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Abstrakt 
 

 

Korozivzdorná ocel je specifický materiál, který se svým chováním liší od uhlíkové 

oceli, což vyžaduje odlišný přístup při navrhování stavebních konstrukcí. Jedním 

z hlavních znaků všech korozivzdorných ocelí, který doposud nebyl uspokojivě 

prozkoumán a nebyl zohledněn v normách pro navrhování, je výrazná změna 

pracovního diagramu způsobená tvářením za studena během výroby zejména dutých 

průřezů. V posledních desetiletích byly stanoveny různé vztahy pro popis základních 

materiálových charakteristik těchto profilů, které využívají rozdílných parametrů 

potřebných pro výpočet a získávají i rozličné výsledné hodnoty. Některé jsou přesnější 

pro malá přetvoření (očekávaná ve stavebních konstrukcích), jiné jsou přesnější pro 

vyšší hodnoty deformace. Současně publikovaný výzkum se také liší ve stanovení 

základních materiálových charakteristik jako modulu pružnosti, parametrech 

nelinearity, smluvní meze kluzu a pevnosti či tažnosti. Zvláště pro za studena tvářené 

oceli se tyto veličiny mohou významně lišit. 

 

Níže uvedený výzkum zahrnuje experimentální program zaměřený na zkoušky 

netvářeného i tvářeného materiálu ze čtyř druhů ocelí: austenitické (1.4404), feritické 

(1.4003), austeniticko-feritické = duplexní (1.4462) a nízkolegované austeniticko-

feritické, tzv. lean-duplexní (1.4162). Tyto vybrané druhy reprezentují nejvíce 

používané typy korozivzdorných ocelí pro konstrukční účely zpracovávané tvářením 

zastudena. Získaná data společně s ostatními dostupnými výsledky dalších výzkumů 

slouží jako podklad pro analytickou část práce. 

 

Hlavním úkolem disertační práce bylo stanovit analytické řešení pro popis pracovního 

diagramu celého průřezu vyrobeného pomocí tváření za studena do formy hranaté 

nebo kruhové trubky. Dalším cílem bylo určit vztahy pro další mechanické vlastnosti 

průřezu, jako jsou tažnost nebo mez pevnosti, jelikož tato problematika nebyla dosud 

dostatečně prozkoumána. Uvedené závěry mohou přispět k nejnovějším postupům pro 

navrhování a pomoci zpřesnit výpočty metodou konečných prvků využívající zvýšené 

mechanické vlastnosti zastudena tvářených prvků. 

 

 

 

Klíčová slova: korozivzdorná ocel, pracovní diagram, tváření zastudena, mechanické 

vlastnosti.  



 

 

 

Abstract 
 

 

Stainless steel is material of many specific properties. Structural behaviour 

significantly differs from carbon steel and demands more sophisticated structure 

design. One of the main attributes of all stainless steel grades that haven't been 

satisfactorily investigated is the significant change of stress-strain behaviour due to 

cold-forming in fabrication process of structural elements. In the last decades some 

proposals for the most basic material properties have been developed. These models 

work with various material parameters and result in different values. Some of them 

show a good agreement in the range of strain expected in service of load-bearing 

structures, other are in good agreement at higher strains. Current experimental results 

obtained from the recent approaches demonstrate also different values for basic 

material characteristics, especially for the modulus of elasticity, parameters of 

nonlinearity, 0.2% proof strength, ultimate tensile strength or ductility. Particularly, 

material properties of steel in cold worked conditions can differ a lot as it is stated 

herein. 

 

Presented research project involves testing programme focused on virgin and cold-

worked elements of four stainless steel grades: austenitic (1.4404), ferritic (1.4003), 

duplex (1.4462) and lean duplex (1.4162). Selected grades represent the most used 

families of stainless steel specific for structural purposes and used for section 

fabricating via cold-forming. Gathered data together with other available experimental 

results serve as a base for the analytical part of the thesis. 

 

The main task of the thesis was to establish an analytical solution for a stress-strain 

diagram of a whole structural section represented by rectangular or circular hollow 

sections. Further objective was to establish relationships for mechanical properties 

such as ductility or ultimate strength as these issues of current research have not been 

sufficiently investigated yet. Conclusions stated herein might contribute to the newest 

design codes and help to precise finite element analyses using enhanced properties of 

cold-worked stainless steel.  
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Chapter 1 

Introduction 

1.1 Foreword 
 

Stainless steel is a relatively new and widely used material, which price generally 

ranges about three to six times the carbon steel price. Therefore stainless steel is 

demanded for relatively low thickness section members where the material is effectively 

used as much as possible, for the aesthetic sheeting, architectural important objects or 

for members, situated in the high corrosive environment, with long-term durability 

requirements. Full use of material benefits might contribute to decreasing of 

construction costs and environmental impact. Also continual increasing demand of 

stainless steel products require new approaches for the design as they become one of the 

most exposed members in structures with relatively high acquisition costs and 

aesthetical appearance.  

 

Relatively high acquisition costs determine stainless steel structure to be used in harsh 

environment, for constructions with limited access for maintenance or due to high 

quality of surface finish, for architectural important structures, for offshore structures or 

pedestrian bridges. More and more stainless steel is used also for traditional bridge 

construction allowing decrease of maintenance costs and avoiding corrosion losses 

estimations (e.g. as it stated in recent studies for weathering steel [1]). 

http://www.rewin.cz/WebForm1.aspx?slovo=717561647275706C65&smer=0
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In addition, there is a new progressive method for considering the whole life costs with 

respect to sustainability and environmental impact, Life – cycle costing. It affects 

choice of material for main load-bearing structure in terms of initial, operating costs and 

residual value of material. From this point of view stainless steel distinguish by minimal 

maintenance and residual costs. Thus increase of stainless steel constructions could be 

expected. Therefore the thesis is aimed at structural applications which efficient use in 

designing is demanded for. 

 

 

1.2 Stainless steel for structural purposes 
 

Stainless steel differs in chemical composition in comparison with carbon steel a lot. 

Corrosion resistance is given by chromium (an essential alloy with minimal content of 

10.5%), molybdenum and nitrogen content. Stainless steel may contain also carbon, 

nickel, manganese, copper, silicon, phosphorus, sulphur and niobium or titanium. 

 

Traditionally structural stainless steel is divided into several basic groups according to 

its microstructure. These main groups represent austenitic, ferritic, duplex (i.e. ferritic - 

austenitic), martensitic and precipitation-hardening grades (see Figure 1.1).  Each group 

differs in material properties, corrosion resistance or way of fabrication. For structural 

purposes the first three ones are the mostly used. 

 

 
Figure 1.1 Stainless steel grades according to content of nickel and 

chromium [2] 

 

Austenitic Grades 

 

The austenitic family is the most commonly used, especially grades: 1.4301 (widely 

known as 304 according to the American standard AISI) and 1.4401 (known as 316). 

Other widespread grades are 1.4404 (known as 316L) and 1.4307 (known as 304L). 



Chapter 1: Introduction 

   3 

They are characterized by non-magnetism, excellent behaviour in elevated temperatures 

(see Figure 1.2), very high ductility, good corrosion resistance and they are readily 

weldable. All properties mentioned determine them to use for cold-formed sections, 

applications demanding high plastic deformations and for applications exposed to high 

temperatures. 

 

 

 
 

Figure 1.2 Reduction factor for yield (proof) strength under fire: comparison 

of carbon and stainless steel [3] 

 

Ferritic Grades 

 

Ferritic steels almost do not contain nickel. They are mostly poorly weldable, 

characterized by low ductility. Their advantage is stable low price and good corrosion 

resistance. These grades are generally used for exhaust systems, domestic equipment or 

building sheeting. Quite new grades have been joined for structural purposes, i.e. 1.4509 

which exhibits improved weldability with workability and 1.4521 with improved 

corrosion resistance. 

 

Austenitic-ferritic (Duplex) Grades 

 

Duplex steels contain larger content of chromium and lower nickel content. It is 

relatively equal mix of two phases – ferritic and austenitic. They exhibit high strength 

and corrosion resistance with relatively high ductility and good weldability.  Enhanced 

properties are in balance with high price. In case of duplex steels there is a new grade of 

lean-duplex (low alloy duplex) steel 1.4162 with reduced content of nickel and 

molybdenum. It keeps similar mechanical and corrosion properties in comparison with 

duplex grades, but lower price as well. Main application field is their use for exposed 

bridge load-bearing elements.  
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Martensitic Grades 

 

Martensitic grades are hard steels exhibiting magnetism and high strength with low 

ductility and toughness used for bearings etc. 

 

Precipitation Hardening Grades 

 

The precipitation hardening stainless steels have properties similar to a mix of 

martensitic and austenitic steels. They can be heat treated to provide high tensile 

strengths. They are used in the specific applications such as nuclear and aerospace 

industry. 

 

In case of structural section fabrication there are several main production methods, i.e. 

hot-rolling, cold-rolling and press-braking when a sheet material is formed into the final 

shape by individual bends. Current product market offers mostly cold-rolled sections. 

 

 

1.3 Fabrication 
 

The final stainless steel products involve thin and thick plates sheet, bars, hollow 

sections, both hot-rolled and cold-rolled open cross sections etc. The most common are 

circular, square and rectangular hollow sections (CHS, SHS, RHS), thick-walled H, I 

cross sections, thin-walled U, C or angles. Structural section production is shown in 

Figure 1.3). In civil engineering, stainless steel is mainly used in lightweight structures 

as thin-walled cold-rolled or cold-formed structure elements due to the high efficiency, 

ease of transport and handling on site.  

 

The two main cold forming routes are press-braking and cold-rolling. 

 

Cold-rolled structural cross sections represent the most widely used stainless steel 

sections for members in civil engineering. The principle of fabrication process can be 

described as passing a coiled sheet through series of shaped rollers to form both open 

and hollow section types. Cold rolling allows producing of large volumes of the 

identical structural sections with low fabrication tolerances. The hollow sections 

production route using flat material allows manufacturing more than one box size with 

the same size of rolls. This means it does not require change of rollers and thus it is 

possible to produce small batches without greater costs. 

 

Press-braking is a process of cold-forming of sections from a flat sheet. Longitudinal 

fold is being created along the sheet by a tool pressing the material into a die. This 

process is used to create open sections such as angles and channels. Drawbacks of the 

press-braking are limited sort of cross section fabricated and shorter length of the final 

products (according to the manufacturing machine). It is particularly used for small 

batches of bespoke sections or for cross section prototypes. 
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Figure 1.3 Structural section production [4] 

 

 

1.4 Mechanical properties of stainless steel 
 

Stainless steel is specific material. Main difference between common carbon steel and 

stainless steel is nonlinearity of stress-strain diagram (see Figure 1.4). Stainless steel 

doesn´t exhibit well-defined yield strength similar to aluminium alloys. Therefore the 

σ0.2 is traditionally used, defined as a stress value for which plastic strain 0.2 % remains 

after unloading. Curvature of stress-strain diagram is dependent on material grade or 

level and type of cold-forming. Basic and essential material characteristics for stress-
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strain diagram description are initial tangent modulus of elasticity, yield strength (0.2% 

proof strength) and parameters of nonlinearity (see Figure 1.5).  

 

 

 
 

 

Figure 1.4 Typical tension stress-strain diagram in annealed 

condition for selected stainless and carbon steel [5] 

 

 
 

Figure 1.5 Basic parameters used for the stress-strain diagram of 

stainless steel description [6] 

 

If stainless steel is cold-worked, it exhibits different mechanical properties in tension 

and compression, known as non-symmetry in stress-strain behaviour. Stainless steel 

also tends to demonstrate anisotropy in respect to the rolling direction (see Figure 1.6).  
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Figure 1.6 Typical stress-strain diagram for cold-worked stainless 

steel 1.4318, level C850 [5] 

 

In terms of stress-strain non-symmetry Shu et al. [7] observed within RHS and SHS 

testing that the proof strength σ0.2 of the coupon made of the flat part in tension is 

slightly higher than the proof strength σ0.2 of the coupon in compression. Executed tests 

for flat parts proved that the non-linearity parameter n is lower in tension than in 

compression. But differences for low levels of cold-working may be small, hence we 

can usually consider the values of σ0.2 and non-linearity parameter n (see section 3.2) 

the same for tension and for compression. Also the value of initial modulus of elasticity 

was measured the same both for tension and compression. 

 

Rossi et. al [8] analysed and compared available data of the 0.2% proof strength for 

tension and compression (see Figure 1.7). Results show 5% decrease for compression in 

comparison with tension in cold formed material. 

 

 
 

Figure 1.7 Observed relationship between compressive and tensile 

proof strength [8] 
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Numerical simulations performed at University of Sydney [9] proved negligible impact 

of anisotropy for common structural elements with difference of ultimate strength lower 

than 1% within elastic-plastic material model consideration. 

 

It should be noted anisotropy increases with a level of cold-working (see section 4.3). If 

higher level of plastic deformation in one direction is induced the higher difference 

between strain hardening in the same and the transverse direction will be pronounced. 

Enhanced 0.2% proof strength is higher in the direction of original plastic deformation 

than in the transverse direction. Hence, where there is no dominant direction of loading 

the nominal value of the strength in transverse direction should be used in design as the 

safe value. 

 

 

1.5 Cold - forming  
 

In cold-formed sections plastic deformation occurs during the fabrication process, that 

increases the yield strength and ultimate tensile strength [2], but decreases ductility (see 

Figure 1.8). This increase is partially caused due to transformation of austenite to 

martensite. The transformation process is dependent on the forming rate and material 

temperature during forming process. The low the temperature induced the higher 

content of martensite will occur. Strength increase is dependent on alloying elements, 

especially on nickel and chromium content. 

  

 
 

Figure 1.8 Cold forming effect [2] 
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1.6 Plastic deformation and plasticity 
 

Plastic deformation of structural element means permanent deformation remaining after 

unloading. It occurs, when material under load exceeds yield point or yield surface in 

the stress space (in fact the proportional limit). The simplest model of the stress space 

consists of elastic stress state and plastic stress state. 

 

For ductile materials such as metals, the simplest and most common material model of 

yield condition is von Mises criterion (see Figure 1.9). The material is assumed to be 

perfectly elastic-plastic (i.e. hardening caused by cold forming is not accounted for). 

 
Figure 1.9 Comparison of von Mises yield surface with Tresca yield 

surface [10] 

 

The simplest model describing strength increase is isotropic hardening. The new yield 

surface after particular hardening is affine in respect to the original one. The loading 

surfaces can be obtained from the form of the previous yield function by the different 

yield stress value (Figure 1.10). 

 

 
 

Figure 1.10 a) uniaxial stress strain diagram, b) evolution of the yield 

surface in the biaxial stress plane [11] 

 

This model does not involve the Bauschinger effect. In case when the material is 

preloaded into the plastic range in one direction and then reloaded in another direction, 

Bauschinger effect (i.e. the different yield values for different axis due to internal or 

residual stresses and dislocations structures) occurs. A model affecting this behaviour is 

called kinematic hardening. The current loading surface is assumed not to expand, but 

to move as a unit as it is introduced in Figure 1.11. 
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Figure 1.11 a) uniaxial stress strain diagram, b) evolution of the yield 

surface in the biaxial stress plane [11] 

  

However, the kinematic hardening is not even in agreement with the real material 

response (see Figure 1.12). Hence, advanced multiple surface models for stainless steel 

respecting hardening, Bauschinger effect, different plastic moduli were proposed by 

Granlund[12] or Olsson[13]. 

 

 
 

Figure 1.12 Comparison of material response with simple models [10] 

 

Fabrication routes involve more complex processing of the material than simple 

uniaxial loading and hardening. Structural section fabricating consists of coiling, 

bending and other steps. That makes the stress and strain state very complicated and 

difficult to describe.  

 

For instance, practical description of stress distribution and neutral surface location in 

sheet bend after plastic deformation induction was set out by Hill [14]. 



 

11 

Chapter 2 

Thesis objectives and thesis outline 

 

The recent formulas or suggestions don´t involve all possibilities and ranges of the cold-

forming and determine only a few material properties. They particularly contain 

methods for the specification of the yield strength especially in corner areas and flat 

parts of sections. In addition these methods are limited in use as they concern specific 

bending methods and steel grades. In civil engineering, sections bent in different angles, 

CHS, RHS or oval sections made of different steel grades are often used. Different 

bending processes have been recently concerned by Rossi et al. with sophisticated finite 

element modelling [15]. 

 

Demands of more efficient use of high cost materials require constant research efforts to 

establish new progressive and safe methods that can satisfy them. In case of stainless 

steel various materials offer wide field for enhancing of current relationships. 

Considering the high degree of the cold-forming in most of the stainless steel sections, it 

would be very favourable to employ the enhancing effect into calculations. That leads to 

the significant precision and effectiveness in member design. For members subjected to 

tension it implies strong increase of resistance, however for buckling mode there is 

possible resistance decrease (related to the enhanced tensile resistance) due to the higher 

proportion of the non-linearity. 

http://www.rewin.cz/WebForm1.aspx?slovo=657370656369616C6C79&smer=0
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The research covers the basic austenitic, duplex, ferritic and also lean duplex stainless 

steel grades. 

 

The main objective of the thesis is to contribute to determining of stress-strain response 

and fundamental mechanical properties for whole sections of cold-rolled hollow 

sections. 

 

The aim of the research presented herein can be divided into 2 parts: 

 

1) Experimental research including data collection 

2) Analytical modelling of forming process 

 

 

1) Experimental research including data collection 

 

The aim was to establish experimental data for further use in advanced material 

modelling in terms of stress-strain response of the main stainless steel families. The 

various proportion of the plastic strain was induced and measured at experimental 

patterns. Afterwards tensile tests of specimens were performed. Set of experiments was 

executed to record the most important mechanical properties of austenitic, ferritic and 

duplex grades. Both virgin and cold-worked samples serve for further evaluation of 

different cold-formed material modelling and as a base for use of enhanced structural 

stainless steel properties. Detailed description of the experimental programme is stated 

in the separate Chapter 4. Results obtained from the tests are supposed to be employed 

for an analytical model of stress-strain behaviour. 

 

2) Analytical modelling of forming process 

 

The thesis compares previously published relationships for enhanced mechanical 

properties with own conclusions stated in the thesis. It is focused on prediction of 

material properties such as the non-linearity degree of the stress-strain diagram or the 

ductility. 

 

Gradually there is introduced an analytical description for a corner and a flat face of 

hollow sections. Finally, there is established a solution for the whole section stress-

strain description based on the analytical models (see Chapter 5) describing stress-strain 

behaviour which might lead to more accurate structure design. The formulas 

determination for the cold-forming effect resulted from the analytical model was 

calibrated and verified by recent experimental data. 

  

Conclusions of the presented experimental programme and material modelling may 

serve as a base for possible extension of the design standard EN 1993-1-4 [16]. 
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Chapter 3 

Literature review 

3.1 Foreword 
 

Stainless steel has been researched for several decades whilst cold-forming (resp. cold-

working) effect on stainless steel  has been researched for approximately 25 years and 

results of research have been utilized for only one design method (valid in Europe), 

which has been nowadays used in the National annex of British Standard EN 1993-1-4. 

There are several important research workplaces including e.g. Imperial College 

London, Hong Kong Polytechnic University, The University of Hong Kong, 

Polytechnic University of Catalonia, KU Leuven and University Liege. These 

institutions are considered to be major centres of stainless steel research. 

 

This chapter summarizes recent relationships, approaches and data related to stainless 

steel mechanical properties. Especially, there are mentioned stress-strain models with 

methods for determination of enhanced strength in corners and flat faces of rectangular 

hollow sections. The chapter compares codified mechanical properties for stainless steel 

according to different design standards as well. 

http://www.rewin.cz/WebForm1.aspx?slovo=617070726F78696D6174656C79&smer=0
https://en.wikipedia.org/wiki/Polytechnic_University_of_Catalonia
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3.2  Stress – strain diagram description 
 

J.L. Holmquist and A. Nadai [17] in 1939 investigated plastic collapse of tubes under 

external pressure. It was found that the resistance to collapse depends on the shape of 

the stress-strain curve. Because of different kind of materials (such as carbon steel, 

stainless steel or even brass) not all pronouncing a well-defined yield point a new stress-

strain function was used [17]: 

 

    = 
σ

 0

  σ   σp (3.1) 

 

    =
σ

 0

  y  
σ σp

σy  p
 

 

 σ   σp (3.2) 

 

where  y denotes plastic strain at yield strength σy, σp – proportional limit, 

E0 – Young´s modulus, n – nonlinearity parameter. 

 

Later Ramberg and Osgood [18] in 1943 contributed to the research of the stainless 

steel stress-strain behaviour. They published the three-parameters expression for the 

stress-strain diagram of chrome-nickel, aluminium alloy and carbon steel, which 

idealised notation related to 0.2% plastic strain of elongation was obtained as:  

 

    =
σ

 0

   
σ

 0

 
 

 
 

(3.3) 

 

The expression was modified one year later by Hill [19] in following equation: 

 

    =
σ

 0

   
σ

 p

 

 

 
 

(3.4) 

 

where Rp denotes proof strength and c corresponding plastic strain. 

  

Thus, the formula (for generally adopted 0.2% proof strength) is given by: 

 

    =
σ

 0

 0.002  
σ

σ0.2
 
 

 
 

(3.5) 

 

where the Ramber-Osgood parameter n defining the strain-hardening 

nonlinearity is in the form:  

 

   =
ln( p2/ p1)

ln(σ2/σ1)
=

ln(20)

ln(σ0.2/σ0.01)
 

 
(3.6) 

 

σ2, σ1 are stresses for two points on the stress-strain diagram (σ2 > σ1) and 

 p2,  p1 corresponding plastic strain. 
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Figure 3.1 Comparison of the Ramberg-Osgood model with the 

compound R-O model (and a test of a specimen) [2] 

 

Figure 3.1 shows, that the R-O model doesn´t sufficiently fit the stress-strain behaviour 

of stainless steel for stress over the yield (proof) strength. In 2000, Mirambell and Real 

[20] proposed a model using the R-O expression until the 0.2 % plastic strain limit, but 

the further description of the behaviour is in the form: 

 

    =
(σ σ0.2)

 0.2

  pu  
σ σ0.2

σu σ0.2
 
 

  ty       σ   σ0.2 (3.7) 

 

where E0.2 is the tangent modulus at the proof strength σ0.2,  pu  the strain at the ultimate 

strength,  ty the plastic strain at the proof strength, σu the ultimate strength and n is the 

parameter of nonlinearity obtained as: 

  

   =1 3.5 
σ0,2

σu
 (3.8) 

 

 

Annex C of the European standard EN 1993-1-4 contains this expression, with a little 

adjustment, as an appropriate model for finite elements method analyses. Nevertheless 

this formulation indicates different values of the strain   at the ultimate strength σu. 

Gardner and Nethercot [21] in 2004 modified the Mirambell-Real´s expression and 

defined the new one by the following formula: 

 

    =
(σ σ0.2)

 0.2

  0.00  
σ1.0 σ0.2

    

  
σ σ0.2

σ1.0 σ0.2
 
 ´0.2,1.0

  t0,2 (3.9) 

         

where E0.2 is the tangent modulus at σ0.2, σ1.0 is the 1.0% proof strength,  t0.2 the strain at 

the proof strength σ0.2, n‘0.2,1.0 the parameter of nonlinearity for the second stage. 
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In 2000, MacDonald, Rhodes and Taylor [22] published the stress-strain curve based on 

the different mathematical basis in the following form: 

 

    =
σ

 0

 0.002  
σ

σ1
 
     

σ
σ1
 
 
 

 (3.10) 

        

where i, j and k are constants set from the stress-strain diagram in the range from 2.5 to 

6 depending on the material thickness. Stress σ1 = σ0.2. The expression was established 

for only one steel grade (1.4301), particularly for one thickness of cold-formed channel. 

It indicated an excellent agreement between the model and tested samples. 

 

Rassmusen [23] modified a Mirambell-Real´s model based on the Ramberg-Osgood 

diagram, which requires only three essential parameters (E0, σ0.2 and n, where E0 is the 

initial modulus). Another two parameters can be determined using the equation: 

 

 
σ0.2

σu
=0.2 1 5  (3.11) 

for austenitic and duplex 

alloys 

  

 
σ0.2

σu
=

0 2 1 5 

1 0.0375(  5)
 (3.12) for all alloys 

 

where   = 
σ0.2

 0

 (3.13)  

 

Then, the full-range stress-strain curve can be described as follows: 

 

    =
σ
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 0.002  
σ

σ0.2
 
 

 for σ   σ0,2   (3.14) 

 

    =
σ 

 0.2

   up  
σ 

σ u
 
 

 for σ   σ0,2   (3.15) 

 

 

   =   0.2 (3.16) σ  =σ σ0.2 (3.17) σ  =σu σ0.2 (3.18) 

  

  up   u (3.19)   =1 3.5
σ0.2

σu
 (3.20)   

  

 u= 1 
σ0.2

σu
 (3.21)  0.2 =

 0

1 0.002  0/σ0.2
 (3.22)   

 

 

This curve is more appropriate for description of a whole stress-strain diagram than the 

one-stage R-O expression and requires knowledge of only design code defined 

parameters (see Figure 3.2 and Figure 3.3). 
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Figure 3.2 Comparison of the R-O model, tested specimen and the 

Ras  ss  ´s  xpr ss o  of the stress-strain curve 

depending on the ultimate strength σu [23] 

 

 
 

Figure 3.3 Nominal stress-strain curves for the longitudinal tension, 

coupon cut out from the ferritic stainless steel plate tested 

by Korvink et al. [24] with comparison of the Rasmussen 

model. [25] 

 

Three-stage stress-strain model for both tensile and compressive strains was published 

in 2005 by Quach [25]. The model is more accurate and uses the Ramberg-Osgood 

formula for strains up to 0.2% plastic limit. Behind this limit the relationship based on 

the Gardner-Nethercot description for plastic strain up to 2% is used and for higher 

strains it assumes that the curve is a straight line passing through the 2% proof strength 

σ2.0 and the ultimate strength σu. 

 

Full description of the model is given by following formulas: In Eq. (3.25) the upper 

sign denotes tension; the lower sign is related to compression. 
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 a = σ2.0(1  2.0)-   0.2  (3.26) 

 

   =
σu(1  u) σ2.0(1  2.0)

 u  2.0
 (3.27) 

 

with  2.0 =
σ2.0

 0

 0.02 (3.28) 

 

and σ2.0 =
1  

σ1.0
σ0.2

 1  1/ ´0.2,1.0

1 
σ2.0
 0

 
 0

 0.2
 1  

σ1.0
σ0.2

 1 
 
1/ ´0.2,1.0

 ´0.2,1.0 

σ0.2 (3.29) 

 

 

Another model for explicit establishment of stress depending on strain was proposed by 

Abdella [26] in 2006 as a power law formula with exponent p: 

 

  σ = 
rσ0.2 / 0.2

1 (r 1)/  / 0.2 p
           (3.30) 

 

 
 σ = σ0.2  

r2σ0.2( / 0.2 1)

1  r  1  
 / 0.2 1
 u/ 0.2 1

 
p 

 
      0.2 (3.31) 

 

where the factors p, p
*
, r, r

*
 and r2 are calculated from the original 

model parameters E0, E0.2, σ0.2, σu,  0.2,  u, n and m.  

 

Later Arrayago, I., Real, E. & Mirambell, E. [27] in 2013 summarized modifications for 

EN 1993-1-4 as follows: 

 

    =
ln(4)

ln  
σ0.2
σ0.05

 
  (3.32) 

 

 

   =1 2.3 
σ0.2

σu
  for austenitic (3.33) 

 

   =1 
σ0.2

σu
  for ferritic (3.34) 



Chapter 3: Literature review 

19 

 
σ0.2

σu
= 0.46 145

σ0.2

 0

  for ferritic (3.35) 

 

 

A generalized multistage model was presented by Hradil, Talja, Real, Mirambell and 

Rossi [28] in order to increase the accuracy of the material curve representation in 2013. 

It uses the Mirambell and Real´s concept to achieve a simple multistage form. For basic 

application and structural computations there was proposed three stages model for non-

linear metallic materials. 
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where  0.2 =
 0

1 0.002 ( 0/σ0.2)
  (3.39) 
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  1.0
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pl
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1
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1
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Currently, most of the stainless steel structures are made of austenitic and ferritic 

stainless steel. However, the lean duplex stainless steel has been developed and 

becoming an attractive choice for application in civil engineering due to its superior 

mechanical performance, comparable corrosion resistance to austenitic stainless steel 

and lower cost because of decreased Nickel content. Huang and Young investigated the 

lean duplex stainless steel material of 1.4162 (LDX2101) grade with the Nickel content 

around 1.5% [29]. Tensile tests results of samples made of RHS are shown in Figure 3.4 

and Figure 3.5.  
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Figure 3.4 Static stress–strain curves obtained from tensile coupon 

tests of flat portions cut out from RHS [29]. 

 

 
Figure 3.5 Static stress–strain curves obtained from tensile coupon 

tests of corners cut out from RHS [29]. 

 

Xing-Qiang Wang et al. [30] made a modification of the Rasmussen´s model and used a 

new formula for stress-strain description of RHS corners in 2014. Differences between 

the stress-strain behaviour of the flat material and the corner are shown in Figure 3.6. 

Hence, a different material model is required.  
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Figure 3.6 Stress-strain curves of flat and corner regions prepared 

from the stainless steel RHS [30]. 

 

Stress-strain response of a corner is given by analogy of the Rasmussen´s formula 

(subscript c means a corner property): 
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A more detailed approach of mechanical characteristics of steel exhibiting anisotropy 

and nonsymmetry under transverse and cyclic loading influence was performed by 

Olsson [13]. The conclusions were published in his doctoral thesis. There were 

undertaken many experiments with biaxial straining. Results of the tests proved that the 

stress-strain curve representing stress equilibrium in a higher strain range exhibit linear 

relation (see Figure 3.7). A rounded curve is utilized until the 2% strain limit. Then a 

linear function is employed similarly to the three stage model proposed by Quach. 

However difficult determination of particular constants (involving the anisotropy effect 

etc.) disables the use of this description in structural design practice. In addition, 

according to many studies the impact of anisotropy is not significant for the commonly 

used structural elements. 

 

 
 

Figure 3.7 Comparison of the Olsson´s model and the tested 

specimen of the 1.4301 steel at uniaxial stress [13]. 

 

The stress-strain behaviour can be also expressed in a very simple form. For modelling 

purposes a multilinear isotropic material model may serve as a default material 

description as it was used for numerical modelling solving the prestressed stainless steel 

stayed columns [31] depicted in Figure 3.8. 

 

 
 

Figure 3.8 Multilinear stress-strain model [31].  
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3.3 Methods for the determination of enhanced strength after section 

cold-forming process 
 

The first generally accepted model for the enhanced yield strength of carbon steel was 

established by Karren in 1967 [32]. The model provides a relation between the 

enhanced yield strength and the inner radius of a corner to the thickness ratio together 

with the original yield strength. It is suggested that since corner areas represent 5% - 

30% of a cross sectional area, the influence of the enhanced strength should be involved 

in structural design. 

    

 f
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=

 c

 ri/   
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 (3.49) 

 

 where  c=3.6 
f
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 0. 1  
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 1 7  (3.50) 

 

   =0.1 2
f
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f
yv

 0.06  (3.51) 

            

fyc – yield strength of corner material, 

fyv – yield strength of the virgin material, 

fuc – ultimate tensile strength of the virgin material, 

ri – inner bend radius, 

t – sheet thickness. 

 

Karren proved that the region of the increased strength overlaps the corner area by one 

or two wall thickness and the range depends on the method of cold-forming. The corner 

area means the region of the pure geometric corner extended by a part of the section 

wall. This area represents enhanced material properties as it is displayed in Figure 3.9. 

 

 

 

 

 

 

 

 

 

Figure 3.9 Area of enhanced material properties. 

 

Belica [33] in 1969 tested press-braked sections (see Figure 3.10 and Figure 3.11). 

Distribution of enhanced mechanical properties is described in Figure 3.11; see another 

from 2008 performed by Cruise and Gardner [34] in Figure 3.12. 

  

(1÷2)t 

 

(1÷2)t 
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Figure 3.10 Specimens tested by sectioning - press-braked cross-

sections – angle L 30x4, channel 30x60x4, C 50x100x20 

[33]. 
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Figure 3.11 Distribution of the yield and the ultimate tensile strength 

for the sections described in Figure 3.10 [33]. 
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Figure 3.12 The 0.2% proof strength for section flat faces and corners 

of stainless steel cold-rolled boxes [34]. 

 

Consequently Karren and Winter (1967) suggested the relationship for the gross-

sectional tensile yield strength fya for all cold formed sections as [35]: 

 

  

 f
ya
= f

yc
 (1  )f

yf
 (3.52) 

 

where  C is the ratio of corner area to the gross sectional area,  

fyc is the average tensile yield strength of corners cited 

above, 

fyf is the average tensile yield strength of flat parts, 

conservatively yield strength of the virgin material. 

 

Compared to Karren and Winter recent European design standard EN 1993-1-3 [36] set 

the following formula for the yield strength of a cold-formed section made of carbon 

steel as: 
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where  fyb is the nominal yield strength of the virgin material, 

     fu is the nominal ultimate tensile strength ,  

               Ag is the cross-sectional area, 

t is the sheet thickness before cold forming, 

n is the number of  0° bends (bends with angles less than 

 0°, should be counted as a fractions of n), 

k is the coefficient depending on a type of forming 

= 7 for cold rolling 

= 5 for other methods. 
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Abdel-Rahman and Sivakumaran [37] established the length of overlapping for press-

braked carbon steel C cross-section as πri/2, where ri is the inner corner radius. The 

yield strength for the corner region was determined as an average value of the higher 

yield strength in the corner area and the lower value of the yield strength in the 

overlapping. The increase varies from 13% to 16% in comparison with the measured 

yield strength outside of the corner region.  

 

For stainless steel rectangular hollow sections Gardner and Nethercot (2004) 

determined the corner region based on numerical model correlation with experiments as 

the pure geometric corner area and the overlapping represented by the distance of 

double section thickness. There was also observed a linear relationship between the 

corner 0.2% proof strength and the flat face ultimate strength [38].  
 

For stainless steel press-braked sections (according to Ashraf, Gardner and Nethercot 

[39]) the corner region is equal to the bend area extended by the dimension of only one 

thickness. From the research mentioned above global effect of enhanced mechanical 

properties in the corner area for rectangular hollow sections in compression is about 8% 

(without consideration of buckling). This increase refers to the section resistance 

involving the cold-forming effect also on flat parts. 

 

Another extensive experimental research was published by Cruise [4]. Conclusions 

claimed the corner region is the bend area with two thicknesses overlapping at both 

sides for cold-rolled sections due to a set of narrow coupons tensile and hardness tests 

correlating to each other. However, for press-braked sections it was recommended to 

consider the corner region as only the bend area. Idealized distribution of the 0.2% 

proof strength is shown in Figure 3.13. 

 
Figure 3.13 Expected distribution of the 0.2% proof strength for a 

press-braked section and a cold-rolled box [34]. 
 

 

Van den Berg and Van der Merwe [40] in 1992 made a comprehensive research of the 

corner properties of different stainless steel grades, i.e. 1.4301, 1.4512, 1.4016 and 

1.4003. Samples with a various ri/t ratios were press-braked for each of the four 

materials. The measured corner properties were then compared to the unformed material 

properties expressed by Karren’s relationships. They established a new predictive 

equations for the corner 0.2% proof strength σ0.2,c estimation as: 



Chapter 3: Literature review 

28 

 σ0.2,c=
 cσ0.2,v

 
ri
 
 
  (3.55) 
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    =0.06 
σu,v
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σ 0.2,v  is the 0.2% proof strength of the virgin material,  

σu,v  is the ultimate strength of the virgin material. 

 

In 2005, Ashraf et al. [41] provided a power model for stainless sections employing the 

0.2% proof strength σ0.2,v or the ultimate strength σu,v of the virgin material. The value of 

the enhanced corner proof strength σ0.2,c is given below: 

 

 σ0.2,c=
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 σ0.2,c=
 1

 ri/   2
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 where  1=  0.3 2
σu,v

σ0.2,v
 1.71 (3.60) 

 

   2=0.176
σu,v

σ0.2,v
 0.15 (3.61) 

  

The expression for relation between the corner proof strength and the section flat face 

ultimate strength σu,f was also proposed as: 

 

  σ0.2,c=0. 5σu,f (3.62) 

 

The relationship (3.62) was previously proposed by Gardner in 2002 [42]: 

 

The simple equation for the ultimate corner strength σu,c was established from 

knowledge of only three properties by: 

  

  σu,c=0.75σ0.2,c  
σu,v

σ0.2,v
  (3.63) 

  

 

Cruise & Gardner [34] in 2008 modified previous expressions and proposed a new 

predictive model for the enhanced properties of austenitic stainless steel structural 

sections based on the experimental data set. The model covers corner regions and flat 

portions of a cross section. The formula employs the mill certificate 0.2% proof strength 

and dimensions of a rectangular hollow section. Nevertheless, the physical 



Chapter 3: Literature review 

29 

interpretation doesn´t correspond to the factual behaviour because of the varying radius 

of the corner to thickness ratio. 

 

 
σ0.2,f =

0. 5σ0.2,mill

 0.1  
1

12.45  
πt

2     
  0. 3

 
(3.64) 

 

where  σ0.2,f is the predicted enhanced 0.2% proof strength of the 

flat faces, 

σ0.2,mill is the mill certificate 0.2% proof strength, 

B and D are outer dimensions of a rectangular hollow 

section. 

 

  σu,f =σu,mill  0.1 
σ0.2,f

σ0.2,mill
 0. 5  (3.65) 

      

where  σu,f is the predicted ultimate strength of faces of cold-

rolled hollow sections, 

σu,mill is the mill certificate ultimate strength 

 

  σ0.2,pb,c=
1.673

 ri/  0.126
σ0.2,mill (3.66) 

 

where  σ0.2,pb,c is the predicted enhanced proof strength of press-

braked corners 

 

  σ0.2,cr,c= 0. 3σult,f (3.67) 

 

where  σ0.2,cr,c is the predicted enhanced proof strength of cold-

rolled hollow section corners 

 

The corner value for the enhanced 0.2% proof strength set as 0.83 σult,f was obtained 

also in the stainless steel research aimed on residual stresses published by Jandera in his 

Ph.D. thesis [43]. 

 

The comparison with the experimental data from many researchers (Ashraf, Cruise, 

Gardner, Hyttinen, Talja et al.) provides good agreement of these models in higher 

ranges of ri/t, more typical for press-braked sections. 

 

For channel sections, an analytical model considering the influence of the fabrication 

process stages was proposed by Rossi and Jaspart [44] in 2010. There was used the 

finite element code METAFOR developed at the LTAS division of the University of 

Liege to simulate the cold-forming process of symmetric channel sections as it is shown 

in Figure 3.14 and Figure 3.15. 
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Figure 3.14 Geometry of the forming line [45].  

 

 
 

 

Figure 3.15 Flow of channels fabrication process [45].  

 

Two different steels (ferritic stainless steel 1.4003 and high strength steel S 700 MC) 

were used for the cold-forming process simulation. Isotropic swift hardening laws 

which were used for modelling are plotted in Figure 3.16. 

 

 
 

Figure 3.16 Hardening laws of two different materials [45]. 

 

Typically the mechanical properties enhancement is exhibited on cold-formed 

rectangular hollow sections, when the final shape is obtained by a few steps of cold-

forming (see Figure 3.17). 
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Figure 3.17 Fabricating steps of cold-forming [15]. 

  

In case of rectangular hollow sections the process can be divided into four steps, i.e. 

coiling-uncoiling (A+B), forming into a circular section and (C) and following 

deforming into a rectangular section (D). 

 

 
 

Figure 3.18 Theoretical influence of fabricating steps on mechanical 

properties enhancement for rectangular hollow sections 

[44]. 

 

According to the recent research, there is shown that even first steps of process (A+B) 

affect the enhancement (see Figure 3.18).  

 

In 2011, Rossi, Boman and Degée [15] modified the predictive model for the strength 

increase of hollow sections depending on material properties σ0.2, σu and parameters 

included in the modified R-O expression for the stress-strain diagram published in 

recent research [23], resp. [20] and [46]. The new formulas are applicable for the radius 

to thickness ratio greater than 5 and for a different nonlinear material. For flats there is 

dominant impact of the forming into a circular section taken into account, for corner 

regions the last step of the process (the forming into a rectangular section) is decisive 
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(see Figure 3.18). As opposed to the Cruise´s model, this is generally applicable for 

materials with the nonlinear stress-strain behaviour (coefficients C1, C2, α depend on 

Ramberg – Osgood parameter n) as well as for open and hollow sections. 
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where  σ0.2,f or c is the predicted enhanced proof strength of flat 

faces or corners of a cold-rolled hollow section, 

ri is the inner radius of a corner curvature or the circling 

radius for flat faces, 

t is the thickness of the section wall.  

 

   1=
 0.2σu

r2σ0.2
 (3.69) 

 

   2=
 r 1  0.2σu

r2  u  0.2 pσ0.2
 (3.70) 

 

  α = 1 p   (3.71) r = 0

 0.2

σ0.2
 (3.72) 

   

 r2= 0.2

 0.2

σ0.2
 (3.73) r  = 0.2

 u  0.2
σu σ0.2

 (3.74) 

         

 ru= u

 u  0.2

σu σ0.2
 (3.75) p =r

1 r2

r 1
 (3.76) 

 

 p  =r 
1 ru

r  1
 (3.77)  u=

 0.2

1  r  1) 
 (3.78) 

  

  =1 3.5
σ0.2

σu
 (3.79) 

 
 

   

Results obtained from the recent extensive investigations conducted by Rossi, Afshan 

and Gardner [47] and [8] in 2013 demonstrate also different values for basic material 

characteristics. The test programme was focused on cold-formed structural sections 

SHS, RHS and CHS and it contains results from 51 flat coupons, 28 corner coupons and 

6 full section specimens. The results combined with measured data from other literature 

lead to amendments to the current design code EN 1993-1-4, especially for values of the 

model parameters n (Ramberg-Osgood nonlinear parameter) or the Young's modulus 

(initial modulus of elasticity) for commonly used stainless steel grades. Conclusions of 

experimental research show anticipated material parameters of nonlinearity n – the 

highest for ferric grades, intermediate for duplex grades and the lowest for austenitic 

grades. It is recommended considering the single value of Young’s modulus as 195 

GPa. Detailed information is displayed in Table 3.1 and Table 3.2. 

 



Chapter 3: Literature review 

33 

 
 

Table 3.1 Recommended and codified values of the R-O parameter n 

for stainless steel grades [47]. 

 

The research points also slightly different R-O hardening exponent n depending on type 

of stainless steel, i.e. austenitic, ferritic, and duplex as opposed to the recent version of 

design code determining n according to steel grade and rolling direction. 

 

 
 

Table 3.2 Recommended and codified values of the Young's modulus 

for stainless steel sections [47]. 

 

In the study, a simple method for predicting the strength enhancement in cold-formed 

structural sections was presented depending on basic material and cross-sectional 

properties: 

 

 σ0.2,f,pred =0. 5 p  f,av  t,0.2 
 
  but    σu,mill (3.80) 

 

 σ0.2,c,pred =0. 5 p  c,av  t,0.2 
 
  but    σu,mill (3.81) 

 

 where  σ0.2,f,pred is the predicted enhanced proof strength of the 

cold-rolled hollow section faces, 

σ0.2,c,pred is the predicted enhanced proof strength of the 

cold-rolled hollow section corners,  
 

   f,av=   /2 / coiling     /2 / f  (3.82) 

 

   c,av=0.5   /2 / c  (3.83) 
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  f =
    2 

π
 (3.84)  c=ri  /2 (3.85) 

 

 p =
σ0.2,mill

 
t,0.2

  (3.86)   =
ln σ0.2,mill/σu,mill 

ln  t,0.2/ u 
 (3.87) 

 

   t,0.2 =0.002 σ0.2,mill/E0 (3.88) 

 

 u is the corresponding total strain at the σu,mill, 

Rcoiling = 450 mm (average value recommended by Moen 

et al. [48]), for other parameters see Figure 3.19. 

 

 
 

Figure 3.19 Definition of parameters for SHS and RHS [8]. 

 

Regarding strain at the ultimate tensile strength there was confirmed that the formula (in 

Annex C of EN 1993-1-4) given by Eq. (3.21) developed by Rasmussen [23] is valid 

and suitable for stainless steel. The correctness was proved on the basis of the collected 

data as it is shown in Figure 3.20. 

 

 
  

Figure 3.20 Comparison of the predicted and measured strain  u [47]. 
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Thus the average enhanced cross-sectional 0.2% proof strength is obtained from 

following equations: 

  

For press-braked sections: 

 σ0.2,section=
 σ0.2,c,pred  c,pb   σ0.2,mill    c,pb  

 
 

 
(3.89) 

 

 For cold-rolled sections: 

 σ0.2,section=
 σ0.2,c,pred  c,rolled   σ0.2,f,pred    c,rolled  

 
 

 
(3.90) 

 

 where  c,pb= c=  
 cπ 

4
  2ri    (3.91) 

 

   c,rolled= c 4 c 
2 (3.92) 

 

A is the gross cross-sectional area, 

nc is the number of  0°corners in a section. 

 

 

Xing-Qiang Wang et al. in 2014 [30] proposed the 0.2% proof strength and the ultimate 

tensile strength expressions for corner given by: 

 

 
σ0.2,c

σ0.2
=1 0.05  00/σ0.2 where σ0.2 is in MPa (3.93) 

 

 
σu,c

σ0.2,c
= 0.56 σ0.2

0.226 1.4 
σu

σ0.2
 where σ0.2,c is in MPa (3.94) 

 

The relationship doesn´t consider the inner radius to thickness ratio that is one of the 

most important factors in strength increase. 

 

The research and experimental data set published by Arrayago et al. in 2015 present 

recommendation for the nonlinearity parameter n defined in [49] as it is stated in Figure 

3.21. 
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Figure 3.21 Codified and recommended values for the nonlinearity 

parameter n. 

 

Recently in Europe, only the National Annex (informative) to BS EN 1993-1-4:2006, 

Eurocode 3: Design of steel structures – Part 1-4: General rules – Supplementary rules 

for stainless steels [50] enable to consider the strength enhancement due to the cold-

forming as follows: 

 

a) press braking; an enhanced yield strength fya may be adopted to account for 

cold working in  0° section corners where inner radius to thickness ratio ri/t 

is not greater than 5. 

 

 
f
ya
=

f
yb
     pb   pb  

1.673

 ri/  0.126
  

 
  f

u
 

(3.95) 

     

b) For austenitic cold rolled box sections (RHS and SHS) which have been 

formed via a circular tube and where t < 8 mm and ri/t not greater than 5, an 

enhanced yield strength fya may be adopted to account for cold working in 

the section faces and an extended corner region. 

 

 
f
ya
 =

    cr  
0. 5f

yb

 p 0.1 
  0.71 crfu   

0.1 
 p 0.1 

  1 

 
   f

u
 

(3.96) 

where  p is the strain parameter defined as: 

 

  
 p=

1

 12.42  
π 

2     
  0. 3 

 
(3.97) 

     

A is the gross cross-sectional area , 

Acr is the total corner cross-sectional area for cold rolled 

box sections including a region of 2t which extends both 
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sides of each corner. Acr can be obtained with the 

following expression: 

 

   cr=π  2ri    16 
2 (3.98) 

            

ri can be assumed to be equal to 2t,   

    t  is the sheet thickness before cold forming, 

Apb is the total corner cross-section area for press braked 

sections which can be calculated as: 

 

   pb=
π c 

4
 2ri    (3.99) 

      

fyb, fu are the yield strength and the ultimate tensile 

strength of the basic material (i.e. the flat sheet material of 

which sections are made by cold forming),  

fu should be taken as the minimum value of the range 

specified in the material standard, 

nc is the number of  0° corners. 

 

It´s clear, that the increase in the yield strength due to cold 

working should not be utilized for sections that are annealed or 

subject to heat treatment after forming which may produce 

softening. 

 

c) For all section types, work hardening may be utilized in the design if the 

effect of work hardening has been verified by full size tests in accordance 

with Section 7 of EN 1993-1-4. For design of connections which are not part 

of the full size testing, nominal strength values should be used. 

 

 

The design method for cold-rolled sections allows using accurate value of inner radius if 

it is obtainable. At the end an increasing inner radius leads to increasing strength of a 

full section because of an increasing area of corner enhancement. There is no influence 

of the inner radius to thickness ratio taken into account in terms of plastic strain level. 

Comparison of the recent methods exhibits unsafe trend of the 0.2% proof strength 

increase related to the inner radius to thickness ratio. Figure 3.22 depicts dependency of 

the 0.2% proof strength increase on this ratio for SHS 100x100x2 made of the 1.4404 

grade. Other methods balance the influence of a larger corner area and decreased 

strength enhancement in corners whereas the method from the annex of BS EN 1993-1-

4 only enlarges the area of enhancement.  
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Figure 3.22 Comparison of methods for the predicted 0.2% proof 

strength for a full section. 

 

 

3.4 Material ageing effect 
 

Also material ageing may induce significant change of the stress-strain curve and 

increase of the ultimate and yield tensile strength. Hlaváček [51] concerns the ageing 

effect of the carbon steel as it is shown in Figure 3.23. After reaching the stress σ2 > σ1 

(yield strength), a plastic deformation  pl remains. At re-loading, the yield strength 

reaches stress σ3 > σ2 on account of the ageing effect. The ultimate tensile strength 

increases as well. In case of carbon steel, when the plastic deformation is too large ( pl > 

25%) the steel becomes too brittle, that the yield strength reaches the ultimate strength 

and the ductility at the point of specimen collapse disappears. The higher the plastic 

deformation induced the lower the relative effect of ageing becomes. When the  pl > 

10% then the effect of ageing is not important. The ageing of carbon steel after plastic 

deformation induction is represented by a movement of elements with low atomic 

weight to dislocations. These elements resist to the further dislocations movements and 

increase the yield strength. This process takes several weeks at the room temperature 

and at higher temperature (100 – 200 °C) it could take only 30 minutes. 

 

 
 

Figure 3.23 Effect of the plastic deformation and ageing on the stress-

strain curve [51].  
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3.5 Residual stresses 
 

A residual stress (stress without instant action of external forces or temperature etc.) 

significantly affects the structure behaviour, especially resistance of walls and members 

in compression. If plasticisation of material arises due to members’ fabrication the 

residual stresses will occur. Residual stresses also arise due to temperature processes, 

such as rolling, welding or cold-forming, grinding and other processes. Not always 

residual stresses have to cause lower member resistance. E.g. a shot peening results in 

compressive residual stress at the surface of section and can help to increase the 

moment resistance or enhance life cycle in terms of corrosion resistance. 

 

Residual stresses in austenitic steel were measured for instance by Cruise [4]. The 

research was focused on behaviour specific for cold-formed material. There was 

observed behaviour specific for cold-rolled and press-braked angles together with cold-

rolled rectangular hollow sections. For the membrane stress, there was not established 

the idealized stress distribution. The average value of membrane stress (irrespective of 

the sign) was set up to 6 % of the 0.2% proof strength for angles and 13 % for 

rectangular hollow sections.  The idealized distribution of the flexural stress component 

was determined as a constant value, different for the wall and corner. This model was 

established both for average values and for upper 5% fractile (Figure 3.24 and Figure 

3.25). 

 
 

Figure 3.24 Idealized distribution of the longitudinal flexural residual 

stress in press-braked angles from austenitic steel (left - 

average values, right hand – upper 5% fractile) according 

to [4], adopted from [43]. 

 

 
 

 

Figure 3.25 Idealized distribution of the longitudinal flexural residual 

stress in cold-rolled rectangular hollow sections from 

austenitic steel (left - average values, right hand – upper 

5% fractile) according to [4], adopted from [43]. 
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High stresses reflect high rate of the cold-forming. It is possible to suppose that the non-

uniform distribution of the stress signifies also the non-uniform distribution of the 0.2% 

proof strength, alternatively the ultimate strength. These conclusions were confirmed by 

Cruise [4] by set of many hardness tests and the determination of the proof strength 

distribution corresponding with transversal residual stresses. 

 

Cold-bending effect representing press-breaking in terms of residual stresses was also 

extensively investigated by Weng and White [52]. Set of experiments consisting of 

cold-bent thick plates with different angles and radii of bends was executed using 

sectioning and hole-drilling method for residual stresses evaluating. They observed the 

magnitude of the residual stresses on the inside surface exceeded the yield strength up 

to 90%. Residual stresses increase with increase of the yield strength of a virgin 

material and with an angle of the bend. On the other hand residual stresses decrease 

with increase of the inner radius of the bend.  

 

Another sophisticated model using finite elements was established by Rossi et al. [53]. 

The model was proposed for nonlinear hardening materials considering fabrication steps 

as coiling, uncoiling and cold-bending with springback taken into account. It provides 

good agreement compared with the collected data.  

 

Currently indeed, many researchers solve the cold-forming effect especially for high 

strength enhancement of stainless steels. However this topic has not been comfortably 

dealt yet. 
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3.6 Comparison of material properties in the design standards  

3.6.1 Europe 

 

Mechanical properties of stainless steel in annealed condition are specified in the 

European standard EN 10088 Part 1 [54] and Part 2 [55]. In the recent valid design 

standard EN 1993-1-4 [16] value of the 0.2% proof strength in annealed condition is 

given only for the transverse direction hence it does not take into account the material 

anisotropy. In addition by the annealed material it is probably meant a virgin one. It is 

thought a material in annealed condition exhibits a similar proof strength in both 

directions despite the fact that for cold-rolled products strength in transverse direction 

exhibits higher values of the 0.2% proof strength than in the parallel to the rolling 

direction. Figures in the standard differ according to the product form (cold rolled 

strip/hot rolled strip/hot rolled plate) and thickness. However, within the designing of 

structure it is not often possible to know what type of product form will be used. 

Consequently it is not applicable to employ enhanced properties of cold-worked 

materials except some specific products. 

 

Despite this, design standard EN 1993-1-4 [16] allowed to use only materials with the 

yield strength up to 480 MPa. Just the most recent modification from June 2015 deleted 

this paragraph and allows use of any material such as new lean-duplex grade 1.4162 and 

enhances the strength of some other grades. The mechanical properties of some selected 

austenitic grades are listed in Table 3.3. 

 

 
Table 3.3 Minimal mechanical properties according to product form 

[6]. 

 

The code allows using cold-worked steel with the increased 0.2% proof strength and the 

ultimate strength providing two levels of hardening. However the application is possible 

only for a few austenitic grades. 

  

EN 1993-1-4 defines the Ramberg-Osgood parameter n essential for the secant modulus 

of elasticity, necessary for the deflection or stability calculation. It provides values both 

for the direction parallel and transverse to the rolling. That could be slightly confusing 

for designers regarding different fabrication routes for structural members.  
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3.6.2 USA 

 

American standards SEI/ASCE take into account the anisotropy and the asymmetry of 

the material (i.e. different behaviour in tension and compression) which becomes 

increasingly important as the level of the cold-working increases. SEI/ASCE, as well as 

European standards, determines the Ramberg-Osgood parameter n which is necessary 

for the tangential and secant modulus specification (for deflections estimating and 

buckling curves identification). Stress-strain curves and mechanical properties for 

austenitic grades 1.4301 and 1.4401 are presented in Figure 3.26 and Table 3.4. 

 

 
Figure 3.26 Stress-strain curves for grade 304 in the annealed and 

cold-worked condition according to SEI/ASCE 

specification [6]. 

 

 
 

Table 3.4 Table gives minimal mechanical properties for grades 304 

and 316 according to loading direction and degree of 

cold-working temper according to SEI/ASCE specification 

[6]. Degree of temper indicates a hardening level 

according to the surface hardness. 
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3.6.3 Australia 

 

Australian standards AS/NZS are based on the American standards. There is a 

comparison of the main standards in the Table 3.5 and Table 3.6. 

 

 
 

Table 3.5 Comparison of mechanical properties for grades 304 and 

316 in the annealed condition [6]. 

 

 
 

Table 3.6 Comparison of the Ramberg – Osgood parameter n for 

grades 304 a 316 in the annealed condition [6]. 

 

 
 

Table 3.7 Comparison of measured tensile material properties in the 

annealed condition and cold-worked conditions [56]. 

 

 

Table 3.7 displays measured mechanical properties in annealed conditions in 

comparison with measured values for cold-worked state of the material. Differences 

could be more significant as the specimens represent flat faces of rectangular sections 

and not the most affected parts of section – corners. 
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Chapter 4 

Experimental program 

 

 

The chapter describes set of experiments executed at the Department of steel and timber 

structures laboratory of the Faculty of Civil Engineering by the Czech Technical 

University in Prague. Specimens´ preparation was mostly provided by department 

technicians and by cooperation with the Klokner´s Institute. The work was focused on 

the stress-strain behaviour description of cold-formed stainless steel of all main grades, 

i.e. ferritic (1.4003), austenitic (1.4404), duplex (1.4462) and relatively new lean-duplex 

grade (1.4162) as well. The project involves tensile tests of coupons prepared of a cold-

rolled steel sheet. Material tests of the virgin material preceded plastic strain induction 

procedure serving for tensile tests of cold-worked samples. Results obtained from the 

programme are evaluated and summarized. Detailed results and conclusions from the 

testing programme are stated herein and serve for the analytical part of the thesis.  
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4.1 Test rate sensitivity 
 

Stress-strain curve is significantly affected by the test strain rate. The higher rate 

implies the higher strength and reduced ductility. Dependency on the strain rate is more 

pronounced in comparison with carbon steel also due to the nonlinear stress-strain 

behaviour. It is also more influenced (higher strength is recorded) by constant stress rate 

than constant strain rate. Thus all of executed tests were controlled by strain that 

provides safe measured strength values. 

 

 
 

Figure 4.1 Strain rate effect on 1.4307 grade [2]. 
 

 

4.2 Material tensile tests 
 

Specimens were made of cold-rolled sheet of 1.5 mm, resp. 2.0 mm (in case of the 

1.4462 grade) thickness. All tensile tests were executed in the same configuration. 

Coupons were made in proportion to the EN ISO 6892-1 [57]. The geometry and 

coupons before and after a test are displayed in Figure 4.2. 

 

 

 
 

Figure 4.2 Coupons before and after a tensile test with their 

geometry. 

 

Deflection, respectively strain was directly measured by foil strain gauges essential for 

accuracy of the initial part of strain response. An extensometer was used for higher 

strain ranges. Figure 4.3 graphically shows basic material parameters stated in following 

tables. 
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Figure 4.3 Graphic declaration of material parameters. 

 

Determination process evaluating a slope of the linear elastic part of a uniaxial stress-

strain diagram (Young´s modulus) was conducted in accordance with SEP 1235: 

Determination of the modulus of elasticity on steels by tensile testing at room 

temperature [58]. However difficulties with the modulus of elasticity caused by short 

linear region of the initial stress-strain curve also occurred and the initial modulus was 

evaluated for lower stress level than it is recommended. The common Ramberg-Osgood 

model (3.5) is used up to the 0.2% plastic strain. Beyond this limit, the Gardner-

Nethercot description (3.9) is used with nonlinearity parameter established for the best 

agreement between the model curve and the recorded stress-strain response up to 3% 

plastic strain. Stress and strain values in tables are in engineering form. If the true stress 

and strain is used they are obtained by: 

 

  σtrue=σnom 1  nom  for tension (4.1) 

 

   true=ln 1  nom  for tension (4.2) 

 

  σtrue=σnom 1  nom  for compression (4.3) 

 

   true= ln 1  nom  for compression (4.4) 

 

The evaluated characteristics are as follows: 

 

E0 is the initial modulus of elasticity, 

E0,2 is the tangent modulus at the 0.2% proof strength, 

   σ0.2 is the 0.2% proof strength, 

σ1.0 is the 1.0% proof strength, 

σu is the ultimate tensile strength, 

 f strain at coupon fracture, 

 pl,u plastic strain at ultimate strength, 

n Ramberg-Osgood hardening exponent, 

n´0.2,1.0 compound Ramberg-Osgood model hardening exponent. 

σ 

σu 

σ1.0 

σ0.2 

0.2 1.0  pl,u  f ε 
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All tests were performed using the MTS Qtest 100 kN electromechanical testing 

machine with all data recording at 0.2 second interval by the SPIDER data acquisition 

system with CATMAN32 data acquisition software (see Figure 4.4). Strain control was 

used to drive the machine. The accepted strain rate for the first period of testing was 

0.007% strain per second up to 1.5% strain and 0.2% strain per second until fracture 

according to the EN ISO 6892-1 [57]. The value of the 1.5% strain was determined to 

ensure the lower stress rate was used to reach the stress point of the 1.0% plastic 

deformation σ1.0. The σ1.0 value is often used for the stress-strain diagram description. 

 

 
a) 

 
b) 

Figure 4.4 a) Detail of a coupon in testing machine jaws; b) Testing 

machine with jaws.  

4.2.1 Virgin material tests 

 

First of all tensile material tests of the virgin sheet of all grades were executed. Tests 

were performed both for direction of rolling and direction transverse to the fabrication 

rolling of the sheet (see Figure 4.5). Material properties of the sheet were assumed by 

average of 3 samples. Obtained measurement is summarized in Table 4.1. 

 

   

   

Figure 4.5 Coupons made of sheet according to rolling direction. 

L    r “P” d  o  s l    r  ar  “T” a d “L”  ar  “P”. 
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Grade 
Rolling 

direction 
E0 E0.2 σ0.2 σ1.0 σu  f  pl.u n n´0.2.1.0 

  GPa GPa MPa MPa MPa % % - - 

1.4003 P 198.3 7.5 326.7 357.1 492.3 22.1 18.0 8.4 1.8 

1.4003 T 211.9 7.0 343.7 374.5 512.3 31.9 17.6 8.5 1.9 

1.4404 P 189.0 14.1 259.8 307.3 620.8 61.8 48.7 3.7 2.1 

1.4404 T 199.8 11.6 279.0 322.0 635.1 68.6 57.1 8.8 2.3 

1.4162 P 193.3 21.9 551.6 623.7 785.9 37.9 24.1 7.3 3.0 

1.4162 T 195.5 22.4 556.5 624.8 765.6 35.2 21.1 7.5 3.1 

1.4462 P 195.8 25.2 600.1 676.6 843.0 34.3 22.6 6.9 2.9 

1.4462 T 210.7 30.0 637.6 722.7 863.7 33.9 20.6 5.6 3.4 

P – test parallel to the rolling directions. T – test transverse to the rolling direction 

 

Table 4.1 Mechanical properties of the cold rolled sheets according 

to the rolling direction. 

4.2.2 Tests after plastic strain induction 

 

The next step included tensile plastic deformations induction on typical samples 

(described above) and special wide sheet samples from which new specimens were 

manufactured. Level of plastic deformation varies significantly in a range of several 

values, i.e. 1%, 3%, 5%, 10%, 15% and for other than ferritic grades also 20% or 50% 

(for austenitic grade only). Thus experimental set for each grade consists of 5 or 6 

specimens for both directions depending on the rolling and in respect to the induced 

plastic strain direction and subsequent tensile test (according to the direction of the 

plastic strain induction). In total 92 coupons were prepared and tested. 

 

Device for plastic strain induction in a wide sheet 

 

For experimental purposes a device for plastic strain induction in a wide sheet was 

designed and fabricated. It is able to induce uniform plastic deformation through the 

whole width of a metal sample of special geometry. The sample geometry provides the 

best fitted stress distribution from shapes which were considered based on a simple 

Abaqus 2D model. That provides the desired strain distribution in the area which the 

new coupons are created (neck of the specimen) from as it is displayed in following 

figures. The idea about the stress distribution was confirmed by measurements 

consisting of 5 strain gauges. The progress and numerical results of different sample 

geometries are shown in Figure 4.6. 

 

The device consists of two parts, in which the sample is attached by four bolts M16 8.8. 

There are two shear planes (represented by two plates and a sample) to ensure the best 

possible centric stress. The device is able to be clamped to a testing machine by a round 

bar hinged to jaws, which might eliminate eventual moment influence. The middle part 

of the sample serves to attaching an extensometer set with gauge length of 50 mm or 

less. Total load of the sample can be over 100 kN. The device with attached sample is 

shown in figures on the next page. 
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Figure 4.6 Geometry of the sample in progress and the final geometry 

(uniform stress distribution) – right hand side (quarter of 

sample – symmetric). 

 

 
 

Figure 4.7 The device for plastic strain induction in a wide sheet with 

sample. 

 

 
 

Figure 4.8 The device for plastic strain induction in a wide sheet with 

sample (side view). 

 

Samples after cold-working represented by elongation with test description are shown in 

Figure 4.9. It describes directions of primary elongation and a subsequent test. 
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a) 

 
b) 

Figure 4.9 a) Different level of induced tensile plastic deformation; b) 

Cold-working and testing: the blue arrow marks the 

direction of elongation, the red arrow marks direction of 

the subsequent tensile test. 

 

Measured data is summarized in following tables. Explanation to shortcuts is stated as 

follows: 

 

 “RD” = Rolling direction; “LPSI” = Level of plastic strain induction; “PSI” = Plastic 

strain induction. Rolling direction (coupon cut out from sheet): “P” – parallel to the 

rolling directions, “T” – transverse to the rolling direction; Plastic strain induction 

(tensile test direction after elongation): “P” – parallel to the previous plastic strain 

induction, “T” – transverse to the previous plastic strain induction. 

 

 

RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 P 200.6 10.5 366.6 399.9 519.6 19.9 20.2 7.3 1.7 

P 3.0 P 204.8 5.1 418.5 437.0 493.4 17.5 17.8 8.2 2.0 

P 5.0 P 200.8 3.8 487.0 500.6 x x x 5.3 3.0 

P 10.0 P 189.8 2.2 523.7 531.5 543.2 12.3 12.6 5.9 3.1 

P 15.0 P 178.5 0.3 548.8 552.1 553.0 7.9 8.2 5.2 3.1 

            

T 1.0 P 197.3 4.8 436.4 456.3 528.1 25.8 26.1 9.6 1.7 

T 3.0 P 196.5 4.8 434.7 454.6 524.0 25.8 26.0 9.6 1.9 

T 5.0 P 189.0 2.9 482.5 495.3 540.4 21.7 22.0 6.2 1.8 

T 10.0 P 182.8 2.1 546.4 554.6 567.1 16.7 17.0 7.2 2.5 

T 15.0 P 194.6 0.5 584.0 586.1 588.0 10.1 10.4 5.3 3.0 

            

Table 4.2 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4003 grade. 
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RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 T 192.1 18.2 354.1 407.2 455.0 x x 9.2 3.1 

P 3.0 T 202.6 21.2 420.2 469.1 503.2 x x 4.0 4.0 

P 5.0 T 194.6 32.1 453.7 517.7 526.5 x x 3.9 5.0 

P 10.0 T 189.2 47.8 492.0 581.4 581.4 11.7 12.0 3.3 5.0 

P 15.0 T 184.9 35.0 585.7 649.6 650.6 7.6 8.0 5.3 5.0 

            

T 1.0 T 190.7 19.6 368.0 415.7 528.0 15.7 16.0 6.3 2.5 

T 3.0 T 207.3 36.3 408.2 481.7 534.1 29.7 30.0 3.4 4.9 

T 5.0 T 197.6 30.2 464.7 518.2 551.0 21.7 22.0 4.7 4.5 

T 10.0 T 197.2 36.3 561.1 612.3 632.4 9.7 10.0 4.2 4.0 

T 15.0 T 201.8 40.0 577.1 x 643.5 6.5 6.8 4.1 4.0 

            

Table 4.3 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4003 grade – follow-up. 

 

 

 

RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 P 195.2 7.2 336.7 369.7 655.0 44.8 56.6 8.2 2.0 

P 3.0 P 184.5 20.2 356.8 398.8 656.3 43.0 56.2 3.2 2.2 

P 5.0 P 170.4 6.6 416.9 440.5 643.8 39.5 51.5 5.8 1.8 

P 10.0 P 198.1 15.9 513.1 539.0 695.8 32.5 45.2 2.8 1.9 

P 15.0 P 199.5 44.6 550.9 588.4 700.9 28.9 40.2 2.6 2.1 

P 50.0 P 193.2 54.5 927.3 954.7 960.9 x 7.5 2.4 2.1 

            

T 1.0 P 201.4 11.3 328.9 364.2 649.1 53.4 64.0 5.8 2.0 

T 3.0 P 210.7 13.7 375.1 406.1 663.2 52.7 62.9 4.0 1.8 

T 5.0 P 202.9 14.4 419.5 448.2 676.0 48.2 60.6 3.7 1.8 

T 10.0 P 188.8 11.0 506.7 525.6 653.4 36.9 49.4 3.1 2.2 

T 15.0 P 197.6 10.4 548.0 571.0 748.8 43.9 56.2 2.7 1.8 

T 50.0 P 197.4 56.0 925.6 960.5 981.7 x 17.8 3.1 15.0 

            

Table 4.4 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4404 grade. 
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RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 T 194.4 25.1 296.1 365.4 654.3 60.1 60.4 3.5 3.0 

P 3.0 T 198.1 35.0 336.6 425.7 666.5 56.9 57.2 1.8 3.2 

P 5.0 T 195.1 40.0 362.1 461.0 678.0 54.9 55.2 3.2 3.4 

P 10.0 T 193.7 53.0 413.8 534.9 699.4 51.6 52.0 2.9 3.6 

P 15.0 T 190.3 54.5 452.3 586.0 716.5 44.4 44.8 2.9 3.8 

P 50.0 T 199.2  610.0 x x x x 3.0 x 

            

T 1.0 T 202.0 21.3 312.1 370.8 663.6 66.5 66.8 4.4 3.0 

T 3.0 T 209.1 24.5 359.7 420.1 670.8 64.1 64.4 4.2 3.3 

T 5.0 T 202.5 33.8 399.1 473.5 688.2 62.1 62.4 3.6 4.3 

T 10.0 T 203.8 39.2 474.2 553.5 712.6 54.9 55.2 3.5 4.9 

T 15.0 T 204.9 50.3 517.2 618.7 743.1 46.8 47.2 3.3 4.8 

T 50.0 T 203.6 59.4 679.7 850.9 891.8 26.4 26.8 2.9 4.5 

            

Table 4.5 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4404 grade – follow-up. 

 

 

 

RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 P 197.9 37.0 564.6 651.5 773.6 22.7 33.6 5.0 3.6 

P 3.0 P 187.1 39.2 649.9 709.4 822.3 27.5 34.3 4.5 2.9 

P 5.0 P 186.1 5.8 726.7 744.3 816.3 18.4 33.7 5.6 2.0 

P 10.0 P 189.6 12.8 829.3 843.5 871.0 13.6 28.2 4.3 2.8 

P 15.0 P 187.3 28.8 866.4 889.1 898.1 7.6 26.3 3.7 5.0 

P 20.0 P 182.8 40.0 920.4 945.0 946.9 3.6 20.9 3.5 8.0 

            

T 1.0 P 203.5 32.7 563.6 642.7 779.4 24.3 36.5 3.8 3.4 

T 3.0 P 199.4 16.2 686.2 727.6 809.3 18.0 30.5 6.1 3.1 

T 5.0 P 192.1 20.0 735.5 761.5 816.9 16.4 28.8 4.2 2.3 

T 10.0 P 193.4 40.0 792.1 827.0 849.1 10.8 22.0 3.7 6.0 

T 15.0 P 184.6 17.5 875.3 889.9 895.5 6.0 20.9 4.3 6.0 

T 20.0 P 190.4 20.4 922.0 933.7 936.7 1.5 15.2 3.9 3.0 

            

Table 4.6 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4162 grade. 
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RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 T 193.6 54.5 511.8 668.2 815.5 40.0 40.4 2.6 4.5 

P 3.0 T 200.3 59.4 546.4 721.6 824.6 37.6 38.0 2.9 3.3 

P 5.0 T 200.2 44.6 637.6 782.3 857.9 32.8 33.2 7.2 3.1 

P 10.0 T 190.3 59.4 596.0 835.0 911.4 24.7 25.2 2.7 3.1 

P 15.0 T 197.1 72.6 626.9 880.1 956.1 17.9 18.4 2.5 2.7 

P 20.0 T 201.8 75.4 653.6 937.0 1002.5 12.3 12.8 2.4 3.0 

            

T 1.0 T 209.9 43.6 556.5 674.4 816.2 38.0 38.4 3.4 3.6 

T 3.0 T 208.6 56.0 574.1 728.0 834.9 34.8 35.2 2.9 3.5 

T 5.0 T 201.1 63.3 583.6 768.9 850.0 32.4 32.8 2.8 3.6 

T 10.0 T 202.8 75.4 646.4 859.5 925.6 22.3 22.8 2.7 3.0 

T 15.0 T 198.7 61.3 690.6 912.2 971.2 13.9 14.4 2.7 3.8 

T 20.0 T 202.3 78.4 673.6 917.9 1006.9 11.5 12.0 1.8 3.0 

            

Table 4.7 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4162 grade – follow-up. 

 

 

 

RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 P 193.3 22.3 665.2 713.0 834.2 28.0 39.6 6.6 2.4 

P 3.0 P 195.1 7.9 741.7 763.1 843.5 17.1 28.9 5.5 1.9 

P 5.0 P 195.3 29.7 745.4 790.5 867.2 16.4 29.6 3.9 3.2 

P 10.0 P 188.1 10.2 876.6 888.8 913.6 15.7 24.4 4.6 2.6 

P 15.0 P 192.0 40.8 931.5 959.8 961.3 5.5 19.3 3.2 8.0 

P 20.0 P 192.6 27.2 981.8 997.4 1005.0 0.5 15.9 3.8 8.0 

            

T 1.0 P 205.2 18.1 714.5 758.7 852.5 29.4 29.8 5.3 2.9 

T 3.0 P 200.6 25.7 747.1 798.0 860.9 28.6 29.0 4.7 5.8 

T 5.0 P 211.2 11.5 825.0 842.6 907.7 24.7 25.2 4.7 2.0 

T 10.0 P 196.5 14.2 915.2 926.0 932.6 21.2 21.7 4.1 5.0 

T 15.0 P 207.4 17.3 983.5 992.4 1005.3 16.1 16.6 3.9 6.0 

T 20.0 P 200.2 26.7 1026.4 1036.0 1039.0 14.5 15.0 3.8 10.0 

            

Table 4.8 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4462 grade. 
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RD LPSI PSI E0 E0.2 σ0.2 σ1.0 σu  pl.u  f n n´0.2.1.0 

 (%)  GPa GPa MPa MPa MPa % %   

P 1.0 T 191.1 39.2 608.2 665.8 882.4 33.5 34.0 3.2 3.0 

P 3.0 T 194.5 44.2 647.5 756.6 890.3 30.3 30.8 3.8 3.4 

P 5.0 T 195.0 56.6 720.2 873.6 940.4 22.3 22.8 3.2 3.8 

P 10.0 T 196.2 63.9 747.7 933.9 994.1 16.3 16.8 3.0 4.2 

P 15.0 T 188.2 66.1 844.5 1030.9 1072.2 10.2 10.8 2.9 4.3 

P 20.0 T 188.8 66.8 897.3 1080.9 1116.0 7.0 7.6 3.0 4.2 

            

T 1.0 T 211.0 43.3 648.4 757.2 900.9 38.4 38.8 3.7 3.6 

T 3.0 T 208.9 58.8 691.6 836.8 927.6 32.0 32.4 2.7 4.0 

T 5.0 T 208.4 51.2 732.3 860.3 939.3 24.3 24.8 3.3 4.0 

T 10.0 T 209.2 57.1 827.2 933.9 994.1 19.9 20.4 3.5 4.3 

T 15.0 T 203.1 66.1 865.9 1039.6 1117.4 16.2 16.8 3.2 4.4 

T 20.0 T 213.5 67.6 887.3 1070.6 1115.4 15.1 15.6 3.1 4.8 

            

Table 4.9 Mechanical properties of the tested coupons with induced 

plastic strain of the 1.4462 grade – follow-up. 

 

4.3 Material tests outputs 
 

This section describes graphic outputs resulting from the measured data. Figure 4.10 

shows comparison of the different grades for the virgin material test according to the 

rolling directions. 

 

 
Figure 4.10 Idealized stress-strain diagram of the coupons made of the 

cold-rolled sheet. P marks the test parallel to the rolling 

direction; T marks the test transverse to the rolling 

direction. 
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All grades exhibit a higher strength in the transverse direction to the rolling. In case of 

the lean duplex grade 1.4162 there is almost the same stress-strain behaviour for both 

directions. 

 

In terms of the anisotropy of the cold-rolled sheet with induced plastic strain there is 

displayed only the direction parallel to the rolling direction in following figures (Figure 

4.11 - Figure 4.14). Coupons cut out in the transverse direction to the rolling exhibit 

similar behaviour. 

 

Explanations for marks used in figures are given as:  

 

First letter “P” denotes the samples manufactured parallel to the rolling direction, 

second letter denotes the plastic strain induced in the same direction as the subsequent 

tensile test (“P”) or the plastic strain induced in the transverse direction to the 

subsequent tensile test (“T”). 

  

Results presented below confirm the dependency of anisotropy on the increasing level 

of cold-working. This effect is apparent for all grades. Differences are significant 

especially for the lean duplex and duplex grade. Also the stiffness (particularly before 

the 0.2% proof strength) differs a lot as it is obvious from the figures. 

 

 

 
 

Figure 4.11 Recorded stress-strain diagrams of selected 1.4003 

samples. 
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Figure 4.12 Recorded stress-strain diagrams of selected 1.4404 

samples. 

 

 
 

Figure 4.13 Recorded stress-strain diagrams of selected 1.4162 

samples. 
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Figure 4.14 Recorded stress-strain diagrams of selected 1.4462 

samples. 

 

The effect of anisotropy is entirely opposite to the behaviour after cold-rolling where 

the 0.2% proof strength is higher for the direction transverse to the rolling. Cold-rolling 

is continuous process affecting an endless sheet through the thickness. Therefore this 

specific way of cold-working may produce a cold-rolled sheet with different mechanical 

properties in comparison to the uniaxial cold-working. 

 

Figure 4.15 - Figure 4.18 display increase of the 0.2% proof strength for the cold-

formed samples. Mark “P” denotes the subsequent tensile test parallel to the direction of 

plastic strain induction while mark “T” denotes the subsequent tensile test transverse to 

the direction of plastic strain induction. The curves determining the increase consists of 

the average value of 0.2% proof strength obtained both for direction parallel and 

transverse to the rolling direction as the comparing base representing virgin material 

mechanical properties. Plotted curves are compared with isotropic hardening obtained 

from stress-strain diagram of the unformed material. 
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Figure 4.15 Comparison of the measured strain hardening with the 

isotropic hardening model for the 1.4003 grade. 

 

 
 

Figure 4.16 Comparison of the measured strain hardening with the 

isotropic hardening model for the 1.4404 grade. 
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Figure 4.17 Comparison of the measured strain hardening with the 

isotropic hardening model for the 1.4162 grade. 

 

 
 

Figure 4.18 Comparison of the measured strain hardening with the 

isotropic hardening model for the 1.4462 grade. 

 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0 2 4 6 8 10 12 14 16 18 20 

0
.2

%
 p

ro
o

f 
s
tr

e
n

g
th

 i
n

c
re

a
s
e

 

level of plastic strain induction (%) 

1.4162_P 

1.4162_T 

ISOTROPIC HARDENING_1.4162_P 

ISOTROPIC HARDENING_1.4162_T 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

0 2 4 6 8 10 12 14 16 18 20 

0
.2

%
 p

ro
o

f 
s
tr

e
n

g
th

 i
n

c
re

a
s
e

 

level of plastic strain induction (%) 

1.4462_P 

1.4462_T 

ISOTROPIC HARDENING_1.4462_P 

ISOTROPIC HARDENING_1.4462_T 



Chapter 4: Experimental program 

61 

Results provide relatively good agreement only in case of the isotropic hardening 

for the direction parallel to the previous elongation and confirm recent conclusions 

of non-suitability of the isotropic hardening for stainless steel. The effect of 

anisotropy is significant especially for the lean duplex 1.4162 grade.  

 

Regarding to the small strain level for the 0.2% proof strength differences between 

true strain and true stress are negligible. 

 

Entirely different case is the ultimate strength issue. Considering the true stress and 

strain there is no significant increase in the ultimate strength (see Figure 4.19) in 

contrast to the engineering form of these values (see Figure 4.20). This observation 

indicates the effect of partial change of the microstructure of the virgin material 

does not sufficiently affect resultant true ultimate strength which remains almost 

constant. This fact is a proof of ductility decrease, as well as move of the strain 

value at reaching the ultimate strength. Assuming following: 

 

 σu,    ,virgin σu,true,pl  (4.5) 

 

The relationship of ultimate tensile strength σu,pl dependency is given as follows: 

 

 
σu,pl=σu,virgin 

1  tu,virgin

1  tu,pl
 σu,pl  σu,virgin and  tu,virgin   tu,pl (4.6) 

     

where σu,true,virgin is the true ultimate tensile strength of a initial sheet; σu,true,pl is 

the true ultimate tensile strength of a stretched sample, σu,virgin is the ultimate 

tensile strength in engineering values of a initial sheet; σu,pl is the ultimate tensile 

strength of a stretched sample in engineering values;  tu,virgin is the strain at the 

ultimate tensile strength in engineering value of a initial sheet and   tu,pl the strain 

at the ultimate tensile strength in engineering value of a stretched sample. 

 
  

Figure 4.19 Change of the ultimate strength according to the level of 

plastic strain induction with respect to the true values of 

stress and strain. 
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Figure 4.20 Change of ultimate strength according to the level of 

plastic strain induction with respect to engineering values 

of stress and strain. 

 

 

 

Ductility decrease is significant for all investigated grades as it is shown in Figure 4.21. 

The largest decrease is exhibited by the ferritic grade in contrast to the austenitic grade 

with the smallest effect of cold-working affecting the ductility. Values for the duplex 

and lean duplex grade lie within the area bounded by the ferritic grade from the bottom 

and the austenitic grade from the top. The fact reflects the ductility of the virgin 

material. Ferritic grades exhibit the lowest values, following by the duplex and lean 

duplex grades. Austenitic grades are well-known for their ability to be cold-formed due 

to the high ductility in general and therefore it is not surprise that they exhibit the 

highest values among all tested grades.  
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Figure 4.21 Ductility decrease dependency on the level of plastic 

strain induction. 

   

 

Following figures describe ductility change dependency on the induced plastic strain 

and original value of ductility. It seems there is a linear relationship describing the 

decrease of ductility and the induced strain. If the basic assumption (stated bellow) is 

valid the slope of the linear regression function (a) will be evaluated as 1.0.  

 

  f   pl       f     (4.7) 

 

where 

 f is the value of ductility of the unformed material, 

 pl,i is the induced plastic strain, 

 f,i is the ductility of the formed sample with induced plastic strain 

 pl,i. 

 

This assumption is virtually correct for all investigated grades in case of the uniaxial 

tensional hardening. The main task is to check the possibility of employing this 

observation for the structural sections properties. 
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Figure 4.22 Ductility dependency on the level of plastic strain 

induction and the original value of ductility for 1.4003. 

 

 
 

Figure 4.23 Ductility dependency on the level of plastic strain 

induction and the original value of ductility for 1.4404. 

 

 
 

Figure 4.24 Ductility dependency on the level of plastic strain 

induction and the original value of ductility for 1.4162. 

y = 0.9334x 

y = 0.8209x 

0 

5 

10 

15 

20 

25 

30 

0 5 10 15 20 25 30 

ε f
,i
(%

) 

εf -εpl,i(%) 

1.4003_P 

1.4003_T 

slope 1.4003_P 

slope 1.4003_T 

y = 0.9427x 

y = 0.9847x 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 

0 10 20 30 40 50 60 70 

ε f
,i
(%

) 

εf -εpl,i(%) 

1.4404_P 

1.4404_T 

slope 1.4404_P 

slope 1.4404_T 

y = 0.9935x 

y = 1.0058x 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

0 5 10 15 20 25 30 35 40 

ε f
,i
(%

) 

εf -εpl,i(%) 

1.4162_P 

1.4162_T 

slope 1.4162_P 

slope 1.4162_T 



Chapter 4: Experimental program 

65 

 
 

Figure 4.25 Ductility dependency on the level of plastic strain 

induction and the original value of ductility for 1.4462. 

 

 

Also decrease of the parameter of nonlinearity is evident from Figure 4.26. The stress 

strain diagram of coupons with induced plastic strain exhibits more stiffness before the 

0.2% proof strength and sharper intermediate area beyond the 0.2% proof strength. 

 
 

Figure 4.26 Decrease of parameter of nonlinearity n. 
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Figure 4.27 Change of the initial modulus of elasticity according to the 

level of plastic strain induction. 

 

As Rossi et al.´s investigations [8] should be the most relevant a comparison of the 

predictive formulas and new test data were published. Average values of essential 

parameters of coupons cut out from the sheet in the direction of rolling and 

perpendicular to the rolling direction (see Table 4.1) were used both for basic material 

properties and predictive formulas as any mill certificate was not obtainable. 

 

Expression for the strain from Eq. (3.80), resp. (3.81) is given by: 

 

   f,av    t,0.2 , resp.   c,av    t,0.2    (4.8) 

 

For comparison purposes it is expressed as: 

 

   pl      t,0.2    (4.9) 

 

where 

 pl,i is induced plastic strain (i.e.  pl,i ϵ (0.01; 0.15 or 0.20 or 0.5).  

 

It should be noted that instead of  t,0.2 there should be used strain  t,i at particular plastic 

strain, but the differences are negligible. Figures display dependency of the proof 

strength increase (σ0.2/σ0.2,O-1) on the plastic strain level, where  0.2,O denotes the 

average value of the 0.2% proof strength of the virgin sheet according to Table 4.1. “P” 

mark denotes coupons tested parallel to the previous elongation. “T” mark denotes 

coupons tested transverse to the previous elongation (see Figure 4.9 both of “P” and “T” 

curve were calculated on basis of the average value from coupons cut out from the sheet 

in the rolling direction and perpendicular to the rolling direction. “PREDICTION 0. 5” 
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denotes values obtained from the predictive formula. “PREDICTION” denotes values 

obtained from the predictive formula without the factor 0.85 which involves a 0.90 

factor regarding variability of results and a 0.95 factor regarding the nonsymmetry 

effect as it is stated in section 1.4. 

 

 
 

Figure 4.28 Comparison of the measured proof strength increase and 

predicted proof strength increase for the 1.4003 grade. 

 

 

 
 

Figure 4.29 Comparison of the measured proof strength increase and 

predicted proof strength increase for the 1.4404 grade. 
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Figure 4.30 Comparison of the measured proof strength increase and 

predicted proof strength increase for the 1.4162 grade. 

  

 

 
 

Figure 4.31 Comparison of the measured proof strength increase and 

predicted proof strength increase for the 1.4462 grade. 
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It seems the predictive relationship is more or less closer to the results of “T” samples 

although correct comparison is hardly possible due to the complex of other parameters 

(such as other fabrication steps, different levels of cold-forming in section portions etc.) 

It corresponds with the idea of acting of similar stresses in a member, i.e. strain induced 

within fabrication of RHS is transverse to the subsequent direction how a member is 

mostly used in structure. The slope of the 0.2% proof strength increase trends (except 

1.4162 – T) is slightly higher than in case of the predictive curve. 0.2% proof strength 

enhancement of the ferritic grade exhibits the largest difference between the test and 

predictive model both for “T” samples and “P” samples. All of the covered materials 

exhibit higher values of the proof strength than what is proposed by the predictive 

formula. It can be assumed that due to impossibility of using the mill certificate, the 

predictions (in this comparison) are less safe than in case of using the mill certificate 

values as the mill certificate might give lower values of the 0.2% proof strength and the 

ultimate strength compared to the directly measured values. 

 

 

 

4.4 Hot-rolled plate tests 
 

Testing programme consists also of a set of compressive tests of hot rolled plate made 

of the austenitic grade 1.4404. Thickness of the plate was 4 mm and the specimen 

geometry according to the same code as in previous testing is depicted in the figure 

below. 

 

 
 

Figure 4.32 Geometry of the specimen made of hot-rolled plate. 

 

 

The set consists of 3 specimens and average values of tests results are summarized in 

the following table. 

 

 

Grade E0 E0.2 σ0.2 σ1.0 σu  f  pl.u n n´0.2.1.0 

 GPa GPa MPa MPa MPa % % - - 

1.4404 186.0 17.1 308.0 347.1 569.4 62.1 43.3 3.5 2.2 

          

 

Table 4.10 Mechanical properties of hot rolled plate. 

 

These tests proved that there is lot of factors causing high variability of final mechanical 

properties. Despite the lower strength of hot-rolled steel a higher strength was observed 

for the same grade. That means little change in chemical composition and way of 
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manufacturing are probably determining in this issue. It is possible that also hot rolling 

can affect some strength enhancement as well as cold rolling. 

 

 

4.5 Annealing 
 

Selected specimens were subjected to annealing process for a comparison of pure 

strength enhancement during the fabrication and material properties of a sheet after heat 

treatment. Annealed coupons involve basic coupons for tensile tests of all investigated 

stainless steel grades (1.4003, 1.4404, 1.4162 and 1.4462). Other annealed specimens 

were corners and flat faces of SHS and CHS (see Figure 4.33). The annealing process 

was discussed in detail with specialists from Faculty of Mechanical Engineering at CTU 

where the heat treatment procedure was also conducted. 

 

First estimation of annealing temperature was made according to recommendations in 

[5]. Finally the annealing procedure was set as follows: 

 

For the 1.4404, 1.4162 and 1.4462 steel the temperature was set up as 1050 °C for at 

least 40 min. For the 1.4003 steel the temperature was set up as 730 °C for at least 40 

min as well as for other specimens. 

 

All of specimens were subjected to natural cooling on air. 

 

 

 

 

Figure 4.33 Specimens after annealing (left figure), annealing furnace. 

 

Comparison of the average values of the annealed specimens and specimens made of 

the same cold-rolled sheet and grade is stated in Table 4.11 (extended Table 4.1). As for 

the previous testing, the stated values represent the average from 3 specimens.  

 

 

 

 



Chapter 4: Experimental program 

71 

 

Grade 
Rolling 

direction 
E0 E0.2 σ0.2 σ1.0 σu  f  pl.u n n´0.2.1.0 

 or state GPa GPa MPa MPa MPa % % - - 

1.4003 P 198.3 7.5 326.7 357.1 492.3 22.1 18.0 8.4 1.8 

1.4003 T 211.9 7.0 343.7 374.5 512.3 31.9 17.6 8.5 1.9 

1.4003 A 210.1 - 309.8 309.1 500.2 - - - 2.9 

1.4404 P 189.0 14.1 259.8 307.3 620.8 61.8 48.7 3.7 2.1 

1.4404 T 199.8 11.6 279.0 322.0 635.1 68.6 57.1 8.8 2.3 

1.4404 A 192.9 7.1 209.3 253.2 567.7 71.5 40.7 16.4 3.1 

1.4162 P 193.3 21.9 551.6 623.7 785.9 37.9 24.1 7.3 3.0 

1.4162 T 195.5 22.4 556.5 624.8 765.6 35.2 21.1 7.5 3.1 

1.4162 A 196.9 35.1 451.1 517.2 750.9 25.9 - 3.7 3.2 

1.4462 P 195.8 25.2 600.1 676.6 843.0 34.3 22.6 6.9 2.9 

1.4462 T 210.7 30.0 637.6 722.7 863.7 33.9 20.6 5.6 3.4 

1.4462 A 207.6 42.7 509.6 634.9 806.5 28.9 20.8 3.4 3.8 

P – test parallel to the rolling direction. T – test transverse to the rolling direction. 

A – annealed specimen. 

 

 

Table 4.11 Mechanical properties of the cold rolled sheet according 

to the rolling direction in comparison to the annealed 

specimens. 

 

All specimens subjected to the annealing exhibit more or less equal value of the initial 

modulus as the specimens made of the cold-rolled sheet. For annealed specimens of all 

grades lower values of the 0.2% proof strength are typical. That is a proof of the 

expectable assumption. 

 

Comparison of the results for the austenitic grade is depicted in Figure 4.34. As it is 

stated above hot-rolled plate exhibits higher strength values despite of the cold-rolling 

effect. 
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Figure 4.34 Results comparison of the 1.4404 grade in the different 

treatment conditions. 

 

Annealed specimens of the ferrtitic 1.4003 grade exhibit dissimilar stress-strain 

behaviour. After the annealing the stress-strain curve refers to common carbon steel 

material. The difference between the diagram of the cold-rolled and annealed material is 

apparent from the Figure 4.35. As for the previous cases, the 0.2% proof strength is 

lower for the annealed material, however there is large plastic plateau (typical for 

carbon steel) with a following hardening stage. The annealed material also exhibits no 

rounded curve likewise the carbon steel. This behaviour was observed for all 3 annealed 

ferritic specimens. The reason for these results is probably the procedure of annealing 

and recrystallizing of the virgin material. Thus the annealed material is not appropriate 

for any validations at all. 
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 Figure 4.35 Results comparison of the 1.4003 grade in different 

treatment conditions. 

 

4.6 Part of section tests 
 

Tensile tests of flat faces and corners made of SHS and specimens prepared from 

circular hollow section (CHS) serve for the analytical model validation. Preparation of 

the coupons is shown in Figure 4.36 and Figure 4.37. 

 

 
 

Figure 4.36 Preparation of the specimens made of the SHS sections.  
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Figure 4.37 Preparation of the specimens made of circular hollow 

sections.  

 

Test set-up consists of SHS 80x80x3 and SHS 80x80x5 and of 3 CHS, namely CHS 

168.3x2, CHS 88.9x2 and CHS 42.4x2, all made of austenitic 1.4404 grade. 

 

Results are stated in Table 4.12. The CHS 42.4x2 annealed specimen and virgin 

specimens after tests are shown below. 

 

 
 

Figure 4.38 CHS 42.4x2 specimens. 

 

The test programme involves 3 specimens for flat faces, 3 specimens for corners and 

one annealed corner specimen of each SHS section. CHS sections are represented by 3 

virgin and 3 annealed specimens. Stated results are provided by averaging. Not all 

specimens were successfully tested due to difficulties with clamping into the testing 

machine. The non-representative values are not stated and marked by hyphen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Experimental program 

75 

 

 

SECTION 
Part of 

section 
E0 E0.2 σ0.2 σ1.0 σu  f  pl.u n n´0.2.1.0 

  GPa GPa MPa MPa MPa % % - - 

SHS 80x3 F 183.1 29.8 397.1 465.3 627.6 44.1 36.5 3.1 4.3 

SHS 80x3 C 210.8 66.3 681.6 714.1 741.9 10.4 15.7 14.4 4.2 

SHS 80x3 AC - - 246.0 284.0 579.9 - - - - 

SHS 80x5 F 190.5 29.3 448.1 516.2 627.4 53.8 - 3.4 4.5 

SHS 80x5 C 215.3 17.5 726.3 764.5 771.8 16.9 4.6 15.4 6.2 

SHS 80x5 AC - 5.1 235.4 260.9 537.5 54.1 51.2 - 1.7 

CHS 42.4x2 - 190.9 18.5 319.7 363.3 582.5 47.2 24.2 4.7 2.2 

CHS 42.4x2 A 210.7 9.3 185.6 230.7 525.4 72.6 35.5 10.5 2.3 

CHS 88.9x2 - 172.7 16.1 348.4 388.8 610.1 59.1 45.1 5.8 2.2 

CHS 88.9x2 A 169.5 12.6 230.6 281.4 541.0 43.6 41.4 7.9 2.8 

CHS 168.3x2 - 183.6 15.1 339.9 379.8 636.0 40.1 25.0 4.8 2.0 

CHS 168.3x2 A 177.8 13.3 208.6 252.8 548.3 54.1 50.0 5.5 2.5 

F – flat face. C – corner. AC – annealed corner specimen. 

 

 

Table 4.12 Mechanical properties of the specimens made of the 

sections. 

 

The mill certificate was known only for SHS. The mill certificate defines the 0.2% 

proof strength, the 1.0% proof strength and the ultimate strength for both SHS as 

follows: 

 

σ0.2 σ1.0 σu 

MPa MPa MPa 

281.0 310.0 581.0 

 

Table 4.13 Mechanical properties for the SHS declared by the mill 

certificate. 

 

For modelling purpose other mechanical properties were assumed as it is stated below: 

 

E0 E0.2 n n´0.2.1.0 

GPa GPa - - 

195.0 22.2 5.6 1.9 

 

Table 4.14 Other assumed mechanical properties for the SHS. 

 

Stress-strain curve of the CHS virgin material was not modelled due to the lack of the 

mill certificate. 

  

Charts comparing the stress-strain curves of the particular section parts are depicted in 

following figures. 
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Figure 4.39 Comparison of the stress-strain curve for the different 

parts of the SHS 80x3 section with the assumed virgin 

material (mill) and the annealed corner specimen. 

 

 
 

Figure 4.40 Comparison of the stress-strain curve for the different 

parts of the SHS 80x5 section with the assumed virgin 

material (mill) and the annealed corner specimen. 
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Figure 4.41 Comparison of the stress-strain curve for the parts of the 

CHS 42.4x2 section with the annealed specimen. 

 

 

 
 

Figure 4.42 Comparison of the stress-strain curve for the parts of the 

CHS 88.9x2 section with the annealed specimen. 
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Figure 4.43 Comparison of the stress-strain curve for the parts of the 

CHS 168.3x2 section with the annealed specimen. 

 

 

The set of specimens prepared from the sections is not very extensive. Nevertheless 

results obtained from the section testing show strength enhancement in the corners 

during all fabrication steps can reach almost 300% in comparison with the annealed 

material. The 0.2% proof strength of a corner to the 0.2% proof strength of a flat face 

ratio is 1.62, 1.72 respectively. Opposite to the assumed 0.2% proof strength of the 

virgin material the tested specimens exhibit at least 30% enhancement and there is no 

significant change in this effect in respect to the inner radius of circle hollow sections. It 

is necessary to mention there was no mill certificate for the CHS and despite to the fact 

the material for tubes is the same 1.4404, each section can exhibit different mechanical 

properties. 0.2% proof strength enhancement during fabrication of CHS (difference 

between annealed and section test) was 51% – 72%. Other mechanical properties are 

rather not representative due to the low count of specimens. 
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4.7 Conclusions  
 

The presented results prove significant changes in many properties caused by the 

previous plastic forming. Also the influence of the forming direction in respect to the 

testing direction is clearly visible. 

 

Current test results show particularly: 

 

- Dependency of material properties on the induced plastic deformation was 

observed. 

 

- Effect of anisotropy is different for the cold-rolling of a sheet and uniaxial cold-

forming of a specimen made of a sheet. 

 

- More than 100% increase of the 0.2% proof strength was observed for the 

austenitic steel in extreme (in case of the uniaxial cold-working of the steel 

sheet). 

 

- Strength increase is significant for all investigated stainless steel grades (for the 

ferritic, the ductility may be limiting). 

 

- The higher level of plastic strain induced the higher anisotropy effect is 

pronounced. 

 

- The 0.2% proof strength is lower for the direction transverse to the previous 

strain induction. 

 

- Material non-linearity differs according to the forming direction. 

 

- There is no relevant ultimate tensile strength change in terms of the true values 

of stress and strain within cold-forming. 

 

- There is no significant change of the initial modulus of elasticity within cold-

forming. 

 

- Decrease of the ductility corresponding with induced plastic strain and the 

relatively linear relationship was observed. 

 

- Design expressions provide safe predictions of the proof strength increase, 

though the comparison of the test data to the recent predictive formulas does not 

provide perfect agreement. 

 

- Difference of 5% – 33% between the annealed and virgin material for the 0.2% 

proof strength of the sheet material of all investigated grades was observed. 

 

- In case of the section corner testing, there was observed the 0.2% proof strength 

enhancement of 300% in comparison with the annealed material. 

 

- The 0.2% proof strength of a corner to the 0.2% proof strength of a flat face 

ratio 1.62, 1.72 respectively was observed. 
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The test programme on 160 coupons was executed and its results presented. The main 

material characteristics and stress-strain curves were also described. The presented 

strength increase shows, that the influence of cold forming is important not just for the 

austenitic grades, but also for the other stainless steel grades. However for ferritic 

grades, the ductility could be limiting. After the plastic strain induction in the specimen 

corresponding to strain during section cold-forming (in corners typically exceeding ten 

percent), the 0.2% proof strength could reach even 300% higher values. There is no 

change of the ultimate strength dependent on the level of cold-forming in terms of the 

true values of stress and strain (the ultimate strength increase is evident only for 

engineering values). Higher level of plastic strain induction implies lower values of 

Ramberg-Osgood nonlinearity parameter (more rounded stress-strain diagram) and 

ductility as well. 

 

Measured values of mechanical properties serve for further development of the 

analytical model of the strength increase and a stress-strain behaviour description of a 

whole cold-formed stainless steel cross-section. 
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Chapter 5 

Analytical part 

This section describes an analytical solution for stress-strain response of a cold-formed 

stainless steel (primarily SHS) section. It allows to derivate the most important 

mechanical properties such as the 0.2% proof strength, initial modulus of elasticity, 

parameter of non-linearity, i.e. Ramberg-Osgood model hardening exponent essential 

for the structure design. The final model is based on the Quach analytical expression for 

coiling and uncoiling process and further relationships for forming into a circular 

respectively square hollow section. The solution stated herein employs a planar analysis 

of the sheet, thus only pure bending of a sheet involving different amounts of straining 

in the two orthogonal directions is considered with no stresses acting across the 

thickness. There are employed numerical simulations using Maple 18 software for a 

whole section stress-strain response evaluating. The preliminary Maple model has been 

already partially used for material properties estimation of stainless steel and published 

by Howlader, Jandera and Mařík [59] in 2016. Using mathematical software enables to 

process large amount of data together with its evaluation by iterating procedures in very 

favourable way and relatively short time and the resulting code can be easily checked. 
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5.1 Assumptions 
 

Before proceeding further, there is essential to denote assumptions for further 

calculations. Assumptions are expressed in clear and simple way due to an effort of 

having simply working model. Main directions corresponding to stresses considered in 

this chapter are matched with coiling and uncoiling as well as with the longitudinal 

direction of resulting structural member that is denoted as “z”. Width of the sheet refers 

to “x” direction and through-thickness t direction corresponds with “y” axis. Main 

directions identification is denoted in Figure 5.1 for more convenient. 

 

 
Figure 5.1 Main directions identification. 

 

The study assumes the virgin material before coiling is free from residual stress that 

may be caused by cold-rolling with the stress-strain curve corresponding to the annealed 

material. Essential values can be obtained by measuring, mill-certificate or recent 

design codes. Regarding material hardening, the stainless steel is considered to be 

primarily isotropic material. Coiling, uncoiling and cold-forming are assumed as plane 

strain pure bending deducing stress and strain only in y-z plane. For most of calculations 

there is used coiling radius Rc=450 mm as it is recommended [48] (if not it is marked), 

as well as Poisson's ratio ν = 0.3. Sheet thickness remains unchanged during all 

fabrication stages. Equivalent plastic strain is considered in absolute value for more 

convenient. 

 

 

5.2 Fabrication modelling 
 

Analytical model developed by Quach [24] for residual stress prediction is adopted. The 

model is based on three main processes, i.e. coiling, uncoiling and corner bending. 

These stages are modified and compose into a complex description for a corner and a 

flat face of a rectangular hollow section. Stress strain response is expressed as the three 

stage material model: equations (3.23) - (3.25). During the evaluation of the analytical 

solution for fabricating the generally adopted two stage material model was also 

considered (equations (3.5), (3.9)) and processed for the whole fabrication model. 
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Although for strain range up to 2% it is sufficiently accurate, for higher strain ranges it 

doesn’t provide quite correct results in terms of overall values of cold-formed parts. 

5.2.1 Coiling and uncoiling 

 

Coiling 
 

During coiling an arbitrary point through the thickness is subjected to elastic or elastic-

plastic straining. Amount of straining depends on the coiling curvature κc =1/Rc and 

distance y from the neutral surface (see Figure 5.2). Elastic in plane strains are given as 

follows: 

  

   z,c=
 σz,c νσx,c 

 0

  (5.1) 

 

   x,c=
 σx,c νσz,c 

 0

=0  (5.2) 

 

where  E0 is the initial modulus of elasticity, 

ν is the Poisson´s ratio, 

σx,c, σz,c = stresses in the directions according to subscripts due to the coiling, 

 x,c and  z,c  corresponding strains with  z,c = κcy 

 
Figure 5.2 Coiled sheet [4]. 

 

Thus, the stress in an arbitrary point is given by: 

 

  σz,c=
 0

 1 ν2 
  z,c  (5.3) 

 

  σx,c=
ν 0

 1 ν2 
  z,c  (5.4) 

 

Within material plastic straining, there must be satisfied the von Mises yield criterion: 

 

 σ =σyc  (5.5) 

 

where  σyc is the instantaneous yield stress reached at the end of 

coiling, 

 

  σ   σz,c2 σx,c2 σx,cσz,c is the equivalent stress  (5.6) 
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At the onset of yielding the initial yield stress equals the instantaneous yield stress at the 

end of coiling (σy,0 = σyc): 

 

  σz,c2 σx,c2 σx,cσz,c=σy,0  (5.7) 

 

where  σy,0 is the initial yield stress. 

 

Longitudinal strain  z,c  at which yielding starts is obtained as:  

 

  z,cy=  σy,0 1 ν
2 /   0

 1 ν ν2   (5.8) 

 

where “+” means tension (i.e. y > 0) 

 

Central core remains elastic and size of the core is twice the value  
c 

 expressed as: 

 

  
cy
=σy,0 1 ν

2 /   0κc 1 ν ν
2   (5.9) 

 

 

Material points beyond the elastic central core and stress obey the von Mises criterion.  

Letting the ratio ωc= σx,c/ σz,c.  (5.10) 

 

Coiling stresses at any point are given as: 

 

 
 σz,c=  

σy,c

 1 ωc ωc
2

 
 (5.11) 

 

 
 σx,c=  

ωcσy,c

 1 ωc ωc
2

 
 (5.12) 

 

There is also limiting curvature at which the fibre of extreme surface starts to yield 

given by:  

  cy 2σy,0 1 ν
2 /   0  1 ν ν

2   (5.13) 

 

It is evident the limit depends on material properties (yield point of virgin material, 

initial modulus of elasticity) and thickness of a sheet. 

 

For isotropic material, the relationship between the equivalent stress and the equivalent 

plastic strain is the same as the uniaxial stress-strain relationship, so: 

 

 σ =σ, when  p = p  (5.14) 

 

and dσ =dσ, when d p  d p  (5.15) 

 

with  p=    σ/ 0  (5.16) 
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For strain-hardening materials σyc and ωc are related to each other and it is necessary to 

establish them numerically for each y-location in terms of their increments. 

 

Following slope of the equivalent stress-equivalent plastic strain relation H′ equal to the 

corresponding slope of the uniaxial stress-plastic strain curve can be expressed as: 

 

   =
dσ 

d p 
=
dσ

d p
=  

d 

dσ
 
1

 0

 
 1

  (5.17) 

 

Stress ratio Ωc = dσx,c/ dσz,c is given in the form of:   (5.18) 

 

 Ωc=
4ν   1 ωc ωc

2   0 2 ωc  2ωc 1 

 0 2ωc 1 2 4 
  1 ωc ωc

2 
  (5.19) 

 

Stress increment dωc is expressed as follows:  

 

  dωc=
2 1 ωc ωc

2  Ωc ωc 

σ  2 ωc  Ωc
 2ωc 1  

dσ  (5.20) 

 

Hence, there can be used numerical calculations for the value of σyc and related stress 

ratio ωc at each point y through the thickness. 

 

Plastic strain under coiling curvature κc is then given by: 

 

  c,pl=         / 0  (5.21) 

 

where  σyc is the instantaneous yield stress due to the coiling, 

 yc is the corresponding strain to σyc 

 

The increment of the longitudinal strain is expressed as: 

 

  d z,c= 

 
 
 

 
 
  1 2ωc 

2 2ν 1 2ωc  2 ωc   2 ωc 
2 σ

2 0 1 2ωc  1 ωc ωc
2 

3/2
dω 

 
 1 ωc 

2 1 2ν 

 0 1 2ωc  1 ωc ωc
2 

1/2
dσ

  (5.22) 

 

Final values of σyc and corresponding stress ratio ωc can be calculated numerically by 

step by step updating values of σ and ωc via small assigned increment dσ, dωc 

respectively. 
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Uncoiling 
 

When κc > κcy, in case of the natural uncoiling a sheet after the process exhibits a 

residual curvature (see Figure 5.3). The curvature is removed within fabrication process 

either before cold-forming or during cold-forming as a result of the final section overall 

stiffness. The solution assuming uncoiling including flattening is adopted and described 

herein. That means there is used the same uncoiling curvature κu as for coiling in the 

opposite direction. 

 

  u=       (5.23) 

 

Total stress at an arbitrary point is then given by: 

 

  z,r=             (5.24) 

 

  x,r=             (5.25) 

 

 
Figure 5.3 Flattened sheet after uncoiling [4]. 

 

As for the coiling there is similar condition for the limiting uncoiling curvature κuy when 

the extreme surface starts to yield described as follows: 

 

 
κuy= 

σyc 1 ν
2  2 ν  2ν 1 ωc 

 0    1 ν ν
2  1 ωc ωc

2

 
 (5.26) 

 

When the uncoiling curvature κu is lower than κuy, the uncoiling stresses are elastic 

given by: 

  σz,u=
 0

 1 ν2 
  u   (5.27) 

 

  σx,u=
ν 0

 1 ν2 
 κu   (5.28) 

 

When the uncoiling curvature κu is greater than κuy the reverse yielding occurs and 

uncoiling stresses after the process are no longer only elastic given by: 

 

 
 σz,r=  

σy,r

 1 ωu ωu
2

 
 (5.29) 
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 σx,r= 

ωuσy,r

 1 ωu ωu
2

 
 (5.30) 

 

with ωu= σx,r/ σz,r = (σx,c + σx,u)/ (σz,c + σz,u)  (5.31) 

 

Total equivalent plastic strain after uncoiling is similar to the previous one: 

 

  r,pl=  r  σr/ 0  (5.32) 

 

where σr is the instantaneous yield stress with corresponding strain  r. 

 

Similar to the coiling stage the stress ratio increment dωu is possible to consider as: 

 

  dωu=
2 1 ωu ωu

2  Ωu ω  

σ  2 ω   Ω  2ωu 1  
dσ  (5.33) 

 

Stress ratio  Ωu = dσx,r/ dσz,r is given in the form of:   (5.34) 

 

 Ωu=
4ν   1 ωu ωu

2   0 2 ωu  2ωu 1 

 0 2ω  1 2 4 
  1 ωu ωu

2 
  (5.35) 

 

The increment of the longitudinal strain for uncoiling is expressed as: 

 

  d z,u= 

 
 
 

 
  
  1 2ωu 

2 2ν 1 2ωu  2 ωu   2 ωu 
2 σ

2 0 1 2ωu  1 ωu ωu
2 

3/2
dωu

 
 1 ωu 

2 1 2ν 

 0 1 2ωu  1 ωu ωu
2 

1/2
dσ

  (5.36) 

 

Likewise the coiling final values of σr and corresponding stress ratio ωu can be 

calculated integrally or numerically by step by step updating values of σ and ωu in each 

step via small assigned increment dσ, dωu respectively. 

 

The coiling-uncoiling process develops small strains in the sheet. Thus there is 

sufficient to use the stress-strain description in engineering values for evaluating of 

plastic strain and stress within the process. Differences between the true and nominal 

stress-strain behaviour are negligible. Differences have to be taken into consideration 

for higher strains as it is shown in Figure 5.4 and Figure 5.5.  Also conclusions of Yu 

and Zhang [60] for pure bending with the centreline bending radius Rc >10t present the 

difference between maximum engineering and true logarithmic strain lower than 2.5%. 

Because of a coiling and uncoiling curvature (much larger than 10t) engineering strain 

values provide more than good accuracy for calculations. However in case of cold 

bending (either cold-rolling or press-breaking) it is necessary to take the true strain into 

consideration and adapt the model. 
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Figure 5.4 Difference between the true and nominal stress-strain 

behaviour for the 1.4162 grade in small strain levels. 

 

 
 

Figure 5.5 Difference between true and nominal stress-strain 

behaviour for the 1.4162 grade in high strain levels. 

 

For more convenient, general process of coiling-uncoiling is displayed in Figure 5.6. 

The figure displays a general elastic-plastic material. However for the stainless steel 

there is no elastic region due to the rounded stress-strain response. Thus strain 

hardening across the whole section occurs from the start of coiling with different levels 

in relation to the location through the thickness. The diagram describes the “0-E-P” path 

representing the coiling. In case of stainless steel the path looks rounded starting at the 

point “0” and finishing at the point “P” missing the point “E”. During elastic uncoiling 

following the “P-UE” path there is no additional plastic strain induction. Reverse 

yielding (“UE-UP”) deduces further plastic strain and yield envelope expansion. Stress 

and strain distribution across the thickness is therefore non-linear. 
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Figure 5.6 Scheme of the coiling-uncoiling process [24]. 

 

Distribution of stress and plastic strain after the coiling and uncoiling are displayed in 

following figures (Figure 5.7 - Figure 5.9). For highlighting the effect there is Rc = 250 

mm used together with a 2 mm thin sheet made of an austenitic grade undergoing the 

coiling and uncoiling process and divided into 30 layers. Mechanical properties used for 

the following example are determined as: 

 

Grade E0 E0.2 σ0.2 σ1.0 σu  u n n´0.2,1.0 

  GPa GPa MPa MPa MPa % - - 

1.4301 195.4 12.8 205.0 234.6 520.0 60.0 7.5 1.95 

 

There are a few essential properties, i.e. the initial modulus of elasticity, the 0.2% proof 

strength, the ultimate strength and the Ramberg-Osgood parameter of nonlinearity. All 

other properties can be calculated from relationships stated below: 

  

  σ1.0=
0.542σ0.2

 
 1.072σ0.2  (5.37) 

 

Formula (5.37) was established by Quach [24] by analysing tension coupon test data as 

well as formula (5.38) determining compound Ramberg-Osgood nonlinearity parameter 

n´0.2,1.0: 

 

   ´0.2,1.0 =
12.225 0.2σ1.0

 0σ0.2
 1.037  (5.38) 

 

Determination of the tangent modulus of elasticity at the 0.2% proof strength is based 

on Eq. (3.22). 
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Corresponding strain at the ultimate strength is adopted from Eq. (3.21) codified in EN 

1993-1-4 and limited by the value of 60%. In case of ferritic steel the expression can be 

slightly modified according to results and observations from experimental programmes 

according to Bock et al. [61] as: 

 

   u=0.6  1 
σ0.2

σu
    (5.39) 

 

However, in the Maple model the relationship for  u (Eq. (3.21)) is generally adopted 

for all grades. Although ferritic steels exhibit shorter area between the 0.2% proof 

strength and the ultimate stress they also exhibit relatively significant plateau at ultimate 

strength. Thus this observation within testing at CTU allows using the Eq. (3.21) for all 

grades. In addition by considering linearly increasing strains across the thickness from 

neutral surface to the outer or inner one during the fabricating, high plastic strains 

induced at surfaces of the bend area can even exceed original material ductility (in case 

of the corner bending with a low value of the inner radius). That means the bending 

with a low inner radius is more complex and not only planar behaviour and material 

acting through the thickness. The Maple model is based as a planar solution 

conservatively considering only lower values of plastic strain than  u. 

  

 
Figure 5.7 Longitudinal and transverse stresses due to coiling 

according to the Maple model. 
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Figure 5.8 Longitudinal and transverse stresses due to coiling-

uncoiling according to the Maple model. 

 

 

 
Figure 5.9 Plastic strain after coiling and coiling-uncoiling 

according to the Maple model. 
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5.2.2 Cold bending 

 

This section describes an analytical solution both for press-breaking and cold-rolling of 

a sheet into a corner. It should be noted that within press-breaking the outer curved 

surface of a sheet becomes inner surface of the final bend. As the strains induced by 

cold-bending are much larger than in case of coiling-uncoiling the resulting state is 

mostly influenced by making a corner. The mathematical description stated herein is 

based on similar foundations as for the coiling-uncoiling assuming large bending 

curvature. 

 

Cold-bending process affects relations across thickness of the corner [14]. For large 

curvatures (Rc < 10t) there is important effect of changing the neutral surface [60]. The 

neutral surface is not more the same as the middle one. It moves closer to the inner 

surface as the bending proceeds (see Figure 5.10). That means there is a zone within the 

thickness exposed to compression and following tension. It leads to a non-deformed 

surface during each step of the cold-bending where zero final strains occur.  

 
Figure 5.10 Sheet under pure bending [24]. 

 

When a sheet is cold-bent, its fibers undergo transverse straining. Amount of the 

straining depends on the location in relation to the current middle surface and a distance 

s between the neutral surface and the current middle surface and the centerline radius 

Rc. The true transverse strain is expressed as: 

 

   x,cs=ln 1  
s  

 c s
   

 
(5.40) 

 

As it was stated above no through-thickness stresses and strains are considered and 

similar to the coiling and uncoiling for elastic material longitudinal and transverse 

stresses are given by: 

 

  σz, s=
ν 0

 1 ν2 
  x,cs  (5.41) 
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  σx,cs=
 0

 1 ν2 
  x,cs  (5.42) 

 

The elastic stress is only theoretical issue due to the nonlinear stress-strain behaviour of 

the stainless steel, thus plastic straining occurs from the beginning of the process. 

 

With stress ratio ωcs= σz,cs/ σx,cs , (5.43) 

 

stresses of points subjected to the plastic straining are expressed as: 

 

 
 σz,cs=  

ωcsσy,cs

 1 ωcs ωcs
2

 
 (5.44) 

 

 
 σx,cs=  

σy,cs

 1 ωcs ω  
2

 
 (5.45) 

 

Similar to Eq. (5.16), the equivalent plastic strain is given by: 

 

   cs,pl =  y,cs  σy,cs/ 0  (5.46) 

 

where  σy,cs is the instantaneous yield stress due to the cold-bending, 

 y,cs is the corresponding strain to σyb 

 

Letting the stress ratio Ωcs = dσz,cs/ dσx,cs is given in the form of:   (5.47) 

 

 Ωcs=
4ν   1 ω   ωcs

2   0 2 ωcs  2ωcs 1 

 0 2ω   1 2 4 
  1 ω   ωcs

2 
  (5.48) 

 

Stress increment dωcs is expressed as follows:  

 

  dωcs=
2 1 ωcs ωcs

2  Ωcs ωcs 

σ  2 ωcs  Ω   2ωcs 1  
dσ  (5.49) 

 

Then the value of σy,cs and related stress ratio ωcs at each point y through the thickness 

can be solved numerically. 

 

Due to large curvatures and high strain levels it is necessary to use true values instead of 

engineering notation as it is stated above. Thus the true plastic strain  tp is expressed as: 

  

  t p  =  t  σt/ 0=  ln 1  n  
σn(1  n)

 0

  (5.50) 

 

where  “ ” denotes tension and “-“ compression, 

subscript “t” denotes true value and subscript “n” nominal value 
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Slope of the equivalent stress-equivalent plastic strain relation  ′ is still given by Eq. 

(5.17), however the strain rate d /dσ must be replaced by d t/dσt. 

 

In terms of using three stage material model – Eq. (3.23)-(3.25) and for dσt obtaining 

there is possible to employ following expression: 

 

 
1  

2σn

 0

 0.002   1  
σn

σ0.2
 
 

  σn   σ0.2 (5.51) 

 

 

 
  0.2 

 2σn σ0.2 

 0.2

    0.2,1.0
´  1 σn σ0.2   

 
 0.2   σ     2.0 (5.52) 

dσt

dσn
    1  

  0.00   σ1.0 σ0.2  
1

 0

 
1

 0.2

  
 σn σ0.2 

 0.2,1.0
´  1

 σ1.0 σ0.2 
 0.2,1.0
´

  (5.53) 

 

 1 
 2σn a    σn  σn σn a 

   σn 
2

 σn   σ2.0 (5.54) 

 

First for the small increment of dσn there is possible to establish dσt and then dωcs. 

Second, it is possible to calculate cold-bending stresses and equivalent plastic strain by 

determination σy,cs and ωcs that are as well as for previous stages related to each other.  

 

As well as for the coiling and uncoiling the distribution of stress and plastic strain after 

cold-bending is shown below. The inner radius of bend is set as 4t. Parameters of the 

sheet remain the same as for the previous example. In Figure 5.11 and Figure 5.12 there 

is depicted how the final stresses and equivalent plastic strain are influenced by 

assuming stress-strain response in nominal or true values after coiling-uncoiling and 

cold-bending. 

 
Figure 5.11 Comparison of plane stresses according to the nominal 

and true stress-strain response for cold-bending in the 

Maple model. 
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Figure 5.12 Comparison of equivalent plastic strain according to the 

nominal and true stress-strain response for cold-bending 

in the Maple model. 

 

5.2.3 Cold bending including springback 

 

When a steel sheet is subjected to the plastic strain induction during cold-bending 

followed by unloading, the final shape of the sheet is different from the originally bent 

one. Figure 5.13 displays a stress path of a cold-formed sheet in terms of the cold-

bending of perfect elastic-plastic material as the simplest illustration of the effect. There 

should be remarked that residual stresses due to the elastic unloading (known as 

springback) occur within all fabrication steps. However the level of final stress 

distribution after each step is hard to determine. Herein it is assumed that important 

residual stresses arise after cold-forming into a corner. 

 

 
 

Figure 5.13 Cold-bending of an elastic-plastic sheet with the stress 

path and resulting stress distribution in a corner. 
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Thus the final Maple model employs residual stresses resulting from the elastic 

unloading after cold-bending (i.e. determination of residual stresses is based on the zero 

moment condition). Suitability of the proposed solution was verified by comparison 

with residual stress test data executed by Weng and White [52], Quach´s FEM solution 

[24] and Rossi et al.´s numerical analysis [53]. They all aimed on the same case of the 

cold-bending for the comparison. Residual stresses in z direction were compared only 

with Weng and White experiments together with Quach´s FE model due to the lack of 

other available data. 

 

At first Weng and White (in 1990) executed an experimental investigation of residual 

stresses in cold-bent thick plates made of high-strength steel HY-80 (for material 

properties obtained from a coupon test see Table 5.1). The comparison of the results is 

proved for the sample of 1 inch thickness and with inner radius of bend 5.5t. Strain at 

the ultimate strength is obtained using Eq. (3.21). Transverse surface residual stresses in 

z direction were taken as average values resulting from experimental methods used 

within testing. (i.e. hole-drilling and sectioning). 

 

t (mm) σy (MPa) σu (MPa) E (GPa) ν (-)  u (%) 

25.4 593.2 737.9 203.9 0.28 19.6 

      

Table 5.1 Mechanical properties of HY-80 steel. 

 

In 2005 Quach [24] used the finite element code ABAQUS for modelling the cold-

bending process where both material and geometrical non-linearity were considered as 

well as interaction between the steel plate and the die or punch. 

 

In 2007 Rossi et al. [53] modified previous equations proposed by Quach and 

incorporated a swift law to determine non-linear stress-strain behaviour of HY-80. 

 

In the Maple model, the HY-80 steel is considered to be an elastic material until it 

reaches the yield strength and after it is assumed as an elastic hardening material as it is 

shown in Figure 5.14. The slope of hardening at the yield strength is then given by: 

 

  n= 
σu σy

 u σy/ 
=

737.  5 3.2

0.1 6 5 3.2/203 00
=74 .0 MPa  (5.55) 

    

 
 

 

Figure 5.14 Idealized material model of HY-80 steel. 
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The simpler bilinear stress-strain description of the material with hardening is given by: 

 

  σ =   0      σy  0 (5.56) 

 

  σ = σy  n    
σy

 0

      σy  0 (5.57) 

 

Then the slope of the equivalent stress-equivalent plastic strain relation H′ for σ > σy is 

simply expressed as: 

 

   =
 0 n

 0  n

  (5.58) 

 

And the equivalent plastic strain can be obtained as: 

 

   cs,pl =  σy,cs σy  
 0  n

 0 n

   (5.59) 

 

That simplifies previous expressions and thus it is easier to evaluate the analytical 

solution. 

 

Figures below display a comparison of obtained results. Analytical solution is very 

close to the Rossi et al.´s numerical model while the confrontation with test results and 

FE model exhibits some differences that could be caused by boundary conditions 

entered in ABAQUS and only few strain gauges used for testing, because experimental 

measuring did not satisfy the condition of the required zero moment across the 

thickness. Overall the analytical solution provides good accuracy and it is employed for 

further applications. 

 

 
 

Figure 5.15 Residual bending stresses σx across the thickness 

comparison. 
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Figure 5.16   s d al    d  g s r ss s σz across the thickness 

comparison. 

 

 

5.3 Stress-strain behaviour 
 

The analytical solution of fabrication steps described above serves for residual stress 

and plastic strain evaluation. On the basis of these boundary conditions there is possible 

to determine awhole stress-strain behaviour for particular portions of a section as well 

as for a full section. Following sections deals with this issue. 

5.3.1 Stress-strain behaviour of cold-bent corner and flat faces of SHS 

 

A corner or SHS sections are modelled using the Maple via the three stage fabrication 

process consisting of the coiling stage followed by the uncoiling stage with the bending 

into the final shape as it was described above. The model is closer to the physical base 

of the cold-bending than for the cold-rolling due to the distribution of the enhanced 

strength as it was described by Cruise [4] for instance. From Figure 5.17 and Figure 

5.18 it is evident that the idea of simple enhanced strength distribution with a relatively 

sharp border between a corner and a flat face is well applicable for press-braked 

sections. It also confirms the enhanced part of a section is solely represented by the pure 

geometric corner area. In opposite to press-braked sections the enhanced strength 

distribution for cold-rolled sections is much more complex with a peak at the border 

geometrically dividing the corner and the flat face. This peak continuously and almost 

linearly decreases on both sides and for the most of the flat the strength enhancement is 

the lowest in the section. For further corner properties the following Maple model 

considers the fabrication process of cold-rolling the same as for press-braking making 

the corner the most  affected part of a section with dominant influence for resulting 

strength resistance of a full section in terms of the strength increase. However in case of 

flat faces there is appropriate to regard the complex effect of the cold-rolling. As it is 

shown in Figure 5.18, with respecting the previous assumption it could be incorrect to 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

-900 -700 -500 -300 -100 100 300 500 700 900 

y/t 

z-stress (MPa) 

QUACH_FEM 

WENG AND WHITE 

ANALYTICAL MODEL 



Chapter 5: Analytical part 

   

99 

assume the uniform enhanced strength with maximal amplitude for a whole flat face. In 

terms of determining of the enhanced strength properties the calculation of plastic 

strains essential for matching new material properties is the most important. Progress of 

the Maple model regarding this effect is stated herein. The model provides an average 

value of strain for the flat face as the representative strength enhancement used for a full 

section strength enhancement. 

  

 
 

Figure 5.17 Normalised 0.2% proof strength for press-braked section 

[4]. 

 

 
 

Figure 5.18 Normalised 0.2% proof strength for cold-rolled section 

[4]. 
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In terms of flat faces the process of the cold-bending mostly consists of forming into a 

circular tube and further crushing it into flat parts of SHS. That means the primary 

bending followed by the secondary reverse bending with a curvature depending on the 

section dimensions. These steps take place in the residual stress and plastic strain 

calculation (see Figure 5.19).  

 
Figure 5.19 Bending radius for a corner and a flat face. 

 

Bending radius for the flat faces regarding rounded corners of RHS is given by: 

 

  f = 
L   2 

 
  (5.60) 

 

The principle of the Maple model for the stress and strain calculation is based on the 

following steps. A part of a section (corner or flat face) is divided into several layers 

across the thickness to evaluate the residual stress and plastic strain. The model 

establishes plastic strains in absolute values for each layer. For obtaining a new stress-

strain curve of a whole corner or flat face it is necessary to determine mechanical 

properties for each layer individually according to the plastic strain reached at the end 

of the fabricating process. Thus trends of the mechanical properties depending on the 

induced plastic strain level were gathered from the experimental data established at 

CTU (see Chapter 4 – section 4.2 and 4.3) and plotted in following figures. Trend 

functions were established on the basis of the tests executed transverse to the direction 

of previous plasticising (coupons denoted by “T” mark – right hand side - Figure 4.9). 

Linear and polynomic expressions were prescribed for insuring of a simple regression 

with no specific boundary conditions as it is shown in the figures. In some cases there 

would be suitable to perform additional tests to provide more data due to a relatively 

high scatter of measured values. In addition a few quadratic regressions exhibit both 

increasing and decreasing trends. Therefore for these cases two stage models were 

employed represented by a variable part and subsequent constant one. The constant 

expression for a particular property is used after the variable expression reaches the 

extreme. The dependency of n on the level of plastic strain induction represented by a 

constant value after reaching a particular limit was also observed by Hradil et al.[62] 
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Figure 5.20 Trends of the mechanical properties for the 1.4003 grade. 
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Figure 5.21 Trends of the mechanical properties for the 1.4003 grade - 

follow up. 
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Figure 5.22 Trends of the mechanical properties for the 1.4404 grade. 
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Figure 5.23 Trends of the mechanical properties for the 1.4404 grade - 

follow up. 
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Figure 5.24 Trends of the mechanical properties for the 1.4162 grade. 
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Figure 5.25 Trends of the mechanical properties for the 1.4162 grade - 

follow up. 
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Figure 5.26 Trends of the mechanical properties for the 1.4462 grade. 
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Figure 5.27 Trends of the mechanical properties for the 1.4462 grade - 

follow up. 
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the actual stress reach the von Mises yield condition: 
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  σz,i

  σx,iσz,i  σx,pb
  σz,pb

  σx,pbσz,pb  (5.61) 

 

where  σx,i and σz,i is the instantaneous plan stresses, 

σx,pb and σz,pb is the residual plan stresses after cold-bending. 

 

As well as for the fabrication modelling, the further stress-strain response with 

particular plasticising is determined using the three stage material model (Eq. (3.23) - 

(3.25)). Stress-strain determination is set by a stress increment for each layer through a 

thickness for a small increment of strain Δ  = 10
-4

 and expressed for z-direction. 
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5.4 Validation of the model 

5.4.1 Comparison of the model with CTU section tests 

 

The analytical model was compared with the section tests executed at CTU. The model 

is also suitable for a circular hollow section as the analytical procedure is able to solve 

CHS as well as flat faces and corners of SHS. 

 

Following figures (Figure 5.28 - Figure 5.34) show the comparison of the modelled 

results with results of the measurement. In the figures there are curves resulting from 

the Maple model using assumed mechanical properties both for virgin material (marked 

1.4404_MILL) and annealed material.  

 

In case of CHS a mill certificate was not available. 

 

 

 
 

Figure 5.28 Comparison of the predictive models for the flat face of 

the SHS 80x3.  
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Figure 5.29 Comparison of the predictive models for the corner of the 

SHS 80x3. 

 

 
 

 

Figure 5.30 Comparison of the predictive models for the flat face of 

the SHS 80x5. 
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Figure 5.31 Comparison of the predictive models for the corner of the 

SHS 80x5. 

 

 

 
 

Figure 5.32 Comparison of the predictive models for the CHS 42.4x2. 
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Figure 5.33 Comparison of the predictive models for the CHS 88.9x2. 

 

 

 
 

Figure 5.34 Comparison of the predictive models for the CHS 168.3x2. 
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show the model is also suitable for use in CHS properties modelling. The difference 

between the model and test curves is probably caused by unknown virgin material data. 

The annealed material used in the model may result in very conservative curves.  

 

In the SHS cases there is closer agreement apparent for the flat faces than for the 

corners. The mill certificate is not often appropriate source of correct material 

properties. Thus, the model for annealed material is more suitable for use. For corners 

the model is rather conservative but still safe for use. The strength enhancement in 

corners reaches almost 300% representing very high level of cold-forming.  

 

5.4.2 Comparison of the model with tests carried out at Imperial College 

 

The Maple model for corners and flat faces was confronted with the recent extensive 

experimental programme conducted at Imperial College in London [47] containing 51 

flat coupons, 28 corner coupons and 6 full section specimens made both of circular and 

rectangular hollows sections. This data set employs mill certificate for the sheet 

mechanical properties which sections were made of. However some tensile tests for 

corners and flat faces exhibit lower value for the 0.2% proof strength than in case of the 

mill certificate 0.2% proof strength. Hence these are not applicable for the confrontation 

due to lack of strength enhancement. Thus all other SHS cases were selected for the 

comparison as the most appropriate due to the identical or similar grades tested at 

Imperial College to those tested at CTU (see Chapter 4). Mechanical properties 

considered in the comparison are reported in Table 5.2. Geometrical properties 

considered in the Maple model are stated in Table 5.3. Other data are available in [47]. 

 

Cross-section Material grade E0 σ0.2,mill σu,mill n n´0.2,1.0 

      (GPa) (MPa) (MPa)     

SHS 150×150×  1.4404 195 302 605 5.2 3.6 

SHS 100x100x5 1.4301 192 310 670 5.6 2.9 

SHS 150x150x5 1.4301 192  289 621 5.6 2.9 

SHS 100x100x5 1.4571 191 272 562 6.9 3.6 

SHS 120x120x5 1.4571 191 268 584 6.9 3.6 

SHS 30x30x2 1.4509 190 362 476 6.7 3.1 

SHS 40x40x2 1.4509 190 362 476 6.7 3.1 

SHS 50x50x2 1.4509 190 364 501 6.7 3.1 

SHS 80x80x3 1.4003 199 324 467 8.4 2.5 

        

Table 5.2 Mechanical properties as stated in the mill certificates and 

considered in the study. 
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Cross-section Material grade H L t -average ri -average Ri - average 

      (mm)  (mm) (mm) (mm)   

SHS 150×150×  1.4404 150.01 150.51 7.76 10.39 90.72 

SHS 100x100x5 1.4301 99.99 99.85 4.76 2.08 60.65 

SHS 150x150x5 1.4301 149.82 149.88 5.00 6.68 92.21 

SHS 100x100x5 1.4571 100.09 99.73 4.69 5.50 60.62 

SHS 120x120x5 1.4571 120.30 120.14 4.64 5.79 73.58 

SHS 30x30x2 1.4509 29.98 29.97 1.95 1.50 17.84 

SHS 40x40x2 1.4509 40.07 40.02 2.02 1.75 24.21 

SHS 50x50x2 1.4509 50.14 50.26 1.90 2.50 30.75 

SHS 80x80x3 1.4003 79.75 79.74 2.80 3.86 48.98 

        

Table 5.3 Geometrical properties of the compared specimens. 

 

As 1.4571 and 1.4301 represent austenitic grades and 1.4509 a ferritic grade, 

corresponding trends functions for material properties were adopted from grade 1.4404 

(for austenitic) and from grade 1.4003 (for ferritic). 

 

The analytical model is confronted with the measured 0.2% proof strength of all 

investigated cross sections coupons mentioned above. Further figures show 

confrontation of the corner stress-strain behaviour following by the comparison of the 

stress-strain behaviour of flat faces. The corner test set-up contained two tensile tests of 

corners for each section. In case of the flat face the set-up consisted of three specimens 

for each section. Ferritic 1.4509 SHS were only tested in full section tests and flat faces 

tests due to their tiny dimensions for corner cutting.  Thus in case of stress-strain curves 

an average recorded stress-strain response is plotted and compared to the analytic 

solution together with the curve for the material stated in the mill certificate. As it was 

stated above for bending radius greater than 10t it is possible to neglect the difference 

between true and nominal values of stress and strain. The section forming radius for flat 

faces is mostly greater and fulfils the condition. Hence the model for a flat face works 

with nominal values. 

 

 
 

Figure 5.35 Test set-up of the experimental programme conducted at 

Imperial College. 
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Following figures (Figure 5.36 - Figure 5.39, Figure 5.41 - Figure 5.46) display 

comparison of the Maple model with the experimental data. 

 

The first set of figures belongs to the corner properties whereas the second set 

represents comparison with the flat faces results. 

 

Corners 

 

Tests results exhibit a similar strength increase for both corner specimens allowing 

appropriate further evaluation due to the low scatter. 

 

For selected specimens, there are plotted stress-strain responses according to the Maple 

model in comparison with the recorded stress-strain behaviour for evaluating the level 

of agreement.  

 

It was observed the model for a corner is in relatively good agreement with the 

measured data up to the 2% strain. Thus all other curves (also for flat faces and full 

sections) are displayed up to this limit. 

 

 
Figure 5.36 Comparison of the modelled and measured stress-strain 

response for the corners from the 1.4404  SHS 150x150x8. 
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Figure 5.37 Comparison of the modelled and measured stress-strain 

response for the corners from the1.4571  SHS 100x100x5. 

 
 

Figure 5.38 Comparison of the modelled and measured stress-strain 

response for the corners from the 1.4571  SHS 120x120x5. 
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Figure 5.39 Comparison of the modelled and measured stress-strain 

response for the corners from the 1.4301  SHS 150x150x5. 
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Due to the consistent approach, stress-strain responses are displayed up to 2% as it is 

depicted for corners results. 

 

For the analytical model for flat faces there are introduced two ways of considering the 

plastic strain at the final state of flat faces. As the process of making corners and 

flattening the parts of faces is related to each other it is complicated to express particular 

effects on corner and flat faces individually. Also the mill certificate is not always 

appropriate source of the virgin material (the safe values of strength are obtainable from 

an annealed material test as it is stated before).  Plotted model results are marked by 

“RS” and “CS” labels to differentiate the methods. Due to the planar analytical solution 

related to the previous expressions, two methods for evaluating induced plastic strain 

for material properties calculation are presented. Plastic strain induced is essential for 

new material properties providing. Hence “RS” denotes plastic strains during a process 

of bending into a circular tube with subsequent reverse bending into a flat part (“RS” 

model was used before in Section 5.4.1 as the primary model) whilst “CS” denotes final 

plastic strain for new properties resulting from the process of bending only into a 

circular hollow section (see Figure 5.40).  

 

 

 

 
 

Figure 5.40 Scheme of the methods for the flat faces fabrication 
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Model “RS” will provide higher values of induced plastic strain and therefore also 

higher strength enhancement.  Next figures depict comparison of the modelled flat face 

0.2% stress strain curves and test results. 
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Figure 5.41 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4301 SHS 

100x100x5. 

 

 
 

Figure 5.42 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4571  SHS 

100x100x5. 
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Figure 5.43 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4003  SHS 80x80x3. 

 

 
 

Figure 5.44 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4509  SHS 30x30x2. 
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Figure 5.45 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4509  SHS 40x40x2. 

 
 

Figure 5.46 Comparison of the modelled and measured stress-strain 

response for the flat faces from the 1.4509  SHS 50x50x2. 
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5.4.3 Comparison of the model with test results and recent predictive 

models 

 

Following figures (Figure 5.54 - Figure 5.61) display comparison of the Maple model 

with the prediction methods and the experimental data.  

 

The first set of figures belongs to the corner properties whereas the second set 

represents comparison with flat faces results. 

 

Corners 

 

For the corners test results with the particular inner radius to thickness ratio are plotted 

among the curves obtained from predictive formulas and the Maple model according to 

the varying ri/t ratio (Figure 5.47 - Figure 5.52). 

 

 
Figure 5.47 Results of the corner tests in comparison with the Maple 

model and predictive methods for the SHS 150x150x8 

made of 1.4404. 
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Figure 5.48 Results of the corner tests in comparison with the Maple 

model and predictive methods for the SHS 100x100x5 

made of 1.4301. 

 
 

Figure 5.49 Results of the corner tests in comparison with the Maple 

model and predictive methods for the SHS 150x150x5 

made of 1.4301. 
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Figure 5.50 Results of the corner tests in comparison with the Maple 

model and predictive methods for the SHS 100x100x5 

made of 1.4571. 

 
 

Figure 5.51 Results of corner tests in comparison with the Maple 

model and predictive methods for the SHS 120x120x5 

made of 1.4571. 
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Figure 5.52 Results of the corner tests in comparison with the Maple 

model and predictive methods for the SHS 80x80x3 made 

of 1.4003. 

 

Tests results exhibit a similar strength increase for both corner specimens. 

 

Flat faces 

 

Next figures (Figure 5.53 - Figure 5.61) show comparisons of the experimental data for 

the flat faces and other predictive methods with the proposed Maple model. As for the 

corners, firstly there are plotted records of the 0.2% proof strength increase for 

particular stainless steel grades with particular ratio Rf/t into the recent predictive and 

proposed curves.  
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Figure 5.53 Results of the flat faces tests in comparison with the Maple 

model and predictive methods for the SHS 150x150x8 

made of 1.4404. 

 
 

Figure 5.54 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 100x100x5 

made of 1.4301. 
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Figure 5.55 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 150x150x5 

made of 1.4301. 

 

 
 

Figure 5.56 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 100x100x5 

made of 1.4571 
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Figure 5.57 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 120x120x5 

made of 1.4571 

 

 
 

Figure 5.58 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 30x30x2 made 

of 1.4509. 
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Figure 5.59 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 40x40x2 made 

of 1.4509. 

 

 
 

Figure 5.60 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 50x50x2 made 

of 1.4509. 
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Figure 5.61 Results of the flat face tests in comparison with the Maple 

model and predictive methods for the SHS 80x80x3 made 

of 1.4003. 

 

 

5.4.4 Comparison of the model with recent predictive methods 

 

 

Following figures (Figure 5.62 -Figure 5.70) display a comparison of the recent 

predictive methods for corner and flat faces strength enhancement described in Chapter 

3 – section 3.3 and the Maple model using experimental results gathered at CTU (see 

Chapter 4 – section 4.2 and 4.3). The first one (Figure 5.62) displays dependency of the 

0.2% proof strength increase on the ultimate strength to the 0.2% proof strength ratio. 

Four values represent four tested grades (1.4404, 1.4003, 1.4162 and 1.4462). The 

nominal section serving for the prediction was set as SHS 100x4 with ri/t = 1.5. 
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Figure 5.62 Proof strength increase depending on the ratio between 

the 0.2% proof and ultimate strength for the tested grades. 

 

Most of the predictive formulas assume the effect of increasing strength enhancement 

joined to the increasing 0.2% proof to ultimate strength ratio. The maple model predicts 

similar behaviour except the case of the lean duplex and duplex grade. These grades are 

very close to themselves in their properties and the difference is caused by other 

material parameters and negligible in fact. 

 

Corners 

 

Next figures (Figure 5.63 - Figure 5.66) show comparison of the 0.2% proof strength 

predictive methods for these four tested grades according to the changing ri/t ratio. 

Collected data of the ri/t (see Appendix G) for cold-rolled and press-braked sections 

indicates the sufficient range of the ratio covering the majority of tested sections varies 

from 0.5 to 7. Therefore next figures are related to this range. 

 

In case of the austenitic 1.4404 grade there is good agreement of the proposed model 

with the predictive relationship according to Rossi, Afshan and Gardner [8] with 

average difference of 9% and standard deviation of 4%. As austenitic grades are the 

most common for SHS fabrication the formula provides slightly lower and thus safe 

predictions and confirms results obtained from the Maple model. 
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Figure 5.63 0.2% proof strength increase for a corner depending on 

the inner radius to thickness ratio for the austenitic 1.4404 

grade. 

 

In opposite to the austenitic grade, for other grades the Maple model does not 

sufficiently correspond with predictive relationships. In case of the ri/t effect trend, the 

Maple model exhibits good accordance with the method proposed by Rossi, Afshan and 

Gardner [8]. This similarity occurs both for ferritic and lean duplex and duplex grades.  

 
 

Figure 5.64 0.2% proof strength increase for the corner depending on 

the inner radius to thickness ratio for the ferritic 1.4003 

grade. 
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The comparison of the predictive methods for ferritic grade 1.4003 shows lower 

differences between the Maple model and other formulas in opposite to the Rossi-

Afshan-Gardner model. For lean duplex and duplex grades (1.4162, 1.4462) and 

common ri/t ratios there is higher agreement of the Maple model with results according 

to Rossi-Afshan-Gardner relationship. 

 
 

Figure 5.65 0.2% proof strength increase for the corner depending on 

the inner radius to thickness ratio for the lean duplex 

1.4162 grade. 

 
 

Figure 5.66 Proof strength increase for the corner depending on the 

inner radius to thickness ratio for the duplex 1.4462 

grade. 
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The confrontation indicates the latest predictive Rossi-Afshan-Gardner proposal offer 

appropriate trend of strength increase dependency on ri/t and good accordance for the 

austenitic grade. However for other stainless steel it could be modified. 

 

Flat faces 

 

Next figures (Figure 5.67 - Figure 5.70) depict comparison of the modelled flat face 

0.2% proof strength and results according to the predictive methods (see Chapter 3 – 

section 3.3). Similar to the previous comparison for the corner there is displayed 

dependency of the 0.2% proof strength increase on the varying ratio between the flat 

face radius Rf to thickness - Eq. (5.60). Typically Rf/t varies from 10 to 20. For more 

convenient following figures involve range of Rf/t from 5 to 23. 

 

 

 
 

Figure 5.67 0.2% proof strength increase for the flat face depending 

on the inner radius to thickness ratio for the austenitic 

1.4404 grade. 
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Figure 5.68 0.2% proof strength increase for the flat face depending 

on the inner radius to thickness ratio for the ferritic 

1.4003 grade. 

 

 
 

Figure 5.69 0.2% proof strength increase for the flat face depending 

on the inner radius to thickness ratio for the lean duplex 

1.4162 grade. 
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Figure 5.70 0.2% proof strength increase for the flat face depending 

on the inner radius to thickness ratio for the duplex 1.4462 

grade. 

 

The trend of the 0.2% proof strength dependency on Rf/t is close to the other models 

except the Cruise – Gardner´s which exhibits unlikely high values. The corner model 

and the flat face model exhibit higher strength increase for materials with higher 

ultimate strength to 0.2% proof strength ratio as well as other predictive methods do. 

Evaluation of the model based on the experimental investigations. 

 
Finally the “CS” model is used for further evaluation and comparisons as a conservative 

solution, possibly compensating (in practise) many unknown parameters. 
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5.5 Stress-strain behaviour of SHS 
 

Previously presented results of the full section testing at Imperial College allow 

evaluating the concept for full section curve establishment based on an averaged stress-

strain description. As the Maple model output provides a stress increment for the strain 

increment of 0.0001 it is possible to perform the averaging by weighting as follows: 

 

 σFS=
σF F σC C

 G

  (5.62) 

 

where   

 

σFS denotes stress increment for a full section, 

σF denotes stress increment for a flat face, 

σC denotes stress increment for a corner, 

AG denotes a gross sectional area, 

AF = AG – AC, denotes an area of flat faces, 

AC denotes an area of corners. 

 

Test set-up consisted of 2 tested specimens. Recorded stress-strain curves are compared 

with the modelled stress-strain responses. 

 

In terms of the cold-rolling and its effect on section corners it has recently been 

considered that strength enhancement is possible to assume within the area of corner 

and also beyond this border by the distance of 2t on each side of the corner end due to 

the enhanced strength distributed along the corner area as it was stated above.  

 

However for cold-rolled members the distribution of the increased proof strength is not 

uniform at all according to Cruise´s hardness tests indicating enhanced strength [4] (see 

Figure 5.18). The highest values occur at the junction of a corner area and a flat face. 

From this peak point the enhancement nearly linearly decreases both on the side of 

corner centre and on the side of the flat face. In contrast to press-braked sections this 

effect is probably caused by the last step of fabricating (if the manufacturing involves 

both making a circular tube and subsequent forming into a final shape). Forming into a 

rectangular section induces the largest plastic deformations exactly in this area. Thus the 

stress-strain behaviour could be more complex than the simple engineering idea of 

linear weighting of two separate particular portions by their areas. Nevertheless it is a 

simple solution easy to use. Therefore following figures show a comparison of the test 

data and model results both for assuming the extension of 2t and for assuming only the 

corner area as the area of enhanced corner properties. These curves create border lines 

which the final stress strain curve could be placed in. 
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Figure 5.71 Comparison of the modelled and measured stress-strain 

response for the full section - 1.4509  SHS 30x30x2. 

 

 
 

Figure 5.72 Comparison of the modelled and measured stress-strain 

response for the full section - 1.4509  SHS 40x40x2. 
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Figure 5.73 Comparison of the modelled and measured stress-strain 

response for the full section - 1.4509  SHS 50x50x2. 

 

Figures above show good agreement of the proposed model with the test data. The 

model considering only pure corner matches the test data better with higher agreement 

of the 0.2% proof strength prediction. It also provides safer values for the 0.2% proof 

strength with small difference in comparison with the model of 2t extension. Another 

reason for better fitting of the model is due to thickness reducing within a cold-bending. 

The effect increases with a decreasing bending radius. According to Zhang and Yu [63] 

a reduction of sheet thickness reaches about 5% for the inner radius to thickness ratio 

ri/t = 1. Hence the model assuming only pure corner area is used for further solutions. 
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5.6 Modification of the predictive model 
 

As it was stated above the newest relevant relationship Rossi-Afshan-Gardner [8] for 

the enhanced 0.2% proof strength of corners and flat faces is appropriate for austenitic 

steel whilst for other grades it could be modified. The recent formulas consider a corner 

area with 2t extension beyond the geometrical boundary of a corner. The analytical 

solution described herein shows that a corner area should be assumed as the only pure 

bend. Comparison of the results obtained from tests conducted at CTU with the 

predictive model and the results obtained from the analytical solution compared with 

the predictive model confirmed the correct trend of the design formulas. Nevertheless 

the formula is based on a relation between values of the strain and stress at the 0.2% 

proof strength and ultimate strength. This relationship is suitable for materials with wide 

range of values between the 0.2% proof strength and ultimate strength, such as 

austenitic steel. For other grades it is possible to change the formulas by increasing the 

entire dependency by a correction factor related to the material properties and cover the 

higher 0.2% proof strength. 

 

One of possible adjustment for non-austenitic steel grades is to simply employ ratio 

between the basic material properties σ1.0 and σ0.2. The predictive formula for the 

enhanced 0.2% proof strength of corners or flat faces without any safety factors can be 

set as: 

 

 σc or f,pred = p  c or f 
   (5.63) 

 

where   
 

 p=
σ0.2,mill

 
t,0.2

  
σ1.0,mill

σ0.2,mill
  (5.64) 

 

   = 
ln σ0.2,mill/σu,mill 

ln  t,0.2/ u 
 
σ0.2,mill

σ1.0,mill
  (5.65) 

 

Other essential parameters remain unchanged, see below. 

 

   f,av=   /2 / coiling     /2 / f  (3.82) 

 

   c,av=0.5   /2 / c  (3.83) 

 

  f=
    2 

 
 (3.84)  c=ri  /2 (3.85) 

 

   t,0.2=0.002 σ0.2,mill/E0 (3.88) 

 

  
 u is the corresponding total strain at σu, 

Rcoiling = 450 mm  

 

The modified relationship is compared to the previous one with steel grades 

investigated at CTU (1.4003, 1.4162, 1.4462) to ensure the correctness of the approach. 

As one of recommendations related to this study states the corners should be considered 
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as the only pure bend area it implies the increased influence of flat faces. In terms of 

larger H/t dimension ratio of hollow sections it is important to be more accurate within 

enhanced strength prediction for flat faces than for corners. Following figures and tables 

display comparison between the Maple model and the modified and unchanged Rossi-

Afshan-Gardner model related to the corner ri/t ratio (minimal and maximal common 

ratios - ri/t = 0.5, ri/t = 2.0 respectively) and the dimension H/t ratio describing the 

effect for flat faces. Resulting full section strength increase is based on weighting 

according to Eq. (5.67). Comparison of the full section 0.2% proof strength evaluating 

by weighting of the stress-strain curves with weighting of the 0.2% proof strength for 

corners and flat faces shows that the difference of these two methods is negligible. 

Table below shows differences of the methods for the austenitic grade 1.4404 

investigated at CTU with boundary limits for ri/t and H/t ratios. Austenitic steel seems 

to be the best example for comparing due to the significant progress between the 0.2% 

proof strength and the ultimate strength as well as between the corresponding strains. 

 

H (mm) L (mm) t (mm) ri (mm) ri/t H/t 
prediction 

difference (%) 

68.0 68.0 4.0 2.00 0.50 17.00 0.42 

140.0 140.0 4.0 2.00 0.50 35.00 0.73 

68.0 68.0 4.0 8.00 2.00 17.00 5.28 

140.0 140.0 4.0 8.00 2.00 35.00 3.38 

       

Table 5.4 Comparison of the weighting methods for the 0.2% proof 

strength determination. 

 

 
Figure 5.74 Comparison of the predictive models for a corner of 

1.4003. 
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  R-A-G 
MODIFIED 

R-A-G 

MAPLE 

MODEL 

R-A-G 

/MAPLE 

M. R-A-G 

/MAPLE 

ri/t 
σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa)   

0.5 520.5 547.5 578.9 0.90 0.95 

1.0 499.4 527.1 568.9 0.88 0.93 

1.5 485.1 513.3 562.9 0.86 0.91 

2.0 474.4 502.8 556.1 0.85 0.90 

2.5 465.8 494.5 545.0 0.85 0.91 

3.0 458.8 487.7 538.0 0.85 0.91 

3.5 452.8 481.8 526.7 0.86 0.91 

4.0 447.6 476.8 520.1 0.86 0.92 

4.5 443.1 472.4 513.0 0.86 0.92 

5.0 439.0 468.4 502.4 0.87 0.93 

5.5 435.4 464.8 496.1 0.88 0.94 

6.0 432.1 461.6 486.8 0.89 0.95 

6.5 429.1 458.7 481.3 0.89 0.95 

7.0 426.3 455.9 476.9 0.89 0.96 

   

MEAN 0.87 0.93 

      SD 0.02 0.02 

      

Table 5.5 Comparison of the corner 0.2% proof strength for the 

ferritic 1.4003 grade. 

 

 
 

Figure 5.75 Comparison of the predictive models for flat faces of 

1.4003.  
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ri/t = 0.5; t = 4 mm   MODIFIED R-A-G   MAPLE MODEL 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

M. R-A-G 

/MAPLE 

8.9 476.5 100.5 376.0 547.5 504.7 513.7 502.8 1.00 

11.4 636.5 100.5 536.0 547.5 492.8 501.4 479.6 1.03 

13.9 796.5 100.5 696.0 547.5 483.8 491.9 462.3 1.05 

16.4 956.5 100.5 856.0 547.5 476.8 484.2 452.4 1.05 

18.9 1116.5 100.5 1016.0 547.5 471.0 477.9 441.6 1.07 

21.4 1276.5 100.5 1176.0 547.5 466.1 472.5 435.8 1.07 

23.9 1436.5 100.5 1336.0 547.5 461.9 467.9 431.0 1.07 

26.4 1596.5 100.5 1496.0 547.5 458.3 463.9 424.1 1.08 

28.9 1756.5 100.5 1656.0 547.5 455.1 460.4 421.2 1.08 

31.4 1916.5 100.5 1816.0 547.5 452.3 457.3 418.3 1.08 

33.9 2076.5 100.5 1976.0 547.5 449.7 454.4 415.9 1.08 

36.4 2236.5 100.5 2136.0 547.5 447.4 451.9 413.8 1.08 

38.9 2396.5 100.5 2296.0 547.5 445.3 449.6 411.8 1.08 

41.4 2556.5 100.5 2456.0 547.5 443.4 447.5 408.0 1.09 

      

MEAN 

 

1.07 

      

SD 

 

0.02 

         

Table 5.6 Comparison of the flat face 0.2% proof strength for the 

ferritic 1.4003 grade with ri/t = 0.5 according to the 

modified R-A-G relationship. 

 

ri/t = 0.5; t = 4 mm     R-A-G     MAPLE MODEL 
FULL 

SECTION 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

R-A-G 

/MAPLE 

M. R-A-G 

/R-A-G 

8.9 476.5 356.5 120.0 520.5 476.3 509.3 502.8 0.95 1.01 

11.4 636.5 356.5 280.0 520.5 464.0 495.6 479.6 0.97 1.01 

13.9 796.5 356.5 440.0 520.5 454.8 484.2 462.3 0.98 1.02 

16.4 956.5 356.5 600.0 520.5 447.6 474.7 452.4 0.99 1.02 

18.9 1116.5 356.5 760.0 520.5 441.7 466.8 441.6 1.00 1.02 

21.4 1276.5 356.5 920.0 520.5 436.7 460.1 435.8 1.00 1.03 

23.9 1436.5 356.5 1080.0 520.5 432.4 454.3 431.0 1.00 1.03 

26.4 1596.5 356.5 1240.0 520.5 428.7 449.2 424.1 1.01 1.03 

28.9 1756.5 356.5 1400.0 520.5 425.4 444.7 421.2 1.01 1.04 

31.4 1916.5 356.5 1560.0 520.5 422.5 440.7 418.3 1.01 1.04 

33.9 2076.5 356.5 1720.0 520.5 419.9 437.2 415.9 1.01 1.04 

36.4 2236.5 356.5 1880.0 520.5 417.6 434.0 413.8 1.01 1.04 

38.9 2396.5 356.5 2040.0 520.5 415.4 431.1 411.8 1.01 1.04 

41.4 2556.5 356.5 2200.0 520.5 413.5 428.4 408.0 1.01 1.04 

      

MEAN 

 

1.00 1.03 

      

SD 

 

0.02 0.01 

          

Table 5.7 Comparison of the flat face 0.2% proof strength for the 

ferritic 1.4003 grade with ri/t = 0.5 and the ratio between 

predictive strength for a full section according to the 

modified and unchanged R-A-G relationship. 
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In terms of the ferritic grade, the formula gives relatively low enhancement for corners. 

However it is suggested to be more conservative due to the limited ductility of ferritic 

grades. In case of flat faces the curve should by located under the “RS” Maple model 

representing the reverse bending of a face from a circular hollow section to a flat 

portion at least. In some comparison the curve is above, nevertheless for the most 

common ratios of H/t the differences are negligible. In the tables for flat faces there are 

stated values obtained by the “CS” model although the direct relation to which of model 

(“CS” or “RS”) is correct was not proved. Therefore slightly higher values might not be 

important difficulty. Undoubtedly the “CS” model is more conservative. The ratio 

comparing the full section strength according to the modified and unchanged model 

shows mean increase of only 3% for ri/t =0.5, 5% for ri/t =2.0 respectively.  

 

 

ri/t = 2; t = 4 mm   MODIFIED R-A-G   

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

8.9 435.3 251.3 184.0 502.8 504.7 503.6 

11.4 595.3 251.3 344.0 502.8 492.8 497.0 

13.9 755.3 251.3 504.0 502.8 483.8 490.2 

16.4 915.3 251.3 664.0 502.8 476.8 483.9 

18.9 1075.3 251.3 824.0 502.8 471.0 478.4 

21.4 1235.3 251.3 984.0 502.8 466.1 473.6 

23.9 1395.3 251.3 1144.0 502.8 461.9 469.3 

26.4 1555.3 251.3 1304.0 502.8 458.3 465.5 

28.9 1715.3 251.3 1464.0 502.8 455.1 462.1 

31.4 1875.3 251.3 1624.0 502.8 452.3 459.0 

33.9 2035.3 251.3 1784.0 502.8 449.7 456.3 

36.4 2195.3 251.3 1944.0 502.8 447.4 453.7 

38.9 2355.3 251.3 2104.0 502.8 445.3 451.4 

41.4 2515.3 251.3 2264.0 502.8 443.4 449.3 

       

Table 5.8 Predictive 0.2% proof strength for the ferritic 1.4003 

grade with ri/t = 2.0 according to the modified R-A-G 

relationship. 
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ri/t = 2; t = 4 mm     R-A-G     
FULL 

SECTION 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

M. R-A-G 

/R-A-G 

8.9 435.3 435.3 0.0 474.4 476.3 474.4 1.06 

11.4 595.3 507.3 88.0 474.4 464.0 472.8 1.05 

13.9 755.3 507.3 248.0 474.4 454.8 467.9 1.05 

16.4 915.3 507.3 408.0 474.4 447.6 462.4 1.05 

18.9 1075.3 507.3 568.0 474.4 441.7 457.1 1.05 

21.4 1235.3 507.3 728.0 474.4 436.7 452.1 1.05 

23.9 1395.3 507.3 888.0 474.4 432.4 447.7 1.05 

26.4 1555.3 507.3 1048.0 474.4 428.7 443.6 1.05 

28.9 1715.3 507.3 1208.0 474.4 425.4 439.9 1.05 

31.4 1875.3 507.3 1368.0 474.4 422.5 436.6 1.05 

33.9 2035.3 507.3 1528.0 474.4 419.9 433.5 1.05 

36.4 2195.3 507.3 1688.0 474.4 417.6 430.7 1.05 

38.9 2355.3 507.3 1848.0 474.4 415.4 428.1 1.05 

41.4 2515.3 507.3 2008.0 474.4 413.5 425.8 1.06 

      

MEAN 1.05 

      

SD 0.00 

        

Table 5.9 0.2% proof strength for the ferritic 1.4003 grade with ri/t 

= 2.0 and the ratio between predictive strength for a full 

section according to the modified and unchanged R-A-G 

relationship. 

 

 
Figure 5.76 Comparison of the predictive models for a corner of 

1.4162.  
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  R-A-G 
MODIFIED 

R-A-G 

MAPLE 

MODEL 

R-A-G 

/MAPLE 

M. R-A-G 

/MAPLE 

ri/t 
σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa) 
    

0.5 648.5 717.9 742.6 0.87 0.97 

1.0 638.4 708.0 739.0 0.86 0.96 

1.5 631.4 701.0 729.8 0.87 0.96 

2.0 626.0 695.8 726.0 0.86 0.96 

2.5 621.7 691.5 721.5 0.86 0.96 

3.0 618.2 688.0 712.1 0.87 0.97 

3.5 615.1 685.0 707.9 0.87 0.97 

4.0 612.5 682.4 704.2 0.87 0.97 

4.5 610.1 680.0 700.6 0.87 0.97 

5.0 608.0 678.0 691.6 0.88 0.98 

5.5 606.1 676.1 688.3 0.88 0.98 

6.0 604.4 674.4 685.3 0.88 0.98 

6.5 602.8 672.8 682.7 0.88 0.99 

7.0 601.4 671.4 675.0 0.89 0.99 

   

MEAN 0.87 0.97 

   

SD 0.01 0.01 

      

Table 5.10 Comparison of the corner 0.2% proof strength for the lean 

duplex 1.4162 grade. 

 

 
 

Figure 5.77 Comparison of the predictive models for flat faces of 

1.4162.  
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ri/t = 0.5; t = 4 mm   MODIFIED R-A-G   MAPLE MODEL 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

M. R-A-G 

/MAPLE 

8.9 476.5 100.5 376.0 717.9 696.7 701.2 691.8 1.01 

11.4 636.5 100.5 536.0 717.9 690.6 694.9 681.8 1.01 

13.9 796.5 100.5 696.0 717.9 686.0 690.0 670.6 1.02 

16.4 956.5 100.5 856.0 717.9 682.3 686.1 666.4 1.02 

18.9 1116.5 100.5 1016.0 717.9 679.3 682.8 663.4 1.02 

21.4 1276.5 100.5 1176.0 717.9 676.8 680.0 661.1 1.02 

23.9 1436.5 100.5 1336.0 717.9 674.6 677.6 655.2 1.03 

26.4 1596.5 100.5 1496.0 717.9 672.6 675.5 653.8 1.03 

28.9 1756.5 100.5 1656.0 717.9 670.9 673.6 651.8 1.03 

31.4 1916.5 100.5 1816.0 717.9 669.4 672.0 650.4 1.03 

33.9 2076.5 100.5 1976.0 717.9 668.1 670.5 649.5 1.03 

36.4 2236.5 100.5 2136.0 717.9 666.9 669.1 649.1 1.03 

38.9 2396.5 100.5 2296.0 717.9 665.7 667.9 648.6 1.03 

41.4 2556.5 100.5 2456.0 717.9 664.7 666.8 648.6 1.02 

      

MEAN 

 

1.02 

      

SD 

 

0.01 

         

 Table 5.11 Comparison of the flat face 0.2% proof strength for the 

lean duplex 1.4162 grade with ri/t = 0.5 according to the 

modified R-A-G relationship. 

 

ri/t = 0.5; t = 4 mm     R-A-G     MAPLE MODEL 
FULL 

SECTION 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

R-A-G 

/MAPLE 

M. R-A-G 

/R-A-G 

8.9 476.5 356.5 120.0 648.5 627.0 643.1 691.8 0.91 1.09 

11.4 636.5 356.5 280.0 648.5 620.8 636.4 681.8 0.91 1.09 

13.9 796.5 356.5 440.0 648.5 616.2 630.7 670.6 0.92 1.09 

16.4 956.5 356.5 600.0 648.5 612.5 625.9 666.4 0.92 1.10 

18.9 1116.5 356.5 760.0 648.5 609.4 621.9 663.4 0.92 1.10 

21.4 1276.5 356.5 920.0 648.5 606.8 618.5 661.1 0.92 1.10 

23.9 1436.5 356.5 1080.0 648.5 604.6 615.5 655.2 0.92 1.10 

26.4 1596.5 356.5 1240.0 648.5 602.7 612.9 653.8 0.92 1.10 

28.9 1756.5 356.5 1400.0 648.5 600.9 610.6 651.8 0.92 1.10 

31.4 1916.5 356.5 1560.0 648.5 599.4 608.6 650.4 0.92 1.10 

33.9 2076.5 356.5 1720.0 648.5 598.0 606.7 649.5 0.92 1.11 

36.4 2236.5 356.5 1880.0 648.5 596.8 605.1 649.1 0.92 1.11 

38.9 2396.5 356.5 2040.0 648.5 595.7 603.5 648.6 0.92 1.11 

41.4 2556.5 356.5 2200.0 648.5 594.6 602.2 648.6 0.92 1.11 

      

MEAN 

 

0.92 1.10 

      

SD 

 

0.00 0.01 

          

 Table 5.12 Comparison of the flat face 0.2% proof strength for the 

lean duplex 1.4162 grade with ri/t = 0.5 and the ratio 

between the predictive strength for a full section 

according to modified and unchanged R-A-G relationship. 
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The modified R-A-G relationship is closer to the modelled properties and gives higher 

values of the 0.2% proof strength for a full section by approximately 10%. Despite the 

decrease of corner areas the new formula gives higher enhanced strength. 

 

 

ri/t = 2; t = 4 mm   MODIFIED R-A-G   

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

8.9 435.3 251.3 184.0 695.8 696.7 696.2 

11.4 595.3 251.3 344.0 695.8 690.6 692.8 

13.9 755.3 251.3 504.0 695.8 686.0 689.3 

16.4 915.3 251.3 664.0 695.8 682.3 686.0 

18.9 1075.3 251.3 824.0 695.8 679.3 683.2 

21.4 1235.3 251.3 984.0 695.8 676.8 680.6 

23.9 1395.3 251.3 1144.0 695.8 674.6 678.4 

26.4 1555.3 251.3 1304.0 695.8 672.6 676.4 

28.9 1715.3 251.3 1464.0 695.8 670.9 674.6 

31.4 1875.3 251.3 1624.0 695.8 669.4 673.0 

33.9 2035.3 251.3 1784.0 695.8 668.1 671.5 

36.4 2195.3 251.3 1944.0 695.8 666.9 670.2 

38.9 2355.3 251.3 2104.0 695.8 665.7 668.9 

41.4 2515.3 251.3 2264.0 695.8 664.7 667.8 

       

Table 5.13 Predictive 0.2% proof strength for the lean duplex 1.4162 

grade with ri/t = 2.0 according to the modified R-A-G 

relationship. 
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ri/t = 2; t = 4 mm     R-A-G     
FULL 

SECTION 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

M. R-A-G 

/R-A-G 

8.9 435.3 435.3 0.0 626.0 627.0 626.0 1.11 

11.4 595.3 507.3 88.0 626.0 620.8 625.3 1.11 

13.9 755.3 507.3 248.0 626.0 616.2 622.8 1.11 

16.4 915.3 507.3 408.0 626.0 612.5 620.0 1.11 

18.9 1075.3 507.3 568.0 626.0 609.4 617.2 1.11 

21.4 1235.3 507.3 728.0 626.0 606.8 614.7 1.11 

23.9 1395.3 507.3 888.0 626.0 604.6 612.4 1.11 

26.4 1555.3 507.3 1048.0 626.0 602.7 610.3 1.11 

28.9 1715.3 507.3 1208.0 626.0 600.9 608.4 1.11 

31.4 1875.3 507.3 1368.0 626.0 599.4 606.6 1.11 

33.9 2035.3 507.3 1528.0 626.0 598.0 605.0 1.11 

36.4 2195.3 507.3 1688.0 626.0 596.8 603.6 1.11 

38.9 2355.3 507.3 1848.0 626.0 595.7 602.2 1.11 

41.4 2515.3 507.3 2008.0 626.0 594.6 601.0 1.11 

      

MEAN 1.11 

      

SD 0.00 

        

Table 5.14 0.2% proof strength for the lean duplex 1.4162 grade with 

ri/t = 2.0 and the ratio between the predictive strength for 

a full section according to modified and unchanged R-A-G 

relationship. 

 

 
 

Figure 5.78 Comparison of the predictive models for a corner of 

1.4462.  
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  R-A-G 
MODIFIED 

R-A-G 

MAPLE 

MODEL 

R-A-G 

/MAPLE 

M. R-A-G 

/MAPLE 

ri/t 
σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa) 

σ0.2,c,pred 

(MPa) 
    

0.5 719.3 799.2 859.4 0.84 0.93 

1.0 708.5 788.5 855.2 0.83 0.92 

1.5 701.0 781.1 844.4 0.83 0.93 

2.0 695.2 775.5 840.1 0.83 0.92 

2.5 690.6 770.9 834.1 0.83 0.92 

3.0 686.8 767.2 823.3 0.83 0.93 

3.5 683.6 764.0 817.8 0.84 0.93 

4.0 680.7 761.1 806.7 0.84 0.94 

4.5 678.2 758.7 801.9 0.85 0.95 

5.0 676.0 756.5 796.7 0.85 0.95 

5.5 674.0 754.5 786.4 0.86 0.96 

6.0 672.1 752.6 782.2 0.86 0.96 

6.5 670.5 751.0 777.9 0.86 0.97 

7.0 668.9 749.4 774.2 0.86 0.97 

   

MEAN 0.84 0.94 

   

SD 0.02 0.02 

      

Table 5.15 Comparison of the corner 0.2% proof strength for the 

duplex 1.4462 grade. 

 

 
Figure 5.79 Comparison of the predictive models for flat faces of 

1.4462.  
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ri/t = 0.5; t = 4 mm   MODIFIED R-A-G     MAPLE MODEL 

H/t Ag (mm
2
) Ac (mm

2
) Af (mm

2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

M. R-A-G 

/MAPLE 

8.9 476.5 100.5 376.0 799.2 776.5 781.3 798.2 0.97 

11.4 636.5 100.5 536.0 799.2 770.0 774.6 776.9 0.99 

13.9 796.5 100.5 696.0 799.2 765.1 769.4 761.6 1.00 

16.4 956.5 100.5 856.0 799.2 761.1 765.1 755.1 1.01 

18.9 1116.5 100.5 1016.0 799.2 757.9 761.6 745.6 1.02 

21.4 1276.5 100.5 1176.0 799.2 755.2 758.6 742.1 1.02 

23.9 1436.5 100.5 1336.0 799.2 752.8 756.1 739.4 1.02 

26.4 1596.5 100.5 1496.0 799.2 750.8 753.8 736.9 1.02 

28.9 1756.5 100.5 1656.0 799.2 749.0 751.8 735.1 1.02 

31.4 1916.5 100.5 1816.0 799.2 747.4 750.1 733.6 1.02 

33.9 2076.5 100.5 1976.0 799.2 745.9 748.5 732.5 1.02 

36.4 2236.5 100.5 2136.0 799.2 744.6 747.0 727.4 1.02 

38.9 2396.5 100.5 2296.0 799.2 743.4 745.7 727.0 1.02 

41.4 2556.5 100.5 2456.0 799.2 742.3 744.5 726.7 1.02 

      

MEAN 

 

1.01 

      

SD 

 

0.01 

         

Table 5.16 Comparison of the flat face 0.2% proof strength for the 

duplex 1.4462 grade with ri/t = 0.5 according to the 

modified R-A-G relationship. 

 

ri/t = 0.5; t = 4 mm     R-A-G     MAPLE MODEL 
FULL 

SECTION 

H/t Ag (mm
2
) 

Ac 

(mm
2
) 

Af 

(mm
2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

R-A-G 

/MAPLE 

M. R-A-G 

/R-A-G 

8.9 476.5 356.5 120.0 719.3 696.3 713.5 798.2 0.87 1.10 

11.4 636.5 356.5 280.0 719.3 689.7 706.3 776.9 0.89 1.10 

13.9 796.5 356.5 440.0 719.3 684.7 700.2 761.6 0.90 1.10 

16.4 956.5 356.5 600.0 719.3 680.7 695.1 755.1 0.90 1.10 

18.9 1116.5 356.5 760.0 719.3 677.4 690.8 745.6 0.91 1.10 

21.4 1276.5 356.5 920.0 719.3 674.7 687.1 742.1 0.91 1.10 

23.9 1436.5 356.5 1080.0 719.3 672.3 684.0 739.4 0.91 1.11 

26.4 1596.5 356.5 1240.0 719.3 670.3 681.2 736.9 0.91 1.11 

28.9 1756.5 356.5 1400.0 719.3 668.4 678.8 735.1 0.91 1.11 

31.4 1916.5 356.5 1560.0 719.3 666.8 676.6 733.6 0.91 1.11 

33.9 2076.5 356.5 1720.0 719.3 665.3 674.6 732.5 0.91 1.11 

36.4 2236.5 356.5 1880.0 719.3 664.0 672.8 727.4 0.91 1.11 

38.9 2396.5 356.5 2040.0 719.3 662.8 671.2 727.0 0.91 1.11 

41.4 2556.5 356.5 2200.0 719.3 661.7 669.7 726.7 0.91 1.11 

      

MEAN 

 

0.90 1.10 

      

SD 

 

0.01 0.01 

           Table 5.17 Comparison of the flat face 0.2% proof strength for the 

duplex 1.4462 grade with ri/t = 0.5 and the ratio between 

the predictive strength for a full section according to the 

modified and unchanged R-A-G relationship. 
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As well as for the lean duplex grade (also for the duplex grade), the modified R-A-G 

relationship is closer to the modelled properties and gives higher values of the 0.2% 

proof strength for a full section by approximately 10%.  

 

ri/t = 2; t = 4 mm   MODIFIED R-A-G     

H/t Ag (mm
2
) Ac (mm

2
) Af (mm

2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

8.9 435.3 251.3 184.0 775.5 776.5 775.9 

11.4 595.3 251.3 344.0 775.5 770.0 772.3 

13.9 755.3 251.3 504.0 775.5 765.1 768.5 

16.4 915.3 251.3 664.0 775.5 761.1 765.1 

18.9 1075.3 251.3 824.0 775.5 757.9 762.0 

21.4 1235.3 251.3 984.0 775.5 755.2 759.3 

23.9 1395.3 251.3 1144.0 775.5 752.8 756.9 

26.4 1555.3 251.3 1304.0 775.5 750.8 754.8 

28.9 1715.3 251.3 1464.0 775.5 749.0 752.9 

31.4 1875.3 251.3 1624.0 775.5 747.4 751.1 

33.9 2035.3 251.3 1784.0 775.5 745.9 749.6 

36.4 2195.3 251.3 1944.0 775.5 744.6 748.1 

38.9 2355.3 251.3 2104.0 775.5 743.4 746.8 

41.4 2515.3 251.3 2264.0 775.5 742.3 745.6 

       

Table 5.18 Predictive 0.2% proof strength for the duplex 1.4462 

grade with ri/t = 2.0 according to the modified R-A-G 

relationship. 
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ri/t = 2; t = 4 mm     R-A-G     
FULL 

SECTION 

H/t Ag (mm
2
) Ac (mm

2
) Af (mm

2
) 

σ0.2,c,pred 

(MPa) 

σ0.2,f,pred 

(MPa) 

σ0.2,full,pred 

(MPa) 

M. R-A-G 

/R-A-G 

8.9 435.3 435.3 0.0 695.2 696.3 695.2 1.12 

11.4 595.3 507.3 88.0 695.2 689.7 694.4 1.11 

13.9 755.3 507.3 248.0 695.2 684.7 691.8 1.11 

16.4 915.3 507.3 408.0 695.2 680.7 688.8 1.11 

18.9 1075.3 507.3 568.0 695.2 677.4 685.8 1.11 

21.4 1235.3 507.3 728.0 695.2 674.7 683.1 1.11 

23.9 1395.3 507.3 888.0 695.2 672.3 680.7 1.11 

26.4 1555.3 507.3 1048.0 695.2 670.3 678.4 1.11 

28.9 1715.3 507.3 1208.0 695.2 668.4 676.4 1.11 

31.4 1875.3 507.3 1368.0 695.2 666.8 674.5 1.11 

33.9 2035.3 507.3 1528.0 695.2 665.3 672.8 1.11 

36.4 2195.3 507.3 1688.0 695.2 664.0 671.2 1.11 

38.9 2355.3 507.3 1848.0 695.2 662.8 669.8 1.12 

41.4 2515.3 507.3 2008.0 695.2 661.7 668.5 1.12 

      

MEAN 1.11 

      

SD 0.00 

        

Table 5.19 0.2% proof strength for the duplex 1.4462 grade with ri/t 

= 2.0 and the ratio between the predictive strength for a 

full section according to the modified and unchanged R-A-

G relationship – follow up. 

 

Modified formulas for the 0.2% proof strength enhancement stated above give a 

prediction of final mechanical properties by increase up to 11%. Despite the lower 

corner area considered it results in increase for all non-austenitic grades. Standard 

deviation is low and does not significantly differ from the unchanged relationship due to 

the close shape of the mathematical expression. Due to the assumption of the only pure 

bend area representing enhanced corner properties the resulting 0.2% proof strength for 

a full section of austenitic is lower than in case of the unchanged R-A-G expression. 

Particularly for the investigated 1.4404 grade, the maximal difference (assuming ri/t = 

0.5 or 2.0) is only 3% due to the significant influence of flat faces. That means there is 

no important decrease of overall enhancement for a member by using the reduced 

corner area. 
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5.7 Ductility of a full section 
 

Uniaxial test results in Chapter 3 indicate simple dependency of ductility decrease on 

plastic strain induced during the cold-forming. Plastic strain evaluating for a flat face 

and a corner according to the previous Maple modelling allows establishing overall 

ductility decrease for a whole section by averaging values of all layers. Ductility of a 

full section  full can be given by weighting as: 

 

  full=  v   s  (5.66) 

 

where   v is ductility of a virgin material, 

 s is average plastic strain induced within fabricating given 

by: 

   s=
 c F  f C

 G

  (5.67) 

where   c is a mean value of plastic strain for a corner, 

 f is a mean value of plastic strain for a flat part. 

 

As the simplest way for assuming of plastic strain distribution is the linear one. The 

mean value of plastic strain for a corner can be determined by thickness t and inner 

radius ri as: 

  c= 0.5  
 /2

ri  /2
   (5.68) 

 

Figure 5.80 shows that for common geometric properties of cold-rolled section corners, 

the decrease can reach 10% at least. 

 

 
 

Figure 5.80 Mean ductility decrease for corners depending on the ri/t 

ratio. 

 

Similarly for a flat face there can be established a mean value of plastic strain regarding 

the influence of coiling-uncoiling process with making a circular tube and reverse 

bending into a flat face as: 

 

0% 

5% 

10% 

15% 

20% 

25% 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 

d
u

c
ti
lit

y
 d

e
c
re

a
s
e

 f
o

r 
c
o

rn
e

rs
 

ri/t 



Chapter 5: Analytical part 

   

155 

  f=  
  2

 coiling

   
 /2

  L 2 
 

  with Rcoiling = 450 mm  (5.69) 

 

For flat faces the ratio Rf/t = (H+L-2t)/( t) typically varies between values of 10 and 20. 

In terms of the H/t ratio (if H=L) the range of typical values is from 17 to 35.  

 

Figure 5.81 displays that typical decrease for flat faces lies between 3% or 6%. It is 

evident that the higher B/t ratio is, the lower decrease of ductility of a full section will 

occur not because of only the lower ductility decrease in flat faces but also due to the 

higher influence of the flat faces areas. Figure 5.82 displays the decrease of ductility for 

a full section depending on the B/t ratio with minimal and maximal common ri/t ratios 

(namely - ri/t = 0.5, ri/t = 2.0 respectively). It shows the total ductility decrease for full 

sections varies between 3% and 11%. That can importantly affect material demands for 

structural members, especially for ferrtic grades (ductility decrease is slightly higher 

than for others). For austenitic and duplex grades (including lean duplex) the decrease 

might be not important in case of minimal required ductility, because the ductility of a 

virgin material usually exceeds 30%.  

 

 
 

Figure 5.81 Mean ductility decrease for flat faces depending on the H/t 

ratio. 
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Figure 5.82 Mean ductility decrease for a full section depending on the 

H/t ratio. 

 

As plastic strain across the thickness is not uniform and also not the same for a corner 

and a flat face it should be noted that the real ductility of a section is probably slightly 

lower than  full. Nevertheless  full can serve as an upper limit for the ductility 

determining. Figure 5.83 displays a recorded stress-strain response for the full section 

made of the ferritic steel 1.4509. Despite unknown ductility of the virgin material it 

could be assumed it was higher than the measured value about only 6% that represents 

very low level of ductility. Similar cases can be problematic in terms of plastic design 

and should be carefully considered in specific structural applications according to 

particular conditions.   

 

 
   

Figure 5.83 Recorded stress-strain curve for two full section specimens 

of the 1.4509 SHS 30x30x2 measured at Imperial College 

[47]. 
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5.8 Stress-strain response of cold-formed sections 
 

Results of the experimental programme stated in Chapter 3 indicate the Ramberg-

Osgood parameter of non-linearity n decreases with increasing plastic strain induced 

within the cold-working. Plastic straining develops changes in microstructure of an 

original material that cause different stress-strain behaviour of a newly made material. 

As the Maple model considers the thickness divided into several layers, layers near to 

the surfaces exhibit more rounded stress-strain response up to the increased 0.2% proof 

strength than the layers near to the central core.  Within the summation of contribution 

of each layer the final state represents an average value of the nonlinearity parameter n 

arisen from stress-strain diagrams different across the thickness of the investigated parts 

of sections. The principle is depicted in Figure 5.84. The stress-strain curve for the layer 

nearer to the central core and neutral surface with lower level of plastic strain induced 

exhibits a less rounded loading response and lower 0.2% proof strength than the layer, 

nearer to the surface with larger plastic strain induced exhibiting a more rounded 

loading response and also higher 0.2% proof strength. The resulting stress strain 

diagram arisen from summation of these curves mainly lies within the area defined by 

these responses with intermediate values of the 0.2% proof strength and parameter of 

nonlinearity. In case of cold-rolled sections it means the final stress-strain curve should 

be more rounded due to the significant level of plastic strain induction during the 

fabrication process. The lower parameter of nonlinearity affects especially calculation 

of deflections that would be higher in contrast to the calculation with the nonlinearity 

parameter of the virgin material. In addition, it could affect also the buckling resistance 

of structural members due to the reduced tangential modulus.  
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Figure 5.84 Stress-strain curves demonstrating different layers across 

the thickness according to their location related to the 

neutral surface. Lower figure displays a detail of the 

upper figure. 

 

Following figures display change of nonlinearity parameter n related to the original 

parameter of nonlinearity n both for flat faces (ni/n) and corners (nc/n) by means of 

results of stainless steel grades investigated at CTU (their trends describing n according 

to the increasing level of plastic strain induction). 
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Figure 5.85 Parameter of nonlinearity n depending on the inner radius 

to thickness ratio for corners. 

 

Figure 5.85 shows that except the lean duplex 1.4162 grade there is no change of the 

nonlinearity depending on the ri/t ratio. However, in case of the 1.4162 grade the 

dependency is negligible. For all corners the new material nonlinearity is reduced by a 

different rate and remains constant. It is given by high level of plastic straining which 

the constant reduced nonlinearity is defined for (see section 5.3). The lowest values 

reach only 55% of original ones and the highest values reach 75% of original values that 

means significant decrease. 

 

As the influence on the corner material remains constant, the most important effect for 

section material nonlinearity is generated by the influence on flat faces. Figure below 

displays almost linearly increasing dependency of the parameter n on the outer 

dimension to thickness ratio for all grades. Even, except the lean duplex steel, the slope 

of the curves is almost the same. 

 

 
 

Figure 5.86 Parameter of nonlinearity n depending on the H/t ratio for 

flat faces 

. 

As for the ductility it is possible to determine a new parameter of nonlinearity for a full 

section by weighting contribution of corners and flat faces by their areas according to 

Eq. (5.67) with negligible difference between this summing and the real stress-strain 
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curve. The resulting parameter of nonlinearity depending on the H/t ratio is displayed in 

Figure 5.87 and Figure 5.88 with common borders for the ratio lying between 17 and 

35. For the lean duplex grade, the decrease in the corner is for most common ri/t ϵ (0.5, 

2.0) almost the same and thus it is not much pronounced. 

 

  

Figure 5.87 Parameter of nonlinearity n related to the property of 

virgin material depending on the H/t ratio for full sections. 

 

 
 

Figure 5.88 Parameter of nonlinearity n depending on H/t ratio for full 

sections 
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duplex steel, following by the austenitic grade. The highest decrease is exhibited by the 

ferritic and lean duplex grades. Most of the investigated cases also show the 

nonlinearity parameter n does not go under value of 4.5 and does not exceed value of 

6.5.  

 

As the data does not involve sufficient values for statistical evaluation, a conservative 

relationship determining the parameter of nonlinearity of cold-formed SHS nc given by 

the lowest curve obtained from the analytical solution depending on the dimension to 

thickness ratio is expressed as: 

 

  c= 0.0035(   ) 0.523  (5.70) 

 

In terms of safety, lower values of nonlinearity parameter result in increased values of 

deflection at the same stress level. That means more safe prediction of deflection within 

structural design. When detailed calculation of members including direct computing of 

stability issues with imperfections is required, the results obtained will provide a 

conservative result. As well as for deflection, the more accurate calculation of n might 

precise results. 

 

As well as for basic parameter of nonlinearity n, global effect for compound Ramber-

Osgood parameter n0.2,1.0 can be shown in Figure 5.89. It could be expected that stress 

and strain will usually not exceed values for the 0.2% proof strength in case of 

structural members made of cold-formed section. Hence the second parameter of non-

linearity is not as important. Its influence would be especially employed in finite 

elements modelling of joints and connections or buckling tasks or when using the 

Continuous Strength method. It is apparent that except the ferritic grade the increase is 

not such important although higher n0.2,1.0 leads to increased strains at higher strain 

ranges. 

  
 

Figure 5.89 Parameter of nonlinearity n0.2,1.0 for full sections 

depending on the H/t ratio. 
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5.9 Determination of ultimate strength 
 

Ultimate stress is one of the essential properties describing a structural element. In 

terms of material demands for structural purposes, the European design code requires 

ultimate stress to yield stress ratio fu/fy (for stainless steel - σu/σ0.2) to be 1.10 at least to 

provide sufficient ability of possible overloading. Full section tests performed at 

Imperial College [47] demonstrate the point of ultimate strength lies close to the “yield” 

point. Another demand requiring the strain at the ultimate stress  u to be higher than 

15x y, the strain at the yield stress (in case of stainless steel  0.2), might not be satisfied. 

Figure 5.90 displays full section tests for the SHS 30x30x2 made of the ferritic grade 

1.4509. Other figures depict square hollow sections of the same material tested along 

with this one. Following figures display stress strain curves for the whole section of 

SHS 40x40x2, SHS 50x50x2 and SHS 30x30x2 again. 

 

 
 

Figure 5.90 Test set-up at Imperial College [47]. 

 

 
 

Figure 5.91 Recorded stress-strain curve for two full section specimens 

of the 1.4509 SHS 30x30x2 measured at Imperial College 

[47]. 
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Figure 5.92 Recorded stress-strain curve for two full section specimens 

of the 1.4509 SHS 40x40x2 measured at Imperial College 

[47]. 

 

 
 

Figure 5.93 Recorded stress-strain curve for two full section specimens 

of the 1.4509 SHS 50x50x2 measured at Imperial College 

[47]. 
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given by the specific ferritic steel grade and also by acting of corners and flat portions 

together that may exhibit this stress-strain response. A part of a section with nearly 

perfect yield plateau is shown in Figure 5.94 displaying the record of a tensile test 

conducted at Imperial College. 

 

 
 

Figure 5.94 Recorded stress-strain curve from a corner tensile test. 

[47] 

 

While full section acts as one unit, each part exhibits different stress-strain behaviour as 

it is depicted in Figure 4.39 and Figure 4.40. The behaviour of corners under loading 

can exhibit decreasing stage after reaching the ultimate strength near the 0.2% proof 

strength, especially for ferritic grades. Such behaviour is caused by engineering form of 

stress and strain expression. In case of true values, the stage after reaching the 0.2% 

proof strength exhibits increasing or at least constant trend. For materials with the more 

“clear” 0.2% proof strength boundary (high values of nonlinearity parameter n) and 

lower ratios of  0.2/ u, resulting behaviour performed by summing particular effects of 

sections portions may be influenced more by corners. It can be expected that for 

sections with larger ratios of H/t and for steel with larger ratios of  u/ 0.2 the ultimate 

strength should be evaluated for higher proof strength than for the 1.0% plastic strain. 

Nevertheless, the 1% proof strength seems to be a safe and conservative estimation. 

Thus where there is lack of information about the material properties, the 1.0% proof 

strength of a full section σ1.0,full can be assumed as very conservative value as 

supplement for the ultimate strength σs,full : 

 

 σs,full = σ1.0,full  (5.71) 

 

A parametric study based on the Maple model performed for stainless steel grades 

investigated at CTU determined both the 0.2% proof strength and the 1.0% proof 

strength for flat faces and corners. Evaluated values are summarized in following tables 

together with the 1.0% proof strength to the 0.2% proof strength ratio.  For each grade, 

the table contains minimal values of the ratios. In case of the corners, there is specified 

a minimum for the range of common inner radii (see Appendix G), i.e. for ri/t   2.0. For 

the flat faces, the minimum is set for the most common range of the H/t ratio lying 
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between 17 and 35. The corner and flat face values are used for further specification of 

the full section strength as representatives. 

 
ri/t σ0.2,c 

(MPa) 

σ1.0,c 

(MPa) 

σ1.0,c/σ0.2,c  H/t σ0.2,f 

(MPa) 

σ1.0,f 

(MPa) 

σ1.0,f/σ0.2,f 

0.50 562.91 673.40 1.20   8.85 488.26 572.43 1.17 

1.00 552.98 661.40 1.20   11.09 467.89 545.53 1.17 

1.50 547.31 652.62 1.19   13.33 452.79 526.19 1.16 

2.00 540.52 640.22 1.18   15.56 443.76 512.42 1.15 

2.50 530.12 629.64 1.19   17.80 433.49 501.77 1.16 

3.00 523.63 618.01 1.18   20.04 427.98 493.87 1.15 

3.50 512.43 607.52 1.19   22.28 423.29 487.06 1.15 

4.00 505.78 594.35 1.18   24.51 419.24 481.27 1.15 

4.50 498.55 584.03 1.17   26.75 413.90 477.26 1.15 

5.00 487.74 573.41 1.18   28.99 411.05 473.23 1.15 

5.50 481.13 564.17 1.17   31.23 408.79 469.69 1.15 

6.00 472.38 556.03 1.18   33.46 406.25 466.83 1.15 

6.50 467.06 548.74 1.17   35.70 404.82 464.22 1.15 

7.00 462.55 542.96 1.17   37.94 402.88 461.95 1.15 

MINIMUM FOR ri/t   2  1.18 

 

MINIMUM FOR H/t   35 1.15 

     

Table 5.20 Ratio of the 1.0% proof stress to the 0.2% proof strength 

for the ferritic 1.4003 grade. 

 

 
ri/t σ0.2,c 

(MPa) 

σ1.0,c 

(MPa) 

σ1.0,c/σ0.2,c  H/t σ0.2,f 

(MPa) 

σ1.0,f 

(MPa) 

σ1.0,f/σ0.2,f 

0.50 552.27 661.19 1.20   8.85 434.42 517.52 1.19 

1.00 537.16 643.78 1.20   11.09 413.18 491.44 1.19 

1.50 521.08 626.10 1.20   13.33 397.22 472.85 1.19 

2.00 509.45 608.13 1.19   15.56 384.77 459.08 1.19 

2.50 493.07 589.53 1.20   17.80 377.50 448.39 1.19 

3.00 476.62 570.86 1.20   20.04 371.87 440.52 1.18 

3.50 461.75 554.27 1.20   22.28 364.82 434.50 1.19 

4.00 452.44 540.17 1.19   24.51 360.72 428.42 1.19 

4.50 440.50 528.12 1.20   26.75 357.87 424.49 1.19 

5.00 433.54 517.56 1.19   28.99 355.14 420.75 1.18 

5.50 423.78 508.56 1.20   31.23 352.88 417.67 1.18 

6.00 418.35 500.24 1.20   33.46 348.36 414.81 1.19 

6.50 413.59 493.31 1.19   35.70 346.52 412.27 1.19 

7.00 405.77 486.53 1.20   37.94 344.98 409.75 1.19 

MINIMUM FOR ri/t   2 1.19 

 

MINIMUM FOR H/t   35 1.18 

     

Table 5.21 Ratio of the 1.0% proof stress to the 0.2% proof strength 

for the austenitic 1.4404 grade. 
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ri/t σ0.2,c 

(MPa) 

σ1.0,c 

(MPa) 

σ1.0,c/σ0.2,c  H/t σ0.2,f 

(MPa) 

σ1.0,f 

(MPa) 

σ1.0,f/σ0.2,f 

0.50 749.30 966.74 1.29   8.85 691.82 869.05 1.26 

1.00 744.45 954.87 1.28   11.09 681.84 842.47 1.24 

1.50 729.76 934.07 1.28   13.33 670.56 824.12 1.23 

2.00 726.00 925.15 1.27   15.56 666.44 810.63 1.22 

2.50 721.47 915.44 1.27   17.80 663.40 800.84 1.21 

3.00 712.11 906.65 1.27   20.04 661.13 792.47 1.20 

3.50 707.90 897.33 1.27   22.28 655.18 786.66 1.20 

4.00 704.24 888.26 1.26   24.51 653.78 781.43 1.20 

4.50 700.59 879.72 1.26   26.75 651.77 776.29 1.19 

5.00 691.58 870.32 1.26   28.99 650.45 772.60 1.19 

5.50 688.29 862.21 1.25   31.23 649.49 769.35 1.18 

6.00 685.32 853.99 1.25   33.46 649.11 766.97 1.18 

6.50 682.65 847.20 1.24   35.70 648.61 764.59 1.18 

7.00 674.99 841.06 1.25   37.94 648.55 762.70 1.18 

MINIMUM FOR ri/t   2  1.27 

 

MINIMUM FOR H/t   35 1.18 

     

Table 5.22 Ratio of the 1.0% proof stress to the 0.2% proof strength 

for the lean duplex 1.4162 grade. 

 

 
ri/t σ0.2,c 

(MPa) 

σ1.0,c 

(MPa) 

σ1.0,c/σ0.2,c  H/t σ0.2,f 

(MPa) 

σ1.0,f 

(MPa) 

σ1.0,f/σ0.2,f 

0.50 876.54 1050.90 1.20   8.85 798.21 950.39 1.19 

1.00 864.06 1039.18 1.20   11.09 776.85 919.66 1.18 

1.50 844.43 1014.79 1.20   13.33 761.64 898.69 1.18 

2.00 840.09 1007.81 1.20   15.56 755.06 884.01 1.17 

2.50 834.15 997.18 1.20   17.80 745.62 873.01 1.17 

3.00 823.29 988.07 1.20   20.04 742.13 864.25 1.16 

3.50 817.83 978.88 1.20   22.28 739.38 857.24 1.16 

4.00 806.73 968.96 1.20   24.51 736.87 850.59 1.15 

4.50 801.86 960.56 1.20   26.75 735.05 845.86 1.15 

5.00 796.69 950.54 1.19   28.99 733.63 841.95 1.15 

5.50 786.43 942.03 1.20   31.23 732.46 838.64 1.14 

6.00 782.17 933.62 1.19   33.46 727.43 835.67 1.15 

6.50 777.91 925.52 1.19   35.70 727.01 832.80 1.15 

7.00 774.21 918.57 1.19   37.94 726.70 830.74 1.14 

MINIMUM FOR ri/t   2 1.20 

 

MINIMUM FOR H/t   35 1.15 

     

Table 5.23 Ratio of the 1.0% proof stress to the 0.2% proof strength 

for the duplex 1.4462 grade. 

 

As for parameter of nonlinearity n it is possible to determine the ratio σ1.0,full/σ0.2,full by 

means of weighting the contribution of the corners and flat faces by their areas 

according to Eq. (5.67) with negligible difference to the real stress-strain response of a 
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full section. Influence of the corner area related to the gross sectional area is plotted in 

Figure 5.95. Corner area mostly represents 5% - 25% of a gross area of a section. 

 

 
 

Figure 5.95 Contribution of the corners related to the gross sectional 

area for the bordering values of the inner radius.  

 

Similarly to the previous establishing of material parameters, the weighting according to 

areas of particular portions enables to plot the overall 1.0% proof strength related to the 

0.2% proof strength of a full section. Figure 5.96 displays all investigated grades 

regarding the H/t ratio. Within summing the corner influence remains constant whilst 

contribution of the flat faces depends both on the H/t ratio and the area of flat faces. 

Plotted values indicate the minimal σ1.0,full/σ0.2,full ratio to be 1.15 and maximum to be 

1.22. The austenitic grade 1.4404 exhibits almost constant trend equal to 1.18. The 

ferritic 1.4003 and duplex 1.4462 grades exhibit slightly decreasing trend with 

negligible differences between the boundary lines (H/t = 17 and 35). The most 

decreasing trend belongs to the lean duplex 1.4162 grade. Because the differences of the 

curves are not much significant it is possible to conservatively estimate the 1.0% proof 

strength of a full section σ1.0,full by the same value for all grades as: 

 

 σ1.0,full = 1.15   σ0.2,full  (5.72) 

 

It should be noted that for austenitic steel it is very conservative estimation with high 

level of safety. For other grades with lower values of ductility and relatively flat stress-

strain curve in a higher strain range it could be an adequate relationship. 

 

Finally cold-formed stainless steel sections fulfil the demand for the structural material 

requiring the σu/σ0.2 ratio to be higher than 1.10 and allow partial overloading of a 

structure. However as it was stated above, for the non-austenitic (especially ferritic) 

grades the conditions for ductility determining or the  u/ 0.2 ratio could be limiting in 

terms of plastic design. Thus within designing of cold-formed hollow sections with 

enhanced strength properties it would be better to use the elastic calculus together with 

the elastic design to avoid this issue. This problem is worth further investigation. 
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Figure 5.96 Overall 1.0% proof strength to the 0.2% strength ratio 

depending on the H/t ratio.  
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Chapter 6 

Conclusions 

6.1 Project summary 
 

The thesis presented herein consists of three main parts. The first describes the material 

as such, routes of fabrication of the particular stainless steel products, mechanical 

properties and the cold-forming effect on the section strength. The most relevant and 

recent research and design approaches are also stated as a base for further comparisons 

and results. The second part is focused on the experimental programme conducted at 

CTU in Prague focused on material tensile testing of four grades of stainless steel 

representing the most common families used for structural members, i.e. austenitic 

(1.4404), ferritic (1.4003), lean duplex (1.4162) and duplex (1.4462). All flat coupons 

and specimens were made of a cold-rolled sheet. The programme involved, except the 

basic determination of the mechanical properties, uniaxial cold-forming of the 

specimens serving for further evaluations and the analytical part. All coupons were 

tested with a couple of strain gauges for covering the initial part of the stress-strain 

response. A mechanical extensometer served for covering higher strain ranges. All tests 

were conducted using strain-control. The shape of the coupons and the entire testing 

procedure was conducted in accordance with EN ISO 6892-1 [57]. Following section 

presents summation of performed tests. 
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Experimental part of the thesis contains: 

1) Execution of the tensile tests with the material parameters analysis for 

the stainless steel grades: 1.4404 (austenitic), 1.4003 (ferritic), 1.4462 

(duplex) and 1.4162 (lean duplex) in two options: 

 

- Cold-rolled sheet test in the direction parallel as well as 

transverse to the rolling direction. 

 

2) Plastic strain induction of cold-rolled sheet in four options: 

 

- Sample cut out parallel to the rolling direction and strain 

induced parallel to the subsequent tensile test. 

 

- Sample cut out parallel to the rolling direction and strain 

induced transverse to the subsequent tensile test. 

 

- Sample cut out transverse to the rolling direction and strain 

induced parallel to the subsequent tensile test. 

 

- Sample cut out transverse to the rolling direction and strain 

induced transverse to the subsequent tensile test. 

 

Levels of plastic deformation varied in sufficient range: 1%, 

3%, 5%, 10%, 15% and 20% or 50% (the last one for 

austenitic only).  

 

The test programme containing 160 coupons was executed and its results presented. 

Outputs stated in Chapter 4 were focused on the strength enhancement of the cold-

formed specimens, change of properties determining the stress-strain behaviour such as 

the parameters of nonlinearity, initial modulus of elasticity or ductility related to the 

level of the plastic strain induction.  

 

The third part of the thesis solves the analytical expression for the fabrication route 

describing a cold-bent part of sections. The fabrication route for cold-rolled box 

sections usually involves coiling and uncoiling of a sheet with subsequent circular 

section making and further forming it into a square or rectangular hollow section. The 

analytical model employs Quach´s equations [24] for plastic strain induction 

establishing during the fabrication process and the mathematical program Maple to 

process a lot of data including iteration steps for final state evaluating. As the plastic 

strain distribution across the thickness is known it is possible to divide the thickness 

into several layers and match each layer with specific properties obtained from 

experimental testing and referring to a particular cold-formed material. The Maple 

model is divided into the corner model and the flat face model. Finally there can be 

generated a new stress-strain curve for the cold-formed portion of a section.  

 

On the basis of this new stress-strain behaviour, it is possible to determine enhanced 

strength and material nonlinearity. With respect to the results of the experimental 

program, it is also possible to determine ductility decrease. For other comparisons and 

statements there were used results from tests conducted at Imperial College London. 

The extensive testing programme involved tests of the corners and flat faces of the box 
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sections and the full section tests as well and served for further comparisons. Therefore 

it is possible to determine properties of a full cold-formed square and circular hollow 

section.   

 

 

6.2 Contributions and recommendations 
 

This research has shown the significant change of the stress-strain behaviour of 

structural hollow sections compared to its virgin material stress-strain response. Thus it 

is important to use the correct material properties for insuring the correct and more 

effective structural design.  

 

The most relevant general observations and recommendations can be summarized as 

follows: 

 

1) A cold-rolled stainless sheet exhibits higher 0.2% proof strength for the 

direction transverse to the rolling, whereas if a member is subjected to the 

uniaxial cold-forming, it tends to exhibit higher 0.2% proof strength in the 

direction parallel to the previous forming. 

 

2) Ductility of a hollow section compared to the virgin material property can be 

decreased by more than 10%. Especially for ferritic grades the structural 

design should carefully consider lower resistance to straining with all 

consequences such as plastic redistribution of internal forces in structure or 

plasticisation of a section. 

 

3) It is possible to assume the initial modulus of elasticity by the same value for 

virgin material as well as for cold-formed one. 

 

4) True value of the ultimate strength remains constant for unformed material 

as well as for a cold-formed element. 

 

5) The Ramberg-Osgood parameter of non-linearity decreases with increasing 

level of plastic strain induction. Overall it means higher deflections and in 

fact also decreased buckling resistance. 

 

6) Ultimate tensile strength could be conservatively assumed as 1.15 multiple 

of the full section enhanced 0.2% proof strength. 

 

7) Experimental results of full sections stated herein are closer to the 

assumption of enhanced corner area determined as a pure geometrical bend 

without any extension on each side. 

 

8) The most recent predictive model for the 0.2% proof strength of box hollow 

sections published by Rossi, Afshan and Gardner [8] was slightly modified 

for non-austenitic grades in terms of providing higher predictive values. 

Nevertheless, this research has confirmed that predictive strengths obtained 

from this expression are safe and applicable for other purposes. 

 

The confirmation of the predictive model correctness is valuable in terms of 

different methods used to obtain similar results providing a good proof. 



Chapter 6: Conclusions 

172 

 

9) Comparison of (especially European) recent available cross-section shown 

following data: 

 

If the inner radius to thickness ratio was unknown, it would be possible to 

assume it with sufficient reliability as 6.9 for press-braked sections and 1.7 

for cold-rolled sections (in comparison with the only European valid 

standard for the enhanced 0.2% proof strength – British National Annex for 

EN 1993-1-4 [50] specifying the value of 2.0). 
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Chapter 7 

Future work 

During the experimental programme and work on this study more other areas of 

investigations that could be beneficial for the issue emerged. One of the areas that 

deserve attention could be demands for classification of sections. As stainless steel loses 

the ability of creating plastic zones with sufficient deformation capacity due to cold-

forming it could result in change of classification rules. In term of results described 

herein it would be appropriate to conduct further testing focused on other grades of 

stainless steel or other types of structural section with different fabricating routes. 

Especially more full section tensile tests would be suitable to perform for obtaining a 

more precise design method. Extension of conclusions for CHS and RHS would be 

favourable approach how to use the current investigation. As the study deals with the 

analytical solution for cold-formed stainless steel structural sections another solution 

could be also based on finite element modelling in terms of namely residual stresses and 

plastic strain evaluating. For the key issue of material hardening it is possible to employ 

advanced models such as multiple surface complex models etc. However such solution 

usually requires a lot of inputs and demanding calculation that spend too much time 

particularly in engineering tasks. This chapter presents future experiments that are in 

progress at CTU.  
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Experimental planned programme is aimed on obtaining more test results that could 

contribute to get more precise design methods. Testing programme consists of set of 

compressive tests. Hot-rolled plate made of austenitic grade 1.4404 should be analysed 

in compression to evaluate anisotropy effect and differences of material properties 

between cold-rolled and hot-rolled sheet (see Figure 7.1). There are also planned tests 

with plastic strain induction according to Chapter 4 for compressive loading. For this 

purposes a device for a compression test was also designed. A specimen could be 

clamped into the device to prevent any instability. Side slots serve for attaching strain 

gauges or extensometer (see Figure 7.2). 

 

 

 

Figure 7.1 Specimens made of hot rolled sheet for compressive and 

tensile test 

.  

  
 

Figure 7.2 The device for compression test.  

 

 

Analytical and experimental results can provide required data to cover complete 

behaviour including the Bauschinger effect and other phenomena. In terms of cold-

working, when parts of section are subjected to tension and compression as well, the 

resulting state of the cross-section and its behaviour during acting in structures can 

differ from current assumptions. Knowledge of the full stress-strain behaviour both for 

tension, compression and bending can result in new complex rules for designing with 

new limits and borders for particular cold-formed members or at least confirm the 

currently adopted simplifications. 
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Appendix A 

Maple model for coiling 

 
 

---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=195.4e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=205; 

sigma[1.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

sigma[ult]:=520; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6); 

n[0]:=7.5;  

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 12.225*E[.2]*sigma[1.0]/(E[0]*sigma[0.2])+1.037; formula 

- Quach found by analysing tension coupon test data 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

t := 2; 

 

coiling curvature 
> Kappa[c] := 1/(250); 

 

For Coiling 
>  

> i:=-1: 

for y from (t/2) by (-t/30) while y > 0 do 

 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy] := sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c] := Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c] := sigma[y0]: 

omega[c] := nu: 
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for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,c]-epsilon[z,cy]) do 

ds := s - sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c,i] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c,i] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c,i] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c,i] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl,i]:=e-s/E[0]: 

end do: 

 

using simmetry for whole thickness data 
> axy[15]:=0: 

sigma[c,15]:=sigma[y0]: 

sigma[z,c,15]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,c,15]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[c,pl,15]:=0: 

 
> for i from 0 by 1 to 14 do 

axy[30-i]:= -axy[i]: 

sigma[c,30-i]:= sigma[c,i]: 

sigma[z,c,30-i]:=-sigma[z,c,i]: 

sigma[x,c,30-i]:=-sigma[x,c,i]: 

epsilon[c,pl,30-i]:= epsilon[c,pl,i]: 

end do: 
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Appendix B 

Maple model for coiling and uncoiling 

 
---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=195.4e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=205; 

sigma[1.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

sigma[ult]:=520; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6); 

n[0]:=7.5;  

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 12.225*E[.2]*sigma[1.0]/(E[0]*sigma[0.2])+1.037; formula 

- Quach found by analysing tension coupon test data 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]);formula-Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

t := 2; 

 

coiling curvature 
> Kappa[c] := 1/(250); 

 

 

---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 

 
> i:=-1: 

for y from (t/2) by (-t/30) while y > 0 do 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy] := sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c] := Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c] := sigma[y0]: 
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omega[c] := nu: 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,c]-epsilon[z,cy]) do 

ds := s - sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c,i] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c,i] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c,i] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c,i] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl,i]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

sigma[u]:= sigma[c]: 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy]) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then 

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 
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Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 

dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de :=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u] := s: 

end do: 

sigma[z,r,i] := - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i] := - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

epsilon[i]:=e: 

epsilon[u,pl,i]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

else  

sigma[z,u,i] := E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u,i] := nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c,i]+sigma[z,u,i]: 

sigma[x,r,i] := sigma[x,c,i]+sigma[x,u,i]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:= sigma[c]: 

s:=sigma[c]: 

epsilon[i]:=Kappa[u]*y: 

epsilon[u,pl,i]:=0: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

end if: 

end do: 

using simmetry for whole thickness data 
> axy[15]:=0: 

sigma[u,15]:=sigma[y0]: 

sigma[z,r,15]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,r,15]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[r,pl,15]:=0: 

 
> for i from 0 by 1 to 14 do 

axy[30-i]:= -axy[i]: 

sigma[u,30-i]:= sigma[u,i]: 

sigma[z,r,30-i]:=-sigma[z,r,i]: 

sigma[x,r,30-i]:=-sigma[x,r,i]: 

epsilon[r,pl,30-i]:= epsilon[r,pl,i]: 

end do: 
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Appendix C 

Maple model for cold-bending 

C.1 Model in nominal values 
 

 
---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=195.4e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=205; 

sigma[1.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

sigma[ult]:=520; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6); 

n[0]:=7.5;  

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 12.225*E[.2]*sigma[1.0]/(E[0]*sigma[0.2])+1.037; formula 

- Quach found by analysing tension coupon test data 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

t := 2; 

 

>  

coiling curvature 
> Kappa[c] := 1/(450); 

circling or bending radius 
ri:=4*t: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 

 

---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 
> i:=-1: 

for y from (t/2) by (-t/30) while y > 0 do 

i:=i+1: 
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axy[i]:=y:

 

####coiling 

epsilon[z,cy] := sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c] := Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c] := sigma[y0]: 

omega[c] := nu: 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,c]-epsilon[z,cy]) do 

ds := s - sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl,i]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

sigma[u]:= sigma[c]: 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy] + epsilon[z,r] ) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  
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eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 

dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de:=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u]:=s: 

end do: 

sigma[u,i]:= sigma[u]: 

sigma[z,r,i] := - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i] := - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

epsilon[i]:=e: 

epsilon[u,pl,i]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

else  

sigma[z,u] := E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u] := nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c]+sigma[z,u]: 

sigma[x,r,i] := sigma[x,c]+sigma[x,u]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:= sigma[c]: 

s:=sigma[c]: 

epsilon[i]:=Kappa[u]*y: 

epsilon[u,pl,i]:=0: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

end if: 

end do: 

using simmetry for whole thickness data 
> axy[15]:=0: 

sigma[us,15]:=sigma[y0]: 

sigma[z,r,15]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,r,15]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[r,pl,15]:=0: 

sigma[u,15]:=sigma[y0]: 

> for i from 0 by 1 to 29 do 

axy[30-i]:= -axy[i]: 

sigma[u,30-i]:= sigma[u,i]: 

sigma[z,r,30-i]:= -sigma[z,r,i]: 

sigma[x,r,30-i]:= -sigma[x,r,i]: 

epsilon[r,pl,30-i]:= epsilon[r,pl,i]: 

end do: 
 

bending to the corner radius (x-axis bending)  
> q[x]:=1: 

for shift from 0.001 by 0.001 while q[x] > 0.25 do 

for i from 0 by 1 to 30 do 

y:= axy[i]:  

epsilon[x,cs,i]:= ln(1+(shift-y)/(1/Kappa[cs]-shift)): 

epsilon[x,csy,i]:= sigma[u,i]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 
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if abs(epsilon[x,csy,i])<abs(epsilon[x,cs,i])then 

e:= 0: 

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,csy,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,csy,i]/(1-nu^2): 

omega[cs] := sigma[z,cs,i]/sigma[x,cs,i]: 

sigma[cs]:=sigma[u,i]: 

for s from sigma[u,i] by 1 to sigma[ult] while abs(e) 

<(abs(epsilon[x,cs,i]-epsilon[x,csy,i])) do 

ds:= s-sigma[cs]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]: 

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]+X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[cs]:= (4*nu*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-

1)^2+4*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)): 

dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*ds: 

omega[cs]:= omega[cs] + dom[cs]: 

de:= subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs] + subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 

sigma[cs]:=s: 

end do: 

if y>= shift then 

sigma[z,cs,i]:= -omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= -sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

end if: 

sigma[cs,i]:= s: 

omega[cs,i]:=omega[cs]: 

epsilon[cs,pl,i]:=e-s/E[0]: 

else  

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[cs,i]:= sigma[u,i]: 

omega[cs,i]:= sigma[z,cs,i]/sigma[x,cs,i]: 

epsilon[cs,pl,i] := 0: 

end if: 

end do: 

#### membrane residual stress 

q[x]:= 0: 

for i from 0 by 1 to 29 do 

q[x]:= q[x]-(sigma[x,cs,i+1]+sigma[x,cs,i] )/2*(axy[i]-axy[i+1]): 

end do: 

q[x]:=q[x]/t; 

end do: 

q[x]; 

shift; 
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C.2 Model in true values 
 

 
---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=195.4e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=205; 

sigma[1.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

sigma[ult]:=520; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6); 

n[0]:=7.5;  

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 12.225*E[.2]*sigma[1.0]/(E[0]*sigma[0.2])+1.037; formula 

- Quach found by analysing tension coupon test data 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

t := 2; 

 

>  

coiling curvature 
> Kappa[c] := 1/(450);

  

circling or bending radius 
ri:=4*t: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 
 

---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 
> i:=-1: 

for y from (t/2) by (-t/30) while y > 0 do 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy] := sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c] := Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c] := sigma[y0]: 

omega[c] := nu: 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,c]-epsilon[z,cy]) do 

ds := s - sigma[c]: 
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if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl,i]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

sigma[u]:= sigma[c]: 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy] + epsilon[z,r] ) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 
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dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de:=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u]:=s: 

end do: 

sigma[u,i]:= sigma[u]: 

sigma[z,r,i] := - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i] := - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

epsilon[i]:=e: 

epsilon[u,pl,i]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

else  

sigma[z,u] := E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u] := nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c]+sigma[z,u]: 

sigma[x,r,i] := sigma[x,c]+sigma[x,u]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:= sigma[c]: 

s:=sigma[c]: 

epsilon[i]:=Kappa[u]*y: 

epsilon[u,pl,i]:=0: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

end if: 

end do: 

using simmetry for whole thickness data 
> axy[15]:=0: 

sigma[us,15]:=sigma[y0]: 

sigma[z,r,15]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,r,15]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[r,pl,15]:=0: 

sigma[u,15]:=sigma[y0]: 
> for i from 0 by 1 to 29 do 

axy[30-i]:= -axy[i]: 

sigma[u,30-i]:= sigma[u,i]: 

sigma[z,r,30-i]:= -sigma[z,r,i]: 

sigma[x,r,30-i]:= -sigma[x,r,i]: 

epsilon[r,pl,30-i]:= epsilon[r,pl,i]: 

end do: 
 

bending to the corner radius (x-axis bending)  
> q[x]:=1: 

for shift from 0.001 by 0.001 while q[x] > 0.25 do 

for i from 0 by 1 to 30 do 

y:= axy[i]:  

epsilon[x,cs,i]:= ln(1+(shift-y)/(1/Kappa[cs]-shift)): 

epsilon[x,csy,i]:= sigma[u,i]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

if abs(epsilon[x,csy,i])<abs(epsilon[x,cs,i])then 

e:= 0: 

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,csy,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,csy,i]/(1-nu^2): 

omega[cs] := sigma[z,cs,i]/sigma[x,cs,i]: 

sigma[cs]:=sigma[u,i]: 

for s from sigma[u,i] by 1 to sigma[ult] while abs(e) 

<(abs(epsilon[x,cs,i]-epsilon[x,csy,i])) do 

ds:= s-sigma[cs]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]: 
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dt:=ds+ds*((2*X/E[0])+0.002*(n[0]+1)*(X/sigma[0.2])^n[0]): 

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

dt:=ds+ds*(((sigma[0.2])/(E[0]))+0.002+((2*X-

sigma[0.2])/E[0.2])+((((n[0.2,1.0]+1)*X)-

sigma[0.2]))*(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])^(n[0.2,1.0]-1)/(sigma[1.0]-

sigma[0.2])^n[0.2,1.0])): 

else 

eps:=(X-a[0])/(b[0]-X): 

dt:=ds+ds*(((2*X-a[0])*(b[0]-X)+X*(X-a[0]))/(b[0]-X)^2): 

end if: 

end if: 

dH:=(((diff(eps,X))/((1+eps)*((1+eps)+X*((diff(eps,X))))))-

(1/E[0]))^(-1): 

Omega[cs]:= (4*nu*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-

1)^2+4*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)): 

dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*(subs(X=s,dt)): 

omega[cs]:= omega[cs] + dom[cs]: 

de:= subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs] + subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 

sigma[cs]:=s: 

end do: 

if y>= shift then 

sigma[z,cs,i]:= -omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= -sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

end if: 

sigma[cs,i]:= s: 

omega[cs,i]:=omega[cs]: 

epsilon[cs,pl,i]:=ln(1+e)-(s*(1+e)/E[0]): 

else  

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,cs]/(1-nu^2): 

sigma[cs,i]:= sigma[u,i]: 

omega[cs,i]:= sigma[z,cs,i]/sigma[x,cs,i]: 

epsilon[cs,pl,i] := 0: 

end if: 

end do: 

#### membrane residual stress 

q[x]:= 0: 

for i from 0 by 1 to 29 do 

q[x]:= q[x]-(sigma[x,cs,i+1]+sigma[x,cs,i] )/2*(axy[i]-axy[i+1]): 

end do: 

q[x]:=q[x]/t; 

end do: 

q[x]; 

shift;  
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Appendix D 

Maple model for cold-bending including springback 

of a carbon steel thick sheet 

---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0]:=203.9e3; 

nu:= 0.28; 

sigma[0.2]:=593.2; 

sigma[ult]:=737.9; 

epsilon[ult]:=1-sigma[0.2]/sigma[ult]; 

E[n]:=(sigma[ult]-sigma[0.2])/(epsilon[ult]-(sigma[0.2]/E[0])); 

t:=25.4; 

 

circling or bending radius 
ri:=5.5*t: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 

 

F O R M I N G   P R O C E S S 

loop for cold bending  
> i:=-1: 

for y from (t/2) by (-t/20)while abs(y)<=(t/2) do 

i:=i+1: 

axy[i]:=y: 

end do: 

 

bending to the corner radius (x-axis bending)  
> q[x]:=1: 

for shift from 0.001 by 0.001 while abs(q[x]) > 0.9 do 

for i from 0 by 1 to 20 do 

y:= axy[i]:  

epsilon[x,cs,i] := ln(1+(shift-y)/(1/Kappa[cs]-shift)): 

epsilon[x,csy,i] := sigma[0.2]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

if abs(epsilon[x,csy,i])<abs(epsilon[x,cs,i]) then 

e:= 0: 

sigma[z,cs,i]:=nu*E[0]*epsilon[x,csy,i]/(1-nu^2): 

sigma[x,cs,i] :=E[0]*epsilon[x,csy,i]/(1-nu^2): 

omega[cs] :=nu: 

sigma[cs]:=sigma[0.2]: 

for s from sigma[0.2] by 1 to sigma[ult] while abs(e) 

<(abs(epsilon[x,cs,i]-epsilon[x,csy,i])) do 

ds:= s-sigma[cs]: 

eps:=(sigma[0.2]/E[0])+((X-sigma[0.2])/E[n]):

dH:=(E[0]*E[n])/(E[0]-E[n]): 

Omega[cs]:=(4*nu*dH*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-1)^2+4*dH*(1-

omega[cs]+omega[cs]^2)): 
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dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*ds: 

omega[cs]:= omega[cs] + dom[cs]: 

de:=subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs]+subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 

sigma[cs]:=s: 

end do: 

if y>= shift then 

sigma[z,cs,i]:= -omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= -sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

end if: 

sigma[cs,i]:=s: 

omega[cs,i]:=omega[cs]: 

epsilon[cs,pl,i]:=(s-sigma[0.2])*((E[0]-E[n])/(E[0]*E[n])): 

else  

sigma[z,cs,i]:=nu*E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[x,cs,i]:= E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[cs,i]:= sigma[0.2]: 

omega[cs,i]:= sigma[z,cs,i]/sigma[x,cs,i]: 

epsilon[cs,pl,i] := 0: 

end if: 

end do: 

#### membrane residual stress 

q[x]:= 0: 

for i from 0 by 1 to 19 do 

q[x]:= q[x]-(sigma[x,cs,i+1]+sigma[x,cs,i] )/2*(axy[i]-axy[i+1]): 

end do: 

q[x]:=q[x]/t; 

end do: 

q[x]; 

shift; 

 

####Spring back 

M[t]:=0: 

for i from 0 by 1 to 20 do 

if i=0 then 

M[i]:=(sigma[x,cs,i]*axy[i]*t/20)/2: 

elif i=26 then 

M[i]:=(sigma[x,cs,i]*axy[i]*t/20)/2: 

else 

M[i]:=sigma[x,cs,i]*axy[i]*t/20: 

end if: 

M[t]:=M[t]+M[i]: 

end do: 

Iy:=1*t^3/12: 

###Final stress(including spring back) 

for i from 0 by 1 to 20 do 

epsilon[x,sb,i]:= M[t]*axy[i]/(Iy*E[0]): 

sigma[x,sb,i]:=epsilon[x,sb,i]*E[0]: 

sigma[z,sb,i]:=nu*epsilon[x,sb,i]*E[0]: 

sigma[z,pb,i]:=sigma[z,cs,i]-sigma[z,sb,i]: 

sigma[x,pb,i]:=sigma[x,cs,i]-sigma[x,sb,i]: 

end do: 
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Appendix E 

Maple model for corner cold-bending including 

springback with stress-strain curve 

---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=190e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=364; 

sigma[ult]:=501; 

n[0]:=6.7; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6);  

sigma[1.0] := 0.542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 3.1; 

t := 1.9; 

 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

>  

coiling curvature 
> Kappa[c] := 1/(450); 

circling or bending radius 
ri:=2.5: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 

---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 
> i:=-1: 

for y from (t/2) by (-t/10) while y > 0 do 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy] := sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 
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epsilon[z,c] := Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c] := sigma[y0]: 

omega[c] := nu: 

omega[last]:=omega[c]: 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,c]-epsilon[z,cy]) do 

ds := s - sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl,i]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

omega[last]:= omega[uy]: 

sigma[u]:= sigma[c]: 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy] + epsilon[z,r] ) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  
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eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 

dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de:=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u]:=s: 

end do: 

sigma[u,i]:= sigma[u]: 

sigma[z,r,i] := - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i] := - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

epsilon[i]:=e: 

epsilon[u,pl,i]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

else  

sigma[z,u] := E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u] := nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c]+sigma[z,u]: 

sigma[x,r,i] := sigma[x,c]+sigma[x,u]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:= sigma[c]: 

s:=sigma[c]: 

epsilon[i]:=Kappa[u]*y: 

epsilon[u,pl,i]:=0: 

epsilon[r,pl,i]:=epsilon[u,pl,i]+epsilon[c,pl,i]: 

end if: 

end do: 

using simmetry for whole thickness data 
> axy[5]:=0: 

sigma[us,5]:=sigma[y0]: 

sigma[z,r,5]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,r,5]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[r,pl,5]:=0: 

sigma[u,5]:=sigma[y0]: 

> for i from 0 by 1 to 4 do 

axy[10-i]:= -axy[i]: 

sigma[u,10-i]:= sigma[u,i]: 

sigma[z,r,10-i]:= -sigma[z,r,i]: 

sigma[x,r,10-i]:= -sigma[x,r,i]: 

epsilon[r,pl,10-i]:= epsilon[r,pl,i]: 

end do: 

 

bending to the corner radius (x-axis bending)  
> q[x]:=5: 

for shift from 0.001 by 0.001 while abs(q[x]) >4.9 do 

for i from 0 by 1 to 10 do 

y:= axy[i]:  

epsilon[x,cs,i]:= ln(1+(shift-y)/(1/Kappa[cs]-shift)): 

epsilon[x,csy,i]:= sigma[u,i]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 
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if abs(epsilon[x,csy,i])<abs(epsilon[x,cs,i])then 

e:= 0: 

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,csy,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,csy,i]/(1-nu^2): 

omega[cs] := sigma[z,cs,i]/sigma[x,cs,i]: 

sigma[cs]:=sigma[u,i]: 

for s from sigma[u,i] by 1 to sigma[ult] while abs(e) 

<(abs(epsilon[x,cs,i]-epsilon[x,csy,i])) do 

ds:= s-sigma[cs]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]: 

dt:=ds+ds*((2*X/E[0])+0.002*(n[0]+1)*(X/sigma[0.2])^n[0]): 

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

dt:=ds+ds*(((sigma[0.2])/(E[0]))+0.002+((2*X-

sigma[0.2])/E[0.2])+((((n[0.2,1.0]+1)*X)-

sigma[0.2]))*(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])^(n[0.2,1.0]-1)/(sigma[1.0]-

sigma[0.2])^n[0.2,1.0])): 

else 

eps:=(X-a[0])/(b[0]-X): 

dt:=ds+ds*(((2*X-a[0])*(b[0]-X)+X*(X-a[0]))/(b[0]-X)^2): 

end if: 

end if: 

dH:=(((diff(eps,X))/((1+eps)*((1+eps)+X*((diff(eps,X))))))-

(1/E[0]))^(-1): 

Omega[cs]:= (4*nu*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-

1)^2+4*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)): 

dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*(subs(X=s,dt)): 

omega[cs]:= omega[cs] + dom[cs]: 

de:= subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs] + subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 

sigma[cs]:=s: 

end do: 

if y>= shift then 

sigma[z,cs,i]:= -omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= -sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= omega[cs]*sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

sigma[x,cs,i]:= sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

end if: 

sigma[cs,i]:= s: 

omega[cs,i]:=omega[cs]: 

epsilon[cs,pl,i]:=ln(1+e)-(s*(1+e)/E[0]): 

else  

sigma[z,cs,i]:= sigma[z,r,i] + nu*E[0]*epsilon[x,cs,i]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,cs]/(1-nu^2): 

sigma[cs,i]:= sigma[u,i]: 

omega[cs,i]:= sigma[z,cs,i]/sigma[x,cs,i]: 

epsilon[cs,pl,i] := 0: 

end if: 

end do: 

#### membrane residual stress 

q[x]:= 0: 

for i from 0 by 1 to 9 do 
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q[x]:= q[x]-(sigma[x,cs,i+1]+sigma[x,cs,i] )/2*(axy[i]-axy[i+1]): 

end do: 

q[x]:=q[x]/t; 

end do: 

q[x]; 

shift; 

####Spring back 

M[t]:=0: 

for i from 0 by 1 to 10 do 

if i=0 then 

M[i]:=(sigma[x,cs,i]*axy[i]*t/10)/2: 

elif i=10 then 

M[i]:=(sigma[x,cs,i]*axy[i]*t/10)/2: 

else 

M[i]:=sigma[x,cs,i]*axy[i]*t/10: 

end if: 

M[t]:=M[t]+M[i]: 

end do: 

Iy:=1*t^3/12: 

###Final stress(including spring back) 

for i from 0 by 1 to 10 do 

epsilon[x,sb,i]:= M[t]*axy[i]/(Iy*E[0]): 

sigma[x,sb,i]:=epsilon[x,sb,i]*E[0]: 

sigma[z,sb,i]:=nu*epsilon[x,sb,i]*E[0]: 

sigma[z,pb,i]:=sigma[z,cs,i]-sigma[z,sb,i]: 

sigma[x,pb,i]:=sigma[x,cs,i]-sigma[x,sb,i]: 

end do: 

 

Stress strain diagram after press breaking in longitudinal direction 
> for i from 0 by 1 to 10 do 

sigma[z,i]:=sigma[x,pb,i]; 

sigma[x,i]:=sigma[z,pb,i]; 

sigma[i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 

sigma[rs,i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 

omega[i]:=sigma[z,i]/sigma[x,i]; 

end do: 
> precise:= 0.0001; 

beginning:= 0; 

de:= 1e-5; 

e:=0: 

ss[z] := 0: 

ss[x] := 0: 

ss[av] := 0: 

for i from 0 by 1 to 10 do 

 

E[0,pl,i] :=E[0]: 

nu :=0.3: 

sigma[0.2,pl,i]:= (-

26.857*epsilon[cs,pl,i]^2+9.1674*epsilon[cs,pl,i]+1.0206)*sigma[0.2]: 

sigma[1.0,pl,i]:= (-

30.334*epsilon[cs,pl,i]^2+10.314*epsilon[cs,pl,i]+1.0366)*sigma[1.0]: 

sigma[ult,pl,i]:= sigma[ult]: 

epsilon[ult,pl,i]:= (12.209*epsilon[cs,pl,i]^2-

4.4781*epsilon[cs,pl,i]+1.00272)*epsilon[ult]: 

 

if abs(epsilon[cs,pl,i]) <= 0.09 then 

n[0,pl,i]:= (44.343*epsilon[cs,pl,i]^2-

8.708*epsilon[cs,pl,i]+0.8378)*n[0]: 

else n[0,pl,i]:= 0.4133*n[0]: 

end if: 
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E[0.2,pl,i]:= (-

133.75*epsilon[cs,pl,i]^2+38.761*epsilon[cs,pl,i]+1.2097)*E[0.2]: 

 

if abs(epsilon[cs,pl,i]) <= 0.1 then 

n[0.2,1.0,pl,i]:= (-

68.301*epsilon[cs,pl,i]^2+15.932*epsilon[cs,pl,i]+1.0949)*n[0.2,1.0]: 

else n[0.2,1.0,pl,i]:=2.0251*n[0.2,1.0]: 

end if: 

epsilon[max,pl,i]:= (44.343*epsilon[cs,pl,i]^2-

8.708*epsilon[cs,pl,i]+0.8378)*epsilon[max]: 

 

e[0.2,pl,i]:=sigma[0.2,pl,i]/E[0,pl,i]: 

B[0,pl,i]:=0.018+e[0.2,pl,i]*((E[0,pl,i]/E[0.2,pl,i])-1): 

A[0,pl,i]:=B[0,pl,i]/(0.008+e[0.2,pl,i]*(sigma[1.0,pl,i]/sigma[0.2,pl,

i]-1)*(1-E[0,pl,i]/E[0.2,pl,i])): 

sigma[2.0,pl,i]:=sigma[0.2,pl,i]+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*(A[0,pl,i]^(1/n[0.2,1.0,pl,i]))*(1-((1/E[0.2,pl,i]-

1/E[0,pl,i])*sigma[0.2,pl,i])/B[0,pl,i])^(1/n[0.2,1.0,pl,i]): 

epsilon[2.0,pl,i]:= (sigma[2.0,pl,i]/E[0,pl,i])+0.02: 

b[0,pl,i]:=(sigma[ult,pl,i]*(1+epsilon[ult,pl,i])-

sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i]))/(epsilon[ult,pl,i]-

epsilon[2.0,pl,i]): 

a[0,pl,i]:=sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i])-

b[0,pl,i]*epsilon[2.0,pl,i]: 

end do: 

for e from de by de while e <0.05 do 

for i from 0 by 1 to 10 do 

if sigma[i] < sigma[rs,i] then 

dsigma[x] :=  E[0,pl,i] / (1-nu^2)*de: 

dsigma[z] := nu *E[0,pl,i]/(1-nu^2)* de: 

else 

if sigma[i] <= sigma[0.2,pl,i] then  

eps:= X/(E[0,pl,i])+0.002*(X/(sigma[0.2,pl,i]))^n[0,pl,i]:  

else 

if sigma[i] <= sigma[2.0,pl,i] then  

eps:=(X-sigma[0.2,pl,i])/(E[0.2,pl,i])+(0.008+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*((1/E[0,pl,i])-(1/E[0.2,pl,i])))*((X-

sigma[0.2,pl,i])/(sigma[1.0,pl,i]-

sigma[0.2,pl,i]))^n[0.2,1.0,pl,i]+(sigma[0.2,pl,i])/(E[0,pl,i])+0.002: 

else 

eps:=(X-a[0,pl,i])/(b[0,pl,i]-X): 

end if: 

end if: 

dH:=subs(X=sigma[i],((diff(eps,X))-(1/E[0,pl,i]))^(-1)); 

depsilon[x]:= de; 

dsigma[z]:= E[0,pl,i]*(4/9*nu*sigma[i]^2*dH/E[0,pl,i]-(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-

1/3*sigma[z,i]))*depsilon[x]/(4/9*sigma[i]^2*dH*(1-

nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

dsigma[x]:= E[0,pl,i]*((2/3*sigma[z,i]-

1/3*sigma[x,i])^2+4/9*sigma[i]^2*dH/E[0,pl,i])*depsilon[x]/(4/9*sigma[

i]^2*dH*(1-nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-

1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

end if; 

if i = 0 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 
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elif i = 10 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 

else 

ss[x]:= ss[x] + dsigma[x]; 

ss[z]:= ss[z] + dsigma[z]; 

ss[av]:= ss[av] + dsig[i]: 

end if: 

sigma[x,i]:= sigma[x,i] + dsigma[x]; 

sigma[z,i]:= sigma[z,i] + dsigma[z]; 

omega[i]:=sigma[z,i]/sigma[x,i]; 

dsig[i]:= abs(sqrt(sigma[x,i]^2+sigma[z,i]^2-sigma[z,i]*sigma[x,i]) - 

sigma[i]); 

sigma[i]:= max(sqrt(sigma[x,i]^2+sigma[z,i]^2-

sigma[z,i]*sigma[x,i]),sigma[i]); 

end do: 

sigma[yield]:= sqrt((ss[z]/10)^2+(ss[x]/10)^2-(ss[x]/10)*(ss[z]/10)): 

for ep from 1 to 500 by 1 do 

if (e-beginning)=ep*precise then  

sigma[ep,plot]:=(ss[x]/10): 

epsilon[ep,plot]:=e:  

end if: 

end do: 

end do: 

sigma[x,yield]:=sigma[yield]: 

epsilon[yield,pl]:= e-sigma[yield]/E[0,pl,i]; 

ss[x]:= ss[x]/10; 

ss[z]:= ss[z]/10; 

sqrt(ss[z]^2+ss[x]^2-ss[z]*ss[x]); 

sigma[ep,plot]; 

epsilon[ep,plot];  

sigma[100,plot]; 

epsilon[100,plot]; 
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Appendix F 

Maple model for flat face cold-bending including 

springback with stress-strain curve 

MODEL CS 

 
 

---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=191e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=268; 

sigma[ult]:=584; 

n[0]:=6.9; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6);  

sigma[1.0] := 0.542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 3.6; 

t := 4.64; 

 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=(1+(sigma[1.0]/sigma[0.2]-

1)*(A[0]^(1/n[0.2,1.0])))/(1+e[0.2]*(E[0]/E[0.2]-

1)*(sigma[1.0]/sigma[0.2]-

1)*A[0]^(1/n[0.2,1.0])/(n[0.2,1.0]*B[0]))*sigma[0.2]; formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

 

coiling curvature 
> Kappa[c] := 1/(450); 

 

circling or bending radius 
ri:=73.58: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 
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---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 
> i:=-1: 

for y from (t/2) by (-t/10) while y > 0 do 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy]:= sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c]:= Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c]:= sigma[y0]: 

omega[c]:= nu: 

 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) 

<abs(epsilon[z,c]-epsilon[z,cy]) do 

ds:= s-sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

 

sigma[u]:= sigma[c]: 



Appendix F: Maple model for flat face cold-bending including springback with stress-strain curve 

207 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy] + epsilon[z,r] ) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 

dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de :=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u] := s: 

end do: 

sigma[u,i]:= sigma[u]: 

sigma[z,r,i]:= - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i]:= - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

else  

sigma[z,u]:= E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u]:= nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c]+sigma[z,u]: 

sigma[x,r,i] := sigma[x,c]+sigma[x,u]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:=sigma[c]: 

s:=sigma[c]: 

end if: 

epsilon[u,pl]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl]+epsilon[c,pl]: 

#####bending for making circle (x-axis bending) 

epsilon[x,csy]:= sigma[u,i]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[x,cs]:= Kappa[cs]*y: 

if epsilon[x,csy] < epsilon[x,cs] then 

e := 0: 

sigma[cs]:= sigma[u,i]: 

omega[cs]:= nu: 

 

for s from sigma[u,i] by 0.5 to sigma[ult] while abs(e) 

<abs(epsilon[x,cs]-epsilon[x,csy]) do 

ds:= s-sigma[cs]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 
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end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[cs]:= (4*nu*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-

1)^2+4*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)): 

dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*ds: 

omega[cs]:= omega[cs] + dom[cs]: 

de:= subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs] + subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 

sigma[cs]:= s: 

end do: 

sigma[z,cs,i] := sigma[z,r,i]+ omega[cs]*sigma[cs]/sqrt(1-

omega[cs]+omega[cs]^2): 

sigma[x,cs,i] := sigma[x,r,i]+sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= sigma[z,r,i]+nu*E[0]*epsilon[x,cs]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i]+E[0]*epsilon[x,cs]/(1-nu^2): 

omega[cs] := sigma[z,cs,i]/sigma[x,cs,i]: 

end if: 

epsilon[cs,pl,i]:=e-s/E[0]: 

 

######Uncoiling for final shape 

Kappa[us] := -Kappa[cs]: 

Kappa[usy]:=-(sigma[cs]*(1-nu^2)*(2-nu+(2*nu-

1)*omega[cs]))/(E[0]*y*(1-nu+nu^2)*sqrt((1-omega[cs]+omega[cs]^2))): 

epsilon[x,usy] := (Kappa[cs]+Kappa[usy])*y: 

epsilon[x,rs] := 0: 

if abs(Kappa[usy]) < abs(Kappa[us]) then 

omega[usy] := ((1-nu^2)*omega[cs]-nu*(2-nu))/((1-2*nu)*omega[cs]-(1-

nu^2)): 

 

sigma[us]:= sigma[cs]: 

omega[us]:= omega[usy]: 

e:=0: 

for s from sigma[us] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[x,usy] + epsilon[x,rs]) do 

ds := s-sigma[us]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[us] := (4*nu*(subs(X=s,dH))*(1-omega[us]+omega[us]^2)-E[0]*(2-

omega[us])*(2*omega[us]-1))/(E[0]*(2*omega[us]-

1)^2+4*(subs(X=s,dH))*(1-omega[us]+omega[us]^2)): 

dom[us] := (2*(1-omega[us]+omega[us]^2)*(Omega[us]-omega[us]))/(s*((2-

omega[us])+Omega[us]*(2*omega[us]-1)))*ds: 

omega[us] := omega[us] + dom[us]: 

de := subs(X=omega[us],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[us] + subs(X=s,((1-



Appendix F: Maple model for flat face cold-bending including springback with stress-strain curve 

209 

omega[us]^2)*(1-2*nu))/(E[0]*(1-2*omega[us])*sqrt(1-

omega[us]+omega[us]^2)))*ds; 

e:= de + e: 

sigma[us]:=s: 

end do: 

sigma[us,i]:= sigma[us]: 

sigma[z,rs,i]:= - omega[us]*sigma[us]/sqrt(1-omega[us]+omega[us]^2): 

sigma[x,rs,i] := - sigma[us]/sqrt(1-omega[us]+omega[us]^2): 

epsilon[i]:=e: 

epsilon[us,pl,i]:=e-(s-sigma[cs])/E[0]: 

epsilon[rs,pl,i]:=epsilon[us,pl,i]+epsilon[cs,pl,i]: 

else  

sigma[z,us,i] :=nu*E[0]*Kappa[us]*y/(1-nu^2): 

sigma[x,us,i] := E[0]*Kappa[us]*y/(1-nu^2):  

sigma[z,rs,i] := sigma[z,cs,i]+sigma[z,us,i]: 

sigma[x,rs,i] := sigma[x,cs,i]+sigma[x,us,i]: 

omega[us,i]:= sigma[x,rs,i]/sigma[z,rs,i]: 

sigma[us,i]:= sigma[cs]: 

sigma[cs]:=s: 

epsilon[i]:=Kappa[us]*y: 

epsilon[us,pl,i]:=0: 

epsilon[rs,pl,i]:=epsilon[us,pl,i]+epsilon[cs,pl,i]: 

end if: 

end do: 

 

using simmetry for whole thickness data 
> axy[5]:=0: 

sigma[us,5]:=sigma[y0]: 

sigma[z,rs,5]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,rs,5]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[rs,pl,5]:=0: 

sigma[cs,5]:=sigma[y0]: 

sigma[z,cs,5]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

sigma[x,cs,5]:=sigma[y0]*(1-nu^2)/(E[0]): 

epsilon[cs,pl,5]:=0: 

 
> for i from 0 by 1 to 4 do 

axy[10-i]:= -axy[i]: 

sigma[us,10-i]:= sigma[us,i]: 

sigma[z,rs,10-i]:= -sigma[z,rs,i]: 

sigma[x,rs,10-i]:= -sigma[x,rs,i]: 

epsilon[rs,pl,10-i]:= epsilon[rs,pl,i]: 

sigma[cs,10-i]:= sigma[cs,i]: 

sigma[z,cs,10-i]:= -sigma[z,cs,i]: 

sigma[x,cs,10-i]:= -sigma[x,cs,i]: 

epsilon[cs,pl,10-i]:= epsilon[cs,pl,i]: 

end do: 

 

####Spring back 

M[t]:=0: 

for i from 0 by 1 to 10 do 

if i=0 then 

M[i]:=(sigma[x,rs,i]*axy[i]*t/10)/2: 

elif i=10 then 

M[i]:=(sigma[x,rs,i]*axy[i]*t/10)/2: 

else 

M[i]:=sigma[x,rs,i]*axy[i]*t/10: 

end if: 

M[t]:=M[t]+M[i]: 

end do: 

Iy:=1*t^3/12: 

###Final stress(including spring back) 
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for i from 0 by 1 to 10 do 

epsilon[x,sb,i]:= M[t]*axy[i]/(Iy*E[0]): 

sigma[x,sb,i]:=epsilon[x,sb,i]*E[0]: 

sigma[z,sb,i]:=nu*epsilon[x,sb,i]*E[0]: 

sigma[z,pb,i]:=sigma[z,rs,i]-sigma[z,sb,i]: 

sigma[x,pb,i]:=sigma[x,rs,i]-sigma[x,sb,i]: 

end do: 

Stress strain diagram after press breaking in longitudinal direction 
> for i from 0 by 1 to 10 do 

sigma[z,i]:=sigma[x,pb,i]; 

sigma[x,i]:=sigma[z,pb,i]; 

sigma[i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 

sigma[rs,i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 

omega[i]:=sigma[z,i]/sigma[x,i]; 

end do: 
> precise:= 0.0001; 

beginning:= 0; 

de:= 1e-5; 

e:=0: 

ss[z] := 0: 

ss[x] := 0: 

ss[av] := 0: 

for i from 0 by 1 to 10 do 

 

E[0,pl,i] :=E[0]: 

nu :=0.3: 

sigma[0.2,pl,i]:= (-

26.857*epsilon[cs,pl,i]^2+9.1674*epsilon[cs,pl,i]+1.0206)*sigma[0.2]: 

sigma[1.0,pl,i]:= (-

30.334*epsilon[cs,pl,i]^2+10.314*epsilon[cs,pl,i]+1.0366)*sigma[1.0]: 

sigma[ult,pl,i]:= sigma[ult]: 

epsilon[ult,pl,i]:= (12.209*epsilon[cs,pl,i]^2-

4.4781*epsilon[cs,pl,i]+1.00272)*epsilon[ult]: 

 

if abs(epsilon[cs,pl,i]) <= 0.09 then 

n[0,pl,i]:= (44.343*epsilon[cs,pl,i]^2-

8.708*epsilon[cs,pl,i]+0.8378)*n[0]: 

else n[0,pl,i]:= 0.4133*n[0]: 

end if: 

E[0.2,pl,i]:= (-

133.75*epsilon[cs,pl,i]^2+38.761*epsilon[cs,pl,i]+1.2097)*E[0.2]: 

 

if abs(epsilon[cs,pl,i]) <= 0.1 then 

n[0.2,1.0,pl,i]:= (-

68.301*epsilon[cs,pl,i]^2+15.932*epsilon[cs,pl,i]+1.0949)*n[0.2,1.0]: 

else n[0.2,1.0,pl,i]:=2.0251*n[0.2,1.0]: 

end if: 

epsilon[max,pl,i]:= (44.343*epsilon[cs,pl,i]^2-

8.708*epsilon[cs,pl,i]+0.8378)*epsilon[max]: 

 

e[0.2,pl,i]:=sigma[0.2,pl,i]/E[0,pl,i]: 

B[0,pl,i]:=0.018+e[0.2,pl,i]*((E[0,pl,i]/E[0.2,pl,i])-1): 

A[0,pl,i]:=B[0,pl,i]/(0.008+e[0.2,pl,i]*(sigma[1.0,pl,i]/sigma[0.2,pl,

i]-1)*(1-E[0,pl,i]/E[0.2,pl,i])): 

sigma[2.0,pl,i]:=sigma[0.2,pl,i]+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*(A[0,pl,i]^(1/n[0.2,1.0,pl,i]))*(1-((1/E[0.2,pl,i]-

1/E[0,pl,i])*sigma[0.2,pl,i])/B[0,pl,i])^(1/n[0.2,1.0,pl,i]): 

epsilon[2.0,pl,i]:= (sigma[2.0,pl,i]/E[0,pl,i])+0.02: 
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b[0,pl,i]:=(sigma[ult,pl,i]*(1+epsilon[ult,pl,i])-

sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i]))/(epsilon[ult,pl,i]-

epsilon[2.0,pl,i]): 

a[0,pl,i]:=sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i])-

b[0,pl,i]*epsilon[2.0,pl,i]: 

end do: 

for e from de by de while e <0.05 do 

for i from 0 by 1 to 10 do 

if sigma[i] < sigma[rs,i] then 

dsigma[x] :=  E[0,pl,i] / (1-nu^2)*de: 

dsigma[z] := nu *E[0,pl,i]/(1-nu^2)* de: 

else 

if sigma[i] <= sigma[0.2,pl,i] then  

eps:= X/(E[0,pl,i])+0.002*(X/(sigma[0.2,pl,i]))^n[0,pl,i]:  

else 

if sigma[i] <= sigma[2.0,pl,i] then  

eps:=(X-sigma[0.2,pl,i])/(E[0.2,pl,i])+(0.008+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*((1/E[0,pl,i])-(1/E[0.2,pl,i])))*((X-

sigma[0.2,pl,i])/(sigma[1.0,pl,i]-

sigma[0.2,pl,i]))^n[0.2,1.0,pl,i]+(sigma[0.2,pl,i])/(E[0,pl,i])+0.002: 

else 

eps:=(X-a[0,pl,i])/(b[0,pl,i]-X): 

end if: 

end if: 

dH:=subs(X=sigma[i],((diff(eps,X))-(1/E[0,pl,i]))^(-1)); 

depsilon[x]:= de; 

dsigma[z]:= E[0,pl,i]*(4/9*nu*sigma[i]^2*dH/E[0,pl,i]-(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-

1/3*sigma[z,i]))*depsilon[x]/(4/9*sigma[i]^2*dH*(1-

nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

dsigma[x]:= E[0,pl,i]*((2/3*sigma[z,i]-

1/3*sigma[x,i])^2+4/9*sigma[i]^2*dH/E[0,pl,i])*depsilon[x]/(4/9*sigma[

i]^2*dH*(1-nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-

1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

end if; 

if i = 0 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 

elif i = 10 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 

else 

ss[x]:= ss[x] + dsigma[x]; 

ss[z]:= ss[z] + dsigma[z]; 

ss[av]:= ss[av] + dsig[i]: 

end if: 

sigma[x,i]:= sigma[x,i] + dsigma[x]; 

sigma[z,i]:= sigma[z,i] + dsigma[z]; 

omega[i]:=sigma[z,i]/sigma[x,i]; 

dsig[i]:= abs(sqrt(sigma[x,i]^2+sigma[z,i]^2-sigma[z,i]*sigma[x,i]) - 

sigma[i]); 

sigma[i]:= max(sqrt(sigma[x,i]^2+sigma[z,i]^2-

sigma[z,i]*sigma[x,i]),sigma[i]); 

end do: 

sigma[yield]:= sqrt((ss[z]/10)^2+(ss[x]/10)^2-(ss[x]/10)*(ss[z]/10)): 

for ep from 1 to 500 by 1 do 
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if (e-beginning)=ep*precise then  

sigma[ep,plot]:=(ss[x]/10): 

epsilon[ep,plot]:=e:  

end if: 

end do: 

end do: 

sigma[x,yield]:=sigma[yield]: 

epsilon[yield,pl]:= e-sigma[yield]/E[0,pl,i]; 

ss[x]:= ss[x]/10; 

ss[z]:= ss[z]/10; 

sqrt(ss[z]^2+ss[x]^2-ss[z]*ss[x]); 

sigma[ep,plot]; 

epsilon[ep,plot];  

sigma[100,plot]; 

epsilon[100,plot]; 
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MODEL RS 
 

 

---------------------------------------- 

Material and geometrical characteristics 

---------------------------------------- 

material 
> E[0] :=191e3: 

nu := 0.3: 

sigma[y0] := 0.001: ##sigma[y0]>0.0001## 

sigma[0.2] :=268; 

sigma[ult]:=584; 

n[0]:=6.9; 

epsilon[ult] := min(1-sigma[.2]/sigma[ult],0.6);  

sigma[1.0] := 0.542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach 

found by analysing tension coupon test data 

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen 

n[0.2,1.0] := 3.6; 

t := 4.64; 

 

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen 

B[0]:=0.018+e[0.2]*((E[0]/E[0.2])-1); formula-Quach 

A[0]:=B[0]/(0.008+e[0.2]*(sigma[1.0]/sigma[0.2]-1)*(1-E[0]/E[0.2])); 

formula-Quach 

sigma[2.0]:=sigma[0.2]+(sigma[1.0]-

sigma[0.2])*(A[0]^(1/n[0.2,1.0]))*(1-((1/E[0.2]-

1/E[0])*sigma[0.2])/B[0])^(1/n[0.2,1.0]); formula-Quach 

epsilon[2.0]:= (sigma[2.0]/E[0])+0.02; 

b[0]:=(sigma[ult]*(1+epsilon[ult])-

sigma[2.0]*(1+epsilon[2.0]))/(epsilon[ult]-epsilon[2.0]); formula-

Quach 

a[0]:=sigma[2.0]*(1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach 

 

 

  

coiling curvature 
> Kappa[c] := 1/(450); 

 

circling or bending radius 
>  

w1:=0: 

w2:=0: 

ri:=73.58: 

radius :=ri+t/2; 

Kappa[cs]:= 1/radius; 

 

---------------------------------- 

F O R M I N G   P R O C E S S 

---------------------------------- 

loop for coiling and uncoiling  (small strain condition) 
> i:=-1: 

for y from (t/2) by (-t/10) while y > 0 do 

i:=i+1: 

axy[i]:=y: 

####coiling 

epsilon[z,cy]:= sigma[y0]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[z,c]:= Kappa[c]*y: 

if epsilon[z,cy] < epsilon[z,c] then 

e := 0: 

sigma[c]:= sigma[y0]: 
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omega[c]:= nu: 

 

for s from sigma[y0] by 0.5 to sigma[ult] while abs(e) 

<abs(epsilon[z,c]-epsilon[z,cy]) do 

ds:= s-sigma[c]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[c] := (4*nu*(subs(X=s,dH))*(1-omega[c]+omega[c]^2)-E[0]*(2-

omega[c])*(2*omega[c]-1))/(E[0]*(2*omega[c]-1)^2+4*(subs(X=s,dH))*(1-

omega[c]+omega[c]^2)): 

dom[c] := (2*(1-omega[c]+omega[c]^2)*(Omega[c]-omega[c]))/(s*((2-

omega[c])+Omega[c]*(2*omega[c]-1)))*ds: 

omega[c] := omega[c] + dom[c]: 

de :=  subs(X=omega[c],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[c] + subs(X=s,((1-

omega[c]^2)*(1-2*nu))/(E[0]*(1-2*omega[c])*sqrt(1-

omega[c]+omega[c]^2)))*ds; 

e:= de + e: 

sigma[c] := s: 

end do: 

sigma[z,c] := sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

sigma[x,c] := omega[c]*sigma[c]/sqrt(1-omega[c]+omega[c]^2): 

else  

sigma[z,c] := E[0]*epsilon[z,c]/(1-nu^2): 

sigma[x,c] := nu*E[0]*epsilon[z,c]/(1-nu^2): 

omega[c] := nu: 

end if: 

epsilon[c,pl]:=e-s/E[0]: 

#####uncoiling including flatening 

Kappa[u] := -Kappa[c]: 

Kappa[uy]:=-(sigma[c]*(1-nu^2)*(2-nu+(2*nu-1)*omega[c]))/(E[0]*y*(1-

nu+nu^2)*sqrt((1-omega[c]+omega[c]^2))): 

epsilon[z,uy] := (Kappa[c]+Kappa[uy])*y: 

epsilon[z,r] := 0: 

if abs(Kappa[uy]) < abs(Kappa[u]) then 

omega[uy] := ((1-nu^2)*omega[c]-nu*(2-nu))/((1-2*nu)*omega[c]-(1-

nu^2)): 

 

sigma[u]:= sigma[c]: 

omega[u]:= omega[uy]: 

e:=0: 

for s from sigma[u] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[z,uy] + epsilon[z,r] ) do 

ds := s - sigma[u]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 
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end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[u] := (4*nu*(subs(X=s,dH))*(1-omega[u]+omega[u]^2)-E[0]*(2-

omega[u])*(2*omega[u]-1))/(E[0]*(2*omega[u]-1)^2+4*(subs(X=s,dH))*(1-

omega[u]+omega[u]^2)): 

dom[u] := (2*(1-omega[u]+omega[u]^2)*(Omega[u]-omega[u]))/(s*((2-

omega[u])+Omega[u]*(2*omega[u]-1)))*ds: 

omega[u] := omega[u] + dom[u]: 

de :=  subs(X=omega[u],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[u] + subs(X=s,((1-

omega[u]^2)*(1-2*nu))/(E[0]*(1-2*omega[u])*sqrt(1-

omega[u]+omega[u]^2)))*ds; 

e:= de + e: 

sigma[u] := s: 

end do: 

sigma[u,i]:= sigma[u]: 

sigma[z,r,i]:= - sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

sigma[x,r,i]:= - omega[u]*sigma[u]/sqrt(1-omega[u]+omega[u]^2): 

else  

sigma[z,u]:= E[0]*Kappa[u]*y/(1-nu^2): 

sigma[x,u]:= nu*E[0]*Kappa[u]*y/(1-nu^2):  

sigma[z,r,i] := sigma[z,c]+sigma[z,u]: 

sigma[x,r,i] := sigma[x,c]+sigma[x,u]: 

omega[u,i]:= sigma[x,r,i]/sigma[z,r,i]: 

sigma[u,i]:=sigma[c]: 

s:=sigma[c]: 

end if: 

epsilon[u,pl]:=e-(s-sigma[c])/E[0]: 

epsilon[r,pl,i]:=epsilon[u,pl]+epsilon[c,pl]: 

#####bending for making circle (x-axis bending) 

epsilon[x,csy]:= sigma[u,i]*(1-nu^2)/(E[0]*sqrt(1-nu+nu^2)): 

epsilon[x,cs]:= Kappa[cs]*y: 

if epsilon[x,csy] < epsilon[x,cs] then 

e := 0: 

sigma[cs]:= sigma[u,i]: 

omega[cs]:= nu: 

 

for s from sigma[u,i] by 0.5 to sigma[ult] while abs(e) 

<abs(epsilon[x,cs]-epsilon[x,csy]) do 

ds:= s-sigma[cs]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[cs]:= (4*nu*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)-E[0]*(2-

omega[cs])*(2*omega[cs]-1))/(E[0]*(2*omega[cs]-

1)^2+4*(subs(X=s,dH))*(1-omega[cs]+omega[cs]^2)): 

dom[cs]:=((2*(1-omega[cs]+omega[cs]^2)*(Omega[cs]-omega[cs]))/(s*((2-

omega[cs])+Omega[cs]*(2*omega[cs]-1))))*ds: 

omega[cs]:= omega[cs] + dom[cs]: 

de:= subs(X=omega[cs],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[cs] + subs(X=s,((1-

omega[cs]^2)*(1-2*nu))/(E[0]*(1-2*omega[cs])*sqrt(1-

omega[cs]+omega[cs]^2)))*ds: 

e:= de + e: 
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sigma[cs]:= s: 

end do: 

sigma[z,cs,i] := sigma[z,r,i]+ omega[cs]*sigma[cs]/sqrt(1-

omega[cs]+omega[cs]^2): 

sigma[x,cs,i] := sigma[x,r,i]+sigma[cs]/sqrt(1-omega[cs]+omega[cs]^2): 

else  

sigma[z,cs,i]:= sigma[z,r,i]+nu*E[0]*epsilon[x,cs]/(1-nu^2): 

sigma[x,cs,i]:= sigma[x,r,i]+E[0]*epsilon[x,cs]/(1-nu^2): 

omega[cs] := sigma[z,cs,i]/sigma[x,cs,i]: 

end if: 

epsilon[cs,pl,i]:=e-s/E[0]: 

 

######Uncoiling for final shape 

Kappa[us] := -Kappa[cs]: 

Kappa[usy]:=-(sigma[cs]*(1-nu^2)*(2-nu+(2*nu-

1)*omega[cs]))/(E[0]*y*(1-nu+nu^2)*sqrt((1-omega[cs]+omega[cs]^2))): 

epsilon[x,usy] := (Kappa[cs]+Kappa[usy])*y: 

epsilon[x,rs] := 0: 

if abs(Kappa[usy]) < abs(Kappa[us]) then 

omega[usy] := ((1-nu^2)*omega[cs]-nu*(2-nu))/((1-2*nu)*omega[cs]-(1-

nu^2)): 

 

sigma[us]:= sigma[cs]: 

omega[us]:= omega[usy]: 

e:=0: 

for s from sigma[us] by 0.5 to sigma[ult] while abs(e) < 

abs(epsilon[x,usy] + epsilon[x,rs]) do 

ds := s-sigma[us]: 

if s <= sigma[0.2] then  

eps:= X/(E[0])+0.002*(X/(sigma[0.2]))^n[0]:  

else if s <= sigma[2.0] then  

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+(sigma[1.0]-sigma[0.2])*((1/E[0])-

(1/E[0.2])))*((X-sigma[0.2])/(sigma[1.0]-

sigma[0.2]))^n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002: 

else 

eps:=(X-a[0])/(b[0]-X): 

end if: 

end if: 

dH:=((diff(eps,X))-(1/E[0]))^(-1): 

Omega[us] := (4*nu*(subs(X=s,dH))*(1-omega[us]+omega[us]^2)-E[0]*(2-

omega[us])*(2*omega[us]-1))/(E[0]*(2*omega[us]-

1)^2+4*(subs(X=s,dH))*(1-omega[us]+omega[us]^2)): 

dom[us] := (2*(1-omega[us]+omega[us]^2)*(Omega[us]-omega[us]))/(s*((2-

omega[us])+Omega[us]*(2*omega[us]-1)))*ds: 

omega[us] := omega[us] + dom[us]: 

de := subs(X=omega[us],(((1-2*X)^2-2*nu*(1-2*X)*(2-X)+(2-

X)^2)*s)/(2*E[0]*(1-2*X)*(1-X+X^2)^(3/2)))*dom[us] + subs(X=s,((1-

omega[us]^2)*(1-2*nu))/(E[0]*(1-2*omega[us])*sqrt(1-

omega[us]+omega[us]^2)))*ds; 

e:= de + e: 

sigma[us]:=s: 

end do: 

sigma[us,i]:= sigma[us]: 

sigma[z,rs,i]:= - omega[us]*sigma[us]/sqrt(1-omega[us]+omega[us]^2): 

sigma[x,rs,i] := - sigma[us]/sqrt(1-omega[us]+omega[us]^2): 

epsilon[i]:=e: 

epsilon[us,pl,i]:=e-(s-sigma[cs])/E[0]: 

epsilon[rs,pl,i]:=epsilon[us,pl,i]+epsilon[cs,pl,i]: 

else  

sigma[z,us,i] :=nu*E[0]*Kappa[us]*y/(1-nu^2): 

sigma[x,us,i] := E[0]*Kappa[us]*y/(1-nu^2):  

sigma[z,rs,i] := sigma[z,cs,i]+sigma[z,us,i]: 
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sigma[x,rs,i] := sigma[x,cs,i]+sigma[x,us,i]: 

omega[us,i]:= sigma[x,rs,i]/sigma[z,rs,i]: 

sigma[us,i]:= sigma[cs]: 

sigma[cs]:=s: 

epsilon[i]:=Kappa[us]*y: 

epsilon[us,pl,i]:=0: 

epsilon[rs,pl,i]:=epsilon[us,pl,i]+epsilon[cs,pl,i]: 

end if: 

end do: 

 

using simmetry for whole thickness data 
> axy[5]:=0: 

sigma[us,5]:=sigma[y0]: 

sigma[z,rs,5]:=sigma[y0]*(1-nu^2)/(E[0]): 

sigma[x,rs,5]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

epsilon[rs,pl,5]:=0: 

sigma[cs,5]:=sigma[y0]: 

sigma[z,cs,5]:=sigma[y0]*(1-nu^2)/(E[0]*nu): 

sigma[x,cs,5]:=sigma[y0]*(1-nu^2)/(E[0]): 

epsilon[cs,pl,5]:=0: 

 
> for i from 0 by 1 to 4 do 

axy[10-i]:= -axy[i]: 

sigma[us,10-i]:= sigma[us,i]: 

sigma[z,rs,10-i]:= -sigma[z,rs,i]: 

sigma[x,rs,10-i]:= -sigma[x,rs,i]: 

epsilon[rs,pl,10-i]:= epsilon[rs,pl,i]: 

sigma[cs,10-i]:= sigma[cs,i]: 

sigma[z,cs,10-i]:= -sigma[z,cs,i]: 

sigma[x,cs,10-i]:= -sigma[x,cs,i]: 

epsilon[cs,pl,10-i]:= epsilon[cs,pl,i]: 

end do: 

 

####Spring back 

M[t]:=0: 

for i from 0 by 1 to 10 do 

if i=0 then 

M[i]:=(sigma[x,rs,i]*axy[i]*t/10)/2: 

elif i=10 then 

M[i]:=(sigma[x,rs,i]*axy[i]*t/10)/2: 

else 

M[i]:=sigma[x,rs,i]*axy[i]*t/10: 

end if: 

M[t]:=M[t]+M[i]: 

end do: 

Iy:=1*t^3/12: 

###Final stress(including spring back) 

for i from 0 by 1 to 10 do 

epsilon[x,sb,i]:= M[t]*axy[i]/(Iy*E[0]): 

sigma[x,sb,i]:=epsilon[x,sb,i]*E[0]: 

sigma[z,sb,i]:=nu*epsilon[x,sb,i]*E[0]: 

sigma[z,pb,i]:=sigma[z,rs,i]-sigma[z,sb,i]: 

sigma[x,pb,i]:=sigma[x,rs,i]-sigma[x,sb,i]: 

end do: 
 

 

Stress strain diagram after press breaking in longitudinal direction 
> for i from 0 by 1 to 10 do 

sigma[z,i]:=sigma[x,pb,i]; 

sigma[x,i]:=sigma[z,pb,i]; 

sigma[i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 
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sigma[rs,i]:= sqrt(sigma[x,pb,i]^2+sigma[z,pb,i]^2-

sigma[x,pb,i]*sigma[z,pb,i]); 

omega[i]:=sigma[z,i]/sigma[x,i]; 

end do: 

> precise:= 0.0001; 

beginning:= 0; 

de:= 1e-5; 

e:=0: 

ss[z] := 0: 

ss[x] := 0: 

ss[av] := 0: 

for i from 0 by 1 to 10 do 

 

E[0,pl,i] :=E[0]: 

nu :=0.3: 

sigma[0.2,pl,i]:= (-

26.857*epsilon[rs,pl,i]^2+9.1674*epsilon[rs,pl,i]+1.0206)*sigma[0.2]: 

sigma[1.0,pl,i]:= (-

30.334*epsilon[rs,pl,i]^2+10.314*epsilon[rs,pl,i]+1.0366)*sigma[1.0]: 

sigma[ult,pl,i]:= sigma[ult]: 

epsilon[ult,pl,i]:= (12.209*epsilon[rs,pl,i]^2-

4.4781*epsilon[rs,pl,i]+1.00272)*epsilon[ult]: 

n[0,pl,i]:= (44.343*epsilon[rs,pl,i]^2-

8.708*epsilon[rs,pl,i]+0.8378)*n[0]:  

E[0.2,pl,i]:= (-

133.75*epsilon[rs,pl,i]^2+38.761*epsilon[rs,pl,i]+1.2097)*E[0.2]: 

n[0.2,1.0,pl,i]:= (-

68.301*epsilon[rs,pl,i]^2+15.932*epsilon[rs,pl,i]+1.0949)*n[0.2,1.0]: 

epsilon[max,pl,i]:= (44.343*epsilon[rs,pl,i]^2-

8.708*epsilon[rs,pl,i]+0.8378)*epsilon[max]:  

 

e[0.2,pl,i]:=sigma[0.2,pl,i]/E[0,pl,i]: 

B[0,pl,i]:=0.018+e[0.2,pl,i]*((E[0,pl,i]/E[0.2,pl,i])-1): 

A[0,pl,i]:=B[0,pl,i]/(0.008+e[0.2,pl,i]*(sigma[1.0,pl,i]/sigma[0.2,pl,

i]-1)*(1-E[0,pl,i]/E[0.2,pl,i])): 

sigma[2.0,pl,i]:=sigma[0.2,pl,i]+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*(A[0,pl,i]^(1/n[0.2,1.0,pl,i]))*(1-((1/E[0.2,pl,i]-

1/E[0,pl,i])*sigma[0.2,pl,i])/B[0,pl,i])^(1/n[0.2,1.0,pl,i]): 

epsilon[2.0,pl,i]:= (sigma[2.0,pl,i]/E[0,pl,i])+0.02: 

b[0,pl,i]:=(sigma[ult,pl,i]*(1+epsilon[ult,pl,i])-

sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i]))/(epsilon[ult,pl,i]-

epsilon[2.0,pl,i]): 

a[0,pl,i]:=sigma[2.0,pl,i]*(1+epsilon[2.0,pl,i])-

b[0,pl,i]*epsilon[2.0,pl,i]: 

end do: 

for e from de by de while e <0.3 do 

for i from 0 by 1 to 10 do 

if sigma[i] < sigma[rs,i] then 

dsigma[x] :=  E[0,pl,i] / (1-nu^2)*de: 

dsigma[z] := nu *E[0,pl,i]/(1-nu^2)* de: 

else 

if sigma[i] <= sigma[0.2,pl,i] then  

eps:= X/(E[0,pl,i])+0.002*(X/(sigma[0.2,pl,i]))^n[0,pl,i]:  

else 

if sigma[i] <= sigma[2.0,pl,i] then  

eps:=(X-sigma[0.2,pl,i])/(E[0.2,pl,i])+(0.008+(sigma[1.0,pl,i]-

sigma[0.2,pl,i])*((1/E[0,pl,i])-(1/E[0.2,pl,i])))*((X-

sigma[0.2,pl,i])/(sigma[1.0,pl,i]-

sigma[0.2,pl,i]))^n[0.2,1.0,pl,i]+(sigma[0.2,pl,i])/(E[0,pl,i])+0.002: 

else 

eps:=(X-a[0,pl,i])/(b[0,pl,i]-X): 

end if: 
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end if: 

dH:=subs(X=sigma[i],((diff(eps,X))-(1/E[0,pl,i]))^(-1)); 

depsilon[x]:= de; 

dsigma[z]:= E[0,pl,i]*(4/9*nu*sigma[i]^2*dH/E[0,pl,i]-(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-

1/3*sigma[z,i]))*depsilon[x]/(4/9*sigma[i]^2*dH*(1-

nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

dsigma[x]:= E[0,pl,i]*((2/3*sigma[z,i]-

1/3*sigma[x,i])^2+4/9*sigma[i]^2*dH/E[0,pl,i])*depsilon[x]/(4/9*sigma[

i]^2*dH*(1-nu^2)/E[0,pl,i]+(2/3*sigma[z,i]-

1/3*sigma[x,i])^2+(2/3*sigma[x,i]-

1/3*sigma[z,i])^2+2*nu*(2/3*sigma[z,i]-

1/3*sigma[x,i])*(2/3*sigma[x,i]-1/3*sigma[z,i])); 

end if; 

if i = 0 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 

elif i = 10 then 

ss[x]:= ss[x] + 0.5 * dsigma[x]; 

ss[z]:= ss[z] + 0.5 * dsigma[z]; 

ss[av]:= ss[av] + 0.5 * dsig[i]: 

else 

ss[x]:= ss[x] + dsigma[x]; 

ss[z]:= ss[z] + dsigma[z]; 

ss[av]:= ss[av] + dsig[i]: 

end if: 

sigma[x,i]:= sigma[x,i] + dsigma[x]; 

sigma[z,i]:= sigma[z,i] + dsigma[z]; 

omega[i]:=sigma[z,i]/sigma[x,i]; 

dsig[i]:= abs(sqrt(sigma[x,i]^2+sigma[z,i]^2-sigma[z,i]*sigma[x,i]) - 

sigma[i]); 

sigma[i]:= max(sqrt(sigma[x,i]^2+sigma[z,i]^2-

sigma[z,i]*sigma[x,i]),sigma[i]); 

end do: 

sigma[yield]:= sqrt((ss[z]/10)^2+(ss[x]/10)^2-(ss[x]/10)*(ss[z]/10)): 

for ep from 1 to 3000 by 1 do 

if (e-beginning)=ep*precise then  

sigma[ep,plot]:=(ss[x]/10): 

epsilon[ep,plot]:=e:  

end if: 

end do: 

end do: 

sigma[x,yield]:=sigma[yield]: 

epsilon[yield,pl]:= e-sigma[yield]/E[0,pl,i]; 

ss[x]:= ss[x]/10; 

ss[z]:= ss[z]/10; 

sqrt(ss[z]^2+ss[x]^2-ss[z]*ss[x]); 

sigma[ep,plot]; 

epsilon[ep,plot];  

sigma[100,plot]; 

epsilon[100,plot]; 
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Appendix G 

Collected data of corner radii 

Press-braked sections 

Published by Material grade ri/t Published by Material grade ri/t 

            

Van der Berg et 

al.[40] 

1.4301 

1.99 

Coetzee et al. 

[64] 

1.4301 

1.28 

2.22 2.24 

3.4 2.23 

3.43 1.15 

4.43 

1.4401 

1.42 

4.47 2.05 

5.75 2.13 

5.85 1.37 

6.63 

1.4003 

1.35 

7.03 2.2 

1.4512 

1.8 2.25 

1.87 1.38 

3 

Lecce et al. 

[65] 

1.4301 

2.04 

3.26 2.04 

4.2 2.04 

4.31 2.04 

5.36 1.53 

5.97 1.53 

6.24 

1.4003 

2.02 

7.09 2.02 

1.4016 

1.94 1.52 

2.39 1.52 

3.12 

1.4016 

2.15 

3.53 2.21 

4.32 2.21 

4.61 2.21 

5.3 2.21 

6.09 2.21 

6.54 2.21 

7.27 2.21 

1.4003 

1.61 2.21 

2.25   
  

  

3.08   
  

  

3.16   
  

  

4.09   
  

  

4.33   
 

MAX 7.27 

5.1   
 

MIN 1.15 

5.64   

 

MEAN 3.31 

6.25   

 

SD 1.78 

6.7     MEAN + 2SD 6.87 

 

Table G.0.1 Collected data for press-braked sections. 
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Cold-rolled sections 

Published by Material grade 
ri/t 

Published by Material grade ri/t 

            

Afshan et al. 

[47] 

1.4301 0.51 

Ganping Shu et 

al. [7] 
1.4301 

0.60 

  0.38 0.75 

1.4301/1.4307 1.19 0.81 

  1.48 0.76 

1.4301/1.4307 1.26 0.73 

  1.14 0.61 

1.4571 1.08 0.65 

  1.27 0.56 

1.4571 1.22 0.38 

  1.27 0.37 

1.4404 1.24 0.90 

  1.43 0.87 

1.4404 1.15 1.10 

  1.34 1.28 

1.4509 1.32 0.85 

  1.31 0.75 

1.4509 0.87 

Gardner et al. 

[56] 
1.4318 

1.30 

  0.86 0.81 

1.4509 0.79 1.30 

  0.77 1.47 

1.4003 1.37 0.98 

  1.47 0.98 

1.4003 1.27 1.31 

  1.49 1.31 

1.4162 1.39 

Gardner et al. 

[38] 
1.4301 

0.84 

  1.39 1.18 

S355J2H 1.55 0.68 

  1.42 1.57 

S355J2H 0.77 0.93 

  0.77 1.46 

S355J2H 0.72 

Huang et al. 

[29] 
1.4162 

0.70 

  0.78 0.67 

S355J2H 1.14 0.40 

  1.27 0.40 

Rasmussen et 

al. [66] 
1.4301 0.83 

0.48 

Gardner  

[42] 
1.4301 

1.20 0.81 

0.68   
  

  

1.60   
 

MAX 1.60 

0.92   
 

MIN 0.37 

1.46   

 

MEAN 1.02 

Gardner et al. 

[67] 
1.4318 

1.31   

 

SD 0.34 

0.99     MEAN + 2SD 1.69 

 

Table G.0.2 Collected data for cold-rolled sections. 
 


