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Verified Unsteady Model for Analysis of Contra-Rotating Propeller Aerodynamics

Resume

The doctoral thesis is focused on the development of a new computational model for

analysis of contra-rotating propellers, its testing and verification, and application on selected

important problems of contra-rotating propeller aerodynamics. An insight into both past and

current state-of-the-art methods for numerical simulation of propellers is provided with focus

on contra-rotating propellers. Two of the discussed methods, simpler lifting line method and

3D panel method complemented by boundary layer, are used for rotating blade representation.

An unsteady force-free wake model is attached to both blade models for induced velocity de-

termination. Robust 3D panel method is coupled with a two-equation integral boundary layer

with a new interaction law that enables seamless solution of boundary layer in regions of strong

interaction. As a result, the instantaneous velocity fields, wake shapes, pressure forces and

friction forces on the blades are available together with overall performance data for arbitrary

contra-rotating propeller geometry. The components of the complex model are tested and vali-

dated step by step using well defined problems. The newly developed computational tool is used

for analysis of a propeller set and the results are compared with experimental data. Finally,

effects of rotational rate ratio, propeller distance, advance ratio and angle of free stream velocity

are described and a comparison of contra-rotating propeller to an equivalent single propeller is

performed.

Validovaný nestacionárńı model pro analýzu aerodynamiky protiběžných vrtuĺı

Abstrakt

Disertačńı práce je zaměřena na vytvořeńı nového výpočetńıho modelu pro analýzu

protiběžných vrtuĺı, jeho ověřeńı a aplikaci na vybrané př́ıpady prouděńı protiběžnými vr-

tulemi. Práce poskytuje přehled p̊uvodńıch a současných metod pro numerické modelováńı

vrtuĺı se zaměřeńım na protiběžné vrtule. Dvojice vybraných výpočetńıch př́ıstup̊u, metoda

nosné čáry a 3D panelová metoda s mezńı vrstvou, jsou použity k simulaci list̊u vrtuĺı. Nesta-

cionárńı volný model úplavu je připojen k list̊um vrtule ztvárněným oběma př́ıstupy, tak, aby

bylo možné źıskat pole indukovaných rychlost́ı. Osvědčená 3D panelová metoda je spřažena s in-

tegrálńım dvourovnicovým modelem mezńı vrstvy pomoćı nového interakčńıho postupu, který

umožňuje bezproblémové řešeńı rovnic mezńı vrstvy v oblastech silné interakce. Výpočetńı

model umožňuje źıskávat okamžitá rychlostńı pole, tvary úplav̊u, rozložeńı tlaku a třećıch sil

po listech spolu s celkovými výkonnostńımi parametry pro libovolné tvary vrtuĺı. Jednotlivé

součásti rozsáhlého výpočetńıho modelu jsou testovány a ověřovány na základě řešeńı d́ılč́ıch

zjednodušených úloh. Tento nový výpočetńı nástroj je posléze použit pro analýzu prouděńı

protiběžnými vrtulemi včetně porovnáńı s experimentálně źıskanými výsledky. V závěru práce

jsou popsány reakce soustavy protiběžných vrtuĺı na změnu poměru otáček, vzdálenost rotor̊u,

poměrnou rychlost a úhel nab́ıhaj́ıćıho prouděńı. Rovněž je provedeno porovnáńı protiběžných

vrtuĺı s odpov́ıdaj́ıćı samostatnou vrtuĺı.
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1. Introduction

A contra-rotating propeller system consists of a pair of propellers sharing the axis of rotation and

rotating in the opposite direction. The propellers interact producing a very complex problem

of rotor aerodynamics.

The benefits of contra-rotating propellers (CRPs) could be summarized as: 1) high

efficiency under high loads, 2) low reaction torque, 3) high maximum thrust power for a given

diameter. Drawbacks of CRP systems which limit their wider spread include higher mechanical

complexity, high noise levels, complex aerodynamic design and often lower efficiency when used

improperly.

The ultimate decision whether to use a CRP system or not depends on the exact

problem definition, design limits and operating conditions of the device. In the growing field

of UAV propulsion, vehicles of all sizes and purposes are in need of carefully tailored mission-

specific propulsion systems. Especially small scale propellers operating in low Reynolds number

flows were long time overlooked due to limited industrial application in the past. Research of

the aerodynamic properties of CRP systems and development of an experimentally verified and

robust computational tool is therefore highly desirable.

The doctoral thesis is focused on gathering available information and data on the topic

of contra-rotating propellers, building a suitable numerical model, step by step, and describing

the aerodynamics of CRPs using the newly developed numerical model and own experimental

results. Last but not least, the goal is to extend the available numerical methods for analysis

of lifting bodies to enhance their capabilities.

There are two branches of computational methods currently used for propeller (less

frequently CRP) analysis. Both have their advantages and disadvantages. In terms of com-

plexity and depth of modeled phenomena, Navier-Stokes equation solvers are the most complex

and resource demending. Time-stepping solution with sliding mesh techniques operating on fine

meshes requires large computer clusters and significant amount of time. For this reason, sec-

ond branch of computational methods is often used which includes simpler solvers derived from

blade element momentum methods or methods based on potential flow theory. Such methods

are much more suitable for general analysis of CRP systems due to faster solution (by several

orders of magnitude) and are covered in the thesis. A 3D panel method and a boundary layer

model were chosen as the basic ingredients of the novel computational model presented in the

thesis.

1



2. Propeller Aerodynamics

2.1 Propeller performance

The operational conditions are defined by density ρ, free stream velocity c∞, propeller angular

velocity Ω = 2πf and angle of the free stream relative to rotation axis ϕ.

To better evaluate performance of propellers, non-dimensional values of advance ratio

λ, thrust coefficient cT , torque coefficient cQ, power coefficient cP and efficiency η are used.

Standard definitions of these parameters for single propellers can be found for example in [1]. For

a CRP system the following definitions of dimensionless parameters are used (index 1 indicates

properties of upstream propeller, index 2 indicates properties of downstream propeller):

cT =
T1 + T2

ρ0.25(f21 + f22 )(D4
1 +D4

2)
. (2.1)

cQ =
Q1 +Q2

ρ0.25(f21 + f22 )(D5
1 +D5

2)
. (2.2)

cP =
P1 + P2

ρ0.25(f31 + f32 )(D5
1 +D5

2)
. (2.3)

(2.4)

To evaluate the efficiency of propellers producing thrust in static regime, term Figure

of Merit or “static efficiency” FoM is used. The Figure of Merit definition for CRP systems is

discussed in detail by Leishman and Ananthan in [2]. The following definition of FoM for CRP

is used for the purpose of this work:

FoM =
(T1 + T2)

3/2

(P1 + P2)
√

2ρ max(A1, A2)
. (2.5)

Swirl losses are an important factor when CRP propellers are discussed because the

downstream propeller can reduce or almost eliminate wake swirl which leads to increased effi-

ciency. The power lost due to swirl losses can be derived from the kinetic energy of the rotating

wake and is calculated according to Eq. (2.6).

Pswirl =
1

2
ρ

∫
2πrcacθ

2dr. (2.6)

Propeller Reynolds number is based on the blade chord b at characteristic radius

r/R = 0.75 and local relative velocity crel:

Re =
crelb

ν
. (2.7)

2.2 Current state of propeller research by various methods

Simplest methods based on momentum theory replace propeller by an actuator disc with con-

stant pressure jump across its surface. In case of a CRP system, two actuator discs are used (see

2



Propeller Aerodynamics 3

Figs. 2.1 and 2.2). The momentum approach alone is not sufficient to investigate real propellers

with general geometries. The blade element approach divides the blades into several elements

and lift and drag are investigated at each blade section. This approach only works when induced

velocity is correctly accounted for. Combining these two approaches, blade element momentum

(BEM) method uses momentum equations to calculate induced velocity at blade sections. It is

a rather simple method used regularly for optimization and quick design and analysis purposes.

BEM is used in an analysis of contra-rotating propellers by Leishman and Ananthan [2]. A

similar approach is used by Rand and Khromov [3] to find an optimum rotor design for hover

and axial flight using lookup tables for lift and drag.

More accurate induced velocity distribution is obtained by using vortex filament wake

model attached to a system of bound vortices oriented along blade span. This approach is

described in the thesis as lifting line (LL) model, although in some literature it is classified as

a variant of vortex lattice model. Lifting surface (LS) model represents blades by a surface of

vortex panels which respects the actual blade width, but not its thickness. It is used frequently

for analysis of marine propellers due to their low aspect ratio. Yang et al. [4] used lifting

surface in their early work (1992) on contra-rotating ship propellers. The wake is modeled using

relaxation method, where the averaged induced velocity of both propellers is used to define the

pitch of the trailing wake system.

Full blade geometry representation is achieved by using 3D panel method. 3D panel

method was first applied on the case of propellers by Hess and Valarezo [5]. Extension for

calculating unsteady forces was done by Hsin [6] in his work aimed at single marine propellers.

Ghassemi [7] describes software package SPD (Ship Propeller Design) that uses panel method

with hyperboloidal quadrilateral elements to model CRP. The method calculates thrusts and

torques without including viscous forces. Between 2 and 3 percent of increase in efficiency was

obtained using the CRP system for the studied CRP case compared to single propeller.

The impact of using a proper boundary layer model instead of some viscous corrections

for single propeller analysis is described by Takinaci and Atlar [8]. The authors use turbulent

model of Cebeci and Bradshaw without any coupling between boundary layer and inviscid flow.

Advanced CFD codes (here used as a synonym for Navier-Stokes equation solvers) have

been used in some studies regarding single and contra-rotating propellers. CFD codes have seen

only limited use in the analysis or even optimization of propellers, although the trends towards

using these CFD codes are more and more evident. Especially in case of single rotor, which

can be often computed using steady solvers, the solution time becomes manageable. Reynolds-

Averaged Navier Stokes (RANS) solver is the most widely used approach for CFD analysis of

propellers.

An interesting comparison of results calculated by CFD code and 3D panel method

for a case of single ship propellers is that of Brizzolara et al. [9]. Both methods agree well with

the experimental data, except of some small regions of the blades, where the boundary layer

thickness affects the pressure field and RANS solver provides more accurate results. The authors

suggest that the panel method should be coupled with boundary layer model. Other notable

studies of CRP systems using CFD codes include [10] and [11]. A very recent (2015) paper by

Paik et al. [12] compares the results of wake development behind ship CRP setup calculated by
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CFD RANS unsteady solver and results of Stereo PIV measurement. The study focuses mainly

on the position and development of blade tip vortices and illustrates the complexity of using

CFD for CRP analysis.

Experimental research, in a similar way as numerical research, is more frequently

focused on marine propellers. In the field of airspace CRP usage most work concerns helicopter

rotors. Full scale tunnel test as early as 1951 were performed in Langley [13]. The results

of hovering performance were compared with numerical methods of that time. The maximum

FoM for a coaxial rotor was determined to be 0.635 while for single rotor it was 0.615. Three

years later, a similar research [14], which included also visualization, confirms improved hovering

efficiency of a CRP system, but notes that more power is required for level flight than in case

of equivalent single rotor. Comprehensive overview of coaxial rotor helicopter experimental

research, mostly by the helicopter manufacturers, is given in [15].

A different configuration, with motors and support structure placed between the rotors,

is presented in an article by Huo et al. [16]. The rotor was equipped with a long shroud. The

performance of both rotors and the shroud were measured individually. Similar experimental

setup as of Huo et al. but without shroud is used by Simoes [17] who measured performance

of a coaxial system with 14x4.7 propellers. His results are in disagreement with outcomes of

others, since he determined that two propellers rotating in the same direction were a better

option than CRP system.

An experimental study about hover performance of single, tandem and coaxial rotors

[18] shows a very viable solution of the measurement setup. This paper among others lists

the parameters of other previous experiments on this topic. The measurement confirmed, that

overall performance is not very sensitive to propeller distance, but the load distribution between

rotors changes with propeller distance. CRP system was found to have a 9% higher FoM than

an equivalent single propeller.



3. Potential Flow Theory and Related Methods

3.1 Potential flow

Potential flow is an inviscid irrotational flow which can be expressed by Laplace’s equation:

∇2φ = ∆φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0, . (3.1)

where φ is a velocity potential, which is a function of space and time. Laplace’s

equation is an elliptic partial differential equation. Solutions to the Laplace’s equation are called

harmonic functions. Laplace’s equation does not contain a pressure term. To obtain information

about pressure, it is necessary to use the Bernoulli’s equation in the form for incompressible

irrotational flow with conservative forces [19]:

gz +
p

ρ
+
c2

2
+
∂φ

∂t
= C(t), (3.2)

where z is a coordinate in opposite direction to gravitational acceleration and C(t) is

a constant only changing with time.

3.1.1 Boundary conditions

Boundary condition must be specified at the surface of the body and in the infinity. In the

infinity the assumption of vanished induced velocity due to presence of the body must be valid,

therefore the total velocity in sufficient distance from the body is equal to the free stream

velocity:

lim
r→∞

c = c∞. (3.3)

This condition is in most cases fulfilled automatically by superposition of suitable

singular solutions of Laplace’s equation. Impermeability condition is applied on the surface of

the body. In every moment the velocity vector on the surface of the body, expressed in the

coordinate system fixed to the body, must be tangent to the surface, or zero. This condition is

equivalent to the requirement of zero normal velocity on the surface. It is a Neumann type of

boundary condition:
∂φ

∂n
= ∇φ · ~n = 0. (3.4)

There are several methods for solving Laplace’s equation. Since Laplace’s equation is

linear, it is possible to use a linear combination of simple solutions. The most common solutions

are the potential vortex, potential source/sink and dipole (doublet). 2D and 3D panel methods

use this approach.

3.2 Panel methods

Panel methods use line segments or curve segments with concentrated or distributed singular

solutions, such as vortex or source. In 2D, panels are represented by line segments or curve

5



Potential Flow Theory and Related Methods 6

segments, while in case of 3D panel methods, panels are formed by flat or curved polygons, most

frequently quadrilaterals. A simple 2D panel method which uses streamfunction formulation

[20] is used in the thesis only for verification of 2D boundary layer. Focus is therefore on 3D

panel methods, which form a cornerstone of the described computational model.

There are two branches of 3D panel methods based on type of boundary conditions.

Zero velocity normal to the wall is prescribed by Hess type panel methods, first described by

Hess and Smith [21], and Hess [22]. These panel methods use velocity formulation of simple

singular solutions. In 1974 a very different formulation of panel method has been published

by Morino and Kuo [23]. The family of methods, later named after Morino, use a potential

formulation and a different form of boundary condition, which prescribes zero potential inside

the body. A detailed review of various boundary conditions is available by Erickson [24].

High order panel methods use quadratic and cubic definitions of the panel surface, but

more common are low order panel methods that use either quadrilateral or triangular flat panels.

As Smith and Hess note [21], a quadrilateral surface mesh can be easily made structured, on

the other hand with triangular elements it is possible to cover a complex body without gap

In order to calculate lifting flow, Kutta condition for the trailing edge must be imple-

mented. According to Kelvin’s circulation conservation law the bound vortex circulation cannot

end in the fluid and zero trailing edge circulation must be forced. To lead the circulation away

from the wing a system of trailing vortices is shed from the trailing edge. This is in practice

performed by either a sheet of semi-infinite vortices connected to the trailing edge, or by a

force-free wake sheet composed of vortex ring panels. Either way, the circulation of the wake

vortices is calculated as the difference between upper and lower trailing edge panel circulation.



4. Formulation of Aims and Objectives

The aim of this thesis is to develop a computational model capable of detailed analysis of contra-

rotating propellers subject to low Reynolds number flow accounting for various aspect of the

flow ignored by other researchers. The aim is also to describe the properties of contra-rotating

propellers using such advanced computational model and answer important questions regarding

CRP system performance. The formulation of three main objectives is based on the review of

literature and is given as follows:

• Finding a viscous-inviscid interaction model that would allow coupling of an advanced

integral boundary model to a 3D panel method. This model must be fast enough to

maintain the important advantage over CFD codes - speed of solution.

• Creating an unsteady force-free wake model compatible with contra-rotating propeller con-

figuration with emphasis on blade-wake interactions, which would allow accurate resolving

of instantaneous wake shapes and induced velocity fields.

• Describing properties of a contra-rotating propeller system under low Reynolds number

flow regimes, specifically:

– Fluctuation of forces and torques during revolution

– Influence of propeller distance

– Sensitivity to the angle of free stream flow

– Comparison of a CRP system to an equivalent single propeller

– Influence of the ratio of rotational speeds of both propellers

Secondary goals and steps that need to be taken in order to accomplish the objectives

include: (1) selecting suitable boundary layer model for implementation, (2) design of experi-

mental setup and performing measurements of CRP properties including noise, (3) preparing

simpler lifting line model for reference purposes and (4) verification of numerical model using

experimental data.

7



5. Vortex Wake Model

Vortex wake model consists of quadrilateral vortex ring panels that are shed from the trailing

edge of a blade or directly from the lifting line representing the blade. Each vortex ring panel

is formed by four vortex filaments placed at the edges.

5.1 Vortex filament in 3D space

Vortex filament is a line vortex between starting (1) and ending (2) points. The following

formula is used for determining velocity at a point P in space.

~c =
Γ

4π

~r1 × ~r2
|~r1 × ~r2|2

~r0 ·
(
~r1
|~r1|
− ~r2
|~r2|

)
. (5.1)

The vector leading from point 1 to P is defined as ~r1, the vector from point 2 to point P is ~r2

and the vector from first to second point of the vortex segment is defined as ~r0.

In order to overcome difficulties with singular solution and unphysical velocities near

vortex filament, several core models were tested. Based on review of literature and evaluating

performance of calculation of Rankine, Lamb-Oseen [25], Burnham-Hallock [26] and Vatistas

[27] core models, Lamb-Oseen core model was chosen for implementation in the vortex wake.

The Lamb-Oseen vortex core model has been extended to a 3D filament case in [A 1]

by the author. Core radius is denoted as RC :

~c =
Γ

4π

~r1 × ~r2
|~r1 × ~r2|2

~r0 ·
(
~r1
|~r1|
− ~r2
|~r2|

)[
1− exp

(
−1.2526

|~r1 × ~r2|2

R2
C |~r0|2

)]
. (5.2)

The model of vortex filament has been tested using self-induced velocity of circular

vortex rings. The testing revealed that larger core results in slower self-induced velocity and

higher number of segments is required for properly capturing self-induced velocity in case of a

thin core. A study by Batchelor [28] confirms that a curved vortex filament without viscous

core moves with infinite speed under the action of the self-induced velocity field.

5.2 Vortex filament growth and stretching

In case of non-zero initial vortex core size RCi the core growth is calculated as follows [29]:

RC =
√
R2
Ci + 4νt. (5.3)

Free vortex filaments in a general velocity field can either decrease or more likely

increase their length. The influence of the vortex stretching on the rotor dynamics results

is discussed in [30], together with the explanation of the process of stretching, which can be

simulated by decrease in the viscous core size while maintaining constant circulation. The

change of core radius ∆RC due to strain ε = (l + ∆l)/l is expressed as follows [30]:

∆RC = RC

(
1− 1√

1 + ε

)
. (5.4)

8
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5.3 Unsteady 3D vortex wake model

Regardless of the wing representation type (LL, LS or 3D panel method), the wing model

provides a bound circulation distribution, which needs to be shed into the wake.
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Figure 5.1: Vortex wake structure and nomenclature. Both vortex filament and vortex ring
approaches are shown.

Vortex lattice wake model (see Fig. 5.1) is composed of rectangular vortex ring seg-

ments. At each time step the existing wake panels are convected downstream using the local

velocity value. A new vortex panel per spanwise station i is shed, with circulation Γi1. The orig-

inal vortex panels being convected downstream increase their row number by one Γi,j = Γi,j+1.

Neighboring edges of panels produce duplicate filaments, only with different circulation values.

Almost twofold reduction in computation time is obtained by combining neighboring panel edges

into single filament.

This concept of an unsteady wake was tested by the author et al. in an investigation

of vertical axis wind turbines both numerically and experimentally [A 2].



6. Propeller Blade Representation

6.1 Lifting line model

Lifting line model is used in the thesis as an alternative to the complex computational model

composed of 3D panel method with boundary layer. It can use the same vortex wake model,

which is beneficial for testing purposes and for fair comparison of the two blade representations.

Lifting line approach is based on simplified finite wing representation described by Prandtl’s

lifting line theory. For a symmetric wing with frozen (predefined) flat wake and small angles of

attack the analytic solution of Glauert can be used, which is however not possible for the case

of propeller blades. Numerical solution using iterative process needs to be used.

Figure 6.1: Block diagram of the iterative solution procedure.

The solution procedure (see Fig. 6.1) is iterative and begins with lifting line with no

wake and thus no induced velocities. Under-relaxation is usually required to keep the solution

stable. The simplest method of discretization consists of averaging the circulation distribution

over a lifting line segment, which produces a piecewise constant distribution of circulation that

can be directly used in the wake model. This approach leads to an issue with erratic induced

velocity distribution at the blade tips. This issue was solved, as documented in the thesis, by

modifying the position of the tip vortex shedding station without altering the positions of points

where induced velocity is evaluated.

Lift, induced drag and viscous drag are computed from 2D airfoil polars pre-computed

in XFOIL and induced velocity vectors. The algorithms are verified using a case of rectangular

wing set to a sudden motion and the same wing performing oscillating motion.

10
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6.2 Model based on 3D panel method

Velocity formulation (Hess type) panel method was chosen for implementation with the bound-

ary layer model. It is described in detail in [A 3]. Two types of singularity distributions over the

panels are used: vortex ring panels and constant source distribution. Quadrilateral panels form

a structured surface mesh. Each blade is unwrapped into a 2D mesh, which is consistent with

2D matrices that store the geometry data. Matrix rows represent the data in the streamwise

direction and matrix columns represent the data in the spanwise direction. (see Fig. 6.2)
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upper skin
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Unwrapping of a structured surface mesh

Figure 6.2: Structured surface mesh of a wing (applies also to a propeller blade).

The dummy panel row visible in the figure is a helper object which solves the problem

with finite edge thickness, where the lower T.E. panel coordinates do not coincide with wake

panel coordinates. For an unsteady case of a finite wing or for rotating blades the first wake

panel row is rather short and is connected to the wake model described in Chapter 5.

A simplified block diagram of the unsteady solution process is in Fig. 6.3. Each blade

is initialized in its starting position, together with a single row of wake panels. The body

rotation is handled by a standalone function, which first rotates the body by specified angles

around x, y, z axes. When the body is rotated into new position, the local relative velocity

due to this rotation is calculated. The principle of wake convection can be seen in Fig. 6.4.

The wake nodes are convected in the direction of total velocity at each node, calculated as the

sum of free-stream, self-induced and body-induced velocities calculated in previous iteration.

The algorithms are tested on cases of rectangular wing performing sudden start and oscillating

motion.

Several issues had to be solved in order to apply the computational model to contra-

rotating propellers. Propeller geometry was modified to remove problematic root section with

blunt trailing edge. A procedure named “wake blow off” helps to solve the issue of low advance

ratio wake development as illustrated in Figs. 6.5 and 6.6 .



Propeller Blade Representation 12

Figure 6.3: Simplified block diagram of the unsteady solver.

Figure 6.4: Body to wake linkage has 4 phases.

Figure 6.5: Wake
behind propeller,
without wake blow

off.

Figure 6.6: Wake
behind propeller, with

wake blow off.



7. Coupled 2D Integral Boundary Layer Model

The integral two-equation 2D boundary layer model used in this work is based on the work of

Drela [20] and Drela and Giles [31], Johansen [32], Green et al. [33], Veldman [34] and Bijleveld

and Veldman [35]. Detailed description of the model together with results of airfoil analysis can

be found in [A 4].

The fluid domain is divided into viscous region and inviscid region. Goal of the viscous-

inviscid interaction model is to link (couple) the inviscid solver with boundary layer solver.

Key component of the integral boundary layer is a velocity profile, which is parametrized

by the boundary layer properties. The first governing equation of the integral boundary layer

model is the integral momentum equation:

dθ

dξ
+ (2 +H)

θ

ue

due
dξ

=
Cf
2
. (7.1)

The second governing equation of the described boundary layer model is the kinetic

energy shape parameter equation

θ
dH∗

dξ
+H∗(1−H)

θ

ue

due
dξ

= 2CD −H∗
Cf
2
. (7.2)

The primary variables were chosen H and θ. The edge velocity ue depends on the

boundary layer displacement thickness and inviscid solution and is treated as a function of

primary variables ue = ue(H, θ). The remaining parameters of the boundary layer equation

are all functions of the primary variables H∗ = H∗(H, θ), Cf = Cf (H, θ) and CD = CD(H, θ).

These functions are provided in form of closure equations [20]. An auxiliary equation is solved

together with the governing equations, which is different for turbulent and for laminar regions.

Figure 7.1: Solution of the boundary layer problem using viscous and inviscid regions (Figure
also used in [A 4]).
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For transition prediction, the e9 method also used in the XFOIL [20] and ISES code [31]

is employed. The equation for amplification ratio is solved together with governing equations

in laminar region. When the value of amplification ratio reaches the predefined critical value

ñcrit the transition occurs and solution switches to turbulent closure equations.

An auxiliary equation for shear stress coefficient is calculated in the turbulent region.

Green et al. [33] proposed a lag-entrainment method which calculates Cτ based on its equilib-

rium value CτEQ and its spatial rate of change.

To solve the boundary layer equations, a simple downstream marching algorithm is

used. The governing equations are discretized using two-point central differencing scheme and

solved by Newton iteration method, station after station, during downstream pass of the bound-

ary layer.

7.1 Boundary layer viscous-inviscid coupling

The described two equation boundary layer model fails to produce solution in most circum-

stances if a prescribed edge velocity distribution is used. This is due to a singular behavior of

the governing equations described by Goldstein for conditions near separation [36]. To obtain

converged solution, interaction between boundary layer and inviscid solution must be provided

in form of a relation between edge velocity and displacement thickness.

A two dimensional airfoil analysis tool XFOIL by M. Drela [20] uses simultaneous

solutions of boundary layer equations and 2D panel method equations in one large system.

Extending this approach to a three-dimensional body is associated with many difficulties.

The boundary layer coupling implemented in present model uses different, quasi-

simultaneous, solution approach. This topic is covered by Veldman [34], who discussed the

criteria for convergence and existence of the solution and described a simple interaction law

[37].

The first step that was performed in search of a suitable viscous - inviscid interaction

model was an exact determination of linear coefficients dij describing change of edge velocity at

i-th node due to change of displacement thickness at j-th node:

dij =
∂ue i
∂δ∗j

. (7.3)

These linear coefficients form a response matrix, which can be used for precise deter-

mination of new velocity distribution, when the shape of the airfoil changes (with assumption

of small displacements of the airfoil surface). An example of such response matrix is presented

in Fig.7.2. Important feature of the matrix is a dominating positive main diagonal with still

significant negative subdiagonal and superdiagonal. Other members of the matrix have less

significant values. Each coefficient on the main diagonal dii shows the response of edge velocity

at i-th surface node to its own displacement in normal direction. Therefore the coefficients from

main diagonal can be used in an interaction law:

ue i,NEW = ue i,OLD + dii(δ
∗
i,NEW − δ∗i,OLD). (7.4)
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Figure 7.2: Typical matrix of velocity response to displacement thickness

Numerical differentiation was initially tested for calculating linearized interaction co-

efficient dii. This method is computationally expensive, therefore a fast way of approximating

the interaction coefficient dii based on only one inviscid solution was invented:

dii =
2ue i,inv

(ξi − ξi−1)
. (7.5)

7.2 Portable boundary layer model

The local linear interaction coefficient dii only estimates the local response of edge velocity to

a local change of displacement thickness. Further boundary layer passes, with inviscid flow

solution updates in-between, are necessary to arrive at a converged solution. Even with an

accurate linear interaction coefficient, between 10 and 20 passes are required for converged

solution. This is a known problem of quasi-simultaneous viscous-inviscid interaction methods

[37].

To make the boundary layer model easily portable, a replacement inviscid model is

proposed, which allows to approximate the edge velocity based on initial surface velocity distri-

bution and displacement thickness alone.

7.3 Replacement inviscid model

Each column of the response matrix dij contains information about the response of edge velocity

to a single node displacement. One such response is demonstrated in Fig. 7.3.

As can be seen, neighboring nodes of the node j with surface jump ∆δ∗j are subject to

drop in edge velocity of about half the magnitude of the velocity growth at j-th node. This can

be also observed by comparing the values of subdiagonal and superdiagonal with main diagonal

of the response matrix.

Based on these observations, new replacement inviscid model has been formulated

which can be used for boundary edge velocity updates between boundary layer passes:

ue i = ue i,orig + dii(δ
∗
i − 0.5δ∗i−1 − 0.5δ∗i+1) (7.6)
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Figure 7.3: Response of velocity to surface jump. Note: Surface displacement has been
exaggerated for illustration purposes

When the replacement inviscid model is used together with the boundary layer model,

the only input parameters needed are the velocity distribution with surface coordinates. This

makes the resulting boundary layer truly portable with small impact on results accuracy. In

order to connect the boundary layer to the 3D panel method, streamlines must be identified on

the surface of the body. Example of such streamlines is in Fig. 7.4.

The model composed of 3D panel method with boundary layer has been tested using

case of finite wing and results were compared against CFD RANS solver in [A 5].

Figure 7.4: Surface streamlines of a heavily loaded propeller blade.



8. Experimental Investigation of Contra-Rotating Pro-

pellers

The experimental setup used for measurement of contra-rotating propellers is composed of a

four-component aerodynamic scale, pair of coaxial electric motors and a support frame which

also holds protective mesh and acoustic insulation. The aerodynamic scale is built around Dou-

ble Axi 5330/20 coaxial motors and measures torque and thrust of each propeller. In addition

to measuring thrusts and torques, rpm of each propeller is measured using optical means. The

motors can provide up to 3kW of power each, which is sufficient for propeller sizes up to 24”

(609.6 mm) in diameter. The mechanical design of the test stand allows limited modification

of propeller distance in the range of 40 mm to 80 mm. Speed of rotation is controlled by a

PWM signal and power is supplied by 24V lead-acid battery. Signal from load cells is sampled

and analyzed by a custom built 12 channel A/D converter. An automatic measurement cycle is

started and monitored using a graphical user interface scripted in MATLAB. The experimental

setup and results from measurement are described in detail in a conference paper [A 6] by the

author et al.

A supplementary measurement of noise in terms of overall sound pressure level and

sound spectra was performed. Details of noise measurement setup are in [A 6].

Aero-elastic properties of small scale aircraft propellers were obtained by analyzing

the shape of the rotating blades photographed by a camera and a flash synchronized to the

blade position. Detailed description and results can be found in [A 7]. The research revealed

that bending of the blades forward occurs with increasing thrust. This bending is reduced by

centrifugal forces, which prevents the blades from bending even further under higher rpms. No

detectable blade twist was observed.

Figure 8.1: Aerodynamic
balances mounted on a

rigid support column.

Figure 8.2: Detail of the
aerodynamic balances.
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9. Results, Analysis and Discussion

9.1 Verification of the models

Data from the measurement of an APC 20 × 13 [A 8] propeller were selected for verification

of the numerical model in a single propeller test scenario. The calculated and experimental

performance curves are shown in Fig. 9.1. Based on the results, 3D panel method with boundary

layer matches experimental data more accurately for all advance ratios above 0.1, while near

static thrust, lifting line solution coincides with experiment more accurately.
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Figure 9.1: Comparison of lifting line model results with experiment and 3D panel method
with boundary layer. Case of a single propeller APC 20× 13.
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Figure 9.3: Total thrust and power coef-
ficients of the system vs. ratio of frequency

of rotation.

Effects of variable rotational rate ratio defined as f1/(f1 + f2) was studied on a CRP

set of 22” propellers under static conditions. The results in terms of FoM and overall thrust
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and power coefficients are shown in Figs. 9.2 and 9.3. Here the benefit of using 3D panel method

is clearly visible. The results of verification were published in [A 9].

9.2 Results of numerical analysis of CRP

The computational model based on 3D panel method with boundary layer allows fast analysis

of cases and conditions which would be difficult to investigate experimentally. An example of

calculated unsteady forces during several rotations of the CRP propellers is in Fig. 9.4 Such

results could not be easily measured, due to dynamic properties of the measurement system.
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Figure 9.4: Unsteady values of thrust and power during initial 5 rotations.

Thanks to the force-free wake model described in Chapter 5, wake shapes can be

visualized and studied, such as those in Fig. 9.5 illustrating the effect of advance ration.

Figure 9.5: Development of CRP wakes for selected advance ratios.

Sensitivity of CRP system to propeller distance is relatively low, Figure of Merit slightly

increases with propeller distance due to additional air being sucked in between the rotors (Fig.

9.6). The thrust is redistributed as shown in Fig. 9.7
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When compared to an equivalent single propeller, CRP provides up to 6% increase in

efficiency (Fig. 9.8). The comparison needs to be performed at the same thrust levels, because

efficiency is very sensitive to loading of the propeller. Largest increase in efficiency occurs for

low advance ratios, where swirl losses play an important role.
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Figure 9.8: Efficiency of propulsion systems at the same thrust vs. advance ratio.

A CRP system, when subjected to off-axis free stream, shows little sensitivity to small

inflow angles while for increasing angles the performance benefits from additional lift due to

forward flight. This is a typical scenario where simpler computational methods using various

simplifications cannot be used, because the flow is not axisymmetric.



10. Conclusions and Recommendations

A 2D boundary layer was successfully coupled to a 3D panel method using a new viscous-inviscid

interaction model thus extending the capabilities of the originally inviscid model. The results

of verification indicate that 3D panel method with boundary layer is more accurate than lifting

line approach especially in the case of CRP analysis. On the other hand, inviscid 3D panel

method falls short of the performance of simpler lifting line model due to absent viscous effects,

which cause overprediction of thrust and efficiency. Both blade representation models benefit

from the unsteady force-free wake model. Inclusion of a vortex core model with core radius

growth contributed to the stability of the solution by removing singularity problems.

A CRP system has been analyzed with some of the numerical model results also sup-

ported by experimental work. Performance under off-design conditions such as extreme propeller

rotational rate ratios or off-axis inflow angles were studied. Partially stalled blades and wake

development under static thrust conditions were among the demanding circumstances that the

numerical method was set to cope with.

10.1 Contribution in the field of computational methods

The main contribution to the field of computational methods is the description of new effective

viscous-inviscid interaction between inviscid solver and boundary layer model and practical

demonstration of the implementation to contra-rotating propellers. Another contribution is the

force-free wake model, which includes vortex stretching and aging, and which allows mutual

intersection of wakes and blade passage. Many minor problems had to be solved along the way.

Lifting line model tip treatment, propeller wake blow-off method and various improvements in

the speed of solution are also considered as practical contributions.

10.2 Contribution in the field of propeller aerodynamics

The following conclusions about the performance of CRP systems were reached:

• Response of a contra-rotating propeller system to change of ratio of frequencies of rotation

showed that peak Figure of Merit is obtained for slightly different propeller rotational

frequency ratio than 1:1. Although the most effective ratio depends on the exact geometry

and conditions, it can be generalized that by controlling the ratio of rotation of propellers

throughout the operation range, overall efficiency can be increased.

• Increasing propeller distance redistributes thrusts and slightly increases the values of Fig-

ure of Merit, while reducing noise. Propellers should be placed as far apart as possible

and practical.

• Performance of a CRP system is initially insensitive to angle of off-axis free-stream velocity,

only at angle higher than 30◦ the efficiency begins rising due to the effect of additional

lift provided by forward flight component of velocity.

• CRP system and equivalent single propeller of the same diameter and blade solidity must

be compared strictly at the same thrust level, otherwise incorrect conclusions may be
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drawn. At the same thrust levels, contra-rotating propeller system provides 1÷6% increase

in efficiency over equivalent single propeller. The increase is more evident for low advance

ratios, where the propellers are more loaded.

• Both upstream and downstream propellers are subject to fluctuating thrust force. The

upstream propeller experiences rather smooth and gradual changes of thrust, while the

downstream propeller is subject to sharp peaks in thrust when the blades pass through

wakes. Power of the upstream propeller is almost constant in time, while the power of

downstream propeller suffers peaks corresponding to thrust oscillations.

10.3 Recommendations on the future work

The presented numerical model can be used “as is” for various other tasks including wind

turbine analysis or UAV flight simulation. It is very suitable for optimization problems where

CFD solvers cannot possibly compete due to time of solution. Parameters such as propeller

geometry or rotational rate ratio can be optimized for maximum efficiency.

Minor improvements to the model in terms of speed and accuracy can be made. Sim-

plification of wake far downstream from propellers or removing re-inicialization of boundary

layer between time steps are among suggested improvements.

Extending the capabilities of the model is also an option. Compressibility effects can

be accounted for by simple corrections such as Prandtl-Glauert or Kármán-Tsien compressibility

corrections. Some features, such as ducts and hubs, could be simulated using panels or circular

vortex rings. After such modification, it would be possible to analyse ventilation fans, ducted

fans, configurations with stator blades and similar cases.
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