problems of applying existing algorithms for
solving perfect recall extensive-form games to imperfect recall games. Finally, we explain
why Chance relaxed skew well-wormed games allow application of perfect recall algorithms
and show the relation between A-loss recall games and Chance relaxed skew well-formed
games.

1.2.2 Approximating Maxmin Strategies in Imperfect Recall Games Us-
ing A-Loss Recall Property

As a part of this work, we provide the following contributions. We provide the first
family of algorithms capable of approximating the strategies with the best worst-case
expected outcome (maxmin strategies) in imperfect recall games. Additionally, we use the
properties of the A-loss recall to significantly improve the scalability of these algorithms.
To achieve this result, we require only the minimizing player to have A-loss recall, while
the maximizing player is allowed to have imperfect recall. Finally, we experimentally
demonstrate that imperfect recall abstractions significantly reduce the size of the resulting
strategies and hence greatly simplify their storage.

More specifically, we provide the first approximate algorithm, denoted Imperfect Re-
call Abstraction Branch-and-Bound algorithm (IRABnB), for computing maxmin strate-
gies in imperfect recall games where the maximizing player has imperfect recall, and the
minimizing player has A-loss recall. We base the algorithm on the sequence-form linear
program for computing maxmin strategies in perfect recall games [58, 35] extended by bi-
linear constraints necessary for the correct representation of strategies of the maximizing
player in imperfect recall games.

We further extend the IRABnB algorithm by incremental strategy generation tech-
nique. The resulting algorithm is denoted Double Oracle Imperfect Recall Abstraction
Branch-and-Bound algorithm (DOIRABnB). While such techniques exist for perfect re-
call games [7], transferring the ideas to imperfect recall games presents a number of chal-
lenges that we address in this thesis. The experimental evaluation shows that DOIRABnB

4
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significantly improves the scalability of IRABnB. The algorithm is capable of solving some
games with up to 5 · 109 states in approximately 1 hour.

Finally, we experimentally demonstrate the effectiveness of the use of imperfect recall
abstractions to reduce the size of strategies to be stored. We show that employing simple
abstractions which still allow us to compute the maxmin strategy of the original game can
lead to strategies with the relative size as low as 0.03% of the size of the strategy in the
original unabstracted game.

This work is presented in Chapter 4 and is based on papers [56, 3, 57, 12].

1.2.3 Algorithms for Constructing and Solving Imperfect Recall Ab-
stractions of Large Extensive-Form Games

In this work, we take a novel approach to imperfect recall information abstractions, which
does not require any specific structure of the imperfect recall abstracted game nor does it
use computationally complex algorithms to solve it. Instead, we introduce two domain-
independent algorithms, which are able to start with an arbitrary imperfect recall abstrac-
tion of the solved two-player zero-sum perfect recall EFG. The algorithms simultaneously
solve the abstracted game, detect the missing information causing problems and return it
to the players. This process is repeated until provable convergence to the desired approx-
imation of the Nash equilibrium of the original game.

The first algorithm is Fictitious Play for Imperfect Recall Abstractions (FPIRA).
FPIRA is based on the Fictitious Play (FP, [8]). As a part of the contribution, we discuss
the problems of applying FP to the imperfect recall abstraction and how to resolve them.
We then demonstrate how to detect the parts of the abstraction that need to be refined to
enable convergence to the Nash equilibrium of the original game. We base this detection
on the difference between the quality of the strategies expected from running FP directly
on the original two-player zero-sum EFG with perfect recall and the result obtained from
applying it to the abstraction. Finally, we prove that the guarantee of convergence of
FP to the Nash equilibrium of the original two-player zero-sum EFG with perfect recall
directly translates to the guarantee of convergence of FPIRA to the Nash equilibrium of
this game.

The second algorithm is denoted CFR+ for Imperfect Recall Abstractions (CFR+IRA).
CFR+IRA replaces the FP by CFR+ algorithm [54] since CFR+ is known to have sig-
nificantly faster empirical convergence to the Nash equilibrium in two-player zero-sum
EFGs with perfect recall. As a part of the contribution, we describe problems of applying
CFR+ directly to the imperfect recall abstraction and how to resolve them. To update
the abstraction, we compare the expected theoretical convergence of CFR+ in the original
game and the convergence achieved in the abstraction. The abstraction is refined when
the observed convergence is slower than the theoretical guarantee provided by CFR+ in
the original two-player zero-sum EFG with perfect recall. We prove that CFR+IRA is
guaranteed to converge to the Nash equilibrium of the original two-player zero-sum EFG
with perfect recall. Finally, we provide an efficient heuristic for the abstraction update
and demonstrate that it significantly improves the convergence to the Nash equilibrium of
the original EFG.
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We assume two possible sources of the initial imperfect recall abstraction for FPIRA
and CFR+IRA. First, we assume that the abstraction is provided either by a domain
expert or as a result of some heuristic abstraction algorithm. Alternatively, if no such
abstraction is available for the solved domain, we provide a domain-independent algorithm,
which builds the initial coarse imperfect recall abstraction of the given game.

Both algorithms are conceptually similar to the Double Oracle algorithm (DOEFG,
[7]) since they create a smaller version of the original game and repeatedly refine it until
the desired approximation of the Nash equilibrium of the original game is found. Our
algorithms, however, use imperfect recall information abstractions during the computation,
while DOEFG uses a restricted perfect recall game, where the players are allowed to play
only a subset of their actions. Hence, the algorithms introduced in this article exploit a
completely different type of sparseness than DOEFG.

In the experimental evaluation, we compare the memory requirements and runtime of
CFR+IRA, FPIRA, and DOEFG. We demonstrate that CFR+IRA requires at least an
order of magnitude less memory than DOEFG and FPIRA to solve a diverse set of domains.
Hence it is the most suitable algorithm for solving large domains with prohibitive memory
requirements. We show that even if CFR+IRA is initialized with a trivial automatically
built abstraction, it requires to build information abstractions with as little as 0.9% of
information sets of the original game to find the desired approximation of the NE of the
original game. Moreover, the results suggest that the relative size of the abstraction built
by CFR+IRA will further decrease as the size of the solved game increases.

This work is presented in Chapter 5 and is based on papers [11, 13].

1.3 Thesis Outline

In Chapter 2 we introduce the EFG representation. In Section 2.1 we provide formal
definition of EFGs. In Section 2.2 we discuss the perfect and imperfect recall EFGs and
provide an overview of known subclasses of imperfect recall games. As a part of these
sections, we describe different representations of strategies in EFGs. We discuss the size
of these representations, what strategy representation directly benefits from the reduced
number of decision points in the abstracted game and their expressive power in imperfect
recall games. In Section 2.3 we formally define the maxmin strategies and NE and discuss
the existence of NE in perfect and imperfect recall EFGs.

In Chapter 3 we provide a complete picture of solving EFGs. First, in Section 3.1
we discuss the complexity of computing maxmin and NE strategies in perfect recall and
imperfect recall games. In Section 3.2 we follow with the discussion of the numerical
representation of Nash equilibrium and maxmin strategies in perfect and imperfect recall
games. Next, in Section 3.3 we describe how the perfect and imperfect recall property
influences the computation and properties of a best response. In Section 3.4 we provide
an overview of the most influential algorithms for computing NE in two-player zero-sum
EFGs with perfect recall. In Section 3.5 we discuss the action abstractions and information
abstractions. In Section 3.6 we explain why the algorithms designed to solve perfect recall
games cannot be applied in imperfect recall games. Finally, in Section 3.6.4 we discuss
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a subclass of imperfect recall games specifically designed so that Counterfactual regret
minimization (CFR, [61]) is guaranteed to converge to NE.

In Chapter 4 we discuss approximating maxmin strategy in imperfect recall games.
First, in Section 4.1 we provide the overview of the relevant state-of-the-art. Next, in Sec-
tion 4.2.1 we show sufficient and necessary (i.e., if and only if) conditions for the existence
of Nash equilibrium in A-loss recall games and show that in imperfect recall games, such
conditions are only sufficient. In Section 4.2.2 we discuss the complexity of computing
maxmin and Nash equilibrium strategies in A-loss recall games. In Section 4.3 we derive
the mixed integer linear program (MILP) for approximating maxmin strategy in imperfect
recall game and show that this MILP has size linear to the size of the game if the mini-
mizing player has A-loss recall (its size is exponential in case that the minimizing player
has imperfect recall). In Section 4.4 we introduce the algorithms which use the MILP
to approximate the maxmin strategies. More specifically, in Section 4.4.1 we introduce
the Base algorithm which iteratively solves the MILP until the desired approximation
of maxmin strategy is reached. In Section 4.4.2 we describe Imperfect Recall Abstrac-
tion Branch-and-Bound algorithm (IRABnB) which uses branch-and-bound search over
the linear relaxation of the MILP. In Section 4.4.3 we introduce Double Oracle Imperfect
Recall Abstraction Branch-and-Bound algorithm (DOIRABnB) which further extends
IRABnB with incremental strategy generation techniques. Finally, in Section 4.5 we
provide experimental evaluation of IRABnB and DOIRABnB.

In Chapter 5 we focus on two domain-independent algorithms which start from an
arbitrary imperfect recall abstraction of a given game and iteratively solve and refine this
abstraction until convergence to the desired approximation of the Nash equilibrium of the
original game. First, in Section 5.1 we provide the comparison of the approaches presented
in this chapter to the state-of-the-art. In Section 5.2.1 we provide the notation for the
abstractions being used during the run of the algorithms. As a part of this section, we
present a domain-independent algorithm which creates a coarse imperfect recall abstrac-
tion of the given game if no initial abstraction is given. In Section 5.2.2 we introduce the
Fictitious Play for Imperfect Recall Abstractions (FPIRA). In Section 5.2.3 we introduce
the CFR+ for Imperfect Recall Abstractions (CFR+IRA). Finally in Section 5.3 we com-
pare the memory efficiency and runtime of FPIRA, CFR+IRA, and DOEFG on a set of
diverse benchmark domains.

Finally, in Chapter 6 we conclude the thesis and provide directions for future work.
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Chapter 2

Introduction to Extensive-Form
Games

In this Chapter, we introduce the extensive-form game representation. In Section 2.1 we
formally define the extensive-form game and all its components. In Section 2.2 we discuss
the perfect and imperfect recall property in extensive-form games and define concepts
required for analysis of the effect of imperfect recall. As a part of this section, we discuss
the impact of the perfect and imperfect recall on the strategy representation and provide
an overview of known subclasses of imperfect recall games from the literature. Finally,
in Section 2.3 we introduce maxmin strategies and Nash equilibrium and discuss their
properties.

2.1 Extensive-Form Games

A two-player extensive-form game (EFG) is a tuple G = (N ,H,Z,A, u, C, I), which is
commonly visualized as a game tree (see Figure 2.1).

N = {1, 2} is a set of players, by i we refer to one of the players, and by −i to his
opponent. Additionally, the chance player N represents the stochastic environment of the
game. A denotes the set of all actions labeling the edges of the game tree. H is a finite
set of histories of actions taken by all players and the chance player from the root of the
game. Each history corresponds to a node in the game tree; hence, we use the terms
history and node interchangeably. Z ⊆ H is the set of all terminal states of the game
corresponding to the leaves of the game tree. For each z ∈ Z and i ∈ N we define a utility
function ui : Z → R. If ui(z) = −u−i(z) for all z ∈ Z, we say that the game is zero-
sum. Chance player selects actions based on a fixed probability distribution known to all
players. Function C : H → [0, 1] is the probability of reaching h obtained as the product of
probabilities of actions of chance player preceeding h. We further overload C and use it to
denote the probability C(a) that action a of chance player is taken. Imperfect observation
of player i is modeled via information sets Ii that form a partition over h ∈ H where
i takes action. Player i cannot distinguish between nodes in any I ∈ Ii. We represent
the information sets as nodes connected by dashed lines in the examples. A(I) denotes
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Figure 2.1: An imperfect recall game. Circle nodes represent the states of the game,
numbers in the circles show which player acts in that node (player 1, player 2), dashed
lines represent indistinguishable states joined to an information set, and box nodes are
the terminal states with utility value for player 1 (the game is zero-sum, hence player 1
maximizes the utility, player 2 minimizes it).

actions available in each h ∈ I. The action a uniquely identifies the information set where
it is available, i.e., for all distinct I, I ′ ∈ I ∀a ∈ A(I) ∀a′ ∈ A(I ′) a 6= a′. An ordered list
of all actions of player i from the root to node h is referred to as a sequence, σi = seqi(h).
Σi is a set of all sequences of player i. We use seqi(I) as a set of all sequences of player i
leading to I.

2.1.1 Strategy Representation

There are several representations of strategies in EFGs. A pure strategy si for player i is a
mapping assigning ∀Ii ∈ Ii an element of A(Ii). Si is a set of all pure strategies for player
i. A mixed strategy mi is a probability distribution over Si, set of all mixed strategies of i
is denoted as Mi. Behavioral strategy bi assigns a probability distribution over A(Ii) for
each Ii ∈ Ii. Bi is a set of all behavioral strategies for i, Bpi ⊆ Bi is the set of deterministic
behavioral strategies for i. A strategy profile is a set of strategies, one strategy for each
player. Note that there is a conceptual difference in behavioral and mixed strategies.
When using behavioral strategies, players sample the action to be played when reaching
an information set. When using mixed strategies, players sample pure strategy before the
game starts and follow actions prescribed by this strategy in each information set.

Definition 2.1.1. A pair of strategies xi, yi of player i with arbitrary representation is
realization equivalent if ∀z ∈ Z : πxii (z) = πyii (z), where πxii (z) is a probability that z is
reached due to strategy xi of player i when the rest of the players play to reach z.

We overload the notation and use ui as the expected utility of i when the players play
according to pure (mixed, behavioral) strategies.

Definition 2.1.2. We define the exploitability of a strategy bi as

max
b′i∈Bi

min
b′−i∈B−i

ui(b
′
i, b
′
−i)− min

b′−i∈B−i

ui(bi, b
′
−i).

10
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Informally, the exploitability of a strategy of player i corresponds to the highest loss
the player i can suffer for not playing the strategy maximizing his worst case expected
outcome.

2.2 Recall

Recall in EFGs corresponds to the memory of players. If the player has perfect recall, the
player always remembers all the moves he made and all the information he obtained in
the past. If the player has imperfect recall, some of the information he knew in the past
has been lost.

More formally, a game has perfect recall iff ∀i ∈ N ∀Ii ∈ Ii ∀h, h′ ∈ Ii holds that
seqi(h) = seqi(h

′). If there exists at least one information set where this does not hold
(denoted as imperfect recall information set), the game has imperfect recall. We use IIRi
as a set of all imperfect recall information sets of player i.

The perfect recall property was first formalized by Kuhn [39]. In this work, Kuhn
showed the equivalence between behavioral strategies and mixed strategies in EFGs with
perfect recall. This equivalence closely connected NFGs and EFGs with perfect recall and
subsequently allowed to extend all the properties known for NFGs to EFGs with perfect
recall. In imperfect recall games, on the other hand, the descriptive power of mixed and
behavioral strategies can differ.

Example 2.2.1. Consider the game depicted in Figure 2.1. This game has 4 pure strate-
gies for player 1: S1 = {(a, c), (a, d), (b, c), (b, d)}. A mixed strategy can condition the
actions of players on information that the players should no longer have available. For
example, a mixed strategy where (a, c) and (b, d) are played with a uniform probability 0.5
allows player 1 to condition playing c and d on the outcome of his stochastic choice in
the root of the game, and thus randomize between the leftmost and the rightmost state in
information set of player 2. Note that one cannot model the same behavior using a be-
havioral strategy that assigns a probability distribution over the actions available in every
decision point without conditioning on any previous knowledge. Therefore no additional
information can be disclosed to the player.

Moreover, the size of these representations differs significantly, both in perfect and
imperfect recall EFGs. Mixed strategies of player i state probability distribution over
Si, where |Si| ∈ O(2|Z|), behavioral strategies create probability distribution over the set
of actions (therefore, its size is proportional to the number of information sets, which
can be exponentially smaller than |Z|). Hence, behavioral strategies are more memory
efficient strategy representation. Additionally, when used in combination with information
abstractions, behavioral strategies directly benefit from the reduced number of information
sets in the abstracted game.

2.2.1 Coarsest Perfect Recall Refinement

To be able to analyze the effect of imperfect recall in any given imperfect recall game G, we
need to be able to construct a corresponding perfect recall game G′ by adding the minimum

11
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Figure 2.2: (Left) An imperfect recall game. (Right) Its coarsest perfect recall refinement.

amount of information for players to have perfect recall in G. We denote G′ as the coarsest
perfect recall refinement of G. To do this, we first define a partition H(Ii) of states in
every information set Ii of some imperfect recall game G to the largest possible subsets, not
causing imperfect recall. More formally, let H(Ii) = {H1, ...,Hn} be a disjoint partition
of all h ∈ Ii, where

⋃n
j=1Hj = Ii and ∀Hj ∈ H(Ii) ∀hk, hl ∈ Hj : seqi(hk) = seqi(hl),

additionally for all distinct Hk, Hl ∈ H(Ii) : seqi(Hk) 6= seqi(Hl).

Definition 2.2.1. The coarsest perfect recall refinement G′ of the imperfect recall game
G = (N ,H,Z,A, u, C, I) is a tuple (N ,H,Z,A′, u, C, I ′), where ∀i ∈ N ∀Ii ∈ Ii, H(Ii)
defines the information set partition I ′. A′ is a modification of A, which guarantees that
∀I ∈ I ′ ∀hk, hl ∈ I A′(hk) = A′(hl), while for all distinct Ik, I l ∈ I ′ ∀ak ∈ A(Ik) ∀al ∈
A(I l) ak 6= al. We can limit the coarsest perfect recall refinement to player i and leave the
information set structure of −i unchanged.

We refer to any game created from G′ by further splitting its information sets simply
as perfect recall refinement of G.

In Figure 2.2 we show an example of an imperfect recall game (left) and its coarsest
perfect recall refinement (right). Notice, that in the Definition 2.2.1 we change the labelling
of actions described by A to A′, since we modify the structure of the imperfect information
I to I ′ (e.g., actions g, h in Figure 2.2 (left) being relabel to t, u and v, w due to the split
of the information set in Figure 2.2 (right)).

2.2.2 Mapping between Games

In this section, we formally introduce functions which allow analysis of a relation between
any two games Gx and G where Gx was created from G by merging some information sets.

Let G = (N ,H,Z,A, u, C, I) and Gx = (N ,H,Z,Ax, u, C, Ix) such that Ix is created
from I by joining some of the information sets in I. To formally describe relation between
G and Gx we define mappings Φx : I → Ix, which for each I ∈ I returns the information
set containing I in Gx and Φ−1

x : Ix → ℘(I), the inverse of Φx. By Ξx : A → Ax and
Ξ−1
x : Ax → ℘(A) we denote the mapping of actions from G to Gx and vice versa.

We say that I ∈ Ix is an abstracted information set if |Φ−1
x (I)| > 1. By Ĩx ⊆ Ix we

denote the set of all abstracted information sets in Gx.

12
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Example 2.2.2. In Figure 2.2 (left) we show an imperfect recall extensive-form game Gx

and in Figure 2.2 (right) its coarsest perfect recall refinement G. In this case,

Φx : {I4 → I1, I5 → I2, I6 → I3, I7 → I3},
Φ−1
x : {I1 → {I4}, I2 → {I5}, I3 → {I6, I7}},

Ξx : {c→ c, d→ d, e→ e, f → f, t→ g, u→ h, v → g, w → h},
Ξ−1
x : {c→ {c}, d→ {d}, e→ {e}, f → {f}, g → {t, v}, h→ {u,w}},

Ĩx = {I3}.

2.2.3 Relevant Subclasses of Imperfect Recall Games

Here we introduce the relevant subclasses of imperfect recall games introduced in the
literature. We start with A-loss recall games [31, 33], where every loss of a memory of a
player can be tracked back to forgetting his own action. Next, we present three subclasses
of imperfect recall games, Well-formed games, Skew well-formed games and Chance relaxed
skew well-formed games. These subclasses are specifically designed as suitable results of
imperfect recall information abstractions which allow application of Counterfactual Regret
Minimization algorithm (CFR, [61]) with a guarantee of convergence to the NE of the
original unabstracted game.

2.2.3.1 A-loss Recall Games

Here we define the subclass of imperfect recall games called A-loss recall games [31, 33].

Definition 2.2.2. Player i has A-loss recall if and only if for every I ∈ Ii and nodes
h, h′ ∈ I it holds either (1) seqi(h) = seqi(h

′), or (2) ∃I ′ ∈ Ii and two distinct actions
a, a′ ∈ Ai(I ′), a 6= a′ such that a ∈ seqi(h) ∧ a′ ∈ seqi(h′).

Condition (1) in the definition says that if player i has perfect recall then he also has A-
loss recall. Condition (2) can be interpreted as requiring that each loss of memory of A-loss
recall player can be traced back to some loss of memory of the player’s own previous actions
in one information set. Hence, in A-loss games, the use of mixed strategies completely
compensates the information hidden to players due to the imperfect recall.

The imperfect recall game in Figure 2.1 has A-loss recall since the first common pre-
decessor of the states in the imperfect recall information set of player 1 is the root state
of player 1. Hence, the only information the player 1 forgets is his choice in the root state
(player 2 has perfect recall in this game). On the other hand, the imperfect recall game
in the Figure 2.2 (left) does not have A-loss recall. This is caused by the fact that the
first common predecessor of the states in I3 is a chance node. Hence player 1 does not
only forget information about playing d or e but also the information about the outcome
of the stochastic event represented by the chance node. Note that if the states of player
1 directly after the actions of the chance player were merged into an information set, the
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Figure 2.3: (left) A perfect recall EFG (right) Well-formed Game with respect to the
perfect recall EFG.

game would have A-loss recall, since the first common predecessor of the states in the
imperfect recall information set is the information set of player 1.

2.2.3.2 Well-Formed Games

Well-Formed Games (WFG) are a subset of imperfect recall games defined as suitable
results of imperfect recall information abstraction which allow application of perfect recall
algorithms, namely CFR, without loosing theoretical guarantees for convergence to NE of
the original unabstracted game [40].

Definition 2.2.3. We say that the imperfect recall game G is well-formed with respect
to some perfect recall refinement G′ of G if for all i ∈ N , I ∈ Ii, I ′, I ′′ (where I ′, I ′′ are
information sets in G′ which are unified to I) there exists a bijection α : ZI′ → ZI′′ and
constants kI′,I′′ , lI′,I′′ ∈ [0,∞) such that for all z ∈ ZI′:

1. ui(z) = kI′,I′′ui(α(z)),

2. C(z) = lI′,I′′C(α(z)),

3. in G, seq−i(z) = seq−i(α(z)), and

4. in G, seqi(z[I
′], z) = seqi(α(z)[I ′′], α(z)),

where ZI stands for terminal states reachable from states in I, z[I] denotes the state in
I reached when moving from the root of the game to z and seqi(h, h

′) is a sequence of
actions needed to reach h′ from h. We say that G is a well-formed game (WFG) if it is
well-formed with respect to some perfect recall refinement.

In Figure 2.3 (right) we present a WFG with respect to the EFG from Figure 2.3 (left)
with α : {z1 → z5, z2 → z6, z3 → z5, z4 → z6}. In Figure 2.4 (right) we present a game
which is not WFG with respect to the EFG from 2.4 (left), since there is no mapping of
leaves which would satisfy Condition 1 from Definition 2.2.3.
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Figure 2.4: (left) A perfect recall EFG (right) Skew Well-formed Game with respect to
the perfect recall EFG.

2.2.3.3 Skew Well-Formed Games

Skew Well-Formed games (SWFG) are a generalization of WFG which still allow the
CFR to converge to strategies with a fixed distance from NE of the original unabstracted
game [40].

Definition 2.2.4. We say that the imperfect recall game G is skew well-formed with respect
to some perfect recall refinement G′ of G if for all i ∈ N , I ∈ Ii, I ′, I ′′ (where I ′, I ′′ are
information sets in G′ which are unified to I) there exists a bijection α : ZI′ → ZI′′ and
constants kI′,I′′ , δI′,I′′ , lI′,I′′ ∈ [0,∞) such that for all z ∈ ZI′:

1.
∣∣ui(z)− kI′,I′′ui(α(z))

∣∣ ≤ δI′,I′′ ,
2. C(z) = lI′,I′′C(α(z)),

3. in G, seq−i(z) = seq−i(α(z)), and

4. in G, seqi(z[I
′], z) = seqi(α(z)[I ′′], α(z)),

We say that G is skew well-formed game (SWFG) if it is skew well-formed with respect to
some perfect recall refinement.

In Figure 2.4 (right) we present a SWFG with respect to the EFG from Figure 2.4
(left) with α : {z1 → z5, z2 → z6, z3 → z5, z4 → z6}. On the other hand, in Figure 2.5
we present a game where no information set can be merged to create SWFG with respect
to this game. The reason is that the leaves z4 and z5 cannot be mapped to any of the
z1, z2, z3 without breaking the Condition 4 from Definition 2.2.4.

2.2.3.4 Chance Relaxed Skew Well-Formed Games

Finally, Chance Relaxed Skew Well-Formed Games (CRSWFG) further generalize SWFG,
while still providing the guarantee of CFR to converge to strategies with a fixed distance
from NE of the original unabstracted game [38].
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Figure 2.5: A game where no information set can be merged to create SWFG with respect
to this game.

Definition 2.2.5. We say that the imperfect recall game G is chance relaxed skew well-
formed with respect to some perfect recall refinement G′ of G if for all i ∈ N , I ∈ Ii, I ′, I ′′
(where I ′, I ′′ are information sets in G′ which are unified to I) there exists a bijection
α : ZI′ → ZI′′ and constants kI′,I′′ , δI′,I′′ , lI′,I′′ ∈ [0,∞) such that for all z ∈ ZI′:

1. in G, seq−i(z) = seq−i(α(z)), and

2. in G, seqi(z[I
′], z) = seqi(α(z)[I ′′], α(z)),

We say that G is chance relaxed skew well-formed game (CRSWFG) if it is skew well-
formed with respect to some perfect recall refinement.

Additionally, following error terms are computed

|ui(z)− kI′,I′′ui(α(z))| ≤ εRI′,I′′(z), (2.1)

|C(z[I ′], z)− C(α(z)[I ′′], α(z))| = εCI′,I′′(z), (2.2)∣∣∣∣C(z[I ′])C(I ′)
− C(z[I

′′])

C(I ′′)

∣∣∣∣ = εDI′,I′′ . (2.3)

Hence, CRSWFG do not pose any restrictions on the structure of the utility in the
reachable leaves, nor the probability that they are reached due to nature. Instead, they
keep track of the error terms describing the structure of the utility and nature probability.
These error terms are then used to devise the bound on the approximation of NE of G
that can be computed in G′.

2.3 Solution Concepts

In this section we introduce maxmin strategies, Nash equilbrium and its approximation
ε-Nash equilibrium.
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2.3.1 Maxmin Strategy

Maxmin strategy for player i maximizes the expected utility of i assuming that the player
−i will play to minimize the expected utility of i, completely disregarding his own expected
utility. Hence, the expected value of the maxmin strategy can be seen as the guaranteed
expected outcome in the worst case scenario in both zero-sum and general-sum games.

Definition 2.3.1. We say that b∗i is a maxmin strategy iff

b∗i = arg max
bi∈Bi

min
b−i∈B−i

ui(bi, b−i).

2.3.1.1 ε-Maxmin Strategy

For computational reasons, the exact maxmin strategy might be difficult to obtain. Hence,
next we provide the definition of approximation of maxmin strategy.

Definition 2.3.2. We say that b∗i is a ε-maxmin strategy iff

max
bi∈Bi

min
b−i∈B−i

ui(bi, b−i)− min
b−i∈B−i

ui(b
∗
i , b−i) ≤ ε.

2.3.2 Nash Equilibrium

A strategy profile is a Nash equilibrium [46] if and only if no player wants to deviate to a
different strategy.

Definition 2.3.3. We say that strategy profile b = {b∗i , b∗−i} is a Nash equilibrium (NE)
in behavioral strategies iff ∀i ∈ N ∀b′i ∈ Bi : ui(b

∗
i , b
∗
−i) ≥ ui(b′i, b∗−i).

The NE using mixed strategies is guaranteed to exist in all finite games [46], and
hence the same holds for NE in behavioral strategies in perfect recall EFGs because of the
equivalence of mixed and behavioral strategies in perfect recall EFGs [39].

By restricting to two-player zero-sum games, we ensure that NE has a number of
desirable properties, which make it a widely used solution concept in this class of games.
Namely, all NE have the same expected value for both players (the expected value for
player 1 is called the value of the game). Furthermore, NE strategy corresponds to the
maxmin strategy. Hence the expected values of players in NE correspond to the best worst
case expected utilities the players can obtain and any mistake of their opponent can only
increase their expected utility. Finally, the strategies forming NE are interchangeable.
I.e., let b = {bi, b−i} and b′ = {b′i, b′−i} be two NE. Then also {bi, b′−i} and {b′i, b−i} form
NE of G.

When there are more than two players or when the game is general-sum the NE loses
these desirable properties. The expected values of players under different NE strategy
profiles can differ, the equivalence between NE strategies and maxmin strategies no longer
holds and finally combining strategies from two NE strategy profiles need not yield another
NE.
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2.3.2.1 ε-Nash Equilibrium

For computational reasons, the exact NE might be difficult to obtain. Hence, next we
provide the definition of approximation of NE.

Definition 2.3.4. We say that strategy profile b = {b∗i , b∗−i} is an ε-Nash equilibrium
(ε-NE) in behavioral strategies iff ∀i ∈ N ∀b′i ∈ Bi : ui(b

∗
i , b
∗
−i) ≥ ui(b′i, b∗−i)− ε.

Informally, a strategy profile is an ε-NE if and only if no player can gain more than ε
by deviating to a different strategy.

2.3.2.2 Nash Equilibrium in Imperfect Recall Games

The guarantee of the existence of NE in behavioral strategies in perfect recall EFGs does
not transfer to imperfect recall EFGs, since, as discussed in Section 2.2, the equivalence
between mixed strategies and behavioral strategies does not hold in imperfect recall EFGs.

Proposition 2.3.1. The existence of NE in behavioral strategies is not guaranteed even
in two-player zero-sum A-loss recall games.

Proof. In Figure 2.1 we present the imperfect recall game where there is no NE in be-
havioral strategies due to Wichardt [60]. This game has A-loss recall since only player 1
has imperfect recall and he forgets only his own choice in the root. This implies that the
existence of NE is not guaranteed even in two-player zero-sum A-loss recall games.
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Solving Extensive-Form Games

In this Chapter, we present a complete picture of computing maxmin strategies and Nash
equilibrium in two-player zero-sum EFGs. First, in Section 3.1 and 3.2 we discuss the
complexity of computing maxmin and Nash equilibrium strategies and their numerical
representation in perfect recall and imperfect recall games. Next, in Section 3.3 we focus
on the computation of the best response since best response is one of the main components
of the algorithmic game theory. More specifically, we discuss how the perfect and imperfect
recall influences the properties of best response and the complexity of its computation.
In Section 3.4, we follow with an overview of the most successful algorithms for solving
two-player zero-sum extensive-form games with perfect recall. In Section 3.5 we discuss
action and information abstractions and give an overview of the problems and successes of
these approaches. Next, in Section 3.6 we discuss why algorithms for solving perfect recall
games fail in imperfect recall games. Finally, as a part of this section, we present the only
known subclasses of imperfect recall games where the Counterfactual regret minimization
algorithm [61] is guaranteed to have bounded regret.

3.1 Complexity

Computing the maxmin strategies in two-player perfect recall EFGs is known to be polyno-
mial problem [34]. Hence, from the equivalence of maxmin and NE strategies in zero-sum
perfect recall EFGs, also computing NE in two-player zero-sum perfect recall EFGs is
a polynomial problem. On the other hand, computing maxmin strategies is NP-hard in
imperfect recall EFGs [34], and it is NP-hard to decide whether there exists a NE in
behavioral strategies in imperfect recall EFGs [24]. For completeness, we provide both
theorems stating the NP-hardness and their proofs below.

Theorem 3.1.1. The problem of deciding whether player 2 having an imperfect recall can
guarantee an expected payoff of at least λ is NP-hard even if player 1 has perfect recall,
there are no chance moves and the game is zero-sum [34].

Proof. The proof is made by reduction from 3-SAT problem. The example of the reduction
is shown in Figure 3.1. Given n clauses xj,1 ∨ xj,2 ∨ xj,3 we create a two-player zero-sum
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Figure 3.1: An imperfect recall game reduction from Theorem 3.1.1 of 3-SAT problem
x1 ∨ ¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

game in a following way. In the root of the game player 1 chooses between n actions, each
corresponding to one clause. Each action of player 1 leads to a state of player 2. Every such
state of player 2 corresponds to the variable xj,1 where j is the index of the clause chosen
in the root of the game. Every such state has actions Txj,1 , Fxj,1 available, these actions
correspond to setting the variable xj,1 to true or false respectively. After both Txj,1 , Fxj,1
in xj,1 we reach the state representing the assignment to xj,2 with the same setup (state
representing the assignment to xj,3 is reached after that). After the assignment to xj,3 we
reach the terminal state with utility −λ for player 1 if the assignment to xj,1, xj,2 and xj,3
satisfies the clause xj,1 ∨ xj,2 ∨ xj,3, 0 otherwise. The information sets of player 2 group
together all the states corresponding to the assignment to one variable in the original
3-SAT problem (note that we assume that the order of variables in every clause follows
some complete ordering on the whole set of variables in the 3-SAT problem).

We will show that player 2 can guarantee the worst case expected value λ if and only
if the original 3-SAT problem is satisfiable. First, we show that if the original 3-SAT
problem is satisfiable player 2 can guarantee the worst case expected value λ. The worst
case expected value λ is achieved when player 2 plays according to the assignment which
satisfies the original 3-SAT problem. Next, we show that if player 2 can guarantee the
worst case expected value λ, the original 3-SAT problem has to be satisfiable. This holds
since if there would be at least one clause not satisfied, player 1 will always choose the
action corresponding to this clause, causing the expected value smaller than λ.

The reduction is polynomial since the game has 23n leaves.

Theorem 3.1.2. It is NP-hard to check whether there exists a Nash equilibrium in be-
havioral strategies in two player imperfect recall games even if the game is zero-sum and
there are no chance moves [24].

Proof. The proof is by reduction from 3-SAT. Given a 3-CNF formula F with n clauses
we construct a zero-sum two-player game G as follows. Player 1 (the max-player) starts
the game by making two actions, each time choosing one of n clauses of F . We put all
corresponding n + 1 nodes (the root plus n nodes in the next layer) in one information
set. If he fails to choose the same clause twice, he receives a payoff of −n3 and the game
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Figure 3.2: An A-loss recall game reduction from Theorem 3.1.2 of 3-SAT problem x1 ∨
¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

stops. Otherwise, the game continues in the same way as in the proof of Theorem 3.1.1.
If the choices of player 2 satisfy the clause, player 1 receives payoff 0. If none of them do,
player 1 receives payoff 1. An example of the reduction is shown in Figure 3.2.

The proof is now concluded by the following claim: G has an equilibrium in behavior
strategies if and only if F is satisfiable. Assume first that F is satisfiable. G then has the
following equilibrium (which happens to be pure): player 2 plays according to a satisfying
assignment while player 1 uses an arbitrary pure strategy. The payoff is 0 for both players,
and no player can modify their behavior to improve this, so we have an equilibrium. Next,
assume that G has an equilibrium. We shall argue that F has a satisfying assignment.
We first observe that player 1 in equilibrium must have expected payoff at least 0. If not,
he could switch to an arbitrary pure strategy and would be guaranteed a payoff of at least
0. Now, look at the two actions (i.e., clauses) that player 1 is most likely to choose. Let
clause i be the most likely and let clause j be the second-most likely. If player 1 chooses i
and then j, he gets a payoff of −n3. His maximum possible payoff is 1, and his expected
payoff is at least 0. Hence, we must have that −n3pipj + 1 ≥ 0. Since pi ≥ 1

n , we have
that pj ≤ 1

n2 . Since clause j was the second most likely choice, we in fact have that
pi ≥ 1− (n−1)( 1

n2 ) > 1− 1
n . Thus, there is one clause that player 1 plays with probability

above 1 − 1
n . Player 2 could then guarantee an expected payoff of less than 1

n for player
1 by playing any assignment satisfying this clause. Since we are playing an equilibrium,
this would not decrease the payoff of player 1, so player 1 currently has an expected payoff
less than 1

n . Now, look at the assignment defined by the most likely choices of player 2
(i.e., the choices he makes with probability at least 0.5, breaking ties in an arbitrary way).
We claim that this assignment satisfies F . Suppose not. Then there is some clause not
satisfied by F . If player 1 changes his current strategy to the pure strategy choosing this
clause, he obtains an expected payoff of at least (1

2)3 ≥ 1
n (supposing, wlog, that n ≥ 8).

This contradicts the equilibrium property, and we conclude that the assignment, in fact,
does satisfy F .
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Figure 3.3: An A-loss recall game where all maxmin strategies and NE require irrational
numbers [34].

3.2 Representation of Nash Equilibrium and Maxmin Strate-
gies

In this section, we discuss the numerical representation of strategies in perfect recall and
imperfect recall games. In two-player perfect recall games with rational payoffs, there
always exists a maxmin behavioral strategy which uses only rational probabilities [34].
In imperfect recall games, this no longer holds [34]. Here, we present the example of
the imperfect recall game provided in [34], where all maxmin strategies require irrational
numbers and show that this game has A-loss recall. Moreover, since the maxmin strategies
form a part of all the NE strategies of this game, we extend this result also to NE of A-loss
recall games. It follows that computing exact maxmin and NE strategies requires exact
representation of irrational numbers even in A-loss recall games.

Theorem 3.2.1. All the maxmin strategies may require irrational numbers, even in two-
player zero-sum A-loss recall game with rational payoffs.

Proof. The example of the imperfect recall game used in [34] is depicted in Figure 3.3.
The maxmin strategy of player 2 is trying to maximize

min{3b2(d)b2(f), 3(1− b2(d))(1− b2(f)), b2(d)(1− b2(f)) + (1− b2(d))b2(f)}. (3.1)

This is maximized when

3b2(d)b2(f) = 3(1− b2(d))(1− b2(f)) = b2(d)(1− b2(f)) + (1− b2(d))b2(f), (3.2)

which leads to b2(d) = 0.1(5±
√

5).
This game has A-loss recall since the only information player 2 forgets is his own choice

in his first information set.

Theorem 3.2.2. All the Nash equilibrium strategies may require irrational numbers, even
in two-player zero-sum A-loss recall game with rational payoffs.
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Figure 3.4: (Left) Absentminded Driver. (Right) An EFG without A-loss recall where
a time consistent best response (playing the best action in an information set) is not
necessarily the ex-ante best response.

Proof. Strategy profiles b1(a) = b1(b) = 0.2, b2(d) = b2(g) = 0.1(5±
√

5) form all the Nash
equilibria of the game in Figure 3.3. This holds since none of the players wants to deviate
and the strategies for player 2 are the only solutions of eq. (3.2). Hence, it follows that any
other strategy of player 2 has worse expected value against the best responding opponent,
and therefore cannot be stable.

3.3 Best Response Computation

One of the main computational components in algorithmic game theory is the problem
of computing a best response since it forms a subproblem of many existing algorithms
(e.g., [7, 8]). Formally, a strategy of a player (e.g., pure, mixed, behavioral) is a best
response to the given strategy of his opponent if its expected utility is maximal against
this strategy compared to all other strategies from the particular class. To denote the best
response regardless of the type of the strategy (i.e., regardless whether we consider mixed
or behavioral strategies), we use the term ex-ante best response.

In perfect recall EFGs, it is sufficient to consider a pure best response. However,
this is no longer true in imperfect recall EFGs. Consider a one-player game called the
absentminded driver [47] depicted on the left in Figure 3.4. We see that by playing any
pure, or even a mixed strategy, the player cannot reach outcome higher than 1. Note that,
as described in Section 2.1.1, in a mixed strategy a player samples a pure strategy from
the given distribution before the game begins; hence, there is no randomization when the
information set is reached, and player 1 always follows the pure strategy sampled from
the mixed strategy. When using a behavioral strategy, however, player samples the action
from a given distribution independently every time an information set is reached. Hence,
the ex-ante optimal strategy is a behavioral strategy b(s) = 2

3 that reaches the expected
value of 4

3 . In general, we need to consider randomized best responses in so-called absent
minded games (games where there exists a path from the root of the game tree to some leaf
such that at least one information set Ii ∈ Ii is visited more than once). In the following
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text, we will assume that the games are without absentmindedness, where it is sufficient
to consider only pure strategies to find an ex-ante best response.

Lemma 3.3.1. Let G be an imperfect recall game without absentmindedness and b1 strat-
egy of player 1. There exists an ex-ante pure best response of player 2.

Proof. If the strategy of player 1 is fixed, finding the best response for player 2 corresponds
to finding an optimum of a function over a closed convex polytope of all possible behavioral
strategies of player 2 created by constraining the strategy by∑

a∈A(I)

b2(a) = 1,∀I ∈ I2.

Vertices of this polytope are formed by pure behavioral strategies. Since each action can
be chosen at most once in a game without absentmindedness, the objective function is
multilinear in a form ∑

z∈Z
C(z)b1(z)u2(z)

∏
a∈seq2(z)

b2(a).

Notice that, thanks to the assumption of no absentmindedness, the variables b2(a) in
every product always describe behavior at most once for one information set and so the
variables are independent. Hence, an optimum must be in one of the vertices of this
polytope – that is a pure behavioral strategy.

The problem of finding an ex-ante best response in imperfect recall games without
absentmindedness is still NP-hard (follows from complexity results in [34]) while the prob-
lem is easy (polynomial) in perfect recall games. The main difference is that in imperfect
recall games an ex-ante best response cannot be found by selecting an action with the
highest expected utility to be played in each information set (called a time consistent
strategy [33]). This is caused by the fact that the belief in an information set of a player
is not perfectly determined by the strategy of the opponent and nature, but also by the
strategy of the best-responding player.

Example 3.3.1. Consider the game in Figure 3.4 (right) between player 1 and chance.
The ex-ante best response of player 1 in this game is to play B,D,F getting the utility of
5−ε

2 . Note, however, that since the belief of player 1 in his imperfect recall information
sets depends on his behavior above the information set, one can reach a time consistent
strategy playing B,C,E with the expected utility of 2. This strategy is time consistent since
when checking every information set separately, there is no deviation of player 1, which
could increase his expected value. Note that player 1 does not have A-loss recall in the
game in Figure 3.4 (right) since parents of the nodes in the information set I3 are in two
distinct information sets I1, I2 and their common predecessor is a chance node.

Lemma 3.3.2. Time consistent strategies and ex-ante best responses are guaranteed to be
equivalent for player i in a game G if and only if i has A-loss recall in G [33].

Proof. See proof of Theorem 1 in [33].

Consequently, the computation of the best response is in P in A-loss recall games [31,
33]. The following lemmas are a consequence of these facts.
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Lemma 3.3.3. Let G be an imperfect recall game where player i has A-loss recall. Let G′

be the coarsest perfect recall refinement of G for player i. Every pure behavioral strategy
b′i of player i from G′ has realization equivalent pure behavioral strategy bi in G and vice
versa.

Proof. First we show how bi is constructed from b′i. Consider an information set I of
player i in G and corresponding information sets I1, . . . , Ij created according to H(I) in
the coarsest perfect refinement G′ of G.

Let us first show that at most one of information sets I1, . . . , Ij can be reached when
players play according to strategy profile (b′i, b−i), for every b−i ∈ B−i in G′. Due to A-loss
recall of player i, for every pair of nodes hk, hl from two different information sets Ik,
I l ∈ {I1, . . . , Ij}, there exists an information set I ′ of player i and two distinct actions
a, a′ ∈ Ai(I ′), a 6= a′ such that a ∈ seqi(hk) ∧ a′ ∈ seqi(hl). However, since b′i is a pure
strategy, only one action among the pair of actions a, a′ can be played with a non-zero
probability and consequently, only one information set in every pair Ik, I l ∈ {I1, . . . , Ij}
can be reached.

We use this property to construct bi. For information set I from G that is divided
into information sets I1, . . . , Ij in G′ we define bi(I, a) = 1 for action a ∈ A(Ik), where
b′i(I

k, a) = 1 and Ik is the only reachable set from I1, . . . , Ij as shown above. If no
information set from I1, . . . , Ij is reachable, we set bi in I arbitrarily. For all information
sets I ′ ∈ I ′ that are not split in the coarsest perfect recall refinement (and therefore are the
same as in G), we set bi(I

′) = b′i(I
′). Due to the construction, the realization equivalence

between b′i and bi follows immediately.
The same construction yields realization equivalent strategy also in the opposite direc-

tion.

Lemma 3.3.4. Let G be an imperfect recall game where player 2 has A-loss recall and b1
a strategy of player 1. Let G′ be the coarsest perfect recall refinement of G for player 2.
Let b′2 be a pure best response to b1 in G′ and let b2 be a realization equivalent behavioral
strategy to b′2 in G, then b2 is a pure best response to b1 in G.

Proof. Note that b1 is a valid strategy in both games since the information set structure
for player 1 in G and G′ is identical. Since player 2 is not absentminded in G, it is
enough to consider pure behavioral strategies (Lemma 3.3.1) as a best response to b1 in G.
Furthermore from Lemma 3.3.3 we know that every pure behavioral strategy b̂′2 from G′

has realization equivalent pure behavioral strategy b̂2 in G, hence also the expected utility
u1(b1, b̂

′
2) in G′ is equal to u1(b1, b̂2) in G. Since b′2 is a best response to b1 in G′, it holds

that for every pure behavioral strategy b̂′2 in G′ and its realization equivalent counterpart
b̂2 in G,

u2(b1, b̂2) = u2(b1, b̂
′
2) ≤ u2(b1, b

′
2) = u2(b1, b2).

Finally, since also every pure behavioral strategy b̂2 in G has realization equivalent
pure behavioral strategy in G′ (Lemma 3.3.3), there can be no b̂2 for which u2(b1, b̂2) >
u2(b1, b2).
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Lemma 3.3.4 allows us to formulate the concise mathematical program described in
Section 4.3 which is used as the core of algorithms discussed in Section 4.4.

3.4 Algorithms Solving Perfect Recall Games

In this section we first present two exact algorithm for finding NE of two-player zero-sum
EFGs, namely Sequence-Form LP [35, 58] and Double Oracle algoritm [7]. Next, we turn
to approximate algorithms: Fictitious Play [8] and regret minimization based approaches
Counterfactual Regret Minimization (CFR, [61]) and its variant CFR+ [54, 55].

3.4.1 Sequence-Form LP

Sequence-form LP [35, 58] is a linear program that allows finding the maxmin strategy
in two-player perfect recall EFGs, and hence also a NE strategy in two-player zero-sum
perfect recall EFGs.

Let infi(σi) stand for the information set where the last action of σi was taken. The
sequence form LP has the following formulation:

max
r,v

v(root) (3.3a)

s.t. r(∅) = 1 (3.3b)

0 ≤ r(σi) ≤ 1 ∀σi ∈ Σi (3.3c)∑
a∈A(I)

r(σia) = r(σi) ∀σi ∈ Σi,∀I ∈ infi(σi) (3.3d)

∑
σi∈Σi

g(σi, σ−ia)r(σi) +
∑

I′∈inf−i(σ−ia)

v(I ′) ≥ v(I) ∀I ∈ I−i,∀a ∈ A(I),

σ−i ∈ seq−i(I) (3.3e)

The objective of player i is to find a strategy that maximizes the expected utility against
the best responding opponent. The strategy of the maximizing player is represented as
a realization plan (variables r) that assigns the probability to a sequence: r(σi) is the
probability that σi ∈ Σi will be played assuming that information sets in which actions
of the sequence σi are applicable are reached due to player −i. The realization plan r
must satisfy the network flow Constraints (3.3b)–(3.3d). Finally, a strategy of player
i is constrained by the best-responding opponent that selects an action minimizing the
expected value of player i in each I ∈ I−i (Constraint (3.3e)). These constraints ensure
that player −i plays time consistent strategy and hence also an ex-ante best response
from Lemma 3.3.2. The expected utility for each action in Constraint (3.3e) is a sum
of the expected utility values from immediately reachable information sets I ′ and from
immediately reachable leaves. For the latter we use generalized utility function g : Σi ×
Σ−i → R defined as g(σi, σ−i) =

∑
z∈Z|seqi(z)=σi∧seq−i(z)=σ−i

ui(z)C(z).

26



Solving Extensive-Form Games

The sequence-form LP has |Ii|+ 2|Σi| constraints and |Σi|+ |Ii| variables. Hence, its
size is linear to the size of the solved game, which effectively prevents solving games with
more than tens of millions of decision points.

3.4.2 Double Oracle Algorithm

The Double oracle algorithm for solving perfect recall EFGs (DOEFG, [7]) is an adap-
tation of column/constraint generation techniques for EFGs. The main idea of DOEFG
is to create a restricted game where only a subset of actions is allowed to be played by
players. The algorithm then incrementally expands this restricted game by allowing new
actions. The restricted game is solved as a standard zero-sum extensive-form game us-
ing the sequence-form LP. The expansion of the restricted game is performed using best
response algorithms that search the original unrestricted game to find new sequences to
add to the restricted game for each player. The algorithm terminates when the best re-
sponse calculated on the unrestricted game provides no improvement to the solution of
the restricted game for either of the players.

DOEFG uses two main ideas: (1) the algorithm assumes that players play some pure
default strategy outside of the restricted game (e.g., playing the first action in each infor-
mation set given some ordering), (2) temporary utility values are assigned to leaves in the
restricted game that correspond to inner nodes in the original unrestricted game (so-called
temporary leaves), which form an upper bound on the expected utility.

Hence, DOEFG aims to increase the scalability of the sequence-form LP by applying
it only to the parts of the game relevant to its solution. As shown in [7] this process
significantly improves the scalability of sequence-form LP.

3.4.3 Fictitious Play

Fictitious play (FP, [8]) is an iterative algorithm originaly defined for normal-form games.
FP aims to improve the scalability of the computation of NE in two-player zero-sum games
by approximating it, instead of computing the exact NE. FP keeps track of average mixed
strategies m̄T

i , m̄
T
−i of both players. The players take turn updating their average strategy

as follows. In iteration T , player i computes sTi ∈ BR(m̄T−1
−i ). He then updates his average

strategy m̄T
i = Ti−1

Ti
m̄T−1
i + 1

Ti
sTi (Ti is the number of updates performed by i plus 1). In

two-player zero-sum games m̄T
i , m̄

T
−i converge to a NE [48]. Furthermore, there is a long-

standing conjecture [32, 15] that the convergence rate of FP is O(T−
1
2 ), the same order as

the convergence rate of CFR (though the empirical convergence of CFR and CFR+ tends
to be better).

When applying FP to behavioral strategies in perfect recall zero-sum EFG G, one
must compute the average behavioral strategy b̄ti such that it is realization equivalent to
m̄t
i obtained when solving the normal form game corresponding to G for all t and all i ∈ N

to keep the convergence guarantees. To update the behavioral strategy in such a way we
use the following Lemma [27].

27



Chapter 3

Lemma 3.4.1. Let bi, b
′
i be two behavioral strategies and mi, m

′
i two mixed strategies

realization equivalent to bi, b
′
i, and λ1, λ2 ∈ [0, 1], λ1 + λ2 = 1. Then

b′′i (I) = bi(I) +
λ2π

b′i
i (I)

λ1π
bi
i (I) + λ2π

b′i
i (I)

(b′i(I)− bi(I)),∀I ∈ Ii,

defines a behavioral strategy b′′i realization equivalent to the mixed strategy m′′i = λ1mi +
λ2m

′
i.

3.4.4 Regret Minimization

Another family of algorithms improving the scalability of the computation of NE by its
approximation are the algorithms based on regret minimization. In this section we describe
the ideas behind external regret, Counterfactual Regret minimization (CFR, [61]) and its
variant CFR+ [54, 55].

3.4.4.1 External Regret

Given a sequence of behavioral strategy profiles b1, ..., bT , the external regret for player i,
defined as

RTi = max
b′i∈Bi

T∑
t=1

(ui(b
′
i, b

t
−i)− ui(bti, bt−i)), (3.4)

is the amount of additional expected utility player i could have gained if he played the
best possible strategy across all time steps t ∈ {1, ..., T} compared to the expected utility
he got from playing bti in every t. An algorithm is a no-regret algorithm for player i, if the
average external regret approaches zero; i.e.,

lim
T→∞

RTi
T

= 0.

3.4.4.2 Counterfactual Regret Minimization

Let btI→a be the strategy profile bt except for I, where a ∈ A(I) is played. Let πb(h)
be the probability that h will be reached when players play according to the strategy
profile b, with πbi (h) =

∏
a∈seqi(h) b(a) being the contribution of player i and πb−i,c(h) =

C(h)
∏
a∈seq−i(h) b(a) the contribution of −i and chance. z[I] stands for the state h which

is the predecessor of z in I. Let πb(h, h′) be the probability that h′ will be reached
from h when players play according to b and ZI ⊆ Z a set of leaves reachable from all
h ∈ I. Finally, let the counterfactual value of i in the information set I when players play
according to the strategy profile b be

vi(b, I) =
∑
z∈ZI

ui(z)π
b
−i,c(z[I])πb(z[I], z).
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Counterfactual regret is defined for each iteration T , player i, information set I ∈ Ii and
action a ∈ A(I) as

RTi (I, a) =
T∑
t=1

[
vi(b

t
I→a, I)− vi(bt, I)

]
. (3.5)

Let (x)+ stand for max(x, 0). The strategy bTi for player i in iteration T in the standard
CFR algorithm (sometimes termed vanilla CFR) is computed from counterfactual regrets
using the regret-matching as follows

bTi (I, a) =


(RT−1

i (I,a))
+∑

a′∈A(I)(R
T−1
i (I,a′))

+ , if
∑
a′∈A(I)

(
RT−1
i (I, a′)

)+
> 0

1
A(I) , otherwise.

(3.6)

The immediate counterfactual regret is defined as

RTi,imm(I) =
1

T
max
a∈A(I)

RTi (I, a).

In games having perfect recall, minimizing the immediate counterfactual regret in every
information set minimizes the average external regret. This holds because perfect recall
implies that

RTi
T
≤
∑
I∈Ii

(
RTi,imm(I)

)+
, (3.7)

i.e., the external regret is bounded by the sum of positive parts of immediate counter-
factual regrets [61].

Let ∆I = maxz∈ZI
ui(z) − minz∈ZI

ui(z) and umax = maxi∈N maxz∈Z ui(z). When
player i plays according to eq. (3.6) in I during iterations {1, ..., T}, then

RTi,imm(I) ≤
∆I

√
|A(I)|√
T

. (3.8)

Thus, from eq. (3.7)

RTi
T
≤

∆|Ii|
√
|Amax|√
T

, (3.9)

where |Amax| = maxI∈Ii |A(I)| and ∆ = 2umax [61].

Furthermore, let b̄Ti be the average strategy for i defined as

b̄Ti (I, a) =

∑T
t=1 π

bti
i (I)bti(I, a)∑T

t=1 π
bti
i (I)

, ∀I ∈ Ii,∀a ∈ A(I). (3.10)

If
RT

i
T < ε for all i ∈ N in a two-player zero-sum EFG, the strategy profile b̄T = (b̄T1 , b̄

T
2 )

forms a 2ε-Nash equilibrium [61].
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3.4.4.3 CFR+

The CFR+ [54, 55] replaces the regret-matching shown in equation (3.6) with regret-
matching+. To do that, the algorithm maintains alternative regret values QTi (I, a) in each
iteration T and for each player i defined as

Q0
i (I, a) = 0 (3.11)

QTi (I, a) =
(
QT−1
i (I, a) +RTi (I, a)−RT−1

i (I, a)
)+
. (3.12)

The update of QTi (I, a) is identical to the update of RTi (I, a) in eq. (3.5) except for
negative values which are replaced by 0. This prevents negative counterfactual regrets from
accumulating. Since the strategy is then computed using the regret-matching+ defined as

bTi (I, a) =


QT−1

i (I,a)∑
a′∈A(I)Q

T−1
i (I,a′)

, if
∑

a′∈A(I)Q
T−1
i (I, a′) > 0

1
A(I) , otherwise,

(3.13)

any future positive regret changes will immediatelly affect the resulting strategy instead
of canceling out with the accumulated negative regret values.

Additionally, CFR+ uses alternating updates of the regrets, i.e., during one iteration
of the algorithm only regrets of one player are updated, and the players take turn.

Finally, as described in [55], the update of the average strategy starts only after a fixed
number of iterations denoted as d. The update is then weighted by the current iteration,
formally for each T > d

b̄Ti (I, a) =
2
∑T
t=d t · π

bti
i (I) · bti(I, a)

((T − d)2 + T − d)
∑T
t=d π

bti
i (I)

, ∀I ∈ Ii,∀a ∈ A(I). (3.14)

Intuitively, the average strategy update puts a higher weight on later strategies, as
they are expected to perform better.

The bound on average external regret
RT

i
T from eq. (3.9) also holds when using regret

matching+. Hence the average strategy profile computed by CFR+ converges to the
Nash equilibrium of the solved two-player zero-sum EFG [55]. Additionally, the empirical
convergence of CFR+ is significantly better compared to CFR [55].

3.5 Abstractions

The algorithms described in Section 3.4 either build the entire EFG or require iterative
traversal of the game tree. This makes them impractical in many large domains often
found in the real world. E.g., heads-up no-limit Texas hold’em poker has more than 10160

decision points [29]. A popular approach for solving games with such prohibitive memory
requirements is the use of abstractions. The main idea of this approach is to create a
smaller game strategically similar to the game being solved (denoted as abstracted game).
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The abstracted game is then solved, and the solution is projected back to the original
game.

Abstractions in EFGs face many difficulties not present in single agent problems. Most
importantly, abstractions in EFGs can be non-monotonic, i.e., strategies computed in
a fine-grained abstraction can result in worse performance than strategies computed in
strictly coarser abstraction [59]. On the other hand, there has been overwhelming exper-
imental evidence suggesting that in specific types of domains, such as two-player Texas
hold’em, finer grained abstractions improve the quality of the resulting strategies [30]. Ad-
ditionally, to eliminate this problem, a lot of work has focused on constructing abstractions
with a bounded error of the resulting strategies [40, 37, 38].

There are two distinct approaches to abstracting an EFG: information abstractions
and action abstractions.

The information abstractions reduce the size of the original large extensive-form game
by removing information available to players; hence merging their information sets. Since
the players have to play identical strategy in the merged information sets, the size of the
strategy representation in the abstracted game can be significantly smaller than in the
original game. The abstracted game is then solved, and the small resulting strategies
are used in the original game. Most of the work on information abstractions was driven
by research in the poker domain. Information abstractions were initially created using
domain-dependent knowledge [53, 2]. Algorithms for creating information abstractions
followed [19, 21] and led to the development of bots with increasing quality of play in
poker. This work culminated in lossless information abstractions (i.e., abstractions where
the strategies obtained by solving the abstracted game form optimal strategies in the
original game) which allowed solving the Rhode Island Hold’em, a game with 3.1 · 109

nodes in the game tree [20]. When moving to larger games, lossless abstractions were
found to be too restrictive to offer sufficient reductions in the size of the abstracted game.
Hence the focus switched to lossy abstractions. A mathematical framework that can be
used to create perfect recall information abstractions with bounds on solution quality was
introduced [37]. Additionally, both lossless and lossy imperfect recall abstractions were
provided in [40, 38]. The authors show that running the CFR algorithm on this class of
imperfect recall abstractions leads to a bounded regret in the full game.

Another form of abstractions are action abstractions. Instead of merging information
sets, this abstraction methodology restricts the actions available to the players in the orig-
inal game. Similarly to information abstractions, most of the work on action abstraction
was driven by the poker domain where there is a prohibitive amount of actions available to
the players (e.g., when betting the players can choose any value up to the number of chips
they have available). The first automated techniques iteratively adjust the bet sizing in
no-limit hold’em [25, 26]. The algorithm for simultaneous action abstraction finding and
game solving was introduced in [10].

The combination of information abstractions and action abstractions was at the hearth
of a number of algorithms for solving heads-up no-limit Texas Hold’em poker (see, e.g.,
[22]). Furthermore, the algorithm Libratus [9] using both mentioned abstractions led to a
superhuman performance in heads-up no-limit Texas Hold’em.
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Figure 3.5: An A-loss recall for the demonstration of problems of algorithms for solving
perfect recall EFGs in imperfect recall EFGs.

In other domains, abstractions with bounded error were introduced in Patrolling Secu-
rity Games [1]. Additionally, the first general framework for lossy game abstraction with
bounds was provided for stochastic games [52].

3.6 Algorithms for Perfect Recall Games in Imperfect Re-
call Games

In this section, we discuss the applicability of sequence-form LP, FP and regret minimiza-
tion based algorithms in two scenarios. First, when we are interested in solving a given
imperfect recall game and second when we are applying the algorithm to an imperfect
recall abstraction with an aim to solve the corresponding unabstracted two-player perfect
recall EFG. Finally, we discuss subclasses of imperfect recall games which are specifically
designed as suitable results of imperfect recall information abstractions and explain why
the CFR applied to these abstractions has guaranteed convergence to NE of the original
unabstracted game.

3.6.1 Sequence-Form Linear Program

Here we discuss the issues of the sequence-form LP applied to an imperfect recall game.
More specifically, we discuss the expressive power of realization plans in imperfect recall
games and the applicability of constraints ensuring the best response of the minimizing
player in the sequence-form LP to imperfect recall games.

3.6.1.1 Realization Plans in Imperfect Recall Games

A realization plan of player i assigns probabilities to σi ∈ Σi. This representation, there-
fore, implicitly allows conditioning of choices of i on all the actions he made in the past.
For this reason, the descriptive power of realization plans and mixed strategies is the same
in imperfect recall games.

Example 3.6.1. Consider the game in Figure 3.5. The player 1 has the following set
of sequences: Σ1 = {(a), (b), (a, g), (a, h), (b, g), (b, h)}. The realization plan allows con-
ditioning the choice of players on the information that the players should no longer have
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available. E.g., realization plan r1(a) = r1(b) = 0.5, r1(a, g) = 0.5, r1(b, h) = 0.5 allows
player 1 to condition playing g and h on the outcome of his stochastic choice in the root,
and thus randomize between the leafs with utility 0. Additionally, the size of Σ1 is the
same whether we join the states after action d and e to the imperfect recall information
set or not, even though joining the states reduces the number of decision points of player
1 from 3 to 2.

Hence, realization plan allows description of behavior which is inconsistent with the
rules of the game. Moreover, when using the realization plan in an imperfect recall ab-
straction, it does not directly benefit from the reduced size of the abstracted game as it
rebuilds some of the removed information.

3.6.1.2 Best Response Constraints in Sequence-Form LP

The constraints (3.3e) in the sequence-from LP applied to a perfect recall EFG ensure that
the maximizing player computes a strategy that maximizes his expected utility against the
opponent playing time consistent strategy (and therefore also ex-ante best response from
Lemma 3.3.2). In imperfect recall games, however, these constraints might not be directly
applicable, since the expected utility after an action in imperfect recall information set of
the minimizing player does not depend only on the behavior of the maximizing player and
the probabilities of nature but also on the previous behavior of the minimizing player.

Example 3.6.2. Consider the game in Figure 3.5 and let player 1 be the minimizing
player. Now, let us try to formalize the constraint (3.3e) for the second information set
I of player 1 and action g. Notice that there are two sequences of player 1 leading to I,
namely (a) and (b). And hence, the leaf that will influence the first sum in the constraint
is determined by the choice of player 1 in the root. Such dependency is, however, not
possible to formalize using linear constraints and so the sequence-from LP is not directly
applicable to imperfect recall games.

Hence, the imperfect recall of the minimizing player prevents direct application of the
sequence-form LP, as the best response constraints (3.3e) are not well defined in imperfect
recall information sets.

3.6.2 Fictitious Play

The average strategy b̄ti for player i in iteration t of FP is computed according to Lemma
3.4.1 from b̄t−1

i with weight λ1 = Ti−1
Ti

and the best response bti of player i against bt−1
−i

with weight λ2 = 1
Ti

. The guarantee of convergence of FP to NE in two-player zero-sum
EFGs with perfect recall [48] is based on the fact that

∀b−i ∈ Bp−iui(b̄
t
i, b−i) =

Ti − 1

Ti
ui(b̄

t−1
i , b−i) +

1

Ti
ui(b

t
i, b−i). (3.15)

However, this property no longer holds in imperfect recall games.
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Example 3.6.3. Consider the imperfect recall game from Figure 3.5. Let b′1(a) = b′1(g) =
1 and b′′1(b) = b′′1(h) = 1 be two strategies in the game. Let b1 be a strategy computed
according to Lemma 3.4.1 from b′1 with λ1 = 0.5 and b′′1 with λ2 = 0.5, i.e., b1(a) =
b1(b) = b1(g) = b1(h) = 0.5. However, for b2(d) = b2(e) = 1, u1(b1, b2) = −0.5x, while
1
2u1(b′1, b2) + 1

2u1(b′′1, b2) = 0. And hence the equality in eq. (3.15) is not satisfied.

In Appendix A.1 we experimentally demonstrate that the FP does not converge to
reasonable strategies in the game from Figure 3.5.

Hence, FP is not a suitable algorithm for solving a given imperfect recall game. When
applied to imperfect recall abstraction, FP directly benefits from the reduced size of the
imperfect recall abstraction since it will store the average strategies directly in the infor-
mation set structure of the abstraction. However, as shown in Appendix A.1, FP does not
guarantee to find strategies in the abstracted game with good performance in the original
unabstracted game.

3.6.3 Regret Minimization

The no-regret learning cannot work in general in imperfect recall games for similar reasons
as FP. The general reason is that the loss function

lt(bi) = ui(b
t
i, b

t
−i)− ui(bi, bt−i) (3.16)

used in equation (3.4) can be non-convex over the probability simplex of behavioral
strategies (see Example 3.6.4). The loss function must be convex for no-regret learning to
have convergence guarantees [23].

3.6.3.1 CFR and CFR+

In games having perfect recall, minimizing the immediate counterfactual regrets at every
information set minimizes the average external regret. This holds because perfect recall
implies that the average external regret is bounded by the sum of positive parts of imme-
diate counterfactual regrets as shown in eq. (3.7), and thus the average external regret in
bounded as described in eq. (3.9). In imperfect recall games, however, equations (3.7) and
(3.9) are not guaranteed to hold due to the non-convexity of the loss function described
above.

Example 3.6.4. Assume we are in the step T of a no-regret learning algorithm solving
the game from Figure 3.5, and we evaluate the loss from eq. (3.16) of some strategy b1 in
step t < T . Let bt1(a) = bt1(g) = 0.5 and bt2(d) = bt2(e) = 1. Let b1(a) = b1(g) = 1, b′1(b) =
b′1(h) = 1, and b′′1(a) = b′′1(g) = 0.5. The losses of these strategies are lt(b1) = −0.5x,
lt(b′1) = −0.5x, lt(b′′1) = 0. Since b′′1 is a convex combination of b1 and b′1 with uniform
weights, it follows that the loss function is non-convex, hence the convergence guarantees
used in CFR due to Gordon [23] no longer apply.

The non-convexity of the loss function shown in Example 3.6.4 will never appear in
perfect recall games since the behavior of i after any a, a′ ∈ A(Ii) is independent ∀I ∈ Ii
and hence the loss function is linear.

34



Solving Extensive-Form Games

In Appendix A.2 we experimentally demonstrate that the CFR does not converge to
reasonable strategies in the game from Figure 3.5.

Hence, CFR and CFR+ are not suitable algorithms for solving a given imperfect
recall game. When applied to imperfect recall abstraction, CFR directly benefits from the
reduced size of the imperfect recall abstraction, since it will store the average strategies
and regrets directly in the information set structure of the abstraction. However, as shown
in Appendix A.2, CFR and CFR+ do not guarantee to find strategies in the abstracted
game with good performance in the original unabstracted game.

3.6.4 CFR in Chance Relaxed Skew Well-Formed Games

Here, we discuss the WFG, SWFG, and CRSWFG (see Section 2.2.3 for the definition
of these subclasses of imperfect recall EFGs) which are specifically designed as suitable
results of imperfect recall information abstractions and explain why CFR applied to these
abstractions is guaranteed to convergence to NE of the original unabstracted game.

CRSWFG (see Definition 2.2.5) only merge information sets which satisfy strict re-
strictions on the structure of the game tree above and below them. These restrictions
imply that for all possible strategies of the opponent, a strategy which is optimal in one of
the merged information sets must have bounded distance from the optimal strategy in the
rest of the merged information sets. The distance is bounded by the error terms defined
in Definition 2.2.5. This property effectively limits the non-convexity of the loss function
from eq. 3.16, which in turn allows derivation of a regret bound on the average external
regret of CFR applied to CRSWFG with a constant factor depending on the error terms
(see [38] for more details).

SWFG (see Definition 2.2.4) require even more strict bound on the error of the optimal
strategies across the merged information sets (defined by the δI′,I′′ constants for all pairs
I ′, I ′′ of merged information sets). Hence, this again allows derivation of regret bound on
the average external regret of CFR applied to SWFG with a constant factor depending on
the δI′,I′′ constants (see [40] for more details).

Finally, in WFG (see Definition 2.2.3) all strategies that are optimal in one of the
merged information set have to be optimal in the rest. Similarly to perfect recall games,
this restriction leads to linear loss function from eq. 3.16. Hence, the equations (3.7) and
(3.9) are guaranteed to hold in WFG. WFG, therefore, directly allow application of CFR
with the same guarantees as in perfect recall games.

35



Chapter 3

36



Chapter 4

Approximating Maxmin Strategies
in Imperfect Recall Games Using
A-Loss Recall Property

In this Chapter, we discuss theoretical properties of A-loss recall games and use these
properties to derive the first family of algorithms for approximating maxmin strategies
in imperfect recall abstractions. First, in Section 4.1 we provide the overview of the
relevant state-of-the-art. Next, in Section 4.2.1 we show sufficient and necessary (i.e., if
and only if) conditions for the existence of Nash equilibrium in A-loss recall games and
show that in imperfect recall games, such conditions are only sufficient. In Section 4.2.2
we discuss the complexity of computing maxmin and Nash equilibrium strategies in A-
loss recall games. In Section 4.3 we derive the mixed integer linear program (MILP) for
approximating maxmin strategy in imperfect recall game and show that this MILP has
linear size to the size of the game if the minimizing player has A-loss recall (its size is
exponential for minimizing player with imperfect recall). In Section 4.4 we introduce the
algorithms which use the MILP to approximate the maxmin strategies. More specifically,
in Section 4.4.1 we introduce the Base algorithm which iteratively solves the MILP until
the desired approximation of maxmin strategy is reached. In Section 4.4.2 we describe
Imperfect Recall Abstraction Branch-and-Bound algorithm (IRABnB) which uses branch-
and-bound search over the linear relaxation of the MILP. In Section 4.4.3 we introduce
Double Oracle Imperfect Recall Abstraction Branch-and-Bound algorithm (DOIRABnB)
which further extends IRABnB with incremental strategy generation techniques. Finally,
in Section 4.5 we provide experimental evaluation of IRABnB nad DOIRABnB.

4.1 Comparison to the Current State-of-the-Art

The only known subclasses of imperfect recall games using the imperfect recall to reduce
the memory requirements of strategy representation are chance relaxed skew well-formed
games (CRSWFG) and their subsets well-formed games (WFG) and skew well-formed
(SWFG) [38, 40] (see Section 2.2.3). These classes of games restrict the structure of
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Figure 4.1: (Left) A well-formed game which does not have A-loss recall. (Right) An
A-loss recall game which is not chance relaxed skew well-formed.

imperfect recall by requiring similarity of the states included in one imperfect recall infor-
mation set both in the structure of past and future moves as well as the utilities reachable
from the states. As a consequence, the CFR is still guaranteed to converge to (ε-)NE in
these games (see Chapter 3 for more details on applying CFR to imperfect recall games
and CRSWFG).

While A-loss recall games restrict the structure of the game only above the imperfect
recall information set (the requirement of being able to connect any loss of memory to
forgetting player’s own actions), the WFG, SWFG, and CRSWFG restrict the structure
above, below and also the structure of the utilities. In the case of games with no chance,
we can formally define the relationship between A-loss recall games and WFG, SWFG,
and CRSWFG.

Lemma 4.1.1. In games with no chance, the WFG, SWFG, and CRSWFG form a strict
subset of A-loss recall games.

Proof. We first prove the Lemma for WFG and then show that it extends to both SWFG
and CRSWFG.

The only requirement in A-loss recall games is that players are able to connect any
loss of memory to forgetting their own actions, hence the restriction in the information
set I always concerns only the part of the tree above I. We, therefore, focus on condition
(3) in the Definition 2.2.3 of WFG since it is the only one restricting the upper part of
the game tree. Condition (3) requires that for each h′ ∈ I ′ there must exist h′′ ∈ I ′′ such
that seq−i(h

′) = seq−i(h
′′), which, combined with the assumption that there is no chance

player, implies that there must exist difference in seqi(h
′) and seqi(h

′′). Furthermore, since
seq−i(h

′) = seq−i(h
′′) we are sure that there must exist Ī ∈ Ii and distinct a, a′ ∈ A(Ī)

such that a ∈ seqi(h′) and a′ ∈ seqi(h′′) which is exactly the condition (2) in the A-loss
recall property. The rest of the requirements of the WFG restricts utilities and parts of
the tree not restricted in A-loss recall games. Therefore the WFG form a subset of A-loss
recall games.

Notice that the Lemma also holds for SWFG and CRSWFG, since they provide relax-
ations in conditions (1) and (2) of the Definition 2.2.3 only.

In Figure 4.1 (left) we show a WFG (with α : {z2 → z4, z3 → z5}) with chance which
does not have A-loss recall. The game does not have A-loss recall since player 1 forgets
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the information about the move of chance in the root of the game. Finally, in Figure
4.1 (right) we present an A-loss recall game which is not CRSWFG. The game is not
CRSWFG since the leaves z2 and z3 reachable from h1 cannot be mapped to any leaf after
h2 without breaking condition 3 in Definition 2.2.3. Notice that when assuming rational
player 2, however, it is safe to include h1 and h2 to one information set, since the expected
utilities after every action available in h1, h2 are equal, and so any behavior optimal in h1

is optimal in h2. Hence CRSWFG are unnecessarily conservative in the restrictions posed
on the game tree.

4.2 NE and Maxmin Strategies in A-Loss Recall Games

To provide a complete picture of the complexity of solving A-loss recall games, we discuss
the existence of NE in A-loss recall games and the computational complexity of finding
maxmin and NE behavioral strategies in A-loss recall games (for discussion about the
numerical representation of NE and maxmin in A-loss recall games see Section 3.2).

4.2.1 Existence of NE in A-loss Recall Games

As we have discussed in Section 2.3.2.2 the guarantee of the existence of NE in mixed
strategies does not extend to NE in behavioral strategies in A-loss recall games because
of the different descriptive power of mixed and behavioral strategies there [60]. Here, we
then provide novel sufficient and necessary (i.e., if and only if) condition for the existence
of NE in behavioral strategies in two-player A-loss recall games. Note, that thanks to this
result, A-loss recall games are the only subclass of imperfect recall games, for which such
condition is known (the only exception are well-formed games, where NE in behavioral
strategies always exists, and so the condition is trivial).

Informally, Theorem 4.2.1 states that A-loss recall game G has a NE in behavioral
strategies if and only if there exists a behavioral NE in its coarsest perfect recall refinement
G′ which prescribes the same behavior in every information set which is connected to some
imperfect recall information set of G.

Theorem 4.2.1. An A-loss recall game G has a NE in behavioral strategies if and only
if there exists a NE strategy profile b in behavioral strategies of the coarsest perfect recall
refinement G′ of G, such that ∀I ∈ I of G, ∀Hk, Hl ∈ H(I) : b(Hk) = b(Hl), where b(H)
stands for the behavioral strategy in the information set of G′ formed by states in H.

Proof. First, since b is a NE of G′ we know that there exists no incentive for any player to
deviate to any pure behavioral strategy in G′. From Lemma 3.3.3, it follows that there can
exist no pure behavioral strategy in G to which any of the players want to deviate either.
Additionally, from Lemma 3.3.1 it is sufficient to consider deviations to pure strategies in
G since none of the players is absentminded. This, in combination with the fact, that b
prescribes valid strategy in G implies that b is a NE in behavioral strategies of G.

Second, we prove that there exists no NE b′ in behavioral strategies of G which is not
a NE of G′. Let us assume that such b′ exists. This would imply that there is no pure
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behavioral strategy in G to which players want to deviate when playing according to b′,
and therefore no pure behavioral strategy in G′ either (Lemma 3.3.3), implying that b′ is
a NE in G′. This contradicts the assumption and completes the proof.

Note that in general imperfect recall game this equivalence no longer holds. Consider
the game in left subfigure of Figure 2.2. Here the only NE in behavioral strategies is
playing d and e deterministically and mixing uniformly between g, h. The only NE of
its coarsest perfect recall refinement (shown in right subfigure of Figure 2.2) is, however,
playing d, e, h and i deterministically.

Corollary 4.2.1. An imperfect recall game G (not restricted to A-loss recall) has a Nash
equilibrium in behavioral strategies if there exists a Nash equilibrium strategy profile b
in behavioral strategies of the coarsest perfect recall refinement G′ of G, such that ∀I ∈
IG ∀Hk, Hl ∈ H(I) : b(Hk) = b(Hl), where b(H) stands for the behavioral strategy in the
information set of G′ formed by states in H, the opposite does not hold.

Proof. The proof follows from the fact that every pure behavioral strategy of G has real-
ization equivalent pure behavioral strategy in G′ since we only merge information sets in
G′ to obtain G. The merging of information sets eliminates pure behavioral strategies with
mutually exclusive behavior in these sets. Since b is a Nash Equilibrium of G′, we know
that there exists no incentive for any player to deviate to any pure behavioral strategy in
G′ and therefore also no incentive to deviate to any pure behavioral strategy in G. This,
in combination with the fact, that b prescribes valid strategy in G implies that b is a Nash
Equilibrium in behavioral strategies of G.

Finally, we provide a counter-example showing that the opposite direction of the im-
plication does not hold. Consider the game in left subfigure of Figure 2.2. Here the
only Nash equilibrium in behavioral strategies is playing d and e deterministically and
mixing uniformly between g, h. The only Nash equilibrium of its coarsest perfect recall
refinement (shown in right subfigure of Figure 2.2) is, however, playing d, e, h and i
deterministically.

4.2.2 Computational Complexity in A-loss Recall Games

Now we turn to the computational complexity of solving imperfect recall games. Com-
puting maxmin strategies is NP-hard in imperfect recall games [34] and it is NP-hard to
decide whether there exists a NE in behavioral strategies in imperfect recall games [24]
(both theorems and their proofs are presented in Section 3.1). Here, we show that both
negative results directly translate to A-loss recall games. Notice that unlike ours, the
reduction used in [24] requires a game with absentmindedness. Hence we significantly
extend the class of games for which it is known that deciding whether there exists a NE
in behavioral strategies is NP-hard.

Theorem 4.2.2. The problem of deciding whether player 2 having an A-loss recall can
guarantee an expected payoff of at least λ is NP-hard even if player 1 has perfect recall,
there are no chance moves, and the game is zero-sum.
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Figure 4.2: An A-loss recall game reduction from Theorem 4.2.2 of 3-SAT problem x1 ∨
¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

Proof. The proof is made by reduction from the 3-SAT problem. It is a modification of
the original proof of koller [34] for imperfect recall games. The example of the reduction is
given in Figure 4.2. Given n clauses xj,1∨xj,2∨xj,3 we create a two person zero-sum game
in the following way. In the root of the game player 2 chooses between n actions, each
corresponding to one clause. Player 1 plays next with no information about the action
chosen by player 2. He has again n actions, each corresponding to one clause. In every
state of player 1, n− 1 actions lead directly to a terminal state with utility 0 for player 1
and one action (corresponding to the same clause as the action of player 2 preceding this
state) leads to a state of player 2. Every such state of player 2 corresponds to the variable
xj,1 where j is the index of the clause chosen in the root of the game. Every such state
has actions Txj,1 , Fxj,1 available. These actions correspond to setting the variable xj,1 to
true or false respectively. After both Txj,1 , Fxj,1 in xj,1 we reach the state representing
the assignment to xj,2 with the same setup (state representing the assignment to xj,3 is
reached after that). After the assignment to xj,3 we reach the terminal state with utility
−nλ for player 1 if the assignment to xj,1, xj,2 and xj,3 satisfies the clause xj,1∨xj,2∨xj,3,
0 otherwise. The information sets of player 2 group together all the states corresponding
to the assignment to one variable in the original 3-SAT problem (note that we assume that
the order of variables in every clause follows some complete ordering on the whole set of
variables in the 3-SAT problem).

We will show that player 2 can guarantee the worst case expected value λ if and only
if the original 3-SAT problem is satisfiable. First, we show that if the original 3-SAT
problem is satisfiable player 2 can guarantee the worst case expected value λ. The worst
case expected value λ is achieved when player 2 mixes uniformly in the root of the game
and plays according to the assignment which satisfies the original 3-SAT problem in the
rest of the tree.

Next, we show that if player 2 can guarantee the worst case expected value λ, the
original 3-SAT problem has to be satisfiable. There are two cases we need to discuss.

Case 1: Player 2 plays a non-uniform strategy b2 in the root. In this case player 1 plays
action a ∈ A1 corresponding to the same clause as the action amin ∈ arg mina∈A2(root) b2(a).
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Since b2 is non-uniform in the root we know that b2(amin) < 1
n and hence the expected

value of player 2 must be lower than nλ
n no matter what happens in the rest of the game.

Case 2: The last chance to guarantee expected value λ is when player 2 plays a
uniform strategy b2 in the root. Here we show that λ can be guaranteed only when the
corresponding 3-SAT problem is satisfiable. If the 3-SAT problem is not satisfiable, that
means that there always exists a state h of player 2 after the action of player 1, where
uh2(b2) < nλ, where uh2(b2) stands for the expected value in h when player 2 plays according
to b2. By playing action leading to this state, player 1 guarantees that the expected value
for player 2 is lower than nλ

n . If the 3-SAT is satisfiable on the other hand, the uniform b2
in the root and playing according to the assignment satisfying the 3-SAT guarantees the
expected value λ.

The reduction is polynomial, since the game has n(n− 1) + 23n leaves.

The last thing which remains to be shown is that player 2 has A-loss recall. This is
satisfied since any loss of information about actions of player 1 can be tracked back to
forgetting his own action taken in the root or to setting some of the SAT variables to true
or false.

We leave the question whether the problem stated in Theorem 4.2.2 belongs to NP as
an open problem. Even though Theorem 3.2.1 states that the solution to this problem
might require irrational numbers, it is not a sufficient argument for showing that this
problem does not belong to NP. From this perspective, the problem from Theorem 4.2.2
is similar to square-root sum problem, since the square-root sum problem also requires
operations with irrational numbers. However, deciding whether square root sum problem
belongs to NP is a major open problem [18] and there are known connections of square-
root sum problem to other problems in game theory, e.g., computing Nash equilibrium in
3-player games [16].

Theorem 4.2.3. It is NP-hard to check whether there exists a Nash equilibrium in behav-
ioral strategies in two-player A-loss recall games even if player 1 has perfect recall, there
are no chance moves, and the game is zero-sum.

Proof. The proof is made by reduction from the 3-SAT problem. The reduction results in
a two-player zero-sum game similar to the one in proof of Theorem 4.2.2. The only change
in the game is the substitution of the utility in the leaves directly following actions of
player 1 by −1 for player 1 and in the leaves corresponding to satisfying the given clause
by −0.5 for player 1. The example of the reduction is shown in Figure 4.3.

We will show that a NE in behavioral strategies exists if and only if the corresponding
3-SAT problem is satisfiable. First, if the 3-SAT problem is satisfiable, this game has a NE
where both players mix uniformly in first two levels of the game, and the player 2 plays
according to the assignment of variables satisfying this problem.

Next, we show that if the NE exists, the corresponding 3-SAT problem has to be
satisfiable. There are two cases we need to discuss.

Case 1: Player 1 plays a non-uniform strategy b1. In this case, player 2 will al-
ways prefer to play action a ∈ A2(root) which corresponds to the same clause as amin ∈
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Figure 4.3: An A-loss recall game reduction from Theorem 4.2.3 of 3-SAT problem x1 ∨
¬x3 ∨ x4 ∧ ¬x2 ∨ x3 ∨ ¬x4.

arg mina∈A1
b1(a) deterministically in the root and make the clause corresponding to amin

satisfiable. This way player 2 maximizes the probability that the immediate worst possible
outcome -1 for player 1 will be reached and minimizes the value player 1 gets when the
following state of player 2 is reached. Hence b1 is not stable against a best responding
opponent.

Case 2: The last chance for NE to exist is when player 1 plays a uniform strategy b1.
Here we show that in this case, the NE exists only when the corresponding 3-SAT problem
is satisfiable. If the original 3-SAT problem is not satisfiable player 2 will prefer to play
a subset of actions A′2 ⊂ A2(root) in the root corresponding to a subset of clauses that
can be satisfied at the same time, while playing the assignment satisfying these clauses
in the rest of the tree. In this case, however, player 1 wants to deviate to playing any
distribution over his actions corresponding to the clauses of actions in A′2. If the 3-SAT
is satisfiable on the other hand, the uniform b1 forms a part of NE when player 2 plays a
uniform strategy in the root and according to the assignment satisfying the 3-SAT in the
rest of the tree.

4.3 The Mathematical Program for Approximating Maxmin
Strategies in Imperfect Recall Games

In this section, we present a mathematical program approximating maxmin strategies
for two player games without absentmindedness where the maximizing player has imper-
fect recall, first when assuming that the minimizing player has A-loss recall, followed by
its generalization where there are no restrictions for the minimizing player. Recall that
computing exact maxmin strategy in this class of games requires exact representation of
irrational numbers (Theorem 3.2.1) and so approximating maxmin strategies is the only
alternative. The main idea behind this formulation is to add bilinear constraints into
the sequence-form LP ([58], see Section 3.4.1) to restrict to imperfect recall strategies of
the maximizing player. First, we present the exact bilinear program, followed by expla-
nation of Multiparametric Disaggregation Technique (MDT) [36] which will be used for
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approximating bilinear terms. Next, we provide the mixed integer linear program (MILP)
resulting from the application of the MDT to the bilinear reformulation of the sequence
form LP. Finally, we discuss how to use the result of this MILP to construct a strategy
with a bounded difference of its expected worst case utility from the maxmin value.

4.3.1 Exact Bilinear Sequence Form Against A-loss Recall Opponent

max
x,r,v

v(root, ∅) (4.1a)

s.t. r(∅) = 1 (4.1b)

0 ≤ r(σ1) ≤ 1 ∀σ1 ∈ Σ1 (4.1c)∑
a∈A(I)

r(σ1a) = r(σ1) ∀σ1 ∈ Σ1,∀I ∈ inf1(σ1) (4.1d)

∑
a∈A(I)

x(a) = 1 ∀I ∈ IIR1 (4.1e)

0 ≤ x(a) ≤ 1 ∀I ∈ IIR1 ,∀a ∈ A(I) (4.1f)

r(σ1) · x(a) = r(σ1a) ∀I ∈ IIR1 ,∀a ∈ A(I),

∀σ1 ∈ seq1(I) (4.1g)∑
σ1∈Σ1

g(σ1, σ2a)r(σ1) +
∑

I′∈inf2(σ2a)

v(I ′, σ2a) ≥ v(I, σ2) ∀I ∈ I2,∀a ∈ A(I),

∀σ2 ∈ seq2(I) (4.1h)

The mathematical program (4.1) is a bilinear reformulation of the sequence-form LP
[58] applied to the information set structure of a game G where the player 1 has imperfect
recall and the player 2 has A-loss recall. The objective of player 1 is to find a strategy that
maximizes the expected utility against the best responding opponent in G. The strategy
of the maximizing player is represented as a realization plan (variables r) that assigns the
probability to a sequence: r(σ1) is the probability that σ1 ∈ Σ1 will be played assuming
that information sets in which actions of the sequence σ1 are applicable are reached due
to player 2. The realization plan r must satisfy the network flow Constraints (4.1b)–
(4.1d). Finally, a strategy of player 1 is constrained by the best-responding opponent
that selects an action minimizing the expected value of player 1 in each I ∈ I2 and for
each σ2 ∈ seq2(I) that was used to reach I (Constraint (4.1h)). These constraints ensure
that the opponent plays the best response in the coarsest perfect recall refinement of G
and thus also in G by Lemma 3.3.4. The expected utility for each action in Constraint
(4.1h) is a sum of the expected utility values from immediately reachable information
sets I ′ and from immediately reachable leaves. For the latter we use generalized utility
function g : Σ1 × Σ2 → R defined as g(σ1, σ2) =

∑
z∈Z|seq1(z)=σ1∧seq2(z)=σ2

u1(z)C(z).
In imperfect recall games, multiple σi can lead to some imperfect recall information set
Ii ∈ IIRi ; hence, realization plans over these sequences do not have to induce the same
behavioral strategy for Ii (see Section 3.6.1. Therefore, for each I1 ∈ IIR1 and each
a ∈ A(I1) we define behavioral strategy x(a) (Constraints (4.1e)–(4.1f)). To ensure that
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the realization probabilities induce the same behavioral strategy in I1, we add bilinear
constraint r(σ1a) = x(a) · r(σ1) for every σ1 ∈ seq1(I1) (Constraint (4.1g)).

Lemma 4.3.1. Let G be a two-player game where the maximizing player has imperfect
recall and the minimizing player has A-loss recall. The assignment to r variables satisfies
constraints (4.1b)–(4.1g) if and only if there exists a behavioral strategy b1 ∈ B1 in G
realization equivalent to r.

Proof. First, we show that for every b1 ∈ B1 there exists an assignment to r variables that
satisfies constraints (4.1b)–(4.1g). For every sequence σ1 ∈ Σ1 we can compute such r(σ1)
as

r(σ1) =

{
1, if σ1 = ∅∏
a∈σ1

b1(a), otherwise.
(4.2)

The network flow constraints (4.1b)–(4.1d) are satisfied from the construction of r in
(4.2). Constraints (4.1e)–(4.1g) are satisfied since b1 is a probability distribution over
actions in information sets of G, and ∀I ∈ IIR1 ∀a ∈ A(I) b1(a) = x(a).

Second, we show that for every assignment to r satisfying constraints (4.1b)–(4.1g)
there exists realization equivalent b1 ∈ B1. Such b1 can be constructed from r in the
following way. In each I ∈ I1 \ IIR1 , and for each a ∈ A(I), b(a) = r(seq1(I)a)/r(seq1(I)).
In case of I ∈ IIR1 , however, seq1(I) is no longer a singleton. But from constraints (4.1e)–
(4.1g) we know that

∀σ1, σ
′
1 ∈ seq1(I)∀a ∈ A(I) r(σ1a)/r(σ1) = r(σ′1a)/r(σ′1) = x(a),

hence we can use b1(a) = x(a) for any I ∈ IIR1 and a ∈ A(I). Finally, from constraints
(4.1b)–(4.1d) follows that such b1 is a probability distribution over actions in information
sets of G.

Lemma 4.3.2. Let G be a two-player game where the maximizing player has imperfect
recall and the minimizing player has A-loss recall. Assume that we fix r variables to
arbitrary values in the mathematical program (4.1) applied to G, such that r satisfies
constraints (4.1b)–(4.1g). The optimal objective value of such program corresponds to the
worst case expected value of player 1 when playing according to r.

Proof. We need to show that the objective value of the mathematical program (4.1) applied
to G with the fixed r corresponds to the expected value of the player 1 playing r against
the best responding player 2 minimizing the expected value of player 1.

Let G′ be the coarsest perfect recall refinement of G for the minimizing player 2. From
Lemma 3.3.4 we know that when searching for a best response to any b1 in G, it is sufficient
to find a pure best response to b1 in G′. The sequence-form LP applied to G′ ensures that
the minimizing player plays a best response using constraints∑

σ1∈Σ1

g(σ1, σ2a)r(σ1) +
∑

I′∈inf2(σ2a)

v(I ′) ≥ v(I) ∀I ∈ I ′2,∀a ∈ A(I), (4.3)
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where σ2 = seq2(I). The fact that player 2 plays a best response in the solution of the
mathematical program (4.1) for G is ensured by constraints (4.1h) which are identical to
constraints (4.3) applied to G′. This holds since all the pairs {(I, σ2)| I ∈ I2∧σ2 ∈ seq2(I)}
for player 2 in G exactly correspond to information sets of player 2 in G′ (definition of
A-loss recall). Hence, variables v and the quantifiers in (4.1h) for G exactly correspond
to variables v and the quantifiers in (4.3) for G′. Finally, also the left sides of (4.1h) for
G and (4.3) for G′ are equal, since the extended utility function is the same in G and G′

and the pairs (I ′, σ2a) in the second sum of (4.1h) correspond to I ′ in the second sum of
(4.3). Hence, the objective value corresponds to the expected utility of player 1 playing r
against the best responding player 2 minimizing the expected value of player 1 in G′ and
therefore also in G.

Theorem 4.3.1. Let G be a two-player game where the maximizing player has imperfect
recall and the minimizing player has A-loss recall. Realization plan r is a part of some
optimal solution1 of the mathematical program (4.1) if and only if r is a maxmin strategy
for the maximizing player in G.

Proof. Let b1 be a behavioral strategy realization equivalent to r. We need to show that
r is a part of some optimal solution of the mathematical program (4.1) if and only if for
b1 holds that

b1 ∈ arg max
b′1∈B1

min
b2∈B2

u1(b′1, b2). (4.4)

First, we prove that if r is a part of an optimal solution of the mathematical program
(4.1) then the eq. (4.4) holds for behavioral strategy b1 realization equivalent to r (such
strategy always exists from Lemma 4.3.1) . This follows from the fact that the mathemat-
ical program maximizes the worst case expected value of player 1 (Lemma 4.3.2) over all
possible strategies of player 1 (Lemma 4.3.1). Hence, b1 is a maxmin strategy of player 1
in G.

Finally, we prove that if the eq. (4.4) holds for a behavioral strategy b1, then the
realization plan r, realization equivalent to b1, is a part of the optimal solution of the
mathematical program (4.1). Let’s assume that such r is not a part of any optimal solution
of the mathematical program (4.1). Since r satisfies constraints (4.1b)–(4.1g) (Lemma
4.3.1), it is a part of a valid solution of (4.1). This would imply that the mathematical
program (4.1) found r′ which guarantees higher worst case expected value (Lemma 4.3.2),
and hence b1 would not be a maxmin strategy for player 1.

4.3.2 Player 2 without A-Loss Recall.

If player 2 does not have A-loss recall, the mathematical program must use each possible
pure best response of player 2 (hence in the worst case each s2 ∈ S2 ) as a constraint since

1r is only a part of the optimal solution since the r variables form a strict subset of all the variables
present in (4.1).
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the time consistent strategy of player 2, ensured by constraint (4.1h) in the previous case,
need not be his ex-ante best response (Lemma 3.3.2). This results in the following bilinear
program with size exponential in the size of the solved game.

max
x,r,v

v(root) (4.5a)

Constraints (4.1b)–(4.1g)∑
z∈Z | πs2

2 (z)=1

u1(z)C(z)r(seq1(z)) ≥ v(root) ∀s2 ∈ S2, (4.5b)

where πs22 (z) is 1 if s2 prescribes all actions in seq2(z), 0 otherwise. Since the mathe-
matical program (4.5) does not change the parts of the program related to the approxima-
tion of strategies of player 1, all the following approximation methods, theorems, and the
branch-and-bound algorithm can also be applied to (4.5). However, the scalability would
be significantly worse for the mathematical program (4.5), since even the subproblem of
computing the best response of the minimizing player is NP-hard (follows from complex-
ity results in [34]), and hence it requires exponential number of constraints (4.5b). The
algorithm presented in Section 4.4.2 iteratively solves the mathematical program, hence
when using the formulation (4.5) every iteration of the algorithm would require solving
exponentially larger mathematical program compared to the case where the minimizing
player has A-loss recall.

4.3.3 Approximating Bilinear Terms

The final technical tool that we use to formulate the mathematical program is the approx-
imation of bilinear terms by Multiparametric Disaggregation Technique (MDT) [36]. The
main idea of the approximation is to use a digit-wise discretization of one of the variables
from a bilinear term. The main advantage of this approximation is a low number of newly
introduced integer variables and an experimentally confirmed speed-up over the standard
technique of piecewise McCormick envelopes [36].

Let a = bc be a bilinear term. MDT discretizes the variable b and introduces new
binary variables wk,` that indicate whether the digit k is on `-th position.

9∑
k=0

wk,` = 1 ` ∈ Z (4.6a)

wk,` ∈{0, 1} (4.6b)∑
`∈Z

9∑
k=0

10` · k · wk,` = b (4.6c)

cL · wk,` ≤ ĉk,` ≤ cU · wk,` ∀` ∈ Z,∀k ∈ {0..9} (4.6d)

9∑
k=0

ĉk,` = c ∀` ∈ Z (4.6e)∑
`∈Z

9∑
k=0

10` · k · ĉk,` = a (4.6f)
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Constraint (4.6a) ensures that for each position ` there is exactly one digit chosen.
All digits used according to wk,l variables must sum to b (Constraint (4.6c)). Next, we
introduce variables ĉk,` that are equal to c for such k and ` where wk,l = 1, and ĉk,` = 0
otherwise (eqs. (4.6d), (4.6e)). cL and cU are bounds on the value of variable c. The value
of a is given by Constraint (4.6f).

This is an exact formulation that requires infinite sums and an infinite number of
constraints. By restricting the set of all possible positions ` to a finite set {PL, . . . , PU}
we get a lower bound approximation. Following the approach in [36] we can extend the
lower bound formulation to compute an upper bound:

Constraints (4.6a), (4.6b), (4.6d), (4.6e)∑
`∈{PL,...,PU}

9∑
k=0

10` · k · wk,` + ∆b = b (4.7a)

0 ≤ ∆b ≤ 10PL (4.7b)∑
`∈{PL,...,PU}

9∑
k=0

10` · k · ĉk,` + ∆a = a (4.7c)

cL ·∆b ≤ ∆a ≤ cU ·∆b (4.7d)(
c− cU

)
· 10PL + cU ·∆b ≤ ∆a (4.7e)(

c− cL
)
· 10PL + cL ·∆b ≥ ∆a (4.7f)

Here, ∆b is assigned to every discretized variable b allowing it to take up the value
between the discretization points (Constraints (4.7a)–(4.7b)). Similarly, we allow the
product variable a to be increased with variable ∆a = ∆b · c. To approximate the product
of the delta variables, we use the McCormick envelope defined by Constraints (4.7c)–(4.7f).

4.3.4 Upper Bound MILP Approximation

We are now ready to state the main MILP for computing the upper bound on the optimal
value of the bilinear program (4.1) and hence also on the maxmin value of the solved
game. The MILP formulation follows the MDT example and uses ideas from Section 4.3.3
to approximate the bilinear term r(σ1)x(a) in Constraint (4.1g). In accord with the MDT,
we represent every variable x(a) using a finite number of digits of precision. Since x(a) is
a probability, we use dig(`) as the function which for every precision ` ∈ {−P..0} returns
the set of digits used to represent x(a), i.e,

dig(`) =

{
{0, 1}, if ` = 0

{0, ..., 9} otherwise.

Binary variables wI1,ak,` correspond to wk,` variables from (4.7) and are used for the digit-
wise discretization of x(a). Finally, r̂(σ1)ak,` variables correspond to ĉk,` variables from
(4.7). To allow variable x(a) to attain an arbitrary value from [0, 1] interval using a finite
number of digits of precision, we add an additional real variable 0 ≤ ∆x(a) ≤ 10−P that
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can span the gap between two adjacent discretization points. Constraints (4.8d) and (4.8e)
describe this loosening. Variables ∆x(a) also have to be propagated to bilinear terms r(σ1)·
x(a) involving x(a). We cannot represent the product ∆r(σ1a) = r(σ1)·∆x(a) exactly and
therefore we give bounds based on the McCormick envelope (Constraints (4.8i)–(4.8j)).

max
x,r,v

v(root, ∅) (4.8a)

s.t. Constraints (4.1b) - (4.1f), (4.1h)

wI,ak,` ∈ {0, 1} ∀I ∈ IIR1 ,∀a ∈ A(I), (4.8b)

∀` ∈ {−P..− 1},∀k ∈ dig(`)∑
k∈dig(`)

wI,ak,` = 1 ∀I ∈ IIR1 ,∀a ∈ A(I), (4.8c)

∀` ∈ {−P..0}
0∑

`=−P

∑
k∈dig(`)

10`·k · wI,ak,` + ∆x(a) = x(a) ∀I ∈ IIR1 ,∀a ∈ A(I) (4.8d)

0 ≤ ∆x(a) ≤ 10−P ∀I ∈ IIR1 ,∀a ∈ A(I) (4.8e)

0 ≤ r̂(σ)ak,` ≤ w
I,a
k,` ∀I ∈ IIR1 ,∀a ∈ A(I), (4.8f)

∀σ ∈ seq1(I),∀` ∈ {−P..0},
∀k ∈ dig(`)∑

k∈dig(`)

r̂(σ)ak,` = r(σ) ∀I ∈ IIR1 ,∀σ ∈ seq1(I) (4.8g)

∀` ∈ {−P..0}
0∑

`=−P

∑
k∈dig(`)

10` · k · r̂(σ)ak,` + ∆r(σa) = r(σa) ∀I ∈ IIR1 ,∀a ∈ A(I), (4.8h)

∀σ ∈ seq1(I)

(r(σ)− 1) · 10−P + ∆x(a) ≤ ∆r(σa) ≤ 10−P · r(σ) ∀I ∈ IIR1 ,∀a ∈ A(I), (4.8i)

∀σ ∈ seq1(I)

0 ≤ ∆r(σa) ≤ ∆x(a) ∀I ∈ IIR1 ,∀σ ∈ seq1(I), (4.8j)

∀a ∈ A(I)

Note that the MILP has both the number of variables and the number of constraints
bounded by O(|I| · |Σ| · P ), where |Σ| is the number of sequences of both players. The
number of binary variables is equal to 10 · |IIR1 | ·Amax1 ·P , where Amax1 = maxI∈IIR1

|A1(I)|.

4.3.5 Theoretical Analysis of the Upper Bound MILP

Here we show how to use the result of the Upper Bound MILP to construct a strategy
with a bounded difference of its expected worst case utility from the maxmin value of the
solved game.

The variables ∆x(a) and ∆r(σ) ensure that the optimal value of the MILP is an upper
bound on the value of the bilinear program (4.1) and therefore also on the maxmin value.
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The drawback of using ∆x(a) and ∆r(σ) is that the realization probabilities do not have
to induce a valid strategy in the imperfect recall game G, i.e., if σ1, σ2 are two sequences
leading to an imperfect recall information set I1 ∈ IIR1 where action a ∈ A(I1) can be
played, r(σ1a)/r(σ1) need not equal r(σ2a)/r(σ2). In the following text we will show how
to create a valid corrected strategy in G from r which decreases the expected value against
a best responding opponent by at most ε compared to the value of the Upper Bound MILP
(4.8), while deriving bound on this ε.

Let b11(I1), . . . , bk1(I1) be behavioral strategies in the imperfect recall information set
I1 ∈ IIR1 corresponding to realization probabilities of continuations of sequences σ1, . . . , σk ∈
seq1(I1) leading to I1. These behavioral strategies can be obtained from the realization
plan as bj1(I1, a) = r(σja)/r(σj) for all σj ∈ seq1(I1) and a ∈ A(I1). We will omit the
information set and use b1(a) whenever it is clear from the context. Since the imperfect
recall is violated in I1, bj1(a) may not be equal to bl1(a) for some j, l and action a ∈ A(I1).

Proposition 4.3.1. Using any of the b11(I1), . . . , bk1(I1) as the corrected strategy b1(I1)
in every I1 ∈ I1 ensures that ‖b1(I1) − bj1(I1)‖1 ≤ |A(I1)| · 10−P for every bj1(I1) ∈
{b11(I1), . . . , bk1(I1)}, where P is the number of digits used to approximate the bilinear
terms.2

Proof. Let us first show that probabilities of playing action a in b11, . . . , b
k
1 can differ by at

most 10−P , i.e. |bj1(a) − bl1(a)| ≤ 10−P for every j, l and action a ∈ A(I1). This is based
on the MDT we used to discretize the bilinear program.

Let us denote

r(σ1a) =

0∑
`=−P

∑
k∈dig(`)

10` · k · r̂(σ1)ak,` (4.9)

x(I1, a) =

0∑
`=−P

∑
k∈dig(`)

10` · k · wI1,ak,` . (4.10)

as the part of the strategy representation without the ∆r and ∆x variables. Notice that
constraints (4.8f) and (4.8g) ensure that r(σ1a) = r(σ1) · x(I1, a). Hence, the difference in
b1(I1), . . . , bk(I1) is caused solely by the ∆r(σ1a) variables. Furthermore, we know that
∆r(σ1a) ≤ 10−P · r(σ1) (Constraint (4.8i)) which ensures that the maximum difference
in b11(a), . . . , bk1(a) for any a is at most 10−P . Taking any of the behavioral strategies
b11, . . . , b

k
1 as the corrected behavioral strategy b1(I1), therefore satisfies

‖b1(I1)− bj1(I1)‖1 ≤
∑

a∈A(I1)

10−P = |A(I1)| · 10−P .

We now connect the distance of the corrected strategy b1(I1) from the set of behavioral
strategies b11(I1), . . . , bk1(I1) in I1 ∈ IIR1 to the maximum possible distance in worst case
expected values. First, we show this on the level of a single history. Finally, we extend

2The L1 norm is taken as ‖x1 − x2‖1 =
∑

a∈A(I1) |x1(a)− x2(a)|
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this result to the distance of the worst case expected value of the corrected strategy b1
from the maxmin value.

Lemma 4.3.3. Let h ∈ I1 be a history and b11, b21 be behavioral strategies prescribing
different behavior in I1 but prescribing the same behavior in all subsequent states h @ h′.
Let vmax(h) and vmin(h) be maximal and minimal utility of player 1 in the subtree of h.
Then the following holds:

max
b12,b

2
2∈B2

|uh1 (b11, b
1
2)− uh1 (b21, b

2
2)| ≤ vmax(h)− vmin(h)

2
· ‖b11(I1)− b21(I1)‖1,

where uh1(b1, b2) is the expected utility of player 1, when starting in h and playing according
to b1, b2.

Proof. When comparing b11 and b21, we can identify two subsets of A(I1) — a set of actions
A+ where the probability of playing the action in b21 is higher than in b11 and A− where
the probability in b21 is lower than in b11. Let us denote

C+ =
∑
a∈A+

|b11(I1, a)− b21(I1, a)| (4.11)

C− =
∑
a∈A−

|b11(I1, a)− b21(I1, a)| (4.12)

We know that C+ = C−, moreover ‖b11(I1)− b21(I1)‖1 = C+ + C−. In the worst case,
decreasing the probability of playing action a ∈ A− results in the decrease of the expected
value

vmax(h) ·
∑
a∈A−

|b11(I1, a)− b21(I1, a)| = vmax(h) · C−.

Similarly the increase of the probabilities of actions in A+ can add in the worst case
vmin(h) · C+ to the expected value of the strategy. Hence,

max
b12,b

2
2∈B2

|uh1 (b11, b
1
2)− uh1 (b21, b

2
2)| ≤ vmax(h) · C− − vmin(h) · C+

= [vmax(h)− vmin(h)] · C+

=
vmax(h)− vmin(h)

2
· 2C+

=
vmax(h)− vmin(h)

2
· ‖b11(I1)− b21(I1)‖1.

Now we are ready to bound the distance of the worst case expected value of the
corrected strategy b1 from the maxmin value.

Theorem 4.3.2. The distance of the worst case expected value of the corrected strategy
b1 from the maxmin value is bounded by

ε = 10−P · d · Amax1 · vmax(∅)− vmin(∅)
2

,
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where d is the maximum number of player 1’s imperfect recall information sets on any
path from the root to a terminal node, Amax1 = maxI1∈IIR1

|A(I1)| is the maximal branching

factor and vmin(∅), vmax(∅) are the lowest and highest utilities for player 1 in the whole
game, respectively.

Proof. We show an inductive way to compute the upper bound on the distance of the worst
case expected value of the corrected strategy b1 from the maxmin value. Throughout the
derivation we assume that all players play to maximize the bound to guarantee that we
obtain a valid upper bound. We proceed in a bottom-up fashion over the nodes in the game
tree, computing the bound L(h) on the maximum loss player 1 could have accumulated
by correcting his behavioral strategy in the subtree of h. The ε is obtained as the value
of this bound in the root of the game. The bound L(h) in every h ∈ H is guaranteed to
be higher or equal to

max
b12,b

2
2∈B2

|uh1 (y1, b
1
2)− uh1 (b1, b

2
2)|, (4.13)

where y1 is created by joining all b11(I1), . . . , bk1(I1) from the solution of the Upper
Bound MILP for all I1 ∈ I1 (y1 prescribes behavior only on a level of sequences since
b11(I1), . . . , bk1(I1) can specify different behavior for every sequence leading to I1, by y(σ1, a)
we denote the probability that a will be played after sequence σ1), b1 is the strategy created
by correcting y1 in the whole tree.

The description of the computation of L(h) follows in a case to case manner.

(1) In leaves, L(h) = 0 as there is no correction made.
(2) In node h where player 2 or nature acts,

L(h) = max
a∈A(h)

L(h · a),

since there can be no loss accumulated and in the worst case the direct successor with
the highest loss is chosen.

(3) In player 1’s node h, which is not a part of an imperfect recall information
set, no corrective steps need to be taken. The expected bound at node h is therefore∑

a∈A(h) y1(seq1(h), a)L(h ·a). In the worst case player 1’s behavioral strategy y1(seq1(h))
selects deterministically the direct successor with the highest bound, therefore again we
use the bound L(h) = maxa∈A(h) L(h · a).

(4) In player 1’s node h, which is a part of an imperfect recall information set, the

correction step may have to be taken. Let y−h1 be the strategy created from y1 by taking

corrective steps in all successors of h and let us construct a strategy yh1 from y−h1 by

correcting it also in h. We know that the loss caused by changing y1 to y−h1 is at most
maxa∈A(h) L(h · a), hence

max
b12,b

2
2∈B2

|uh1 (y1, b
1
2)− uh1 (y−h1 , b22)| ≤ max

a∈A(h)
L(h · a).

Now we have to take the corrective step in the node h and construct strategy yh1 .
When using the corrected strategy from Proposition 4.3.1, we get the following bound
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(Lemma 4.3.3):

max
b12,b

2
2∈B2

|uh1 (y−h1 , b12)− uh1 (yh1 , b
2
2)| ≤ vdiff (h)

2
· 10−P |A1(I1)|

≤ vdiff (∅)
2

· 10−PAmax1 .

It follows that

max
b12,b

2
2∈B2

|uh1 (y1, b
1
2)− uh1 (yh1 , b

2
2)|

≤ max
b12,b

2
2∈B2

|uh1 (y−h1 , b12)− uh1 (yh1 , b
2
2)|+ max

b12,b
2
2∈B2

|uh1 (y1, b
1
2)− uh1 (y−h1 , b22)|

≤ vdiff (∅)
2

· 10−PAmax1 + max
a∈A(h)

L(h · a),

hence we use

L(h) =
vdiff (∅)

2
· 10−PAmax1 + max

a∈A(h)
L(h · a).

Finally, we provide a bound on the loss in the root node

L(∅) ≥ max
b12,b

2
2∈B2

|u1(y1, b
1
2)− u1(b1, b

2
2)|. (4.14)

We have shown that in order to prove the worst case bound it suffices to consider de-
terministic choice of action at every node h — this means that a single path in the game
tree is pursued during the propagation of the bound. The bound is increased exclusively
in nodes which are a part of some imperfect recall information set. We can encounter at
most d such nodes on any path from the root. The increase of the bound in each such
node is bounded by

vmax(∅)− vmin(∅)
2

· 10−PAmax1 ,

therefore the bound in the root is

ε = L(∅) =
vmax(∅)− vmin(∅)

2
· d · 10−PAmax1

From eq. (4.14) follows that ε is guaranteed to be higher or equal to the actual difference
of worst case expected values of y1 and b1, since it forms an upper bound even in the
case where we maximize the difference of the expected values over all pairs of player 2’s
strategies, while in case of the worst case expected value player 2 is restricted to playing
a best response. It follows that the worst case expected value of the strategy we have
found lies within the interval [v∗ − ε, v∗], where v∗ is the worst case expected value of
y1, and therefore the optimal value of the Upper Bound MILP. As v∗ is an upper bound
on the solution of the original bilinear program and therefore also on the maxmin value,
no strategy can have a better worst case expected value than v∗. Hence the strategy b1
guarantees the ε distance from the maxmin value.
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4.4 Algorithms for Approximating Maxmin Strategies in
Imperfect Recall Games

Algorithms for solving perfect recall games are either not applicable to imperfect recall
games and A-loss recall games or they do not provide any guarantees on the quality of
the obtained solutions (see 3.6 for more details). Hence, new algorithms for solving this
class of games are required. In this section we describe a family of algorithms that use the
Upper Bound MILP formulation (4.8) introduced in the previous section to approximate
the maxmin strategy in two-player games where the maximizing player has imperfect recall
and the minimizing player has A-loss recall. First, we describe a simple approach (denoted
as Base). Base starts with some initial precision of the representation of bilinear terms
and iteratively increases the precision until the distance of the corrected strategy obtained
from the solution of the Upper Bound MILP with the current precision from the maxmin
value is below a given threshold. Next, to reduce the number of binary variables and
hence to improve the scalability of Base we present a branch-and-bound based algorithm
(denoted as IRABnB). IRABnB works on a linear relaxation of the Upper Bound MILP
and simultaneously searches the possible precision improvements of bilinear terms and the
assignment to the relaxed binary variables until the error in the worst case expected value
is below a given threshold. Finally, to reduce the size of the mathematical program that
needs to be solved, we extend IRABnB with incremental strategy generation technique
(the algorithm is denoted as DOIRABnB).

Notice, that the restriction to A-loss recall minimizing player leads to a following
properties in all the algorithms.

Proposition 4.4.1. Let G be a two player game where the maximizing player has im-
perfect recall and the minimizing player has A-loss recall. Let G′ be the coarsest perfect
recall refinement of G for the minimizing player with no modifications to the information
set structure of the maximizing player. Computing the maxmin strategy in G reduces to
computing the maxmin strategy in G′.

Proof. Follows directly from Lemma 3.3.4.

Corollary 4.4.1. Let G be a two-player game where the maximizing player has imper-
fect recall and the minimizing player has A-loss recall. Let’s assume that G is created as
an imperfect recall abstraction of some perfect recall game G′, such that G′ is the coars-
est perfect recall refinement of G for the minimizing player. When computing maxmin
strategy in G we effectively compute the least exploitable strategy in any game with more
refined information set structure of the maximizing player (hence also in G′) that can be
represented in G.

Consequently, the maxmin value computed in G gives us the exploitability of the
resulting strategy directly in G′, hence the value can be used to evaluate the quality of
the abstraction (the further the maxmin value of G is from the maxmin value of G′, the
more exploitable strategies resulting from solving G are).
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4.4.1 Iterative Precision Refining MILP

Here we describe the Base algorithm, using the Upper Bound MILP formulation (4.8) to
approximate the maxmin strategies in two-player games where the maximizing player has
imperfect recall and the minimizing player has A-loss recall.

The distance of the worst case expected value of the corrected strategy b1 from the
maxmin value is a function of P , which is the precision of all approximations of bilinear
terms. We design the following algorithm (denoted as Base): (1) start with the precision
set to 0 for all bilinear terms, (2) for each approximation of a bilinear term calculate the
current error contribution (the difference between ∆r(σ1a) and r(σ1)∆x(a) multiplied by
the expected utility). Choose from the terms which do not yet have maximum allowed
precision the term that contributes to the overall error the most and increase the precision
of its representation by 1. The algorithm terminates when none of the terms which do not
yet have maximum allowed precision contributes to the error.

4.4.2 Branch-and-Bound Algorithm

We now introduce a branch-and-bound search (denoted as IRABnB, Imperfect Recall
Abstraction Branch-and-Bound algorithm) for approximating maxmin strategies of two-
player games where the maximizing player has imperfect recall and the minimizing player
has A-loss recall. We follow the standard practice in solving MILPs and apply the branch-
and-bound search to the linear relaxation of the Upper Bound MILP. Recall, that we
linearize the wI1,ak,` variables that control digit-wise discretization of x(a). Furthermore, we
exploit the following observation in the IRABnB.

Observation 4.4.1. Even if the current assignment to variables wI1,ak,` is not feasible (they
are not set to binary values), we can correct the resulting strategy as described in Section
4.4.2.1 and use it to estimate the lower bound on the maxmin value of player 1 without a
complete assignment of all wI1,ak,` variables to either 0 or 1. The lower bound is computed
as the expected value of the corrected strategy against a best response to it.

The IRABnB algorithm starts with the linear relaxation of the Upper Bound MILP
with bilinear terms approximated using 0 digits of precision. It builds and searches a
branch and bound tree. In every node n of the branch and bound tree, the algorithm
solves the LP corresponding to n, heuristically selects the information set I and action
a contributing to the current approximation error the most, and creates successors of n
by restricting the probability b1(I, a) that a is played in I. The successors are created by
adding new constraints to the LP corresponding to n depending on the value of b1(I, a)
by constraining (and/or introducing new) relaxed binary variables wI1,ak,l . This way, the
algorithm simultaneously searches for the optimal approximation of bilinear terms as well
as the assignment to binary variables. The algorithm terminates when ε-optimal maxmin
strategy is found (using the difference of the global upper bound computed by solving the
LP relaxation and the lower bound computed as described in Observation 4.4.1).

Algorithm 1 depicts the complete IRABnB algorithm. The algorithm creates and
traverses nodes of the branch and bound tree. Every node n has associated LP with
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Algorithm 1: IRABnB algorithm

input : Initial LP relaxation LP0 of Upper Bound MILP using a P = 0 discretization
output : ε-optimal strategy for a player having imperfect recall
parameters: Bound on maximum error ε, precision bounds for x(a) variables Pmax(I1, a)

1 fringe← {CreateNode(LP0)}
2 opt← (nil,−∞,∞)
3 while fringe 6= ∅ do
4 (LP, lb, ub)← arg maxn∈fringe n.ub

5 fringe← fringe \ (LP, lb, ub)
6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt← (LP, lb, ub)

10 if ub− lb ≤ ε then
11 return ReconstructStrategy(opt)
12 else
13 (I1, a)← SelectAction(LP)
14 P ← number of digits of precision representing x(a) in LP

15 fringe← fringe ∪ {CreateNode(LP ∪ {
∑b aub+alb

2 cP
k=0 wI1,ak,P = 1})}

16 fringe← fringe ∪ {CreateNode(LP ∪ {
∑9

k=b aub+alb
2 cP

wI1,ak,P = 1})}
17 if P < Pmax(I1, a) then

18 fringe← fringe ∪ {CreateNode(LP ∪ {wI1,aLP.x(a)−P ,P
= 1, introduce vars

wI1,a0,P+1, . . . , w
I1,a
9,P+1 and corresponding constraints from MDT })}

19 return ReconstructStrategy(opt)

20 function CreateNode(LP)
21 ub← Solve(LP)
22 b1 ← ReconstructStrategy(LP)
23 lb← u1(b1, BestResponse(b1))
24 return (LP, lb, ub)

the strategy of player 1 restricted to a certain degree of precision. Additionally, n keeps
the lower bound on the overall maxmin value of player 1 and the upper bound on the
values of the LPs achievable in the subtree of n. The algorithm starts in the root of
the branch and bound tree, where the maxmin strategy is approximated using 0 digits of
precision after the decimal point (i.e., precision P (I1, a) = 0 for every variable x(a)). The
algorithm maintains a set of active branch-and-bound nodes (fringe) and a node opt with
the highest guaranteed expected value of player 1 against the best responding opponent
that corresponds to the global lower bound on the worst-case guaranteed expected value.
In each iteration, the algorithm selects the node with the highest upper bound from fringe
(lines 4–5). If there is no potential for improvement in the unexplored parts of the branch
and bound tree (i.e., all the nodes in the fringe have upper bound lower than the lower
bound in opt), the current best solution is returned (line 7) (upper bounds of the nodes
added to the fringe in the future will never be higher than the current upper bound).

56



Approximating Maxmin Strategies in Imperfect Recall Games Using A-Loss
Recall Property

Next, the algorithm checks whether the current solution has better lower bound than
opt, if yes, the opt is replaced by the current node (line 9). Since the algorithm always
selects the most promising node with respect to the upper bound, we are sure that if the
lower bound and upper bound have distance at most ε, the algorithm found an ε-optimal
solution and it can terminate (line 11) (upper bounds of the nodes added to the fringe in
the future will never be higher than the current upper bound). Otherwise, the algorithm
heuristically selects an action having the highest effect on the gap between the upper and
lower bound in the selected node n (line 13, as described in Section 4.4.2.1). Next, it
retrieves the precision used to represent behavioral probability of this action. By default,
two successors of the current branch-and-bound node n are added, each with one of the
following constraints. x(a) ≤ baub+alb

2 cP (line 15) and x(a) ≥ baub+alb
2 cP (line 16), where

b·cp is flooring of a number towards p digits of precision and aub and alb are the lowest and
highest allowed probabilities of playing x(a). This step performs binary halving restricting
allowed values of x(a) in the current precision. Additionally, if the current precision is
lower than the maximal allowed precision Pmax(I1, a) the gap between bounds may be
caused by the lack of discretization points; hence, the algorithm adds one more successor
with constraint bvcP ≤ x(a) ≤ dveP , where v is the current probability of playing a, while
increasing the precision used for representing x(a) (line 18) (all the restriction to x(a) in
all 3 cases are done via wI1,ak,l variables).

The function CreateNode computes the upper bound on the values achievable in the
subtree of the current node by solving the given LP (line 21) and the lower bound on the
overall maxmin value of player 1 as described in Observation 1, by using the heuristic
construction of a valid strategy b1 from the solution of the given LP (line 22, as described
in Section 4.4.2.1) and computing the expected value of b1 against a best response to it.

4.4.2.1 LP for Strategy Reconstruction and Action Selection

We provide a linear program that is used as a heuristic to compute a corrected behavioral
strategy in a given I1 ∈ I1 and to estimate the contribution of the actions to the overall
approximation error. It takes into account the realization probabilities r(σj1) of sequences

σj1 ∈ seq1(I1) leading to I1 as well as errors that can be accumulated in the subtrees of
individual histories h ∈ I1. Let us denote by {1, ..., k} the set of indices of all sequences in
seq1(I1). By bj1, for each j ∈ {1, ..., k} we denote the behavioral strategy corresponding to

the realization probability of sequence σj1 and its continuations. b1 is the final corrected
behavioral strategy.

min
b,L,α

∑
σj

1∈seq1(I1)

r(σj1) · L(σj1) (4.15a)

s.t. L(σj1, a) ≥ [bj1(a)− b1(a)] · vmax(σj1 · a) ∀j ∈ {1, ..., k},∀a ∈ A(I1) (4.15b)

L(σj1, a) ≥ [b1(a)− bj1(a)] · (−vmin(σj1 · a)) ∀j ∈ {1, ..., k},∀a ∈ A(I1) (4.15c)

L(σj1) =
∑

a∈A(I1)

L(σj1, a) ∀σj1 ∈ seq1(I1) (4.15d)
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b1(a) =
∑

j∈{1,...,k}

α(σj1) · bj1(a) ∀a ∈ A(I1) (4.15e)

0 ≤ α(σj1) ≤ 1 ∀σj1 ∈ seq1(I1) (4.15f)∑
σj

1∈seq1(I1)

α(σj1) = 1 (4.15g)

The LP finds a strategy minimizing the estimated error in the following way. Constraints
(4.15b), (4.15c) compute the maximum cost L(σj1, a) of changing the probability that

action a is played after σj1, assuming that the worst possible outcome in the subtree

following playing σj1a is reached. Constraint (4.15d) computes the estimated errors L(σj1)

for every σj1 by summing all the L(σj1, a) for all relevant a. The sum of L(σj1) weighted
by the realization probability of corresponding sequences is minimized in the objective.
Constraints (4.15e) to (4.15g) make sure that the result will be a convex combination of
all the bj1 strategies, with the α variables being the coeficients of the convex combination.

The bound from Theorem 4.3.2 on the error of a strategy constructed in this way
holds, since we have shown that the L1 distance of any pair of behavioral strategies bi1, b

j
1

obtained from realization plans in I1 is at most 10−P |A1(I1)| — the distance to their
convex combination b1 cannot be larger. Hence, the algorithm uses this LP to construct
a valid strategy b1 in every imperfect recall information set where the results prescribe
inconsistent behavior.

Finally, we use ∑
σk

1∈seq1(I1)

L(σk1 , a)

as the heuristic estimate of the contribution of action a to the overall approximation
error. The function SelectAction returns the action with the highest such estimate over all
I1 ∈ IIR1 .

4.4.2.2 Theoretical Properties of the IRABnB Algorithm

The IRABnB algorithm takes the error bound ε as the input. First, we provide a method
for setting the Pmax(I1, a) parameters to guarantee that IRABnB returns ε-maxmin strat-
egy for player 1. Finally, we provide a bound on the number of iterations the algorithm
needs to terminate. Notice that the NP-hardness result from Theorem 3.1.1 applies to
both settings where IRABnB is applicable.

Theorem 4.4.1. Let Pmax(I1) be the maximum number of digits of precision used for
representing variables x(a), ∀a ∈ A(I1) set as

Pmax(I1) =

⌈
max
h∈I1

log10

|A(I1)| · d · vmax(h)− vmin(h)

2ε

⌉
,

where vmin(∅), vmax(∅) are the lowest and highest utilities for player 1 in the whole game,
respectively. With this setting IRABnB is guaranteed to return an ε-optimal maxmin
strategy for player 1.
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Proof. Let us first show that the limits on the number of refinements Pmax(I1) are sufficient
to allow representation of ε-maxmin strategy of player 1. The proof is conducted in the
same case by case manner as the proof of Theorem 4.3.2. Here we focus only on the case
4 from the proof of Theorem 4.3.2, which handles histories from some imperfect recall
information set. In the rest of the cases, we again assume that players play such that the
action leading to the child with maximal bound on loss is chosen.

Let I1 ∈ IIR1 and h ∈ I1. We know that when using Pmax(I1) of digits to represent the

strategy in I1, the L1 distance between behavioral strategies in I1 is at most 10−Pmax(I1) ·
|A(I1)| (Proposition 4.3.1). This means that the bound in h from case 4 in the proof of
Theorem 4.3.2 is modified to:

max
b12,b

2
2∈B2

|uh1 (y1, b
1
2)− uh1 (yh1 , b

2
2)|

≤ max
b12,b

2
2∈B2

|uh1 (y−h1 , b12)− uh1 (yh1 , b
2
2)|+ max

b12,b
2
2∈B2

|uh1 (y1, b
1
2)− uh1 (y−h1 , b22)|

≤ vdiff (h)

2
· 10−Pmax(I1) · |A(I1)|+ max

a∈A(h)
L(h · a)

≤ vdiff (h)

2
· |A(I1)| · 2ε
|A(I1)| · d · vdiff (h)

+ max
a∈A(h)

L(h · a)

=
ε

d
+ max
a∈A(h)

L(h · a).

Similarly to the proof of Theorem 4.3.2, it suffices to assume that players choose actions
deterministically in every node to obtain the upper bound on the error. The path induced
by these choices contains at most d imperfect recall nodes, thus L(∅) = d · ε/d = ε.

Finally, we show that IRABnB is guaranteed to reach the precision guarantees which
result in ε-optimal maxmin strategy. This holds since (1) the upper and lower bound
on the best worst case value of player 1’s strategy with a given precision restrictions
are correct (follows directly from their computation), hence the branch-and-bound search
never prunes away the branch with the optimal solution, (2) the IRABnB always retrieves
the node with the highest upper bound from the fringe and (3) the algorithm terminates
only when an ε-maxmin strategy for player 1 is found.

Theorem 4.4.2. When using Pmax(I1) from Theorem 4.4.1 for all I1 ∈ IIR1 and all
a ∈ A(I1), the number of iterations of the IRABnB algorithm needed to find an ε-optimal
solution is in

O

((
34 log10(S1)+4

ε2

)S1
)

where S1 = |IIR1 |Amax1 .

Proof. We start by proving that there is n ∈ O(34|I1|Amax
1 Pmax) nodes in the BnB tree,

where Amax1 = maxI∈IIR1
|A(I)| and Pmax = maxI∈IIR1

Pmax(I). This holds since in
the worst case we branch for every action in every information set, hence |IIR1|Amax1

branchings. We can bound the number of branchings for a fixed action by 4 · Pmax, since
there are 10 digits on which we use binary halving and at most Pmax number of digits of
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precision are required. 4|I1|Amax1 Pmax is, therefore, the maximum depth of the branch-
and-bound tree. Finally, the branching factor of the branch-and-bound tree is at most 3
(we add at most 3 successors in every iteration of Algorithm 1).

By substituting

max
I1∈I1

⌈
max
h∈I1

log10

|A(I1)| · d · vdiff (h)

2ε

⌉
for Pmax in the above bound (Theorem 4.4.1), we obtain

n ∈ O
(

3
4S1 maxI1∈I1

⌈
maxh∈I1 log10

|A(I1)|·d·vdiff (h)

2ε

⌉)
,where S1 = |I1|Amax1

∈ O
(

3
4S1 maxI1∈I1

⌈
log10

|A(I1)|·d·vdiff (∅)
2ε

⌉)
∈ O

(
3

4S1 maxI1∈I1

⌈
log10

S1vdiff (∅)
2ε

⌉)
∈ O

(
3

4S1

⌈
log10

S1·vdiff (∅)
2ε

⌉)
∈ O

(
3

4S1

(
log10

S1·vdiff (∅)
2ε +1

))
∈ O

(
34S1(log10(S1·vdiff (∅))−log10(2ε)+1)

)
∈ O

(
34S1(log10(S1·vdiff (∅))+1)3−4S1 log10(2ε)

)
∈ O

(
34S1(log10(S1·vdiff (∅))+1)3

−4S1
log3(2ε)

log3(10)

)
∈ O

(
34S1(log10(S1·vdiff (∅))+1)(2ε)

−4S1
log3(10)

)
∈ O

(
34S1(log10(S1·vdiff (∅))+1)(2ε)−2S1

)
∈ O

(
34S1(log10(S1·vdiff (∅))+1)2−2S1ε−2S1

)
∈ O

(
34S1 log10(S1·vdiff (∅))34S12−2S1ε−2S1

)
∈ O

(
34S1 log10(S1·vdiff (∅))21S1ε−2S1

)
∈ O

((
34 log10(S1·vdiff (∅))+4

ε2

)S1
)

Finally, we can substitute vdiff (∅) by 1, since we can modify the utility structure of the
game to have utilities in [0, 1] interval.

The main disadvantage of IRABnB is that the size of the LP solved in every iteration
is linear in the size of the game and the algorithm can refine the precision of bilinear term
approximation in parts of the game that may not be relevant for the final solution. To
reduce the size of the solved LP and to focus the refinements of the precision of bilinear
term approximation to relevant parts of the game, an incremental strategy-generation
technique modified for imperfect recall EFGs can be employed.
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4.4.3 Double Oracle IRABnB for Imperfect Recall EFGs

In this section, we introduce the DOIRABnB (Double Oracle Imperfect Recall Abstrac-
tion Branch-and-Bound) algorithm combining ideas of IRABnB and DOEFG. Adapting
the ideas of DOEFG for games with imperfect recall poses several challenges that we need
to address. To solve the restricted game means to compute the maxmin strategy for player
1. However, solving the restricted game requires calling IRABnB search that iteratively
refines the approximation of bilinear terms instead of solving a single (or a pair of) LPs
in DOEFG for perfect recall games. DOIRABnB thus makes an integration of two it-
erative methods and decides when to expand the restricted game and when to refine the
approximation of bilinear terms already in the restricted game.

We first provide the pseudocode of the algorithm with its description, followed by
formal definitions of all the necessary components of the algorithm.

In Algorithm 2 we present the DOIRABnB algorithm. Similarly to IRABnB, the
algorithm performs a branch and bound search. Every branch and bound node n stores the
LP with corresponding precision adjustments to the bilinear term approximation, lower
bound on the maxmin value of player 1 and an upper bound on the value achievable in
the whole game in the subtree of n. The list of currently active nodes is stored in the
fringe. The node with the highest lower bound encountered is stored in opt. There are
two differences from IRABnB: (1) through the run, DOIRABnB incrementally builds
the restricted game Ḡ, and when solving the LP for any branch and bound node, the LP is
always built to solve the current Ḡ. (2) DOIRABnB uses function Add to add any node to
the fringe. The function Add (lines 20 to 29) repeatedly uses the maximizing player oracle
(line 24, Section 4.4.3.2) to make sure that before adding the node to the fringe we first
update the restricted game so that solving the LP for Ḡ and current precision restriction
gives an upper bound on the value of the LP applied to the original game with the same
precision restrictions (see Section 4.4.3.3 for more details). This is required to guarantee
the convergence of the algorithm to ε-maxmin strategy for player 1.

Note that DOIRABnB does not simply use the double oracle approach to solve LP in
every single node to optimality, instead it applies the oracles of the maximizing and mini-
mizing player separately to avoid increasing the size of the restricted game unnecessarily,
while making sure that the algorithm works with valid upper bound on the value in the
original game.

The algorithm starts with an empty restricted game Ḡ. Lines 1 to 11 are the same as
in the IRABnB algorithm. Additionally, in every iteration, DOIRABnB checks whether
the bounds in the current node were computed in some smaller restricted game than the
current Ḡ (line 12). If yes, DOIRABnB recomputes the bounds on the current restricted
game, returns the node to the fringe (line 13) and continues with the next iteration. This
is done to make sure that DOIRABnB does not make unnecessary precision adjustments
due to imprecise bounds. Else, if bounds come from the same game as the current restricted
game Ḡ, the algorithm checks whether Ḡ can be expanded by the minimizing player oracle
(line 14, see Section 4.4.3.2). If Ḡ can be expanded, we expand it, resolve with the current
precision restrictions and return the node to the fringe (lines 15, 16). Note that we do
not use the maximizing player oracle at this point, because the expansion by maximizing
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Algorithm 2: DOIRABnB algorithm

input : Initial LP relaxation LP0 of Upper Bound MILP, Initial restricted game Ḡ
output : ε-optimal strategy for the maximizing player
parameters: Bound on maximum error ε, bound Pmax for bilinear term precision

approximation

1 fringe← {(LP0,−∞,∞)}
2 opt← (LP0,−∞,∞)
3 while fringe 6= ∅ do
4 (LP, lb, ub)← arg maxn∈fringe n.ub

5 fringe← fringe \ (LP, lb, ub)
6 if opt.lb ≥ ub then
7 return ReconstructStrategy(opt)
8 if opt.lb < lb then
9 opt← (LP, lb, ub)

10 if ub− lb ≤ ε then
11 return ReconstructStrategy(opt)
12 if FromSmallerG(Ḡ, LP) then
13 Ḡ←Add(Ḡ, LP)

14 else if ExpandableByMinPlayerOracle(Ḡ, LP) then
15 (Ḡ, LP)← ExpandByMinPlayerOracle(Ḡ, LP)
16 Ḡ←Add(Ḡ, LP)

17 else
18 (I1, a)← SelectAction(LP)
19 AddSuccessors(LP, I1, a, Pmax, Ḡ)

20 function Add(Ḡ, LP)
21 LP0 ← LP, t← 1

22 (lb, ub, B̂1
2)← Resolve(Ḡ, LP0)

23 while t = 1 || LPt−2 6= LPt−1 do

24 (Ḡ, LPt)← ExpandByMaxPlayerOracle(Ḡ, LPt−1, B̂t2)
25 (Ḡ, LPt)← UpdateUtilities(Ḡ, LPt, B̂t2)
26 (lb, ub,BLPt

2 )← Resolve(Ḡ, LPt)

27 B̂t+1
2 ← B̂t2 ∪ B

LPt
2 , t← t+ 1

28 fringe← fringe ∪ (LPt−1, lb, ub)
29 return Ḡ

player oracle is used when adding the node to the fringe in function Add (as described in
Section 4.4.3.3). Otherwise, if Ḡ cannot be expanded, the algorithm continues in the same
way as IRABnB. It heuristically selects bilinear terms corresponding to action a from the
current restricted game Ḡ (line 18, as described in Section 4.4.2.1). The algorithm then
creates new nodes and adds new variables and constraints into the LPs in these nodes that
further restrict possible values of x(a). Next, if the maximal allowed precision permits,
DOIRABnB creates an additional node with increased precision of representation of x(a).
Finally, it adds the new nodes to the fringe (line 19) using the Add function.
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4.4.3.1 The Restricted Game.

This section formally defines the restricted game Ḡ = (N , H̄, Z̄, Ā, ū, C, Ī) of the original
unrestricted game G = (N ,H,Z,A, u, C, I). The restricted game Ḡ is built to guarante
that solving the LP with a given precision restrictions for Ḡ gives an upper bound on the
solution of the LP for the original game with the same precision restrictions, when the
player 2 plays some strategy from a set B̂2. By B̂2 we denote a subset of all strategies
of player 2 from the restricted game Ḡ extended by the default strategy (playing first
action available in each decision point). In Section 4.4.3.2 we present the oracles used
to construct the restricted game to guarantee such bound. In Section 4.4.3.3 we explain
how to iteratively build B̂2 which combined with the use of the oracles guarantees that
the solution of the LP gives an upper bound, this time when the player 2 can play any
strategy from the original game G.

The restricted game is limited by a set of allowed sequences Φ̄ ⊆ Σ, that are returned
by the oracles. An allowed sequence σi ∈ Φ̄ might not be playable to the full length due to
missing compatible sequences of the opponent. Therefore, the restricted game is defined
using the maximal compatible set of sequences Σ̄ ⊆ Φ̄. Formally

Σ̄i = {σi ∈ Φ̄i|∃σ−i ∈ Φ̄−i ∃h ∈ H : seqi(h) = σi ∧ seq−i(h) = σ−i},∀i ∈ N . (4.16)

The sets H̄, Ā are the subsets of H, A reachable when playing sequences from Σ̄. Ī
defines the same partition as I on the reduced set H̄, i.e., for all h, h′ ∈ H̄, holds that
h, h′ ∈ I for some I ∈ Ī in the restricted game if and only if h, h′ ∈ I for some I ∈ I in
the original game. The set of leaves in Ḡ is a union of leaf nodes of G present in Ḡ and
inner nodes from G that do not have a valid continuation in Σ̄

Z̄ = (Z ∩ H̄) ∪ {h ∈ H̄ \ Z|Ā(h) = ∅}. (4.17)

We refer to the members of the set Z̄ \ Z as temporary leaves. Note that if not stated
otherwise, when we operate with a strategy from the restricted game in the whole unre-
stricted game, we automatically assume that it is extended by a default strategy playing
the first action available as in DOEFG.

We define the temporary utility value in every z ∈ Z̄ as ū1(z, B̂2) so that ū1(z, B̂2) is
an upper bound on the value the player 1 can guarantee in the original game G in z, when
the minimizing player plays any strategy from the set B̂2. Formally, we use

ū1(z, B̂2) = max
b2∈B̂2

ûz1(b2),∀z ∈ Z̄, (4.18)

where ûz1(b2) stands for the expected value of player 1 in the original game G when start-
ing in z and playing a strategy from the coarsest perfect recall refinement of G maximizing
the expected value in z against b2 (remember that b2 is extended by the default strategy).
We define ûz1(b2) in such way since the best response of player 1 against b2 in the coars-
est perfect recall refinement is easy to compute as shown in Lemma 3.3.4 (player 1 has
imperfect recall in G hence computing the best response there is NP-hard). Furthermore,
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Figure 4.4: An A-loss recall game where the maxmin strategy for player 1 is not a best
response to any of the pure best responses of player 2.

since we give more information to player 1 in the coarsest perfect recall refinement, ûz1(b2)
is guaranteed to be an upper bound on the maximal expected value in z achievable by
player 1 against b2 ∈ B̂2 in G. The set B̂2 is built in function Add using best responses
of player 2 taken from the solution of the LP by finding actions corresponding to active
Constraint (4.1h) (see Section 4.4.3.2 for details). Notice that the ū1 might differ in every
iteration of the algorithm, since B̂2 can change.

4.4.3.2 Updating the Restricted Game.

In this section we dicuss the oracles used in DOIRABnB and the way their results are
used to expand the restricted game (lines 15 and 24 in Algorithm 2). Note that the oracle
of the maximizing player is given B̂2 (see Section 4.4.3.3 for details on construction of B̂2)
and expands the restricted game with respect to the strategies in B̂2.

Minimizing player oracle. The minimizing player plays a best response in the
final maxmin solution of the game, hence, similarly to DOEFG we use the best response
computation as the oracle of player 2. In every iteration we compute bBR2 ∈ BR2(b1) in
the original game G, where b1 is the strategy of player 1 computed by DOIRABnB in the
current node and current restricted game extended by the default strategy. The algorithm
extends Φ̄2 by all the valid continuations of σ2 ∈ Φ̄2 by actions in bBR2 and update Σ̄
accordingly.

Maximizing player oracle. The best response is not a sufficient oracle of the max-
imizing player 1 since his maxmin strategy does not have to consist of best responses to
pure strategies of the minimizing player.

Example 4.4.1. Consider the game in Figure 4.4. The maxmin strategy for player 1 is
playing b and e deterministically, guaranteeing the maxmin value −1. Notice, however,
that playing b and e is not a best response to any pure strategy of player 2. Since during
the run the DOIRABnB only computes pure best responses of player 2, the best response
oracle for the maximizing player 1 would never add states h2 and h3 and so the DOIRA-
BnB would never find the correct solution.

To fix this, the algorithm keeps track of possible extensions of the restricted game by
taking actions in states of the maximizing player 1. To do that, the algorithm uses a set
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of pending states
Hp = {h ∈ H \ H̄|∃h′ ∈ H̄1∃a ∈ A(h′) : h′a = h}, (4.19)

which contains all the states h not in the restricted game, whose parent h′ is in the
restricted game and player 1 makes decision in h′. Since we build Ḡ to find strategy of
player 1, which is optimal against the strategies from B̂2 there is no point in adding h ∈ Hp
which are not reachable by any b2 ∈ B̂2. Hence, we take a subset H′p ⊆ Hp such that all

h ∈ H′p are reachable by some b2 ∈ B̂2. Furthermore, we can exclude pending states which

cannot improve the expected value of the player 1 against any b2 ∈ B̂2. Formally, by H∗p
we denote a subset of H′p, where for all h ∈ H∗p holds that

ū1(h, B̂2) ≥ min
b2∈B̂2

uh
′

1 (b1, b2),

where h′ is the parent of h, b1 is the strategy of player 1 from the current LP extended
by the default strategy and uh1(b1, b2) stands for the expected value in state h when play-
ers play according to b1, b2. When expanding the restricted game, we add to Φ̄ all the
sequences leading to all h ∈ H∗p.

Example 4.4.1 (continued). When using the pending states as an oracle of player 1 in
the game in Figure 4.4, we always add the states h2 and h3. For example when h2 is
not a part of the restricted game, player 1 cannot play action b. h2 is then added by
the maximizing player oracle since all the strategies of player 1 not playing action b can
guarantee the expected value of at most −2 in the h1 against the worst case opponent. On
the other hand, ū1(h2, B̂2) ≥ −1,∀B̂2 and so h2 is added to the restricted game.

Finally, let us explain the functions used in Algorithm 2. ExpandableByMinPlayer-

Oracle checks whether the oracle of the minimizing player suggests any sequence to
be added to the restricted game. ExpandByMinPlayerOracle and ExpandableByMax-

PlayerOracle add to the restricted game all the sequences suggested by the minimizing
player oracle and the maximizing player oracle respectively.

4.4.3.3 Adding Nodes to the fringe.

There are two requirements Ḡ needs to fulfill before adding any given node to the fringe
in function Add (lines 20 to 29) in order to guarantee that solving the LP for Ḡ and given
precision restrictions gives an upper bound on the value of the LP for the original game
with the same precision restrictions. (1) The function Add needs to make sure that the
restricted game is built so that player 1 has no deviation outside of the restricted game,
which could increase his expected value. Let us demonstrate this in the following example.

Example 4.4.2. Consider the game in Figure 4.5 (left). Assume that the restricted game
Ḡ consists of states {h1, h2, h3, z1, z2, z3, z4} and there are no precision restrictions. If we
solve the restricted game we obtain the value 0 for player 1; however, maxmin strategy for
player 1 is to play x guaranteeing the expected value 1.
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Figure 4.5: Games for demonstration of the necessity of the Add function.

(2) The utility ū1 in all z ∈ Z̄, which is going to be used to construct the LP must be
an upper bound on the worst case utility of player 1 against all the possible best responses
b2 ∈ BLP2 corresponding to active Constraints (4.1h) after solving this LP. Hence the utility
must be set according to the possible behavior of the minimizing player, which depends
on the utility in question. This is required since strategies b2 ∈ BLP2 can define behavior
also outside of the restricted game due to information sets of player 2 that can be only
partially present in the restricted game. It is, therefore, insufficient to assume that player
2 plays using only default strategy in every information set outside of the restricted game.
Since the algorithm sets the utility in the Z̄ \ Z to a fixed value (therefore not reflecting
the changing behavior of player 2 in the LP), it needs to make sure that the value is an
upper bound against all possible strategies player 1 can face to obtain the required upper
bound by solving the LP. Let us demonstrate this in the following example.

Example 4.4.3. Consider the game in Figure 4.5 (right). Assume that the restricted
game Ḡ consists of states {h1, h2, h3, z3, z4} and there are no precision restrictions. h2 is
a temporary leaf in Ḡ; hence we need to compute a temporary utility value for it. Let us
first discuss what would happen if we do not consider the behavior in the restricted game
and use the value from the leaf reachable after the default strategy (playing the first action
in every state). The default strategy leads to the terminal state z1 with utility −2. Solving
the restricted game using −2 as the temporary utility value for h2 leads to strategy with
the worst case expected value −2. However, the maxmin value of player 1 in the original
game is 0 achievable by playing uniformly in h1.

In the function Add we iterativelly update the restricted game until we are guaranteed
to obtain a correct upper bound. To do that, the function Add builds in every iteration
T a set B̂T2 as a union of all the BLPt

2 obtained by solving the LPt in every iteration
t ∈ {0, ..., T − 1} (lines 26, 27) in the current invocation of the function Add. In every
iteration T the function Add expands Ḡ using the oracle of the maximizing player for the
current set B̂T2 (line 24) and updates the utilities in Ḡ again using the current set B̂T2 (line
25). The algorithm iterates in function Add until the LPs from last two iterations are
equal, and only then is the given node added to the fringe.

Example 4.4.2 (continued). Consider again the game in Figure 4.5 (left). The function
Add will ensure that z5 is added to Ḡ since z5 ∈ H∗p and so it will be added by the maximizing
player oracle.
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Example 4.4.3 (continued). Consider again the game in Figure 4.5 (right). We did not
receive a correct upper bound by solving the restricted game, since setting the temporary
utility value to −2 in h2 is incorrect. Player 2 plays action d in the solution of the LP0

to force the resulting value to be −2 but the −2 in h2 was obtained assuming that player
2 will play c as a part of his default strategy (playing c and d is mutually exclusive). To
solve this, the function Add performs another iteration, where it sets the utility in h2 to
ū1(h2, B̂1

2), where B̂1
2 = BLP0

2 is the singleton containing the strategy playing d obtained as
the best response from the solution of the LP0. In this iteration the algorithm correctly
sets ū1(h2, B̂2) = 2. After solving Ḡ we get value 2, which is the desired upper bound on
the maxmin value in the original game with no precision restrictions.

4.4.3.4 Theoretical Properties.

Here we demonstrate that if IRABnB is guranteed to find ε-optimal maxmin strategy
for some precision parameters Pmax, DOIRABnB is also guaranteed to find ε-optimal
maxmin strategy for the same Pmax.

Lemma 4.4.1. Every node n ∈ fringe in every iteration of DOIRABnB has a valid lower
bound on the maxmin value of player 1 in the original game G.

Proof. The lower bound is valid, since it is computed as u1(b1, b2), where b1 is the current
solution of the LP corresponding to n applied to the current restricted game Ḡ, extended
by the default strategy and b2 ∈ BR2(b1) in the original game G. Since the maxmin
strategy b∗1 of player 1 maximizes its expected value assuming the worst case opponent,
u1(b1, b2) must be lower or equal to the maxmin value of the game.

Lemma 4.4.2. The upper bound in every node n ∈ fringe for the corresponding precision
restrictions in every iteration of DOIRABnB forms an upper bound on the value of the
LP with the same precision restrictions applied to the original game G, hence the upper
bound in the node n is higher or equal to the upper bound in the node used in IRABnB
applied to G with the same precision restrictions.

Proof. We add all nodes to the fringe using function Add. Since we iterate in function Add

until the LPT in the current iteration T is equal to the LPT−1, we are sure that there is
no deviation of the player 1 outside of Ḡ which can increase his worst case expected value
against any b2 ∈ B

LPT−1

2 , since adding any pending state would cause LPT to be different
from LPT−1. Additionally, since the LPT and LPT−1 are equal, we are sure that none of

the b2 ∈ B
LPT−1

2 change the utility structure created using B̂T−1
2 , hence

ū1(z, B̂T−1
2 ) ≥ ū1(z,BLPT−1

2 ),∀z ∈ Z̄. (4.20)

Player 1 cannot increase his expected value by playing outside of the restricted game
against any b2 ∈ B

LPT−1

2 . Furthermore, every z ∈ Z̄ has assigned an upper bound on the

expected value player 1 can guarantee in z against any b2 ∈ B
LPT−1

2 in the original game.
Hence, the value of the LPT−1 is an upper bound on the value of the LP with the same
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precision restrictions in G. Finally, since LPT is equal to LPT−1 the same holds for the
value of LPT .

Theorem 4.4.3. If the IRABnB algorithm is guaranteed to return ε-optimal maxmin
strategy for precision parameters Pmax, the DOIRABnB returns ε-optimal maxmin strat-
egy for the same precision parameters Pmax.

Proof. When DOIRABnB reaches a node where the upper and lower bound are at most
ε distant, we are sure that we have found an ε-optimal solution of the original game.
This holds since (1) the node has correct bounds on the value achievable in the origi-
nal game with given precision restrictions (Lemmas 4.4.1, 4.4.2), (2) the DOIRABnB
always retrieves the node with the highest upper bound from the fringe (line 4). Addi-
tionally, DOIRABnB is guaranteed to reach this node, since it never prunes away the
branch containing the optimal solution in the space of precision restrictions (again from
the correctness of the upper and lower bound from Lemmas 4.4.1, 4.4.2).

When DOIRABnB reaches the node with the precision restrictions guaranteeing an
ε-optimal solution in the original game, the bounds might be more than ε distant due to
the insufficiently built restricted game. This is caused by the temporary leaves z ∈ Z̄ \Z.
The DOIRABnB assigns to every z ∈ Z̄ \Z a temporary utility which is an upper bound
on the actual utility which player 1 can guarantee against the worst-case opponent in z
in the original game. Hence the strategy b1 computed for the current restricted game can
prefer some temporary leaf z ∈ Z̄ \ Z based on this possibly overestimated utility value.
However, when computing the bBR2 ∈ BR(b1) where b1 is extended by the default strategy
in the original game, the value uz1(b1, b

BR
2 ) can be significantly smaller than the temporary

utility value in z. The oracle of the minimizing player, however, expands Ḡ by actions
in bBR2 . Since bBR2 exploits the difference in the temporary utility in z and the actual
expected value in z obtained when playing according to b1, b

BR
2 , z has to be reached when

playing according to these strategies. The restricted game is, therefore, expanded by the
action a ∈ A(z) played in bBR2 and z is no longer a temporary leaf after the expansion. The
expansion of the temporary leaves continues until there is no temporary leaf where player
2 can exploit the overestimated value of the temporary utility (lines 14, 24 in Algorithm 2).
Hence the reason for the difference in the bounds directly implies that the expansion of the
restricted game on line 14 will occur. The DOIRABnB terminates when the restricted
game is built sufficiently to allow the distance of bounds to decrease to at most ε. This
must happen after a finite number of steps since in the worst case the algorithm builds
the entire original game.

Finally, the fact that there is ε-optimal solution when using given precision parameters
Pmax is guaranteed by the assumption that IRABnB is guaranteed to find the ε-optimal
solution for the same parameters in the original game.

4.5 Experiments

In this section, we provide an experimental evaluation of the performance of DOIRA-
BnB, IRABnB and the Base. Furthermore, we demonstrate the possible space savings
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in the size of the strategy representation when employing imperfect recall abstractions
and discuss the quality of strategies resulting from solving these abstractions. Since there
is no standardized collection of benchmark EFGs, the experiments are conducted on a
set of Random games, an imperfect recall search game and an imperfect recall variant of
OshiZumo. All algorithms were implemented in Java, each algorithm uses a single thread,
8 GB memory limit and we use IBM ILOG CPLEX 12.6.2 to solve all LPs/MILPs.

Random Games. We use randomly generated games to obtain statistically significant
results. We randomly generate a perfect recall game with varying a branching factor and
a fixed depth of 6. To control the information set structure, we use observations assigned
to every action – for player i, nodes h with the same observations generated by all actions
in history belong to the same information set. To obtain imperfect recall games with
a non-trivial information set structure, we run a random abstraction algorithm which
merges information sets for all i ∈ N according to parameter p in the following way. Let
{I1

i , ..., Ini } be the largest possible disjoint subsets of Ii of the perfect recall game such
that

∀Iki ∈ {I1
i , ..., Ini }∀Ii, I ′i ∈ Iki |seqi(Ii)| = |seqi(I ′i)| ∧ |A(Ii)| = |A(I ′i)|,

and
⋃
Iki ∈{I1

i ,...,Ini }
Iki = Ii. Each Iki ∈ {I1

i , ..., Ini } contains candidates for merging.

Let J ⊆ Iki be a set that initially contains a random element I ∈ Iki . We iterate over all
I ′ ∈ Iki \ I, and add I ′ to J with probability p. To create the abstraction we iteratively
choose the subset J of Iki , create abstracted set containing all elements of J , and remove
J from Iki . This procedure repeats until Iki is empty and is performed for all Iki ∈
{I1

i , ..., Ini }. We further update the abstraction by splitting the information sets of the
minimizing player to make sure that he has A-loss recall. We generate a set of experimental
instances by varying the branching factor and the parameter p. Our random games are
rather difficult to solve since (1) information sets can span multiple levels of the game
tree (i.e., the nodes in an information set often have histories with differing sizes) and (2)
actions can easily lead to leaves with very different utility values.

OshiZumo. We use a modification of OshiZumo described, e.g., in [5]. The game
is played by two players; both start with a given number of coins. At the beginning of
a game, a sumo wrestler is positioned at the center of a one-dimensional playing field
which consists of 7 positions. In every turn of the game, each player uses some amount
of his coins to place a bid. The highest bidder pushes the wrestler one location towards
the opponent’s side. If the bids are equal, the wrestler does not move. Either way, both
players lose all the coins they used to make the bid and the game proceeds until the money
runs out or the wrestler is pushed off the field. The players observe only their bid and
whether they won or not. The bid of the opponent is never revealed. It is a zero-sum
game, where the final position of the wrestler determines the winner: if he is located at
the center, the game result is a draw. Otherwise, the player in whose half the wrestler is
located gets a negative utility equal to the number of positions between the wrestler and
the center of the playing field. In this paper, we create different instances of OshiZumo
by changing the number of coins available to players.
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Figure 4.6: Graph for the Search game. The attacker starts in the node S and tries to
reach the node G. The defender operates two units, each moving in one of the shaded
areas.

To create the imperfect recall abstraction of the OshiZumo, we give the maximizing
player only the information about the number of coins he has left, and whether he has
won in each of the previous rounds, hence he does not remember the exact bids he had
made. The minimizing player remembers both his bids and whether he won in each round.
Notice that we do not modify the information set structure of the minimizing player, and
so the original game is the coarsest perfect recall refinement of this abstraction for the
minimizing player.

Search Game. Our third domain is an instance of search (or pursuit-evasion) game,
used, e.g., in [7]. Search games are commonly used for evaluating incremental algo-
rithms [44]. The game is played on a directed graph shown in Figure 4.6 between attacker
and defender. The attacker tries to cross from the starting node S to his destination G.
The attacker can either move every turn, leaving tracks in each node he visits, or he can
move every other turn without leaving any tracks. The defender operates two units, each
moving in one of the shaded areas, trying to intercept the attacker by capturing him in a
node. The defender observes only the tracks left by the attacker and only in case one of
his units steps on the node with the track. The attacker does not have any information
about the defender units. The players move simultaneously. It is a zero-sum game, where
the attacker obtains utility 1 for reaching his destination and defender obtains utility 1
for intercepting the attacker. If a given number of moves is depleted without either of the
events happening, the game is considered a draw and both obtain utility 0. We assume
the defender to be the maximizing player.

To create an imperfect recall abstraction of the Search game, we give the defender
only information about the tracks he currently observes and the position of both of his
units without remembering the history of moves leading there. The attacker knows only
the sequence of his actions in the past. Notice that we do not modify the information
set structure of the minimizing player, and hence the original game is the coarsest perfect
recall refinement of this abstraction for the minimizing player.

4.5.1 Results

The main experiments are divided into 2 parts. (1) We compare the Base, IRABnB and
DOIRABnB algorithms to show how the different components used in the algorithms
influence the scalability. The results show that DOIRABnB outperforms IRABnB and

70



Approximating Maxmin Strategies in Imperfect Recall Games Using A-Loss
Recall Property

Base BnB DOBnB

p
=

0
.3

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

1

time [s]

# 
of

 in
st

an
ce

s

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

time [s]

# 
of

 in
st

an
ce

s

p
=

0
.6

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

1

time [s]

# 
of

 in
st

an
ce

s

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

time [s]

# 
of

 in
st

an
ce

s

p
=

0
.9

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

1

time [s]

# 
of

 in
st

an
ce

s

1 10 10^2 10^3 10^4 cutoff
0

0.2

0.4

0.6

0.8

1

time [s]

# 
of

 in
st

an
ce

s

Figure 4.7: Results for random games showing the relative cumulative number of instances
(y-axis) solved under a given time limit (x-axis) and the relative amount of instances
terminated due to the exceeded runtime in bars labeled cutoff. Rows contain results for
p = 0.3, p = 0.6, p = 0.9, columns show results for branching factor 3 and 4.

Base on smaller domains while providing significantly better scalability than the rest
thanks to the fact that the incremental strategy generation keeps the LP being solved
small while focusing the precision adjustments to relevant parts of the game tree. (2)
We demonstrate the immense space savings in the strategy representation achievable by
employing the simple imperfect recall abstractions described above. Additionally, we
show that solving these abstractions results in finding the maxmin strategy of the original
unabstracted game.

The ε in all the experiments was set to 10−4 · umax, where umax is the maximal utility
of the solved game.

4.5.1.1 Runtime comparison

Random Games. In Figure 4.7 we present the runtime results in seconds obtained on
random games. Every plot depicts the cumulative relative number of instances (y-axis)
solved under a given time limit (logarithmic x-axis). There were 100 instances of random
games solved for every setting. The rows contain results for random games with varying
p, the first column for branching factor 3, second for branching factor 4. The runtime of
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the algorithms was limited to 2 hours on every instance, the relative number of instances
terminated after this limit is reported in the bars labeled cutoff. The IRABnB usually
dominates the other two algorithms in the number of instances solved in the first time
interval. As the runtime grows, however, the performance of IRABnB decreases. This
is because IRABnB tends to spend a lot of time making adjustments in the irrelevant
parts of the game tree. On the other hand, the DOIRABnB outperforms the other two
algorithms across all the settings, and we can see a significant decrease in the number of
instances not solved in a given 2-hour limit, compared to Base and IRABnB. This is
because the DOIRABnB focuses adjustments to approximation precision to the relevant
parts of the game tree present in the restricted game while keeping the underlying LP
smaller. Note that the random games form an unfavorable scenario for all the presented
algorithms since the construction of the abstraction is completely random, which makes
conflicting behavior in merged information sets common. As we can see, however, even
in these scenarios the DOIRABnB is capable of solving the majority of instances with
branching factor 4 which have ∼ 3000 nodes in under 2 hours.

Table 4.1: Average relative amount of sequences for maximizing and minimizing player
respectively, added to the restricted game by DOIRABnB in random games.

p \ b. 3 4
0.3 46.1%± 2.9%, 22.2%± 1.8% 62.5%± 3.1%, 17.5%± 2.2%
0.6 58.9%± 2.8%, 23.3%± 2.0% 71.7%± 2.8%, 17.1%± 2.1%
0.9 68.2%± 2.5%, 24.0%± 1.8% 76.6%± 2.9%, 18.5%± 1.1%

In Table 4.1 we present the average relative amount of sequences for each player needed
by DOIRABnB to solve the random games for each setting along with the standard error.
The relative amount of sequences needed by the minimizing player is consistently smaller
because the restricted game is built to compute maximizing player’s robust strategy, while
the minimizing player only plays best responses during the computation. Even though the
size of the restricted game remains similar across all values of p, we observe an increase in
the relative size, since the number of sequences decreases as p increases.

OshiZumo. The DOIRABnB solved the game with 11 coins in 44 minutes using
0.9% sequences for the maximizing player and 0.2% sequences for the minimizing player.
The game has 3.5 · 106 states, 2.8 · 105 and 1.4 · 106 sequences for the maximizing and
minimizing player respectively. IRABnB and Base were able to solve the game with 9
coins in 20 seconds and 2 hours respectively, however, on the game with 10 coins none of
the two algorithms finished in 10 hours.

Search game. In case of Search game, the DOIRABnB was able to solve a game with
10 moves allowed for each player (with ∼ 5 ·109 states, ∼ 2 ·104 sequences for the attacker
and ∼ 4 · 107 sequences for the defender) using 0.002% of sequences for the defender and
0.2% sequences for the attacker in 1.2 hours. IRABnB and Base were able to solve the
game with 5 moves for every player in 12 seconds and 40 minutes respectively, however,
on the game with 6 moves none of the two algorithms finished in 10 hours.

The presented results show that DOIRABnB provides scalability which cannot be
achieved by IRABnB and Base because of their requirement to build the entire game.
Furthermore, the results on random games show that even on small games, where IRABnB
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and Base can be used, DOIRABnB provides the best performance and hence it is the
most efficient algorithm.

4.5.1.2 Size of Strategy Representation and Quality of Resulting Strategies

Here, we discuss the size of strategy representation needed in imperfect recall abstractions
compared to their perfect recall counterparts. Note that we use the number of information
sets of the maximizing player present in a given game for this purpose since in the worst
case a strategy needs to define behavior in each of them. Additionally, we provide results
showing the quality of the strategy resulting from solving these abstractions in the original
unabstracted game.

Table 4.2: The relative amount of information sets of the maximizing player in the imper-
fect recall abstractions with different number of remembered moves w.r.t. the number of
information sets of the maximizing player in the original game for the OshiZumo with 10
and 11 coins (left) and the Search game with depth 6 and 7 (right).

c. \ r. m. 0 1 2
10 3.27% 5.54% 9.30%
11 1.90% 3.27% 5.64%

d. \ r. m. 0 1 2
6 0.10% 0.46% 1.81%
7 0.03% 0.11% 0.42%

In Table 4.2 we present the relative amount of information sets of the maximizing
player in a specific abstraction compared to the unabstracted game for OshiZumo (left)
and Search game (right). In both domains, we use the perfect recall game and its imperfect
recall abstraction with rules described earlier in this section. Moreover, in both domains,
we experiment with refining the abstraction by giving the maximizing player information
about the last k moves he has made in the past (k is specified in the first row of every
column). In the case of OshiZumo, each row of the table represents the setting with the
number of coins specified in the first column. In the case of Search game, every row
corresponds to a different number of moves allowed for every player specified in the first
column. As you can see the number of information sets is dramatically smaller in all
the presented settings, showing that the use of imperfect recall abstractions can lead to
significant space savings. Additionally, the results suggest that the relative size will further
decrease with the increase in the size of the original unabstracted games.

Finally, we provide results showing the actual bounds on the maxmin value computed
during the run of DOIRABnB and the quality of the resulting strategies. In the first
column of Figure 4.8 we present more detailed results of DOIRABnB in OshiZumo with
11 coins. The plots depict the bounds on the maxmin value in every iteration of the
DOIRABnB algorithm, each row for an instance with different number of remembered
moves. As we can see DOIRABnB in all the abstractions converges to a strategy with
expected value against the minimizing opponent equal to 0. Since the maxmin value of the
original game is also 0 and all the assumptions in Corollary 4.4.1 are satisfied, it follows
that the maxmin strategy obtained by solving the abstraction is the maxmin strategy of
the original game. In the second column of Figure 4.8 we show similar results for Search
game with 7 moves for every player. The DOIRABnB in all the abstractions converges
to a strategy with expected value against the minimizing opponent equal to −1

3 which is
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Figure 4.8: The first column shows the convergence of the lower and upper bound in
DOIRABnB on OshiZumo with 11 coins as a function of iterations, each row for a different
number of remembered moves. Second column shows the convergence of the lower and
upper bound in DOIRABnB on Search game with depth 7 as a function of iterations,
each row for a different number of remembered moves.

again the maxmin value of the original perfect recall game. Since all the assumptions in
Corollary 4.4.1 are satisfied, it follows that the maxmin strategy obtained by solving the
abstraction is the maxmin strategy of the original game.
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Constructing Imperfect Recall
Abstractions to Solve Large
Extensive-Form Games

In this Chapter, we present two domain-independent algorithms which start from an ar-
bitrary imperfect recall abstraction of a given game and iteratively solve and refine this
abstraction until provable convergence to the desired approximation of the Nash equilib-
rium of the original game. In Section 5.1 we provide the comparison of the approaches
presented in this chapter to the state-of-the-art. In Section 5.2.1 we provide the notation
for the abstractions being used during the run of the algorithms. As a part of this section,
we present a domain-independent algorithm which creates a coarse imperfect recall ab-
straction of the given game if no initial abstraction is given. In Section 5.2.2 we introduce
the Fictitious Play for Imperfect Recall Abstractions (FPIRA). In Section 5.2.3 we intro-
duce the CFR+ for Imperfect Recall Abstractions (CFR+IRA). Finally in Section 5.3 we
compare the memory efficiency and runtime of FPIRA, CFR+IRA and DOEFG on a set
of diverse benchmark domains.

5.1 Comparison to the Current State-of-the-Art

There are several advantages of our algorithms compared to the state-of-the-art in solving
EFGs using abstractions described in Section 3.5.

(1) Both algorithms are domain independent, while the majority of the work mentioned
in Section 3.5 works specifically for poker.

2) Our algorithms use imperfect recall abstractions. Hence the possible memory savings
can be exponentially larger than in the case of approaches restricted to perfect recall.

(3) Our algorithms can be initialized by an arbitrary imperfect recall abstraction since
the choice of the initial abstraction does not affect the convergence guarantees of the
algorithms. Hence, e.g., in poker, we can use the existing state-of-the-art abstractions
used by the top poker bots. Even though these abstractions have no guarantee that they
allow solving the original poker to optimality, our algorithms will further refine these ab-
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stractions when necessary and provide the desired approximation of the Nash equilibrium
in the original game. If there is no suitable abstraction available for the solved game,
the algorithms can start with a simple coarse imperfect recall abstraction (we provide a
domain independent algorithm for constructing such abstraction) and again update the
abstraction until it allows approximation of the Nash equilibrium of the original game to
the desired precision.

(4) The strategy from the final abstracted game can be directly applied to the original
game without the need to use any translation techniques.

(5) The abstraction is built based on the intermediate results of the algorithm used to
solve it. Hence the abstraction is expected to be specifically tailored to the needs of the
given algorithm and therefore small.

The approach bearing the highest resemblance to FPIRA and CFR+IRA is the al-
gorithm for simultaneous action abstraction finding and game solving introduced in [10].
This algorithm builds a coarse action abstraction using only a small subset of the actions
of the original game. It then iteratively solves this abstraction using CFR and adds actions
to the abstraction until convergence to the Nash equilibrium. The algorithm is domain
independent with guaranteed convergence to the NE. However, its empirical success is
caused by the specific structure of poker where all the actions of players are public. The
algorithm iteratively adds parts of the original game denoted as imperfect information
subgames, which tend to be small in poker. However, when not restricted to poker, the
imperfect information subgame can have the size comparable to the size of the original
game. To show that CFR+IRA and FPIRA do not have such drawbacks, in Section 5.3
we empirically demonstrate that both algorithms perform well on a set of domains with a
diverse structure.

Additional conceptually similar approach is the DOEFG ([7], see Section 3.4.2) since
it also creates a smaller version of the original game and repeatedly refines it until the
desired approximation of the Nash equilibrium of the original game is found. Our algo-
rithms, however, use imperfect recall information abstractions during the computation,
while DOEFG uses a restricted perfect recall game, where the players are allowed to play
only a subset of their actions. Hence, the algorithms introduced in this article exploit a
completely different type of sparseness than DOEFG. We provide an experimental com-
parison of the memory and runtime required by FPIRA, CFR+IRA and DOEFG on a
diverse set of domains in Section 5.3.

5.2 Algorithms for Constructing and Solving Imperfect Re-
call Abstractions

In this section, we present the main algorithmic results of this chapter. We first discuss
the initial imperfect recall abstraction of a given two-player zero-sum EFG G which forms
a starting point of the algorithms. Note that in this section we focus on the scenario
where no initial abstraction is given, and the algorithms need to automatically build the
initial coarse imperfect recall abstraction. We follow with the description of the two
algorithms which iteratively solve and refine this abstraction until they reach the desired
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approximation of the Nash equilibrium of the original unabstracted game G. In Section
5.2.2 we present the FP based approach denoted as Fictitious Play for Imperfect Recall
Abstractions (FPIRA). In Section 5.2.3 we show the approach using a modification of
CFR+ to iteratively solve and refine this abstraction. We denote the algorithm CFR+
for Imperfect Recall Abstractions (CFR+IRA). We provide proofs of convergence of both
algorithms to the NE of the original unabstracted game and the discussion of memory
requirements and runtime performance of both algorithms.

5.2.1 Abstraction

As discussed before, the algorithms presented in this section can start from an arbitrary
initial imperfect recall abstraction. In Section 5.2.1.1, we demonstrate how to create a
coarse imperfect recall abstraction which serves as a starting point of the algorithms if no
initial abstraction is given.

We refer to the initial abstraction of the solved two-player zero-sum EFG G as G1 =
(N ,H,Z, u, I1,A1). In every iteration t, the algorithms operate with possibly more refined
abstraction with respect to G1, denoted as Gt = (N ,H,Z, u, It,At).

5.2.1.1 Initial Abstraction

Given a game G, the initial abstraction G1 is created in the following way: Each I ∈ I1
i

is formed as the largest set of information sets II of G, so that ∀I ′, I ′′ ∈ II |seqi(I ′)| =
|seqi(I ′′)| ∧ |A(I ′)| = |A(I ′′)|. Furthermore,

⋃
I∈I1 II = I. Informally, for each i ∈ N ,

the algorithm groups together information sets of i with the same length of the sequence
of i leading there and with the same number of actions available. Additionally, when
creating some abstracted information set I by grouping all information sets in II , we need
to specify the mapping Ξ−1

1 (a) for all a ∈ A1. When creating the initial abstraction, the
algorithm simply uses the order of actions given by the domain description to create A1

(i.e., the first action available in each I ′ ∈ II is mapped to the first action in A1(I), etc.).

5.2.2 Fictitious Play for Imperfect Recall Abstractions

Let us now describe the Fictitious Play for Imperfect Recall Abstractions (FPIRA). We
first give a high-level idea behind FPIRA. Next, we provide the pseudocode with the
description of all steps and prove its convergence in two-player zero-sum EFGs. Finally,
we discuss the memory requirements and runtime of FPIRA.

Given a perfect recall game G, FPIRA creates a coarse imperfect recall abstraction
G1 of G as described in Section 5.2.1.1. The algorithm then follows the FP procedure.
It keeps track of average strategies of both players in the information set structure of
the abstraction and updates the strategies in every iteration based on the best responses
to the average strategies. Note that the best responses are computed directly in G (see
Section 5.3 for empirical evidence that these best responses are small). To ensure the
convergence to Nash equilibrium of G, FPIRA refines the information set structure of the
abstraction in every iteration to make sure that the strategy update does not lead to more
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exploitable average strategies in the following iterations compared to the strategy update
made directly in G.

Algorithm 3: FPIRA algorithm

input : G, ε
output : b̄Ti , b̄T−i, G

T

1 G1 ← InitAbstraction(G)
2 b̄01 ← PureStrat(G1), b̄02 ← PureStrat(G1)

3 t← 1

4 while u1(BR(G, b̄t−1
2 ), b̄t−1

2 )− u1(b̄t−1
1 , BR(G, b̄t−1

1 )) > ε do
5 i← ActingPlayer(t)

6 bti ← BR(G, b̄t−1
−i )

7 Gt ← RefineForBR(Gt, bti, b̄
t
i)

8 b̂ti ← UpdateStrategy(Gt, b̄t−1
i , bti)

9 b̃ti ← UpdateStrategy(G, b̄t−1
i , bti)

10 if ComputeDelta(G, b̂ti, b̃
t
i) > 0 then

11 Gt+1 ← Refine(Gt), b̄ti ← b̃ti
12 else

13 Gt+1 ← Gt, b̄ti ← b̂ti
14 t← t+ 1

In Algorithm 3 we present the pseudocode of FPIRA. FPIRA is given the original
perfect recall game G = (N ,H,Z, u, I,A) and a desired precision of NE approximation ε.
FPIRA first creates the coarse imperfect recall abstraction G1 of G (line 1) as described
in Section 5.2.1.1. Next, it initializes the strategies of both players to an arbitrary pure
strategy in G1 (line 2). FPIRA then iterativelly solves and updates G1 until convergence
to ε−Nash equilibrium of G. In every iteration it updates the average strategy of one of
the players and if needed the information set structure of the abstraction (the game used
in iteration t is denoted as Gt). In every iteration player i first computes the best response
bti to b̄t−1

−i in G (line 6, Section 5.2.2.1). Since bti is computed in G, FPIRA first needs
to make sure that the structure of information sets in Gt allows bti to be played. If not,
Gt is updated as described in Section 5.2.2.2, Case 1 (line 7). Next, FPIRA computes b̂ti
as the strategy resulting from the update in Gt (line 8) and b̃ti as the strategy resulting
from the update in original game G (line 9). FPIRA then checks whether the update in
Gt changes the expected values of the pure strategies of −i compared to the update in G
using b̂ti and b̃ti (line 10, Section 5.2.2.2 Case 2). If yes, FPIRA refines the information
set structure of Gt, creating Gt+1 such that when updating the average strategies in Gt+1

no error in expected values of pure strategies of −i is created (Section 5.2.2.2, Case 2).
FPIRA then sets b̄ti = b̃ti (line 11), and continues using Gt+1. If there is no need to update
the structure of Gt, FPIRA sets Gt+1 = Gt, b̄ti = b̂ti and continues with the next iteration.
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Algorithm 4: Best response computation.

1 function BR(G, b̄−i)
2 bBRi ← ∅
3 BR(G.root, G, b̄−i, b

BR
i )

4 return bBRi

5 function BR(h, G, b̄−i, b
BR
i )

6 if π
b̄−i

i (h) = 0 then
7 return 0

8 if IsGameEnd(h) then

9 return C(h) · πb̄−i

i (h) · ui(h)
10 v ← GetValueFromCache(h)
11 if v 6= null then
12 return v
13 if GetPlayerToMove(h) = i then
14 I ← GetInformationSetFor(h, I)
15 amax ← arg maxa∈A(I)

∑
h′∈I BR(h′ · a, G, b̄−i, b

BR
i )

16 For each h′ ∈ I store vh′ = BR(h′ · amax, G, b̄−i, b
BR
i ) to cache

17 v ← BR(h · amax, G, b̄−i, b
BR
i )

18 bBRi ← bBRi ∪ {I → amax}
19 CleanUnreachable(bBRi )

20 else
21 v ←

∑
a∈A(h)BR(h · a, G, b̄−i, b

BR
i )

22 return v

5.2.2.1 Best Response Computation

In Algorithm 4 we present the pseudocode for computing the best response bBRi of i against
b̄−i in G. The algorithm recursivelly traverses the parts of the game tree reachable by b̄−i
and computes the best action to be played in each I ∈ Ii encountered. More formally, when
the best response computation reaches state h, where i plays, it first finds the information
set I such that h ∈ I (line 14). The algorithm then finds the action amax which maximizes
the sum of expected values of i, when i plays the best response to b̄−i, over all h ∈ I (line
15). The expected value of playing amax in h is prepared to be propagated up (line 17)
and the prescription of playing amax in I is stored to the best response (line 18). Notice,
that to eliminate revisiting already traversed parts of the game tree on lines 15 and 17,
we use cache. The cache stores the values computed by the BR for each h ∈ H visited
during the computation (line 16) and provides this value if h is revisited (lines 10 to 12).
Finally, since we are searching for a pure best response bBRi , there is no need to store
the behavior in the parts of the tree unreachable when playing bBRi . Hence to reduce the
memory needed to store bBRi , we delete the prescription in all I ∈ Ii which cannot be
reached due to player i playing amax (line 19).

In case of nodes of player −i and chance, the algorithm simply propagates up the
values of successors (line 21).
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Prunning. The implementation of the best response used in FPIRA incorporates
pruning based on the lower bound and upper bound in each node h of the game tree. The
lower bound represents the lowest value that needs to be achieved in h to make sure that
there is a chance that searching the subtree of h influences the resulting best response and
the upper bound represents the estimate of how much can the best responding player gain
by visiting h. For a more detailed discussion of the pruning see [7], Section 4.2.

5.2.2.2 Updating Gt

There are two reasons for splitting some I ∈ Ĩti in iteration t where player i computes the
best response. First, the best response computed in G prescribes more than one action
in I. Second, I causes the expected value of some pure strategy of −i to be different
against the average strategy of i computed in Gt compared to the expected value against
the average strategy computed in G. This can happen since I is an abstracted information
set, and hence updating the average strategy in I in Gt changes the behavior in multiple
information sets in G (see Example 5.2.1 for more details).

Case 1: Here we discuss the abstraction update which guarantees that the best response
bti computed in G is applicable in the resulting abstraction. This abstraction update first

detects every I ∈ Ĩti where the bti prescribes more than one action. It then splits each
such I by grouping the information sets in φ−1

t (I) to the largest possible subsets where
bti prescribes the same action. One additional information set is created containing all
I ′ ∈ φ−1

t (I) which are not reachable when playing bti.

In Algorithm 5 we show the pseudocode for this abstraction update. The algorithm
iterates over all abstracted information sets I ∈ Ĩti that can be visited when playing bti
(lines 2 and 3). Each such I is first divided to a sets of information sets Î and I ′′. Let
Îa ⊆ Φ−1

t (I) be a union of all I ′ ∈ Φ−1
t (I) where bti(I

′, a′) = 1 for Ξt(a
′) = a (lines 5 to

11). Î is a union of Îa for all a ∈ At(I) (lines 14 to 17). I ′′ contains all I ′ ∈ Φ−1
t (I) for

which bti does not prescribe any action (line 13). If there is more than one element in Î
(line 18), the average strategy before the strategy update in all information sets which are
about to be created is set to the strategy previously played in I (lines 19 to 21). Next, the
algorithm removes I from Gt (line 22). Finally, it creates new informations set for each
Îa ∈ Î, that contains all I ′ ∈ Îa and an information set containing all I ′ ∈ I ′′ (lines 23 to
26).

Case 2: Now we turn to the abstraction update guaranteeing that the expected values of
all pure strategies of −i against the average strategy of i computed in Gt are equal to the
expected values against the average strategy computed in G. As a part of this abstraction
update, FPIRA constructs the average strategy b̂ti resulting from the update in Gt and

b̃ti resulting from the update in G. It then checks whether there exists a pure strategy of

player −i which has different expected value against b̂ti and b̃ti. If there exists such pure
strategy, the abstraction is updated to guarantee that the average strategy update in the
abstraction results in b̃ti, and hence that there is no difference in the expected values of
pure strategies of −i.
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Algorithm 5: Abstraction update to accomodate best response.

1 function RefineForBR(Gt, bti, b̄
t
i)

2 for I ∈ Ĩti do

3 if π
bti
i (I) > 0 then

4 I ′′ ← ∅
5 for a ∈ At(I) do

6 Îa ← ∅
7 for I ′ ∈ φ−1

t (I) do
8 if ∃a ∈ A(I ′) such that bti(I, a) = 1 then
9 a′ ← a ∈ A(I ′) such that bti(I, a) = 1

10 a← Ξt(a
′)

11 Îa ← Îa ∪ I ′
12 else
13 I ′′ ← I ′′ ∪ I ′

14 Î ← ∅
15 for a ∈ At(I) do

16 if Îa 6= ∅ then

17 Î ← Î ∪ {Îa}
18 if |Î| > 1 then

19 for I ′ ∈ Î ∪ I ′′ do
20 b̄ti(I

′)← b̄ti(I)

21 b̄ti ← b̄ti \ b̄ti(I)
22 It ← It \ I
23 for Îa ∈ Î do

24 It ← It ∪ CreateNewIS(Îa)

25 if I ′′ 6= ∅ then
26 It ← It ∪ CreateNewIS(I ′′)
27 return Gt

More formally, the algorithm first constructs the average behavioral strategy b̂ti in Gt

(line 8 in Algorithm 3). This is done according to Lemma 3.4.1 from b̄t−1
i with weight

ti−1
ti

and bti with weight 1
ti

, where ti is the number of updates performed by i so far, plus 1

for the initial strategy (bti is used with mappings Φt and Ξt). Next, FPIRA constructs b̃ti
(line 9) in the same way in the information set structure of G (b̄t−1

i is used with mappings
Φ−1
t and Ξ−1

t ). FPIRA then computes

∆t
i = max

b−i∈BP
−i

|u−i(̃bti, b−i)− u−i(b̂ti, b−i)|,

as described below (line 10 in Algorithm 3). If ∆t
i = 0, all the pure strategies of −i have

the same expected value against both b̂ti and b̃ti. In this case, FPIRA sets Gt+1 = Gt,
b̄ti = b̂ti (line 13). If ∆t

i > 0, the expected value of some pure strategy of −i changed
when updating the strategy in Gt, compared to the expected value it would get against
the strategy updated in G. FPIRA then creates Gt+1 according to Algorithm 6 in the
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Algorithm 6: Abstraction update guaranteeing that the expected values of all pure
strategies of −i are the same against the strategy resulting from update in G and
Gt.
1 function Refine(Gt, bti, b̄

t
i)

2 for I ∈ Ĩti do

3 if π
bti
i (I) > 0 then

4 Î ← {I ′ ∈ φ−1
t (I)|πb

t
i
i (I ′) > 0}

5 I ′′ ← φ−1
t (I) \ Î

6 It ← It \ I
7 for I ′ ∈ Î ∪ I ′′ do
8 b̄ti(I

′)← b̄ti(I)

9 b̄ti ← b̄ti \ b̄ti(I)
10 if I ′′ 6= ∅ then
11 It ← It ∪ CreateNewIS(I ′′)
12 for I ′ ∈ Î do
13 It ← It ∪ CreateNewIS(I ′)

14 return Gt

following way. Every abstracted information set I ∈ Ĩti which is visited when playing bti
(lines 2 and 3) is first divided to sets of information sets Î ⊆ Φ−1

t (I) and I ′′. Î contains all

the I ′ ∈ Φ−1
t (I) for which π

bti
i (I ′) > 0 (line 4), I ′′ contains the rest of I ′ ∈ Φ−1

t (I) (line 5).
The average strategy before the strategy update in all information sets which are about to
be created is set to the strategy previously played in I (lines 7 to 9). The algorithm then
creates new information set for each Î ∈ Î, and an information set containing all I ′ ∈ I ′′
(lines 10 to 13). The strategy resulting from update in G is a valid strategy in Gt+1 after
such update, hence b̄ti = b̃ti. Notice that by setting b̄ti = b̃ti, we made sure that ∆t

i = 0
since the update is now equal to the update that would occur in G. This, as we will show
in Section 5.2.2.3, is sufficient to guarantee the convergence of b̄ti, b̄

t
−i to Nash equilibrium

of G.

Computing ∆t
i. Given b̂ti and b̃ti, ∆t

i can be computed as

∆t
i = max

b−i∈Bp
−i

∣∣∣∣∣∑
z∈Z
C(z)πb−i

−i (z)
[
π
b̃ti
i (z)− πb̂

t
i
i (z)

]
u−i(z)

∣∣∣∣∣ .
Let

u′−i(z) = C(z)
[
π
b̃ti
i (z)− πb̂

t
i
i (z)

]
u−i(z), ∀z ∈ Z (5.1)

u′′−i(z) = −C(z)
[
π
b̃ti
i (z)− πb̂

t
i
i (z)

]
u−i(z), ∀z ∈ Z. (5.2)

∆t
i can be computed in O(|Z|) by ComputeDelta depicted in Algorithm 7. The compu-

tation consists of two calls of function ComputePartialDelta similar to the computation of
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Algorithm 7: ∆t
i computation.

1 function ComputeDelta(G, b̂ti, b̃
t
i)

2 Let u′−i be the function from eq. (5.1)
3 Let u′′−i be the function from eq. (5.2)

4 return max(ComputePartialDelta(G.root, u′−i, b̂
t
i, b̃

t
i),

ComputePartialDelta(G.root, u′′−i, b̂
t
i, b̃

t
i))

5 function ComputePartialDelta(h, u′−i, b̂
t
i, b̃

t
i)

6 if π
b̂ti
i (h) = 0 ∧ πb̃

t
i
i (h) = 0 then

7 return 0
8 if IsGameEnd(h) then
9 return u′−i(h)

10 v ← GetValueFromCache(h)
11 if v 6= null then
12 return v
13 if GetPlayerToMove(h) = −i then
14 I ← GetInformationSetFor(h, I)
15 amax ← arg maxa∈A(I)

∑
h′∈I ComputePartialDelta(h′ · a, u′−i, b̂

t
i, b̃

t
i)

16 For each h′ ∈ I store vh′ = BR(h′ · amax, G, b̄−i, b
BR
i ) to cache

17 v ← ComputePartialDelta(h · amax, u′−i, b̂
t
i, b̃

t
i)

18 else

19 v ←
∑
a∈A(h)ComputePartialDelta(h · a, u′−i, b̂

t
i, b̃

t
i)

20 return v

the best response described in Section 5.2.2.1. The only difference is the use of functions
shown in eqs. (5.1) and (5.2) when evaluating the leaves (line 9). ComputePartialDelta
using u′−i searches for the largest positive difference in the utility of pure strategies of −i,
while ComputePartialDelta using u′′−i searches for the highest negative difference. The two
calls are neccessary, since ComputePartialDelta using u′−i cannot reliably detect negative
differences in the utility, since it will always prefer choosing pure strategy with no difference
in the utility over the pure strategy with the negative difference. Notice, that similarly to
the best response computation, we use cache to eliminate redundant tree traversals caused
by line 15.

Example 5.2.1. Let us demonstrate several iterations of FPIRA algorithm. Consider
the EFG from Figure 5.1(a) as G and the imperfect recall game from Figure 5.1 (b) as G1.
The function Ξ1 is Ξ1(t) = Ξ1(v) = c,Ξ1(u) = Ξ1(w) = d, identity otherwise. Note that
when we apply strategies from G to Gt and vice versa in iteration t, we assume that it is
done with respect to Ξt and Ξ−1

t . Lets assume that FPIRA first initializes the strategies
to b̄01(b) = b̄01(d) = 1, b̄02(e) = 1.

Iteration 1: The player 1 starts in iteration 1. FPIRA computes b11 ∈ BR(b̄02) in G,
resulting in b11(b) = b11(v) = 1. Next, FPIRA checks whether b11 is playable in G1. Since
there is no information set in G1 for which b11 assigns more than one action, we do not

need to update G1 in any way. We follow by computing b̂11 and b̃11 according to Lemma
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Figure 5.1: (a) G for demonstration of FPIRA iterations (b) G1 for demonstration of
FPIRA.

3.4.1 with λ1 = λ2 = 0.5. In this case b̂11(b) = b̃11(b) = 1, b̂11(c) = b̃11(v) = 0.5. Since b̂11
and b̃11 are equal, w.r.t. Ξ1, we know that ∆i = 0. Hence we let G2 = G1, b̄11 = b̂11 and
Ξ2 = Ξ1.

Iteration 2: Player 2 continues in iteration 2. Notice that information sets of player 2
were not changed, hence there is no need to discuss this iteration in such detail. FPIRA
computes the best response to b̄11, resulting in b22(f) = 1. The algorithm then computes b̂22
and b̃22, resulting in b̂22(e) = b̃22(e) = 0.5. Hence, we let G3 = G2, b̄22 = b̂22 and Ξ3 = Ξ2.

Iteration 3: The best response in this iteration is b31(a) = b31(u) = 1, which is again
playable in G3, hence we do not need to update G3 at this point. FPIRA computes b̂31
resulting in b̂31(a) = 1

3 , b̂
3
1(d) = 2

3 , b̃31 is, on the other hand, b̃31(a) = 1
3 , b̃31(u) = 1, b̃31(w) = 0.5

(both according to Lemma 3.4.1 with λ1 = 2
3 , λ2 = 1

3). In this case, ∆3
1 = 1

3 since by

playing f player 2 gets 2
3 against b̂31 compared to 1 against b̃31. Hence, the algorithm splits

all imperfect recall information sets reachable when playing b31, in this case I1, as described

in Section 5.2.2.2, Case 2, resulting in G. Therefore, G4 = G, b̄31 = b̃31 and Ξ4 is set to
identity.

5.2.2.3 Theoretical Properties

Here, we show that the convergence guarantees of FP in two-player zero-sum perfect recall
game G [27] directly apply to FPIRA solving G.

Theorem 5.2.1. Let G be a perfect recall two-player zero-sum EFG. Assume that initial
strategies b̄01, b̄

0
2 in FPIRA and initial strategies b̄′

0
1, b̄
′0
2 in the FP are realization equivalent,

additionally assume that the same tie breaking rules are used when more than one best
response is available in any iteration. The exploitability of b̄ti computed by FPIRA applied

to G is exactly equal to the exploitability of b̄′
t
i, computed by FP applied to G in all iterations

t and for all i ∈ N .

Proof. The proof is done by induction. If

∀b−i ∈ Bp−i : u−i(b̄
t
i, b−i) = u−i(b̄′

t
i, b−i), (5.3)

∀bi ∈ Bpi : ui(bi, b̄
t
−i) = ui(bi, b̄′

t
−i), (5.4)
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where Bp is the set of pure behavioral strategies in G, then

b−i ∈ Bp−i : u−i(b̄
t+1
i , b−i) = u−i(b̄′

t+1
i , b−i).

The initial step trivially holds from the assumption that initial strategies in FPIRA
and initial strategies and in FP are realization equivalent. Now let us show that the
induction step holds. Let bti be the best response chosen in iteration t in FPIRA and b′ti
be the best response chosen in t in FP. From (5.4) and the use of the same tie breaking
rule we know that bti = b′ti. From Lemma 3.4.1 we know that

∀b−i ∈ Bp−i : u−i(b̄′
t+1
i , b−i) =

ti
ti + 1

u−i(b̄′
t
i, b−i) +

1

ti + 1
u−i(b

′t
i, b−i).

However, same holds also for b̄t+1
i since FPIRA creates Gt+1 from Gt so that ∆t

i = 0.
Hence

∀b−i ∈ Bp−i : u−i(b̄
t+1
i , b−i) =

ti
ti + 1

u−i(b̄
t
i, b−i) +

1

ti + 1
u−i(b

t
i, b−i).

From (5.3) and from the equality bti = b′ti follows that

∀b−i ∈ Bp−iu−i(b̄
t+1
i , b−i) = u−i(b̄′

t+1
i , b−i),

and therefore also

max
b−i∈Bp

−i

u−i(b̄
t+1
i , b−i) = max

b−i∈Bp
−i

u−i(b̄′
t+1
i , b−i).

5.2.2.4 Storing the Information Set Map

In this section we discuss the memory requirements for storing the mapping of information
sets I of G to It of Gt in FPIRA.

Initial abstraction. As decribed in Section 5.2.1.1, the mapping between any I ∈ Ii
and its abstracted information set in G1 is perfectly defined by |seqi(I)| and |A(I)|. Hence
the mapping can always be determined for any given I ∈ I without using any additional
memory.

Case 1 Update. When updating the abstraction resulting inGt according to Case 1 in
Section 5.2.2.2, FPIRA can split I ∈ Ĩt−1

i to multiple abstracted information sets. FPIRA
is then forced to store the mapping for each newly created abstracted informations set I ′,
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for each I ′′ ∈ Φ−1
t (I ′). This is neccessary since |seqi(I ′′)| and |A(I ′′)| is no longer unique

identifier of I ′. In our implementation, we use a unique integer j to represent the new
mapping for I ′, i.e., the algorithm stores j for each I ′′ ∈ Φ−1

t (I ′). We use j corresponding to
the number of newly created information sets during the run of FPIRA. Finally, let Imn be
all the information sets in Ĩti such that ∀I ∈ Imn |seqi(I)| = m∧|A(I)| = n. We can always
identify the mapping to one of Imn without using any memory by the sequence length and
number of actions, as long as the rest of I ∈ Imn uses mapping with the unique integer.
We keep track of I ∈ Imn with largest |Φ−1

t (I)| in each Imn and use the sequence length
and number of actions to represent the mapping for all Φ−1

t (I ′) to minimize the memory
requirements. In Section 5.3 we empirically demonstrate that the memory required to
store the mapping is small. Notice that in all I ′ ∈ It \ Ĩt, the mapping is defined by the
domain description of G and hence no memory is required.

Case 2 Update. When updating the abstraction resulting in Gt according to Case 2
in Section 5.2.2.2, there is no additional memory required to store the updated mapping
compared to the mapping used in Gt−1. This holds since this abstraction update only
removes information set from G from the abstracted information sets in Gt−1. And so we
use the same mapping as in Gt−1 for abstracted information sets in Gt, and the information
set structure provided by the domain description in the rest.

5.2.2.5 Memory and Time Efficiency

FPIRA needs to store the average behavioral strategy for every action in every information
set of the solved game, hence storing the average strategy in Gt instead of G results in
significant memory savings directly proportional to the decrease of information set count.
When the algorithm computes b̃ti, it can temporarily refine the information set structure
of Gt only in the parts of the tree that can be visited when playing the pure best response
bti according to Ii to avoid representing and storing G. Additional memory used to store
the current abstraction mapping is discussed in Section 5.2.2.4.

When computing the best response (see Section 5.2.2.1), the algorithm needs to store
the best response strategy and the cache that is used to eliminate additional tree traver-
sals. FPIRA stores the behavior only in the parts of the game reachable due to actions
of i in bti (line 19 in Algorithm 4) and due to b̄t−i (lines 6 and 7 in Algorithm 4). For this
reason and since i plays only 1 action in his information sets in bti, there are typically large
parts of the game tree where bti does not prescribe any behavior. The cache (used also in
the computation of ∆t

i) stores one number for each state visited during the computation.
We show the size of the cache in Section 5.3. If necessary, the memory requirements of
the cache can be reduced by limiting its size and hence balancing the memory required
and the additional tree traversals performed. Additionally, efficient domain-specific im-
plementations of best response (e.g., on poker [30]) can be employed to further reduce the
memory and time requirements.

We empirically demonstrate the size of all the data structures stored during the run
of FPIRA in Section 5.3.

The iteration of FPIRA takes approximately three times the time needed to perform
one iteration of FP in G, as it now consists of the standard best response computation
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in G, two modified best response computations to obtain ∆t
i and two updates of average

behavioral strategies (which are faster than the update in G since the average strategy is
smaller).

5.2.3 CFR+ for Imperfect Recall Abstractions

In this section, we describe the CFR+ for Imperfect Recall Abstractions (CFR+IRA).
We first provide a high-level idea of CFR+IRA, followed by detailed explanation of all its
parts with pseudocodes and proof of its convergence to NE in two-player zero-sum EFGs.
Finally, we discuss the memory requirements and runtime of CFR+IRA.

Given a two-player zero-sum perfect recall EFG G, CFR+IRA first creates a coarse
imperfect recall abstraction of G as described in Section 5.2.1.1. The algorithm then
iteratively solves the abstraction using CFR+. All regrets and average strategies computed
as a part of CFR+ are stored in the information set structure of the abstraction. To ensure
the convergence to the Nash equilibrium of G, CFR+IRA updates the structure of the
abstraction in every iteration based on the differences between the results obtained by
CFR+ in the abstraction and the expected behavior of CFR+ in G.

Algorithm 8: CFR+ for Imperfect Recall Abstractions

input : G, kh, kb, delay, ε
output: (b̄1, b̄2) – ε-Nash equilibrium of G

1 G1 ← InitAbstraction(G)

2 r ← InitRegrets(I1)

3 b̄1 ← UniformStrategy(I), b̄2 ← UniformStrategy(I)
4 t← 1, tnext ← 1, tlast ← 0, j ← 0
5 rb ← ∅
6 while u1(BR(G, b̄2), b̄2)− u1(b̄1, BR(G, b̄1)) > ε do

7 Îh ← SampleInformationSets(Ĩti , kh)
8 rh ← InitRegrets(Îh)
9 if t = tnext then

10 Îb ← SampleInformationSets(Ĩt, kb)
11 rb ← InitRegrets(Îb)
12 tlast ← t
13 tnext ← t+ 2j

14 j ← j + 1

15 ComputeRegrets(It, Gt.root, GetPlayer(t), 1, 1, r, rh, rb, Îh, Îb)
16 RemoveNegativeRegrets(r)
17 if t > delay then
18 UpdateAverageStrategy(r, t)

19 Gt+1 ← UpdateAbstractionForHeuristic(Gt, Îh, rh, r, b̄1, b̄2, t)
20 delete rh
21 if t 6= tlast then

22 Gt+1 ← UpdateAbstractionForBound(Gt+1, Îb, r, rb, b̄1, b̄2, t, tlast)
23 t← t+ 1
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In Algorithm 8 we provide the pseudocode of the CFR+IRA. CFR+IRA is given
the original perfect recall game G, the desired precision of approximation of the NE ε
and the limits kh and kb on the memory that can be used to update the abstraction.
Finally it is given the delay which represents the number of initial iterations for which
the algorithm does not update the average strategy. The algorithm starts by creating a
coarse imperfect recall abstraction G1 of the given game G (line 1, see Section 5.2.1.1).
It stores the regrets r and average strategies b̄1, b̄2 for each information set of the current
abstraction. The algorithm then simultaneously solves the abstraction and updates its
structure until the b̄1, b̄2 form an ε-Nash equilibrium of G (line 6). The players take turn
updating their strategies and regrets. In every iteration, the algorithm updates the regrets
and the current strategy for the acting player i according to CFR+ update (line 15, see
Section 3.4.4.3 and Algorithm 9). As a part of the CFR+ update the algorithm removes
the negative regrets (line 16) and updates the average strategy (line 18). Note that we
follow the CFR+ as described in Section 3.4.4.3 and so the update of the average strategy
starts only after a fixed number of iterations denoted as delay. The average strategy is
then updated according to eq. (3.14).

The algorithm continues with the update of the current abstraction Gt. There are two
procedures for updating the abstraction.

First, the abstraction is updated to guarantee the convergence of the algorithm to
the Nash equilibrium (see Section 5.2.3.1 for more details). As a part of this abstraction
update, CFR+IRA samples a subset Îb of information sets of G (line 10). It then checks
the immediate regret in all I ∈ Îb for a given number of iterations before again resampling
Îb. During these iterations, it updates the abstraction so that any I ∈ Îb, where the
immediate regret decreases slower than a given function, is removed from its abstracted
information set.

Second, the abstraction is updated using a heuristic update which significantly im-
proves the empirical convergence of the algorithm (see Section 5.2.3.2 for more details).
The heuristic update samples a subset Îh of information sets of i in G in every iteration
of CFR+IRA (line 7). It then keeps track of regrets in all I ∈ Îh in this iteration. Finally,
it uses these regrets to update the abstraction so that only information sets with similar
regrets remain grouped.

5.2.3.1 Regret Bound Update

In this section we present more detailed description of the update of the abstraction based
on the regret bound.

Let T T = (T1, ..., Tn) be a sequence of iterations, where every Tj+1 − Tj = 2j for all
j ∈ {1, ..., n− 1} (the elements of T are computed on line 13 in Algorithm 8). As a part
of the abstraction update, the algorithm samples a subset Îb ⊆ I of information sets of
G in predetermined iterations specified by elements of T . The subset Îb is sampled on
line 10 in Algorithm 8 according to Algorithm 10. The sampling of Îb is done so that
∀I ∈ Îb Φt(I) ∈ Ĩt and
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Algorithm 9: Regret update

1 function ComputeRegrets(I, h, i, π1, π2, r, rh, rb, Îh, Îb)
2 if IsTerminal(h) then
3 return ui(h)
4 if GetPlayerToMove(h)= c then
5 if i = 1 then

6 return
∑
a∈A(h) bc(a)· ComputeRegrets(I, h · a, i, π1, bc(a) · π2, r, rh, rb, Îh,

Îb)
7 return

∑
a∈A(h) bc(a)· ComputeRegrets(I, h · a, i, bc(a) · π1, π2, r, rh, rb, Îh, Îb)

8 I ← GetInformationSetFor(h, I)
9 rI ← GetRegretsFor(I, r)

10 bt ← RegretMatching+(rI)
11 vbt ← 0
12 v ← Zeros(|A(h)|)
13 for a ∈ A(h) do
14 if i = 1 then

15 v[a]← ComputeRegrets(I, h · a, i, bt(a) · π1, π2, r, rh, rb, Îh, Îb)
16 else

17 v[a]← ComputeRegrets(I, h · a, i, π1, bt(a) · π2, r, rh, rb, Îh, Îb)
18 vbt ← vbt + bt(a) · v[a]

19 if GetPlayerToMove(h)= i then
20 for a ∈ A(h) do
21 rI [a]← rI [a] + π−i · (v[a]− vbt)
22 if I ∈ Îh then
23 rhI ← GetRegretsFor(I, rh)
24 for a ∈ A(h) do
25 rhI [a]← rhI [a] + π−i · (v[a]− vbt)
26 if I ∈ Îb then
27 rbI ← GetRegretsFor(I, rb)
28 for a ∈ A(h) do
29 rbI [a]← rbI [a] + π−i · (v[a]− vbt)
30 return vbt

|Îb| = min

kb,∑
I∈Ĩt

|Φ−1
t (I)|

 .

I.e., the size of Îb is limited by the parameter kb and the actual number of information sets
in I that are still mapped to some abstracted information set in iteration t. Additionally,
sampling of information sets on line 6 in Algorithm 10 is performed so that the probability
of adding any I ∈ I such that Φt(I) ∈ Ĩt to Îb is equal to

1∑
I′∈Ĩt |Φ

−1
t (I ′)|

. (5.5)
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Algorithm 10: Sampling of unabstracted sets for unabstracted regret storage.

1 function SampleInformationSets(Ĩ, k)

2 Î ← ∅
3 while |Î| < k do

4 if AllSetsSampled(Ĩ, Î) then
5 break

6 I ← GetRandomAbstractedSet(Ĩ)
7 I ′′ ← Φ−1

t (I)

8 if |I ′′|+ |Î| ≤ k then

9 Î ← Î ∪ I ′′
10 else

11 Î ← Î ∪ random subset of I ′′ with size k − |Î|
12 return Î

Algorithm 11: Abstraction update for regret bound

1 function UpdateAbstractionForBound(Gt, Îb, r, rb, b̄1, b̄2, t, tlast)

2 for I ∈ Ĩt do
3 I ′′ ← Φ−1

t (I)

4 for I ′′ ∈ Intersection(I ′′, Îb) do
5 rbI′′ ← GetRegretsFor(I ′′, rb)

6 if
maxa∈A(I′′)r

b
I′′ [a]

t−tlast
> Ltlast

I′′ (t) then

7 Inew ← CreateNewIS(I ′′ \ I ′′)
8 Gt.I ← Gt.I \ I
9 Gt.I ← Gt.I ∪ {CreateNewIS(I ′′), Inew}

10 rI ← GetRegretsFor(I, r)
11 r ← r \ rI
12 rInew

← InitRegret(Inew)
13 r ← r ∪ rInew

14 rI′′ ← InitRegret(I ′′)
15 r ← r ∪ rI′′
16 Îb ← Îb \ I ′′
17 rb ← rb \ rbI′′
18 if GetPlayer(t) = 1 then
19 b̄1 ← b̄1\ GetStrategyFor(I, b̄1)
20 else
21 b̄2 ← b̄2\ GetStrategyFor(I, b̄2)

22 return Gt

After sampling Îb in some Tj ∈ T , the algorithm keeps track of the regrets rb accu-
mulated in each I ∈ Îb for Tj+1 − Tj iterations during the CFR+ update (line 26 to 29 in
Algorithm 9) before again resampling the Îb.

Let LI : {Tj , ..., Tj+1} → R be any function for which
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L
Tj

I (t) ≤
∆I

√
|A(I)|√
t− Tj

, ∀t ∈ {Tj + 1, ..., Tj+1}.

The actual abstraction update in each iteration T ′ ∈ {Tj + 1, ...Tj+1} is done according

to Algorithm 11 in the following way. The algorithm iterates over I ∈ Ĩt in Gt (line 2).
For all I ′′ ∈ Φ−1

t (I) ∩ Îh the algorithm checks the immediate regret

RT
′

Tj ,imm(I) =
1

T ′ − Tj
max
a∈A(I)

T ′∑
t=Tj

[
vi(b

t
I→a, I)− vi(bt, I)

]
=

maxa∈A(I) r
b
I [a]

T ′ − Tj
.

If RT
′

Tj ,imm
(I) > L

Tj
I (T ′) for some T ′ ∈ {Tj + 1, ..., Tj+1} (line 6 in Algorithm 11), the

algorithm disconnects I in iteration T ′ from its abstracted information set in GT
′
, resets

its regrets to 0 and removes it from Îb (lines 7 to 21 in Algorithm 11). If I is disconnected,
the average strategy in I in all T > T ′ is computed ∀a ∈ A(I) as

b̄Ti (I, a) =


1

|A(I)| , if T = T ′ + 1,

2
∑T

t′=T ′+1
t′·πbt

′
i

i (I)·bt
′

i (I,a)

((T−T ′−1)2+T−T ′−1)
∑T

t′=T ′+1
π
bt
′

i
i (I)

, otherwise.
(5.6)

The average strategy update in eq. (5.6) corresponds to the average strategy update
descibed in Section 3.4.4.3, i.e., it does a weighted average of the bti strategies over iterations
{T ′ + 1, ..., T} with weight corresponding to the iteration.

5.2.3.2 Heuristic Update

In this section, we focus on the description of the heuristic update of the abstraction.

Let i be the player who’s regrets are updated in iteration t. As a part of the abstraction
update, the algorithm samples Îh ⊆ Ii of information sets of G in t. Îh is sampled on line
7 in Algorithm 8 according to Algorithm 10. In this case, the sampling in Algorithm 10
is done so that ∀I ∈ Îh Φt(I) ∈ Ĩti and

|Îh| = min

kh,∑
I∈Ĩti

|Φ−1
t (I)|

 .

I.e., the size of Îh is limited by the parameter kh and the actual number of information sets
in Ii that are still mapped to some abstracted information set in iteration t. Additionally,
sampling of information sets on line 6 in Algorithm 10 is performed so that the probability
of adding any I ∈ I such that Φt(I) ∈ Ĩt to Îh is equal to

1∑
I′∈Ĩi |Φ

−1
t (I ′)|

. (5.7)

The algorithm keeps track of the regrets rh in each I ∈ Îh during the CFR+ update
in iteration t (lines 22 to 25 in Algorithm 9).
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Algorithm 12: Abstraction update for heuristic

1 function UpdateAbstractionForHeuristic(Gt, Îh, rh, r, b̄1, b̄2, t)

2 for I ∈ Ĩti do
3 I ′′ ← Φ−1

t (I)

4 if Intersection(I ′′, Îh) 6= ∅ then

5 for I ′′ ∈ Intersection(I ′′, Îh) do
6 rhI′′ ← GetRegretsFor(I ′′, rh)
7 γI′′ ← set of indices of

{a ∈ A(I ′′)|rhI′′ [a] ∈
[
maxa′∈A(I′′)

(
rhI′′ [a

′]− 1
5
√
t
,maxa′∈A(I′′) r

h
I′′ [a

′]
)]
}

8 Split I ′′ to subsets I ′′1 , ..., I ′′k
9 Each I ′′j ∈ {I ′′1 , ..., I ′′k } contains all the I ′′ ∈ I ′′ with the same γI′′

10 I ′′max ← arg maxI′′j ∈{I′′1 ,...,I′′k } |I
′′
j |

11 I ′′f ← I ′′max ∪ I ′′ \ Îh
12 Gt.I ← Gt.I \ I
13 r ← r\ GetRegretsFor(I, r)

14 for I ′′j ∈
(
{I ′′1 , ..., I ′′k } ∪ I ′′f

)
\ I ′′max do

15 Inew ← CreateNewIS(I ′′j )
16 Gt.I ← Gt.I ∪ Inew
17 rInew

← InitRegret(Inew)
18 r ← r ∪ rInew

19 if GetPlayer(t) = 1 then
20 b̄1 ← b̄1\ GetStrategyFor(I, b̄1)
21 else
22 b̄2 ← b̄2\ GetStrategyFor(I, b̄2)

23 return Gt

The actual abstraction update is done in a following way (Algorithm 12). The algo-

rithm iterates over I ∈ Ĩti in Gt which contain some of the I ′ ∈ Îh (lines 2 and 4). For

all I ′′ ∈ Φ−1
t (I) ∩ Îh it creates a set of action indices γI′′ corresponding to actions with

regret in rh at most 1
5
√
t

distant from the maximum regret for I ′′ in rh (line 7). The

abstraction update then splits the set Φ−1
t (I) ∩ Îh to largest subsets I ′′1 , ..., I ′′k such that

∀I ′′j ∈ {I ′′1 , ..., I ′′k}∀I ′′1 , I ′′2 ∈ I ′′j γI′′1 = γI′′1 (lines 8 to 9). Next, the algorithm selects I ′′max,

the largest element of {I ′′1 , ..., I ′′k} (line 10) and adds all the I ′′ ∈ Φ−1
t (I) which are not in

Îh to I ′′max, creating I ′′f (line 11). This is done to avoid unnecessary split caused by not

tracking regrets in Φ−1
t (I) \ Îh. Finally, the abstracted set I is replaced in Gt by the set

of new information sets Itn created from
(
{I ′′1 , ..., I ′′k} ∪ I ′′f

)
\ I ′′max. The regrets in each

In ∈ Itn are set to 0 in r and the average strategies are discarded (lines 12 to 22). Finally,
let T be an iteration such that T > t. Assuming that In ∈ Itn was not split further during
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iterations {t+ 1, ..., T}, the average strategy in In is computed ∀a ∈ A(In) as

b̄Ti (I, a) =


1

|A(I)| , if T = t+ 1,

2
∑T

t′=t+1
t′·πbt

′
i

i (I)·bt
′

i (I,a)

((T−t−1)2+T−t−1)
∑T

t′=t+1
π
bt
′

i
i (I)

, otherwise.
(5.8)

The average strategy update in eq. (5.8) corresponds to the average strategy up-
date described in Section 3.4.4.3, i.e., it does a weighted average of the bti strategies over
iterations {t+ 1, ..., T} with weight corresponding to the iteration.

5.2.3.3 Theoretical Properties

In this section we present the bound on the average extrenal regret of the CFR+IRA
algorithm. We first derive the bound for the case where the algorithm uses only the
regret bound abstraction update described in Section 5.2.3.1. Since CFR+IRA randomly
samples information sets during the abstraction update, we provide a probabilistic bound
on the average external regret of the algorithm. We then show that the regret bound still
holds when also using the heuristic update described in Section 5.2.3.2. Finally, we discuss
why it is insufficient to use only the heuristic abstraction update.

Given iteration T , let T T = (T1, ..., Tk) be a subsequence of T such that Tk is the largest
element in T for which Tk < T . τT is the sequence of iteration counts corresponding to
T T . Let τT

R̄i
be a sequence containing all the iteration counts τj ∈ τT , where for the

corresponding Tj , Tj+1 holds that

L
Tj

I (Tj+1) <
R̄i
|Ii|

, ∀I ∈ Ii, (5.9)

for a given regret R̄i. Next, we define pr(T, R̄i), as

pr(T, R̄i) =


0, if |τT

R̄i
| < |I|,

1−
(

1−
(
kb
|I|

)|I|)(
|τT

R̄i
|

|I|
)

, otherwise.
(5.10)

Lemma 5.2.1. pr(T, R̄i) is the lower bound on the probability, that the abstraction in
iteration T allows representation of average strategy with average external regret R̄i for
player i.

Proof. pr is computed for the worst case where all the I ∈ I are in some abstracted
information set in G1, and where it is necessary to reconstruct the complete original game
by removing all I ∈ I from their abstracted information sets one by one in a fixed order to
allow representation of the average strategy with average external regret R̄i for player i.
The rest of the proof is conducted in the following way: First, we show that the iteration
counts in τT

R̄i
are large enough to guarantee that if there is an abstracted information

set preventing representation of average strategies with average external regret bellow R̄i,
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it will be split. We then provide the probability that the information set structure in a
given iteration allows CFR+IRA to compute strategies with average external regret R̄i
for player i as a function of the number of iteration counts in τT

R̄i
.

We know that

R̄Ti ≤
∑
I∈Ii

(
RTi,imm(I)

)+ ≤ |Ii|max
I∈Ii

(
RTi,imm(I)

)+
, ∀T. (5.11)

Lets assume that the information set structure of the current abstraction GT in iter-
ation T does not allow representation of average strategy with average external regret R̄i
and that we do not update GT any further. Then, from eq. (5.11), there must exist I ∈ Ii
such that for each iterations T ′, T ′′, T ′′ > T ′

(
RT
′′

T ′,imm(I)
)+

>
R̄i
|Ii|

. (5.12)

To remove an information set I from its abstracted information set as a part of the
regret bound abstraction update during the sequence of iterations (Tj , ..., Tj+1), there

must exists T ′ ∈ (Tj , ..., Tj+1) such that RT
′

Tj ,imm
(I) > L

Tj
I (T ′). Therefore, from eq. (5.12)

follows, that to guarantee that I preventing convergence is removed from its abstracted

information set during (Tj , ..., Tj+1), it needs to hold that L
Tj
I (Tj+1) < R̄i

|Ii| . Hence, from

eq. (5.9) in definition of τT
R̄i

follows that τT
R̄i

contains only the iteration counts that
guarantee that such information set is removed from its abstracted information set.

Now we turn to the formula in eq. (5.10). The first case of the piecewise function in
eq. (5.10) handles the situation where there are not enough iteration counts τj ∈ τT

R̄i
large

enough to guarantee the required |I| splits. The second case computes the probability
that given |τT

R̄i
| samples we correctly sample the required sequence of the length |I|.

The second case has the following intuition.
(|τT

R̄i
|

|I|

)
is the number of possibilities how

to choose a subsequence of the length |I| from a sequence of length |τT
R̄i
|.
(
kb
|I|

)|I|
is

the probability that a specific sequence of all information sets, i.e., a sequence of length
|I|, is sampled when we sample kb from |I| elements with a uniform probability. Hence,(

1−
(
kb
|I|

)|I|)(
|τT

R̄i
|

|I|
)

is the probability that the sequence of length |I| is not sampled in(|τT
R̄i
|

|I|

)
attempts.

Since pr(T, R̄i) is computed assuming that there is the worst case number of splits
necessary and that it takes the maximum possible number of iterations to split each
information set, it is a lower bound on the actual probability that the abstraction in
iteration T allows representation of average strategy with average external regret R̄i for
player i.
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Lemma 5.2.2. The average external regret of the CFR+IRA is bounded in the following
way

RTi
T
≤ Bi(T ) =

1

T

(
∆|Ii|

√
Amax

√
T + ∆|Ii|Tlim

)
, (5.13)

with probability at least pr(Tlim, Bi(T )).

Proof. Bi(T ) decomposes the bound on the average external regret to two parts. First,
in iterations {1, ..., Tlim} it assumes that the structure of the abstraction prevents the
algorithm from convergence. Second, it assumes that the abstraction is updated so that it
allows convergence of CFR+ in iterations {Tlim + 1, ..., T}. Hence, the regret in all I ∈ Ii
has the following property:

max
a∈A(I)

RTi (I, a) ≤ ∆Tlim + ∆
√
|A(I)|

√
T . (5.14)

This bound holds since ∆
√
|A(I)|

√
T is the bound on maxa∈A(I)R

T
i (I, a) in I provided

by regret matching+. Additionally, since the regret matching+ in I in each t ∈ {1, ..., Tlim}
uses regrets computed for information set φt(I) and not directly for I, it can lead to
arbitrarily bad outcomes with respect to the utility structure of the solved game (as we
assume that the structure of the abstraction prevents convergence of the algorithm in these
iterations). The ∆Tlim corresponds to the worst case regret that can be accumulated for
each action in I during the first Tlim iterations. From eqs. (5.14) and (3.7) follows that

RTi
T
≤ Bi(T ) =

1

T

(
∆|Ii|

√
Amax

√
T + ∆|Ii|Tlim

)
.

Since we assume that the abstraction in iteration Tlim of CFR+IRA allows computing
the regret Bi(T ), this bound holds with probability at least pr(Tlim, Bi(T )) (Lemma 5.2.1).

Finally, we provide the bound on the external regret of CFR+IRA as a function of the
probability that the bound holds.

Theorem 5.2.2. Let

α(δ) =

3

√
2
|I|

√
|I|! log

1−
(

kb
|I|

)|I| (δ)+|I|+3

Amax. (5.15)

In each T ≥ (α(δ) + 1)3, the average external regret of CFR+IRA is bounded in the
follwing way

RTi
T
≤ ∆|Ii|

√
Amax√
T

+ ∆|Ii|
α(δ)

3
√
T

+ ∆|Ii|
1

T
∈ O

(
1

3
√
T

)
. (5.16)

with probability 1− δ.
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Proof. The bound in eq. (5.16) is created by substituting

Tlim =

⌈
3

√
2
|I|

√
|I|! log

1−
(

kb
|I|

)|I| (δ)+|I|+3

Amax · T
2
3

⌉
, (5.17)

to the bound from Lemma 5.2.2. Hence, we need to show that choosing this Tlim
guarantees that

pr(Tlim, Bi(T )) ≥ 1− δ. (5.18)

The proof is conducted in the following way. First, in Lemma 5.2.3 we show the size
of τTlimBi(T ) sufficient to guarantee that inequality (5.18) holds. In Lemma 5.2.4 we derive

the lower bound TBi(T ) on each element of τTlimBi(T ). TBi(T ) is the number of iterations
sufficient to guarantee that some information set preventing the abstraction from allowing
representation of average strategy with average external regret Bi(T ) is split during the
regret bound abstraction update. Finally, in Lemma 5.2.5 we derive the Tlim that implies
sufficient number of elements in τTlimBi(T ).

Lemma 5.2.3.

|τTlim

Bi(T )| > |I|

√
|I|! log

1−
(

kb
I

)|I|(δ) + |I| (5.19)

guarantees that pr(Tlim, Bi(T )) ≥ 1− δ.

Proof.

|τTlim

Bi(T )| > |I|

√
|I|! log

1−
(

kb
I

)|I|(δ) + |I| (5.20)

=⇒
(
|τTlim

Bi(T )| − |I|
)|I|

> |I|! log
1−
(

kb
I

)|I|(δ) (5.21)

=⇒
|τTlim

Bi(T )
|∏

j=|τTlim
Bi(T )

|−|I|+1

j > |I|! log
1−
(

kb
I

)|I|(δ) (5.22)

=⇒

∏|τTlim
Bi(T )

|

j=|τTlim
Bi(T )

|−|I|+1
j

|I|!
> log

1−
(

kb
I

)|I|(δ) (5.23)

=⇒
|τTlim

Bi(T )|!

(|τTlim

Bi(T )| − |I|)!|I|!
> log

1−
(

kb
I

)|I|(δ) (5.24)

=⇒
(|τTlim

Bi(T )|
|I|

)
> log

1−
(

kb
I

)|I|(δ) (5.25)
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=⇒

(
1−

(
kb
I

)|I|)(
|τ

Tlim
Bi(T )

|

|I|
)

< δ (5.26)

=⇒ 1−

(
1−

(
kb
I

)|I|)(
|τ

Tlim
Bi(T )

|

|I|
)

> 1− δ (5.27)

Lemma 5.2.4.

TBi(T ) =

⌈[
T
√
Amax

Tlim +
√
Amax

√
T

]2
⌉

is a sufficient number of iterations to guarantee that the regret bound abstraction update
splits some information set preventing the abstraction from allowing representation of
average strategy with average external regret Bi(T ).

Proof. The regret bound abstraction update removes an information set I ∈ I from its
abstracted information set during the sequence of iterations (Tj , ..., Tj+1), when there

exists T ′ ∈ (Tj , ..., Tj+1) such that RT
′

Tj ,imm
(I) > L

Tj
I (T ′). As dicussed in the proof of

Lemma 5.2.1, to guarantee that I is removed from its abstracted information set if it
prevents the regret bellow Bi(T ), we need to make sure that

L
Tj

I (Tj+1) <
Bi(T )

|Ii|
. (5.28)

Since

L
Tj

I (T ′) ≤
∆I

√
|A(I)|√

T ′ − Tj
, ∀T ′ ∈ {Tj + 1, ..., Tj+1},∀I ∈ Ii,

it follows that

max
I∈Ii

L
Tj

I (Tj+1) ≤ ∆
√
Amax√

Tj+1 − Tj
. (5.29)

And so from eqs. (5.28) and (5.29), it is sufficient for TBi(T ) to satisfy

∆
√
Amax√
TBi(T )

<
Bi(T )

|Ii|
.

Smallest TBi(T ) satisfying this inequality is

TBi(T ) =

⌈[
T
√
Amax

Tlim +
√
Amax

√
T

]2
⌉
. (5.30)
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Hence, all elements in τTlimBi(T ) must be greater or equal to TBi(T ) to make sure that
the structure of the abstraction in iteration Tlim allows representation of average strategy
with average external regret Bi(T ) for player i with sufficient probability.

The number of elements in τTlim is at least log2(Tlim+1)−1, since ∀j ∈ {1, ..., |τTlim |} τj =
2j−1. From Lemma 5.2.3 we know that we need the last⌈

|I|

√
|I|! log

1−
(

kb
I

)|I|(δ) + |I|

⌉

elements of τTlim (which form τTlimBi(T )) to be higher or equall to TBi(T ).

Lemma 5.2.5. When using

Tlim =

⌈
3

√
2
|I|

√
|I|! log

1−
(

kb
|I|

)|I| (δ)+|I|+3

Amax · T
2
3

⌉
,

the last ⌈
|I|

√
|I|! log

1−
(

kb
I

)|I|(δ) + |I|

⌉

elements in τTlim are higher or equal to TBi(T ).

Proof.

Tlim =

⌈
3

√
2
|I|

√
|I|! log

1−
(

kb
|I|

)|I| (δ)+|I|+3

Amax · T
2
3

⌉
(5.31)

=⇒ Tlim ≥
3

√
2
|I|

√
|I|! log

1−
(

kb
|I|

)|I| (δ)+|I|+3

Amax · T
2
3 (5.32)

=⇒ T 3
lim ≥ 2 · 2

|I|

√
|I|! log

1−
(

kb
I

)|I|+1 (δ)+|I|+2

AmaxT
2 (5.33)

=⇒ (Tlim + 1)
(
Tlim +

√
Amax

√
T
)2

≥ (5.34)

≥ 2
|I|

√
|I|! log

1−
(

kb
I

)|I| (δ)+|I|+2

2AmaxT
2 (5.35)

=⇒ Tlim + 1

2
|I|

√
|I|! log

1−
(

kb
I

)|I| (δ)+|I|+2
≥ 2AmaxT

2(
Tlim +

√
Amax

√
T
)2 (5.36)

=⇒ Tlim + 1

2
|I|

√
|I|! log

1−
(

kb
I

)|I| (δ)+|I|+2
≥


AmaxT

2(
Tlim +

√
Amax

√
T
)2

 (5.37)
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=⇒ 2

log2(Tlim+1)−2− |I|
√
|I|! log

1−
(

kb
I

)|I| (δ)−|I|
≥ TBi(T ) (5.38)

=⇒ 2

log2(Tlim+1)−1−

 |I|
√
|I|! log

1−
(

kb
I

)|I| (δ)+|I|
 ≥ TBi(T ) (5.39)

Eq. (5.39) states that last ⌈
|I|

√
|I|! log

1−
(

kb
I

)|I|(δ) + |I|

⌉

elements of τTlim are at least TBi(T ), since the elements in τTlim are increasing.

Hence, using Tlim from Lemma 5.2.5 guarantees that pr(Tlim, Bi(T )) > 1 − δ from
Lemma 5.2.3. When substituting this Tlim to the bound from Lemma 5.2.2, i.e., to

RTi
T
≤ 1

T

(
∆|Ii|

√
Amax

√
T + ∆|Ii|Tlim

)
, (5.40)

we get

RTi
T
≤ 1

T

(
∆|Ii|

√
Amax

√
T + ∆|Ii|

⌈
α(δ)T

2
3

⌉)
(5.41)

≤ ∆|Ii|
√
Amax√
T

+ ∆|Ii|
α(δ)

3
√
T

+ ∆|Ii|
1

T
(5.42)

∈ O
(

1
3
√
T

)
. (5.43)

Finally, we need to show that using T ≥ (α(δ) + 1)3 guarantees that T ≥ Tlim:

T ≥ (α(δ) + 1)3 (5.44)

=⇒ 3
√
T ≥ (α(δ) + 1) (5.45)

=⇒ T ≥ (α(δ) + 1)T
2
3 (5.46)

=⇒ T ≥
⌈
α(δ)T

2
3

⌉
(5.47)

=⇒ T ≥ Tlim. (5.48)

Combining Regret Bound and Heuristic Abstraction Update.

When using the heuristic abstraction update in combination with the regret bound
update, Theorem 5.2.2 still holds, since in the worst case the heuristic update does not
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Table 5.1: Expected utilities after actions in I ′ and I ′′

I ′ I ′′

c 0 0
d 1 10

I ′ I ′′

c 10 1
d 0 0

perform any splits and all the information set splits need to be performed by the regret
bound update. Adding the heuristic abstraction update can only reduce the number of
iterations needed by the algorithm.
Counterexample for Heuristic Abstraction Update.

Here we show the intuition why using only the heuristic abstraction update does not
guarantee convergence of CFR+IRA to the NE of the solved game G.

Let I be an information set in Gt such that φ−1
t (I) = {I ′, I ′′}. Let At(I) = {c, d}

and A(I ′) = {x, y}, A(I ′′) = {v, w}. Lets assume that the expected values for actions c
and d in I ′ and I ′′ oscilate between values depicted in Table 5.1 (left) and (right). Hence,
when computing the regret rh

Î
(a) = vi(b

t
Î→a, Î) − vi(bt, Î) for Î ∈ {I ′, I ′′} and a ∈ A(Î)

during the heuristic abstraction update in iteration t where the expected utilities from
Table 5.1(left) occur, we get

rhI′(c) = −bti(I, d) (5.49)

rhI′(d) = 1− bti(I, d) (5.50)

rhI′′(c) = −10bti(I, d) (5.51)

rhI′′(d) = 10− 10bti(I, d). (5.52)

When computing the regret rh for heuristic update in iteration t′ where the expected
utilities from Table 5.1 (right) occur, we get

rhI′(c) = 10− 10bt
′

i (I, c) (5.53)

rhI′(d) = −10bt
′

i (I, c) (5.54)

rhI′′(c) = 1− bt
′

i (I, c) (5.55)

rhI′′(d) = −bt
′

i (I, c). (5.56)

The actions corresponding to d are always prefered in both I ′ and I ′′ when the utilties
are given by Table 5.1 (left) by the same margin as the actions corresponding to c are
always prefer in both I ′ and I ′′ when the utilties are given by Table 5.1 (right). Hence,
γI′ = γI′′ (i.e., the inidices of actions with the largest regret are always equal) in all
iterations t′′ for any bt

′′
i . Therefore, I is never split during the heuristic update. However,

CFR+IRA in I converges to a uniform startegy with the average expected value 2.75 in
both I ′ and I ′′ since the regret updates lead to equal regrets for both c and d, while CFR+
converges to strategy bi(I

′, x) = 1 and bi(I
′′, w) = 1 with the average expected value 5 in

both I ′ and I ′′.
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5.2.3.4 Storing the Information Set Map

In this section we discuss the details of storing the mapping of information sets I of G to
It of Gt in CFR+IRA.

Initial Abstraction Storage. The initial abstraction is identical to the initial ab-
straction used by FPIRA, hence the mapping is stored without using any additional mem-
ory as described in Section 5.2.2.4.

Regret Bound Update. The regret bound update resulting in Gt only removes
information sets from G from the abstracted information sets in Gt−1. Hence similarly
to Section 5.2.2.4 Case 2, we use the mapping used in Gt−1 in all information sets of G
mapped to abstracted information sets in Gt, and the information set structure provided
by the domain description in the rest. Therefore, no additional memory is needed to store
the mapping for Gt compared to the mapping required in Gt−1.

Heuristic Update. The heuristic update resulting in Gt, can split existing abstracted
information set I in Gt−1 to a set of information sets I ′ such that some I ′ ∈ I ′ are still
abstracted information sets. Hence in this case we need to store the new mapping as
described in Section 5.2.2.4 Case 1.

5.2.3.5 Memory and Time Efficiency

The CFR+ requires storing the regret and average strategy for each I ∈ I and a ∈
A(I) in G. Hence, when storing the regrets and average strategy in Gt in iteration t in
CFR+IRA, the algorithm achieves memory savings directly proportional to the reduction
in the number of information sets in Gt compared to the number of information sets in G.
Additional memory used to store the current abstraction mapping is discussed in Section
5.2.3.4. Finally, CFR+IRA stores additional regrets in kb + kh information sets of G in
every iteration for the purposes of the abstraction update. Since kb and kh are parameters
of the CFR+IRA, this memory can be adjusted as necessary. In Section 5.3 we empirically
demonstrate that memory used to store the information set mapping is small and so it
does not substantially affect the memory efficiency of CFR+IRA. Additionally, we show
how the different kh and kb affect the convergence of CFR+IRA.

The iteration of CFR+IRA consists of a tree traversal in function ComputeRegrets
(Algorithm 9) and the two updates of the abstraction. The update of regrets r as a part
of ComputeRegrets takes the same time as standard CFR+ iteration applied to G. Addi-
tionally, in ComputeRegrets, CFR+IRA updates rh and rb. Since there is no additional
tree traversal neccessary to obtain the values for the update of rh and rb, the update takes
time proportional to the number of states in Îb ∪ Îh. In the worst case, the abstraction
updates take time proportional to |I|. In Section 5.3 we provide experimental evaluation
of the runtime of CFR+IRA.

5.3 Experiments

In this section we present the experimental evaluation of FPIRA and CFR+IRA. First,
we introduce domains used for the experimental evaluation. Next, we demonstrate the
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convergence of CFR+IRA compared to CFR+ and explain our choice of values of the kh
and kb parameters in the rest of the experimental evaluation (these parameters control
the memory used by CFR+IRA to update the abstraction, see Sections 5.2.3.1 and 5.2.3.2
for more details). We follow with the comparison of the memory requirements of FPIRA,
CFR+IRA and the DOEFG (see Section 5.1 for the explanation why we compare to
DOEFG) as a function of the exploitability of the resulting strategies. Finally, we provide
the comparison of the runtime of FPIRA, CFR+IRA, and DOEFG. When reporting the
results for CFR+IRA, BxHyCFR+IRA stands for CFR+IRA where kb = x and kh = y.

5.3.1 Experimental Settings

The experiments were performed using domain independent implementation of all algo-
rithms in Java1. DOEFG uses IBM CPLEX 12.6. to solve the underlying linear programs.
Both FPIRA and CFR+IRA used the initial abstraction built as described in Section
5.2.1.1. Both CFR+ and CFR+IRA used the delay of 100 iterations during the average
strategy update, i.e., the average strategies are not computed for the first 100 iterations,
and the average strategies in iteration T > 100 are computed only from current strategies

in iterations {101, ..., T}. And finally, the L
Tj
I functions in CFR+IRA, used during the

regret bound update (see Section 5.2.3.1), were set to

L
Tj

I (T ′) =
∆I

√
A(I)

100
√
T ′

,∀I ∈ I,∀Tj , Tj+1,∀T ′ ∈ {Tj + 1, ..., Tj+1}.

5.3.2 Domains

Here we introduce the zero-sum domains used in the experimental evaluation. These
domains were chosen for their diverse structure both in the utility and the source of
imperfect information. The players perfectly observe the actions of their opponent in
poker, only the actions of the chance player at the start of the game (corresponding to
card deal) are hidden. In II-Goofspiel and Graph pursuit, on the other hand, the imperfect
information is created by partial observability of the moves of the opponent through the
whole game. Furthermore, in II-Goofspiel and poker, the utility of players cumulates
during the playthrough (the chips and the value of the cards won), while in Graph pursuit
the utility depends solely on whether the attacker is intercepted or not or whether he
reaches his goal.

5.3.2.1 Poker

As a first domain, we use a two-player poker, which is commonly used as a benchmark in
imperfect-information game solving [50]. We use a version of poker with a deck of cards
with 4 card types 3 cards per type. There are two rounds. In the first round, each player

1The implementation is available at http://jones.felk.cvut.cz/repo/gtlibrary. CFR+IRA and FPIRA
are available in package /src/cz/agents/gtlibrary/experimental/imperfectrecall/
automatedabstractions/memeff.
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Figure 5.2: Graph used in the Graph pursuit domain.

places an ante of 1 chip in the pot and receives a single private card. A round of betting
follows. Every player can bet from a limited set of allowed values or check. After a bet,
the other player can raise, again choosing the value from a limited set, call or forfeit the
game by folding. The number of consecutive raises is limited. A shared card is dealt after
one of the players calls or after both players check. Another round of betting takes place
with identical rules. The player with the highest pair wins. If none of the players has a
pair, the player with the highest card wins. We create different poker domains by varying
the number of bets b, the number of raises r and the number of consecutive raises allowed
c. We refer to these instances as Pbrc, e.g., P234 stand for a poker which uses two possible
values of bets, 3 values of raises and allows 4 consecutive raises.

5.3.2.2 II-Goofspiel

II-Goofspiel is a modification of the Goofspiel game [49] which is commonly used as a
benchmark domain (see, e.g., [43, 41]). Similarly to Goofspiel, II-Goofspiel is a card game
with three identical packs of cards, two for players and one randomly shuffled and placed
in the middle. In our variant, both players know the order of the cards in the middle pack.
The game proceeds in rounds. Every round starts by revealing the top card of the middle
pack. Both players proceed to simultaneously bet on this card using their own cards. The
cards used to bet are discarded, and the player with the higher value of the card used
to bet wins the middle card. After the end of the game, each player gets utility equal
to the difference between the points collected by him and the number of points collected
by his opponent. The players do not observe the bet of their opponent. Instead, they
learn whether they have won, lost, or if there was a tie caused by both players using cards
with equal value. We change the number of cards in all 3 decks, by GSx, we refer to the
II-Goofspiel where each deck has x cards.

5.3.2.3 Graph Pursuit

Graph pursuit is a game played between the defender and the attacker on the graph
depicted in Figure 5.2. The attacker starts in the node labeled S and tries to reach the
node labeled G. The defender controls two units which start in nodes D1 and D2. The
players move simultaneously and are forced to move their units each round. Both the
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Figure 5.3: The plots showing the sum of exploitabilities of the resulting strategies for
player 1 and 2 (log y-axis) as a function of iterations (x-axis) for GP5, GS5, P222.

attacker and defender only observe the content of the nodes with distance less or equal
to 2 from the current node occupied by any of their units. The attacker gets utility 2 for
reaching the goal G. If the attacker is caught by crossing the same edge as any of the units
of the defender or by moving to a node occupied by the defender he obtains the utility -1
and the game ends. If a given number of moves occurs without any of the previous events,
the game is a tie, and both players get 0. We create different versions of Graph pursuit
by changing the limit on the number of moves. By GPx we denote Graph pursuit where
there are x moves of each player allowed.

5.3.3 Convergence of CFR+IRA

In this section, we provide the experiments showing the convergence of CFR+IRA with
varying kh and kb parameters compared to CFR+ applied directly to the unabstracted
game. Additionally, we justify our choice of values of the kh and kb parameters in the rest
of the experimental evaluation.

In Figure 5.3 we present the sum of exploitabilities of the resulting strategies of player
1 and 2 computed by CFR+IRA with various settings compared to CFR+ for GP5, GS5,
and P222 as a function of the number of iterations. We depict the results for CFR+IRA
as averages and standard error over 10 runs of the algorithm (the standard error is usually
too small to be visible). Each run uses a different seed to randomly sample the information
sets for regret bound and heuristic abstraction updates. We show 3 settings of CFR+IRA
where kh + kb = 100 and 3 settings where kh + kb = 1000. The convergence of CFR+IRA
with kh = 0 is significantly worse compared to the rest of the settings across all domains
even when we increase kh+kb from 100 to 1000. For this reason, we focus only on settings
where kh > 0 in the following experimental evaluation. In GP5 and GS5 all CFR+IRA
parametrizations with kh > 0 converge similarly to CFR+. Note that CFR+IRA can
converge faster than CFR+ since the final abstracted game which allows convergence can
have significantly less information sets and hence tighter bound on the average external
regret. On the other hand, in P222 CFR+ converges faster than CFR+IRA. Additionally,
there is very little difference between the convergence speed of the different settings of
CFR+IRA where kh > 0.
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Figure 5.4: The plots showing the sum of exploitabilities of the resulting strategies of
player 1 and 2 (log y-axis) as a function of iterations (x-axis) for GP6, GS6, P224.

In Figure 5.4 we show the same results for GP6, GS6 and P224. The plots show slower
convergence of CFR+IRA with kh + kb = 100 compared to kh + kb = 1000. Additionally,
except for GP6, all versions of CFR+IRA converge slower than the CFR+. This is ex-
pected, since using kh + kb = 100 and kh + kb = 1000 means that the algorithm uses less
than 0.1% and 1% of information sets for abstraction update in all 3 domains. Hence it
takes longer to refine the abstraction to allow strategies with a smaller exploitability.

The results above suggest that all the evaluated settings of CFR+IRA with fixed
kh + kb and kh > 0 perform similarly. Additionally, we have observed that this similarity
also holds for the memory required by CFR+IRA. On the other hand, increasing the sum
of kh + kb from 100 to 1000 improved the convergence speed of CFR+IRA in the larger
domains. Hence, for clarity, in the following experiments we report only two settings of
CFR+IRA, namely B10H90CFR+IRA and B100H900CFR+IRA.

5.3.4 Memory Requirements of Algorithms

In this section, we discuss the memory requirements of FPIRA, CFR+IRA, and DOEFG as
a function of the exploitability of the resulting strategies on 2 sets of domains: GP5, GS5,
P222 with approx. 104 information sets and GP6, GS6, P224 with approx. 105 information
sets. Since the actual memory usage is implementation dependent, we analyze the size
of the abstractions built by CFR+IRA and FPIRA and the size of the rest of the data
structures required by these algorithms. We compare these results with the size of the
restricted game built by DOEFG and other data structures stored by this algorithm. Next,
we compare the number of 32-bit words stored during the run of FPIRA, CFR+IRA, and
DOEFG. We conclude this section by more detailed analysis of the scalability of CFR+IRA
in the poker domain and compare this scalability with DOEFG and FPIRA.

5.3.4.1 GP5, GS5 and P222

In Figure 5.5 we show the number of information sets in the abstraction (or restricted
game) built by the algorithms as a function of the sum of exploitabilities of the resulting
strategies of player 1 and 2 for GP5, GS5, and P222. We report these results for DOEFG,
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Figure 5.5: The plots depicting the number of information sets (log y-axis) used by algo-
rithms to compute strategies with the exploitability depicted on the log x-axis for GP5,
GS5, P222.

FPIRA and two settings of CFR+IRA. The lines for CFR+IRA depict the average number
of information sets over 10 runs of CFR+IRA. Each run uses a different seed to randomly
sample the information sets for regret bound and heuristic abstraction updates. Note that
the standard error is too small to be visible in these plots. FPIRA and DOEFG require
a similar number of information sets to reach strategies with equal exploitability. The
CFR+IRA, on the other hand, requires significantly less information sets than FPIRA
and DOEFG for these domains. For exploitability 0.05, the B10H90CFR+IRA uses on
average 9.5%, 3.1%, 14.9% of information sets of the total information set count of GP5,
GS5 and P222 respectivelly, while FPIRA uses 19.6%, 15.6%, 42.9% and DOEFG 24.0%,
17.2%, 47.8%.

In Figure 5.6 we show the size of data structures stored during the run of FPIRA,
CFR+IRA, and DOEFG for GP5, GS5, and P222.

FPIRA: The results for FPIRA are presented in the plots in the first row of the Figure.
We report the number of information sets of the abstraction, the size of the information
set mapping, the size of the cache used during the best response computation, the size of
the best response and the size of the cache used during the ∆ computation as a function of
the sum of exploitabilities of the resulting strategies of player 1 and 2. Note that the cache
sizes and best response strategy size are reported as the maximum size encountered until
FPIRA reached strategies with the corresponding exploitability. The results show that the
size of the abstraction mapping remains small. On the other hand, the cache used during
the best response computation and the ∆ computation can require prohibitive memory
when applied to large games (the cache stores value for each state encountered during the
best response computation, and hence its size can be significantly larger than the number
of information sets). For example, for exploitability 0.05 the size of the information set
mapping was 20.5%, 18.2%, 43.4% of the total information set count of GP5, GS5, and
P222, while the size of the cache in the best response computation was 109.6%, 23.8%,
106.1%.

CFR+IRA: The plots in the second row show that both the average mapping size
and the average number of information sets in the abstraction in CFR+IRA remain small:
B10H90CFR+IRA stored the mapping on average only for 10.7%, 3.9%, 22.1% of the total
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Figure 5.6: Plots showing size of data stored during the run of FPIRA in the first row,
CFR+IRA in the second row and DOEFG in the third row (log y-axis) as a function of
the sum of exploitabilities of the resulting strategies of player 1 and 2 (log x-axis) for GP5,
GS5 and P222.

information sets for GP5, GS5, and P222 respectively. Additionally, in case of GP5, GS5
and P222 kh+kb = 100 corresponds to storing regrets required for the abstraction update
only in 1.1%, 1.0%, 0.7% of informations sets of the whole game respectivelly.

DOEFG: Finally in the third row we show the data structures required by the
DOEFG. Similarly to FPIRA we report the maximum size of the cache used in the best
response and the maximum size of the best response strategy since DOEFG uses the best
response computation with the cache as oracle extending the restricted game (see [7],
Section 4.2). Additionally, we report the size of the extended utility, which is required
to construct the sequence-form LP for the current restricted game. The extended util-
ity stores one value for each combination of sequences leading to some leaf or temporary
leaf (see [7] for more details). Finally, we report the number of information sets in the
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Figure 5.7: The number of 32 bit words the algorithms store (log y-axis) as a function of
the exploitability of the resulting strategies (log x-axis) for GP5, GS5 and P222.

restricted game. Note that it is not clear whether these are all the data required by the
DOEFG since DOEFG was never implemented or described with emphasis on memory ef-
ficiency. However, we believe that these data form a necessary subset of the data required
by the DOEFG. The results show that storing the extended utility requires prohibitive
memory as its size can be significantly larger than the number of information sets. For
example, for exploitability 0.05 the size of the extended utility was 297%, 102% and 352%
of the total information set count of GP5, GS5, and P222.

Finally, in Figure 5.7 we present the total number of 32-bit words (integers and floats)
the algorithms need to store in GP5, GS5, and P222 as a function of the exploitability
of the resulting strategies. These values were computed from the data depicted in Figure
5.6. Furthermore, to properly reflect the data stored by FPIRA in the abstraction, we
replace the abstraction size by the number of floats that are used to represent the average
strategy stored in the current abstraction. Similarly, for CFR+IRA we replace the average
abstraction size by the average number of floats that are required to represent the regrets
and average strategies stored in the current abstraction. These results show that the
number of words stored by FPIRA and DOEFG is comparable. On the other hand,
CFR+IRA in both settings requires an order of magnitude smaller memory than FPIRA
and DOEFG.

5.3.4.2 GP6, GS6 and P224

In Figure 5.8 we present the results showing the abstraction size for GP6, GS6 and P224.
We depict the results for CFR+IRA as averages with the standard error over 5 runs with
different seeds (the standard error is again too small to be visible). The CFR+IRA is
capable of solving the games using abstractions with significantly less information sets
than the rest of the algorithms. For exploitability of the resulting strategies 0.05, the
B100H900CFR+IRA uses on average 2.0%, 2.4%, 0.9% of information sets of GP6, GS6
and P224, while DOEFG uses 13.3%, 12.0%, 4.0%. A slow runtime prevented FPIRA
from convergence to strategies with exploitability 0.05 in the given time (see Section 5.3.5
for runtime analysis). Additionally, in case of GP6, GS6 and P224, kh + kb = 100 corre-
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Figure 5.8: The plots depicting the number of information sets (log y-axis) used by al-
gorithms to compute strategies with the sum of their exploitabilities depicted on the log
x-axis for GP6, GS6 and P224.

sponds to storing regrets required for the abstraction update only in 0.09%, 0.06%, 0.03%
of informations sets of the whole game respectivelly.

In Figure 5.9 we present the size of data structures stored during the run of CFR+IRA
(first row) and DOEFG (second row) for GP6, GS6, and P224. These results confirm
that CFR+IRA requires small memory even in larger domains, while the data stored by
DOEFG remain large.

Finally, in Figure 5.10 we again depict the number of 32-bit words stored by the
algorithms for GP6, GS6, and P224. These results further confirm that CFR+IRA requires
at least an order of magnitude less memory than FPIRA and DOEFG.

5.3.4.3 Relative Size of CFR+IRA Abstractions

Next, we compare how the size of the abstraction of the CFR+IRA scales with the size of
the solved domain. In Figure 5.11 we provide the relative size of the abstraction required
by CFR+IRA to compute strategies with exploitability 0.05 on P111, P222, and P224 as
a function of the total information set count of the solved domains. The relative sizes
reported are computed with respect to the total number of information set of the solved
domains (left plot), the size of the restricted game required by DOEFG (middle plot) and
the size of the abstraction required by FPIRA (right plot). The plots show that the relative
size of the abstraction required by CFR+IRA decreases in all 3 settings. This suggests
that for larger domains the relative size of the abstraction built by CFR+IRA will further
decrease not only compared to the total information set count but also compared to the
restricted game required by DOEFG and the abstraction size required by FPIRA.

5.3.5 Runtime

In this section, we provide a comparison of the runtime of the algorithms. The plots in
Figure 5.12 show the runtime comparison in seconds of CFR+IRA, FPIRA and CFR+
for GP5, GS5, and P222. We again depict the results for CFR+IRA as averages with the
standard error over 10 runs with different seeds. The runtime of CFR+IRA in all version
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Figure 5.9: Plots showing size of data stored during the run of CFR+IRA in the first row
and DOEFG in the second row (log y-axis) as a function of the sum of exploitabilities of
the resulting strategies of player 1 and 2 (log x-axis) for GP6, GS6 and P224.

is consistently better than FPIRA and except for P222 is comparable to the runtime of
CFR+. We omitted the DOEFG from this comparison since all CFR+IRA, FPIRA and
CFR+ use a domain-independent implementation in Java, while our implementation of
DOEFG uses efficient IBM CPLEX LP solver. Furthermore, as discussed above, DOEFG
was never implemented with emphasis on memory efficiency. And so it heavily exploits
additional caches for the restricted game not reported in the previous section which sig-
nificantly improve its runtime while increasing its memory requirements. Hence, e.g., in
case of GP5, the DOEFG took 19 seconds to find strategies with exploitability 0.01, while
B100H900CFR+IRA took 38 seconds and the B10H90CFR+IRA 200 seconds. On the
other hand, DOEFG required 1 GB of memory, while both settings of CFR+IRA used 38
MB.

The plots in Figure 5.13 show the runtime comparison in seconds of CFR+IRA, FPIRA
and CFR+ for GP6, GS6 and P224. These plots further confirm the runtime dominance
of CFR+IRA over FPIRA. The high runtime of FPIRA is the cause for omitting the
results of FPIRA for smaller exploitabilies of the resulting strategies, as the time required
to compute them becomes prohibitive. Furthermore, the results show that the runtime
is worse for CFR+IRA where kb + kh = 100 compared to the case with kb + kh = 1000.
Additionally, there is a more profound difference between the CFR+IRA runtime and
the runtime of CFR+. Both observations are expected since using kh + kb = 100 and
kh + kb = 1000 means that the algorithm uses less than 0.1% and 1% of information sets
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Figure 5.10: The number of 32 bit words the algorithms store (log y-axis) as a function of
the exploitability of the resulting strategies (log x-axis) for GP6, GS6 and P224.
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Figure 5.11: Plots showing the relative size of the abstractions used by CFR+IRA (y-
axis) compared to the total information set count, the size of the restricted game used by
DOEFG and the size of the abstraction used by FPIRA to compute resulting strategies
with the sum of exploitabilities 0.05 as a function of the information set count of different
poker instances (log x-axis).

for the abstraction update in all 3 domains. Hence it takes longer to refine the abstraction
to allow strategies with a smaller exploitability.

5.3.6 Experiment Summary

We have shown that CFR+IRA requires at least an order of magnitude less memory to
find strategies with a given exploitability compared to the memory required by FPIRA
and DOEFG. Furthermore, the results suggest that when increasing the size of the solved
domains, the relative memory requirements of CFR+IRA will further decrease not only
compared to the total information set count of the solved domain but also compared to
the memory requirements of FPIRA and DOEFG. Additionally, we have shown that the
heuristic abstraction update provides a good indication of the parts of the abstraction that
need to be updated and hence significantly enhances the convergence speed of CFR+IRA.

From the runtime perspective, the DOEFG is the most efficient algorithm. However,
we show that its good performance comes at the cost of high memory requirements. Hence,
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Figure 5.12: The plots showing runtime of FPIRA and CFR+IRA in seconds (log y-axis)
required to reach the given sum of exploitabilities of resulting strategies of player 1 and 2
(log x-axis) for GP5, GS5, and P222 respectively.
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Figure 5.13: The plots showing runtime of FPIRA and CFR+IRA in seconds (log y-axis)
required to reach the given sum of exploitabilities of resulting strategies of player 1 and 2
(log x-axis) for GP5, GS5 and P222 respectivelly.

CFR+IRA proves useful, as there are domains where the memory requirements of DOEFG
are too large.

112



Chapter 6

Conclusion and Future Work

Extensive-form games are an important model of finite sequential strategic interaction be-
tween players. The size of the extensive-form representation is, however, often prohibitive
and it is the most common issue preventing deployment of game-theoretic solution concepts
to real-world scenarios. In this thesis, we focus on imperfect recall information abstractions
with an aim to increase the scalability of solving extensive-form games. We provide the
following contributions. First, we provide a complete picture of the complexity of solving
imperfect recall abstractions. Second, we introduce two families of domain-independent
algorithms capable of using imperfect recall abstractions to solve extensive-form games.

6.1 Thesis Contributions

6.1.1 Theoretical Properties of Imperfect Recall Abstractions

We provide a complete picture of the complexity of solving imperfect recall games. We
demonstrate that the mixed strategy and behavioral strategy representation have different
descriptive power in imperfect recall games and show that this difference leads to the loss
of the guarantee of the existence of Nash equilibrium in behavioral strategies in imperfect
recall extensive-form games. Furthermore, we discuss the numerical representation of Nash
equilibrium and maxmin strategies in perfect and imperfect recall games. Next, we present
known subsets of imperfect recall games: A-loss recall games and Chance relaxed skew
well-formed games. We show that most of the hardness results known for imperfect recall
games also extend to A-loss recall games. On the other hand, we provide sufficient and
necessary (i.e., if and only if) condition for the existence of Nash equilibrium in A-loss recall
games. This result makes A-loss recall games the only subset of imperfect recall games,
where such conditions are known. Additionally, we show that A-loss recall property allows
us to compute a best response in polynomial time (computing best response is NP-hard in
imperfect recall games). Next, we discuss the problems of applying existing algorithms for
solving perfect recall extensive-form games to imperfect recall games. Finally, we explain
why Chance relaxed skew well-wormed games allow application of perfect recall algorithms
and show the relation between A-loss recall games and Chance relaxed skew well-formed
games.
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6.1.2 Algorithms using Imperfect Recall Abstractions

From the algorithmic perspective, we introduce two families of algorithms.

The first family consists of domain-independent algorithms capable of approximating
maxmin strategy in the given imperfect recall abstraction. We show that the algorithms
are significantly more scalable in the case where we restrict the minimizing player to have
a special case of imperfect recall called A-loss recall. We demonstrate that this approach
allows us to significantly reduce the memory required to store the resulting strategy.

The second family consists of two domain-independent algorithms which can start
with an arbitrary imperfect recall abstraction of the given two-player zero-sum EFG with
perfect recall and then simultaneously refine and solve this abstraction until guaranteed
convergence to the desired approximation of Nash equilibrium of the original unabstracted
EFG. These algorithms have the following differences compared to the first class of algo-
rithms. Both algorithms directly benefit from the reduced size of the solved game also
during the computation and not only in the size of the resulting strategies. The algorithms
can start from arbitrary imperfect recall abstraction, e.g., provided by domain experts.
If no such abstraction is available for a given domain, the algorithms can start from a
trivial coarse imperfect recall abstraction (we provide a domain-independent algorithm
for constructing such initial abstraction). And finally, the choice of the initial abstraction
does not influence the quality of the resulting strategies, since the abstraction is refined
during the run of the algorithm to guarantee that the algorithms compute the desired
approximation of the Nash equilibrium of the original game.

6.1.3 Implementation

All the algorithms and domains used in this thesis were implemented as a part of a publicly
available library of game theoretic algorithms1.

6.2 Future Work

The algorithms presented in this work open several possible directions for future work.

6.2.1 Better Automatically Built Initial Abstractions

Currently, we use a mapping of actions defined by the domain description when merging
the information sets as a part of the construction of the initial abstraction for FPIRA
and CFR+IRA (see Section 5.2.1.1). We believe that a mapping of actions, that takes
into account their similarity, could greatly reduce the number of refinements of the initial
abstraction performed by CFR+IRA and FPIRA to find the desired approximation of
the Nash equilibrium of the original game. Such mapping could be based, e.g., on a fast
heuristic search determining the similarity of the parts of the game reachable by taking
the corresponding actions.

1http://jones.felk.cvut.cz/repo/gtlibrary
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6.2.2 Domain Dependent Implementation of CFR+IRA

CFR based approaches are known to perform extremely well in poker domains [45, 55, 9].
This is caused by the specific structure of poker, where all the actions of the players
are perfectly observable. Since as a part of CFR+IRA we use a domain-independent
implementation of CFR+, we were not able to reach the full performance potential of
CFR+IRA. We believe that domain-specific implementation of CFR+IRA, even outside
of poker domain, would greatly improve its performance and would allow further significant
scale-up of the algorithm.

6.2.3 Domain Specific Initial Abstractions for FPIRA and CFR+IRA

During the evaluation of CFR+IRA and FPIRA, we focused on automatically built initial
abstractions. We believe that applying CFR+IRA to existing abstractions commonly
used, e.g., in poker would greatly improve the convergence speed of CFR+IRA as these
abstractions are built by domain experts and are known to perform well in practice.
Applying CFR+IRA to these abstractions would have two benefits: (1) CFR+IRA would
suggest further improvements to the abstractions in places where they are too coarse. (2)
CFR+IRA would provide an arbitrarily precise approximation of the Nash equilibrium of
the original domain when initialized by these abstractions, while the current solvers applied
to these abstractions are limited by the quality of these abstractions. This, combined with
the domain-specific implementation could lead to a significant improvement of the quality
of the strategies currently used in these domains, as there are typically no guarantees
that the used abstractions allow computation of sufficient approximation of the Nash
equilibrium.

6.2.4 Parallelization of CFR+IRA

As shown in [6] the CFR based algorithms are suitable for massive parallelization. Hence
the scalability of CFR+IRA could be further enhanced by an implementation which would
allow such parallelization.

6.2.5 NP-Completeness of Computation of Maxmin Strategies and NE
in A-loss Recall Games

We have left the question whether the problem stated in Theorem 4.2.2 belongs to NP as
an open problem. Even though Theorem 3.2.1 states that the solution to this problem
might require irrational numbers, it is not a sufficient argument for showing that it does
not belong to NP. From this perspective, the problem from Theorem 4.2.2 is similar to
square-root sum problem, since the square-root sum problem also requires operations with
irrational numbers. However, deciding whether square-root sum problem belongs to NP is
a major open problem [18] and there are known connections of square-root sum problem
to other problems in game theory, e.g., computing Nash equilibrium in 3-player games
[16]. It would be interesting to decide whether the problem from Theorem 4.2.2 belongs
to NP or not, or at least find a reduction of the square-root sum problem to this problem.
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Figure A.1: The expected value of the average strategy of player 1 against the best response
tof player 2 (y-axis) as a function of iterations (x-axis) for CFR (left) and FP (right).

In this Chapter we demonstrate the performance of FP and CFR applied to the im-
perfect recall game from Figure 3.5 where we set x = 10. The game has A-loss recall and
has 2 NE, playing (a, g) or (b, h) deterministically for player 1 and (c, f) for player 2 (no
mix between these two NE strategies for player 1 is a NE).

A.1 Experimental Evaluation of Strategies Computed by
FP in Imperfect Recall Game

Here, we empirically demonstrate the performance of FP on the example game from Fig-
ure 3.5 when we set x = 10.. Figure A.1 (right) depicts the expected value of the average
strategy of player 1 against the best response of player 2 computed by the FP (x-axis
shows the number of iterations, the y-axis shows the expected value). The FP does not
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converge to any fixed strategy. Moreover, the exploitability of the strategy in every itera-
tion significantly differs from the maxmin value -1 for player 1 achievable, e.g., by playing
a and g deterministically).

A.2 Experimental Evaluation of Strategies Computed by
CFR in Imperfect Recall Game

Here, we empirically demonstrate the performance of CFR on the example game from
Figure 3.5 when we set x = 10. Figure A.1 (left) depicts the expected value of the
average strategy of player 1 computed by the CFR against the best response of player
2 (x-axis shows the number of iterations, the y-axis shows the expected value). The
algorithm converges to the average strategy with exploitability -5, while the maxmin value
of player 1 is -1. Notice that by increasing x, the exploitability of the resulting strategy
will further grow, while the maxmin value remains -1 (achievable, e.g., by playing a and
g deterministically).
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