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Abstrakt

Korozivzdorna ocel je specificky material, ktery se svym chovanim li§i od uhlikové
oceli, coz vyzaduje odliSny pfistup pfi navrhovani stavebnich konstrukci. Jednim
Z hlavnich znak vSech korozivzdornych oceli, ktery doposud nebyl uspokojiveé
prozkoumén a nebyl zohlednén VvV normach pro navrhovani, je vyraznd zmeéna
pracovniho diagramu zpisobend tvafenim za studena béhem vyroby zejména dutych
prafezl. V poslednich desetiletich byly stanoveny rizné vztahy pro popis zakladnich
materidlovych charakteristik téchto profild, které vyuzivaji rozdilnych parametrii
potiebnych pro vypocet a ziskavaji i rozli¢né vysledné hodnoty. Nekteré jsou presnéjsi
pro mala pretvofeni (oCekavand ve stavebnich konstrukcich), jiné jsou presnéjsi pro
vyss$i hodnoty deformace. Soucasné publikovany vyzkum se také lisi ve stanoveni
zakladnich materidlovych charakteristik jako modulu pruznosti, parametrech
nelinearity, smluvni meze kluzu a pevnosti ¢i taznosti. Zvlasté pro za studena tvarené
oceli se tyto veli¢iny mohou vyznamné lisit.

Nize uvedeny vyzkum zahrnuje experimentdlni program zaméfeny na zkousSky
netvafreného 1 tvafeného materidlu ze ¢tyt druhti oceli: austenitické (1.4404), feritické
(1.4003), austeniticko-feritické = duplexni (1.4462) a nizkolegované austeniticko-
feritické, tzv. lean-duplexni (1.4162). Tyto vybrané druhy reprezentuji nejvice
pouzivané typy korozivzdornych oceli pro konstrukéni ucely zpracovavané tvairenim
zastudena. Ziskana data spolecné s ostatnimi dostupnymi vysledky dalSich vyzkumi
slouzi jako podklad pro analytickou Cast prace.

Hlavnim tkolem diserta¢ni prace bylo stanovit analytické feSeni pro popis pracovniho
diagramu celého prifezu vyrobeného pomoci tvafeni za studena do formy hranaté
nebo kruhové trubky. Dalsim cilem bylo urcit vztahy pro dal$i mechanické vlastnosti
prufezu, jako jsou taznost nebo mez pevnosti, jelikoz tato problematika nebyla dosud
dostate¢né prozkoumana. Uvedené zavéry mohou pfispét k nejnovejsim postuplim pro
navrhovani a pomoci zptesnit vypocty metodou konecnych prvkl vyuzivajici zvySené
mechanické vlastnosti zastudena tvarenych prvkd.

Kli¢ova slova: korozivzdorna ocel, pracovni diagram, tvafeni zastudena, mechanické
vlastnosti.



Abstract

Stainless steel is material of many specific properties. Structural behaviour
significantly differs from carbon steel and demands more sophisticated structure
design. One of the main attributes of all stainless steel grades that haven't been
satisfactorily investigated is the significant change of stress-strain behaviour due to
cold-forming in fabrication process of structural elements. In the last decades some
proposals for the most basic material properties have been developed. These models
work with various material parameters and result in different values. Some of them
show a good agreement in the range of strain expected in service of load-bearing
structures, other are in good agreement at higher strains. Current experimental results
obtained from the recent approaches demonstrate also different values for basic
material characteristics, especially for the modulus of elasticity, parameters of
nonlinearity, 0.2% proof strength, ultimate tensile strength or ductility. Particularly,
material properties of steel in cold worked conditions can differ a lot as it is stated
herein.

Presented research project involves testing programme focused on virgin and cold-
worked elements of four stainless steel grades: austenitic (1.4404), ferritic (1.4003),
duplex (1.4462) and lean duplex (1.4162). Selected grades represent the most used
families of stainless steel specific for structural purposes and used for section
fabricating via cold-forming. Gathered data together with other available experimental
results serve as a base for the analytical part of the thesis.

The main task of the thesis was to establish an analytical solution for a stress-strain
diagram of a whole structural section represented by rectangular or circular hollow
sections. Further objective was to establish relationships for mechanical properties
such as ductility or ultimate strength as these issues of current research have not been
sufficiently investigated yet. Conclusions stated herein might contribute to the newest
design codes and help to precise finite element analyses using enhanced properties of
cold-worked stainless steel.

Key words: stainless steel, stress-strain diagram, cold-forming, mechanical properties
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Chapter 1

Introduction

1.1 Foreword

Stainless steel is a relatively new and widely used material, which price generally
ranges about three to six times the carbon steel price. Therefore stainless steel is
demanded for relatively low thickness section members where the material is effectively
used as much as possible, for the aesthetic sheeting, architectural important objects or
for members, situated in the high corrosive environment, with long-term durability
requirements. Full use of material benefits might contribute to decreasing of
construction costs and environmental impact. Also continual increasing demand of
stainless steel products require new approaches for the design as they become one of the
most exposed members in structures with relatively high acquisition costs and
aesthetical appearance.

Relatively high acquisition costs determine stainless steel structure to be used in harsh
environment, for constructions with limited access for maintenance or due to high
quality of surface finish, for architectural important structures, for offshore structures or
pedestrian bridges. More and more stainless steel is used also for traditional bridge
construction allowing decrease of maintenance costs and avoiding corrosion losses
estimations (e.g. as it stated in recent studies for weathering steel [1]).


http://www.rewin.cz/WebForm1.aspx?slovo=717561647275706C65&smer=0
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In addition, there is a new progressive method for considering the whole life costs with
respect to sustainability and environmental impact, Life — cycle costing. It affects
choice of material for main load-bearing structure in terms of initial, operating costs and
residual value of material. From this point of view stainless steel distinguish by minimal
maintenance and residual costs. Thus increase of stainless steel constructions could be
expected. Therefore the thesis is aimed at structural applications which efficient use in
designing is demanded for.

1.2 Stainless steel for structural purposes

Stainless steel differs in chemical composition in comparison with carbon steel a lot.
Corrosion resistance is given by chromium (an essential alloy with minimal content of
10.5%), molybdenum and nitrogen content. Stainless steel may contain also carbon,
nickel, manganese, copper, silicon, phosphorus, sulphur and niobium or titanium.

Traditionally structural stainless steel is divided into several basic groups according to
its microstructure. These main groups represent austenitic, ferritic, duplex (i.e. ferritic -
austenitic), martensitic and precipitation-hardening grades (see Figure 1.1). Each group
differs in material properties, corrosion resistance or way of fabrication. For structural
purposes the first three ones are the mostly used.
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Austenitic steels
15 p /
/
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/ Ferritic-
/ austenitic
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N
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; TSRS
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0 E )
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Figure 1.1  Stainless steel grades according to content of nickel and
chromium [2]

Austenitic Grades

The austenitic family is the most commonly used, especially grades: 1.4301 (widely
known as 304 according to the American standard AISI) and 1.4401 (known as 316).
Other widespread grades are 1.4404 (known as 316L) and 1.4307 (known as 304L).
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They are characterized by non-magnetism, excellent behaviour in elevated temperatures
(see Figure 1.2), very high ductility, good corrosion resistance and they are readily
weldable. All properties mentioned determine them to use for cold-formed sections,
applications demanding high plastic deformations and for applications exposed to high
temperatures.
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Figure 1.2 Reduction factor for yield (proof) strength under fire: comparison
of carbon and stainless steel [3]

Ferritic Grades

Ferritic steels almost do not contain nickel. They are mostly poorly weldable,
characterized by low ductility. Their advantage is stable low price and good corrosion
resistance. These grades are generally used for exhaust systems, domestic equipment or
building sheeting. Quite new grades have been joined for structural purposes, i.e. 1.4509
which exhibits improved weldability with workability and 1.4521 with improved
corrosion resistance.

Austenitic-ferritic (Duplex) Grades

Duplex steels contain larger content of chromium and lower nickel content. It is
relatively equal mix of two phases — ferritic and austenitic. They exhibit high strength
and corrosion resistance with relatively high ductility and good weldability. Enhanced
properties are in balance with high price. In case of duplex steels there is a new grade of
lean-duplex (low alloy duplex) steel 1.4162 with reduced content of nickel and
molybdenum. It keeps similar mechanical and corrosion properties in comparison with
duplex grades, but lower price as well. Main application field is their use for exposed
bridge load-bearing elements.
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Martensitic Grades

Martensitic grades are hard steels exhibiting magnetism and high strength with low
ductility and toughness used for bearings etc.

Precipitation Hardening Grades

The precipitation hardening stainless steels have properties similar to a mix of
martensitic and austenitic steels. They can be heat treated to provide high tensile
strengths. They are used in the specific applications such as nuclear and aerospace
industry.

In case of structural section fabrication there are several main production methods, i.e.
hot-rolling, cold-rolling and press-braking when a sheet material is formed into the final
shape by individual bends. Current product market offers mostly cold-rolled sections.

1.3 Fabrication

The final stainless steel products involve thin and thick plates sheet, bars, hollow
sections, both hot-rolled and cold-rolled open cross sections etc. The most common are
circular, square and rectangular hollow sections (CHS, SHS, RHS), thick-walled H, |
cross sections, thin-walled U, C or angles. Structural section production is shown in
Figure 1.3). In civil engineering, stainless steel is mainly used in lightweight structures
as thin-walled cold-rolled or cold-formed structure elements due to the high efficiency,
ease of transport and handling on site.

The two main cold forming routes are press-braking and cold-rolling.

Cold-rolled structural cross sections represent the most widely used stainless steel
sections for members in civil engineering. The principle of fabrication process can be
described as passing a coiled sheet through series of shaped rollers to form both open
and hollow section types. Cold rolling allows producing of large volumes of the
identical structural sections with low fabrication tolerances. The hollow sections
production route using flat material allows manufacturing more than one box size with
the same size of rolls. This means it does not require change of rollers and thus it is
possible to produce small batches without greater costs.

Press-braking is a process of cold-forming of sections from a flat sheet. Longitudinal
fold is being created along the sheet by a tool pressing the material into a die. This
process is used to create open sections such as angles and channels. Drawbacks of the
press-braking are limited sort of cross section fabricated and shorter length of the final
products (according to the manufacturing machine). It is particularly used for small
batches of bespoke sections or for cross section prototypes.
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Molten stainless steel from electric arc furnace
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Figure 1.3 Structural section production [4]

1.4 Mechanical properties of stainless steel

Stainless steel is specific material. Main difference between common carbon steel and
stainless steel is nonlinearity of stress-strain diagram (see Figure 1.4). Stainless steel
doesn’t exhibit well-defined yield strength similar to aluminium alloys. Therefore the
02 1S traditionally used, defined as a stress value for which plastic strain 0.2 % remains
after unloading. Curvature of stress-strain diagram is dependent on material grade or
level and type of cold-forming. Basic and essential material characteristics for stress-
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strain diagram description are initial tangent modulus of elasticity, yield strength (0.2%
proof strength) and parameters of nonlinearity (see Figure 1.5).
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Figure 1.4  Typical tension stress-strain diagram in annealed
condition for selected stainless and carbon steel [5]
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Figure 1.5 Basic parameters used for the stress-strain diagram of
stainless steel description [6]

If stainless steel is cold-worked, it exhibits different mechanical properties in tension
and compression, known as non-symmetry in stress-strain behaviour. Stainless steel
also tends to demonstrate anisotropy in respect to the rolling direction (see Figure 1.6).
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Figure 1.6  Typical stress-strain diagram for cold-worked stainless
steel 1.4318, level C850 [5]

In terms of stress-strain non-symmetry Shu et al. [7] observed within RHS and SHS
testing that the proof strength oo, of the coupon made of the flat part in tension is
slightly higher than the proof strength oy, of the coupon in compression. Executed tests
for flat parts proved that the non-linearity parameter n is lower in tension than in
compression. But differences for low levels of cold-working may be small, hence we
can usually consider the values of oy, and non-linearity parameter n (see section 3.2)
the same for tension and for compression. Also the value of initial modulus of elasticity
was measured the same both for tension and compression.

Rossi et. al [8] analysed and compared available data of the 0.2% proof strength for
tension and compression (see Figure 1.7). Results show 5% decrease for compression in
comparison with tension in cold formed material.
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Numerical simulations performed at University of Sydney [9] proved negligible impact
of anisotropy for common structural elements with difference of ultimate strength lower
than 1% within elastic-plastic material model consideration.

It should be noted anisotropy increases with a level of cold-working (see section 4.3). If
higher level of plastic deformation in one direction is induced the higher difference
between strain hardening in the same and the transverse direction will be pronounced.
Enhanced 0.2% proof strength is higher in the direction of original plastic deformation
than in the transverse direction. Hence, where there is no dominant direction of loading
the nominal value of the strength in transverse direction should be used in design as the
safe value.

1.5 Cold - forming

In cold-formed sections plastic deformation occurs during the fabrication process, that
increases the yield strength and ultimate tensile strength [2], but decreases ductility (see
Figure 1.8). This increase is partially caused due to transformation of austenite to
martensite. The transformation process is dependent on the forming rate and material
temperature during forming process. The low the temperature induced the higher
content of martensite will occur. Strength increase is dependent on alloying elements,
especially on nickel and chromium content.
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Figure 1.8 Cold forming effect [2]
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1.6 Plastic deformation and plasticity

Plastic deformation of structural element means permanent deformation remaining after
unloading. It occurs, when material under load exceeds yield point or yield surface in
the stress space (in fact the proportional limit). The simplest model of the stress space
consists of elastic stress state and plastic stress state.

For ductile materials such as metals, the simplest and most common material model of
yield condition is von Mises criterion (see Figure 1.9). The material is assumed to be
perfectly elastic-plastic (i.e. hardening caused by cold forming is not accounted for).

A

von Mises yield surface

S

Tresca yield surface

Figure 1.9  Comparison of von Mises yield surface with Tresca yield
surface [10]

The simplest model describing strength increase is isotropic hardening. The new yield
surface after particular hardening is affine in respect to the original one. The loading
surfaces can be obtained from the form of the previous yield function by the different
yield stress value (Figure 1.10).

Figure 1.10  a) uniaxial stress strain diagram, b) evolution of the yield
surface in the biaxial stress plane [11]

This model does not involve the Bauschinger effect. In case when the material is
preloaded into the plastic range in one direction and then reloaded in another direction,
Bauschinger effect (i.e. the different yield values for different axis due to internal or
residual stresses and dislocations structures) occurs. A model affecting this behaviour is
called kinematic hardening. The current loading surface is assumed not to expand, but
to move as a unit as it is introduced in Figure 1.11.
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Figure 1.11  a) uniaxial stress strain diagram, b) evolution of the yield
surface in the biaxial stress plane [11]

However, the kinematic hardening is not even in agreement with the real material
response (see Figure 1.12). Hence, advanced multiple surface models for stainless steel
respecting hardening, Bauschinger effect, different plastic moduli were proposed by
Granlund[12] or Olsson[13].

Kinematic hardening
model

|
\
LY

_____ _| — — & Isotropic hardening
model

Figure 1.12  Comparison of material response with simple models [10]

Fabrication routes involve more complex processing of the material than simple
uniaxial loading and hardening. Structural section fabricating consists of coiling,
bending and other steps. That makes the stress and strain state very complicated and
difficult to describe.

For instance, practical description of stress distribution and neutral surface location in
sheet bend after plastic deformation induction was set out by Hill [14].
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Chapter 2

Thesis objectives and thesis outline

The recent formulas or suggestions don’t involve all possibilities and ranges of the cold-
forming and determine only a few material properties. They particularly contain
methods for the specification of the yield strength especially in corner areas and flat
parts of sections. In addition these methods are limited in use as they concern specific
bending methods and steel grades. In civil engineering, sections bent in different angles,
CHS, RHS or oval sections made of different steel grades are often used. Different
bending processes have been recently concerned by Rossi et al. with sophisticated finite
element modelling [15].

Demands of more efficient use of high cost materials require constant research efforts to
establish new progressive and safe methods that can satisfy them. In case of stainless
steel various materials offer wide field for enhancing of current relationships.
Considering the high degree of the cold-forming in most of the stainless steel sections, it
would be very favourable to employ the enhancing effect into calculations. That leads to
the significant precision and effectiveness in member design. For members subjected to
tension it implies strong increase of resistance, however for buckling mode there is
possible resistance decrease (related to the enhanced tensile resistance) due to the higher
proportion of the non-linearity.

11
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Chapter 2: Thesis objectives and thesis outline

The research covers the basic austenitic, duplex, ferritic and also lean duplex stainless
steel grades.

The main objective of the thesis is to contribute to determining of stress-strain response
and fundamental mechanical properties for whole sections of cold-rolled hollow
sections.
The aim of the research presented herein can be divided into 2 parts:

1) Experimental research including data collection

2) Analytical modelling of forming process

1) Experimental research including data collection

The aim was to establish experimental data for further use in advanced material
modelling in terms of stress-strain response of the main stainless steel families. The
various proportion of the plastic strain was induced and measured at experimental
patterns. Afterwards tensile tests of specimens were performed. Set of experiments was
executed to record the most important mechanical properties of austenitic, ferritic and
duplex grades. Both virgin and cold-worked samples serve for further evaluation of
different cold-formed material modelling and as a base for use of enhanced structural
stainless steel properties. Detailed description of the experimental programme is stated
in the separate Chapter 4. Results obtained from the tests are supposed to be employed
for an analytical model of stress-strain behaviour.

2) Analytical modelling of forming process

The thesis compares previously published relationships for enhanced mechanical
properties with own conclusions stated in the thesis. It is focused on prediction of
material properties such as the non-linearity degree of the stress-strain diagram or the
ductility.

Gradually there is introduced an analytical description for a corner and a flat face of
hollow sections. Finally, there is established a solution for the whole section stress-
strain description based on the analytical models (see Chapter 5) describing stress-strain
behaviour which might lead to more accurate structure design. The formulas
determination for the cold-forming effect resulted from the analytical model was
calibrated and verified by recent experimental data.

Conclusions of the presented experimental programme and material modelling may
serve as a base for possible extension of the design standard EN 1993-1-4 [16].

12



Chapter 3

L iterature review

3.1 Foreword

Stainless steel has been researched for several decades whilst cold-forming (resp. cold-
working) effect on stainless steel has been researched for approximately 25 years and
results of research have been utilized for only one design method (valid in Europe),
which has been nowadays used in the National annex of British Standard EN 1993-1-4.
There are several important research workplaces including e.g. Imperial College
London, Hong Kong Polytechnic University, The University of Hong Kong,
Polytechnic University of Catalonia, KU Leuven and University Liege. These
institutions are considered to be major centres of stainless steel research.

This chapter summarizes recent relationships, approaches and data related to stainless
steel mechanical properties. Especially, there are mentioned stress-strain models with
methods for determination of enhanced strength in corners and flat faces of rectangular
hollow sections. The chapter compares codified mechanical properties for stainless steel
according to different design standards as well.
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Chapter 3: Literature review

3.2 Stress — strain diagram description

J.L. Holmquist and A. Nadai [17] in 1939 investigated plastic collapse of tubes under
external pressure. It was found that the resistance to collapse depends on the shape of
the stress-strain curve. Because of different kind of materials (such as carbon steel,
stainless steel or even brass) not all pronouncing a well-defined yield point a new stress-
strain function was used [17]:

o
&= E_o o< 0, (3.1)
o o-0,\"
8=E)+gy (O'y—(5p> c>0, (3.2)

where &, denotes plastic strain at yield strength oy, o, — proportional limit,
Eo — Young’s modulus, n — nonlinearity parameter.

Later Ramberg and Osgood [18] in 1943 contributed to the research of the stainless
steel stress-strain behaviour. They published the three-parameters expression for the
stress-strain diagram of chrome-nickel, aluminium alloy and carbon steel, which
idealised notation related to 0.2% plastic strain of elongation was obtained as:

o o

s K (E_o) (3.3)

The expression was modified one year later by Hill [19] in following equation:

gzi-l—c <i> (3.4)
Ey \R,

where R, denotes proof strength and ¢ corresponding plastic strain.

Thus, the formula (for generally adopted 0.2% proof strength) is given by:
J+0002( i ) (3.5)
E=— . — .
Ey 00.2

where the Ramber-Osgood parameter n defining the strain-hardening
nonlinearity is in the form:

In(ep/ep)  In(20) (3.6)
o _ .
In(oy/01)  In(0g2/00.01)

o2, o1 are stresses for two points on the stress-strain diagram (o, > 01) and
&p2, €p1 Corresponding plastic strain.
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Figure3.1  Comparison of the Ramberg-Osgood model with the
compound R-O model (and a test of a specimen) [2]

Figure 3.1 shows, that the R-O model doesn’t sufficiently fit the stress-strain behaviour
of stainless steel for stress over the yield (proof) strength. In 2000, Mirambell and Real
[20] proposed a model using the R-O expression until the 0.2 % plastic strain limit, but
the further description of the behaviour is in the form:

o= (0-002)
Eo»

0-0p2 \"
+epy (—) +eyy 0>099 (3.7)
0y=00.2

where Eg» is the tangent modulus at the proof strength oo 2, epu the strain at the ultimate
strength, & the plastic strain at the proof strength, o, the ultimate strength and n is the
parameter of nonlinearity obtained as:

m=1+3.5 22 (3.8)

Oy

Annex C of the European standard EN 1993-1-4 contains this expression, with a little
adjustment, as an appropriate model for finite elements method analyses. Nevertheless
this formulation indicates different values of the strain ¢ at the ultimate strength .
Gardner and Nethercot [21] in 2004 modified the Mirambell-Real’s expression and
defined the new one by the following formula:

0-0 01 0-0 0-Gg, \" 0210
. :( 0.2) 4 (0.008- 1.0 o.z) ( 0.2 ) ews (3.9)
Eo Ep> 0107002 ’

where Eg is the tangent modulus at o2, 01,0 IS the 1.0% proof strength, &y » the strain at
the proof strength oo 2, N“p2,1.0 the parameter of nonlinearity for the second stage.

15



Chapter 3: Literature review

In 2000, MacDonald, Rhodes and Taylor [22] published the stress-strain curve based on
the different mathematical basis in the following form:

g= Ei+o.002 (i) (1)) (3.10)

0 0]

where 1, j and k are constants set from the stress-strain diagram in the range from 2.5 to
6 depending on the material thickness. Stress o1 = o¢2. The expression was established
for only one steel grade (1.4301), particularly for one thickness of cold-formed channel.
It indicated an excellent agreement between the model and tested samples.

Rassmusen [23] modified a Mirambell-Real’s model based on the Ramberg-Osgood
diagram, which requires only three essential parameters (Eo, 002 and n, where Ey is the
initial modulus). Another two parameters can be determined using the equation:

902 _ 911856 (3.11) for austenitic and duplex
Ou alloys

0'0.2 02+1856
D T T 3.12 for all alloys
o, 1-0.0375(n-5) ( ) y

where e=—— (3.13)

Then, the full-range stress-strain curve can be described as follows:

o o \"
=—+0.002 (— for o< :
& EO 0.00 (0_0.2> Oro=< 00,2 (3 14)
_ 5_ _ 6_ m
I _E—OAZ —l—gup (5-—11) fOI’ o> 0'0’2 (315)
g =&-E0 2 (316) E:O'-O'()_z (317) a'u:O'u-O'O‘z (318)
- 00.2
Bu™ 64 (3.19) m=1+3.5—= (3.20)
u
00.2 E,
g=1-— 3.21 Ey,= 3.22
oy B2 Fox =g 002mEy ey, O

This curve is more appropriate for description of a whole stress-strain diagram than the
one-stage R-O expression and requires knowledge of only design code defined
parameters (see Figure 3.2 and Figure 3.3).
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Figure 3.2 Comparison of the R-O model, tested specimen and the
Rasmussen’s expression of the stress-strain curve
depending on the ultimate strength o, [23]
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Figure 3.3 Nominal stress-strain curves for the longitudinal tension,
coupon cut out from the ferritic stainless steel plate tested
by Korvink et al. [24] with comparison of the Rasmussen
model. [25]

Three-stage stress-strain model for both tensile and compressive strains was published
in 2005 by Quach [25]. The model is more accurate and uses the Ramberg-Osgood
formula for strains up to 0.2% plastic limit. Behind this limit the relationship based on
the Gardner-Nethercot description for plastic strain up to 2% is used and for higher
strains it assumes that the curve is a straight line passing through the 2% proof strength
02,0 and the ultimate strength oy.

Full description of the model is given by following formulas: In Eq. (3.25) the upper
sign denotes tension; the lower sign is related to compression.
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o o\"
€ =E—0+O.002 (E) 0= 00,2 (3.23)
) 1 1 _ n'0.2,1.0
_ (o 0'0.2)+ [0.0084—(01.0-00‘2) <__ )] ( 0-002 ) +&0.0
Ey, Ey Eo2/1\010-092 002 <0<0,, (3.24)
o-a
a =0y 0(1%e5 0)-bey 2 (3.26)
1+¢,)- 1+
. ou(1£6,)-0 o(1£6; ) (3.27)
€u=€20
. 02.0
with &0=—7—10.02 (3.28)
Ey
1+ (ZL2.1) 41020
and 020 = 702 %02 (3.29)
) Un"g2,10 Y '
120 (Lo ) (2o )42
Ey \Eq> 002 n'o2,1.0B

Another model for explicit establishment of stress depending on strain was proposed by
Abdella [26] in 2006 as a power law formula with exponent p:

ro)28/€0 2
- < 3.30
7T T+ -1 (eleg)? £= 42 (3.30)
o= Gt 12002(&/eg2-1)
=002 r
* 8/80.2-1 P &> €0.2 (331)
1+(I" _1) (8u/8042-1)

where the factors p, p, r, r and r, are calculated from the original
model parameters Eo, Eo2, 602, 6y, €0.2, &4, N @Nd M.

Later Arrayago, I., Real, E. & Mirambell, E. [27] in 2013 summarized modifications for
EN 1993-1-4 as follows:

In(4)
ne=——
002 (332)
1 —Y.o
t (00.05)
_ 00.2 .
m=1+2.3 — for austenitic (3.33)
00.2 ..
m=1+ - for ferritic (3.34)
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002 0.2 ..
—=0.46+145— for ferritic (3.35)
Oy EO

A generalized multistage model was presented by Hradil, Talja, Real, Mirambell and
Rossi [28] in order to increase the accuracy of the material curve representation in 2013.
It uses the Mirambell and Real’s concept to achieve a simple multistage form. For basic
application and structural computations there was proposed three stages model for non-
linear metallic materials.

o o \"0-0.2
e=—=0.002 (—) o<o0 3.36
E, 703 0.2 (3.36)
_0-002  « ( 0-00.2 )"0'2‘1'0 00.2
e=—"+¢ +0.002+— Onr <0<0 3.37
0.2 01.0-00.2 Ey 02 Ho (3:37)
0010 « (0'01.0 )""0'“ 010
g=T000 o (ZZ0) T 4g 014 210 oL <0<0, 3.38
10 \oy01g Ey Ho (3.38)
h Ey,= Fo 3.39
Where 202 7750.002n(Eya, ) (3:39)
Eo»
El.() = * : 3.40
1+&) 5 1o.2-1.0(E0.2/(01.0 — 09.2)) (3.40)
¥ 1 1
532 =0.008-(010702) (=) (341)
* 1 1 1
oo =(£-0.0)-0010) (77 (342)

Currently, most of the stainless steel structures are made of austenitic and ferritic
stainless steel. However, the lean duplex stainless steel has been developed and
becoming an attractive choice for application in civil engineering due to its superior
mechanical performance, comparable corrosion resistance to austenitic stainless steel
and lower cost because of decreased Nickel content. Huang and Young investigated the
lean duplex stainless steel material of 1.4162 (LDX2101) grade with the Nickel content
around 1.5% [29]. Tensile tests results of samples made of RHS are shown in Figure 3.4
and Figure 3.5.

19



Chapter 3: Literature review

900
800 T e e — = - -
700 A
600
D.?’:
Z 500 -
b
%400
¢ — =50x30x2.5
“ 300 = ==50x50x1.5
200 50x50x2.5
B — - =70x50x2.5
100 A —— 100x50x2.5
0 — = 150x50x2.5
0 10 20 30 40 50 60
Strain, £ (%)
Figure 3.4  Static stress—strain curves obtained from tensile coupon
tests of flat portions cut out from RHS [29].
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Figure 3.5 Static stress—strain curves obtained from tensile coupon
tests of corners cut out from RHS [29].

Xing-Qiang Wang et al. [30] made a modification of the Rasmussen’s model and used a
new formula for stress-strain description of RHS corners in 2014. Differences between
the stress-strain behaviour of the flat material and the corner are shown in Figure 3.6.
Hence, a different material model is required.
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Figure 3.6 Stress-strain curves of flat and corner regions prepared
from the stainless steel RHS [30].

Stress-strain response of a corner is given by analogy of the Rasmussen’s formula
(subscript ¢ means a corner property):

o o\
&= +0.002 ( > 0<002,c (3.43)
0, 00.2,c
£=0.002+ 02 T02e <ﬂ> 0y 2<T <0, (3.44)
0, 0.2, 0u,c700.2,¢
where  Eg, .= Foc (3.45)
03¢ 140.002n, Eg /00 2.0 '

n,=0.9n%e 03" (3.46)
mc=0.0400.2,c-8 2 m (347)

00.2,
Eyo=1-—= (3.48)

O-U. C

gl
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A more detailed approach of mechanical characteristics of steel exhibiting anisotropy
and nonsymmetry under transverse and cyclic loading influence was performed by
Olsson [13]. The conclusions were published in his doctoral thesis. There were
undertaken many experiments with biaxial straining. Results of the tests proved that the
stress-strain curve representing stress equilibrium in a higher strain range exhibit linear
relation (see Figure 3.7). A rounded curve is utilized until the 2% strain limit. Then a
linear function is employed similarly to the three stage model proposed by Quach.
However difficult determination of particular constants (involving the anisotropy effect
etc.) disables the use of this description in structural design practice. In addition,
according to many studies the impact of anisotropy is not significant for the commonly
used structural elements.

700 T I T I 1 t 1 I I I 1

Uniaxial test

————— Model
200 [ ,
100 e p—
0 | i ! I i i i 1 ! i |
0 20 40 60 80 100 120 140 160
€[ol/oo]
Figure 3.7 Comparison of the Olsson’s model and the tested

specimen of the 1.4301 steel at uniaxial stress [13].

The stress-strain behaviour can be also expressed in a very simple form. For modelling
purposes a multilinear isotropic material model may serve as a default material
description as it was used for numerical modelling solving the prestressed stainless steel
stayed columns [31] depicted in Figure 3.8.
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J E1 in
0 - ‘ T )
0 0.002 0004 0006  0.008
£[-]
Figure 3.8 Multilinear stress-strain model [31].
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3.3 Methods for the determination of enhanced strength after section
cold-forming process

The first generally accepted model for the enhanced yield strength of carbon steel was
established by Karren in 1967 [32]. The model provides a relation between the
enhanced yield strength and the inner radius of a corner to the thickness ratio together
with the original yield strength. It is suggested that since corner areas represent 5% -
30% of a cross sectional area, the influence of the enhanced strength should be involved
in structural design.

B,
fyc_ (Vi/t)mfyv (349)
2
where BC=3.69@-0.819<?ﬂ> -1.79 (3.50)
ny yv

1 100 uv
m=0.192—-0.068 (3.51)

Jyv

fyc — yield strength of corner material,

fyv — yield strength of the virgin material,

fuc — ultimate tensile strength of the virgin material,
ri — inner bend radius,

t — sheet thickness.

Karren proved that the region of the increased strength overlaps the corner area by one
or two wall thickness and the range depends on the method of cold-forming. The corner
area means the region of the pure geometric corner extended by a part of the section
wall. This area represents enhanced material properties as it is displayed in Figure 3.9.

Figure 3.9  Area of enhanced material properties.
Belica [33] in 1969 tested press-braked sections (see Figure 3.10 and Figure 3.11).

Distribution of enhanced mechanical properties is described in Figure 3.11; see another
from 2008 performed by Cruise and Gardner [34] in Figure 3.12.
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Figure 3.10  Specimens tested by sectioning - press-braked cross-
sections — angle L 30x4, channel 30x60x4, C 50x100x20
[33].
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for the sections described in Figure 3.10 [33].
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Figure 3.12  The 0.2% proof strength for section flat faces and corners
of stainless steel cold-rolled boxes [34].

Consequently Karren and Winter (1967) suggested the relationship for the gross-
sectional tensile yield strength fy, for all cold formed sections as [35]:

[a=CL, +(1-CYf (3.52)
where C is the ratio of corner area to the gross sectional area,
fyc is the average tensile yield strength of corners cited
above,

fyr is the average tensile yield strength of flat parts,
conservatively yield strength of the virgin material.

Compared to Karren and Winter recent European design standard EN 1993-1-3 [36] set
the following formula for the yield strength of a cold-formed section made of carbon
steel as:

knt? fu+fyb
fyazfyb+A—g(ﬂl.fyb) (353) but £, < (3.54)
where fyp Is the nominal yield strength of the virgin material,

f, is the nominal ultimate tensile strength |
Ay is the cross-sectional area,
t is the sheet thickness before cold forming,
n is the number of 90° bends (bends with angles less than
90°, should be counted as a fractions of n),
k is the coefficient depending on a type of forming
=7 for cold rolling
=5 for other methods.
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Abdel-Rahman and Sivakumaran [37] established the length of overlapping for press-
braked carbon steel C cross-section as =nri/2, where r; is the inner corner radius. The
yield strength for the corner region was determined as an average value of the higher
yield strength in the corner area and the lower value of the yield strength in the
overlapping. The increase varies from 13% to 16% in comparison with the measured
yield strength outside of the corner region.

For stainless steel rectangular hollow sections Gardner and Nethercot (2004)
determined the corner region based on numerical model correlation with experiments as
the pure geometric corner area and the overlapping represented by the distance of
double section thickness. There was also observed a linear relationship between the
corner 0.2% proof strength and the flat face ultimate strength [38].

For stainless steel press-braked sections (according to Ashraf, Gardner and Nethercot
[39]) the corner region is equal to the bend area extended by the dimension of only one
thickness. From the research mentioned above global effect of enhanced mechanical
properties in the corner area for rectangular hollow sections in compression is about 8%
(without consideration of buckling). This increase refers to the section resistance
involving the cold-forming effect also on flat parts.

Another extensive experimental research was published by Cruise [4]. Conclusions
claimed the corner region is the bend area with two thicknesses overlapping at both
sides for cold-rolled sections due to a set of narrow coupons tensile and hardness tests
correlating to each other. However, for press-braked sections it was recommended to
consider the corner region as only the bend area. Idealized distribution of the 0.2%
proof strength is shown in Figure 3.13.
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Figure 3.13  Expected distribution of the 0.2% proof strength for a
press-braked section and a cold-rolled box [34].

Van den Berg and Van der Merwe [40] in 1992 made a comprehensive research of the
corner properties of different stainless steel grades, i.e. 1.4301, 1.4512, 1.4016 and
1.4003. Samples with a various ri/t ratios were press-braked for each of the four
materials. The measured corner properties were then compared to the unformed material
properties expressed by Karren’s relationships. They established a new predictive
equations for the corner 0.2% proof strength o 2 c estimation as:
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o _Beogay ( )
0267 Nt 3.55
()
2
Guv O-UV
where BC=3.289< ’)-0.861( ’>-1.34 (3.56)
00.2,v 00.2,v
O-UV
m=0.06< ’ )+0.031 (3.57)
00.2,v

o022y 1S the 0.2% proof strength of the virgin material,
ouy 1S the ultimate strength of the virgin material.

In 2005, Ashraf et al. [41] provided a power model for stainless sections employing the
0.2% proof strength g Or the ultimate strength o, of the virgin material. The value of
the enhanced corner proof strength oy, is given below:

1.881
002~ 770193 902 (3.58)
< G019 %02,
C
00.2,c™ (l"i/t) C, Ou,v (359)
Ouyv
where C;=-0.382 o0 +1.71 (3.60)
C,=0.176 -2 0,15 (3.61)
00.2,v

The expression for relation between the corner proof strength and the section flat face
ultimate strength o, ¢ was also proposed as:

O'O.Z’CZO.SSO'u’f (362)
The relationship (3.62) was previously proposed by Gardner in 2002 [42]:

The simple equation for the ultimate corner strength o, was established from
knowledge of only three properties by:

600=0.7500 5. ( Fuv ) (3.63)

00.2,v

Cruise & Gardner [34] in 2008 modified previous expressions and proposed a new
predictive model for the enhanced properties of austenitic stainless steel structural
sections based on the experimental data set. The model covers corner regions and flat
portions of a cross section. The formula employs the mill certificate 0.2% proof strength
and dimensions of a rectangular hollow section. Nevertheless, the physical
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interpretation doesn’t correspond to the factual behaviour because of the varying radius
of the corner to thickness ratio.

0.8500 2 min

00.2,f = 1
-0.19+ — (3.64)
12.45 (m) +0.83
where 002 1S the predicted enhanced 0.2% proof strength of the
flat faces,

00.2,min 1S the mill certificate 0.2% proof strength,
B and D are outer dimensions of a rectangular hollow

section.
00.2,f
Gu,f :O-u,mill (O 19 +085> (365)
00.2,mill
where oyt is the predicted ultimate strength of faces of cold-

rolled hollow sections,
oumin 1S the mill certificate ultimate strength

1.673 (3.66)
o =——T5-002mi .
0.2,pb,c (ri/t)0~126 0.2,mill
where 0020 1S the predicted enhanced proof strength of press-
braked corners
00.2,crc™ 0-830-ult,f (367)
where Oo2.rc 1S the predicted enhanced proof strength of cold-

rolled hollow section corners

The corner value for the enhanced 0.2% proof strength set as 0.83 oy was obtained
also in the stainless steel research aimed on residual stresses published by Jandera in his
Ph.D. thesis [43].

The comparison with the experimental data from many researchers (Ashraf, Cruise,
Gardner, Hyttinen, Talja et al.) provides good agreement of these models in higher
ranges of ri/t, more typical for press-braked sections.

For channel sections, an analytical model considering the influence of the fabrication
process stages was proposed by Rossi and Jaspart [44] in 2010. There was used the
finite element code METAFOR developed at the LTAS division of the University of
Liege to simulate the cold-forming process of symmetric channel sections as it is shown
in Figure 3.14 and Figure 3.15.
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Figure 3.14  Geometry of the forming line [45].
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Figure 3.15  Flow of channels fabrication process [45].

Two different steels (ferritic stainless steel 1.4003 and high strength steel S 700 MC)
were used for the cold-forming process simulation. Isotropic swift hardening laws
which were used for modelling are plotted in Figure 3.16.
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Equivalent plastic strain
Figure 3.16  Hardening laws of two different materials [45].
Typically the mechanical properties enhancement is exhibited on cold-formed

rectangular hollow sections, when the final shape is obtained by a few steps of cold-
forming (see Figure 3.17).
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Figure 3.17  Fabricating steps of cold-forming [15].
In case of rectangular hollow sections the process can be divided into four steps, i.e.

coiling-uncoiling (A+B), forming into a circular section and (C) and following
deforming into a rectangular section (D).

Enh. (%
i (%)

70 4+ Jelaand | Taljaand
Salmi | ‘ Salmi
|
|

60
50
40
30
20
10

7 8 8 8 8 8 8 8 9 10 10 10 12 12 13 16 20 22 25 26 34

O after stepAand B B after step C O after step D

Figure 3.18 Theoretical influence of fabricating steps on mechanical
properties enhancement for rectangular hollow sections
[44].

According to the recent research, there is shown that even first steps of process (A+B)
affect the enhancement (see Figure 3.18).

In 2011, Rossi, Boman and Degée [15] modified the predictive model for the strength
increase of hollow sections depending on material properties oo, o, and parameters
included in the modified R-O expression for the stress-strain diagram published in
recent research [23], resp. [20] and [46]. The new formulas are applicable for the radius
to thickness ratio greater than 5 and for a different nonlinear material. For flats there is
dominant impact of the forming into a circular section taken into account, for corner
regions the last step of the process (the forming into a rectangular section) is decisive
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(see Figure 3.18). As opposed to the Cruise’s model, this is generally applicable for
materials with the nonlinear stress-strain behaviour (coefficients C;, C,, a depend on
Ramberg — Osgood parameter n) as well as for open and hollow sections.

B ()4, (t’/’—iz)“ (3.68)

00.2.forc™00.2

where Oo2¢ or ¢ 1S the predicted enhanced proof strength of flat
faces or corners of a cold-rolled hollow section,
ri is the inner radius of a corner curvature or the circling
radius for flat faces,
t is the thickness of the section wall.

£010
C1: 0.2%u (369)
12002
(r-1eg 20,
Co=—— - (3.70)
" ry(en-e02)P 00,
. €02
a=(1-p) (3.71) r=kEy E (3.72)
€0.2 . gu'goz
ry=FEy,— 3.73) 1=k, ' 3.74
202 00.2 3.73) 02 0u=0y B.74)
€y=€0.2 1-r
nE 3.75) p=r—2 3.76
b Y oy-00, B.79) p=r r-1 (3.76)
1-r, Ey,
) = — 3.77) E=—"— 3.78
m=143.5 “(‘;'2 (3.79)

Results obtained from the recent extensive investigations conducted by Rossi, Afshan
and Gardner [47] and [8] in 2013 demonstrate also different values for basic material
characteristics. The test programme was focused on cold-formed structural sections
SHS, RHS and CHS and it contains results from 51 flat coupons, 28 corner coupons and
6 full section specimens. The results combined with measured data from other literature
lead to amendments to the current design code EN 1993-1-4, especially for values of the
model parameters n (Ramberg-Osgood nonlinear parameter) or the Young's modulus
(initial modulus of elasticity) for commonly used stainless steel grades. Conclusions of
experimental research show anticipated material parameters of nonlinearity n — the
highest for ferric grades, intermediate for duplex grades and the lowest for austenitic
grades. It is recommended considering the single value of Young’s modulus as 195
GPa. Detailed information is displayed in Table 3.1 and Table 3.2.
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Type Grade T/ Table8 Mean EN 1993-1-4 AS/NZS SEl/
C tensile [3] 4673 [1] ASCE-8 [2]
values
Austenitic 14301 T 5.6 5.6 6.0 7.5 83
C 45 6.0 4.0 41
14571 T 69 7.0 - -
14404 T 5.2 7.0 7.5 -
Ferritic 14003 T 84 79 7.0 9.0 -
Cc 61 7.0 7.5 -
14509 T 6.7 - - -
C 63 - - -
Duplex 14462 T 65 72 5.0 55 -
Leanduplex 14162 T 7.3 - - -

Table 3.1

Recommended and codified values of the R-O parameter n
for stainless steel grades [47].

The research points also slightly different R-O hardening exponent n depending on type
of stainless steel, i.e. austenitic, ferritic, and duplex as opposed to the recent version of
design code determining n according to steel grade and rolling direction.

Type Grade  This EN 1993-1-4  AS/NZS 4673  SEI/ASCE-8
study 3] (1] (2]
Austenitic 14301 192,000 200,000 195,000 193,000
14571 191,000 200,000 - -
1.4404 195,000 200,000 195,000 -
Ferritic 1.4003 199,000 220,000 195,000 -
14509 190,000 220,000 - -
Duplex 14462 190,000 200,000 200,000 -
Lean duplex 1.4162 205,000 - - -

Table 3.2

Recommended and codified values of the Young's modulus
for stainless steel sections [47].

In the study, a simple method for predicting the strength enhancement in cold-formed
structural sections was presented depending on basic material and cross-sectional

properties:

0-0.2,f,pred :O~85[p(8f,av+gt,0.2)q] but < Ou,mill (380)

00.2,c,pred 20-85[p(8c,av+8t,0.2)q] but < Ou,mill (381)

where

Oo.2.fpred 1S the predicted enhanced proof strength of the
cold-rolled hollow section faces,

Oo2cpred 1S the predicted enhanced proof strength of the
cold-rolled hollow section corners,

8f,av:[(t/2)/Rcoiling]+[(t/2)/Rf] (382)

&,

av=0.5[(#/2)/R.] (3.83)
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b+h-2t
- (3.84) R =r+t/2 (3.85)
00.2,mill 1 mill/ G mi
-— (3.86) _ H(Uo.z, 11/ Oy, 11) (3.87)
€02 In(e0./e,)
&,0.2 =0.002+0¢ 5 min/Eo (3.88)

&, 1s the corresponding total strain at the oy min,
Reoiling = 450 mm (average value recommended by Moen
et al. [48]), for other parameters see Figure 3.19.

Figure 3.19  Definition of parameters for SHS and RHS [8].

Regarding strain at the ultimate tensile strength there was confirmed that the formula (in
Annex C of EN 1993-1-4) given by Eq. (3.21) developed by Rasmussen [23] is valid
and suitable for stainless steel. The correctness was proved on the basis of the collected
data as it is shown in Figure 3.20.
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Figure 3.20 Comparison of the predicted and measured strain &, [47].
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Thus the average enhanced cross-sectional 0.2% proof strength is obtained from
following equations:
For press-braked sections:
(GO.Z,C,pred Ac,pb)+ (0-0.2,mi11 (A'Ac,pb)) (389)

00.2,section” A

For cold-rolled sections:

(0_0.2,c,pred Ac,rolled)+ (0_0.2,f,pred (A 'Ac,rolled)) (390)
00.2,section 4
n.mt
where Agpp=Ac= (CT) 2r+1) (3.91)
Ac,rolled:Ac—Hl'ncl‘2 (392)

A is the gross cross-sectional area,
N is the number of 90°corners in a section.

Xing-Qiang Wang et al. in 2014 [30] proposed the 0.2% proof strength and the ultimate
tensile strength expressions for corner given by:

00.2.c

- =1+0.05¢%%0/0.2 where g, , is in MPa (3.93)
0.2
Ouc _ 0.226 Ou o

=(0.56 g9, *"-1.4) — where gy, .. is in MPa (3.94)
00.2,c 00.2 -

The relationship doesn’t consider the inner radius to thickness ratio that is one of the
most important factors in strength increase.

The research and experimental data set published by Arrayago et al. in 2015 present
recommendation for the nonlinearity parameter n defined in [49] as it is stated in Figure
3.21.

35



Chapter 3: Literature review

Family Grade RD/TD T/C Codified n Recommended n
EN1993-1-4[3] AS/NZS-4673 [37] SEI/ASCE-8 [38]
Austenitic 14301 RD T 6 75 83 7
14301 RD C 6 4.0 41
14435 RD T 7
14541 RD T 6
14307 RD T 6 7.5
14571 RD T 7
14404 RD T 7 7.5
14318 RD T 6
No. of curves: 367
Ferritic 14016 RD T 6 8.5 84 14
1.4003 RD T 7 9.0
14509 RD T
14521 RD T 110
No. of curves: 117
14016 ™ T 14 140 14.1
1.4003 ™ T 11 15
14509 ™ T
No. of curves: 32
Duplex and lean duplex 1.4462 RD T 5 5.5 8
14162 RD T
14162 RD C
No. of curves: 92
14162 ™ T
14162 ™ C
No. of curves: 22

Figure 3.21  Codified and recommended values for the nonlinearity
parameter n.

Recently in Europe, only the National Annex (informative) to BS EN 1993-1-4:2006,
Eurocode 3: Design of steel structures — Part 1-4: General rules — Supplementary rules
for stainless steels [50] enable to consider the strength enhancement due to the cold-
forming as follows:

36

a) press braking; an enhanced yield strength fy, may be adopted to account for
cold working in 90° section corners where inner radius to thickness ratio ri/t
IS not greater than 5.

1.673
fyb ((A'Apb)+Apb ((Vi/t)0’126>> (395)
</,
A u

fm

b) For austenitic cold rolled box sections (RHS and SHS) which have been
formed via a circular tube and where t < 8 mm and ri/t not greater than 5, an
enhanced yield strength fy, may be adopted to account for cold working in
the section faces and an extended corner region.

0.85f, 0.19
ARG ) 7
(A-Aer) <gp-o.19) T0.714.f, <<gp-o. 19) “) (3.96)
Jya = y =Ju
where ¢, is the strain parameter defined as:
1
" (12 4 (—’“ )+o 83) (3:97)
T \2(b+h) :

As the gross cross-sectional area ,
A is the total corner cross-sectional area for cold rolled
box sections including a region of 2t which extends both
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sides of each corner. A, can be obtained with the
following expression:

A =nt(2r+t)+16£ (3.98)

ri can be assumed to be equal to 2t,

t is the sheet thickness before cold forming,

Apb is the total corner cross-section area for press braked
sections which can be calculated as:

TNt
4

Apy=— Qri+) (3.99)

fyo, fu are the yield strength and the ultimate tensile
strength of the basic material (i.e. the flat sheet material of
which sections are made by cold forming),

f, should be taken as the minimum value of the range
specified in the material standard,

Nc IS the number of 90° corners.

It’s clear, that the increase in the yield strength due to cold
working should not be utilized for sections that are annealed or
subject to heat treatment after forming which may produce
softening.

c) For all section types, work hardening may be utilized in the design if the
effect of work hardening has been verified by full size tests in accordance
with Section 7 of EN 1993-1-4. For design of connections which are not part
of the full size testing, nominal strength values should be used.

The design method for cold-rolled sections allows using accurate value of inner radius if
it is obtainable. At the end an increasing inner radius leads to increasing strength of a
full section because of an increasing area of corner enhancement. There is no influence
of the inner radius to thickness ratio taken into account in terms of plastic strain level.
Comparison of the recent methods exhibits unsafe trend of the 0.2% proof strength
increase related to the inner radius to thickness ratio. Figure 3.22 depicts dependency of
the 0.2% proof strength increase on this ratio for SHS 100x100x2 made of the 1.4404
grade. Other methods balance the influence of a larger corner area and decreased
strength enhancement in corners whereas the method from the annex of BS EN 1993-1-
4 only enlarges the area of enhancement.
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Figure 3.22  Comparison of methods for the predicted 0.2% proof
strength for a full section.

3.4 Material ageing effect

Also material ageing may induce significant change of the stress-strain curve and
increase of the ultimate and yield tensile strength. Hlavacek [51] concerns the ageing
effect of the carbon steel as it is shown in Figure 3.23. After reaching the stress o, > o1
(yield strength), a plastic deformation &, remains. At re-loading, the yield strength
reaches stress o3 > o, on account of the ageing effect. The ultimate tensile strength
increases as well. In case of carbon steel, when the plastic deformation is too large (g >
25%) the steel becomes too brittle, that the yield strength reaches the ultimate strength
and the ductility at the point of specimen collapse disappears. The higher the plastic
deformation induced the lower the relative effect of ageing becomes. When the &y >
10% then the effect of ageing is not important. The ageing of carbon steel after plastic
deformation induction is represented by a movement of elements with low atomic
weight to dislocations. These elements resist to the further dislocations movements and
increase the yield strength. This process takes several weeks at the room temperature
and at higher temperature (100 — 200 °C) it could take only 30 minutes.

G

Figure 3.23 Effect of the plastic deformation and ageing on the stress-
strain curve [51].
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3.5 Residual stresses

A residual stress (stress without instant action of external forces or temperature etc.)
significantly affects the structure behaviour, especially resistance of walls and members
in compression. If plasticisation of material arises due to members’ fabrication the
residual stresses will occur. Residual stresses also arise due to temperature processes,
such as rolling, welding or cold-forming, grinding and other processes. Not always
residual stresses have to cause lower member resistance. E.g. a shot peening results in
compressive residual stress at the surface of section and can help to increase the
moment resistance or enhance life cycle in terms of corrosion resistance.

Residual stresses in austenitic steel were measured for instance by Cruise [4]. The
research was focused on behaviour specific for cold-formed material. There was
observed behaviour specific for cold-rolled and press-braked angles together with cold-
rolled rectangular hollow sections. For the membrane stress, there was not established
the idealized stress distribution. The average value of membrane stress (irrespective of
the sign) was set up to 6 % of the 0.2% proof strength for angles and 13 % for
rectangular hollow sections. The idealized distribution of the flexural stress component
was determined as a constant value, different for the wall and corner. This model was
established both for average values and for upper 5% fractile (Figure 3.24 and Figure
3.25).
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Figure 3.24  Idealized distribution of the longitudinal flexural residual
stress in press-braked angles from austenitic steel (left -
average values, right hand — upper 5% fractile) according
to [4], adopted from [43].
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Figure 3.25 Idealized distribution of the longitudinal flexural residual
stress in cold-rolled rectangular hollow sections from
austenitic steel (left - average values, right hand — upper
5% fractile) according to [4], adopted from [43].
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High stresses reflect high rate of the cold-forming. It is possible to suppose that the non-
uniform distribution of the stress signifies also the non-uniform distribution of the 0.2%
proof strength, alternatively the ultimate strength. These conclusions were confirmed by
Cruise [4] by set of many hardness tests and the determination of the proof strength
distribution corresponding with transversal residual stresses.

Cold-bending effect representing press-breaking in terms of residual stresses was also
extensively investigated by Weng and White [52]. Set of experiments consisting of
cold-bent thick plates with different angles and radii of bends was executed using
sectioning and hole-drilling method for residual stresses evaluating. They observed the
magnitude of the residual stresses on the inside surface exceeded the yield strength up
to 90%. Residual stresses increase with increase of the yield strength of a virgin
material and with an angle of the bend. On the other hand residual stresses decrease
with increase of the inner radius of the bend.

Another sophisticated model using finite elements was established by Rossi et al. [53].
The model was proposed for nonlinear hardening materials considering fabrication steps
as coiling, uncoiling and cold-bending with springback taken into account. It provides
good agreement compared with the collected data.

Currently indeed, many researchers solve the cold-forming effect especially for high

strength enhancement of stainless steels. However this topic has not been comfortably
dealt yet.
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3.6 Comparison of material properties in the design standards

3.6.1 Europe

Mechanical properties of stainless steel in annealed condition are specified in the
European standard EN 10088 Part 1 [54] and Part 2 [55]. In the recent valid design
standard EN 1993-1-4 [16] value of the 0.2% proof strength in annealed condition is
given only for the transverse direction hence it does not take into account the material
anisotropy. In addition by the annealed material it is probably meant a virgin one. It is
thought a material in annealed condition exhibits a similar proof strength in both
directions despite the fact that for cold-rolled products strength in transverse direction
exhibits higher values of the 0.2% proof strength than in the parallel to the rolling
direction. Figures in the standard differ according to the product form (cold rolled
strip/hot rolled strip/hot rolled plate) and thickness. However, within the designing of
structure it is not often possible to know what type of product form will be used.
Consequently it is not applicable to employ enhanced properties of cold-worked
materials except some specific products.

Despite this, design standard EN 1993-1-4 [16] allowed to use only materials with the
yield strength up to 480 MPa. Just the most recent modification from June 2015 deleted
this paragraph and allows use of any material such as new lean-duplex grade 1.4162 and
enhances the strength of some other grades. The mechanical properties of some selected
austenitic grades are listed in Table 3.3.

Grade Product | Maximum Minimum 0.2% proof | Minimum ultimate tensile
form™ | thickness (mm) | strength®® (N/mm?) strength (N/mm?)
C 6 230 540
304 (1.4301) | H 12 210 520
P 75 210 520
C 6 240 530
316 (1.4401) | H 12 220 530
P 75 220 520

Notes:
(1) C=cold rolled strip, H=hot rolled strip, P=hot rolled plate
(2) Transverse properties

Table 3.3 Minimal mechanical properties according to product form

[6].

The code allows using cold-worked steel with the increased 0.2% proof strength and the
ultimate strength providing two levels of hardening. However the application is possible
only for a few austenitic grades.

EN 1993-1-4 defines the Ramberg-Osgood parameter n essential for the secant modulus
of elasticity, necessary for the deflection or stability calculation. It provides values both
for the direction parallel and transverse to the rolling. That could be slightly confusing
for designers regarding different fabrication routes for structural members.
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3.6.2 USA

American standards SEI/ASCE take into account the anisotropy and the asymmetry of
the material (i.e. different behaviour in tension and compression) which becomes
increasingly important as the level of the cold-working increases. SEI/ASCE, as well as
European standards, determines the Ramberg-Osgood parameter n which is necessary
for the tangential and secant modulus specification (for deflections estimating and
buckling curves identification). Stress-strain curves and mechanical properties for
austenitic grades 1.4301 and 1.4401 are presented in Figure 3.26 and Table 3.4.
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Figure 3.26  Stress-strain curves for grade 304 in the annealed and
cold-worked  condition  according to SEI/ASCE
specification [6].

Temper Minimum yield strength Minimum tensile
(N/mm?) strength (N/mm?)
Longitudinal tension and | Transverse Longitudinal
Transverse tension compression | compression

Annealed 206.9 206.9 193.1 517

1/16 hard 310.3 310.3 282.7 551.6 (grade 304)

586.1 (grade 316)
1/4 hard 5171 621 3448 862
1/2 hard 758.5 8§27.4 448.2 1034
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Table 3.4 Table gives minimal mechanical properties for grades 304
and 316 according to loading direction and degree of
cold-working temper according to SEI/ASCE specification
[6]. Degree of temper indicates a hardening level
according to the surface hardness.
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Australian standards AS/NZS are based on the American standards. There is a
comparison of the main standards in the Table 3.5 and Table 3.6.

Country | Grade Minimum yield strength Minimum ultimate tensile
(N/mm?) strength (N/mm?)
Europe | 304 2100 520
316 2200 520
304 and 316 206.9 (LT, TT, TC)@
us 1931 (LC) 517
.| 304 and 316 205 (LT, TT,TC)@
Australia 195  (LC) 520
Notes:
(1) For hot rolled plate, transverse properties
(2) LT=longitudinal tension, TT=transverse tension, TC=transverse compression, LC=Longitudinal
compression
Table 3.5 Comparison of mechanical properties for grades 304 and
316 in the annealed condition [6].
Country Longitudinal Transverse Transverse Longitudinal
tension tension compression compression
Europe Grade 304 6.5 8.5 85 6.5
Grade 316 7.0 9.0 9.0 7.0
us 8.31 7.78 8.63 4.10
Australia 7.5 55 7.0 4.0
Table 3.6 Comparison of the Ramberg — Osgood parameter n for
grades 304 a 316 in the annealed condition [6].
Section Annealed C850
Go 2 [N,."mm:) Ty [N_‘-’mmz) E (N,.‘lnmz} Fp2 (N,."mm:) Ty {N,."mm:) E (N_.-'mmE]
RHS 80x 80 x 3—Face 1 571 864 190,000 713 1048 173,000
RHS 80 x 80 x 3—Face 2 469 805 185,000 590 1001 173,000
RHS 100 x 100 x 3—Face 1 530 830 195,000 666 971 183,000
RHS 100 x 100 x 3—Face 2 432 782 195,000 549 914 184,000
RHS 120 x 80 x 3—Face | 619 886 197,000 763 1025 188,000
RHS 120 x 80 x 3—Face 2 459 796 202,000 553 916 192,000
RHS 140 x 60 x 3—Face 1 619 886 190,000 741 1038 187,000
RHS 140 x 60 x 3—Face 2 492 808 203,000 561 956 185,000
Table 3.7 Comparison of measured tensile material properties in the

annealed condition and cold-worked conditions [56].

Table 3.7 displays measured mechanical properties in annealed conditions in
comparison with measured values for cold-worked state of the material. Differences
could be more significant as the specimens represent flat faces of rectangular sections
and not the most affected parts of section — corners.
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Chapter 4

Experimental program

The chapter describes set of experiments executed at the Department of steel and timber
structures laboratory of the Faculty of Civil Engineering by the Czech Technical
University in Prague. Specimens’ preparation was mostly provided by department
technicians and by cooperation with the Klokner’s Institute. The work was focused on
the stress-strain behaviour description of cold-formed stainless steel of all main grades,
i.e. ferritic (1.4003), austenitic (1.4404), duplex (1.4462) and relatively new lean-duplex
grade (1.4162) as well. The project involves tensile tests of coupons prepared of a cold-
rolled steel sheet. Material tests of the virgin material preceded plastic strain induction
procedure serving for tensile tests of cold-worked samples. Results obtained from the
programme are evaluated and summarized. Detailed results and conclusions from the
testing programme are stated herein and serve for the analytical part of the thesis.
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4.1 Test rate sensitivity

Stress-strain curve is significantly affected by the test strain rate. The higher rate
implies the higher strength and reduced ductility. Dependency on the strain rate is more
pronounced in comparison with carbon steel also due to the nonlinear stress-strain
behaviour. It is also more influenced (higher strength is recorded) by constant stress rate
than constant strain rate. Thus all of executed tests were controlled by strain that
provides safe measured strength values.
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Figure 4.1  Strain rate effect on 1.4307 grade [2].

4.2 Material tensile tests

Specimens were made of cold-rolled sheet of 1.5 mm, resp. 2.0 mm (in case of the
1.4462 grade) thickness. All tensile tests were executed in the same configuration.
Coupons were made in proportion to the EN 1SO 6892-1 [57]. The geometry and
coupons before and after a test are displayed in Figure 4.2.

30 43 30
7 285 7,
1 5.
2 /P/O ;w'r‘—/
— \ Li—\
/\ _u:_;f_i

Figure 4.2  Coupons before and after a tensile test with their
geometry.

Deflection, respectively strain was directly measured by foil strain gauges essential for
accuracy of the initial part of strain response. An extensometer was used for higher
strain ranges. Figure 4.3 graphically shows basic material parameters stated in following
tables.
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Figure 4.3  Graphic declaration of material parameters.

Determination process evaluating a slope of the linear elastic part of a uniaxial stress-
strain diagram (Young's modulus) was conducted in accordance with SEP 1235:
Determination of the modulus of elasticity on steels by tensile testing at room
temperature [58]. However difficulties with the modulus of elasticity caused by short
linear region of the initial stress-strain curve also occurred and the initial modulus was
evaluated for lower stress level than it is recommended. The common Ramberg-Osgood
model (3.5) is used up to the 0.2% plastic strain. Beyond this limit, the Gardner-
Nethercot description (3.9) is used with nonlinearity parameter established for the best
agreement between the model curve and the recorded stress-strain response up to 3%
plastic strain. Stress and strain values in tables are in engineering form. If the true stress
and strain is used they are obtained by:

Otrue=0nom (1 T€nom) for tension (4.2)
Eque=IN(1+€nom) for tension (4.2)
Otrue=0nom (1-€nom) for compression (4.3)
Erue—-In(1-€nom) for compression (4.9

The evaluated characteristics are as follows:

Eo is the initial modulus of elasticity,

Eoo  isthe tangent modulus at the 0.2% proof strength,
002 IS the 0.2% proof strength,

o0 IS the 1.0% proof strength,

oy is the ultimate tensile strength,

&t strain at coupon fracture,

eply  plastic strain at ultimate strength,

n Ramberg-Osgood hardening exponent,

N’0.2.1.0 compound Ramberg-Osgood model hardening exponent.
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All tests were performed using the MTS Qtest 100 kN electromechanical testing
machine with all data recording at 0.2 second interval by the SPIDER data acquisition
system with CATMANS32 data acquisition software (see Figure 4.4). Strain control was
used to drive the machine. The accepted strain rate for the first period of testing was
0.007% strain per second up to 1.5% strain and 0.2% strain per second until fracture
according to the EN 1SO 6892-1 [57]. The value of the 1.5% strain was determined to
ensure the lower stress rate was used to reach the stress point of the 1.0% plastic
deformation a1 0. The a1 value is often used for the stress-strain diagram description.

b)
Figure 4.4  a) Detail of a coupon in testing machine jaws; b) Testing
machine with jaws.

4.2.1 Virgin material tests

First of all tensile material tests of the virgin sheet of all grades were executed. Tests
were performed both for direction of rolling and direction transverse to the fabrication
rolling of the sheet (see Figure 4.5). Material properties of the sheet were assumed by
average of 3 samples. Obtained measurement is summarized in Table 4.1.

Figure45  Coupons made of sheet according to rolling direction.
Letter “P” denotes letter mark “T” and “L” mark “P”.
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Grade dl?r()elé;:](?n 0 Eo2 002 010 ay & &plu n N0210
GPa GPa MPa MPa MPa % % - -
1.4003 P 198.3 7.5 326.7 357.1 4923 22.1 18.0 84 1.8
1.4003 T 2119 7.0 3437 3745 5123 319 176 85 1.9
1.4404 P 189.0 14.1 259.8 307.3 620.8 61.8 48.7 3.7 2.1
1.4404 T 199.8 116 279.0 322.0 6351 68.6 57.1 8.8 2.3
1.4162 P 193.3 219 551.6 623.7 7859 37.9 241 7.3 3.0
1.4162 T 1955 224 556.5 624.8 765.6 352 21.1 7.5 3.1
1.4462 P 195.8 25.2 600.1 676.6 843.0 34.3 226 6.9 2.9

1.4462 T 210.7 30.0 637.6 722.7 863.7 33.9 20.6 5.6 3.4
P — test parallel to the rolling directions. T — test transverse to the rolling direction

Table 4.1 Mechanical properties of the cold rolled sheets according
to the rolling direction.

4.2.2 Tests after plastic strain induction

The next step included tensile plastic deformations induction on typical samples
(described above) and special wide sheet samples from which new specimens were
manufactured. Level of plastic deformation varies significantly in a range of several
values, i.e. 1%, 3%, 5%, 10%, 15% and for other than ferritic grades also 20% or 50%
(for austenitic grade only). Thus experimental set for each grade consists of 5 or 6
specimens for both directions depending on the rolling and in respect to the induced
plastic strain direction and subsequent tensile test (according to the direction of the
plastic strain induction). In total 92 coupons were prepared and tested.

Device for plastic strain induction in a wide sheet

For experimental purposes a device for plastic strain induction in a wide sheet was
designed and fabricated. It is able to induce uniform plastic deformation through the
whole width of a metal sample of special geometry. The sample geometry provides the
best fitted stress distribution from shapes which were considered based on a simple
Abaqus 2D model. That provides the desired strain distribution in the area which the
new coupons are created (neck of the specimen) from as it is displayed in following
figures. The idea about the stress distribution was confirmed by measurements
consisting of 5 strain gauges. The progress and numerical results of different sample
geometries are shown in Figure 4.6.

The device consists of two parts, in which the sample is attached by four bolts M16 8.8.
There are two shear planes (represented by two plates and a sample) to ensure the best
possible centric stress. The device is able to be clamped to a testing machine by a round
bar hinged to jaws, which might eliminate eventual moment influence. The middle part
of the sample serves to attaching an extensometer set with gauge length of 50 mm or
less. Total load of the sample can be over 100 kN. The device with attached sample is
shown in figures on the next page.
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Figure 4.6  Geometry of the sample in progress and the final geometry
(uniform stress distribution) — right hand side (quarter of
sample — symmetric).

Figure 4.7  The device for plastic strain induction in a wide sheet with
sample.

Figure 4.8 The device for plastic strain induction in a wide sheet with
sample (side view).

Samples after cold-working represented by elongation with test description are shown in
Figure 4.9. It describes directions of primary elongation and a subsequent test.
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Figure 4.9

a)
a) Different level of induced tensile plastic deformation; b)
Cold-working and testing: the blue arrow marks the
direction of elongation, the red arrow marks direction of
the subsequent tensile test.

Chapter 4: Experimental program

Measured data is summarized in following tables. Explanation to shortcuts is stated as

follows:

“RD” = Rolling direction; “LPSI” = Level of plastic strain induction; “PSI” = Plastic
strain induction. Rolling direction (coupon cut out from sheet): “P” — parallel to the
rolling directions, “T” — transverse to the rolling direction; Plastic strain induction
(tensile test direction after elongation): “P” — parallel to the previous plastic strain
induction, “T” — transverse to the previous plastic strain induction.

RD LPSI PSI E; Egz o002 010 oy &y & N Noaio
(%) GPa GPa MPa MPa MPa % %
P 10 P 200.6 105 366.6 399.9 519.6 199 20.2 7.3 1.7
P 30 P 2048 51 4185 437.0 4934 175 178 82 2.0
P 50 P 2008 38 487.0 5006 x X x 53 30
P 100 P 189.8 22 523.7 5315 543.2 123 126 59 3.1
P 150 P 1785 0.3 548.8 552.1 5530 79 82 52 31
T 1.0 P 1973 48 436.4 456.3 528.1 258 26.1 96 1.7
T 3.0 P 1965 4.8 434.7 454.6 524.0 25.8 26.0 96 1.9
T 50 P 189.0 29 4825 4953 5404 21.7 220 6.2 1.8
T 100 P 1828 2.1 546.4 554.6 567.1 16.7 17.0 7.2 25
T 150 P 1946 05 584.0 586.1 588.0 10.1 10.4 53 3.0
Table 4.2 Mechanical properties of the tested coupons with induced

plastic strain of the 1.4003 grade.
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RD LPSI PSI E() E0.2 00.2 01.0 Oy Eplu Ef n n’olzlllo
(%) GPa GPa MPa MPa MPa % %

P 10 T 1921 18.2 354.1 407.2 455.0 x x 92 31
P 3.0 T 2026 21.2 420.2 469.1 503.2 x x 40 40
P 50 T 1946 32.1 453.7 517.7 526.5 x x 39 50
P 100 T 189.2 47.8 492.0 5814 5814 11.7 12.0 3.3 5.0
P 150 T 1849 35.0 585.7 649.6 6506 7.6 8.0 53 5.0
T 10 T 190.7 19.6 368.0 415.7 528.0 15.7 16.0 6.3 2.5
T 30 T 207.3 36.3 408.2 481.7 534.1 29.7 30.0 34 49
T 50 T 1976 30.2 464.7 518.2 551.0 21.7 22.0 47 45
T 100 T 1972 36.3 561.1 612.3 6324 9.7 10.0 42 4.0
T 150 T 2018 40.0 5771 x 6435 65 68 41 4.0
Table 4.3 Mechanical properties of the tested coupons with induced

plastic strain of the 1.4003 grade — follow-up.

RD LPSI PSI EO Eo.2 00.2 01,0 Oy Eplu Et n nlolzlllo
(%) GPa GPa MPa MPa MPa % %

P 10 P 1952 7.2 336.7 369.7 655.0 448 56.6 8.2 20
P 30 P 1845 20.2 356.8 398.8 656.3 43.0 56.2 3.2 2.2
P 50 P 1704 6.6 416.9 440.5 643.8 39.5 515 58 1.8
P 100 P 198.1 159 513.1 539.0 695.8 32.5 452 28 19
P 150 P 199.5 44.6 550.9 588.4 700.9 28.9 40.2 26 2.1
P 500 P 1932 545 927.3 954.7 9609 x 75 24 21
T 1.0 P 2014 113 3289 364.2 649.1 534 64.0 58 20
T 3.0 P 210.7 13.7 3751 406.1 663.2 52.7 629 40 18
T 50 P 2029 144 4195 448.2 676.0 48.2 606 3.7 1.8
T 100 P 188.8 11.0 506.7 525.6 653.4 36.9 494 31 22
T 150 P 197.6 104 548.0 571.0 748.8 43.9 56.2 2.7 1.8
T 500 P 1974 56.0 9256 9605 981.7 x 178 3.1 150

Table 4.4 Mechanical properties of the tested coupons with induced
plastic strain of the 1.4404 grade.

52



Chapter 4: Experimental program

RD LPSI PSI E; Ep, o002 o010 Ou  Eu & N Noaig
(%) GPa GPa MPa MPa MPa % %
P 10 T 1944 251 296.1 3654 654.3 60.1 604 35 3.0
P 30 T 198.1 35.0 336.6 425.7 666.5 56.9 57.2 1.8 3.2
P 50 T 1951 40.0 362.1 461.0 678.0 54.9 55.2 3.2 34
P 100 T 193.7 53.0 413.8 534.9 699.4 516 52.0 29 3.6
P 150 T 190.3 54.5 452.3 586.0 716.5 444 448 29 3.8
P 500 T 199.2 610.0 x X X x 30 X
T 10 T 2020 21.3 312.1 370.8 663.6 66.5 66.8 4.4 3.0
T 30 T 209.1 245 359.7 420.1 670.8 64.1 644 42 33
T 50 T 2025 33.8 399.1 4735 688.2 62.1 624 3.6 4.3
T 100 T 203.8 39.2 474.2 5535 712.6 549 552 35 49
T 150 T 2049 50.3 517.2 618.7 743.1 46.8 472 3.3 438
T 500 T 203.6 59.4 679.7 850.9 891.8 26.4 26.8 29 45
Table 4.5 Mechanical properties of the tested coupons with induced
plastic strain of the 1.4404 grade — follow-up.
RD LPSI PSI E; Eg2 o002 o010 oy Eiu & N Noaio
(%) GPa GPa MPa MPa MPa % %
P 10 P 197.9 37.0 564.6 6515 773.6 22.7 33.6 50 3.6
P 3.0 P 187.1 39.2 649.9 7094 8223 275 343 45 29
P 50 P 186.1 58 726.7 744.3 816.3 184 33.7 56 20
P 100 P 189.6 12.8 829.3 8435 871.0 136 28.2 43 238
P 150 P 187.3 28.8 866.4 889.1 898.1 7.6 26.3 3.7 5.0
P 200 P 182.8 40.0 9204 945.0 9469 3.6 20.9 35 8.0
T 10 P 2035 32.7 563.6 642.7 779.4 243 365 3.8 34
T 30 P 1994 16.2 686.2 727.6 809.3 18.0 305 6.1 3.1
T 50 P 1921 20.0 7355 7615 8169 164 28.8 42 23
T 10.0 P 1934 40.0 792.1 827.0 849.1 10.8 22.0 3.7 6.0
T 150 P 184.6 175 8753 889.9 8955 6.0 209 43 6.0
T 20.0 P 1904 20.4 922.0 933.7 936.7 15 152 39 3.0
Table 4.6 Mechanical properties of the tested coupons with induced

plastic strain of the 1.4162 grade.
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RD LPSI PSI E() Eo.z 00.2 01.0 Oy Eplu Ef n n’olzlllo
(%) GPa GPa MPa MPa MPa % %

P 10 T 1936 545 511.8 668.2 8155 40.0 404 26 45
P 3.0 T 200.3 594 546.4 721.6 8246 37.6 380 29 33
P 50 T 200.2 446 637.6 782.3 8579 328 332 72 31
P 100 T 190.3 594 596.0 835.0 9114 247 252 27 3.1
P 150 T 1971 72.6 626.9 880.1 956.1 179 184 25 27
P 200 T 201.8 754 653.6 937.0 10025 12.3 128 24 3.0
T 10 T 2099 43.6 556.5 674.4 816.2 38.0 384 34 3.6
T 30 T 2086 56.0 574.1 728.0 8349 34.8 352 29 35
T 50 T 2011 63.3 583.6 768.9 850.0 324 328 28 3.6
T 100 T 2028 754 646.4 859.5 925.6 223 228 2.7 3.0
T 150 T 1987 61.3 690.6 912.2 971.2 139 144 2.7 3.8
T 200 T 2023 784 673.6 9179 1006.9 115 12.0 1.8 3.0
Table 4.7 Mechanical properties of the tested coupons with induced
plastic strain of the 1.4162 grade — follow-up.
RD LPSI PSI E; Eoz o002 010 oy Eplu  &f N No210
(%) GPa GPa MPa MPa MPa % %
P 10 P 1933 223 665.2 713.0 8342 28.0 396 66 24
P 30 P 1951 79 7417 7631 8435 17.1 289 55 19
P 50 P 1953 29.7 7454 7905 867.2 164 296 3.9 3.2
P 100 P 188.1 10.2 876.6 888.8 913.6 157 244 46 2.6
P 150 P 192.0 40.8 9315 959.8 961.3 55 193 3.2 8.0
P 200 P 1926 27.2 9818 9974 1005.0 05 159 3.8 8.0
T 10 P 2052 18.1 7145 758.7 8525 29.4 298 53 29
T 3.0 P 2006 257 7471 798.0 8609 28.6 29.0 47 538
T 50 P 2112 115 8250 8426 907.7 247 252 47 20
T 10.0 P 1965 142 9152 9260 9326 212 21.7 41 50
T 150 P 2074 17.3 9835 9924 1005.3 16.1 16.6 3.9 6.0
T 20.0 P 200.2 26.7 1026.4 1036.0 1039.0 14.5 15.0 3.8 10.0
Table 4.8 Mechanical properties of the tested coupons with induced

plastic strain of the 1.4462 grade.
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RD LPSI PSI Eo Eo.z 00.2 010 Oy Eplu Ef n n’olzlllo

(%) GPa GPa MPa MPa MPa % %
P 10 T 1911 39.2 608.2 6658 8824 335 34.0 3.2 3.0
P 30 T 1945 442 6475 756.6 890.3 30.3 30.8 3.8 34
P 50 T 1950 56.6 720.2 873.6 9404 223 228 3.2 338
P 100 T 196.2 63.9 747.7 9339 9941 16.3 16.8 3.0 4.2
P 150 T 188.2 66.1 8445 1030.9 1072.2 10.2 108 29 43
P 200 T 188.8 66.8 897.3 1080.9 11160 7.0 7.6 3.0 4.2
T 10 T 2110 43.3 6484 757.2 9009 384 388 3.7 3.6
T 30 T 2089 58.8 6916 836.8 927.6 32.0 324 2.7 4.0
T 50 T 2084 51.2 732.3 860.3 939.3 243 248 33 4.0
T 100 T 209.2 57.1 827.2 9339 994.1 199 204 35 43
T 150 T 203.1 66.1 865.9 1039.6 11174 16.2 16.8 3.2 4.4
T 200 T 2135 67.6 887.3 1070.6 11154 15.1 156 3.1 4.8

Table 4.9 Mechanical properties of the tested coupons with induced

plastic strain of the 1.4462 grade — follow-up.

4.3 Material tests outputs

This section describes graphic outputs resulting from the measured data. Figure 4.10
shows comparison of the different grades for the virgin material test according to the

rolling directions.
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Figure 4.10 Idealized stress-strain diagram of the coupons made of the

cold-rolled sheet. P marks the test parallel to the rolling
direction; T marks the test transverse to the rolling
direction.
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All grades exhibit a higher strength in the transverse direction to the rolling. In case of
the lean duplex grade 1.4162 there is almost the same stress-strain behaviour for both
directions.

In terms of the anisotropy of the cold-rolled sheet with induced plastic strain there is
displayed only the direction parallel to the rolling direction in following figures (Figure
4.11 - Figure 4.14). Coupons cut out in the transverse direction to the rolling exhibit
similar behaviour.

Explanations for marks used in figures are given as:

First letter “P” denotes the samples manufactured parallel to the rolling direction,
second letter denotes the plastic strain induced in the same direction as the subsequent
tensile test (“P”) or the plastic strain induced in the transverse direction to the
subsequent tensile test (“T”).

Results presented below confirm the dependency of anisotropy on the increasing level
of cold-working. This effect is apparent for all grades. Differences are significant
especially for the lean duplex and duplex grade. Also the stiffness (particularly before
the 0.2% proof strength) differs a lot as it is obvious from the figures.
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Figure 4.11 Recorded stress-strain diagrams of selected 1.4003
samples.
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Figure 412 Recorded stress-strain diagrams of selected 1.4404
samples.
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Figure 4.13 Recorded stress-strain diagrams of selected 1.4162
samples.
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Figure 4.14 Recorded stress-strain diagrams of selected 1.4462
samples.

The effect of anisotropy is entirely opposite to the behaviour after cold-rolling where
the 0.2% proof strength is higher for the direction transverse to the rolling. Cold-rolling
is continuous process affecting an endless sheet through the thickness. Therefore this
specific way of cold-working may produce a cold-rolled sheet with different mechanical
properties in comparison to the uniaxial cold-working.

Figure 4.15 - Figure 4.18 display increase of the 0.2% proof strength for the cold-
formed samples. Mark “P” denotes the subsequent tensile test parallel to the direction of
plastic strain induction while mark “T” denotes the subsequent tensile test transverse to
the direction of plastic strain induction. The curves determining the increase consists of
the average value of 0.2% proof strength obtained both for direction parallel and
transverse to the rolling direction as the comparing base representing virgin material
mechanical properties. Plotted curves are compared with isotropic hardening obtained
from stress-strain diagram of the unformed material.
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Figure 415 Comparison of the measured strain hardening with the
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Results provide relatively good agreement only in case of the isotropic hardening
for the direction parallel to the previous elongation and confirm recent conclusions
of non-suitability of the isotropic hardening for stainless steel. The effect of
anisotropy is significant especially for the lean duplex 1.4162 grade.

Regarding to the small strain level for the 0.2% proof strength differences between
true strain and true stress are negligible.

Entirely different case is the ultimate strength issue. Considering the true stress and
strain there is no significant increase in the ultimate strength (see Figure 4.19) in
contrast to the engineering form of these values (see Figure 4.20). This observation
indicates the effect of partial change of the microstructure of the virgin material
does not sufficiently affect resultant true ultimate strength which remains almost
constant. This fact is a proof of ductility decrease, as well as move of the strain
value at reaching the ultimate strength. Assuming following:

Uu,true,virgin =0 u,true,pl (4 . 5)

The relationship of ultimate tensile strength ¢, ,; dependency is given as follows:

1 +8tu,virgin

Oy,pl~Ou,virgin” l+e Ou,pl >Uu,virgin and Etu,virgin > Etu,pl (46)
tu,pl

where oy wruevirgin 1S the true ultimate tensile strength of a initial sheet; oy uepl 1S
the true ultimate tensile strength of a stretched sample, oy virgin iS the ultimate
tensile strength in engineering values of a initial sheet; o, is the ultimate tensile
strength of a stretched sample in engineering values; e, vimgin iS the strain at the
ultimate tensile strength in engineering value of a initial sheet and &, p the strain
at the ultimate tensile strength in engineering value of a stretched sample.
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Figure 4.19 Change of the ultimate strength according to the level of

plastic strain induction with respect to the true values of
stress and strain.
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Figure 420 Change of ultimate strength according to the level of
plastic strain induction with respect to engineering values
of stress and strain.

Ductility decrease is significant for all investigated grades as it is shown in Figure 4.21.
The largest decrease is exhibited by the ferritic grade in contrast to the austenitic grade
with the smallest effect of cold-working affecting the ductility. Values for the duplex
and lean duplex grade lie within the area bounded by the ferritic grade from the bottom
and the austenitic grade from the top. The fact reflects the ductility of the virgin
material. Ferritic grades exhibit the lowest values, following by the duplex and lean
duplex grades. Austenitic grades are well-known for their ability to be cold-formed due
to the high ductility in general and therefore it is not surprise that they exhibit the
highest values among all tested grades.
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Figure 4.21 Ductility decrease dependency on the level of plastic
strain induction.

Following figures describe ductility change dependency on the induced plastic strain
and original value of ductility. It seems there is a linear relationship describing the
decrease of ductility and the induced strain. If the basic assumption (stated bellow) is
valid the slope of the linear regression function (a) will be evaluated as 1.0.

& — gpl,i =a- &gy (47)

where

&t 1S the value of ductility of the unformed material,

epii 1S the induced plastic strain,

&t IS the ductility of the formed sample with induced plastic strain

Epli-

This assumption is virtually correct for all investigated grades in case of the uniaxial
tensional hardening. The main task is to check the possibility of employing this
observation for the structural sections properties.
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Figure 4.25 Ductility dependency on the level of plastic strain
induction and the original value of ductility for 1.4462.

Also decrease of the parameter of nonlinearity is evident from Figure 4.26. The stress
strain diagram of coupons with induced plastic strain exhibits more stiffness before the
0.2% proof strength and sharper intermediate area beyond the 0.2% proof strength.
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Figure 4.26  Decrease of parameter of nonlinearity n.

Similar to the true ultimate strength there is no significant change in the initial modulus
of elasticity with respect to the different levels of induced plastic strain as it is shown in
Figure 4.27. This was observed for all investigated grades.
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Figure 4.27  Change of the initial modulus of elasticity according to the
level of plastic strain induction.

As Rossi et al.’s investigations [8] should be the most relevant a comparison of the
predictive formulas and new test data were published. Average values of essential
parameters of coupons cut out from the sheet in the direction of rolling and
perpendicular to the rolling direction (see Table 4.1) were used both for basic material
properties and predictive formulas as any mill certificate was not obtainable.

Expression for the strain from Eq. (3.80), resp. (3.81) is given by:

(Sf,av + 8t,042)1 resp. (Sc,av + St,oz) (4.8)

For comparison purposes it is expressed as:

(gpl,i +e.02) (4.9)

where
eplj 1S induced plastic strain (i.e. ey € (0.01; 0.15 or 0.20 or 0.5).

It should be noted that instead of &, there should be used strain &; at particular plastic
strain, but the differences are negligible. Figures display dependency of the proof
strength increase (oo2/0020-1) on the plastic strain level, where op20 denotes the
average value of the 0.2% proof strength of the virgin sheet according to Table 4.1. “P”
mark denotes coupons tested parallel to the previous elongation. “T” mark denotes
coupons tested transverse to the previous elongation (see Figure 4.9 both of “P” and “T”
curve were calculated on basis of the average value from coupons cut out from the sheet
in the rolling direction and perpendicular to the rolling direction. “PREDICTION 0.85”
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denotes values obtained from the predictive formula. “PREDICTION” denotes values
obtained from the predictive formula without the factor 0.85 which involves a 0.90
factor regarding variability of results and a 0.95 factor regarding the nonsymmetry
effect as it is stated in section 1.4.
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Figure 4.28 Comparison of the measured proof strength increase and
predicted proof strength increase for the 1.4003 grade.
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Figure 4.29 Comparison of the measured proof strength increase and
predicted proof strength increase for the 1.4404 grade.
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Figure 4.30 Comparison of the measured proof strength increase and
predicted proof strength increase for the 1.4162 grade.
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Figure 4.31 Comparison of the measured proof strength increase and
predicted proof strength increase for the 1.4462 grade.
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It seems the predictive relationship is more or less closer to the results of “T” samples
although correct comparison is hardly possible due to the complex of other parameters
(such as other fabrication steps, different levels of cold-forming in section portions etc.)
It corresponds with the idea of acting of similar stresses in a member, i.e. strain induced
within fabrication of RHS is transverse to the subsequent direction how a member is
mostly used in structure. The slope of the 0.2% proof strength increase trends (except
1.4162 — T) is slightly higher than in case of the predictive curve. 0.2% proof strength
enhancement of the ferritic grade exhibits the largest difference between the test and
predictive model both for “T” samples and “P” samples. All of the covered materials
exhibit higher values of the proof strength than what is proposed by the predictive
formula. It can be assumed that due to impossibility of using the mill certificate, the
predictions (in this comparison) are less safe than in case of using the mill certificate
values as the mill certificate might give lower values of the 0.2% proof strength and the
ultimate strength compared to the directly measured values.

4.4 Hot-rolled plate tests

Testing programme consists also of a set of compressive tests of hot rolled plate made
of the austenitic grade 1.4404. Thickness of the plate was 4 mm and the specimen
geometry according to the same code as in previous testing is depicted in the figure
below.

SAMPLE FOR TENSILE TEST

49
= 0
12] 25 |12
= -)J‘\Pjg \\

100
88 124 88
300

Figure 4.32  Geometry of the specimen made of hot-rolled plate.

The set consists of 3 specimens and average values of tests results are summarized in
the following table.

Grade Eo Eo2 002 010 gy & &plu n N0210
GPa GPa MPa MPa MPa % % - -

1.4404 186.0 17.1 308.0 347.1 569.4 62.1 43.3 3.5 2.2

Table 4.10  Mechanical properties of hot rolled plate.
These tests proved that there is lot of factors causing high variability of final mechanical

properties. Despite the lower strength of hot-rolled steel a higher strength was observed
for the same grade. That means little change in chemical composition and way of
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manufacturing are probably determining in this issue. It is possible that also hot rolling
can affect some strength enhancement as well as cold rolling.

4.5 Annealing

Selected specimens were subjected to annealing process for a comparison of pure
strength enhancement during the fabrication and material properties of a sheet after heat
treatment. Annealed coupons involve basic coupons for tensile tests of all investigated
stainless steel grades (1.4003, 1.4404, 1.4162 and 1.4462). Other annealed specimens
were corners and flat faces of SHS and CHS (see Figure 4.33). The annealing process
was discussed in detail with specialists from Faculty of Mechanical Engineering at CTU
where the heat treatment procedure was also conducted.

First estimation of annealing temperature was made according to recommendations in
[5]. Finally the annealing procedure was set as follows:

For the 1.4404, 1.4162 and 1.4462 steel the temperature was set up as 1050 °C for at
least 40 min. For the 1.4003 steel the temperature was set up as 730 °C for at least 40
min as well as for other specimens.

All of specimens were subjected to natural cooling on air.

Figure 4.33  Specimens after annealing (left figure), annealing furnace.
Comparison of the average values of the annealed specimens and specimens made of

the same cold-rolled sheet and grade is stated in Table 4.11 (extended Table 4.1). As for
the previous testing, the stated values represent the average from 3 specimens.
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Grade dFIQI‘OeI(!;:]Ogn o Foz o0z 010 Ou & g N Noaio
orstate GPa GPa MPa MPa MPa % % - -
1.4003 P 1983 7.5 326.7 357.1 4923 221 180 8.4 1.8
1.4003 T 2119 7.0 343.7 3745 5123 319 176 85 1.9
1.4003 A 2101 - 309.8 309.1 500.2 - - - 2.9
1.4404 P 189.0 14.1 259.8 307.3 620.8 61.8 48.7 3.7 2.1
1.4404 T 199.8 11.6 279.0 322.0 635.1 68.6 57.1 8.8 2.3
1.4404 A 1929 7.1 209.3 253.2 567.7 715 40.7 164 3.1
1.4162 P 193.3 21.9 551.6 623.7 785.9 379 241 7.3 3.0
1.4162 T 1955 224 556.5 6248 7656 352 21.1 75 3.1
1.4162 A 196.9 35.1 451.1 5172 7509 259 - 37 3.2
1.4462 P 195.8 25.2 600.1 676.6 843.0 34.3 226 6.9 2.9
1.4462 T 210.7 30.0 637.6 722.7 863.7 339 20.6 5.6 3.4

1.4462 A 207.6 42.7 509.6 6349 8065 289 20.8 34 3.8
P — test parallel to the rolling direction. T — test transverse to the rolling direction.
A — annealed specimen.

Table 4.11  Mechanical properties of the cold rolled sheet according
to the rolling direction in comparison to the annealed
specimens.

All specimens subjected to the annealing exhibit more or less equal value of the initial
modulus as the specimens made of the cold-rolled sheet. For annealed specimens of all
grades lower values of the 0.2% proof strength are typical. That is a proof of the
expectable assumption.

Comparison of the results for the austenitic grade is depicted in Figure 4.34. As it is

stated above hot-rolled plate exhibits higher strength values despite of the cold-rolling
effect.
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Figure 4.34  Results comparison of the 1.4404 grade in the different
treatment conditions.

Annealed specimens of the ferrtitic 1.4003 grade exhibit dissimilar stress-strain
behaviour. After the annealing the stress-strain curve refers to common carbon steel
material. The difference between the diagram of the cold-rolled and annealed material is
apparent from the Figure 4.35. As for the previous cases, the 0.2% proof strength is
lower for the annealed material, however there is large plastic plateau (typical for
carbon steel) with a following hardening stage. The annealed material also exhibits no
rounded curve likewise the carbon steel. This behaviour was observed for all 3 annealed
ferritic specimens. The reason for these results is probably the procedure of annealing
and recrystallizing of the virgin material. Thus the annealed material is not appropriate
for any validations at all.
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Figure 4.35 Results comparison of the 1.4003 grade in different
treatment conditions.

4.6 Part of section tests

Tensile tests of flat faces and corners made of SHS and specimens prepared from
circular hollow section (CHS) serve for the analytical model validation. Preparation of
the coupons is shown in Figure 4.36 and Figure 4.37.

PREPENCICULAR CUT {5 mm SPACE)

SAMPLES CUT OUT FRCM SHS

————
— THESE PARTS PREPARED|FOR OTHER TESTS (2x20Crmin [AND 2xj0mm)

FROM THIS PART CUT OUT
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255 = 205 ] 205 | - L s | s b
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CUT aut
OF FLAT FACES

Figure 4.36 Preparation of the specimens made of the SHS sections.
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SAMPLES CUT QUT FROM CHS

Figure 4.37 Preparation of the specimens made of circular hollow
sections.

Test set-up consists of SHS 80x80x3 and SHS 80x80x5 and of 3 CHS, namely CHS
168.3x2, CHS 88.9x2 and CHS 42.4x2, all made of austenitic 1.4404 grade.

Results are stated in Table 4.12. The CHS 42.4x2 annealed specimen and virgin
specimens after tests are shown below.

By oy ses e AL
P Eba " 1 St

Figure 4.38  CHS 42.4x2 specimens.

The test programme involves 3 specimens for flat faces, 3 specimens for corners and
one annealed corner specimen of each SHS section. CHS sections are represented by 3
virgin and 3 annealed specimens. Stated results are provided by averaging. Not all
specimens were successfully tested due to difficulties with clamping into the testing
machine. The non-representative values are not stated and marked by hyphen.
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SECTION feagfigr‘: Eo Eoz o002 010 04 &  emw N Nozio
GPa GPa MPa MPa MPa % % - -
SHS 803 F 1831 208 397.1 4653 627.6 441 365 31 43
SHS 803 C 2108 663 6816 7141 7419 104 157 144 42
SHS 803 AC - - 2460 2840 5799 - - - -
SHS 80x5 F 1905 293 4481 5162 6274 538 - 34 45
SHS 80x5 C 2153 17.5 7263 7645 771.8 169 46 154 62
SHS 80x5 AC - 51 2354 2609 5375 541 512 - 17
CHS 42.4x2 . 1009 185 319.7 3633 5825 472 242 47 2.2
CHS424x2 A 2107 93 1856 2307 5254 72.6 355 105 2.3
CHS 88.9x2 . 1727 161 3484 3888 6101 591 451 58 22
CHS88.9x2 A 1695 12.6 230.6 2814 541.0 436 414 7.9 28
CHS1683x2 - 1836 151 339.9 379.8 6360 40.1 250 48 2.0

CHS 168.3x2 A 177.8 13.3 208.6 252.8 548.3 54.1 50.0 55 25
F — flat face. C — corner. AC — annealed corner specimen.

Table 4.12  Mechanical properties of the specimens made of the
sections.

The mill certificate was known only for SHS. The mill certificate defines the 0.2%
proof strength, the 1.0% proof strength and the ultimate strength for both SHS as
follows:

00.2 01.0 oy
MPa MPa MPa

281.0 310.0 581.0

Table 4.13  Mechanical properties for the SHS declared by the mill
certificate.

For modelling purpose other mechanical properties were assumed as it is stated below:

Eo Eo> n N0210
GPa GPa - -

195.0 22.2 5.6 1.9

Table 4.14  Other assumed mechanical properties for the SHS.

Stress-strain curve of the CHS virgin material was not modelled due to the lack of the
mill certificate.

Charts comparing the stress-strain curves of the particular section parts are depicted in
following figures.
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Figure 4.39 Comparison of the stress-strain curve for the different
parts of the SHS 80x3 section with the assumed virgin
material (mill) and the annealed corner specimen.
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Figure 440 Comparison of the stress-strain curve for the different
parts of the SHS 80x5 section with the assumed virgin
material (mill) and the annealed corner specimen.
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Figure 4.41  Comparison of the stress-strain curve for the parts of the
CHS 42.4x2 section with the annealed specimen.
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Figure 4.42  Comparison of the stress-strain curve for the parts of the

CHS 88.9x2 section with the annealed specimen.
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Figure 4.43  Comparison of the stress-strain curve for the parts of the
CHS 168.3x2 section with the annealed specimen.

The set of specimens prepared from the sections is not very extensive. Nevertheless
results obtained from the section testing show strength enhancement in the corners
during all fabrication steps can reach almost 300% in comparison with the annealed
material. The 0.2% proof strength of a corner to the 0.2% proof strength of a flat face
ratio is 1.62, 1.72 respectively. Opposite to the assumed 0.2% proof strength of the
virgin material the tested specimens exhibit at least 30% enhancement and there is no
significant change in this effect in respect to the inner radius of circle hollow sections. It
is necessary to mention there was no mill certificate for the CHS and despite to the fact
the material for tubes is the same 1.4404, each section can exhibit different mechanical
properties. 0.2% proof strength enhancement during fabrication of CHS (difference
between annealed and section test) was 51% — 72%. Other mechanical properties are
rather not representative due to the low count of specimens.
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4.7 Conclusions

The presented results prove significant changes in many properties caused by the
previous plastic forming. Also the influence of the forming direction in respect to the
testing direction is clearly visible.

Current test results show particularly:

- Dependency of material properties on the induced plastic deformation was
observed.

- Effect of anisotropy is different for the cold-rolling of a sheet and uniaxial cold-
forming of a specimen made of a sheet.

- More than 100% increase of the 0.2% proof strength was observed for the
austenitic steel in extreme (in case of the uniaxial cold-working of the steel
sheet).

- Strength increase is significant for all investigated stainless steel grades (for the
ferritic, the ductility may be limiting).

- The higher level of plastic strain induced the higher anisotropy effect is
pronounced.

- The 0.2% proof strength is lower for the direction transverse to the previous
strain induction.

- Material non-linearity differs according to the forming direction.

- There is no relevant ultimate tensile strength change in terms of the true values
of stress and strain within cold-forming.

- There is no significant change of the initial modulus of elasticity within cold-
forming.

- Decrease of the ductility corresponding with induced plastic strain and the
relatively linear relationship was observed.

- Design expressions provide safe predictions of the proof strength increase,
though the comparison of the test data to the recent predictive formulas does not
provide perfect agreement.

- Difference of 5% — 33% between the annealed and virgin material for the 0.2%
proof strength of the sheet material of all investigated grades was observed.

- In case of the section corner testing, there was observed the 0.2% proof strength
enhancement of 300% in comparison with the annealed material.

- The 0.2% proof strength of a corner to the 0.2% proof strength of a flat face
ratio 1.62, 1.72 respectively was observed.
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The test programme on 160 coupons was executed and its results presented. The main
material characteristics and stress-strain curves were also described. The presented
strength increase shows, that the influence of cold forming is important not just for the
austenitic grades, but also for the other stainless steel grades. However for ferritic
grades, the ductility could be limiting. After the plastic strain induction in the specimen
corresponding to strain during section cold-forming (in corners typically exceeding ten
percent), the 0.2% proof strength could reach even 300% higher values. There is no
change of the ultimate strength dependent on the level of cold-forming in terms of the
true values of stress and strain (the ultimate strength increase is evident only for
engineering values). Higher level of plastic strain induction implies lower values of
Ramberg-Osgood nonlinearity parameter (more rounded stress-strain diagram) and
ductility as well.

Measured values of mechanical properties serve for further development of the

analytical model of the strength increase and a stress-strain behaviour description of a
whole cold-formed stainless steel cross-section.
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Analytical part

This section describes an analytical solution for stress-strain response of a cold-formed
stainless steel (primarily SHS) section. It allows to derivate the most important
mechanical properties such as the 0.2% proof strength, initial modulus of elasticity,
parameter of non-linearity, i.e. Ramberg-Osgood model hardening exponent essential
for the structure design. The final model is based on the Quach analytical expression for
coiling and uncoiling process and further relationships for forming into a circular
respectively square hollow section. The solution stated herein employs a planar analysis
of the sheet, thus only pure bending of a sheet involving different amounts of straining
in the two orthogonal directions is considered with no stresses acting across the
thickness. There are employed numerical simulations using Maple 18 software for a
whole section stress-strain response evaluating. The preliminary Maple model has been
already partially used for material properties estimation of stainless steel and published
by Howlader, Jandera and Mafik [59] in 2016. Using mathematical software enables to
process large amount of data together with its evaluation by iterating procedures in very
favourable way and relatively short time and the resulting code can be easily checked.

81



Chapter 5: Analytical part

5.1 Assumptions

Before proceeding further, there is essential to denote assumptions for further
calculations. Assumptions are expressed in clear and simple way due to an effort of
having simply working model. Main directions corresponding to stresses considered in
this chapter are matched with coiling and uncoiling as well as with the longitudinal
direction of resulting structural member that is denoted as “z”. Width of the sheet refers
to “x” direction and through-thickness t direction corresponds with “y” axis. Main
directions identification is denoted in Figure 5.1 for more convenient.

/
N
o

Figure 5.1 Main directions identification.

The study assumes the virgin material before coiling is free from residual stress that
may be caused by cold-rolling with the stress-strain curve corresponding to the annealed
material. Essential values can be obtained by measuring, mill-certificate or recent
design codes. Regarding material hardening, the stainless steel is considered to be
primarily isotropic material. Coiling, uncoiling and cold-forming are assumed as plane
strain pure bending deducing stress and strain only in y-z plane. For most of calculations
there is used coiling radius R;=450 mm as it is recommended [48] (if not it is marked),
as well as Poisson's ratio v = 0.3. Sheet thickness remains unchanged during all
fabrication stages. Equivalent plastic strain is considered in absolute value for more
convenient.

5.2 Fabrication modelling

Analytical model developed by Quach [24] for residual stress prediction is adopted. The
model is based on three main processes, i.e. coiling, uncoiling and corner bending.
These stages are modified and compose into a complex description for a corner and a
flat face of a rectangular hollow section. Stress strain response is expressed as the three
stage material model: equations (3.23) - (3.25). During the evaluation of the analytical
solution for fabricating the generally adopted two stage material model was also
considered (equations (3.5), (3.9)) and processed for the whole fabrication model.
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Although for strain range up to 2% it is sufficiently accurate, for higher strain ranges it
doesn’t provide quite correct results in terms of overall values of cold-formed parts.

5.2.1 Coiling and uncoiling

Coiling

During coiling an arbitrary point through the thickness is subjected to elastic or elastic-
plastic straining. Amount of straining depends on the coiling curvature x. =1/R.; and

distance y from the neutral surface (see Figure 5.2). Elastic in plane strains are given as
follows:

0, .-VOy

gz,c=—( ’CEO ) (5.1)
Oy o-VO,

SX’CZ(,CE—O,C):O (5.2)

where Ej is the initial modulus of elasticity,
v is the Poisson’s ratio,
ox 0z7c = Stresses in the directions according to subscripts due to the coiling,
&éxc and g,¢ corresponding strains with ¢, ¢ = xcy

Rolling direction

- -
- -
- R -
- -
- -
[P ——

Figure 5.2 Coiled sheet [4].

Thus, the stress in an arbitrary point is given by:

Ey

Uz,c:m €z, (53)
E
0 (5.4)

Ox,c™ (1-\12) gz,c
Within material plastic straining, there must be satisfied the von Mises yield criterion:
=0y (5.5)

where oyc 1S the instantaneous yield stress reached at the end of
coiling,

o= \/az,chraX’cz-aX’CaZ,c is the equivalent stress  (5.6)
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At the onset of yielding the initial yield stress equals the instantaneous yield stress at the
end of coiling (ay,0 = gyc):

2 2 —
\/O-z,c +Jx,c ’O-x,co-z,c_o-y,O (57)

where oy, is the initial yield stress.

Longitudinal strain ¢, ., at which yielding starts is obtained as:

&cy= 10y 0(1-V?)/ (EO\/ 1-v+v2) (5.8)

where “+” means tension (i.e. y > 0)

Central core remains elastic and size of the core is twice the value Vey expressed as:

Yo =030 (1) (Egpee 10497 (5.9)

Material points beyond the elastic central core and stress obey the von Mises criterion.
Letting the ratio w¢= ox ¢/ 0zc. (5.10)

Coiling stresses at any point are given as:

0,

yiC
o, = :t —_—
“e N (5.11)
l-o.tw,
00y
Oxc— +

’ 5.12
l—a)c-ira)c2 ( )

There is also limiting curvature at which the fibre of extreme surface starts to yield
given by:

Koy =209 (1-%)/ (Eot\/ l-v+v2) (5.13)

It is evident the limit depends on material properties (yield point of virgin material,
initial modulus of elasticity) and thickness of a sheet.

For isotropic material, the relationship between the equivalent stress and the equivalent
plastic strain is the same as the uniaxial stress-strain relationship, so:

o=o, when &,=¢, (5.14)
and do=do, when de,=de, (5.15)
with &= &- 0lEy (5.16)
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For strain-hardening materials oyc and w. are related to each other and it is necessary to
establish them numerically for each y-location in terms of their increments.

Following slope of the equivalent stress-equivalent plastic strain relation H’ equal to the
corresponding slope of the uniaxial stress-plastic strain curve can be expressed as:

. do do (de 1\
H:_f:_”:<_‘9__) (5.17)
de, de, \do E
Stress ratio Q. = dox ¢/ do, is given in the form of: (5.18)
4vH (1-o.t0.’)-E)(2-0) Qo-1) 519
© By Que1)2+4H (1-oto,?) '
Stress increment da. is expressed as follows:
2(lrogtol) (Qro) (5.20)

.= o
o] -0 )+Q,Qw.-1)]

Hence, there can be used numerical calculations for the value of oy and related stress
ratio w, at each point y through the thickness.

Plastic strain under coiling curvature «; is then given by:
Eepl= Eyc- O-yc/EO (5.21)

where oy is the instantaneous yield stress due to the coiling,
&yc 1S the corresponding strain to oy

The increment of the longitudinal strain is expressed as:

([(1-2w)*-2v(1-200,) 2-w ) +(2-0. )]

3/2
2Ey(1-20,) (1-0.+0.>)
(1-w.)?(1-2v)

L * 1290
Eo(l-2a)c)(l-a)c+a)C )

W

de, =+ (5.22)

Final values of oy and corresponding stress ratio w. can be calculated numerically by
step by step updating values of ¢ and w. via small assigned increment do, dw.
respectively.
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Uncoiling
When x; > xcy, in case of the natural uncoiling a sheet after the process exhibits a
residual curvature (see Figure 5.3). The curvature is removed within fabrication process
either before cold-forming or during cold-forming as a result of the final section overall
stiffness. The solution assuming uncoiling including flattening is adopted and described
herein. That means there is used the same uncoiling curvature x, as for coiling in the
opposite direction.

K= - K¢ (5.23)
Total stress at an arbitrary point is then given by:

Oy1= Oz,cT Oz (5.24)

Oy = Ox,cT Oxu (5.25)

Rolling direction
—_— ’..--'_'_—-\) f—f
- - ,' - - -
t/’ —_— ,’l L - - L ,"/ —p’f/
- - S DL
L ————

Figure 5.3 Flattened sheet after uncoiling [4].

As for the coiling there is similar condition for the limiting uncoiling curvature x,, when
the extreme surface starts to yield described as follows:

ayc(l-vz) [2-v+(2v-1)w,]

Fuy™= (5.26)
Eylyl (1—v+v2) ’ l-w o’

When the uncoiling curvature x, is lower than xyy, the uncoiling stresses are elastic
given by:

Ey
-0 5.27
Ozu (1 _vz) Ky ( )
E
il (5.28)

Ux,u:m Ky
When the uncoiling curvature x, is greater than xyy the reverse yielding occurs and
uncoiling stresses after the process are no longer only elastic given by:

Oyr

’ 5.29
l-a)u+a)u2 ( )

o=+t
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WyOy ¢
Ox =t T/———
’ ’ 5.30
l-cuu+a)u2 ( )
with wy= oxr 071 = (0xc + oxu) (02 + 074) (5.31)

Total equivalent plastic strain after uncoiling is similar to the previous one:
Erpl™ &rm O'r/E() (532)
where g is the instantaneous yield stress with corresponding strain &,

Similar to the coiling stage the stress ratio increment dw, is possible to consider as:

2 (1 ot )(Qp-0,)

dow,= o
a[(2-wu)+Qu Qw,-1 )]

(5.33)

Stress ratio Qy = dox,/ do, is given in the form of: (5.34)

B 4VH’( 1 -a)u+wu2)-E0 (2-w,)Qw,-1)
EyQaoy-1)2+4H (1-0,+0,°)

(5.35)

u

The increment of the longitudinal strain for uncoiling is expressed as:

[( 1 -26!)u)2—2V( 1 '2wu) (2'wu)+(2'wu)2] 4
i 372 do,

2Ey(1-20,) (1-0,+@,?)
(1-w,)?(1-2v)

k -E0(1-2a)u)(1-a)u+a)u2)

de, =+ (5.36)

12 40

Likewise the coiling final values of o; and corresponding stress ratio w, can be
calculated integrally or numerically by step by step updating values of ¢ and w, in each
step via small assigned increment do, dw, respectively.

The coiling-uncoiling process develops small strains in the sheet. Thus there is
sufficient to use the stress-strain description in engineering values for evaluating of
plastic strain and stress within the process. Differences between the true and nominal
stress-strain behaviour are negligible. Differences have to be taken into consideration
for higher strains as it is shown in Figure 5.4 and Figure 5.5. Also conclusions of Yu
and Zhang [60] for pure bending with the centreline bending radius R >10t present the
difference between maximum engineering and true logarithmic strain lower than 2.5%.
Because of a coiling and uncoiling curvature (much larger than 10t) engineering strain
values provide more than good accuracy for calculations. However in case of cold
bending (either cold-rolling or press-breaking) it is necessary to take the true strain into
consideration and adapt the model.
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Figure 5.4 Difference between the true and nominal stress-strain
behaviour for the 1.4162 grade in small strain levels.
1000 —
900 =T
800 ="
700 =
< 600
o
S 500 ’/
» 400
0
£ 300
2 500 —— 1.4162_NOMINAL |
100 — —1.4162_TRUE a
0 | | |
0 2 4 6 8 10 12 14

strain (%)

Figure 5.5 Difference between true and nominal stress-strain
behaviour for the 1.4162 grade in high strain levels.

For more convenient, general process of coiling-uncoiling is displayed in Figure 5.6.
The figure displays a general elastic-plastic material. However for the stainless steel
there is no elastic region due to the rounded stress-strain response. Thus strain
hardening across the whole section occurs from the start of coiling with different levels
in relation to the location through the thickness. The diagram describes the “0-E-P” path
representing the coiling. In case of stainless steel the path looks rounded starting at the
point “0” and finishing at the point “P” missing the point “E”. During elastic uncoiling
following the “P-UE” path there is no additional plastic strain induction. Reverse
yielding (“UE-UP”) deduces further plastic strain and yield envelope expansion. Stress
and strain distribution across the thickness is therefore non-linear.
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Ox

von Mises yield envelope

Figure 5.6 Scheme of the coiling-uncoiling process [24].

Distribution of stress and plastic strain after the coiling and uncoiling are displayed in
following figures (Figure 5.7 - Figure 5.9). For highlighting the effect there is R; = 250
mm used together with a 2 mm thin sheet made of an austenitic grade undergoing the
coiling and uncoiling process and divided into 30 layers. Mechanical properties used for
the following example are determined as:

Grade Eo Eoz 002 010 ay &y n N02.1.0
GPa GPa MPa MPa MPa % - -
1.4301 195.4 12.8 205.0 234.6 520.0 60.0 7.5 1.95

There are a few essential properties, i.e. the initial modulus of elasticity, the 0.2% proof
strength, the ultimate strength and the Ramberg-Osgood parameter of nonlinearity. All
other properties can be calculated from relationships stated below:

0.5420
UI.OZTM+1'O720-0.2 (537)

Formula (5.37) was established by Quach [24] by analysing tension coupon test data as
well as formula (5.38) determining compound Ramberg-Osgood nonlinearity parameter

N’0.2,1.0:

, _ 12.225E0.20'1.0
n 0'2’1'0_T+1.037 (538)
090.

Determination of the tangent modulus of elasticity at the 0.2% proof strength is based
on Eq. (3.22).
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Corresponding strain at the ultimate strength is adopted from Eq. (3.21) codified in EN
1993-1-4 and limited by the value of 60%. In case of ferritic steel the expression can be
slightly modified according to results and observations from experimental programmes
according to Bock et al. [61] as:

£,=0.6 (1@)

o (5.39)
However, in the Maple model the relationship for ¢, (Eq. (3.21)) is generally adopted
for all grades. Although ferritic steels exhibit shorter area between the 0.2% proof
strength and the ultimate stress they also exhibit relatively significant plateau at ultimate
strength. Thus this observation within testing at CTU allows using the Eq. (3.21) for all
grades. In addition by considering linearly increasing strains across the thickness from
neutral surface to the outer or inner one during the fabricating, high plastic strains
induced at surfaces of the bend area can even exceed original material ductility (in case
of the corner bending with a low value of the inner radius). That means the bending
with a low inner radius is more complex and not only planar behaviour and material
acting through the thickness. The Maple model is based as a planar solution
conservatively considering only lower values of plastic strain than &,.
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0.5 I
\ \\ ylt ——sigmalz,r]
\ \ 0.4 sigma[x,r] [
A 0.3
\\ 0.2
0.1
N
-300 -200 -100 0 100 2(|)o 300
-0.1 —]
\ stress (MPa)
-0.2 \ \\
03 \ \\
-0.4 \ \
-0.5 \
Figure 5.8 Longitudinal and transverse stresses due to coiling-
uncoiling according to the Maple model.
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Figure 5.9 Plastic strain after coiling and coiling-uncoiling

according to the Maple model.
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5.2.2 Cold bending

This section describes an analytical solution both for press-breaking and cold-rolling of
a sheet into a corner. It should be noted that within press-breaking the outer curved
surface of a sheet becomes inner surface of the final bend. As the strains induced by
cold-bending are much larger than in case of coiling-uncoiling the resulting state is
mostly influenced by making a corner. The mathematical description stated herein is
based on similar foundations as for the coiling-uncoiling assuming large bending
curvature.

Cold-bending process affects relations across thickness of the corner [14]. For large
curvatures (Rc < 10t) there is important effect of changing the neutral surface [60]. The
neutral surface is not more the same as the middle one. It moves closer to the inner
surface as the bending proceeds (see Figure 5.10). That means there is a zone within the
thickness exposed to compression and following tension. It leads to a non-deformed
surface during each step of the cold-bending where zero final strains occur.

Figure 5.10  Sheet under pure bending [24].

When a sheet is cold-bent, its fibers undergo transverse straining. Amount of the
straining depends on the location in relation to the current middle surface and a distance
s between the neutral surface and the current middle surface and the centerline radius
Rc. The true transverse strain is expressed as:

Ex cs=IN < 1+ (;j_;)) (5.40)

As it was stated above no through-thickness stresses and strains are considered and
similar to the coiling and uncoiling for elastic material longitudinal and transverse
stresses are given by:

VEO
Oz.cs™ m €x,cs (541)
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Ey
Ox.cs™ m €x,cs (542)

The elastic stress is only theoretical issue due to the nonlinear stress-strain behaviour of
the stainless steel, thus plastic straining occurs from the beginning of the process.

With SthSS ratiO Wcs— O-Z,CS/ O-x’cs y (543)

stresses of points subjected to the plastic straining are expressed as:

WOy cs

f 5.44
1'a)cs +wcsz ( )

Oy,cs
+ Y>

Oxcs™ T —T5m/—————————
, — 5.45
1'wcs_l_wcsz ( )

Similar to Eq. (5.16), the equivalent plastic strain is given by:

Ozcs™ +

5cs,pl = &ycsT O-y,cs/EO (546)

where oy is the instantaneous yield stress due to the cold-bending,
&y,cs 1S the corresponding strain to oy

Letting the stress ratio Qcs = do, s/ doxcs IS given in the form of: (5.47)
_4H (1-0it 0" )-Ey (2-06) Qorg-1) (5.48)
B Que-1)H4H (-0 o) '
Stress increment daw.s is expressed as follows:
2(1-0 et > ) (Qes-
dwcs: ( W T W )( cs a)cs) (549)

0[(2'wcs)+gcs (2wcs' 1)] ’

Then the value of aycs and related stress ratio wcs at each point y through the thickness
can be solved numerically.

Due to large curvatures and high strain levels it is necessary to use true values instead of
engineering notation as it is stated above. Thus the true plastic strain &, is expressed as:

oa(125,)

eypl = & o/Eg==xIn(1£e,) - Z
0

(5.50)

where “+” denotes tension and “-“ compression,
subscript “t” denotes true value and subscript “n”” nominal value
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Slope of the equivalent stress-equivalent plastic strain relation A’ is still given by Eq.
(5.17), however the strain rate de/do must be replaced by deddo:.

In terms of using three stage material model — Eq. (3.23)-(3.25) and for do; obtaining
there is possible to employ following expression:

20, on \"
1+ —+0002(n+1) (_) ] (2 < 002 (551)
Ey 00.2
( 20,- , A
80.2+M +[(n92.1.011)ow-00.2] 002<0,<06y9 (5.52)
doy 14
do, - { ' >
1 1 - 19.2,1.071
[0.008"‘(0'1.0-0'0.2) (_- )] (O-n 0-0.2) n (553)
. Eo Eo2/1 (g, g-0p5)"0210 /
2 n- b$ n + n\Yn"
(20,-a) (b+0,)+0,(0,-a) o >0, (5.54)

(bF0,)?

First for the small increment of do, there is possible to establish doy and then dewcs.
Second, it is possible to calculate cold-bending stresses and equivalent plastic strain by
determination ay,cs and wcs that are as well as for previous stages related to each other.

As well as for the coiling and uncoiling the distribution of stress and plastic strain after
cold-bending is shown below. The inner radius of bend is set as 4t. Parameters of the
sheet remain the same as for the previous example. In Figure 5.11 and Figure 5.12 there
is depicted how the final stresses and equivalent plastic strain are influenced by
assuming stress-strain response in nominal or true values after coiling-uncoiling and
cold-bending.

0.5 T | |
\\\ \\ yit sigma]z,cs]_nominal
N\ \\ 0.4 sigmalx,cs]_nominal
AN \\ 03 — — sigma(z,cs]_true -
\‘ \ 0.2 — —sigma][x,cs]_true
\j
| 0 —
-500 -400 -300 -200 -100 0 106\ 200\300 400 500
-0.1 \ \stress (MPa)
-0.2 \
-0.3 \ \
\ N
-04 \‘\ \\\
o5 \ \

Figure 5.11  Comparison of plane stresses according to the nominal
and true stress-strain response for cold-bending in the
Maple model.
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Figure 5.12  Comparison of equivalent plastic strain according to the

nominal and true stress-strain response for cold-bending
in the Maple model.

5.2.3 Cold bending including springback

When a steel sheet is subjected to the plastic strain induction during cold-bending
followed by unloading, the final shape of the sheet is different from the originally bent
one. Figure 5.13 displays a stress path of a cold-formed sheet in terms of the cold-
bending of perfect elastic-plastic material as the simplest illustration of the effect. There
should be remarked that residual stresses due to the elastic unloading (known as
springback) occur within all fabrication steps. However the level of final stress
distribution after each step is hard to determine. Herein it is assumed that important
residual stresses arise after cold-forming into a corner.

after springback v
before springback

loading stress

unloading stress

Oy

Oy

residual stress
‘ Or

Figure 5.13  Cold-bending of an elastic-plastic sheet with the stress
path and resulting stress distribution in a corner.
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Thus the final Maple model employs residual stresses resulting from the elastic
unloading after cold-bending (i.e. determination of residual stresses is based on the zero
moment condition). Suitability of the proposed solution was verified by comparison
with residual stress test data executed by Weng and White [52], Quach’s FEM solution
[24] and Rossi et al.”s numerical analysis [53]. They all aimed on the same case of the
cold-bending for the comparison. Residual stresses in z direction were compared only
with Weng and White experiments together with Quach’s FE model due to the lack of
other available data.

At first Weng and White (in 1990) executed an experimental investigation of residual
stresses in cold-bent thick plates made of high-strength steel HY-80 (for material
properties obtained from a coupon test see Table 5.1). The comparison of the results is
proved for the sample of 1 inch thickness and with inner radius of bend 5.5t. Strain at
the ultimate strength is obtained using Eq. (3.21). Transverse surface residual stresses in
z direction were taken as average values resulting from experimental methods used
within testing. (i.e. hole-drilling and sectioning).

t (mm) oy, (MPa) o, (MPa)  E (GPa) v(-) &y (%)
25.4 593.2 737.9 203.9 0.28 19.6

Table 5.1 Mechanical properties of HY-80 steel.

In 2005 Quach [24] used the finite element code ABAQUS for modelling the cold-
bending process where both material and geometrical non-linearity were considered as
well as interaction between the steel plate and the die or punch.

In 2007 Rossi et al. [53] modified previous equations proposed by Quach and
incorporated a swift law to determine non-linear stress-strain behaviour of HY-80.

In the Maple model, the HY-80 steel is considered to be an elastic material until it
reaches the yield strength and after it is assumed as an elastic hardening material as it is
shown in Figure 5.14. The slope of hardening at the yield strength is then given by:

Oy-0y 737.9-593.2

En= = =749.0 MP .
" &-0,/E 0.196-593.2/203900 749 a (5.55)
A
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Figure 5.14  Idealized material model of HY-80 steel.
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The simpler bilinear stress-strain description of the material with hardening is given by:

o= 8E0 e< O-y/EO (556)

o
oc=o0,tE, (8- E—,y) e>oy/E, (5.57)
0

Then the slope of the equivalent stress-equivalent plastic strain relation H' for ¢ > oy is
simply expressed as:

= Lok 5.58
"B, E. (5.58)
And the equivalent plastic strain can be obtained as:
Eo-En]
Ecspl = (Oy.cs-0 (5.59)
cs,pl ( y,Cs y) [EOEn

That simplifies previous expressions and thus it is easier to evaluate the analytical
solution.

Figures below display a comparison of obtained results. Analytical solution is very
close to the Rossi et al.’s numerical model while the confrontation with test results and
FE model exhibits some differences that could be caused by boundary conditions
entered in ABAQUS and only few strain gauges used for testing, because experimental
measuring did not satisfy the condition of the required zero moment across the
thickness. Overall the analytical solution provides good accuracy and it is employed for
further applications.
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Figure 5.15 Residual bending stresses oyx across the thickness
comparison.
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Figure 5.16  Residual bending stresses o, across the thickness
comparison.

5.3 Stress-strain behaviour

The analytical solution of fabrication steps described above serves for residual stress
and plastic strain evaluation. On the basis of these boundary conditions there is possible
to determine awhole stress-strain behaviour for particular portions of a section as well
as for a full section. Following sections deals with this issue.

5.3.1 Stress-strain behaviour of cold-bent corner and flat faces of SHS

A corner or SHS sections are modelled using the Maple via the three stage fabrication
process consisting of the coiling stage followed by the uncoiling stage with the bending
into the final shape as it was described above. The model is closer to the physical base
of the cold-bending than for the cold-rolling due to the distribution of the enhanced
strength as it was described by Cruise [4] for instance. From Figure 5.17 and Figure
5.18 it is evident that the idea of simple enhanced strength distribution with a relatively
sharp border between a corner and a flat face is well applicable for press-braked
sections. It also confirms the enhanced part of a section is solely represented by the pure
geometric corner area. In opposite to press-braked sections the enhanced strength
distribution for cold-rolled sections is much more complex with a peak at the border
geometrically dividing the corner and the flat face. This peak continuously and almost
linearly decreases on both sides and for the most of the flat the strength enhancement is
the lowest in the section. For further corner properties the following Maple model
considers the fabrication process of cold-rolling the same as for press-braking making
the corner the most affected part of a section with dominant influence for resulting
strength resistance of a full section in terms of the strength increase. However in case of
flat faces there is appropriate to regard the complex effect of the cold-rolling. As it is
shown in Figure 5.18, with respecting the previous assumption it could be incorrect to
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assume the uniform enhanced strength with maximal amplitude for a whole flat face. In
terms of determining of the enhanced strength properties the calculation of plastic
strains essential for matching new material properties is the most important. Progress of
the Maple model regarding this effect is stated herein. The model provides an average
value of strain for the flat face as the representative strength enhancement used for a full

section strength enhancement.
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In terms of flat faces the process of the cold-bending mostly consists of forming into a
circular tube and further crushing it into flat parts of SHS. That means the primary
bending followed by the secondary reverse bending with a curvature depending on the
section dimensions. These steps take place in the residual stress and plastic strain
calculation (see Figure 5.19).

= B\
N
L t
—H—
N 2/

Figure 5.19  Bending radius for a corner and a flat face.
Bending radius for the flat faces regarding rounded corners of RHS is given by:

B L+H-2¢

T

(5.60)

Ry

The principle of the Maple model for the stress and strain calculation is based on the
following steps. A part of a section (corner or flat face) is divided into several layers
across the thickness to evaluate the residual stress and plastic strain. The model
establishes plastic strains in absolute values for each layer. For obtaining a new stress-
strain curve of a whole corner or flat face it is necessary to determine mechanical
properties for each layer individually according to the plastic strain reached at the end
of the fabricating process. Thus trends of the mechanical properties depending on the
induced plastic strain level were gathered from the experimental data established at
CTU (see Chapter 4 — section 4.2 and 4.3) and plotted in following figures. Trend
functions were established on the basis of the tests executed transverse to the direction
of previous plasticising (coupons denoted by “T” mark — right hand side - Figure 4.9).
Linear and polynomic expressions were prescribed for insuring of a simple regression
with no specific boundary conditions as it is shown in the figures. In some cases there
would be suitable to perform additional tests to provide more data due to a relatively
high scatter of measured values. In addition a few quadratic regressions exhibit both
increasing and decreasing trends. Therefore for these cases two stage models were
employed represented by a variable part and subsequent constant one. The constant
expression for a particular property is used after the variable expression reaches the
extreme. The dependency of n on the level of plastic strain induction represented by a
constant value after reaching a particular limit was also observed by Hradil et al.[62]
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Figure 5.27  Trends of the mechanical properties for the 1.4462 grade -
follow up.

Stress-strain determination is set by a stress increment for each layer across a thickness
for a small increment of strain Ae = 10™. The final curve is evaluated with 0.0001 strain
precision as an average stress response of all layers. Partial isotropic behaviour
including linear elastic part of the stress-strain response is implemented by a condition
based on the residual stresses after the cold-forming. The material remains elastic until
the actual stress reach the von Mises yield condition:

0= \/ OJX,1+0§,1'Ux,iUz,i§\/ sz,pb +0§,pb'0x,pb0z,pb (5.61)
where oy and o is the instantaneous plan stresses,
ox.pb and oz pp 1S the residual plan stresses after cold-bending.

As well as for the fabrication modelling, the further stress-strain response with
particular plasticising is determined using the three stage material model (Eq. (3.23) -
(3.25)). Stress-strain determination is set by a stress increment for each layer through a
thickness for a small increment of strain Ae = 10 and expressed for z-direction.
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5.4 Validation of the model

5.4.1 Comparison of the model with CTU section tests

The analytical model was compared with the section tests executed at CTU. The model
is also suitable for a circular hollow section as the analytical procedure is able to solve
CHS as well as flat faces and corners of SHS.

Following figures (Figure 5.28 - Figure 5.34) show the comparison of the modelled
results with results of the measurement. In the figures there are curves resulting from
the Maple model using assumed mechanical properties both for virgin material (marked
1.4404_MILL) and annealed material.

In case of CHS a mill certificate was not available.

600 :
/
500 /
I I N S e o
400 S I
300 —— _
é V — — — — — — — c—
e |
7 oL
g 200 '/ . oS _
’ / — — 80x3_C_ANNEALED
I — 1.4404_MILL
100 h - _
I —— MAPLE MODEL_MILL
i MAPLE MODEL_ANNEALED
0 : ! : : :

00 02 04 06 08 1.0 1.2 1.4 1.6 1.8 20
strain (%)

Figure 5.28  Comparison of the predictive models for the flat face of
the SHS 80x3.
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Figure 5.29 Comparison of the predictive models for the corner of the
SHS 80x3.
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Figure 5.30 Comparison of the predictive models for the flat face of
the SHS 80x5.
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Figure 5.31 Comparison of the predictive models for the corner of the
SHS 80x5.
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Figure 5.32 Comparison of the predictive models for the CHS 42.4x2.
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Figure 5.33 Comparison of the predictive models for the CHS 88.9x2.
500 .
/
450 —
400 / T
350 /,/ __________
300 ' B R ks e
s / L e
Q250 A1 —————
2 [ 2=~
/] P T
@ 200 11
o /.
2 150 //:/ —tt 1 ----- MAPLE MODEL_ANNEALED {
100 / ——— CHS 168x2_TEST |
/ ,' — — CHS 168x2_ANNEALED
50 L -
X — - -E0
0 : : : : :
00 02 04 06 08 10 12 14 16 18 20
strain (%)
Figure 5.34 Comparison of the predictive models for the CHS 168.3x2.

There is need to mention the assumed process of fabrication is simplified significantly,
thus the final results can be different (i.e. the model does not involve contact between a
roll and a sheet that can cause further enhancement etc.). Nevertheless the figures above

112



Chapter 5: Analytical part

show the model is also suitable for use in CHS properties modelling. The difference
between the model and test curves is probably caused by unknown virgin material data.
The annealed material used in the model may result in very conservative curves.

In the SHS cases there is closer agreement apparent for the flat faces than for the
corners. The mill certificate is not often appropriate source of correct material
properties. Thus, the model for annealed material is more suitable for use. For corners
the model is rather conservative but still safe for use. The strength enhancement in
corners reaches almost 300% representing very high level of cold-forming.

5.4.2 Comparison of the model with tests carried out at Imperial College

The Maple model for corners and flat faces was confronted with the recent extensive
experimental programme conducted at Imperial College in London [47] containing 51
flat coupons, 28 corner coupons and 6 full section specimens made both of circular and
rectangular hollows sections. This data set employs mill certificate for the sheet
mechanical properties which sections were made of. However some tensile tests for
corners and flat faces exhibit lower value for the 0.2% proof strength than in case of the
mill certificate 0.2% proof strength. Hence these are not applicable for the confrontation
due to lack of strength enhancement. Thus all other SHS cases were selected for the
comparison as the most appropriate due to the identical or similar grades tested at
Imperial College to those tested at CTU (see Chapter 4). Mechanical properties
considered in the comparison are reported in Table 5.2. Geometrical properties
considered in the Maple model are stated in Table 5.3. Other data are available in [47].

Cross-section Material grade Eo 00.2,mill Oumill n N'021.0
(GPa) (MPa) (MPa)
SHS 150x150%8 1.4404 195 302 605 5.2 3.6
SHS 100x100x5 1.4301 192 310 670 5.6 2.9
SHS 150x150x5 1.4301 192 289 621 5.6 2.9
SHS 100x100x5 14571 191 272 562 6.9 3.6
SHS 120x120x5 14571 191 268 584 6.9 3.6
SHS 30x30x2 1.4509 190 362 476 6.7 3.1
SHS 40x40x2 1.4509 190 362 476 6.7 3.1
SHS 50x50x2 1.4509 190 364 501 6.7 3.1
SHS 80x80x3 1.4003 199 324 467 8.4 2.5
Table 5.2 Mechanical properties as stated in the mill certificates and

considered in the study.
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Cross-section Material grade H L t -average r;-average R;-average
(mm)  (mm) (mm) (mm)
SHS 150x150x8 1.4404 150.01 150.51 7.76 10.39 90.72
SHS 100x100x5 1.4301 99.99 99.85 4.76 2.08 60.65
SHS 150x150x5 1.4301 149.82  149.88 5.00 6.68 92.21
SHS 100x100x5 1.4571 100.09  99.73 4.69 5.50 60.62
SHS  120x120x5 1.4571 120.30 120.14 4.64 5.79 73.58
SHS 30x30x2 1.4509 29.98 29.97 1.95 1.50 17.84
SHS  40x40x2 1.4509 40.07 40.02 2.02 1.75 24.21
SHS 50x50x2 1.4509 50.14 50.26 1.90 2.50 30.75
SHS 80x80x3 1.4003 79.75 79.74 2.80 3.86 48.98

Table 5.3 Geometrical properties of the compared specimens.

As 14571 and 1.4301 represent austenitic grades and 1.4509 a ferritic grade,
corresponding trends functions for material properties were adopted from grade 1.4404
(for austenitic) and from grade 1.4003 (for ferritic).

The analytical model is confronted with the measured 0.2% proof strength of all
investigated cross sections coupons mentioned above. Further figures show
confrontation of the corner stress-strain behaviour following by the comparison of the
stress-strain behaviour of flat faces. The corner test set-up contained two tensile tests of
corners for each section. In case of the flat face the set-up consisted of three specimens
for each section. Ferritic 1.4509 SHS were only tested in full section tests and flat faces
tests due to their tiny dimensions for corner cutting. Thus in case of stress-strain curves
an average recorded stress-strain response is plotted and compared to the analytic
solution together with the curve for the material stated in the mill certificate. As it was
stated above for bending radius greater than 10t it is possible to neglect the difference
between true and nominal values of stress and strain. The section forming radius for flat
faces is mostly greater and fulfils the condition. Hence the model for a flat face works
with nominal values.

Figure 5.35 Test set-up of the experimental programme conducted at
Imperial College.
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Following figures (Figure 5.36 - Figure 5.39, Figure 5.41 - Figure 5.46) display
comparison of the Maple model with the experimental data.

The first set of figures belongs to the corner properties whereas the second set
represents comparison with the flat faces results.

corners

Tests results exhibit a similar strength increase for both corner specimens allowing
appropriate further evaluation due to the low scatter.

For selected specimens, there are plotted stress-strain responses according to the Maple
model in comparison with the recorded stress-strain behaviour for evaluating the level
of agreement.

It was observed the model for a corner is in relatively good agreement with the
measured data up to the 2% strain. Thus all other curves (also for flat faces and full
sections) are displayed up to this limit.
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Figure 5.36  Comparison of the modelled and measured stress-strain
response for the corners from the 1.4404 SHS 150x150x8.
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Figure 5.37  Comparison of the modelled and measured stress-strain
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Figure 5.39  Comparison of the modelled and measured stress-strain
response for the corners from the 1.4301 SHS 150x150x5.

The data provides very close agreement of the Maple model with the experimental data.
The key question involves the mill declared properties that may be partially incorrect
and cause differences in results as it was stated before.

Flat faces

Provided data refers to exclusion flat faces specimens cut out from the welded area
(TEST S — denoted in figures) from further evaluation due to the significant strength
increase difference between the welded areas and areas not affected by welding. It is
also obvious that for all investigated SHS welded areas exhibit higher strength increase
than other flat portions. Correct evaluation of the measured data is also more difficult
due to the higher scatter. In case of 1.4571 SHS 120x120x5 there might have been some
discrepancy of measuring process as there is considerable difference for flat faces not
affected by welding. There is also a possibility of influencing the results by different
fabricating routes. It should be noted rectangular hollow sections do not have to be
always fabricated by making into a circular tube with subsequent forming into a final
shape. Another possible fabricating way is making four cold-rolled corners directly and
then welding edges of a sheet together. This is probably case of 1.4301 SHS 150x150x5
where the results of flat faces outside the welded area exhibit almost no strength
increase. Also the dimension of 150 mm is commonly used limit for the change of the
fabricating way.

As for corners, there are plotted stress-strain diagrams according to the calculation of
the Maple model in comparison with the recorded stress-strain curve for evaluating the
agreement level. However, for more clearance in the comparison of stress-strain
diagrams there are used only coupons Al, A2 cut out from areas not affected by
welding.
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Due to the consistent approach, stress-strain responses are displayed up to 2% as it is
depicted for corners results.

For the analytical model for flat faces there are introduced two ways of considering the
plastic strain at the final state of flat faces. As the process of making corners and
flattening the parts of faces is related to each other it is complicated to express particular
effects on corner and flat faces individually. Also the mill certificate is not always
appropriate source of the virgin material (the safe values of strength are obtainable from
an annealed material test as it is stated before). Plotted model results are marked by
“RS” and “CS” labels to differentiate the methods. Due to the planar analytical solution
related to the previous expressions, two methods for evaluating induced plastic strain
for material properties calculation are presented. Plastic strain induced is essential for
new material properties providing. Hence “RS” denotes plastic strains during a process
of bending into a circular tube with subsequent reverse bending into a flat part (“RS”
model was used before in Section 5.4.1 as the primary model) whilst “CS” denotes final
plastic strain for new properties resulting from the process of bending only into a
circular hollow section (see Figure 5.40).

Rf Rf

AN
!

Figure 5.40 Scheme of the methods for the flat faces fabrication
modelling. Left figure represents “RS”, right hand figure
represent “CS”.

Model “RS” will provide higher values of induced plastic strain and therefore also
higher strength enhancement. Next figures depict comparison of the modelled flat face
0.2% stress strain curves and test results.
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Figure 5.41  Comparison of the modelled and measured stress-strain
response for the flat faces from the 1.4301 SHS
100x100x5.
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Figure 5.42  Comparison of the modelled and measured stress-strain

response for the flat faces from the 1.4571 SHS

100x100x5.
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Figure 5.43  Comparison of the modelled and measured stress-strain
response for the flat faces from the 1.4003 SHS 80x80x3.
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Figure 5.44  Comparison of the modelled and measured stress-strain
response for the flat faces from the 1.4509 SHS 30x30x2.
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Figure 5.45 Comparison of the modelled and measured stress-strain
response for the flat faces from the 1.4509 SHS 40x40x2.
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Figure 5.46  Comparison of the modelled and measured stress-strain
response for the flat faces from the 1.4509 SHS 50x50x2.

Despite the fact that test results doesn’t clearly match the “CS” nor the “RS” model,
most cases rather indicate higher correlation with the “CS” model that gives lower
values of the strength increase. The author also prefers this model as it gives safer
prediction to structural calculations. Differences between the modelled response and the
measured curve could be caused by a lot of circumstances. Modelled behaviour can be
affected by incorrect material properties inputs due to lack of sufficient virgin material
data with unknown real coiling and uncoiling radii. That could result in the difference
between the model and the test data.
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5.4.3 Comparison of the model with test results and recent predictive
models

Following figures (Figure 5.54 - Figure 5.61) display comparison of the Maple model
with the prediction methods and the experimental data.

The first set of figures belongs to the corner properties whereas the second set
represents comparison with flat faces results.

Corners
For the corners test results with the particular inner radius to thickness ratio are plotted

among the curves obtained from predictive formulas and the Maple model according to
the varying ri/t ratio (Figure 5.47 - Figure 5.52).
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Figure 5.47  Results of the corner tests in comparison with the Maple
model and predictive methods for the SHS 150x150x8
made of 1.4404.
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Results of the corner tests in comparison with the Maple
model and predictive methods for the SHS 100x100x5
made of 1.4301.
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Results of the corner tests in comparison with the Maple
model and predictive methods for the SHS 150x150x5
made of 1.4301.
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Figure 5.50 Results of the corner tests in comparison with the Maple
model and predictive methods for the SHS 100x100x5

made of 1.4571.

7

_ 120% \
o
c ZQV&
S 100% \\ﬂ
S \\ \\
[t
§ 80% __x \\
) | \
S \
2 60% N N s:"\zs\
= (0] Q
E I —
o | I
5 [
0, T
£ 0% A ROSSI- AFSHAN - GARDNER  ——ROSSI ET AL,
2 CRUISE - GARDNER ——ASHRAF ET AL. BY ou,v i
g 20% 4| ——ASHRAF ET AL. BY 00.2,v V. D. BERG AND V. D. MERWE
o —&—MAPLE MODEL @ TESTC1
N o TESTC2
© : : : : : : : : : : : : :
00 05 10 15 20 25 30 35 40 45 50 55 60 65 7.0
ri/t
Figure 5.51 Results of corner tests in comparison with the Maple
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Figure 5.52  Results of the corner tests in comparison with the Maple
model and predictive methods for the SHS 80x80x3 made
of 1.4003.

Tests results exhibit a similar strength increase for both corner specimens.

Flat faces

Next figures (Figure 5.53 - Figure 5.61) show comparisons of the experimental data for
the flat faces and other predictive methods with the proposed Maple model. As for the
corners, firstly there are plotted records of the 0.2% proof strength increase for

particular stainless steel grades with particular ratio R¢/t into the recent predictive and
proposed curves.
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Figure 5.53  Results of the flat faces tests in comparison with the Maple
model and predictive methods for the SHS 150x150x8
made of 1.4404.
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Figure 5.54  Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 100x100x5
made of 1.4301.
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Figure 5.55 Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 150x150x5

made of 1.4301.
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Figure 5.56  Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 100x100x5
made of 1.4571
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Figure 5.57  Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 120x120x5
made of 1.4571
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Figure 5.58 Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 30x30x2 made
of 1.4500.
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Figure 5.59  Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 40x40x2 made

of 1.4509.
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Figure 5.60  Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 50x50x2 made

of 1.4509.
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Figure 5.61 Results of the flat face tests in comparison with the Maple
model and predictive methods for the SHS 80x80x3 made
of 1.4003.

5.4.4 Comparison of the model with recent predictive methods

Following figures (Figure 5.62 -Figure 5.70) display a comparison of the recent
predictive methods for corner and flat faces strength enhancement described in Chapter
3 — section 3.3 and the Maple model using experimental results gathered at CTU (see
Chapter 4 — section 4.2 and 4.3). The first one (Figure 5.62) displays dependency of the
0.2% proof strength increase on the ultimate strength to the 0.2% proof strength ratio.
Four values represent four tested grades (1.4404, 1.4003, 1.4162 and 1.4462). The
nominal section serving for the prediction was set as SHS 100x4 with ri/t = 1.5.
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Figure 5.62  Proof strength increase depending on the ratio between
the 0.2% proof and ultimate strength for the tested grades.

Most of the predictive formulas assume the effect of increasing strength enhancement
joined to the increasing 0.2% proof to ultimate strength ratio. The maple model predicts
similar behaviour except the case of the lean duplex and duplex grade. These grades are
very close to themselves in their properties and the difference is caused by other
material parameters and negligible in fact.

corners

Next figures (Figure 5.63 - Figure 5.66) show comparison of the 0.2% proof strength
predictive methods for these four tested grades according to the changing ri/t ratio.
Collected data of the ri/t (see Appendix G) for cold-rolled and press-braked sections
indicates the sufficient range of the ratio covering the majority of tested sections varies
from 0.5 to 7. Therefore next figures are related to this range.

In case of the austenitic 1.4404 grade there is good agreement of the proposed model
with the predictive relationship according to Rossi, Afshan and Gardner [8] with
average difference of 9% and standard deviation of 4%. As austenitic grades are the
most common for SHS fabrication the formula provides slightly lower and thus safe
predictions and confirms results obtained from the Maple model.
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Figure 5.63  0.2% proof strength increase for a corner depending on
the inner radius to thickness ratio for the austenitic 1.4404
grade.

In opposite to the austenitic grade, for other grades the Maple model does not
sufficiently correspond with predictive relationships. In case of the ri/t effect trend, the
Maple model exhibits good accordance with the method proposed by Rossi, Afshan and
Gardner [8]. This similarity occurs both for ferritic and lean duplex and duplex grades.
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Figure 5.64  0.2% proof strength increase for the corner depending on

the inner radius to thickness ratio for the ferritic 1.4003
grade.
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The comparison of the predictive methods for ferritic grade 1.4003 shows lower
differences between the Maple model and other formulas in opposite to the Rossi-
Afshan-Gardner model. For lean duplex and duplex grades (1.4162, 1.4462) and
common ri/t ratios there is higher agreement of the Maple model with results according
to Rossi-Afshan-Gardner relationship.
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Figure 5.65 0.2% proof strength increase for the corner depending on
the inner radius to thickness ratio for the lean duplex

1.4162 grade.
I I I I I I I I

5 120% ——ROSSI - AFSHAN - GARDNER |
c ——ROSSI ET AL.
S \ CRUISE - GARDNER
= 100% ASHRAF ET AL. BY ou,v !
2 \ —— ASHRAF ET AL. BY 60.2,v
(O]
7D 800 N VAN DEN BERG AND VAN DER MERWE |
s N —A—MAPLE MODEL
5 RN
£ 60% ~
o \\
T 40% — —
= — ———
(7]
B on S N — |
@) 0
S
AN
o

O% T T T
00 05 10 15 20 25 30 35 40 45 50 55 60 65 7.0
rift

Figure 5.66  Proof strength increase for the corner depending on the
inner radius to thickness ratio for the duplex 1.4462
grade.
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The confrontation indicates the latest predictive Rossi-Afshan-Gardner proposal offer
appropriate trend of strength increase dependency on ri/t and good accordance for the
austenitic grade. However for other stainless steel it could be modified.

Flat faces

Next figures (Figure 5.67 - Figure 5.70) depict comparison of the modelled flat face
0.2% proof strength and results according to the predictive methods (see Chapter 3 —
section 3.3). Similar to the previous comparison for the corner there is displayed
dependency of the 0.2% proof strength increase on the varying ratio between the flat
face radius Rs to thickness - Eg. (5.60). Typically R/t varies from 10 to 20. For more
convenient following figures involve range of R¢/t from 5 to 23.
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Figure 5.67  0.2% proof strength increase for the flat face depending

on the inner radius to thickness ratio for the austenitic
1.4404 grade.
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Figure 5.68 0.2% proof strength increase for the flat face depending
on the inner radius to thickness ratio for the ferritic

1.4003 grade.
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Figure 5.69 0.2% proof strength increase for the flat face depending
on the inner radius to thickness ratio for the lean duplex

1.4162 grade.
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Figure 5.70  0.2% proof strength increase for the flat face depending
on the inner radius to thickness ratio for the duplex 1.4462
grade.

The trend of the 0.2% proof strength dependency on Ry/t is close to the other models
except the Cruise — Gardner’s which exhibits unlikely high values. The corner model
and the flat face model exhibit higher strength increase for materials with higher
ultimate strength to 0.2% proof strength ratio as well as other predictive methods do.
Evaluation of the model based on the experimental investigations.

Finally the “CS” model is used for further evaluation and comparisons as a conservative
solution, possibly compensating (in practise) many unknown parameters.
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5.5 Stress-strain behaviour of SHS

Previously presented results of the full section testing at Imperial College allow
evaluating the concept for full section curve establishment based on an averaged stress-
strain description. As the Maple model output provides a stress increment for the strain
increment of 0.0001 it is possible to perform the averaging by weighting as follows:

O-FAF-I_O-CAC
TS (5.62)

where

ors denotes stress increment for a full section,
or denotes stress increment for a flat face,

oc denotes stress increment for a corner,

Ag denotes a gross sectional area,

Ar = Ag — Ac, denotes an area of flat faces,
Ac denotes an area of corners.

Test set-up consisted of 2 tested specimens. Recorded stress-strain curves are compared
with the modelled stress-strain responses.

In terms of the cold-rolling and its effect on section corners it has recently been
considered that strength enhancement is possible to assume within the area of corner
and also beyond this border by the distance of 2t on each side of the corner end due to
the enhanced strength distributed along the corner area as it was stated above.

However for cold-rolled members the distribution of the increased proof strength is not
uniform at all according to Cruise’s hardness tests indicating enhanced strength [4] (see
Figure 5.18). The highest values occur at the junction of a corner area and a flat face.
From this peak point the enhancement nearly linearly decreases both on the side of
corner centre and on the side of the flat face. In contrast to press-braked sections this
effect is probably caused by the last step of fabricating (if the manufacturing involves
both making a circular tube and subsequent forming into a final shape). Forming into a
rectangular section induces the largest plastic deformations exactly in this area. Thus the
stress-strain behaviour could be more complex than the simple engineering idea of
linear weighting of two separate particular portions by their areas. Nevertheless it is a
simple solution easy to use. Therefore following figures show a comparison of the test
data and model results both for assuming the extension of 2t and for assuming only the
corner area as the area of enhanced corner properties. These curves create border lines
which the final stress strain curve could be placed in.
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Figure 5.71  Comparison of the modelled and measured stress-strain
response for the full section - 1.4509 SHS 30x30x2.
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Figure 5.72  Comparison of the modelled and measured stress-strain
response for the full section - 1.4509 SHS 40x40x2.
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Figure 5.73  Comparison of the modelled and measured stress-strain
response for the full section - 1.4509 SHS 50x50x2.

Figures above show good agreement of the proposed model with the test data. The
model considering only pure corner matches the test data better with higher agreement
of the 0.2% proof strength prediction. It also provides safer values for the 0.2% proof
strength with small difference in comparison with the model of 2t extension. Another
reason for better fitting of the model is due to thickness reducing within a cold-bending.
The effect increases with a decreasing bending radius. According to Zhang and Yu [63]
a reduction of sheet thickness reaches about 5% for the inner radius to thickness ratio
ri/t = 1. Hence the model assuming only pure corner area is used for further solutions.
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5.6 Modification of the predictive model

As it was stated above the newest relevant relationship Rossi-Afshan-Gardner [8] for
the enhanced 0.2% proof strength of corners and flat faces is appropriate for austenitic
steel whilst for other grades it could be modified. The recent formulas consider a corner
area with 2t extension beyond the geometrical boundary of a corner. The analytical
solution described herein shows that a corner area should be assumed as the only pure
bend. Comparison of the results obtained from tests conducted at CTU with the
predictive model and the results obtained from the analytical solution compared with
the predictive model confirmed the correct trend of the design formulas. Nevertheless
the formula is based on a relation between values of the strain and stress at the 0.2%
proof strength and ultimate strength. This relationship is suitable for materials with wide
range of values between the 0.2% proof strength and ultimate strength, such as
austenitic steel. For other grades it is possible to change the formulas by increasing the
entire dependency by a correction factor related to the material properties and cover the
higher 0.2% proof strength.

One of possible adjustment for non-austenitic steel grades is to simply employ ratio
between the basic material properties 019 and og,. The predictive formula for the
enhanced 0.2% proof strength of corners or flat faces without any safety factors can be
set as:

Ocor fypred — p(gc or f)q (563)
where
_ 00.2,mill  01.0,mill 5 64
820.2 00.2,mill (5:64)
_ ln(ao.z,miu/ Uu,miu) 00.2,mill (5.65)
ln(et,oiz/eu) 01.0,mill
Other essential parameters remain unchanged, see below.
Sf,av:[(t/z)/Rcoiling]+[(t/z)/Rf] (382)
€cav=0.5[(#/2)/R ] (3.83)
b+h-2t
R= (3.84) R.=rtt/2 (3.85)
T
81,0.2:0.OO2+0’0.2,mﬂllEo (388)

&y i the corresponding total strain at oy,

The modified relationship is compared to the previous one with steel grades

investigated at CTU (1.4003, 1.4162, 1.4462) to ensure the correctness of the approach.
As one of recommendations related to this study states the corners should be considered
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as the only pure bend area it implies the increased influence of flat faces. In terms of
larger H/t dimension ratio of hollow sections it is important to be more accurate within
enhanced strength prediction for flat faces than for corners. Following figures and tables
display comparison between the Maple model and the modified and unchanged Rossi-
Afshan-Gardner model related to the corner ri/t ratio (minimal and maximal common
ratios - ri/t = 0.5, ri/t = 2.0 respectively) and the dimension H/t ratio describing the
effect for flat faces. Resulting full section strength increase is based on weighting
according to Eq. (5.67). Comparison of the full section 0.2% proof strength evaluating
by weighting of the stress-strain curves with weighting of the 0.2% proof strength for
corners and flat faces shows that the difference of these two methods is negligible.
Table below shows differences of the methods for the austenitic grade 1.4404
investigated at CTU with boundary limits for ri/t and H/t ratios. Austenitic steel seems
to be the best example for comparing due to the significant progress between the 0.2%
proof strength and the ultimate strength as well as between the corresponding strains.

H(mm) L(mm) t(mm) r(mm) rift H/t di Ef;ergi]cct(iao(r; %)
68.0 68.0 4.0 2.00 0.50 17.00 0.42
140.0 140.0 4.0 2.00 0.50 35.00 0.73
68.0 68.0 4.0 8.00 2.00 17.00 5.28
140.0 140.0 4.0 8.00 2.00 35.00 3.38

Table 5.4 Comparison of the weighting methods for the 0.2% proof
strength determination.

. 120% —
i= —— ROSSI - AFSHAN - GARDNER
§ 100% — — MODIFIED ROSSI-AFSHAN-GARDNER
o —&— MAPLE MODEL
2 80% -
c S
=3 g ’\z:\l
5° ~TT---_ R
S 40% e e Y N S ==
8 T —— o —|— —
s
~ 20%
o

0%

00 05 10 15 20 25 30 35 40 45 50 55 6.0 65 7.0
rift

Figure 5.74  Comparison of the predictive models for a corner of
1.4003.
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120%
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80%

60%

40%

20%

0%

R-A-G MODIFIED | MAPLE |R-A-G |M.R-A-G
R-A-G MODEL |/MAPLE |/MAPLE
r/t 00.2,c,pred 00.2,c,pred 00.2,c,pred
! (MPa) (MPa) (MPa)
0.5 520.5 547.5 578.9 0.90 0.95
1.0 4994 527.1 568.9 0.88 0.93
1.5 485.1 513.3 562.9 0.86 0.91
2.0 474.4 502.8 556.1 0.85 0.90
2.5 465.8 494.5 545.0 0.85 0.91
3.0 458.8 487.7 538.0 0.85 0.91
3.5 452.8 481.8 526.7 0.86 0.91
4.0 447.6 476.8 520.1 0.86 0.92
4.5 443.1 472.4 513.0 0.86 0.92
5.0 439.0 468.4 502.4 0.87 0.93
5.5 435.4 464.8 496.1 0.88 0.94
6.0 432.1 461.6 486.8 0.89 0.95
6.5 429.1 458.7 481.3 0.89 0.95
7.0 426.3 455.9 476.9 0.89 0.96
MEAN 0.87 0.93
SD 0.02 0.02
Table 5.5 Comparison of the corner 0.2% proof strength for the
ferritic 1.4003 grade.
——ROSSI - AFSHAN - GARDNER
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Figure 5.75
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Comparison of the predictive models for flat faces of
1.4003.
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riit=0.5;, t=4mm MODIFIED R-A-G MAPLE MODEL
A A Oo2cpred  O02fpred  O02fulpred | To2fpred M. R-A-G
HIt  Agm) | oy ) (PR (MPR) (MPa) | (MPR) IMAPLE
8.9 476.5 100.5 376.0 547.5 504.7 513.7 502.8 1.00
114 636.5 100.5 536.0 547.5 492.8 501.4 479.6 1.03
13.9 796.5 100.5 696.0 547.5 483.8 491.9 462.3 1.05
16.4 956.5 100.5 856.0 547.5 476.8 484.2 452.4 1.05
18.9 1116.5 | 100.5 1016.0 547.5 471.0 477.9 441.6 1.07
21.4 12765 | 100.5 1176.0 5475 466.1 472.5 435.8 1.07
23.9 1436.5 | 100.5 1336.0 547.5 461.9 467.9 431.0 1.07
26.4 1596.5 | 100.5 1496.0 547.5 458.3 463.9 424.1 1.08
28.9 1756.5 | 100.5 1656.0 547.5 455.1 460.4 421.2 1.08
31.4 1916.5 | 100.5 1816.0 547.5 452.3 457.3 418.3 1.08
33.9 2076.5 | 100.5 1976.0 5475 449.7 454 .4 415.9 1.08
36.4 2236.5 | 100.5 2136.0 547.5 447.4 451.9 413.8 1.08
38.9 2396.5 | 100.5 2296.0 547.5 445.3 449.6 411.8 1.08
41.4 2556.5 | 100.5 2456.0 5475 443.4 4475 408.0 1.09
MEAN 1.07
SD 0.02
Table 5.6 Comparison of the flat face 0.2% proof strength for the
ferritic 1.4003 grade with ri/t = 0.5 according to the
modified R-A-G relationship.
FULL
rit=05 t=4mm R-A-G MAPLE MODEL SECTION
A A Oo2cpred  002fpred 002fullpred | Ooz2foed R-A-G | M. R-A-G
Hit . AgMm) | ey mm?) (MPa) (PR (MPR) | (MPR) /MAPLE |/R-A-G
8.9 4765 |356.5 120.0 5205 476.3 509.3 | 502.8 0.95 1.01
114 636.5 |[356.5 280.0 5205 464.0 4956 | 479.6 0.97 1.01
13.9 796.5 |356.5 440.0 5205 4548 484.2 | 462.3 0.98 1.02
16.4 956.5 |356.5 600.0 5205 447.6 4747 | 4524 0.99 1.02
18.9 1116.5 | 356.5 760.0 520.5 4417 466.8 | 441.6 1.00 1.02
21.4 1276.5 | 356.5 920.0 5205 436.7 460.1 | 435.8 1.00 1.03
23.9 1436.5 | 356.5 1080.0 520.5 4324 4543 | 431.0 1.00 1.03
26.4 1596.5 | 356.5 1240.0 5205 428.7 449.2 | 424.1 1.01 1.03
28.9 1756.5 | 356.5 1400.0 520.5 4254 4447 | 421.2 1.01 1.04
31.4 1916.5 | 356.5 1560.0 520.5 4225 440.7 | 418.3 1.01 1.04
33.9 2076.5 | 356.5 1720.0 5205 4199 437.2 | 415.9 1.01 1.04
36.4 2236.5 |356.5 1880.0 5205 4176 434.0 | 413.8 1.01 1.04
38.9 2396.5 | 356.5 2040.0 520.5 4154 431.1 | 411.8 1.01 1.04
41.4 2556.5 | 356.5 2200.0 5205 4135 428.4 | 408.0 1.01 1.04
MEAN 1.00 1.03
SD 0.02 0.01
Table 5.7 Comparison of the flat face 0.2% proof strength for the

ferritic 1.4003 grade with ri/t = 0.5 and the ratio between
predictive strength for a full section according to the
modified and unchanged R-A-G relationship.
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In terms of the ferritic grade, the formula gives relatively low enhancement for corners.
However it is suggested to be more conservative due to the limited ductility of ferritic
grades. In case of flat faces the curve should by located under the “RS” Maple model
representing the reverse bending of a face from a circular hollow section to a flat
portion at least. In some comparison the curve is above, nevertheless for the most
common ratios of H/t the differences are negligible. In the tables for flat faces there are
stated values obtained by the “CS” model although the direct relation to which of model
(“CS” or “RS”) is correct was not proved. Therefore slightly higher values might not be
important difficulty. Undoubtedly the “CS” model is more conservative. The ratio
comparing the full section strength according to the modified and unchanged model

shows mean increase of only 3% for ri/t =0.5, 5% for ri/t =2.0 respectively.

rft=2; t=4mm MODIFIED R-A-G

HIE A ) | oy i ik e
8.9 435.3 251.3 184.0 502.8 504.7 503.6
11.4 595.3 251.3 344.0 502.8 492.8 497.0
13.9 755.3 251.3 504.0 502.8 483.8 490.2
16.4 915.3 251.3 664.0 502.8 476.8 483.9
18.9 1075.3 | 251.3 824.0 502.8 471.0 478.4
21.4 1235.3 | 251.3 984.0 502.8 466.1 473.6
23.9 1395.3 | 251.3 11440 502.8 461.9 469.3
26.4 1555.3 | 251.3 1304.0 502.8 458.3 465.5
28.9 17153 | 251.3 14640 502.8 455.1 462.1
31.4 1875.3 | 251.3 16240 502.8 452.3 459.0
33.9 2035.3 | 251.3 1784.0 502.8 449.7 456.3
36.4 21953 | 251.3 1944.0 502.8  447.4 4537
38.9 2355.3 | 251.3 2104.0 502.8 445.3 451.4
414 25153 2513 2264.0 502.8 443.4 449.3
Table 5.8 Predictive 0.2% proof strength for the ferritic 1.4003
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-9 - FULL
rft=2; t=4mm R-A-G SECTION
2 Ac Ay 00.2,c,pred 00.2fpred  00.2full pred M. R-A-G
Hit Ay (mm?) (mm? (mm?) (MPa)  (MPa)  (MPa) |/R-A-G
8.9 435.3 435.3 0.0 474.4 476.3 474.4 1.06
114 595.3 507.3 88.0 474.4 464.0 472.8 1.05
13.9 755.3 507.3  248.0 474.4 454.8 467.9 1.05
16.4 915.3 507.3 408.0 474.4 447.6 462.4 1.05
18.9 1075.3 507.3 568.0 474.4 441.7 457.1 1.05
21.4 1235.3 | 507.3 728.0 474.4 436.7 452.1 1.05
23.9 1395.3 | 507.3 888.0 474.4 432.4 447.7 1.05
26.4 1555.3 507.3 1048.0 4744 428.7 443.6 1.05
28.9 1715.3 507.3 1208.0 4744 425.4 439.9 1.05
31.4 1875.3 | 507.3 1368.0 4744 422.5 436.6 1.05
33.9 2035.3 | 507.3 1528.0 4744 419.9 433.5 1.05
36.4 2195.3 507.3 1688.0 4744 417.6 430.7 1.05
38.9 2355.3 507.3 1848.0 4744 415.4 428.1 1.05
414 25153 | 507.3 2008.0 4744 413.5 425.8 1.06
MEAN 1.05
SD 0.00
Table 5.9 0.2% proof strength for the ferritic 1.4003 grade with ri/t
= 2.0 and the ratio between predictive strength for a full
section according to the modified and unchanged R-A-G
relationship.
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Figure 5.76
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Comparison of the predictive models for a corner of

1.4162.
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R-A-G MODIFIED | MAPLE |R-A-G |M.R-A-G
R-A-G MODEL |/MAPLE |/MAPLE
ri/t 00.2,c,pred 00.2,c,pred 00.2,c,pred
(MPa) (MPa) (MPa)
0.5 648.5 717.9 742.6 0.87 0.97
1.0 638.4 708.0 739.0 0.86 0.96
1.5 631.4 701.0 729.8 0.87 0.96
2.0 626.0 695.8 726.0 0.86 0.96
2.5 621.7 691.5 721.5 0.86 0.96
3.0 618.2 688.0 712.1 0.87 0.97
3.5 615.1 685.0 707.9 0.87 0.97
4.0 612.5 682.4 704.2 0.87 0.97
4.5 610.1 680.0 700.6 0.87 0.97
5.0 608.0 678.0 691.6 0.88 0.98
55 606.1 676.1 688.3 0.88 0.98
6.0 604.4 674.4 685.3 0.88 0.98
6.5 602.8 672.8 682.7 0.88 0.99
7.0 601.4 671.4 675.0 0.89 0.99
MEAN 0.87 0.97
SD 0.01 0.01

Table 5.10  Comparison of the corner 0.2% proof strength for the lean

duplex 1.4162 grade.
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Figure 5.77 Comparison of the predictive models for flat faces of
1.4162.
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rift=0.5; t=4mm MODIFIED R-A-G MAPLE MODEL
T o T R T T
8.9 476.5 |100.5 376.0 717.9 696.7 701.2 691.8 1.01
114 636.5 |100.5 536.0 717.9 690.6 694.9 681.8 1.01
13.9 796.5 |100.5 696.0 717.9 686.0 690.0 670.6 1.02
16.4 956.5 |100.5 856.0 717.9 682.3 686.1 666.4 1.02
18.9 1116.5 | 1005 1016.0 717.9 679.3 682.8 663.4 1.02
21.4 1276.5 |100.5 1176.0 717.9 676.8 680.0 661.1 1.02
23.9 1436.5 | 100.5 1336.0 717.9 674.6 677.6 655.2 1.03
26.4 1596.5 | 100.5 1496.0 717.9 672.6 675.5 653.8 1.03
28.9 1756.5 | 100.5 1656.0 717.9 670.9 673.6 651.8 1.03
31.4 1916.5 | 100.5 1816.0 717.9 669.4 672.0 650.4 1.03
33.9 2076.5 | 100.5 1976.0 717.9 668.1 670.5 649.5 1.03
36.4 2236.5 |100.5 2136.0 717.9 666.9 669.1 649.1 1.03
38.9 2396.5 | 100.5 2296.0 717.9 665.7 667.9 648.6 1.03
414 2556.5 |100.5 2456.0 717.9 664.7 666.8 648.6 1.02
MEAN 1.02
SD 0.01
Table 5.11  Comparison of the flat face 0.2% proof strength for the
lean duplex 1.4162 grade with ri/t = 0.5 according to the
modified R-A-G relationship.
ri/ft=0.5; t=4mm R-A-G MAPLE MODEL gLEJICE'IIjION
A A 002cpred  002fpred 002 fullpred|  00.2fpre R-A-G |M. R-A-G
HIt A (i) (mm?)  (MPa)  (MPa) (MPa) | (MPa) /MAPLE| /R-A-G
8.9 476.5 |356.5 120.0 6485 6270 643.1 691.8 0.91 1.09
114 636.5 |356.5 280.0 6485 620.8 636.4 681.8 0.91 1.09
13.9 796.5 |356.5 440.0 6485 616.2 630.7 670.6 0.92 1.09
16.4 956.5 |356.5 600.0 6485 6125 6259 666.4 0.92 1.10
18.9 1116.5 | 356.5 760.0 6485 6094 621.9 663.4 0.92 1.10
21.4 1276.5 | 356.5 920.0 6485 606.8 618.5 661.1 0.92 1.10
23.9 1436.5 | 356.5 1080.0 6485 604.6 6155 655.2 0.92 1.10
26.4 1596.5 | 356.5 1240.0 6485 602.7 612.9 653.8 0.92 1.10
28.9 1756.5 | 356.5 1400.0 648.5 6009 610.6 651.8 0.92 1.10
31.4 1916.5 | 356.5 1560.0 648.5 599.4 608.6 650.4 0.92 1.10
33.9 2076.5 | 356.5 1720.0 6485 598.0 606.7 649.5 0.92 1.11
36.4 2236.5 | 356.5 1880.0 6485 596.8 605.1 649.1 0.92 1.11
38.9 2396.5 | 356.5 2040.0 6485 595.7 603.5 648.6 0.92 1.11
41.4 2556.5 | 356.5 2200.0 6485 594.6 602.2 648.6 0.92 111
MEAN 0.92 1.10
SD 0.00 0.01
Table 5.12  Comparison of the flat face 0.2% proof strength for the

lean duplex 1.4162 grade with ri/t = 0.5 and the ratio
between the predictive strength for a full section
according to modified and unchanged R-A-G relationship.
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The modified R-A-G relationship is closer to the modelled properties and gives higher
values of the 0.2% proof strength for a full section by approximately 10%. Despite the
decrease of corner areas the new formula gives higher enhanced strength.

rft=2;, t=4mm MODIFIED R-A-G

2 Ac As 00.2,c,pred 00.2,f,pred 00.2,full,pred
HIE A | o) (mm?) (MPa)  (MPa)  (MPa)

8.9 4353 | 251.3 184.0 695.8 696.7 696.2
114 595.3 | 251.3 3440 695.8 690.6 692.8
13.9 755.3 | 251.3 504.0 695.8 686.0 689.3
16.4 9153 | 251.3 664.0 695.8 682.3 686.0
18.9 10753 | 251.3 824.0 695.8 679.3 683.2
21.4 12353 | 251.3 984.0 695.8 676.8 680.6
23.9 1395.3 | 251.3 1144.0 695.8 674.6 678.4
26.4 1555.3 | 251.3 1304.0 695.8 672.6 676.4
28.9 17153 | 251.3 1464.0 695.8 670.9 674.6
31.4 1875.3 | 251.3 1624.0 695.8 669.4 673.0
33.9 2035.3 | 251.3 1784.0 695.8 668.1 671.5
36.4 2195.3 | 251.3 1944.0 695.8 666.9 670.2
38.9 2355.3 | 251.3 21040 695.8 665.7 668.9
41.4 25153 | 251.3 2264.0 695.8 664.7 667.8

Table 5.13  Predictive 0.2% proof strength for the lean duplex 1.4162
grade with ri/t = 2.0 according to the modified R-A-G
relationship.
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o o N FULL
rft=2; t=4mm R-A-G SECTION
Ac Ay 00.2,c,pred 00.2,f,pred 00.2,full pred M. R-A-G

H/t Ag (mmz) (mmz) (mmZ) (MPa) (MPa) (MPa) IR-A-G

8.9 435.3 4353 0.0 626.0 627.0 626.0 1.11
11.4 595.3 507.3 88.0 626.0 620.8 625.3 111
13.9 755.3 507.3 248.0 626.0 616.2 622.8 111
16.4 915.3 507.3 408.0 626.0 612.5 620.0 1.11
18.9 1075.3 |507.3 568.0 626.0 609.4 617.2 1.11
214 1235.3 |507.3 728.0 626.0 606.8 614.7 111
23.9 1395.3 |507.3 888.0 626.0 604.6 612.4 111
26.4 1555.3 [507.3 1048.0 626.0 602.7 610.3 1.11
28.9 17153 [507.3 1208.0 626.0 600.9 608.4 1.11
31.4 1875.3 |507.3 1368.0 626.0 599.4 606.6 111
33.9 20353 |507.3 1528.0 626.0 598.0 605.0 111
36.4 21953 |507.3 1688.0 626.0 596.8 603.6 1.11
38.9 2355.3 |507.3 1848.0 626.0 595.7 602.2 1.11
41.4 25153 |507.3 2008.0 626.0 594.6 601.0 111

MEAN 1.11

SD 0.00

Table 5.14  0.2% proof strength for the lean duplex 1.4162 grade with
ri/t = 2.0 and the ratio between the predictive strength for
a full section according to modified and unchanged R-A-G
relationship.
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Figure 5.78 Comparison of the predictive models for a corner of
1.4462.
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R-A-G MODIFIED | MAPLE |R-A-G |M.R-A-G
R-A-G MODEL |/MAPLE |/MAPLE
r/t 00.2,c,pred 00.2,c,pred 00.2,c,pred
! (MPa) (MPa) (MPa)
0.5 719.3 799.2 859.4 0.84 0.93
1.0 708.5 788.5 855.2 0.83 0.92
1.5 701.0 781.1 844.4 0.83 0.93
2.0 695.2 775.5 840.1 0.83 0.92
2.5 690.6 770.9 834.1 0.83 0.92
3.0 686.8 767.2 823.3 0.83 0.93
3.5 683.6 764.0 817.8 0.84 0.93
4.0 680.7 761.1 806.7 0.84 0.94
4.5 678.2 758.7 801.9 0.85 0.95
5.0 676.0 756.5 796.7 0.85 0.95
5.5 674.0 754.5 786.4 0.86 0.96
6.0 672.1 752.6 782.2 0.86 0.96
6.5 670.5 751.0 777.9 0.86 0.97
7.0 668.9 749.4 774.2 0.86 0.97
MEAN 0.84 0.94
SD 0.02 0.02

Table 5.15  Comparison of the corner 0.2% proof strength for the

duplex 1.4462 grade.
120% 1 1 1 1 1 1 1 1 1 1 1
— ROSSI - AFSHAN - GARDNER
o — — MODIFIED ROSSI-AFSHAN-GARDNER
< 100% N
S —2— MAPLE MODEL CS
o
5 —O— MAPLE MODEL RS
= 80%
)
()
]
o
O 60%
£
=
=2 <&
§ 40% ~
§ 20% ,_'—-A—-i,—- == e o
5 J
N
© 0%

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Hi/t
Figure 5.79 Comparison of the predictive models for flat faces of
1.4462.
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ri/t=0.5; t=4mm MODIFIED R-A-G MAPLE MODEL
H/t Ag (mmz) A (mmz) As (mmz) 00.2,c,pred 00.2,f,pred 00.2,full,pred 00.2,f,pred M. R-A-G
(MPa) (MPa) (MPa) (MPa) /MAPLE
8.9 476.5 100.5 376.0 799.2 776.5 781.3 798.2 0.97
11.4 636.5 100.5 536.0 799.2 770.0 774.6 776.9 0.99
13.9 796.5 100.5 696.0 799.2 765.1 769.4 761.6 1.00
16.4 956.5 100.5 856.0 799.2 761.1 765.1 755.1 1.01
18.9 1116.5 100.5 1016.0 799.2 757.9 761.6 745.6 1.02
21.4 1276.5 100.5 1176.0 799.2 755.2 758.6 742.1 1.02
23.9 1436.5 100.5 1336.0 799.2 752.8 756.1 739.4 1.02
26.4 1596.5 100.5 1496.0 799.2 750.8 753.8 736.9 1.02
28.9 1756.5 100.5 1656.0 799.2 749.0 751.8 735.1 1.02
31.4 1916.5 100.5 1816.0 799.2 747.4 750.1 733.6 1.02
33.9 2076.5 100.5 1976.0 799.2 745.9 748.5 732.5 1.02
36.4 2236.5 100.5 2136.0 799.2 744.6 747.0 127.4 1.02
38.9 2396.5 100.5 2296.0 799.2 743.4 745.7 727.0 1.02
41.4 2556.5 100.5 2456.0 799.2 742.3 744.5 726.7 1.02
MEAN 1.01
SD 0.01
Table 5.16  Comparison of the flat face 0.2% proof strength for the
duplex 1.4462 grade with ri/t = 0.5 according to the
modified R-A-G relationship.
riit=0.5; t=4mm R-A-G MAPLE MODEL ELEJI(;'IFION
A A o S fore S full ore Sioed R-A-G M. R-A-
HIE  Ag(mm®) |t md) (VP (VPR (VPR | (MPa). /MAF(’;LE /R-A-G ©
8.9 476.5 356.5 120.0 719.3 696.3 713.5 798.2 0.87 1.10
114 636.5 356.5 280.0 719.3 689.7 706.3 776.9 0.89 1.10
13.9 796.5 356.5 4400 719.3 684.7 700.2 761.6 0.90 1.10
16.4 956.5 356.5 600.0 719.3 680.7 695.1 755.1 0.90 1.10
18.9 1116.5 | 356.5 760.0 719.3 677.4 690.8 745.6 0.91 1.10
21.4 1276.5 | 356.5 920.0 719.3 674.7 687.1 742.1 0.91 1.10
23.9 1436.5 | 356.5 1080.0 719.3 672.3 684.0 739.4 0.91 1.11
26.4 1596.5 | 356.5 1240.0 719.3 670.3 681.2 736.9 0.91 1.11
28.9 1756.5 | 356.5 1400.0 719.3 668.4 678.8 735.1 0.91 1.11
31.4 1916.5 | 356.5 1560.0 719.3 666.8 676.6 733.6 0.91 1.11
33.9 2076.5 | 356.5 1720.0 719.3 665.3 674.6 732.5 0.91 1.11
36.4 2236.5 | 356.5 1880.0 719.3 664.0 672.8 727.4 0.91 1.11
38.9 2396.5 | 356.5 2040.0 719.3 662.8 671.2 727.0 0.91 1.11
41.4 2556.5 | 356.5 2200.0 719.3 661.7 669.7 726.7 0.91 1.11
MEAN 0.90 1.10
SD 0.01 0.01
Table 5.17  Comparison of the flat face 0.2% proof strength for the

duplex 1.4462 grade with ri/t = 0.5 and the ratio between
the predictive strength for a full section according to the
modified and unchanged R-A-G relationship.
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As well as for the lean duplex grade (also for the duplex grade), the modified R-A-G
relationship is closer to the modelled properties and gives higher values of the 0.2%
proof strength for a full section by approximately 10%.

rft=2; t=4mm MODIFIED R-A-G

Hit  Ag(mm’) | Ac(mm?) A(mm?) el s e

8.9 435.3 251.3 184.0 775.5 776.5 775.9
114 595.3 251.3 344.0 775.5 770.0 772.3
13.9 755.3 251.3 504.0 775.5 765.1 768.5
16.4 915.3 251.3 664.0 775.5 761.1 765.1
18.9 1075.3 251.3 824.0 775.5 757.9 762.0
214 1235.3 251.3 984.0 775.5 755.2 759.3
23.9 1395.3 251.3 1144.0 775.5 752.8 756.9
26.4 1555.3 251.3 1304.0 775.5 750.8 754.8
28.9 1715.3 251.3 1464.0 775.5 749.0 752.9
314 1875.3 251.3 1624.0 775.5 747.4 751.1
33.9 2035.3 251.3 1784.0 775.5 745.9 749.6
36.4 2195.3 251.3 1944.0 775.5 744.6 748.1
38.9 2355.3 251.3 2104.0 775.5 743.4 746.8
41.4 2515.3 251.3 2264.0 775.5 742.3 745.6

Table 5.18  Predictive 0.2% proof strength for the duplex 1.4462
grade with ri/t = 2.0 according to the modified R-A-G
relationship.
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t=2; t=4mm R-A-G EEI(E'II:ION

HIt — Ag(mm’) | Aq(mm?) A(mm?) et Tz e | B RAC
8.9 435.3 435.3 0.0 695.2 696.3 695.2 1.12
11.4 595.3 507.3 88.0 695.2 689.7 694.4 1.11
13.9 755.3 507.3 248.0 695.2 684.7 691.8 1.11
16.4 915.3 507.3 408.0 695.2 680.7 688.8 1.11
18.9 1075.3 507.3 568.0 695.2 677.4 685.8 1.11
21.4 1235.3 507.3 728.0 695.2 674.7 683.1 1.11
23.9 1395.3 507.3 888.0 695.2 672.3 680.7 1.11
26.4 1555.3 507.3 1048.0 695.2 670.3 678.4 1.11
28.9 1715.3 507.3 1208.0 695.2 668.4 676.4 1.11
314 1875.3 507.3 1368.0 695.2 666.8 674.5 1.11
33.9 2035.3 507.3 1528.0 695.2 665.3 672.8 1.11
36.4 2195.3 507.3 1688.0 695.2 664.0 671.2 1.11
38.9 2355.3 507.3 1848.0 695.2 662.8 669.8 1.12
41.4 2515.3 507.3 2008.0 695.2 661.7 668.5 1.12
MEAN 1.11
SD 0.00

Table 5.19  0.2% proof strength for the duplex 1.4462 grade with ri/t

= 2.0 and the ratio between the predictive strength for a
full section according to the modified and unchanged R-A-
G relationship — follow up.

Modified formulas for the 0.2% proof strength enhancement stated above give a
prediction of final mechanical properties by increase up to 11%. Despite the lower
corner area considered it results in increase for all non-austenitic grades. Standard
deviation is low and does not significantly differ from the unchanged relationship due to
the close shape of the mathematical expression. Due to the assumption of the only pure
bend area representing enhanced corner properties the resulting 0.2% proof strength for
a full section of austenitic is lower than in case of the unchanged R-A-G expression.
Particularly for the investigated 1.4404 grade, the maximal difference (assuming ri/t =
0.5 or 2.0) is only 3% due to the significant influence of flat faces. That means there is
no important decrease of overall enhancement for a member by using the reduced

corner area.
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5.7 Ductility of a full section

Uniaxial test results in Chapter 3 indicate simple dependency of ductility decrease on
plastic strain induced during the cold-forming. Plastic strain evaluating for a flat face
and a corner according to the previous Maple modelling allows establishing overall
ductility decrease for a whole section by averaging values of all layers. Ductility of a
full section &z, can be given by weighting as:

Efull™ &v- & (566)
where &y 1s ductility of a virgin material,
& IS average plastic strain induced within fabricating given
by:
e.ApteeA
8S:Lfc (5.67)
Ag
where &c 1S a mean value of plastic strain for a corner,

er IS @ mean value of plastic strain for a flat part.

As the simplest way for assuming of plastic strain distribution is the linear one. The
mean value of plastic strain for a corner can be determined by thickness t and inner
radius r; as:

£ o.s( vz ) (5.68)

ri+t/2

Figure 5.80 shows that for common geometric properties of cold-rolled section corners,
the decrease can reach 10% at least.
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Figure 5.80  Mean ductility decrease for corners depending on the ri/t
ratio.

Similarly for a flat face there can be established a mean value of plastic strain regarding

the influence of coiling-uncoiling process with making a circular tube and reverse
bending into a flat face as:
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/2 12 i
T

For flat faces the ratio R/t = (H+L-2t)/(xt) typically varies between values of 10 and 20.
In terms of the H/t ratio (if H=L) the range of typical values is from 17 to 35.

Figure 5.81 displays that typical decrease for flat faces lies between 3% or 6%. It is
evident that the higher B/t ratio is, the lower decrease of ductility of a full section will
occur not because of only the lower ductility decrease in flat faces but also due to the
higher influence of the flat faces areas. Figure 5.82 displays the decrease of ductility for
a full section depending on the B/t ratio with minimal and maximal common ri/t ratios
(namely - ri/t = 0.5, ri/t = 2.0 respectively). It shows the total ductility decrease for full
sections varies between 3% and 11%. That can importantly affect material demands for
structural members, especially for ferrtic grades (ductility decrease is slightly higher
than for others). For austenitic and duplex grades (including lean duplex) the decrease
might be not important in case of minimal required ductility, because the ductility of a
virgin material usually exceeds 30%.
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Figure 5.81  Mean ductility decrease for flat faces depending on the H/t
ratio.
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Figure 5.82  Mean ductility decrease for a full section depending on the

As plastic strain across the thickness is not uniform and also not the same for a corner
and a flat face it should be noted that the real ductility of a section is probably slightly
lower than eg,. Nevertheless eny can serve as an upper limit for the ductility
determining. Figure 5.83 displays a recorded stress-strain response for the full section
made of the ferritic steel 1.4509. Despite unknown ductility of the virgin material it
could be assumed it was higher than the measured value about only 6% that represents
very low level of ductility. Similar cases can be problematic in terms of plastic design
and should be carefully considered in specific structural applications according to

particular conditions.
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5.8 Stress-strain response of cold-formed sections

Results of the experimental programme stated in Chapter 3 indicate the Ramberg-
Osgood parameter of non-linearity n decreases with increasing plastic strain induced
within the cold-working. Plastic straining develops changes in microstructure of an
original material that cause different stress-strain behaviour of a newly made material.
As the Maple model considers the thickness divided into several layers, layers near to
the surfaces exhibit more rounded stress-strain response up to the increased 0.2% proof
strength than the layers near to the central core. Within the summation of contribution
of each layer the final state represents an average value of the nonlinearity parameter n
arisen from stress-strain diagrams different across the thickness of the investigated parts
of sections. The principle is depicted in Figure 5.84. The stress-strain curve for the layer
nearer to the central core and neutral surface with lower level of plastic strain induced
exhibits a less rounded loading response and lower 0.2% proof strength than the layer,
nearer to the surface with larger plastic strain induced exhibiting a more rounded
loading response and also higher 0.2% proof strength. The resulting stress strain
diagram arisen from summation of these curves mainly lies within the area defined by
these responses with intermediate values of the 0.2% proof strength and parameter of
nonlinearity. In case of cold-rolled sections it means the final stress-strain curve should
be more rounded due to the significant level of plastic strain induction during the
fabrication process. The lower parameter of nonlinearity affects especially calculation
of deflections that would be higher in contrast to the calculation with the nonlinearity
parameter of the virgin material. In addition, it could affect also the buckling resistance
of structural members due to the reduced tangential modulus.

157



Chapter 5: Analytical part

1000
900
/
700 / I —
g 600 /, p 7
E 500 7
O 400 Y /
17
300 //
200 LAYER NEARER TO SURFACE !
/ / ——— LAYER NEARER TO CENTRAL CORE
100 7 o !
0 ! !
0.0 0.2 0.4 0.6 0.8 1.0
strain (%)
850
800 //
/ /
T 750 / —
= /
O 7 —
= /
= / /
650 -

550

—— SUMMATION
—— LAYER NEARER TO SURFACE

—— LAYER NEARER TO CENTRAL CORE
— —EO

Figure 5.84

0.6 0.7 0.8
strain (%)

Stress-strain curves demonstrating different layers across
the thickness according to their location related to the
neutral surface. Lower figure displays a detail of the
upper figure.

Following figures display change of nonlinearity parameter n related to the original
parameter of nonlinearity n both for flat faces (ni/n) and corners (n¢/n) by means of
results of stainless steel grades investigated at CTU (their trends describing n according
to the increasing level of plastic strain induction).
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Figure 5.85 Parameter of nonlinearity n depending on the inner radius
to thickness ratio for corners.

Figure 5.85 shows that except the lean duplex 1.4162 grade there is no change of the
nonlinearity depending on the ri/t ratio. However, in case of the 1.4162 grade the
dependency is negligible. For all corners the new material nonlinearity is reduced by a
different rate and remains constant. It is given by high level of plastic straining which
the constant reduced nonlinearity is defined for (see section 5.3). The lowest values
reach only 55% of original ones and the highest values reach 75% of original values that
means significant decrease.

As the influence on the corner material remains constant, the most important effect for
section material nonlinearity is generated by the influence on flat faces. Figure below
displays almost linearly increasing dependency of the parameter n on the outer
dimension to thickness ratio for all grades. Even, except the lean duplex steel, the slope
of the curves is almost the same.
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Figure 5.86  Parameter of nonlinearity n depending on the H/t ratio for
flat faces

As for the ductility it is possible to determine a new parameter of nonlinearity for a full

section by weighting contribution of corners and flat faces by their areas according to
Eq. (5.67) with negligible difference between this summing and the real stress-strain
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curve. The resulting parameter of nonlinearity depending on the H/t ratio is displayed in
Figure 5.87 and Figure 5.88 with common borders for the ratio lying between 17 and
35. For the lean duplex grade, the decrease in the corner is for most common ri/t € (0.5,
2.0) almost the same and thus it is not much pronounced.
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Figure 5.87  Parameter of nonlinearity n related to the property of
virgin material depending on the H/t ratio for full sections.
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Figure 5.88  Parameter of nonlinearity n depending on H/t ratio for full
sections

The figures above show the parameter of nonlinearity for a full section lies in the range

of 60% - 90% in relation to the virgin material property of the investigated grades.
Previous figures also confirm the lowest decrease of the parameter is observed for the
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duplex steel, following by the austenitic grade. The highest decrease is exhibited by the
ferritic and lean duplex grades. Most of the investigated cases also show the
nonlinearity parameter n does not go under value of 4.5 and does not exceed value of
6.5.

As the data does not involve sufficient values for statistical evaluation, a conservative
relationship determining the parameter of nonlinearity of cold-formed SHS n. given by
the lowest curve obtained from the analytical solution depending on the dimension to
thickness ratio is expressed as:

ne= 0.0035(H/f)+0.523 (5.70)

In terms of safety, lower values of nonlinearity parameter result in increased values of
deflection at the same stress level. That means more safe prediction of deflection within
structural design. When detailed calculation of members including direct computing of
stability issues with imperfections is required, the results obtained will provide a
conservative result. As well as for deflection, the more accurate calculation of n might
precise results.

As well as for basic parameter of nonlinearity n, global effect for compound Ramber-
Osgood parameter ng,.10 can be shown in Figure 5.89. It could be expected that stress
and strain will usually not exceed values for the 0.2% proof strength in case of
structural members made of cold-formed section. Hence the second parameter of non-
linearity is not as important. Its influence would be especially employed in finite
elements modelling of joints and connections or buckling tasks or when using the
Continuous Strength method. It is apparent that except the ferritic grade the increase is
not such important although higher ng,10 leads to increased strains at higher strain
ranges.
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Figure 5.89 Parameter of nonlinearity ng,10 for full sections
depending on the H/t ratio.
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5.9 Determination of ultimate strength

Ultimate stress is one of the essential properties describing a structural element. In
terms of material demands for structural purposes, the European design code requires
ultimate stress to yield stress ratio f,/fy (for stainless steel - ,/09) to be 1.10 at least to
provide sufficient ability of possible overloading. Full section tests performed at
Imperial College [47] demonstrate the point of ultimate strength lies close to the “yield”
point. Another demand requiring the strain at the ultimate stress ¢, to be higher than
15xey, the strain at the yield stress (in case of stainless steel &), might not be satisfied.
Figure 5.90 displays full section tests for the SHS 30x30x2 made of the ferritic grade
1.4509. Other figures depict square hollow sections of the same material tested along
with this one. Following figures display stress strain curves for the whole section of
SHS 40x40x2, SHS 50x50x2 and SHS 30x30x2 again.

Figure 5.90 Test set-up at Imperial College [47].
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Figure 5.91 Recorded stress-strain curve for two full section specimens
of the 1.4509 SHS 30x30x2 measured at Imperial College
[47].
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Figure 5.92 Recorded stress-strain curve for two full section specimens
of the 1.4509 SHS 40x40x2 measured at Imperial College
[47].
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Figure 5.93 Recorded stress-strain curve for two full section specimens

of the 1.4509 SHS 50x50x2 measured at Imperial College
[47].

Test results indicate the maximal stress reached during the full section testing is similar
to the value of the 1.0% proof stress. Maximal difference between the ultimate strength
and the 1.0% proof strength obtained from these tests is 0.3%. Especially for SHS
30x30x2 there is big amount of plastic straining induced both for corner and flat faces.
The effect of short range between strain at the 0.2% proof strength and strain at the
ultimate strength or large plastic plateau with nearly no strength increase is probably
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given by the specific ferritic steel grade and also by acting of corners and flat portions
together that may exhibit this stress-strain response. A part of a section with nearly
perfect yield plateau is shown in Figure 5.94 displaying the record of a tensile test
conducted at Imperial College.
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Figure 5.94 Recorded stress-strain curve from a corner tensile test.
[47]

While full section acts as one unit, each part exhibits different stress-strain behaviour as
it is depicted in Figure 4.39 and Figure 4.40. The behaviour of corners under loading
can exhibit decreasing stage after reaching the ultimate strength near the 0.2% proof
strength, especially for ferritic grades. Such behaviour is caused by engineering form of
stress and strain expression. In case of true values, the stage after reaching the 0.2%
proof strength exhibits increasing or at least constant trend. For materials with the more
“clear” 0.2% proof strength boundary (high values of nonlinearity parameter n) and
lower ratios of gg,/ey, resulting behaviour performed by summing particular effects of
sections portions may be influenced more by corners. It can be expected that for
sections with larger ratios of H/t and for steel with larger ratios of &/, the ultimate
strength should be evaluated for higher proof strength than for the 1.0% plastic strain.
Nevertheless, the 1% proof strength seems to be a safe and conservative estimation.
Thus where there is lack of information about the material properties, the 1.0% proof
strength of a full section a10sn Can be assumed as very conservative value as
supplement for the ultimate strength oy :

Os full = 01.0,full (5.71)

A parametric study based on the Maple model performed for stainless steel grades
investigated at CTU determined both the 0.2% proof strength and the 1.0% proof
strength for flat faces and corners. Evaluated values are summarized in following tables
together with the 1.0% proof strength to the 0.2% proof strength ratio. For each grade,
the table contains minimal values of the ratios. In case of the corners, there is specified
a minimum for the range of common inner radii (see Appendix G), i.e. for ri/t < 2.0. For
the flat faces, the minimum is set for the most common range of the H/t ratio lying
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between 17 and 35. The corner and flat face values are used for further specification of

the full section strength as representatives.

rift 00.2,c oroc  Or0cl002c H/t 002f oot OLodOoag
(MPa) (MPa) (MPa) (MPa)
0.50 562.91 673.40 1.20 8.85 488.26  572.43 1.17
1.00 552.98 661.40 1.20 11.09 467.89  545.53 1.17
1.50 54731  652.62 1.19 13.33 452,79  526.19 1.16
2.00 540.52  640.22 1.18 15.56 44376 51242 1.15
2.50 530.12  629.64 1.19 17.80 433.49  501.77 1.16
3.00 523.63  618.01 1.18 20.04 427.98  493.87 1.15
3.50 512.43  607.52 1.19 22.28 423.29  487.06 1.15
4.00 505.78  594.35 1.18 2451 419.24  481.27 1.15
4.50 498.55 584.03 1.17 26.75 413.90 477.26 1.15
5.00 487.74  573.41 1.18 28.99 411.05  473.23 1.15
5.50 481.13 564.17 1.17 31.23 408.79  469.69 1.15
6.00 472.38  556.03 1.18 33.46 406.25  466.83 1.15
6.50 467.06  548.74 1.17 35.70 404.82  464.22 1.15
7.00 462.55 542.96 1.17 37.94 402.88  461.95 1.15
MINIMUM FOR ri/t<2 1.18 MINIMUM FOR H/t <35 1.15

Table 5.20  Ratio of the 1.0% proof stress to the 0.2% proof strength
for the ferritic 1.4003 grade.
rilt 00.2,c 010c  OLoc002c H/t 00.2f o10f 0104002+
(MPa)  (MPa) (MPa)  (MPa)

0.50 552.27  661.19 1.20 8.85 434.42  517.52 1.19
1.00 537.16  643.78 1.20 11.09 413.18 491.44 1.19
1.50 521.08  626.10 1.20 13.33 397.22  472.85 1.19
2.00 509.45 608.13 1.19 15.56 384.77  459.08 1.19
2.50 493.07 589.53 1.20 17.80 377.50 448.39 1.19
3.00 476.62 570.86 1.20 20.04 371.87  440.52 1.18
3.50 461.75  554.27 1.20 22.28 364.82 43450 1.19
4.00 452.44  540.17 1.19 24.51 360.72  428.42 1.19
4.50 44050 528.12 1.20 26.75 357.87  424.49 1.19
5.00 433.54  517.56 1.19 28.99 355.14  420.75 1.18
5.50 423.78  508.56 1.20 31.23 352.88  417.67 1.18
6.00 418.35 500.24 1.20 33.46 348.36 414.81 1.19
6.50 41359  493.31 1.19 35.70 346.52  412.27 1.19
7.00 405.77  486.53 1.20 37.94 34498  409.75 1.19
MINIMUM FOR ri/t<2 1.19 MINIMUM FOR H/t <35 1.18

Table 5.21

Ratio of the 1.0% proof stress to the 0.2% proof strength

for the austenitic 1.4404 grade.
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rift 002, oroc  Orocd0ozc H/t 00.2f oot OLodO0ag
(MPa) (MPa) (MPa) (MPa)
0.50 749.30 966.74 1.29 8.85 691.82  869.05 1.26
1.00 74445  954.87 1.28 11.09 681.84  842.47 1.24
1.50 729.76  934.07 1.28 13.33 670.56 824.12 1.23
2.00 726.00 925.15 1.27 15.56 666.44  810.63 1.22
2.50 721.47  915.44 1.27 17.80 663.40 800.84 1.21
3.00 712.11  906.65 1.27 20.04 661.13  792.47 1.20
3.50 707.90 897.33 1.27 22.28 655.18 786.66 1.20
4.00 704.24  888.26 1.26 2451 653.78  781.43 1.20
4.50 70059  879.72 1.26 26.75 651.77  776.29 1.19
5.00 691.58 870.32 1.26 28.99 650.45  772.60 1.19
5.50 688.29 862.21 1.25 31.23 649.49  769.35 1.18
6.00 685.32 853.99 1.25 33.46 649.11  766.97 1.18
6.50 682.65 847.20 1.24 35.70 648.61  764.59 1.18
7.00 67499 841.06 1.25 37.94 64855  762.70 1.18
MINIMUM FOR i/t <2 1.27 MINIMUM FOR H/t <35 1.18

Table 5.22  Ratio of the 1.0% proof stress to the 0.2% proof strength
for the lean duplex 1.4162 grade.
rift 002, 010, 010002, Hit 00.2,f 01.0f 0104002
(MPa) (MPa) (MPa) (MPa)

0.50 876.54 1050.90 1.20 8.85 798.21 950.39 1.19
1.00 864.06 1039.18 1.20 11.09 776.85 919.66 1.18
1.50 844.43 1014.79 1.20 13.33 761.64 898.69 1.18
2.00 840.09 1007.81 1.20 15.56 755.06 884.01 1.17
2.50 834.15 997.18 1.20 17.80 745.62 873.01 1.17
3.00 823.29 988.07 1.20 20.04 742.13 864.25 1.16
3.50 817.83 978.88 1.20 22.28 739.38 857.24 1.16
4.00 806.73 968.96 1.20 2451 736.87 850.59 1.15
4.50 801.86 960.56 1.20 26.75 735.05 845.86 1.15
5.00 796.69 950.54 1.19 28.99 733.63 841.95 1.15
5.50 786.43 942.03 1.20 31.23 732.46 838.64 1.14
6.00 782.17 933.62 1.19 33.46 727.43 835.67 1.15
6.50 777.91 925.52 1.19 35.70 727.01 832.80 1.15
7.00 774.21 918.57 1.19 37.94 726.70 830.74 1.14
MINIMUM FOR ri/t<2 1.20 MINIMUM FOR H/t <35 1.15

Table 5.23

Ratio of the 1.0% proof stress to the 0.2% proof strength

for the duplex 1.4462 grade.

As for parameter of nonlinearity n it is possible to determine the ratio o1 o fun/oo.2.5n DY
means of weighting the contribution of the corners and flat faces by their areas
according to Eq. (5.67) with negligible difference to the real stress-strain response of a
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full section. Influence of the corner area related to the gross sectional area is plotted in
Figure 5.95. Corner area mostly represents 5% - 25% of a gross area of a section.
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Figure 5.95 Contribution of the corners related to the gross sectional
area for the bordering values of the inner radius.

Similarly to the previous establishing of material parameters, the weighting according to
areas of particular portions enables to plot the overall 1.0% proof strength related to the
0.2% proof strength of a full section. Figure 5.96 displays all investigated grades
regarding the H/t ratio. Within summing the corner influence remains constant whilst
contribution of the flat faces depends both on the H/t ratio and the area of flat faces.
Plotted values indicate the minimal o1 fu/oo2qn ratio to be 1.15 and maximum to be
1.22. The austenitic grade 1.4404 exhibits almost constant trend equal to 1.18. The
ferritic 1.4003 and duplex 1.4462 grades exhibit slightly decreasing trend with
negligible differences between the boundary lines (H/t = 17 and 35). The most
decreasing trend belongs to the lean duplex 1.4162 grade. Because the differences of the
curves are not much significant it is possible to conservatively estimate the 1.0% proof
strength of a full section a1 ¢ rui by the same value for all grades as:

o1.0,fu1 = 115+ 002 a1 (5.72)

It should be noted that for austenitic steel it is very conservative estimation with high
level of safety. For other grades with lower values of ductility and relatively flat stress-
strain curve in a higher strain range it could be an adequate relationship.

Finally cold-formed stainless steel sections fulfil the demand for the structural material
requiring the oyu/op, ratio to be higher than 1.10 and allow partial overloading of a
structure. However as it was stated above, for the non-austenitic (especially ferritic)
grades the conditions for ductility determining or the &,/ep» ratio could be limiting in
terms of plastic design. Thus within designing of cold-formed hollow sections with
enhanced strength properties it would be better to use the elastic calculus together with
the elastic design to avoid this issue. This problem is worth further investigation.
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Chapter 6

Conclusions

6.1 Project summary

The thesis presented herein consists of three main parts. The first describes the material
as such, routes of fabrication of the particular stainless steel products, mechanical
properties and the cold-forming effect on the section strength. The most relevant and
recent research and design approaches are also stated as a base for further comparisons
and results. The second part is focused on the experimental programme conducted at
CTU in Prague focused on material tensile testing of four grades of stainless steel
representing the most common families used for structural members, i.e. austenitic
(1.4404), ferritic (1.4003), lean duplex (1.4162) and duplex (1.4462). All flat coupons
and specimens were made of a cold-rolled sheet. The programme involved, except the
basic determination of the mechanical properties, uniaxial cold-forming of the
specimens serving for further evaluations and the analytical part. All coupons were
tested with a couple of strain gauges for covering the initial part of the stress-strain
response. A mechanical extensometer served for covering higher strain ranges. All tests
were conducted using strain-control. The shape of the coupons and the entire testing
procedure was conducted in accordance with EN ISO 6892-1 [57]. Following section
presents summation of performed tests.
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Experimental part of the thesis contains:

1) Execution of the tensile tests with the material parameters analysis for
the stainless steel grades: 1.4404 (austenitic), 1.4003 (ferritic), 1.4462
(duplex) and 1.4162 (lean duplex) in two options:

- Cold-rolled sheet test in the direction parallel as well as
transverse to the rolling direction.

2) Plastic strain induction of cold-rolled sheet in four options:

- Sample cut out parallel to the rolling direction and strain
induced parallel to the subsequent tensile test.

- Sample cut out parallel to the rolling direction and strain
induced transverse to the subsequent tensile test.

- Sample cut out transverse to the rolling direction and strain
induced parallel to the subsequent tensile test.

- Sample cut out transverse to the rolling direction and strain
induced transverse to the subsequent tensile test.

Levels of plastic deformation varied in sufficient range: 1%,
3%, 5%, 10%, 15% and 20% or 50% (the last one for
austenitic only).

The test programme containing 160 coupons was executed and its results presented.
Outputs stated in Chapter 4 were focused on the strength enhancement of the cold-
formed specimens, change of properties determining the stress-strain behaviour such as
the parameters of nonlinearity, initial modulus of elasticity or ductility related to the
level of the plastic strain induction.

The third part of the thesis solves the analytical expression for the fabrication route
describing a cold-bent part of sections. The fabrication route for cold-rolled box
sections usually involves coiling and uncoiling of a sheet with subsequent circular
section making and further forming it into a square or rectangular hollow section. The
analytical model employs Quach’s equations [24] for plastic strain induction
establishing during the fabrication process and the mathematical program Maple to
process a lot of data including iteration steps for final state evaluating. As the plastic
strain distribution across the thickness is known it is possible to divide the thickness
into several layers and match each layer with specific properties obtained from
experimental testing and referring to a particular cold-formed material. The Maple
model is divided into the corner model and the flat face model. Finally there can be
generated a new stress-strain curve for the cold-formed portion of a section.

On the basis of this new stress-strain behaviour, it is possible to determine enhanced
strength and material nonlinearity. With respect to the results of the experimental
program, it is also possible to determine ductility decrease. For other comparisons and
statements there were used results from tests conducted at Imperial College London.
The extensive testing programme involved tests of the corners and flat faces of the box
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sections and the full section tests as well and served for further comparisons. Therefore
it is possible to determine properties of a full cold-formed square and circular hollow

section.

6.2 Contributions and recommendations

This research has shown the significant change of the stress-strain behaviour of
structural hollow sections compared to its virgin material stress-strain response. Thus it
is important to use the correct material properties for insuring the correct and more
effective structural design.

The most relevant general observations and recommendations can be summarized as

follows:

1)

2)

3)

4)

5)

6)

7)

8)

A cold-rolled stainless sheet exhibits higher 0.2% proof strength for the
direction transverse to the rolling, whereas if a member is subjected to the
uniaxial cold-forming, it tends to exhibit higher 0.2% proof strength in the
direction parallel to the previous forming.

Ductility of a hollow section compared to the virgin material property can be
decreased by more than 10%. Especially for ferritic grades the structural
design should carefully consider lower resistance to straining with all
consequences such as plastic redistribution of internal forces in structure or
plasticisation of a section.

It is possible to assume the initial modulus of elasticity by the same value for
virgin material as well as for cold-formed one.

True value of the ultimate strength remains constant for unformed material
as well as for a cold-formed element.

The Ramberg-Osgood parameter of non-linearity decreases with increasing
level of plastic strain induction. Overall it means higher deflections and in
fact also decreased buckling resistance.

Ultimate tensile strength could be conservatively assumed as 1.15 multiple
of the full section enhanced 0.2% proof strength.

Experimental results of full sections stated herein are closer to the
assumption of enhanced corner area determined as a pure geometrical bend
without any extension on each side.

The most recent predictive model for the 0.2% proof strength of box hollow
sections published by Rossi, Afshan and Gardner [8] was slightly modified
for non-austenitic grades in terms of providing higher predictive values.
Nevertheless, this research has confirmed that predictive strengths obtained
from this expression are safe and applicable for other purposes.

The confirmation of the predictive model correctness is valuable in terms of
different methods used to obtain similar results providing a good proof.
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9) Comparison of (especially European) recent available cross-section shown
following data:

If the inner radius to thickness ratio was unknown, it would be possible to
assume it with sufficient reliability as 6.9 for press-braked sections and 1.7
for cold-rolled sections (in comparison with the only European valid
standard for the enhanced 0.2% proof strength — British National Annex for
EN 1993-1-4 [50] specifying the value of 2.0).
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Future work

During the experimental programme and work on this study more other areas of
investigations that could be beneficial for the issue emerged. One of the areas that
deserve attention could be demands for classification of sections. As stainless steel loses
the ability of creating plastic zones with sufficient deformation capacity due to cold-
forming it could result in change of classification rules. In term of results described
herein it would be appropriate to conduct further testing focused on other grades of
stainless steel or other types of structural section with different fabricating routes.
Especially more full section tensile tests would be suitable to perform for obtaining a
more precise design method. Extension of conclusions for CHS and RHS would be
favourable approach how to use the current investigation. As the study deals with the
analytical solution for cold-formed stainless steel structural sections another solution
could be also based on finite element modelling in terms of namely residual stresses and
plastic strain evaluating. For the key issue of material hardening it is possible to employ
advanced models such as multiple surface complex models etc. However such solution
usually requires a lot of inputs and demanding calculation that spend too much time
particularly in engineering tasks. This chapter presents future experiments that are in
progress at CTU.
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Experimental planned programme is aimed on obtaining more test results that could
contribute to get more precise design methods. Testing programme consists of set of
compressive tests. Hot-rolled plate made of austenitic grade 1.4404 should be analysed
in compression to evaluate anisotropy effect and differences of material properties
between cold-rolled and hot-rolled sheet (see Figure 7.1). There are also planned tests
with plastic strain induction according to Chapter 4 for compressive loading. For this
purposes a device for a compression test was also designed. A specimen could be
clamped into the device to prevent any instability. Side slots serve for attaching strain
gauges or extensometer (see Figure 7.2).

SAMPLE FOR COMPRESSION TEST SAMPLE FOR PLASTIC DEFORMATION INDUCTION
IN COMPRESSION

| 85 | | % |

Figure 7.1 Specimens made of hot rolled sheet for compressive and
tensile test

Figure 7.2 The device for compression test.

Analytical and experimental results can provide required data to cover complete
behaviour including the Bauschinger effect and other phenomena. In terms of cold-
working, when parts of section are subjected to tension and compression as well, the
resulting state of the cross-section and its behaviour during acting in structures can
differ from current assumptions. Knowledge of the full stress-strain behaviour both for
tension, compression and bending can result in new complex rules for designing with
new limits and borders for particular cold-formed members or at least confirm the
currently adopted simplifications.
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Appendix A
Maple model for coiling

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=195.4e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigma[y0]>0.0001##

sigma[0.2] :=205;

sigma[l.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach

found by analysing tension coupon test data
sigma[ult] :=520;

epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);

n[0]:=7.5;

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen
n[0.2,1.0] := 12.225*E[.2]*sigma[l1.0]/(E[0]*sigma[0.2])+1.037; formula

- Quach found by analysing tension coupon test data
e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen
B[0]:=0.018+e[0.2]1*((E[0]/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]* (sigma[l.0]/sigmal[0.2]1-1)*(1-E[0]1/E[0.2]1));
formula-Quach

sigma[Z O] =(1+(sigma[1.0]/sigma[O0. 2]

1)*(A[O (1/n[0.2,1.01)))/(1+e[0.2]* 1/E[

1) * (51gma[l 0]/sigmal0.2]-
1)*A[0]"(1/n[0.2,1.0])/(n[0.2,1.0]1*B[0]))*sigmal[0.2]; formula-Quach
epsilon[2.0]:= (sigma[2.0]/E[0])+0.02;

b[0]:=(sigma[ult]™* (1+ep31lon[ul 1) -

sigma[2.0]* (1+epsilon[2.0]))/ (epsilonfult]-epsilon([2.0]); formula-
Quach

al[0]:=sigma[2.0]* (1l+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach
t = 2;

coiling curvature
> Kappalc] := 1/(250);

For Coiling
>

> i:=-1:
for y from (t/2) by (-t/30) while y > 0 do

i:=i+1:

axyl[i]:=y:

####coiling

epsilon[z,cy] := sigmal[y0]* (1-nu”2)/(E[0]*sqgrt (l-nu+nu”~2)):
epsilon[z,c] := Kappalc]l*y:

if epsilon(z,cy] < epsilon([z,c] then

e := 0:

sigma[c] := sigmaly0]:

omegalc] := nu:
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for s from sigmal[y0] by 0.5 to sigmal[ult] while abs(e) <
abs(epsilonfz,cl-epsilon(z,cy]) do

ds := s - sigmalc]:

if s <= sigma[0.2] then

eps:= X/ (E[0])4+0.002* (X/ (sigma[0.2]))"n[0]:

else 1if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l1.0]-sigma[0.2]) (1/E[
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-

sigma[O 2]1))"n[0.2,1.0]+ (51gma[0.2])/(E[O])+0.002:

else

eps:=(X-a[0])/(b[0]-X):

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega [c] = (4*nu*(subs(X=s,dH)) (l-omega[c]+omega[c]*2)-E[0]* (2-
omegalc])* (2*omegalc]-1))/(E[0]* (2*omega[c]-1)"2+4* (subs (X=s,dH) ) *
omega[c]tomega[c]™2)):

dom[c] := (2* (l-omega[c]+omega[c]”2)* (Omega[c]-omegalc]l))/ (s* ((2-
omega[c])+Omega[c]* (2*omega[c]-1))) *ds:

omegalc] := omegal[c] + domlc]:

de := subs (X=omegalc], (((1-2*X)"2- 2*nu*(l 2*%X)* (2=-X)+ (2—

X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]”2)* (1-2*nu))/(E[0]* (1-2*omega[c ]) sqrt (1-
omega[c]+tomega[c]”2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmalz,c,1i] := sigmalc]/sqrt(l-omegal[c]+omegalc]”"2):
sigma[x,c,1] := omegal[c]*sigmalc]/sqrt(l-omegal[c]+omegal[c]”2):
else
sigmalz,
sigmal[x,
omega [c]
end if:
epsilonfc,pl,i]l:=e-s/E[0]:
end do:

;11 := E[0]*epsilon[z,c]/ (1-nu"2):
;1] := nu*E[0] *epsilon[z,c]/ (1-nu”2):
= nu:

C
C

using simmetry for whole thickness data

> axy[15]:=0:

sigma[c,15] :=sigma[y0]:

sigmalz,c,15] :=sigmal[y0]* (1-nu”~2)/(E[0]):
sigmal[x,c,15]:=sigmaly0]* (1-nu”2)/(E[0]*nu):
epsilonfc,pl,15]1:=0:

> for 1 from 0 by 1 to 14 do
axy[30-i]:= —axy[i]:

sigma[c,30-i]:= sigma[c,i]:
sigmal[z,c,30-1i] :=-sigmafz,c,i]:
sigma([x,c,30-1] :=-sigma[x,c,1i]:
epsilon[c,pl,30-1i]:= epsilonfc,pl,i]:
end do:
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Appendix B

Maple model for coiling and uncoiling

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=195.4e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigmal[y0]>0.00014#4#

sigma[0.2] :=205;

sigma[l.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach

found by analysing tension coupon test data
sigma[ult] :=520;

epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);

n{0]:=7.5;

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen
n{0.2,1.0] := 12.225*E[.2]*sigma[l1.0]/(E[0]*sigma[0.2])+1.037; formula

- Quach found by analysing tension coupon test data

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen

B[O ] =0.0184e[0.2]*((E[0]/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]* (sigma[l.0]/sigma[0.2]-1)*(1-E[0]1/E[0.2]));
formula-Quach
sigma[2.0]:=(1+(sigmal
1)*(A[0]1"(1/n[0.2,1.0]
1)*(sigma[l1.0]/sigmal0.
1) *A[0]~(1/n[0.2,1.01)/ 0.
epsilon[2.0]:= (sigma[2.0]/
b[O]:=(sigma[ult]*(l+ep51lo
sigma[2.0]* (1+epsilon[2.0])
al[0]:=sigmaf[2.0]* (1l+epsilon
t = 2;

1.0]/sigma[0.2]-

YY)/ (1+e[0.2]*(E[O0]/E[0.2]-

2]-

(n[ .01*B[0]))*sigma[0.2]; formula-Quach
+0.02;

—~ 3 =

)
t
psilon[ult]-epsilon[2.0]);formula-Quach
])-b[0]*epsilon[2.0]; formula-Quach

coiling curvature
> Kappalc] := 1/(250);

FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> j:=-1:

for y from (t/2) by (-t/30) while y > 0 do

i:=i+1:

axyli]:=y:

####coiling

epsilon[z,cy] := sigmal[y0]* (1-nu”~2)/(E[0]*sgrt (l-nu+nu”~2)):
epsilon[z,c] := Kappalc]l*y:

if epsilon[z,cy] < epsilon[z,c] then

e := 0:

sigma[c] := sigmal[y0]:
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omegal[c] := nu:

for s from sigma[y0] by 0.5 to sigmalult] while abs(e) <
abs(epsilonfz,cl-epsilon(z,cy]) do

ds := s - sigmalc]:

if s <= sigma[0.2] then

eps:= X/ (E[0])4+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[

= [0
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[0.2])) n({0.2,1.0]1+ (51gma[0.2])/(E[O])+O.OO2:
else
eps:=(X-al[0])/ (b[0]-X):
end if:
end if:

dH:=((diff (eps,X))-(L/E[0]))"(-1):
Omega[c] := (4*nu*(subs(x=s, dH) ) * (1-omega[c]+omega[c]"2)-E[0]* (2~
( 1*(

omegal[c]) * (2*omegalc Y)Y/ (E[O 2*omegal[c]-1)"2+4* (subs (X=s,dH) ) * (1-
omegal[c]+o mega[c]AZ)):
dom[c = * (1-omega[c]+omegal[c]"2)* (Omega[c]-omegalc]))/ (s* ((2-

)

[c
[c
[
] (2
omegal[c])+Omegal[c]* (2*omegalc]-1))) *ds:
omega[c] = omegal[c] + dom[c]:

de := subs(X=omegal[c], (((1-2*X)"2- 2*nu*(1 2*X)* (2-X)+ (2-
X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]”2)* (1-2*nu))/(E[0]* (1-2*omega|[c ]) sqrt (1-
omegal[c]+tomegal[c]”™2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmalz,c,1i] := sigmalc]/sqrt(l-omegal[c]+omegalc]”"2):
sigma[x,c,1] := omegalc]*sigmalc]/sqgrt (l-omegal[c]+omegal[c]”2):
else
sigmalz
sigmal[x,
omega [c]
end if:
epsilonfc,pl,i]l:=e-s/E[0]:

#####uncoiling including flatening

Kappalu] := -Kappalc]:

Kappa [uy] :=-(sigma[c]* (1-nu”~2)* (2-nu+ (2*nu-1) *omega[c]))/ (E[0] *y* (1-
nutnu”2) *sqrt ((l-omega[c]+omegalc]”2))):

i] := E[0]*epsilon(z,c]/(1-nu"2):
i] := nu*E[0]*epsilon(z,c]/(1-nu”2):
= nu:

rCy
Cy

epsilon[z,uy] := (Kappalc]l+Kappaluyl)*y:

epsilon[z,r] := 0:

if abs (Kappaluy]) < abs(Kappal[u]) then

omegal[uy] := ((1l-nu”2)*omegalc]-nu* (2-nu))/ ((1-2*nu) *omega[c]-(1-
nu*2))

sigma[u] := sigmalc]:

omega[u] := omegaluy]:

e:=0:

for s from sigmaf[u] by 0.5 to sigmalult] while abs(e) <
abs (epsilonfz,uy]) do

ds := s - sigmalu]

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigmal0.2])/( 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[01)

= E[O
(1/E10.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[O 21))"n[0.2,1.0]+ (51gma[0.2])/(E[O])+0.002:
else
eps:=(X-al0])/ (b[0]-X):
end if:
end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):
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Omega[u] := (4*nu* (subs (X=s,dH)) * (1l-omega[u]+omega[u]”"2)-E[0]* (2~
omegal[u]) * (2*omega[u]l-1))/(E[0]* (2*omega[u]-1) "2+4* (subs (X=s,dH) ) * (1-
omega [u] tomega[u]~2)) :

dom[u] := (2* (l-omega[u]+omega[u]”2)* (Omega[u]-omegalul))/ (s* ((2-
omega [u] ) +tOmega[u] * (2*omega [u]l-1))) *ds:

omega[u] := omegalu] + dom[u]:

de := subs (X=omegalu], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) + (2-

X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[u] + subs (X=s, ((1-
omegal[u]”2)* (1-2*nu))/(E[0]* (1-2*omega[u]) *sqrt (1-

omega [u] tomega[u] "2)) ) *ds;

e:= de + e:

sigma[u] := s:

end do:

sigmalz,r,1i] := - sigma[u]/sqrt (l-omega[u]+omegalu]”2):
sigma[x,r,i] := - omegalu]*sigmalu]/sqrt(l-omegalu]+omegal[ul”2):
epsilon[i] :=e:

epsilonfu,pl,i] :=e-(s-sigma(c])/E[0]:

epsilon[r,pl,i] :=epsilonfu,pl,i]l+epsilon[c,pl,i]:

else

sigmalz,u,i] := E[0]*Kappalul*y/ (1-nu"2):
sigma[x,u,1] := nu*E[0]*Kappalu]*y/ (1-nu”2):
sigmal[z,r,i] := sigmalz,c,il+sigmalz,u,i]:
sigma([x,r,i] := sigmalx,c,i]l+sigma[x,u,i]:
omegalu,i]:= sigmal[x,r,i]/sigmalz,r,i]:
sigma[u,i]:= sigmalc]:

s:=sigmal(c]:

epsilon[i] :=Kappalu]*y

epsilon(u,pl,i]:=0:
epsilon[r,pl,i]:=epsilon(u,pl,i]+epsilonfc,pl,i]
end if:

end do:

using simmetry for whole thickness data

> axy[15]:=0:

sigma[u,15] :=sigma[y0]:

sigmalz,r,15] :=sigmal[y0]* (1-nu”~2)/(E[0]) :
sigmal[x,r,15]:=sigmaly0]* (1-nu”2)/(E[0]*nu):
epsilon[r,pl,15]:=0:

> for i from 0 by 1 to 14 do

axy[30-i]:= —axy[i]:

sigma[u,30-1i]:= sigmalu,i]:
sigmal[z,r,30-i] :=-sigmalz,r,1i]:
sigma[x,r,30-i] :=-sigmal[x,r,1i]:
epsilon[r,pl,30-1]:= epsilon(r,pl,i]:
end do:
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Appendix C

Maple model for cold-bending

C.1 Model in nominal values

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=195.4e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigma[y0]>0.0001##

sigma[0.2] :=205;

sigma[l.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach

found by analysing tension coupon test data
sigma[ult] :=520;
epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);
n[0]:=7.5;
E[0.2] := E[0]/(1+0.002*n[0]1*E[0]/sigma[0.2]); formula-Rasmussen
n{0.2,1.0] := 12.225*E[.2]*sigma[l1.0]/(E[0]*sigma[0.2])+1.037; formula
- Quach found by analysing tension coupon test data
e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen
B[O ] =0.018+e[0.2]1*((E[0]1/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]* (sigma[l.0]/sigmal[0.2]1-1)*(1-E[0]1/E[0.2]1));
formula-Quach

sigma[Z O] =(1+(sigma[1.0]/sigma[O0. 2]

1)*(A[0]"(1/n[0.2,1.01)))/ (1+e[0.2]* 1/E[

1)* (51gma[l 0]/sigmal0.2]-

1)*A[0]" (l/n[O 2,1.0]1)/(n[0.2,1.0]1*B[0]))*sigmal[0.2]; formula-Quach
epsilon[2.0]: (sigma[2.0]/E[0])+0.02;

b[O]::(sigma[ult] (1+ep51lon[ul 1) -

sigma[2.0]* (1+epsilon[2.0]))/ (epsilonfult]-epsilon([2.0]); formula-

Quach
al0]:=sigma[2.0]* (1+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach
t = 2;

>
coiling curvature

> Kappalc] := 1/(450);
circling or bending radius
ri:=4*t:

radius :=ri+t/2;

Kappa([cs]:= 1/radius;

FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> i:=-1:

for y from (t/2) by (-t/30) while y > 0 do
i:=i+1:
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axyl[i]:=y:

####coiling

epsilon[z,cy] := sigmal[y0]* (1-nu~2)/(E[0]*sgrt (l-nu+nu~2)):
epsilon[z,c] := Kappalc]l*y:

if epsilon(z,cy] < epsilon[z,c] then

e := 0:

sigma[c] := sigmaly0]:

omegal[c] := nu:

for s from sigmal[y0] by 0.5 to sigmaf[ult] while abs(e) <
abs (epsilon[z,cl-epsilon([z,cy]) do

ds := s - sigmalc]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else 1if s <= sigma[2.0] then

eps:=(X- 51gma[0 21)/(E[0.2]1)+(0.008+ (sigma[l1.0]-sigma[0.2]) (1/E[O
(1/E[0.2]1)))* ((X-sigma[0.2])/ (sigma[l.0]-

sigma[O 21))"n[0.2,1.0]+ 51gma[0.2])/(E[O])+0.002:

else

eps:=(X-al[0])/ (b[0]-X):

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega[c] := (4*nu* (subs (X=s,dH)) * (l-omega[c]+omega[c]”2)-E[0]* (2~
omegalc])* (2*omega[c]-1))/(E[0]* (2*omega[c]-1)"2+4* (subs (X=s,dH))* (1-
omegal[c]+omegal[c]”*2)):

dom[c] := (2* (l-omega[c]+omega[c]”2)* (Omega[c]-omegalc]))/ (s* ((2-
omega[c])+Omega[c]* (2*omega[c]-1))) *ds:

omega [c] = omegal[c] + dom[c]:

de := subs (X=omegal[c], (((1-2*X)"2-2*nu* (1-2*X)* (2-X)+(2-

X)"2)*s) /(2*E[0] * (1-2*X) * (1-X+X"2) " (3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]”2)* (1-2*nu))/(E[0]* (1-2*omega[c]) *sqrt (1-

omega[c]+tomega[c]”2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmal[z,c] := sigma[c]/sqrt(l-omegal[c]+omegal[c]”2):
sigma[x,c] = omega[c]l*sigmalc]/sqgrt (l-omega[c]+omegal[c]”2):
else

sigmalz,c] := E[0]*epsilon[z,c]/(1-nu"2):
sigma[x,c] := nu*E[0]*epsilon[z,c]/ (1-nu”2):
omegal[c] := nu:

end if:

epsilon[c,pl,i] :=e-s/E[0]
#####uncoiling including flatening

Kappal[u] := -Kappalc]:

Kappa [uy] :=-(sigma[c]* (1-nu”2) * (2-nu+ (2*nu-1) *omega[c]))/ (E[0] *y* (1-
nu+tnu”2) *sqrt ((l-omega[c]+omegalc]”™2))):

epsilon[z,uy] := (Kappalc]+Kappaluyl]) *y:

epsilon[z,r] := 0:

if abs (Kappaluy]) < abs(Kappalu]) then

omegal[uy] := ((1l-nu”2)*omegalc]-nu* (2-nu))/ ((1-2*nu) *omega[c]-(1-
nu~2))

sigma[u] := sigmalc]:

omega[u] := omegaluy]:

e:=0:

for s from sigmaf[u] by 0.5 to sigmalult] while abs(e) <

abs (epsilonfz,uy] + epsilon[z,r] ) do

ds := s - sigmalul]:

if s <= sigma[0.2] then
eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:
else 1if s <= sigma[2.0] then
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eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l.0]-sigma[0.2]) (1L/E[O
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[0.2]))"n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002:
else
eps:=(X-al0])/ (b[0]-X)
end if
end if
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omega[u] := (4*nu* (subs (X=s,dH)) * (l-omega[u]+omega[u]”2)-E[0]* (2=
omegalu])* (2*omegalul-1))/(E[0]* (2*omega[u]l-1)"2+4* (subs (X=s,dH)) * (1-
omega [u] tomega[u]*2)) :
dom[u] := (2* (l-omega[u]+omega[u]”2)* (Omega[u]-omegalul))/ (s* ((2-
omega[u])tOmega[u] * (2*omega[u]-1))) *ds:

[u

omega ] := omega[u] + dom[u]:

de: subs (X=omega [u], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) + (2~
X)A2)*s)/(2*E[O]*(1—2*X)*(1—X+XA2)A(3/2)))*dom[u] + subs (X=s, ((1-
omegal[u]~2)* (1-2*nu))/(E[0]* (1-2*omega[u]) *sqrt (1-

omega [u] tomega[u] ~2))) *ds;

e:= de + e:

sigma[u] :=s:

end do:
sigmalu,1i]:
sigmalz,r,1i = - sigma([u]/sqgrt (l-omega[u] +omega[u]*2) :
sigma([x,r,1i := - omega(u]*sigma[u]/sqrt (l-omega[u]+omegalu]"2):
epsilon[i] :=e:

epsilon[u,pl,i] :=e-(s-sigmalc])/E[0]:

epsilon[r,pl,i] :=epsilonfu,pl,i]+epsilon[c,pl,i]:

]
]

else

sigmal[z,u] := E[0]*Kappalu]*y/ (1-nu”*2):
sigma[x,u] := nu*E[0]*Kappal[ul*y/(1l-nu"2):
sigmalz,r,i] := sigmalz,c]+sigmalz,u]:
sigma[x,r,i] := sigma[x,cl+sigmal[x,u]:
omegalu,i]:= sigma[x,r,i]/sigmalz,r,i]:
sigma[u,i]:= sigmalc]:

s:=sigmal(c]:

epsilon[i] :=Kappalul]*y

epsilon(u,pl,i] :=0
epsilon[r,pl,i]:=epsilonfu,pl,i]ltepsilon(c,pl,il]
end if:

end do:

using simmetry for whole thickness data

> axy[15]:=0:

sigma[us,15] :=sigma[y0]:

sigmalz,r,15] :=sigmal[y0]* (1-nu”~2)/(E[0]) :
sigma[x,r,15] :=sigmal[y0]* (1-nu”2)/(E[0]*nu) :
epsilon[r,pl,15]:=0:

sigma[u,15] :=sigmal[y0]:

> for 1 from 0 by 1 to 29 do

axy[30-i]:= —axy[i]:

sigma[u,30-i]:= sigmalu,i]:
sigmal[z,r,30-1]:= -sigmalz,r,1i]:
sigma([x,r,30-1]: -sigma[x,r,1i]:
epsilon[r,pl,30-i]:= epsilon[r,pl,i]:

end do:

bending to the corner radius (x-axis bending)

> g[x]:=1:

for shift from 0.001 by 0.001 while g[x] > 0.25 do
for i from 0 by 1 to 30 do

y:= axyl[i]:
epsilon[x,cs,i]:= In(l+(shift-y)/ (1/Kappalcs]-shift)):
epsilon[x,csy,i]l:= sigmalu,i]* (1-nu"2)/(E[0]*sgrt (1-nu+nu™2)):
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if abs(epsilon([x,csy,i])<abs(epsilon[x,cs,1])then

e:= 0:

sigmal[z,cs,i]:= sigmalz,r,1i] + nu*E[0]*epsilon[x,csy,1]/ (1-nu”2):
sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,csy,i]/ (1-nu”2):
omegalcs] := sigmalz,cs,i]/sigma[x,cs,i]:

sigma[cs]:=sigmafu,i]:

for s from sigmafu,i] by 1 to sigmalult] while abs(e)
<(abs(epsilon[x,cs,i]-epsilon(x,csy,1i])) do

ds:= s-sigma[cs]:

if s <= sigma[0.2] then

eps:= X/ (E[0])4+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[1.0]-sigma[0.2])* ((1/E[0])-
(L/E[0.21)))* ((X-sigma[0.2])/ (sigma[l.0]-
sigma[0.2]))"n[0.2,1.0]+(sigmal[0.2])/(E[0])+0.002:

else

eps:=(X-a[0])/(b[0]+X) :

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega[cs]:= (4*nu* (subs (X=s,dH)) * (1l-omega[cs]+tomegal[cs]"2)-E[0]* (2-
omegal[cs])* (2*omegalcs]-1))/(E[0]* (2*omega[cs] -

1)72+4* (subs (X=s,dH) ) * (1-omega[cs]+tomega[cs]"2)) :

dom[cs]:=((2* (l-omega[cs]+omega[cs]"2)* (Omega[cs]-omegal[cs]))/ (s* ((2-
omegal[cs])+tOmegalcs] * (2*omega[cs]-1)))) *ds:

omegal[cs]:= omega[cs] + dom[cs]:

de:= subs (X=omega[cs], (((1-2*X)"2-2*nu* (1-2*X)* (2-X)+ (2-

X)"2)*s) /(2*E[0]* (1-2*X) * (1-X+X"2)"~(3/2))) *dom[cs] + subs (X=s, ((1-
omegal[cs]”™2)*(1-2*nu) )/ (E[0]* (1-2*omega[cs]) *sqrt (1-
omegal[cs]t+tomegal[cs]"2))) *ds:

e:= de + e:

sigma([cs]:=s:

end do:

if y>= shift then

sigmalz,cs,i]:= -omega[cs]*sigmalcs]/sqgrt (l-omegalcs]+omegalcs]”2):
sigma[x,cs,i]:= -sigma[cs]/sqgrt (l-omega[cs]+omegalcs]"2) :

else

sigmal[z,cs,i]:= omegal[cs]*sigmal[cs]/sqrt (l-omegal[cs]+omegalcs]”2):
sigma[x,cs,i]:= sigmalcs]/sqrt (l-omegal[cs]+omegalcs]”2):

end if:

sigma[cs,i]:= s:

omegal[cs,i] :=omegalcs]:

epsilon[cs,pl,i] :=e-s/E[0]:

else

sigmal[z,cs,i]:= sigmalz,r,1i] + nu*E[0]*epsilon[x,cs,1]/(1-nu"2):
sigma[x,cs,i]:= sigma[x,r,1i] + E[0]*epsilon[x,cs,i]/(1-nu”2):
sigma[cs,i]:= sigmalu,i]:

omegalcs,i]:= sigmalz,cs,i]/sigmal[x,cs,1i]:

epsilon[cs,pl,i] := 0:

end if:

end do:

#### membrane residual stress

glx]:= 0:

for i from 0 by 1 to 29 do

qlx]:= gl[x]-(sigma[x,cs,i+1l]+sigmalx,cs,1] )/2* (axy[il-axy[i+1]):
end do:

qlx]:=qlx]/t;

end do:

qlx];

shift;
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C.2 Model in true values

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=195.4e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigmal[y0]>0.00014##

sigma[0.2] :=205;

sigma[l.0] := .542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach

found by analysing tension coupon test data
sigma[ult] :=520;

epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);

n[0]:=7.5;

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen
n{0.2,1.0] := 12.225*E[.2]*sigma[l1.0]/(E[0]*sigma[0.2])+1.037; formula

- Quach found by analysing tension coupon test data
e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen
B[0]:=0.018+e[0.2]1*((E[O0]/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]* (sigma[l.0]/sigma[0.2]1-1)*(1-E[0]1/E[0.2]));
formula-Quach

sigma[2.0]:=(1+(sigma[l.0]/sigma[0.2]-

1)*(A[0]1"(1/n[0.2,1.01)))/ (1+e[0.2]1*(E[O0]/E[0.2]-
1)*(sigma[l.0]/sigmal[0.2]-
1)*A[0]"(1/n[0.2,1.0])/(n[0.2,1.0]1*B[0]))*sigmal[0.2]; formula-Quach
epsilon[2.0]:= (sigma[2.0]/E[0])+0.02;

b[0]:=(sigma[ult]* (l+epsilonfult]) -

sigmal[2.0]1* (l+epsilon([2.0]1))/ (epsilonf[ult]-epsilon[2.0]); formula-

Quach
al0]:=sigmaf[2.0]* (1l+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach
t = 2;

>
coiling curvature
> Kappalc] := 1/(450);

circling or bending radius
ri:=4+*t:

radius :=ri+t/2;
Kappa[cs]:= 1/radius;

FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> j:=-1:

for y from (t/2) by (-t/30) while y > 0 do
i:=1i+1:

axyli]:=y:

####coiling

epsilon[z,cy] := sigmal[y0]* (1-nu”~2)/(E[0]*sgrt (l-nu+nu”~2)):
epsilon[z,c] := Kappalc]l*y:

if epsilon(z,cy] < epsilon([z,c] then

e := 0:

sigma[c] := sigmaly0]:

omegal[c] := nu:

for s from sigma[y0] by 0.5 to sigmaf[ult] while abs(e) <
abs (epsilon[z,cl-epsilon(z,cy]) do
ds := s - sigmalc]:
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if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (1L/E[

= [0
(1/E10.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[O 21))"n[0.2,1.01+ (51gma[0.2])/(E[O])+O.OO2:
else
eps:=(X-a[0])/(b[0]-X) :
end if:
end if:
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omegalc] := (4*nu*(subs(X=s,dH))*(l omega[c]+tomegal[c]*2)-E[0]* (2-
omegalc])*(2*omegal[c]l-1))/(E[0]* (2*omega[c]-1)"2+4* (subs (X=s,dH))* (1-
omegal[c]+o mega[ cl” 2)):
dom[c] := (2* (l-omega[c]+omegal[c]”2)* (Omega[c]-omegalc]l))/ (s* ((2-
omega[c])+Omega[c]* (2*omega[c]-1))) *ds:
omegal[c] := omegalc] + dom[c]:
de := subs(X=omegal[c], (((1-2*X)"2- 2*nu*(1 2*X)* (2-X)+ (2-

X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]”™2)*(1-2*nu))/(E[0]* (1L-2*omegalc ]) sqrt (1-
omegal[c]+tomegal[c]”*2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmal[z,c] := sigmal[c]/sqgrt(l-omegal[c]+omegal[c]"2):

sigma[x,c] := omegal[c]*sigmalc]/sqgrt (l-omega[c]+omegalc]”2):

else

sigmalz,c] := E[0]*epsilon[z,c]/(1l-nu”2):

sigma[x,c] := nu*E[0]*epsilon[z,c]/ (1-nu”2):

omegalc] := nu:

end if:

epsilon[c,pl,i] :=e-s/E[0]

#####uncoiling including flatening

Kappalu] := -Kappalc]:

Kappal[uy] :=-(sigma[c]* (1-nu”2) * (2-nu+ (2*nu-1) *omegal[c]l))/ (E[0] *y* (1-
nutnu”2) *sqrt ((l-omega[c]+omegalc]”™2))):

epsilon[z,uy] := (Kappalc]+Kappaluyl]) *y:

epsilon[z,r] := 0:

if abs (Kappaluy]) < abs(Kappal[u]) then

omegaluy] := ((1-nu”2)*omegalc]-nu* (2-nu))/ ((1l-2*nu)*omegalc]-(1-
nu*2))

sigma[u] := sigmalc]:

omega[u] := omegaluy]:

e:=0:

for s from sigmafu] by 0.5 to sigmalult] while abs(e) <
abs(epsilonfz,uy] + epsilonfz,r] ) do

ds := s - sigmalul]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[01)
(1/E10.21))) * ((X-sigma[0.2])/(sigma[1.0]-

sigma[O 21))"n[0.2,1.0]+ (51gma[0.2])/(E[O])+0.002:

else

eps:=(X-al0])/ (b[0]-X):

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"~(-1):

Omega[u] := (4*nu*(subs(X=s,dH)) (l-omega[u]t+tomega[u]*2)-E[0]* (2-
omegal[u])* (2*omega[ul-1))/(E[0]* (2*omega[u]-1) "2+4* (subs (X=s,dH) ) * (1-
omega [u] tomega[u]~2)) :
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dom[u] := (2* (l-omega[u]+omega[u]”2)* (Omega[u]-omegalul))/ (s* ((2-
omega[u])tOmega[u] * (2*omega[u]-1))) *ds:

omegal[u] := omegalu] + dom[u]:

de:= subs (X=omegalul], (((1-2*X)"2-2*nu* (1-2*X)* (2-X)+(2-

X)"2)*s) /(2*E[0] * (1-2*X) * (1-X+X"2) " (3/2))) *dom[u] + subs (X=s, ((1-
omegal[u]*2)*(1-2*nu) )/ (E[0]* (1-2*omega[u]) *sqgrt (1-

omega [u] tomega[u] ~2))) *ds;

e:= de + e:

sigma[u] :=s:

end do:
sigmafu,i]:
sigmalz,r,1i
sigma([x,r,1i
epsilon[i]:
epsilon[u,pl,i] :=e-(s-sigmalc])/E[0]:
epsilon[r,pl,i] :=epsilonfu,pl,i]l+epsilon[c,pl,i]:

sigma[u]:
= - sigma[u]/sqrt (l-omega[u] +omega[u] *2) :

]
] := - omegalu]*sigma[u]/sqgrt (l-omega[u]+omegal[u]*2) :

else

sigmal[z,u] := E[0]*Kappalu]*y/ (1-nu”*2):
sigma[x,u] := nu*E[0]*Kappal[ul*y/(1-nu"2):
sigmal[z,r,i] := sigmalz,c]+sigmalz,u]:
sigma[x,r,i] := sigmal[x,c]+sigmalx,u]:
omegalu,i]:= sigma[x,r,i]/sigmalz,r,i]:
sigma[u,i]:= sigmalc]:

s:=sigmalc]:

epsilon[i] :=Kappalu] *y:
epsilonfu,pl,i]:=0:
epsilon[r,pl,i]:=epsilon(u,pl,i]+epsilonfc,pl,i]
end if:

end do:

using simmetry for whole thickness data

> axy[15]:=0:

sigma[us,15] :=sigmal[y0]:

sigmalz,r,15] :=sigmal[y0]1* (1-nu”~2)/(E[0]) :
sigma[x,r,15] :=sigmal[y0]* (1-nu”2)/(E[0]*nu) :
epsilon[r,pl,15]:=0:

sigma[u,15] :=sigmal[y0]:

> for i from 0 by 1 to 29 do

axy[30-i]:= -axy[i]:

sigma[u,30-1i]:= sigmalu,i]:
sigmal[z,r,30-1i]:= -sigmalz,r,1]:
sigma[x,r,30-i]:= -sigmalx,r,1i]:
epsilon[r,pl,30-1]:= epsilon(r,pl,i]:
end do:

bending to the corner radius (x-axis bending)

> gl[x]:=1:

for shift from 0.001 by 0.001 while g[x] > 0.25 do
for i from 0 by 1 to 30 do

y:= axyl[i]:
epsilon[x,cs,i]:= In(l+(shift-y)/(1/Kappalcs]-shift)):
epsilon[x,csy,i]:= sigmalu,i]* (1-nu”2)/(E[0]*sqgrt (1l-nu+nu*2)):
if abs(epsilon[x,csy,1])<abs(epsilon[x,cs,i])then
e:= 0:
sigmal[z,cs,i]:= sigmalz,r,i] + nu*E[0]*epsilon[x,csy,1]/(1-nu”2):
sigma[x,cs,i]:= sigmal[x,r,i] + E[0]*epsilon[x,csy,i]/(1-nu”2):
omegal[cs] := sigmalz,cs,i]/sigmal[x,cs,1i]:

[

cs
sigma[cs]:=sigmafu,i]:

for s from sigmafu,i] by 1 to sigmalult] while abs(e)
< (abs(epsilon[x,cs,i]-epsilon(x,csy,i])) do

ds:= s-sigma[cs]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:
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dt:=ds+ds* ((2*X/E[0])+0.002* (n[0]+1) * (X/sigma[0.2])"n[0]) :
else 1if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l1.0]-sigma[0.2]) (1/E[
(L/E[0.21)))* ((X-sigma[0.2])/ (sigma[l.0]-
sigma[0.2]))"n[0.2,1. O]+(51gma[0.2])/(E[O] +0.002:
dt: —ds+ds (((51gma[ 21)/(E[0]))+0.002+ ( (2*X-
sigma [ 1)/E[O )+(((( [0.2,1.0]+1) *X) -
sigma[ ]))*(O OO8+(sigma[l 0]-sigma[0.2]) (1/E[
(1/E[ ])))*((X sigma[0.2])"(n[0.2,1. O] l)/(81gma[l O]
51gma[ 21)"n[0.2,1.01)):
else

eps:=(X-al[0])/ (b[0]-X):
dt:=ds+ds* (((2*X-a[0]) * (b[0]-X)+X* (X-a[0]))/ (b[0]-X)"2):
end if:

end if:

dH:=(((diff (eps, X))/ ((l+eps) * ((l+eps) +X* ((diff (eps,X))))))-
(L/E[0])) "~ (-1):

Omega[cs]:= (4*nu* (subs (X=s,dH)
omegalcs])* (2*omega[cs]-1))/ (E[
1)72+4* (subs (X=s,dH) ) * (1-omega [
dom[cs]:=((2* (l-omega[cs]+omegalc

(l-omega[cs]+tomegal[cs]~2)-E[0]*
]*(2*omega[cs] -
s]+omegalcs]*2)):

) *
0
C
[cs]”2)* (Omega[cs]-omegalcs]))/ (s* ((2-

omega[cs])+Omega[cs]* (2*omega[cs]-1)))) * (subs (X=s,dt)) :
omega[cs]:= omegalcs] + dom[cs]:

de:= subs (X=omega[cs], (((1-2*X)"2-2*nu* (1-2*X)* (2-X)+ (2-

X)"2)*s) /(2*E[0] * (1-2*X) * (1-X+X"2)"(3/2))) *dom[cs] + subs (X=s, ((1-
omegal[cs]”2)*(1-2*nu))/ (E[0]* (1-2*omega[cs]) *sqgrt (1-
omega[cs]+tomega[cs]”2))) *ds:

e:= de + e

sigma[cs]:=s:

end do:

if y>= shift then

sigmalz,cs,i]:= -omega[cs]*sigmal[cs]/sqrt (l-omegal[cs]+omegalcs]”2):
sigma[x,cs,i]:= -sigma[cs]/sqrt (l-omega[cs]+omegalcs]"2):

else

sigmalz,cs,i]:= omegalcs]*sigmalcs]/sqgrt (l-omegalcs]+omegalcs]”2):
sigma[x,cs,i]:= sigmalcs]/sqgrt(l-omegalcs]+omegalcs]”2):

end if:

sigma[cs,i]:= s:

omegal[cs,i] :=omegalcs]:
epsilonfcs,pl,i]l:=1n(l+e)-(s*(1+e)/E[0]):

else

sigmal[z,cs,i]:= sigmalz,r,i] + nu*E[0]*epsilon[x,cs,1]/(1-nu”"2):
sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,cs]/ (1-nu"2):
sigma[cs,i]:= sigmalu,i]:

omegal[cs,i]:= sigmalz,cs,i]/sigmal[x,cs,1i]:

epsilon[cs,pl,i] := 0:

end if:

end do:

#### membrane residual stress

glx]:= 0:

for i from 0 by 1 to 29 do

q[x]:= g[x]-(sigma[x,cs,i+1l]+sigma[x,cs,1] )/2* (axy[il-axy[i+1]):
end do:

alx]:=qlx]/t;

end do:

qlx];

shift;
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Maple model for cold-bending including springback

of a carbon steel thick sheet

Material and geometrical characteristics

material
> E[0] :=203.9e3;
nu:= 0.28;

sigma[0.2]:=593.2;

sigma[ult] :=737.9;

epsilonfult]:=1-sigma[0.2]/sigma[ult];

E[n] :=(sigmafult]-sigma[0.2])/ (epsilon[ult]-(sigmal[0.2]1/E[0]));
t:=25.4;

circling or bending radius
ri:=5.5*t:

radius :=ri+t/2;
Kappa[cs]:= 1/radius;

FORMING PROCESS

loop for cold bending

> i:=-1:

for y from (t/2) by (-t/20)while abs(y)<=(t/2) do
i:=1i4+1:

axyl[i]:=y:

end do:

bending to the corner radius (x-axis bending)

> g[x]:=1:

for shift from 0.001 by 0.001 while abs(g[x]) > 0.9 do
for i from 0 by 1 to 20 do

y:= axyl[i]:

epsilon[x,cs,1i] := 1In(l+(shift-y)/(1/Kappalcs]-shift)):
epsilon[x,csy,i] := sigma[0.2]*(1-nu”2)/(E[0]*sgrt (l-nu+nu”~2)):
if abs(epsilon[x,csy,1])<abs(epsilon[x,cs,1]) then

e:= 0:

sigmal[z,cs,i] :=nu*E[0] *epsilon[x,csy,1]/ (1-nu”2):

sigma[x,cs,i] :=E[0]*epsilon([x,csy,1]/ (1-nu"2):

omegal[cs] :=nu:

sigma[cs]:=sigma[0.2]:

for s from sigma[0.2] by 1 to sigmalult] while abs(e)
<(abs(epsilon[x,cs,i]l-epsilon(x,csy,1i])) do

ds:= s-sigmal[cs]:

eps:=(sigma[0.2]/E[0])+ ((X-sigma[0.2])/E[n]):
dH:=(E[0]*E[n])/(E[0]-E[n]):

Omega[cs]:=(4*nu*dH* (1-omega[cs]+omegal[cs]*2)-E[0]* (2-

omega *(2*omegalcs]-1))/(E[0]* (2*omega[cs]-1) "2+4*dH* (1-

[cs])
omegal[cs]tomegalcs]"2)):
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dom[cs]:=((2* (1-omega[cs]+omega[cs]"2)* (Omega[cs]-omegal[cs]))/ (s* ((2-
omega[cs])+Omega[cs]* (2*omega[cs]-1)))) *ds:

omega[cs]:= omegal[cs] + dom[cs]:

de:=subs (X=omega[cs], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) + (2-

X)"2)*s) /(2*E[Q]* (1-2*X) * (1-X+X"2) "~ (3/2))) *dom[cs]+subs (X=s, ((1-
omegalcs]”2)* (1-2*nu) )/ (E[0]* (1-2*omega[cs]) *sqgrt (1-
omega[cs]+tomegal[cs]”2))) *ds:

e:= de + e:

sigma[cs]:=s:

end do:

if y>= shift then

sigmalz,cs,i]:= -omega[cs]*sigmal[cs]/sqrt (l-omegal[cs]+omegalcs]”2):
sigma[x,cs,i]:= -sigma[cs]/sqrt (l-omega[cs]+omegalcs]"2) :

else

sigma[z,cs,i]:= omegalcs]*sigmalcs]/sqgrt (l-omega[cs]+omegalcs]"2):

sigma([x,cs,i]:

end if:

sigma(cs,i]:=s:

omegal[cs,1i] :=omegalcs]:

epsilonfcs,pl,il:=(s-sigma[0.2])* ((E[0]-E[n])/(E[0]1*E[n])):

else

sigmal[z,cs,i] *E

sigma([x,cs,i]:= [O
[ = a

a

sigma[cs]/sqgrt (l-omegal[cs]+omegalcs]"2) :

]*epsilon([x,cs,i]/ (1-nu”2) :
*epsilon[x,cs,1]/ (1-nu”™2):
2]:

cs,i]l/sigmalx,cs,i]:

sigma[cs,i]:= sigm
omegalcs,i]:= sigm
epsilonfcs,pl,i]
end if:

end do:

#### membrane residual stress

gl[x]:= 0:

for i from 0 by 1 to 19 do

q[x]:= g[x]-(sigma[x,cs,i+1l]+sigmal[x,cs,1] )/2* (axy[il-axy[i+1]):
end do:

qlx]:=qlx]/t;

end do:

qlx];

shift;

[0
]
[0
[

Z,
0:

####Spring back

M[t]:=0:

for i from 0 by 1 to 20 do

if 1i=0 then
M[i]:=(sigma[x,cs,i]*axy[1]*t/20)/2

elif i1i=26 then
M[i]:=(sigma[x,cs,i]*axy[1]*t/20)/2

else

M[i]:=sigma[x,cs,i]l*axy[i]*t/20:

end if:

M[t]:=M[t]+M[1i]:

end do:

Iy:=1*t"3/12:

###Final stress(including spring back)
for i from 0 by 1 to 20 do
epsilon[x,sb,1]:= M[t]l*axy[i]/ (Iy*E[0]):
sigma[x,sb,i] :=epsilon[x,sb,i]*E[0]:
sigmal[z,sb,i] :=nu*epsilon(x,sb,i]*E[0]:
sigmal[z,pb,i] :=sigma[z,cs,i]l-sigma[z,sb,i]:
sigma([x,pb,i] :=sigma[x,cs,i]l-sigma[x,sb,i]:
end do:

]
]
]
]
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Appendix E

Maple model for corner cold-bending including

springback with stress-strain curve

Material and geometrical characteristics

material

> E[0] :=190e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigma[y0]>0.0001##

sigma[0.2] :=364;
sigma[ult] =501;

n[0]:=6.7;

epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);

sigma[1.0] := 0.542*sigma[0.2]/n[0]+1.072*sigma[0.2]; formula - Quach
found by analysing tension coupon test data

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen
n(0.2,1.0] := 3.1;

t = 1.9;

e[0.2] :=sigmal0 /E[ 1; formula -Rasmussen

B[0]:=0.018+e[0. 2] ((E[O]1/E[ 1)-1); formula-Quach

A[0]:=B[0]/(0.008+e[0.2]1%* (51gma[l.0]/sigma[0.2]—l)*(l—E[OJ/E[O.ZJ));
formula-Quach

sigma[Z O] =(1l+(sigmall
1)*(A[0]1~(1/n[0.2,1.01)
1)* (51gma[1 0]/sigmalO.
1)*A[0]" (l/n[O 2,1.0])
epsilon[2.0]: (sigmal2
b[O]::(sigma[ult] (1+ep51
sigma[2.0]* (1l+epsilon[2.0
Quach

al[0]:=sigmal[2.0]* (1l+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach
>

coiling curvature

> Kappalc] := 1/(450);

circling or bending radius

ri:=2.5:

radius :=ri+t/2;

Kappa[cs]:= 1/radius;

.0]/sigma[0. 2]
))) 1+e[0.2]* 1/E[

2]

/ (n 1.01*B[0]))*sigma[0.2]; formula-Quach
1)+0.02;
1t]) -

epsilon[ult]-epsilon[2.0]); formula-

]
/(
[0.2,
01/EI[O
lon[u
)/«

FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> i:=-1:

for y from (t/2) by (-t/10) while y > 0 do

i:=i+1:

axyl[i]:=y:

#H###coiling

epsilon[z,cy] := sigmal[y0]*(1-nu”2)/(E[0]*sgrt (l-nu+nu”~2)):
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Appendix E: Maple model for corner cold-bending including springback with stress-strain curve

epsilon[z,c] := Kappalc]l*y:

if epsilon(z,cy] < epsilon([z,c] then
e := 0:

sigma[c] := sigmal[y0]:

omegal[c] := nu:

omega[last] :=omegalc]:

for s from sigma[y0] by 0.5 to sigmalult] while abs(e) <
abs(epsilonfz,cl-epsilon(z,cy]) do

ds := s - sigmalc]:

if s <= sigma[0.2] then

eps:= X/ (E[0])4+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l1.0]-sigma[0.2]) (1/E[
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-

sigma[0.2])) n({0.2,1.0]1+ (51gma[0.2])/(E[O])+O.OO2:

else

eps:=(X-a[0])/(b[0]-X):

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega[c] := (4*nu*(subs(X=s, dH) ) * (l-omega[c]+omega[c]"2)-E[0]* (2-
omegal[c]) * (2*omegalc ))/ (E[0]* (2*omega[c]-1) "2+4* (subs (X=s,dH) ) * (1-
omegal[c]+o mega[c]AZ)):

dom[c] := (2* (l-omega[c]+omega[c]”2)* (Omega[c]-omegalc]l))/ (s* ((2-
omegal[c])+Omegal[c]* (2*omegalc]-1))) *ds:

omega[c] = omegal[c] + dom[c]:

de := subs(X=omegal[c], (((1-2*X)"2- 2*nu*(1 2*X) * (2-X)+ (2-
X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]™2)* (1-2*nu))/(E[0]* (1-2*omega[c ]) sqrt (1-
omegal[c]+tomegal[c]”*2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmal[z,c] := sigma[c]/sqrt(l-omegal[c]+omegal[c]”2):

sigma[x,c] := omegal[c]*sigma[c]/sqgrt (l-omega[c]+omegalc]”2):

else

sigmalz,c] := E[0]*epsilon[z,c]/(1l-nu”2):

sigma[x,c] := nu*E[0]*epsilon[z,c]/ (1-nu”2):

omegal[c] := nu:

end if:

epsilonfc,pl,i]l:=e-s/E[0]:

#####uncoiling including flatening

Kappalu] := -Kappalc]:

Kappa [uy] :=-(sigma[c]* (1-nu”2)* (2-nu+ (2*nu-1) *omega[c]))/ (E[0] *y* (1-
nutnu”2) *sqgrt ((l-omega[c]+omegalc]”2))):

epsilon[z,uy] := (Kappalc]+Kappaluyl) *y:

epsilon[z,r] := 0:
if abs (Kappaluy]) < abs(Kappal[u]) then

omegal[uy] := ((1l-nu”2)*omegalc]-nu* (2-nu))/ ((1-2*nu) *omega[c]-(1-
nu”™2)
omega
sigma
omega
e:=0:

for s from sigmafu] by 0.5 to sigmalult] while abs(e) <
abs(epsilonfz,uy] + epsilon[z,r] ) do

ds := s - sigmalul]:

if s <= sigma[0.2] then

eps:= X/(E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

st]:= omegaluy]:
= sigmal[c]:
= omegaluy]:

) :
[
[
[

la
ul:
ul:
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Appendix E: Maple model for corner cold-bending including springback with stress-strain curve

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l.0]-sigma[0.2]) (1L/E[O
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[0.2]))"n[0.2,1.0]+(sigma[0.2])/(E[0])+0.002:
else
eps:=(X-al0])/ (b[0]-X)
end if
end if
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omega[u] := (4*nu* (subs (X=s,dH)) * (l-omega[u]+omega[u]”2)-E[0]* (2=
omegalu])* (2*omegalul-1))/(E[0]* (2*omega[u]l-1)"2+4* (subs (X=s,dH)) * (1-
omega [u] tomega[u]*2)) :
dom[u] := (2* (l-omega[u]+omega[u]”2)* (Omega[u]-omegalul))/ (s* ((2-
omega[u])tOmega[u] * (2*omega[u]-1))) *ds:

[u

omega ] := omega[u] + dom[u]:

de: subs (X=omega [u], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) + (2~
X)A2)*s)/(2*E[O]*(1—2*X)*(1—X+XA2)A(3/2)))*dom[u] + subs (X=s, ((1-
omegal[u]~2)* (1-2*nu))/(E[0]* (1-2*omega[u]) *sqrt (1-

omega [u] tomega[u] ~2))) *ds;

e:= de + e:

sigma[u] :=s:

end do:
sigmalu,1i]:
sigmalz,r,1i = - sigma[u]/sqgrt (l-omega[u]+omega[u]*2) :
sigma([x,r,1i := - omega(u]*sigma[u]/sqrt (l-omega[u]+omegalu]"2):
epsilon[i] :=e:

epsilon[u,pl,i] :=e-(s-sigmalc])/E[0]:

epsilon[r,pl,i] :=epsilonfu,pl,i]+epsilon(c,pl,i]:

]
]

else

sigmal[z,u] := E[0]*Kappalu]*y/ (1-nu”*2):
sigma[x,u] := nu*E[0]*Kappal[ul*y/(1l-nu"2):
sigmalz,r,i] := sigmalz,c]+sigmalz,u]:
sigma[x,r,i] := sigma[x,cl+sigmal[x,u]:
omegalu,i]:= sigma[x,r,i]/sigmalz,r,i]:
sigma[u,i]:= sigmalc]:

s:=sigmal(c]:

epsilon[i] :=Kappalul]*y

epsilon(u,pl,i] :=0
epsilon[r,pl,i]:=epsilonfu,pl,i]ltepsilon(c,pl,il]
end if:

end do:

using simmetry for whole thickness data

> axy[5]:=0:

sigma[us, 5] :=sigma[y0]:

sigmal[z,r,5] :=sigmal[y0]* (1-nu”~2)/(E[0])
sigma[x,r,5] :=sigmal[y0]* (1-nu~2)/(E[0]*nu) :
epsilon[r,pl,5]:=0:
sigma[u, 5] :=sigmaly0]:

> for 1 from 0 by 1 to 4 do
axy[10-i]:= —axy[i]:

sigma[u,10-i]:= sigmalu,i]:
sigmal[z,r,10-1i]:= -sigmalz,r,1i]:
sigma[x,r,10-1]: -sigma[x,r,1i]:
epsilon[r,pl,10-i]:= epsilon[r,pl,i]:
end do:

bending to the corner radius (x-axis bending)

> g[x]:=5:

for shift from 0.001 by 0.001 while abs(glx]) >4.9 do
for i from 0 by 1 to 10 do

y:= axyl[i]:
epsilon[x,cs,i]:= In(l+(shift-y)/(1/Kappalcs]-shift)):
epsilon[x,csy,i]l:= sigmalu,i]* (1-nu"2)/(E[0]*sgrt (1-nu+nu™2)):
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Appendix E: Maple model for corner cold-bending including springback with stress-strain curve

if abs(epsilon([x,csy,i])<abs(epsilon[x,cs,1])then

e:= 0:

sigmal[z,cs,i]:= sigmalz,r,1i] + nu*E[0]*epsilon[x,csy,1]/ (1-nu”2):
sigma[x,cs,i]:= sigma[x,r,i] + E[0]*epsilon[x,csy,i]/ (1-nu”2):
omegalcs] := sigmalz,cs,i]/sigma[x,cs,i]:

sigma[cs]:=sigmalu,i]:

for s from sigmafu,i] by 1 to sigmalult] while abs(e)
<(abs(epsilon[x,cs,i]-epsilon(x,csy,1i])) do

ds:= s-sigma[cs]:

if s <= sigma[0.2] then

eps:= X/ (E[0])4+0.002* (X/ (sigma[0.2]))"n[0]:

dt:=ds+ds* ((2*X/E[0])+0.002* (n[0]+1) * (X/sigma[0.2])"n[0]) :
else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l1.0]-sigma[0.2]) (L/E[
(L/E[0.21)))*((X-sigma[0.2])/ (sigma[l.0]-
sigma[0.2]))"n[0.2,1.0]+ (51gma[0.2])/(E[O] +0.002:

dt:=ds+ds* (((sigma[0.2])/(E[0]))+0.002+ ( (2*X-

sigma[0.2])/E[O ])+(((( n[{0.2,1.0]+41)*X) -

sigmal[0 ]))*(O 008+ (sigma[l.0]-sigma[0.2])* ((1/E[0]) -

(L/E[O ])))*((X sigma[0.2])"(n[0.2,1. O] l)/(sigma[l.O]—

sigma[ 21)"n[0.2,1.071)):

else

eps:=(X-a[0])/(b[0]-X):
dt:=ds+ds* (((2*X-a[0]) *
end if:

end if:

dH:=(((diff (eps,X))/ ((1l+eps)* ((1l+eps)+X* ((diff (eps,X)))))) -
(L/E[0]))"(-1):

Omega[cs]:= (4*nu* (subs (X=s,dH)) * (1l-omega[cs]+omega[cs]"2)-E[0]* (2~
omegal[cs])* (2*omega[cs]-1))/(E[0]* (2*omega[cs] -
[cs
[c

b[0]-X)+X* (X-a[0]))/ (b[0]-X)"2):

1)"2+4* (subs (X=s,dH) ) * (1-omega ]tomega[cs]™2)):
dom[cs]:=((2* (1-omega[cs]+omega
omegal[cs])+Omega[cs]* (2*omega[cs]-1)))) * (subs (X=s,dt)) :

omegal[cs]:= omegalcs] + dom[cs]:

de:= subs (X=omegalcs], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) +(2-

X)"2)*s) /(2*E[0]* (1-2*X) * (1-X+X"2)"(3/2))) *dom[cs] + subs (X=s, ((1-
omegal[cs]”™2)*(1-2*nu) )/ (E[0]* (1-2*omega[cs]) *sqrt (1-
omega[cs]+tomega[cs]”2))) *ds:

e:= de + e:

sigma[cs]:=s:

end do:

if y>= shift then

sigmalz,cs,i]:= -omega[cs]*sigmal[cs]/sqrt (l-omegal[cs]+omegalcs]”2):
sigma[x,cs,i]:= -sigma[cs]/sqrt (l-omega[cs]+omegalcs]”2) :

else

sigmalz,cs,i]:= omegalcs]*sigmalcs]/sqrt (l-omegalcs]+omegalcs]”2):
sigma[x,cs,i]:= sigmal[cs]/sqgrt (l-omegal[cs]+omegalcs]”2):

end if:

sigma[cs,i]:= s:

omegal[cs, 1] :=omegalcs]:

epsilonfcs,pl,il:=1n(l+e)-(s*(1+e)/E[0]):

else

sigmal[z,cs,i]:= sigmalz,r,i] + nu*E[0]*epsilon[x,cs,1]/(1-nu™2):
sigma[x,cs,i]:= sigmal[x,r,i] + E[0]*epsilon[x,cs]/ (1-nu”"2):
sigma[cs,i]:= sigmalu,i]:

omegalcs,i]:= sigmalz,cs,i]/sigmal[x,cs,1i]:

epsilon[cs,pl,i] := 0:

end if:

end do:

#### membrane residual stress

glx]:= 0:

for i from 0 by 1 to 9 do
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Appendix E: Maple model for corner cold-bending including springback with stress-strain curve

glx]:= gqlx]-(sigmal[x,cs,i+l]+sigma[x,cs,i] )/2* (axy[i]-axy[i+1]):
end do:

alx]:=qlx]/t;

end do:

qlx];

shift;

####Spring back

M[t]:=0:

for i from 0 by 1 to 10 do

if i=0 then
M[i]:=(sigma[x,cs,i]l*axy[1i]*t/10)/2

elif 1i=10 then
M[i]:=(sigma[x,cs,i]*axy[1]*t/10)/2

else

M[i]:=sigma[x,cs,il*axy[i]*t/10:

end if:

M[t]:=M[t]+M[1i]:

end do:

Iy:=1*t"3/12:

###Final stress(including spring back)

for i from 0 by 1 to 10 do
epsilon[x,sb,i]l:= M[t]*axy[i]/(Iy*E[0]):
sigma([x,sb,i] :=epsilon[x,sb,i]*E[0]:
sigma([z,sb,i] :=nu*epsilon(x,sb,i]*E[0]:
sigmal[z,pb,i] :=sigmalz,cs,i]-sigmalz,sb,1i]:
sigma[x,pb,i] :=sigmal[x,cs,i]-sigma[x,sb,1i]:
end do:

]
]
]
]

Stress strain diagram after press breaking in longitudinal direction
> for 1 from 0 by 1 to 10 do

sigma([z,i]:=sigmal[x,pb,1];

sigma[x,i] :=sigmalz,pb,1i];

sigmal[i ]:= sgrt (sigma[x,pb,i]"2+sigmalz,pb,1]"2-
sigma[x,pb,il*sigmalz,pb,1]);

sigma[rs,i]:= sqrt(sigmal[x,pb,i]"2+sigmalz,pb,i]"2-
sigma([x,pb,i]l*sigmalz,pb,1i])

omegal[i] :=sigmalz,i]/sigmalx,i];

end do:

> precise:= 0.0001;

beginning:= 0;

de:= le-5;

e:=0:

ss[z] := 0:

ss[x] := 0:

sslav] := 0:

for i from 0 by 1 to 10 do

E[0,pl,i] :=E[O0]:
nu :=0.3:
sigma[0.2,pl,1i]: (-

26.857*epsilon[cs pl,1]172+9.1674*epsilon[cs,pl,i]+1.0206) *sigma[0.2]:
sigma[l.0,pl,1i]: (-

30.334*epsilon[cs pl,1172+10.314*%epsiloncs,pl,1]+1.0366) *sigma[l.0]:
sigma[ult,pl,i] := sigmalult]:

epsilon[ult,pl,il:= (12.209*epsilon(cs,pl,i]l"2-
4.4781*epsilonfcs,pl,1]+1.00272) *epsilonfult]:

if abs(epsilonfcs,pl,i]) <= 0.09 then
n[0,pl,i]l:= (44.343*epsilonfcs,pl,1i]1"2-
8.708*epsilon(cs,pl,i]+0.8378)*n[0]:
else n[0,pl,1i]:= 0.4133*n([0]:

end if:
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Appendix E: Maple model for corner cold-bending including springback with stress-strain curve

E[0.2,pl,1i]:= (-
133.75%*epsilonfcs,pl,i]72+38.761*epsilon(cs,pl,i]+1.2097)*E[0.2]:

if abs(epsilon[cs pl,i]) <= 0.1 then

n(0.2,1.0,pl,1]: (-

68.301*epsilon[cs,pl 1]72+15.932*%epsilonfcs,pl,1]+1.0949)*n[0.2,1.0]:
else n[0.2,1.0,pl,1]:=2.0251*n[0.2,1.0]:

end if:

epsilon[max,pl,i]:= (44.343*epsilon(cs,pl,i]"2-
8.708*%*epsilon(cs,pl,i]+0.8378) *epsilon[max]:

e[0.2,pl,i]l:=sigma[0.2,pl,i]/E[0,pl,i]:
B[O,pl,1]:=0.018+e[0.2,pl,i]1*((E[0,pl,i]/E[0.2,p1,1i])-1):
A[O0,pl,1i]:=B[0,pl,i]1/(0.008+e[0.2,pl,i]* (sigma[l1.0,pl,1i]/sigma[0.2,pl,
i]-1)*(1-E[0,pl,1]/E[0.2,p1,1i])):

sigma[2.0,pl,i] :=sigma[0.2,pl,i]+(sigma[l1.0,pl,i]l-
sigmal0.2,pl,1i])*(A[0,pl,i]1"(1/n[0.2,1.0, pl,i]))*(1—((1/E[0-2,pl,i]—
1/E[0,pl,1i])*sigma[0.2,pl,1])/B[0,pl,1])"(1/n[0.2,1.0,p1,1i]):
epsilon[2.0,pl,i]l:= (sigma(2.0,pl,1i]/E[O0,pl,i])+0.02:
b[0,pl,i]l:=(sigmalult,pl,i]* (1+epsilonfult,pl,i])-

sigma[2.0,pl,i]* (1+epsilon[2.0,pl,i]l))/ (epsilonfult,pl,il]-
epsilon[2.0,pl,1i]):
al0,pl,il:=sigma[2.0,pl,i]*(1l+epsilon[2.0,pl,1]) -

b[0,pl,i] *epsilon[2.0,pl,1]:

end do:

for e from de by de while e <0.05 do

for i from 0 by 1 to 10 do

if sigma[i] < sigmalrs,i] then

dsigma[x] := E[O0,pl,i] / (1-nu”"2)*de:
dsigmalz] := nu *E[0,pl,1]1/(1-nu”2)* de:
else

if sigma[i] <= sigma[0.2,pl,i] then
eps:= X/ (E[0,pl,i])+0.002* (X/ (sigma[0.2,pl,i]))" n[0,pl,1i]:
else
if sigma[i] <= sigma[2.0,pl,i] then
eps:=(X—sigma[O.2,pl,i])/(E[O.2,pl,i])+(0.008+(sigma[l.0,pl,i]—
sigmal0.2,pl,1i])*((1/E[O0,pl,1])-(1/E[0.2,p1,1])))* ((X-
sigma[0.2,pl, 1
sigma[0.2,pl, 1
else
eps:=(X-al[0,pl,1i]1)/ (b[0,pl,i]-X):
end if:
end if:
dH:=subs (X=sigmal[i], ((diff (eps,X))-(1/E[0,pl,1]1))"(-1));
depsilon[x]:= de;
dsigmal[z] E[O,pl,i]*(4/9*nu*sigma[i]A2*dH/E[O,pl,i]—(2/3*sigma[z,i]—
1/3*sigma[x,1i])*(2/3*sigma[x,i]-
1/3*sigmalz,i])) *depsilon[x]/ (4/9*sigma[i]"2*dH* (1-
nu"2)/E[0,pl,1i]1+(2/3*sigma[z,1]-1/3*sigma[x,1i]) "2+ (2/3*sigma[x,1]-
1/3*sigmalz,i]) "2+2*nu* (2/3*sigmalz,1i]-
1/3*sigma[x,1i])*(2/3*sigma[x,i]-1/3*sigmalz,i]));
dsigmalx]:= 0,pl,i]1*((2/3*sigmalz,i]-
1/3*sigma[x,i])" 2+4/9*51gma[ 1"2*dH/E[0,pl,i]) *depsilon([x]/ (4/9*sigma [
2
)
)
) *

)/ (sigma[l1l.0,pl,i]-

]
1))"n[0.2,1.0,pl,i]+(sigma[0.2,pl,1])/(E[0,pl,1])+0.002:

i]
i]
El
i]
i]72*dH* (1-nu”~2) /E[0,pl,i]l+(2/3*sigmalz,i]-
1/3*sigmal[x,1i]) "2+ (2/3*sigma[x,1]-

1/3*sigmalz,i]) "2+2*nu* ( 2/3*Slgma[z i]-
1/3*sigma[x,1i] (2/3*sigma[x,1]-1/3*sigmalz,i]));

end if;

if 1 = 0 then

ss[x]:= ss[x] + 0.5 * dsigmalx];
ss[z]:= ss[z] + 0.5 * dsigmalz];
sslav]:= ss[av] + 0.5 * dsigl[i]:
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elif 1 = 10 then

ss[x]:= ss[x] + 0.5 * dsigmal[x];

ss[z]:= ss[z] + 0.5 * dsigmalz];

sslav]:= ss[av] + 0.5 * dsig[i]:

else

ss[x]:= ss[x] + dsigmalx];

ss[z]:= ss[z] + dsigmalz];

ssl[av]:= ss[av] + dsig[i]:

end if:

sigma([x,1]:= sigmal[x,i] + dsigmal[x];
sigma[z,1]:= sigmal[z,i] + dsigmalz];
omegal[i]:=sigmalz,i]/sigmal[x,1];

dsig[i]:= abs(sgrt(sigma[x,i]"2+sigma[z,i]"2-sigmaz,i]*sigmalx,i]) -
sigmal[i]);

sigma[i] := max(sqrt(sigma([x,i]"2+sigmalz,i]"2-

sigma[z,i]*sigmal[x,i]),sigmali]);

end do:

sigma[yield]:= sqgrt((ss[z]/10)"2+(ss[x]/10)"2-(ss[x]/10)*(ss[z]/10)):
for ep from 1 to 500 by 1 do

if (e-beginning)=ep*precise then
sigmalep,plot] :=(ss[x]/10):
epsilon[ep,plot] :=e:

end if:

end do:

end do:

sigma([x,yield] :=sigmal[yield]:
epsilon[yield,pl]:= e-sigmal[yield]/E[0,pl,i];
ss[x]:= ss[x]/10;

ss[z]:= ss[z]/10;
sgqrt(sslz]”2+ss[x]"2-ss[z]*ss[x]);
sigmalep,plot];

epsilon[ep,plot];

sigma[100,plot];

epsilon[100,plot];
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Appendix F

Maple model for flat face cold-bending including
springback with stress-strain curve

MODEL CS

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=191e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigma[y0]>0.0001##

sigma[0.2] :=268;
sigma[ult] =584;

n[0]:=6.9;

epsilonfult] := min(l-sigma[.2]/sigma[ult],0.6);

sigma[l.0] := 0.542*sigmal0. 2]/n[ ]+1.072*sigma[0.2]; formula - Quach
found by analysing tension coupon test data

E[0.2] := E[0]/(1+0.002*n[0]1*E[0]/sigma[0.2]); formula-Rasmussen
n[{0.2,1.0] := 3.6;

t = 4.64;

e[0.2]:=sigma[0.2]/E[0]; formula-Rasmussen
B[0]:=0.0184e[0.2]*((E[0]/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]%* 51gma[l.0]/sigma[O.Z]—l)*(l—E[OJ/E[O.ZJ));

formula-Quach

sigma[2.0]:=(1+(sigma[l1.0]/sigma[0.2]-
1)*(A[0]"(1/n[0.2,1.01)))/(1+e[0.2]1*(E[O0]/E[0.2]~-
1)*(sigma[l.0]/sigmal[0.2]-

1)*A[0]" (l/n[O 2,1.0]1)/(n[0.2,1.0]1*B[0]))*sigmal[0.2]; formula-Quach
epsilon[2.0]: (sigma[2.0]/E[0])+0.02;

b[O]::(sigma[ult] (1+ep51lon[ul 1) -

sigma[2.0]* (1+epsilon[2.0]))/ (epsilonfult]-epsilon([2.0]); formula-

Quach
al[0]:=sigmal[2.0]* (1l+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach

coiling curvature
> Kappalc] := 1/(450);

circling or bending radius
ri:=73.58:

radius :=ri+t/2;
Kappalcs]:= 1/radius;
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FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> i:=-1:

for y from (t/2) by (-t/10) while y > 0 do

i:=1i+1:

axyl[i]:=y:

####coiling

epsilon[z,cy]:= sigmaly0]* (1-nu”2)/(E[0]*sgrt (l-nu+nu”2)):
epsilon[z,c]:= Kappalc]l*y:

if epsilon(z,cy] < epsilon[z,c] then

e := 0:
sigma[c]:= sigmal[y0]:
omegal[c]:= nu:

for s from sigma[y0] by 0.5 to sigmafult] while abs (e)
<abs(epsilon[z,c]-epsilon[z,cy]) do

ds:= s-sigmalc]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X- 51gma[0 21)/(E[0.2])+(0.008+ (sigma[l.0]-sigma[0.2]) (L/E[O
(1/E[0.2]1)))* ((X-sigma[0.2])/ (sigma[l.0]-

sigma[O 21))"n[0.2,1.0]1+ (51gma[0.2])/(E[O])+0.002:

else

eps:=(X-al[0])/ (b[0]-X):

end if:

end if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega[c] := (4*nu* (subs(X=s,dH)) * (l-omega[c]+omega[c]”2)-E[0]* (2-
omegalc])* (2*omega[c]-1))/(E[0]* (2*omega[c]-1)"2+4* (subs (X=s,dH) ) * (1
omega[c]+tomegal[c]"2)):

dom[c] := (2* (l-omega[c]+omega[c]”2)* (Omegal[c]-omegalc]l))/ (s* ((2-
omegal[c])+tOmegal[c]* (2*omegalc]-1))) *ds:

omega[c] = omegal[c] + dom[c]:

de := subs (X=omegalc], (((1-2*X)"2- 2*nu*(l 2*X)* (2-X)+ (2-
X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"(3/2))) *dom[c] + subs (X=s, ((1-
omegal[c]™2)* (1-2*nu))/(E[0]* (1-2*omega[c ]) sqrt (1-

omegal[c]+omegal[c]™2))) *ds;

e:= de + e:

sigma[c] := s:

end do:

sigmal[z,c] := sigma[c]/sqrt(l-omegal[c]+omegal[c]”2):
sigma[x,c] := omegal[c]*sigmac]/sqrt (l-omega[c]+omegalc]”2):
else

sigmalz,c] := E[0]*epsilon[z,c]/(1-nu"2):
sigma[x,c] := nu*E[0]*epsilon[z,c]/ (1-nu”2):
omegal[c] := nu:

end if:

epsilonfc,pl]:=e-s/E[0]:

#####uncoiling including flatening

Kappalu] := -Kappalc]:

Kappa [uy] :=-(sigma[c]* (1-nu”2) * (2-nu+ (2*nu-1) *omega[c]))/ (E[0] *y* (1-
nutnu”2) *sqgrt ((l-omega[c]+omegalc]”2))):

epsilon[z,uy] := (Kappalc]+Kappaluyl) *y:

epsilon[z,r] := 0:

if abs (Kappaluy]) < abs(Kappal[u]) then

omega[uy] := ((1l-nu”2)*omegalc]-nu* (2-nu))/ ((1-2*nu) *omega[c]-(1-
nu”2)):

sigma[u] := sigmal[c]:
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omega[u] := omegaluy]:

e:=0:

for s from sigmaf[u] by 0.5 to sigmalult] while abs(e) <
abs(epsilonfz,uy] + epsilon[z,r] ) do

ds := s - sigmalul]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[

(
omega[u]) +tOmega[u] * (2*omega[u]-1))) *ds:
omega [u] = omega[u] + dom[u]:

de := subs (X=omegalul], (((1-2*X)"2- 2*nu*( -2*X) * (2-X)+ (2-
X)"2)*s) / (2*E[0] * (1-2*X) * (1-X+X"2)"~(3/2))) *dom[u] + subs (X=s, ((1-
omegalu]~2)*(1-2*nu))/ (E[0]* (1-2*omega[u ]) sqrt (1-

omega[u] tomega[u]*2))) *ds;

= [0
(L/E[0.2]1)))* ((X-sigma[0.2])/ (sigma[l1.0]-
sigma[O 21))"n[0.2,1.01+ (51gma[0.2])/(E[O])+O.OO2:
else
eps:=(X-al0])/ (b[0]-X):
end if:
end if:
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omega[u] := (4*nu*(subs(X=s,dH))*(l omega [u] tomega[u] *2)-E[0]*
omegal[u]) * (2*omega[ul-1))/(E[0]* (2*omega[u]-1) "2+4* (subs (X=s,dH) ) * (1-
omega [u] +o mega[u]AZ)):
dom[u] = (2* (1l-omega[u]+tomega[u]~2)* (Omega[u] -omega[u]))/ (s* ((2-
[ul)
[u

e:= de + e:

sigma[u] := s:

end do:

sigma[u,i]:= sigmalu]:

sigmalz,r,i]:= - sigmalul]/sgrt (l-omegalu]+omegalul”"2):
sigma[x,r,1i]:= - omega[u]*sigmalu]/sqrt (l-omegal[u]+omega[u]"2):
else

sigma[z,u]:= E[0]*Kappa[u]*y/ (1-nu”2):

sigma[x,u] := nu*E[O]*Kappa[ 1*y/ (1-nu”2) :

sigmal[z,r,i] := sigmalz,c]+sigmalz,u]:

sigma[x,r,i] := sigma[x,cl+sigmal[x,u]:

omegalu,i]:= sigma[x,r,i]/sigmalz,r,i]:

sigma[u,i] :=sigmalc]:

s:=sigmal(c]:

end if

epsilonfu,pl]:=e-(s-sigmalc])/E[0]

epsilon[r,pl,i] :=epsilonfu,pl]l+tepsilonfc,pll]:

#####bending for making circle (x-axis bending)
epsilon[x,csy]:= sigmalu,i]l* (1-nu”2)/(E[0]*sgrt (l-nu+nu”2)) :
epsilon[x,cs]:= Kappalcs]*y:

if epsilon[x,csy] < epsilon[x,cs] then

e := 0:

sigma[cs]:= sigmalu,i]:

omegal[cs]:= nu:

for s from sigmafu,i] by 0.5 to sigmal[ult] while abs(e)
<abs (epsilon[x,cs]-epsilon[x,csy]) do

ds:= s-sigmal[cs]:

if s <= sigma[0.2] then

eps:= X/(E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else 1if s <= sigma[2.0] then
eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[1.0]-sigma[0.2]) (L/E[O
(L/E[0.21))) *((X-sigma[0.2])/(sigma[l1.0]-

sigma[O 2]1))"n[0.2,1.0]+ (51gma[0.2])/(E[O])+0.002:

else

eps:=(X-a[0])/(b[0]-X):
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end if:

end 1if:

dH:=((diff (eps,X))-(1/E[0]))"(-1):

Omega[cs]:= (4*nu* (subs (X=s,dH)) * (1l-omega[cs]+tomega[cs]"2)-E[0]* (2~

omegalcs])* (2*omegalcs]-1))/(E[0]* (2*omega[cs] -

1) "2+4* (subs (X=s,dH) ) * (1-omega[cs]+tomega[cs]"2)) :

dom[cs]:=((2* (l-omega[cs]+omega[cs]"2)* (Omega[cs]-omegal[cs]))/ (s* ((2-
omegal[cs])+Omega[cs]* (2*omega[cs]-1)))) *ds:

omega[cs]:= omegal[cs] + dom[cs]:

de:= subs (X=omegal[cs], (((1-2*X)"2-2*nu* (1-2*X) * (2-X) +(2-

X)"2)*s) /(2*E[0] * (1-2*X) * (1-X+X"2)"(3/2))) *dom[cs] + subs (X=s, ((1-
omegal[cs]”™2)*(1-2*nu) )/ (E[0]* (1-2*omega[cs]) *sqrt (1-
omega[cs]+tomegal[cs]”2))) *ds:

e:= de + e:
sigma[cs]:= s:

end do:
sigmal[z,cs,i] := 31gma[z,r,i]+ omegal[cs] *sigma[cs]/sqgrt (1-
omega[cs]tomega[cs]”

sigma([x,cs,i] := 31gma[x r,il+sigmalcs]/sqgrt (l-omega[cs]+omegalcs]™2):
else
sigmal[z,cs,i]:

sigmalz,r,i]l+nu*E[0] *epsilon[x,cs]/ (1-nu”2):

sigma[x,cs,i]:= sigma[x,r,i]+E[0]*epsilon[x,cs]/ (1-nu”2):
omegal[cs] := sigmalz,cs,i]/sigmal[x,cs,1i]:
end if:

epsilonfcs,pl,i]l:=e-s/E[0]:

####4#Uncoiling for final shape

Kappal[us] := -Kappalcs]:

Kappal[usy] :=-(sigmalc ] (1-nu”2) * (2-nu+ (2*nu-

l)*omega[cs]))/( [0]*y* (l-nut+tnu”2) *sqgrt ((l-omega[cs]+omegalcs]*2))):
epsilon[x,usy] := (Kappa[cs]+Kappa[usy])*y:

epsilon[x,rs] := 0:

if abs (Kappalusy]) < abs (Kappal[us]) then

omega[usy] := ((1-nu”2)*omegalcs]-nu* (2-nu))/((1l-2*nu)*omega[cs]-(1-
nut2)) :

sigma[us]:= sigmal[cs]:

omegal[us]:= omegalusy]:

e:=0:

for s from sigmafus] by 0.5 to sigmafult] while abs(e) <
abs (epsilon[x,usy] + epsilon(x,rs]) do

ds := s-sigmalus]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[0]1) -
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[l.0]-

sigma[O 21))"n[0.2,1.0]1+ (31gma[0.2])/(E[O])+0.002:

else

eps:=(X-a[0])/(b[0]-X) :

end if:

end if:

dH:=((diff (eps,X))-(1/E[O ~(=1):

Omegalus] := (4*nu*(subs(X s,dH) ) * (1-omega[us]+tomega[us]"2)-E[0]* (2-

omegal[us])* (2*omegalus]-1))/(E[0]* (2*omega [us] -

1)72+4* (subs (X=s,dH) ) * (1-omega [us] tomega[us]"2)) :

dom[us] := (2* (l-omegal[us]+omegalus]”2)* (Omega[us]-omegalus]))/ (s* ((2-
omega[us])+Omega[us]* (2*omegaus]-1))) *ds:

omegal[us] := omegalus] + dom[us]:

de := subs (X=omegalus], (((1-2*X)"2- 2*nu*(l 2*X)* (2-X)+ (2-

X)"2)*s) /(2*E[0]* (1-2*X) * (1-X+X"2)"(3/2))) *dom[us] + subs (X=s, ((1-
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omegal[us]”~2)*(1-2*nu) )/ (E[0]* (1-2*omega[us]) *sqgrt (1-
omega[us]+tomegalus]”2))) *ds;

e:= de + e:
sigma[us]:=s:
end do:
sigmalus,i]:=
sigmal[z,rs,i]:
sigma([x,rs,i]
epsilon[i] :=e:
epsilonfus,pl,i] :=e-(s-sigma[cs])/E[0]:
epsilon[rs,pl,i] :=epsilonfus,pl,i]+epsilon|cs,pl,il:
else
sigmal[z,us,1i
sigma[x,us,i

sigma[us]:
= - omega[us]*sigma[us]/sqrt (l-omega[us]+omegal[us]"2) :
:= - sigma(us]/sqgrt (l-omega[us]+omega[us]”"2):

[ ] :=nu*E[0]*Kappalus]*y/ (1-nu"2):
[ ] := E[0]*Kappalus]*y/ (1-nu”*2):
sigmalz,rs,i] := sigmalz,cs,i]+sigmalz,us,i]:
sigma([x,rs,i] := sigmal[x,cs,i]+sigmal[x,us,i]:
omegalus,i]:= sigma[x,rs,i]/sigmalz,rs,1i]:
sigma[us,i]:= sigma[cs]:

sigma[cs]:=s:

epsilon[i] :=Kappalus]*y:

epsilonfus,pl,i]:=0:

epsilon[rs,pl,i] :=epsilonfus,pl,i]+epsilon(cs,pl,i]:
end if:

end do:

using simmetry for whole thickness data

> axy[5]:=0:

sigma[us, 5] :=sigmal[y0]:

sigmalz,rs,5] :=sigmal[y0]1* (1-nu~2)/(E[0]):
sigma[x,rs, 5] :=sigmal[y0]* (1-nu”2)/(E[0] *nu) :
epsilon[rs,pl,5]:=0:

sigma[cs, 5] :=sigmal[y0]:

sigmalz,cs, 5] :=sigmal[y0]* (1-nu”2)/(E[0]*nu) :
sigma[x,cs, 5] :=sigmal[y0]1* (1-nu”~2)/(E[0]):
epsilon[cs,pl,5]:=0:

> for i from 0 by 1 to 4 do

axy[10-i]:= -axy[i]:

sigma[us,10-i]:= sigmalus,i]:
sigmal[z,rs,10-i]:= -sigmalz,rs,1i]:
sigma([x,rs,10-i]:= -sigmal[x,rs,1i]:
epsilon[rs,pl,10-i]:= epsilon(rs,pl,i]:
sigma[cs,10-i]:= sigmalcs,i]:
sigmal[z,cs,10-i]:= -sigmalz,cs,1i]:
sigma[x,cs,10-1i]:= -sigmal[x,cs,1]:
epsilon[cs,pl,10-i]:= epsilon(cs,pl,i]:
end do:

####Spring back

M[t]:=0:

for i from 0 by 1 to 10 do

if 1i=0 then
M[i]:=(sigma[x,rs,i]l*axy[i]*t/10)/2:
elif i=10 then
M[i]:=(sigma[x,rs,i]l*axy[i]*t/10)/2:
else
M[i]:=sigma[x,rs,i]l*axy[i]*t/10:

end if:

M[t]:=M[t]+M[i]:

end do:

Iy:=1*t"3/12:

###Final stress(including spring back)
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for i from 0 by 1 to 10 do

epsilon[x,sb,1]:= M[t]l*axy[i]/ (Iy*E[0]):
sigma([x,sb,i] :=epsilon[x,sb,i]*E[0]:
sigma([z,sb,i] :=nu*epsilon(x,sb,i]*E[0]:
sigma[z,pb,i] :=sigmalz,rs,i]l-sigmaz,sb,i]:
sigma[x,pb,i] :=sigma[x,rs,i]l-sigma[x,sb,i]:
end do:

Stress strain diagram after press breaking in longitudinal direction
> for 1 from 0 by 1 to 10 do

sigma[z,1i] :=sigmal[x,pb,1];

sigma([x, 1] :=sigmalz,pb,1i];

sigmal[i ]:= sqrt (sigmal[x,pb,1i]"2+sigmalz,pb,i]l"2-
sigmalx,pb,i]*sigmalz,pb,i]);

sigma[rs,i]:= sqrt(sigmal[x,pb,1i]"2+sigmalz,pb,i]"2-
sigma([x,pb,i]l*sigmalz,pb,1i]);

omegal[i] :=sigmalz,i]/sigma[x,1i];

end do:

> precise:= 0.0001;

beginning:= 0;

de:= le-5;

e:=0:

ss[z] = 0:

ss[x] := O:

ssl[av] := 0:

for i from 0 by 1 to 10 do

E[0,pl,i] :=E[0]:

nu :=0.3:

sigma[0.2,pl,i]:= (-
26.857*epsilon(cs,pl,1]172+9.1674*%epsiloncs,pl,1]+1.0206) *sigma[0.2]:
sigma[l.0,pl,i]l:= (-
30.334*epsilon[cs,pl,i]172+10.314*epsiloncs,pl,i]1+1.0366)*sigma[l.0]:
sigma[ult,pl,i]:= 51gma[ult]:

epsilon[ult,pl,i]: (12.209*epsilonfcs,pl,i] "2~
4.4781*epsilon[cs,pl,i]+1.00272)*epsilon[ult]:

if abs(epsilonfcs,pl,i]) <= 0.09 then

n[0,pl,il:= (44.343*epsilon[cs,pl,i]1"2-
8.708*epsilon(cs,pl,i]+0.8378)*n[0]:

else n[0,pl,1i]:= 0.4133*n[0]:

end if:

E[0.2,pl,1i]:= (-
133.75%epsilonfcs,pl,i]72+38.761*epsilon(cs,pl,i]+1.2097)*E[0.2]:

if abs(epsilon[cs pl,i]) <= 0.1 then

n(0.2,1.0,pl,1]: (-

68.30l*epsilon[cs pl,1172+15.932*%epsilon(cs,pl,1]+1.0949)*n[0.2,1.0]:
else n[0.2,1.0,p1,1]:=2.0251*n[0.2,1.0]:

end if:

epsilon[max,pl,i]l:= (44.343*epsilon(cs,pl,i]l"2-
8.708*%epsilon(cs,pl,1]+0.8378) *epsilon[max]:

e[0.2,pl,i]l:=sigma[0.2,pl,i]/E[0,pl,i]:

B[0,pl,1]:=0.018+e[0.2,pl,i]1* ((E[0,pl,i]/E[0.2,pl,1])-1):
A[0,pl,i]:=B[0,pl,i]/(0.008+e[0.2,pl,i]*(sigma[l.0,pl,1i]/sigmal[0.2,pl,
i]-1)*(1-E[0,pl,1]/E[0.2,p1,1])):

sigma[2.0,pl,1i] :=sigma[0.2,pl,i]+(sigma[l.0,pl,i]-
sigma[0.2,pl,i])*(A[0,pl,i]"(1/n[0.2,1.0,p1,1i]))*(1-((1/E[0.2,p1,i]~
1/E[0,pl,i]) *sigma[0.2,pl,i])/B[0,pl,i])~(1/n[0.2,1.0,pl,i]):
epsilon[2.0,pl,1]:= (sigma[2.0,pl,i]1/E[0,pl,i])+0.02:
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b[0,pl,i]l:=(sigmafult,pl,i]l* (1+epsilonfult,pl,i])-
sigma[2.0,pl,i]* (1+epsilon[2.0,pl,i]))/ (epsilonfult,pl,i]-
epsilon[2.0,pl,1i]):
al0,pl,i]l:=sigma[2.0,pl,i]*(1l+tepsilon[2.0,pl,1]) -

b[0,pl,i] *epsilon[2.0,pl,1]:

end do:

for e from de by de while e <0.05 do

for i from 0 by 1 to 10 do

if sigma[i] < sigmalrs,i] then

dsigma[x] E[O0,pl,i] / (1-nu”2) *de:

dsigmal[z] := nu *E[O0,pl,i]/(1-nu”2)* de:

else

if sigma[i] <= sigma[0.2,pl,i] then

eps:= X/ (E[0,pl,1i])+0.002* (X/ (sigma[0.2,pl,i]))" n[0,pl,1]:

else

if sigma[i] <= sigma[2.0,pl,i] then
eps:=(X—sigma[O.2,pl,i])/(E[O.Z,pl,i])+(0.008+(sigma[1.0,pl,i]—
sigma[0.2,pl,i])*((1/E[0,pl,i])-(1/E[0.2,p1,1])))* ((X-
sigma[0.2,pl,1i])/(sigma[l1.0,pl,1]-
sigma[0.2,p1,i]))"n[0.2,1.0,pl,i]l+(sigma[0.2,pl,1])/(E[0,pl,1])+0.002:

)

else

eps:=(X-al0,pl,11)/(b[0,pl,1]1-X):

end if:

end if:

dH:=subs (X=sigmal[i], ((diff (eps,X))-(1/E[0,pl,1]1))"(-1));

depsilon[x]:= de;

dsigmalz]:= E[O, pl i1*(4/9*nu*sigma[i]"2*dH/E[O,pl,1]-(2/3*sigmalz,i]-

*(2/3*sigma[x,1]-
*depsilon[x]/ (4/9*sigma[i]"2*dH* (1-
(2/3*sigmalz,1]-1/3*sigmalx,i]) "2+ (2/3*sigma[x,1]~-

E
1/3*sigma[x, i
1/3*sigmalz, i
nu~2)/E[0, pl

1)
]

i
1/3*sigmalz,i] A2+2*nu*(2/3*51gma[z i]l-
1/3*sigma[x,1i] 2/3*51gma[x i]-1/3*sigmalz,1i]));
dsigma[x]:= E[0,pl,i]1*((2/3*sigmalz,i]-
1/3*sigma[x,1i]

i]72*dH* (1-

i
nu*2)/E[0,pl,1i]1+(2/3*sigmalz,1]-
1/3*sigmalx,i])"
i
i

2+(2/3*sigma[x,1]-
24+2*nu* ( 2/3*31gma[z il-
(2/3*sigma[x,1]-1/3*sigmalz,i]));

1/3*sigmalz,

))
1+
)
) *
0,
) "2+4/9*sigma[i]"2*dH/E[0,pl,1]) *depsilon([x]/ (4/9*sigma [
2
)
)°
1/3*sigma[x,i])*

]
]
]

end if;

if i = 0 then

ss[x]:= ss[x] + 0.5 * dsigmalx];

s[z]:= ss[z] + 0.5 * dsigmalz];
sslav]:= ss[av] + 0.5 * dsig[i]:
elif 1 = 10 then

ss[x]:= ss[x] + 0.5 * dsigmalx];
ss[z]:= ss[z] + 0.5 * dsigmalz];
sslav]:= ss[av] + 0.5 * dsig[i]:
else

ss[x]:= ss[x] + dsigmalx];

ss[z]:= ss[z] + dsigmalz];

ssl[av]:= ss[av] + dsig[i]:
end if:

sigma([x,1]:= sigmal[x,i] + dsigmal[x];
sigma[z,1i]:= sigmalz,i] + dsigmalz];
omegal[i]:=sigmalz,i]/sigmal[x,1];

b

dsig[i]:= a
sigmal[i]);

s (sgrt(sigma[x,i]"2+sigmalz,i]"2-sigmalz,1i]*sigma[x,1]) -

sigma[i] := max (sqrt(sigma([x,i]”"2+sigmalz,i]"2-
sigmal[z,i]*sigmal[x,1i]),sigmali]);

end do:

sigma[yield] := sqrt (( 1/10) ss[x]/10)"2-(ss[x]/10)*(ss[z]/10))

for ep from 1 to 500 by 1 do
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if (e-beginning)=ep*precise then
sigmalep,plot] :=(ss[x]/10):
epsilon[ep,plot] :=e:

end if:

end do:

end do:

sigma([x,yield] :=sigmalyield]:
epsilon[yield,pl]:= e-sigmal[yield]/E[0,pl,1i];
ss[x]:= ss[x]/10;

ss[z]:= ss[z]/10;
sqrt(sslz]"2+ss[x]"2-ss[z]*ss[x]);
sigma[ep,plot];

epsilon[ep,plot];

sigma[100,plot];
epsilon[100,plot];
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MODEL RS

units [N, mm, MPa]

Material and geometrical characteristics

material

> E[0] :=191e3:

nu := 0.3:

sigma[y0] := 0.001: ##sigmal[y0]>0.00014#4#

sigma[0.2] :=268;
sigma[ult] =584;

n[0]:=6.9;

epsilon[ult] := min(l-sigmal. ]/sigma[ult],0.6);

sigma[1l.0] := 0.542*sigmal[0.2]/n[0]1+1.072*sigma[0.2]; formula - Quach
found by analysing tension coupon test data

E[0.2] := E[0]/(1+0.002*n[0]*E[0]/sigma[0.2]); formula-Rasmussen
n{0.2,1.0] := 3.6;

t = 4.64;

e[0.2] :=sigmal0 ]/E[ 1; formula-Rasmussen

B[O]:=0.0l8+e[0.2] ((E[0]/E[0.2])-1); formula-Quach
A[0]:=B[0]/(0.008+e[0.2]1%* 51gma[1.0]/sigma[O.Z]—l)*(l—E[O]/E[O.Z]));
formula-Quach

sigma[2.0] :=sigma[0.2]+(sigma[l.0
sigma[0.2])*(A[0]"(1/n[O0. 2 1.01))
1/E[0])*sigma[0.2])/B[0])"~(1/n[O0.
epsilon[2.0]:= (sigma[2.0]/E[0])+
b[0]:=(sigmafult]* (l+epsilonfult]
sigmal[2.0]* (l+epsilon([2.0]1))/ (epsilonf[ult]-epsilon[2.0]); formula-
Quach

al0]:=sigmaf[2.0]* (1l+epsilon[2.0])-b[0]*epsilon[2.0]; formula-Quach

(1/E[0.2]-

]
*(1-(
2,1.0]1); formula-Quach
+0.0

) -

coiling curvature
> Kappalc] := 1/(450);

circling or bending radius

>

wl:=0:

w2:=0:
ri:=73.58:
radius :=ri+t/2;

Kappalcs]:= 1/radius;

FORMING PROCESS

loop for coiling and uncoiling (small strain condition)

> i:=-1:

for y from (t/2) by (-t/10) while y > 0 do
i:=i+1:

axyli]:=y:

####coiling

epsilon[z,cy]:= sigma[y0]*(1-nu~2)/(E[0]*sqgrt (1l-nu+nu~2)):
epsilon[z,c]:= Kappalc]l*y:

if epsilon(z,cy] < epsilon[z,c] then

e := 0:

sigma[c]:= sigmal[y0]:
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omegal[c]:= nu:

for S from sigma [yO0] by 0.5 to sigma[ult] while abs (e)
<abs (epsilon[z,c]-epsilon(z,cy]) do

ds:= s-sigmac]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (1/E[

= [0
(L/E[0.2]1)))* ((X-sigma[0.2])/ (sigma[l1.0]-
sigma[O 21))"n[0.2,1.01+ (51gma[0.2])/(E[O])+O.OO2:
else
eps:=(X-al[0])/ (b[0]-X):
end if:
end if:
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omega[c] 1= (4*nu*(sub (X=s,dH) ) * (1l-omega[c]+tomega[c]"2)-E[0]* (2-
omegal[c]) * (2*omegalc ))/(E[0]* (2*omega[c]-1) "2+4* (subs (X=s,dH) ) * (1-
omega[c]+omegalc ]AZ)):
dom([c] = (2* (L-omega [c]+omegalc]~2) * (Omega[c]-omegalc]l))/ (s* ((2-
omegal[c])+Omegal[c]* (2*omegalc]-1))) *ds:
omegal[c ] := omegal[c] + dom[c]:
de = subs (X=omega[c ] (((1=-2*%X)"2=-2*nu* (1-2*X) * (2-X)+(2-
X) " 2)* )/(2*E[O]*(1—2*X) (1-X4+X*2)"~(3/2))) *dom|[c] + subs (X=s, ((1-
omegal[c]”™2)*(1-2*nu))/(E[0]* (1-2*omega[c]) *sqrt (1-
omegal[c]+tomegalc]”*2))) *ds;
e:= de + e:
sigma[c] := s:
end do:
sigmal[z,c] := sigmal[c]/sqgrt(l-omegal[c]+omegal[c]"2):
sigma[x,c] := omegal[c]*sigmac]/sqgrt (l-omega[c]+omegalc]”2):
else
sigmalz,c] := E[0]*epsilon[z,c]/(1l-nu”2):
sigma[x,c] := nu*E[0]*epsilon[z,c]/ (1-nu”2):
omegalc] := nu:
end if:

epsilon[c,pl]:=e-s/E[0]

#####uncoiling including flatening

Kappalu] := -Kappalc]:

Kappa[uy] :=-(sigmalc]* (1-nu”2) * (2-nu+(2*nu-1) *omega[c]))/ (E[0]*y* (1-
nutnu”2) *sqrt ((l-omega[c]+omegalc]”2))):

epsilon[z,uy] := (Kappalc]+Kappaluyl]) *y:

epsilon[z,r] := 0:

if abs (Kappaluy]) < abs(Kappal[u]) then

omega [uy] 1= ((1-nu”~2) *omegal[c]-nu* (2-nu) )/ ((1-2*nu) *omega[c] - (1-
nu*2)) :

sigma[u] := sigmalc]:

omega[u] := omegaluy]:

e:=0:

for S from sigma[u] by 0.5 to sigmalult] while abs (e) <
abs (epsilonfz,uy] + epsilon[z,r] ) do

ds := s - sigmalul]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/(E[0.2])+(0.008+ (sigma[l1.0]-sigma[0.2]) (L/E[O
(1/E10.21))) * ((X-sigma[0.2])/ (sigma[1.0]-

sigma[O 21))"n[0.2,1.0]+ 51gma[0.2])/(E[O])+O.002:

else

eps:=(X-al[0])/ (b[0]-X):

end if:
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end if:

dH:=((diff (eps,X) (L/E[O])) ™~ (-1):

Omega [u] i= (4*nu*(sub (X=s,dH) ) * (1l-omega[u] tomega[u]"2)-E[0]* (2-
omegal[u]) * (2*omega [u ))/(E[0]* (2*omega[u]-1) "2+4* (subs (X=s,dH) ) * (1-
omega[u]+omega[u]A2)).

dom[u] 1= (2* (L-omega [u] +omega [u] *2) * (Omega [u] —omega [u]) )/ (s* ((2-
omega[u]) +tOmega[u] * (2*omega[u]-1))) *ds:

omegal[u] := omegalu] + dom[u]:

de = subs (X=omega [u], (((1-2*X)*"2-2*nu* (1-2*X) * (2-X) + (2-
X)"2)*s) /(2*E[0]* (1-2*X) * (1-X+X"2)"(3/2))) *dom[u] + subs (X=s, ((1-
omegal[u]"2)*(1-2*nu) )/ (E[0]* (1-2*omega[u]) *sqgrt (1-

omega [u] tomega[u] ~2))) *ds;

e:= de + e:

sigma[u] := s:

end do:

sigma[u,i]:= sigmalul]:

sigma[z r,i]l:= - sigma[u]/sqrt (l-omega[u]+omega[u]*2):

sigma([x,r,i]:= - omega[ u] *sigma[u] /sqrt (1-omega[u] +tomegal[u] ~2) :

else

sigmal[z,u]:= E[0]*Kappal[u] *y/ (1-nu”2):

sigma[x,u] := nu*E[0]*Kappal[ul*y/ (1-nu"2) :

sigmal[z,r,i] := sigmal[z,cl+sigmalz,u]:

sigma([x,r,1i] = sigma[x,c]+sigma[x,u]:

omegalu,i]:= sigma[x,r,i]/sigmalz,r,i]:

sigma[u,i] :=sigmalc]:

s:=sigmal(c]:

end if

epsilon[u,pl]:=e-(s-sigmalc])/E[0

epsilon[r,pl,i] :=epsilonfu,pl]l+epsilonfc,pl]:
#####bending for making circle (x-axis bending)

epsilon[x,csy]:= sigmalu,i]l* (1-nu”2)/(E[0]*sgrt (l-nu+nu”2)):
epsilon[x,cs]:= Kappal[cs]*y:

if epsilon[x,csy] < epsilon[x,cs] then

e := 0:

sigma[cs]:= sigmalu,i]:

omegal[cs]:= nu:

for S from sigmal[u, i] by 0.5 to sigma[ult] while abs (e)
<abs (epsilon[x,cs]-epsilon[x,csy]) do

ds:= s-sigmalcs]:

if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else 1if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (L/E[O

= [0
(1/E[0.21))) * ((X-sigma[0.2])/ (sigma[1.0]-
sigma[O 21))"n[0.2,1.0]1+ s1gma[0.2])/(E[O])+O.OO2:
else
eps:=(X-a[0])/(b[0]-X):
end if:
end if:
dH:=((diff (eps,X))-(1/E[0]))"(-1):
Omega[cs]:= (4*nu* (subs (X=s,dH) ) * (1-omega[cs]tomega[cs]"2)-E[0]* (2~

omegalcs])* (2*omegalcs]-1))/(E[0]* (2*omega[cs] -

1)72+4* (subs (X=s,dH) ) * (1-omega[cs]tomega[cs]"2)) :

dom[cs]:=((2* (1-omega[cs]+omega[cs]"2)* (Omega[cs]-omegalcs]))/ (s* ((2-
omegal[cs])+Omegalcs]* (2*omega[cs]-1)))) *ds:

omega[cs]:: omegal[cs] + dom[cs]:

de: subs (X=omega [cs], (((1-2*X)"2=-2*nu* (1-2*X) * (2-X) +(2-
X)"2)*s)/(2*E[0] * (1-2*X) * (1-X+X"2) "~ (3/2))) *dom[cs] + subs (X=s, ((1-
omegal[cs]”2)*(1-2*nu) )/ (E[0]* (1-2*omega[cs]) *sqrt (1-
omega[cs]+tomegal[cs]”2))) *ds:

e:= de + e:
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sigma[cs]:= s:

end do:

sigmal[z,cs,i] i= sigmalz,r,i]+ omegal[cs] *sigma[cs]/sqgrt (1-
omega[cs]tomega[cs]"2):

sigma[x,cs,1i] := sigmal[x,r,i]+sigmalcs]/sqgrt(l-omega[cs]+omegalcs]”2):
else

sigmal[z,cs,i]:= sigmalz,r,i]+nu*E[0] *epsilon([x,cs]/ (1-nu”2):
sigma[x,cs,i]:= sigma[x,r,i]+E[0]*epsilon[x,cs]/ (1-nu”2):

omegal[cs] := sigmalz,cs,i]/sigmal[x,cs,1i]:

end if:
epsilonfcs,pl,i]:=e-s/E[0]:

####4##Uncoiling for final shape

Kappalus] := -Kappalcs]:

Kappal[usy] :=-(sigma[c ] (1-nu”2) * (2-nu+ (2*nu-

1) *omega[cs]))/(E[0]*y* (1-nu+nu”2) *sqgrt ( (L-omega[cs]+omega[cs]"2))):
epsilon[x,usy] := (Kappa[cs]+Kappa[usy])*y:

epsilon[x,rs] := 0:

if abs (Kappalusy]) < abs (Kappal[us]) then

omega [usy] = ((1-nu”2) *omegal[cs]-nu* (2-nu) )/ ((1-2*nu) *omega[cs]-(1-
nu”2)) :

sigma[us]:= sigmal[cs]:

omegal[us]:
e:=0:

for s from sigma[us] by 0.5 to sigma[ult] while abs (e) <
abs (epsilon[x,usy] + epsilon[x,rs]) do

ds := s-sigma[us]:
if s <= sigma[0.2] then

eps:= X/ (E[0])+0.002* (X/ (sigma[0.2]))"n[0]:

else if s <= sigma[2.0] then

eps:=(X-sigma[0.2])/ (E 2]1)+(0.008+ (sigma[l.0]-sigma[0.2]) (L/E[O

omega[usy] :

= [0
(1/E[0.2])))* ((X-sigma[0.2])/ (sigma[l.0]-
sigma[O 21))"n[0.2,1.071+ 51gma[0.2])/(E[O])+0.002:
else
eps:=(X-a[0])/ (b[0]-X):
end if:
end if:
dH:=((diff (eps,X))-(1/E[0]))"~(-1):
Omega [us] i= (4*nu* (subs (X=s,dH) ) * (l-omega[us]tomega[us]"2)-E[0]* (2-

omegalus])* (2*omega[us]-1))/(E[0]* (2*omega[us] -
1)72+4* (subs (X=s,dH) ) * (1-omega [us] +tomega[us]"2)) :

dom[us] := (2*(l-omegal[us]+omegalus]”2)* (Omega[us]-omegalus]))/ (s* ((2-
omega[us])+Omegalus]* (2*omegaus]-1))) *ds:

omegal[us] := omegalus] + dom[us]:

de 1= subs (X= omega[us] (((l 2*X)"2-2*nu* (1-2*X) * (2-X) + (2-
X) " Y/ ( 0]1*(1-2*X)* (1-X4+X"2)"(3/2))) *dom[us] + subs (X=s, ((1-

omega[ s]” ) (1 2*nu) )/ (E[0]* (1- 2*omega[us])*sqrt(1—
omega [us]+tomega[us]”2))) *ds;

e:= de + e:

sigma[us]:=s:

end do:

sigmalus,i]:= 51gma[us]:

sigmal[z,rs,i]:= - omega[us]*sigma[us]/sqrt (l-omega[us]+omegalus]"2) :
sigma[x,rs,i] := - sigmalus]/sqrt (l-omegal[us]+omega[us]”"2):

epsilon[i] :=e:
epsilonfus,pl,i] :=e-(s-sigmafcs])/E[0]
epsilon[rs,pl,i] :=epsilonfus,pl,i]+epsilon|cs,pl,il:

else

sigma[z,us,i] :=nu*E[0]*Kappalus]*y/ (1l-nu”*2):
sigma[x,us,i] := E[0]*Kappalus]*y/ (1-nu"2):
sigmal[z,rs,i] := sigmalz,cs,i]l+sigmalz,us,i]:
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sigma([x,rs,i] := sigmal[x,cs,i]+sigmal[x,us,i]:
omegalus,i]:= sigma[x,rs,i]/sigmalz,rs,1i]:
sigma[us,1]:= sigma[cs]:

sigma[cs]:=s:

epsilon[i] :=Kappalus]*y:

epsilonfus,pl,i] :=0:

epsilon[rs,pl,i] :=epsilonfus,pl,i]+epsilon|cs,pl,i]:
end if:

end do:

using simmetry for whole thickness data

> axy[5]:=0:

sigma[us, 5] :=sigma[y0]:

sigmal[z,rs,5] :=sigmal[y0]* (1-nu”2)/(E[0]) :
sigma[x,rs, 5] :=sigmal[y0]* (1-nu”2)/(E[0] *nu) :
epsilon[rs,pl,5]:=0:

sigma[cs, 5] :=sigmal[y0]:

sigmalz,cs, 5] :=sigmal[y0]* (1-nu”2)/(E[0]*nu) :
sigma[x,cs, 5] :=sigmal[y0]1* (1-nu”~2)/(E[0])
epsilon[cs,pl,5]:=0:

> for 1 from 0 by 1 to 4 do

axy[10-i]:= -axy[i]:

sigma[us,10-i]:= sigmalus,i]:
sigmal[z,rs,10-i]:= -sigmalz,rs,1i]:
sigma([x,rs,10-1i]:= -sigmal[x,rs,1i]:
epsilon[rs,pl,10-1i]:= epsilon(rs,pl,i]:
sigma[cs,10-i]:= sigmalcs,i]:
sigmal[z,cs,10-i]:= -sigmalz,cs,1i]:
sigma[x,cs,10-i]:= -sigmal[x,cs,1i]:
epsilon[cs,pl,10-i]:= epsilon(cs,pl,i]:
end do:

####Spring back

M[t]:=0:

for i from 0 by 1 to 10 do

if 1i=0 then
M[i]:=(sigma([x,rs,i]*axy[1]*t/10)/2

elif i=10 then
M[i]:=(sigma[x,rs,i]l*axy[1]*t/10)/2
else

M[i]:=sigma[x,rs,i]l*axy[i]*t/10:

end if:

M[t]:=M[t]+M[1i]:

end do:

Iy:=1*t"3/12:

###Final stress(including spring back)
for i from 0 by 1 to 10 do
epsilon[x,sb,1]:= M[t]l*axy[i]/ (Iy*E[0]):
sigma([x,sb,i] :=epsilon[x,sb,i]*E[0]:
sigma([z,sb,i] :=nu*epsilon(x,sb,i]l*E[0]:
sigmal[z,pb,i] :=sigmalz,rs,i]l-sigmalz,sb,i]:
sigma([x,pb,i] :=sigma[x,rs,i]l-sigma[x,sb,i]:
end do:

[ I S

Stress strain diagram after press breaking in longitudinal direction
> for 1 from 0 by 1 to 10 do

sigma[z,1i] :=sigmal[x,pb,1];

sigma [x ]:—sigma[z,pb,i];

sigmal[i ] sqrt (sigma[x,pb,i]"2+sigmalz,pb,i]l "2~
sigma[x ,pb il*sigmalz,pb,1]);
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sigma(rs,i]:= sqrt (sigma([x,pb,i]1"2+sigmalz,pb,i] "2~
sigma([x,pb,i]l*sigmalz,pb,1i]);
omegal[i]:=sigmalz,i]/sigmal[x,1];
end do:

> precise:= 0.0001;

beginning:= 0;

de:= le-5;

e:=0:

ssz] := 0:

ss[x] := O:

ss[av] := 0O:

for i from 0 by 1 to 10 do

E[0,pl,i] :=E[O0]:

nu :=0.3:

sigma[0.2,pl,i]:= (-
26.857*epsilon(rs,pl,1]172+9.1674*%epsilon[rs,pl,1]+1.0206) *sigma[0.2]:
sigma[l.0,pl,i]:= (-
30.334*%epsilon[rs,pl,1]172+10.314*epsilon(rs,pl,i]1+1.0366) *sigma[l.0]:
sigma[ult,pl,i]:= sigmalult]:

epsilonfult,pl,i]:= (12.209*epsilon[rs,pl,i]"2-
4.4781*epsilon[rs,pl,1]+1.00272) *epsilonfult]:
n[0,pl,i]:= (44.343%epsilon(rs,pl,i]"2-

8.708*%epsilon[rs,pl,i]+0.8378)*n[0]:

E[0.2,pl,1i]:= (-
133.75*epsilon[rs,pl,1i]"2+38.761*epsilon|rs,pl,1]1+1.2097)*E[0.2]:
n[0.2,1.0,pl,1i]:= (-
68.301*epsilon(rs,pl,i]"2+15.932*%epsilon[rs,pl,i]1+1.0949)*n[0.2,1.0]:
epsilon[max,pl,i]:= (44.343%epsilon[rs,pl,i]"2-
8.708*epsilon(rs,pl,i]1+0.8378) *epsilon[max] :
e[0.2,pl,i]l:=sigma[0.2,pl,i]/E[0,pl,i]:

B[0,pl,i]:=0.018+e[0.2,pl,i]l* ((E[0,pl,i]1/E[0.2,pl,i])-1):
A[0,pl,i]:=B[0,pl,i]/(0.008+e[0.2,pl,i]*(sigma[l.0,pl,1i]/sigma[0.2,p1,
i]-1)* (1-E[0,pl,1]/E[0.2,p1,1]))

sigma[2.0,pl,i] :=sigma[0.2,pl,i]+(sigmall.0,pl,i]-

sigmal0.2,pl,i])* (A[0,pl,i17(1/n[0.2,1.0,p1,i]1))* (1~ ((1/E[0.2,p1,1]~-
1/E[0,pl,1]) *sigma[0.2,p1,i])/B[0,pl,i])*(1/n[0.2,1.0,p1,i]):
epsilon[2.0,pl,i]l:= (sigma[2.0,pl,1i]/E[O0,pl,i])+0.02:
b[0,pl,i]l:=(sigmalult,pl,i]* (1+epsilonfult,pl,i]) -

sigma[2.0,pl,i]* (1+epsilon[2.0,pl,i]))/ (epsilonfult,pl,i]-
epsilon[2.0,pl,1i]):

al0,pl,il:=sigma[2.0,pl,i]*(1+epsilon[2.0,pl,1i]) -

b[0,pl,i] *epsilon[2.0,pl,1]:

end do:

for e from de by de while e <0.3 do

for i from 0 by 1 to 10 do

if sigma[i] < sigmalrs,i] then

dsigma[x] := E[O0,pl,i] / (1-nu”2)*de:
dsigma[z] := nu *E[0,pl,1]/(1-nu”2)* de:
else

if sigma[i] <= sigma[0.2,pl,i] then

eps:= X/ (E[0,pl,1i])+0.002* (X/ (sigma[0.2,pl,i])) " n[0,pl,1i]:

else

if sigma[i] <= sigma[2.0,pl,i] then
eps:=(X-sigma[0.2,pl,i])/(E[0.2,pl,1])+(0.008+ (sigma[l1.0,pl,1i]-
sigmal0.2,pl,1i])*((1/E[0,pl,1i])-(1/E[0.2,p1,1])))* ((X-
sigma[0.2,pl,1i])/(sigma[l1.0,pl,1i]-
sigma[0.2,pl,1i]))"n[0.2,1.0,pl,i]l+(sigma[0.2,pl,1])/(E[0,pl,1])+0.002:

else
eps:=(X-a[0,pl,1i])/ (b[0,pl,i]-X):
end if:
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end if:
dH:=subs (X=sigmal[i], ((diff (eps,X))-(1/E[0,pl,1]1))"(-1));
depsilon[x]:= de;

dsigmalz]:
1/3*sigma[x, i

E[O,pl,i]1*(4/9*nu*sigma[i]"2*dH/E[0,pl,1i]1-(2/3*sigmalz,1]-
]
1/3*sigmalz,i]
i
]
]

)*(2/3*sigmalx, 1] -

)) *depsilon[x]/ (4/9*sigma[i] "2*dH* (1-
nu™2)/E[0,pl,1]1+(2/3*sigma[z,1]-1/3*sigma[x,1i]) "2+ (2/3*sigma[x,1]-
1/3*sigmalz,i]) "2+2*nu* (2/3*sigmalz,1i]-
1/3*sigma[x,1i])*(2/3*sigma[x,i]-1/3*sigmalz,i]));

dsigmal[x]:= E[O0,pl,i]*((2/3*sigma[z,1]-
1/3*sigma([x,1i])"2+4/9*sigma[i]"2*dH/E[0,pl,1]) *depsilon([x]/ (4/9*sigmal
i]72*dH* (1-nu~2) /E[0,pl,i]+(2/3*sigmalz,i]-
1/3*sigma([x,1]) "2+ (2/3*sigma[x,1]-

1/3*sigmalz,i]) "2+2*nu* (2/3*sigmalz,1i]-
1/3*sigma[x,1i])*(2/3*sigmal[x,1]-1/3*sigmalz,1]));
end if;

if i = 0 then

ss[x]:= ss[x] + 0.5 * dsigmal[x];

ss[z]:= ss[z] + 0.5 * dsigmalz];

ss[av]:= ss[av] + 0.5 * dsig[i]:

elif 1 = 10 then

ss[x]:= ss[x] + 0.5 * dsigmal[x];

ss[z]:= ss[z] + 0.5 * dsigmalz];

sslav]:= ss[av] + 0.5 * dsig[i]:

else

ss[x]:= ss[x] + dsigmalx];

ss[z]:= ss[z] + dsigmalz];

ss[av]:= ss[av] + dsig[i]:

end if:

sigma[x,1i]:= sigmal[x,1i] + dsigmalx];

sigma[z,i]:= sigmalz,i] + dsigmalz];
omegal[i]:=sigmalz,i]/sigma[x,1];

dsig[i]:= abs(sqrt(sigmal[x,i]”2+sigmalz,i]”"2-sigmalz,i]*sigmalx,i]) -
sigmalil]);

sigma[i]:= max (sqgrt (sigma[x,i]"2+sigmalz,1i]"2-
sigma[z,i]*sigmal[x,i]),sigmali]);

end do:

sigma[yield]:= sqgrt((ss[z]/10)"2+(ss[x]/10)"2-(ss[x]/10)*(ss[z]/10)):
for ep from 1 to 3000 by 1 do

if (e-beginning)=ep*precise then
sigmalep,plot] :=(ss[x]/10):
epsilon[ep,plot] :=e:

end if:

end do:

end do:

sigma[x,yield] :=sigmalyield]:
epsilon[yield,pl]:= e-sigmal[yield]/E[0,pl,i];
ss[x]:= ss[x]/10;

ss[z]:= ss[z]1/10;
sgqrt(sslz]”2+ss[x]"2-ss[z]*ss[x]);
sigmalep,plot];

epsilon[ep,plot];

sigma[100,plot];

epsilon[100,plot];
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Appendix G

Collected data of corner radii

Press-braked sections

Published by Material grade rit | Published by Material grade rit
1.99 1.28
2.22 1.4301 2.24
34 2.23
3.43 1.15
1.4301 4.43 1.42
4.47 | Coetzeeetal. 1.4401 2.05
5.75 [64] 2.13
5.85 1.37
6.63 1.35
7.03 1.4003 2.2
1.8 2.25
1.87 1.38
3 2.04
3.26 2.04
1.4512 4.2 1.4301 2.04
431 2.04
5.36 153
5.97 1.53
6.24 2.02
Van der Berg et 7.09 1.4003 2.02
10 194 Lecce et al 152
2.39 [65] ' 1.52
3.12 2.15
3.53 2.21
1.4016 4.32 2.21
4.61 2.21
5.3 1.4016 2.21
6.09 2.21
6.54 2.21
7.27 2.21
1.61 2.21
2.25
3.08
3.16
1.4003 4.09
4.33 MAX 7.27
5.1 MIN 1.15
5.64 MEAN 3.31
6.25 SD 1.78
6.7 MEAN + 2SD 6.87

Table G.0.1 Collected data for press-braked sections.
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Cold-rolled sections

Published by Material grade " Published by Material grade rift
1.4301 0.51 0.60
0.38 0.75
1.4301/1.4307 1.19 0.81
1.48 0.76
1.4301/1.4307 1.26 0.73
1.14 0.61
1.4571 1.08 0.65
1.27 | Ganping Shu et 1.4301 0.56
1.4571 1.22 al. [7] 0.38
1.27 0.37
1.4404 1.24 0.90
1.43 0.87
1.4404 1.15 1.10
1.34 1.28
1.4509 1.32 0.85
1.31 0.75
Afshan et al. 1.4509 0.87 1.30
[47] 0.86 0.81
1.4509 0.79 1.30
0.77 | Gardner et al. 14318 1.47
1.4003 1.37 [56] 0.98
1.47 0.98
1.4003 1.27 131
1.49 131
1.4162 1.39 0.84
1.39 1.18
S$355J2H 155 | Gardner et al. L4301 0.68
1.42 [38] 1.57
$355J2H 0.77 0.93
0.77 1.46
S$355J2H 0.72 0.70
0.78 0.67
S$355J2H 1.14 0.40
1.27 HuaFZ%]Et al. 1.4162 0.40
RaSaT”[ZSg]” et 1.4301 0.83 -
1.20 0.81
0.68
Ge[‘g}er 1.4301 1.60 MAX 1.60
0.92 MIN 0.37
1.46 MEAN 1.02
Gardner et al. 14318 131 Sb 0.34
[67] 0.99 MEAN + 2SD 1.69

Table G.0.2 Collected data for cold-rolled sections.
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