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Abstract

The doctoral thesis under the title Modeling Space Variant Optical Systems is fo-
cused on modeling imaging systems with a complicated PSF. The complexity of
the PSF is caused by the wide angle of view and by optical aberrations or aniso-
tropy and inhomogeneity of the optical material. The description of the imaging
system is expressed by its Point Spread Function, i.e., by its impulse response.
The PSF describes the influence of the imaging system (the optics, the sensor) and
the influence of the transition medium (atmospheric turbulence). However, UW-
FOV imaging systems complicate the modeling task, and current PSF models do
not provide a suitable solution with the desired accuracy. The imprecision of the
PSF description in parts of the FOV causes issues during deconvolution, further
processing and precise measurements (astrometry, photometry) of ultra-widefield
images. This thesis presents a PSF model with field-dependent polynomials. The
model is based on Zernike polynomials up to the 8th order. An estimate of the para-
meters of the model is performed in the image plane, and this allows the imaging
system to be modeled directly from the image data acquired by the system. The
advantage is obvious. We do not need complicated measurements of optical para-
meters involving Shack-Hartman interferometry. The proposed model is used to
provide a PSF model, including a set of coefficients and polynomials, and therefore
provides the set and the power of the optical aberrations of the imaging system.
The proposed PSF model has been verified on a series of simulated and acquired
image datasets covering different types of imaging systems (CCD, CMOS) and
optical designs.

Keywords: Zernike polynomials, N-gons, imaging, Field-of-View, space-variant.
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Abstrakt

Dizertačńı práce Modelováńı prostorově variantńıch optických systémů se věnuje
tématu modelováńı obrazových systémů s komplikovanou bodovou rozptylovou
funkćı širokoúhlých systémů a anizotropńıch optických materiál̊u. Obrazové systé-
my se popisuj́ı pomoćı impulsové odezvy (rozptylová funkce bodu). Impulsová
odezva popisuje vliv obrazového systému (optické části a senzoru) a vliv přenosové-
ho média (např. vliv atmosféry). Extrémně širokoúhlé obrazové systémy kom-
plikuj́ı modelováńı a současné modely neposkytuj́ı vhodné řešeńı s dostatečnou
přesnost́ı. Nepřesnost popisu impulsové odezvy v okrajových částech zorného pole
zp̊usobuje problémy během dekonvoluce, daľśıho zpracováńı obrazu a přesných
měřeńı (astrometrie, fotometrie) extrémně širokoúhlých a jiných prostorově vari-
antńıch systémů. V dizertaci je navržen model impulsové odezvy založený na
polynomech s prostorovou závislost́ı. Navržený model je založen na modelováńı
vlnoploch pomoćı Zernikových polynomů vyjádřených do osmého řádu. Odhad
parametr̊u modelu prob́ıhá v obrazové rovině a dovoluje modelováńı obrazového
systému př́ımo z dat poř́ızených samotným systémem. Výhoda tohoto př́ıstupu je
zřejmá. Neńı nutné provádět složité měřeńı optických parametr̊u pomoćı Shack-
Hartmanova interferometru. Aplikaćı zmı́něného modelu je možné źıskat set koefi-
cient̊u a př́ıslušných polynomů optických aberaćı daného systému. Navržený model
byl ověřen na několika séríıch simulovaných dat, a dat poř́ızených r̊uznými typy
obrazových systémů (CCD, CMOS) a optických design̊u.

Kĺıčová slova: Zernikovy polynomy, N-gony, zobrazovaćı systémy, zorné pole,
prostorově variantńı.
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Introduction

Modern photonic imaging systems play an important role in our lives. They are
used in astronomy, biomedicine, security and other areas of science, and they are
required to perform with high imaging quality, a wide aperture (i.e., low F-numbers)
and high spatial resolution. These systems are known as Ultra-Wide Field-of-View
(UWFOV) systems. The wide-angle optical elements used in UWFOV systems
introduce a significant shift variance [1], which complicates the modeling task.
Many recent research works have focused on finding a model of UWFOV systems
that is suitable for reducing the uncertainties in reconstructing image data from
wide-field microscopic systems [2–4], security cameras [5–7], and all-sky cameras
[8–13]. Extremely wide-field imaging systems have many advantages for the large
display scenes used in microscopy, in all-sky cameras, and in security technologies.
The wide viewing angle comes at the cost of a large number of aberrations, and this
affects the observed objects, especially at wide angles. The second group of space-
variant imaging systems consists of devices containing unique optical materials,
e.g., Calomel. UWFOV and other Space-Variant Point Spread Function (SVPSF)
systems are imaging systems with a complicated description, which is currently
not perfectly addressed. These images are therefore processed with a significant
error, or cannot be processed automatically, because each of the images is basically
unique. The uniqueness of these images becomes an issue when a significant amount
of data needs to be processed, and places demands on user interaction.

Modeling wavefront aberrations using Zernike polynomials [14] is well-known
and is widely used. However, models based on Zernike polynomials are usually
partially invariant, or they are simplified into singular points, and they do not
account for the field dependency of polynomials. The proposed method models
system aberrations by modeling the wavefront, and calculating the Point Spread
Function of the imaging system that is used, since it is not possible to recover
the wavefront from the Point Spread Function (PSF). This is a very complicated
task, and it is difficult to achieve the desired accuracy with conventional methods.
However, modeling the PSF directly in the image plane allows the imaging system
to be estimated without complicated measurements of optical parameters using a
Shack-Hartman interferometer. The analysis and the estimate of the optical para-
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Introduction

meters are processed on the testing dataset acquired by the imaging system itself.
The proposed optimization techniques for searching the coefficients of space-variant
Zernike polynomials can be described as a comprehensive model for UWFOV ima-
ging systems. This model is an attempt to estimate the size of the modeled Point
Spread Function, which is comparable to the pixel size. Issues associated with
sampling, pixel size, and pixel sensitivity profile must be taken into account in
the design. However, knowledge of the system’s PSF allows us to process the im-
ages (detection, measurement) further, and to perform deconvolution and precise
measurements in astronomy (astrometry, photometry).

Aims of the Doctoral Thesis

1. Propose a PSF model describing the field-dependent PSF over the entire
Field-of-View (FOV), especially for UWFOV imaging systems. The model
will extend current PSF models by expressing the field dependency of the
PSF, and it will allow a description of distorted off-axis PSFs with the desired
accuracy. This description allows parts of the FOV to be processed that were
formerly problematic or impossible to process.

2. Adapt optical techniques for describing general imaging systems, such as the
Zernike polynomials for describing the wavefront.

3. Verify and quantitatively analyze the proposed model on a series of image
data acquired by SVPSF and UWFOV imaging systems, e.g. the WIde-field
aLL-sky Image Analyzing Monitoring system (WILLIAM).

4. Confront the verification results of the PSF model estimation with the results
obtained by competing models.

Structure of the Doctoral Thesis

The thesis is organized into six chapters as follows:

1. State-of-the-Art: The first Chapter establishes the position of the thesis in
the field of optics design description, and its relation to three major works
that laid the foundations of SVPSF modeling.

2. SVPSF imaging systems: Chapter 2 introduces the imaging systems used
for the work presented here. The systems were developed at the Depart-
ment of Radioelectronics, Faculty of Electrical Engineering, Czech Technical
University in Prague, with the participation of the author of this thesis.
The chapter includes a brief description of the WILLIAM imaging system,
the Meteor Automatic Imager and Analyzer (MAIA) imaging system, and
the Thermal Hyperspectral Imaging System (THETIS). The WILLIAM and
MAIA cameras are space-variant due to their wide field of view. However,
the THETIS instrument is space-variant due to the acousto-optical tunable
filter, which uses the birefringent Calomel crystal.

2
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3. Theoretical background: the third section is devoted to an analytic description
of SVPSF systems, and it provides the mathematical tools for the develop-
ment of the SVPSF model.

4. Space-Variant optical model: Chapter 4 introduces the proposed model, the
field dependency of the model, and a verification of the versatility of the
proposed solution.

5. Verification of the SVPSF model: This chapter aims to apply the proposed
model to a series of space-variant image data, and to verify the model. A
dataset was acquired and simulated by various sensors and optics covering the
broad field of SVPSF systems. The verification demonstrated the precision
of the proposed model. The results presented in this chapter are related to
the results of the model introduced in Chapter 1.

6. Conclusions: The last chapter summarizes the results, and relates them to
the objectives set in the introduction.
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Chapter 1
State of the Art

Any imaging system can be described by its spatial impulse response function, com-
monly referred to as the PSF. PSF is used to represent the aberrations of UWFOV
devices simultaneously with a wavefront description, and can be applied either to
the entire image or within regions uniquely defined by the isoplanatic angle. How-
ever, it can sometimes be complicated to obtain a PSF model of the system. It can
be difficult to achieve the desired accuracy using conventional methods - not from
the measurement point of view, but because it is difficult to describe the Space
Variance (SV) of the PSF over the FOV. This leads to an obvious issue. From the
measurement point of view, it is necessary to obtain the PSF for all discrete points
of the entire FOV. Then the PSF of the system is described by such a field of indi-
vidual PSFs. Born [15] calls this type of PSF partially space-invariant because there
are just discrete points (PSFs) in parts of the FOV. However, a space-variant PSF
is described by a model in all points of the acquired image. Of course, this brings
high demands on the precision of the model. Issues associated with sampling, pixel
size and the pixel sensitivity profile must be taken into consideration in the design.
It is very difficult to obtain the parameters of the model, especially in image areas
with a heavily aberrated impulse response and for objects with a small Full width
at half maximum (FWHM) parameter in relation to the pixel size. These objects,
captured, e.g., in microscopy using all-sky cameras and/or special optical elements,
can hardly be processed using current techniques, which are typically oriented to
multimedia content.

A widely-used approach for obtaining the PSF is to model wavefront aberrations
using Zernike polynomials. These polynomials were introduced by Zernike in [16].
This work was later used by Noll [17], who introduced his approach to indexing,
which is widely used in the design of optics. Zernike polynomials are usually
applied to rotationally symmetric optical surfaces. Zernike polynomials form a
basis in optics with Hopkins [18] field dependent wave aberration. Recently, Sasián
[19] reformulated the work of Hopkins. This new formulation is more practical
for optical design. A more recent contribution by Ye et al. [20] uses Bi-Zernike
polynomials, which is an alternative to the method mentioned in Gray’s article [21].
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1. State of the Art

1.1 Related Work

Zernike polynomials are used in modern interferometers for describing wave aber-
rations. However, researchers have begun to think about using these polynomials
for an overall description of lens optics. When the first all-sky camera projects
appeared, the question of how to model aberrations of fisheye lenses arose. Follow-
ing paragraphs provide an extended introduction to projects involving modeling of
space-variant imaging systems. The approaches of particular projects exhibit com-
mon signs, such as using of Zernike polynomials. However, the particular solutions
are individual and introduce significant ideas.

Reservoir Computing First of mentioned works is the approach of Weddell [22].
He proposed a predictive partially space-invariant model of PSF based on Zernike
polynomials. His approach is based on a recurrent Artificial neural network (ANN).
The prediction is used for modeling of PSF in an anisoplanatic region over the FOV.
The ANN is used to learn the changes of aberrations (i.e., changes in PSF ) over
the entire anisoplanatic region. Weddell describes the architecture of reservoir
computing as

X(n) = ϕtrn(winu(n)T + wDRX(n− 1)T + wbackY (n− 1)T ),
Y (n) = ϕout(woutX(n)T ),

(1.1)

where X(n) is the input vector and Y (n) is the output vector. wDR is the sparse
matrix used as dynamic reservoir matrix, the wout is the linear output, the win is
the input weight matrix. wback represents the feedback matrix and ϕ. are noted as
activation functions. The predicted output of input series u(n) is expressed as

û(n+ 1) = Y (n). (1.2)

The Echo state network (ESN) is used for estimation of Zernike coefficients
from obtained spatiotemporal data. Using the training, the output wout output
weight can be obtained as

wout = (Xwtrain)+, (1.3)

where X is the state vector and wtrain represents training vector that comprises
the Zernike terms Z and spatial data.

Pi of the Sky Another astronomical project, Pi of the Sky [1], focused on optical
transients of gamma-ray bursts, attempted to make a model of PSF. Their approach
was quite different from Weddell’s [23]. Important part of the PSF model is the
part describing the sensor sensitivity profile included in the expression of impulse
response convolution function
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PSF (r′, φ′) =
∫∫

PRF (r, φ; r′, φ′) · PSFL(r, φ)rdrdφ (1.4)

that relates the optical PSF at (r, φ) coordinates with sensor response function
PRF . Coordinates r′, φ′ correspond with the specific point of final response func-
tion and (r, φ) denotes the coordinates of integration point. The polynomials used
for wavefront description became from Zernike polynomial basis. However, the
modeling method uses only the coefficients of astigmatism, coma, spherical aber-
ration, trefoil, secondary coma and secondary spherical aberration. It should be
noted, that author admits the possibility of extension to a bigger set of aberration
coefficients. Thus, the wavefront equation is expressed as

W (ρ, φ) =A(ρ2cos2φ) + C((3ρ2 − 2)ρcosφ) + S(6ρ4 − 6ρ2 + 1) · · ·
+ T (ρ3cos3φ) + C ′((10ρ5 − 12ρ3 + 3ρ)cosφ) · · ·
+ S′(20ρ6 − 30ρ4 + 12ρ2 − 1).

(1.5)

Notation A;C;S;T ;C ′;S′ stands for mentioned aberrations. The method of
modeling in the Pi of the Sky does not describe the complicated model of field de-
pendency (except tilt or defocus, because these are present in diffraction formula),
but it is of high importance, because it takes into account the non-uniform sensor
sensitivity, i.e., the pixel sensitivity.

Characterization of SV aberrations in microscopy The search for the best
description of UWFOV systems is not limited to the astronomical imaging. Micro-
scopy is another area where the UWFOV type of lens is used. Measurements of the
special spherical aberration using a shearing interferometer were described in [24].
A promising new approach was formulated in [25]. It is based on aberration meas-
urements of photolithographic lenses with the use of hybrid diffractive photomasks.
The aperture exit wavefront deformation is modeled in [26] for wide field-of-view
fluorescence image deconvolution with aberration-estimation from Fourier ptycho-
graphy. However, comprehensive work wrote Zheng [2]. Zheng’s work uses the
Zernike polynomials just like the previous work of Weddell or Piotrowski. How-
ever, Zheng described a convincing approach to a pattern search. It is based on
optimization of pupil function recovery, where he determinates the estimated defo-
cused and off-axis intensity images at specific positions. By recursive algorithm, he
modifies the unknown pupil aberration, until the compared intensity image meets
the desired match in the output. Using this approach, it is actually possible to
estimate the unknown wavefront function as Zheng proved.

Gray [21] proposed a method for describing the spatial variance of Zernike poly-
nomials. This approach is derived from the description provided by Hopkins [18]
and laid the foundations for truly space-variant Zernike polynomials. Of course,
there is also the problem of space-variant PSF. In fact, we cannot be limited to
rotationally symmetric imaging systems only. Hasan [27] and Thompson [28] came
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up with a more general description of the pupil function for elliptical or rotationally
non-symmetrical Zernike polynomials. This description can be used for calculating
the wave aberration in optical materials such as Calomel for acousto-optical ele-
ments [29]. The first optical approach to wave aberration estimation was described
by Páta et al. [30]. Other works of Dı́az [31] devoted to imaging by a hexagonal
pupil system or work of Ferreira [32] devoted to polygonal facets description, should
be mentioned. However, the fundamental works describing non-circular apertures
proposed Mahajan [33,34] and Dı́az [35].

UWFOV cameras are also used in surveillance systems. However, an image
affected by aberrations can have a negative effect in criminal investigations [6]. Ito
et al. [5] face this issue, and they propose an approach that estimates a matrix of
coefficients of the wavefront aberrations. Many authors have reported on investig-
ations of space-variant imaging systems. An estimate of the PSF field dependency
is critical for restoring the degraded image. Qi and Cheng proposed their linear
space-variant model [36] and focused on the restoration algorithm for imaging sys-
tems. Heide et al. [37] proposed techniques for removing aberration artifacts using
blind deconvolution for the imaging system with a simple lens.

In this thesis, it is proposed a modeling method for PSF estimation for space-
variant imaging systems. Since we would like to use this model for general optical
systems, the method is based on modeling the PSF of the system without knowledge
of the wavefront. Thus, the method can be an alternative to the Shack-Hartmann
interferometer [4, 38], or to other direct wavefront measurement methods, since
we can estimate wavefront aberrations from fitting PSF in the image plane. A
workbench for testing and experiment purposes is our project WILLIAM [39] that
faces the issue of aberrations at an extremely wide-field FOV (see also [40, 41]).
Following chapter focuses on the brief description of the WILLIAM and other
SVPSF imaging systems.
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Chapter 2
SVPSF imaging systems

This chapter focuses on the introduction of the realized projects of the spatially-
variant point spread function imaging systems at our department. These systems
can be divided into UWFOV systems and SVPSF anisotropic material-based ima-
ging systems. Parts of this chapter were published in [39], [42] and [43].

2.1 Description of the space-variant system

A basic general imaging system consisting of front-end optics (lens or mirrors), op-
tionally filter (Infra-Red cut, a spatial filter, etc.) and a sensor that is not limited
to paraxial rays and changes its impulse response across the FOV is defined as a
SVPSF imaging system. As can be seen in Figure 2.1, the Front-End Optics (FEO)
transforms input plane wavefront into spherical wavefront, because the lens is de-
signed to be focused to the image plane, where is placed the sensor. However, the
theoretical spherical wavefront is produced only by an ideal aberration-free optics.
In practice, the transmitted wavefront is deformed by the amount of aberration
which produce aberrated spherical wavefront, as illustrate Figure 2.1. Then, it has
to be taken into account that every part of the imaging system produces some kind
of deformation of the transmitting wavefront. The model of the imaging system
then describes the resulting transform function including contributions from all
involved parts of the system. The SVPSF imaging systems usually have heavily
deformed wavefront due to wide-field viewing angle (deformation of the scene) or
due to the optical material (anisotropy, non-homogeneity, scratches, bubbles).

The imaging system transforms the ideal wavefront into the wavefront deformed
by aberrations. This transformation can be described by convolution between the
input image function f(ξ, η), the PSF h(u, v; ξ, η) and the noise n(u, v). The output
linear function g(u, v) [44] is described as

g(u, v) =
∞∫∫
−∞

f(ξ, η)h(u, v; ξ, η)dξdη + n(u, v). (2.1)
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Figure 2.1: A scheme of a general imaging system including illustration of the
wavefront deformation.

The PSF provides information about deformations caused by the imaging sys-
tem, or more generally, the information about image deformations caused by trans-
mitting medium. However, precious description of SVPSF cannot stand alone
without proper measurement of basic characteristics. The PSF measurement starts
with the setting of a point light source, a distance of the imaging system from the
light source. Measurement of a Modulation Transfer Function (MTF) has to be
performed in several locations to cover entire FOV, similarly to PSF measurement.
Therefore, the wide angle of UWFOV systems requires modification of the standard
techniques of an image data acquiring. An adaptation of these techniques using a
nodal stage was summarized in [45].

Another factor, which has to be taken into account is natural color blindness
of imaging sensors. There are two major ways how to obtain a color image. The
first way is used mostly in specialized Charge-coupled device (CCD) cameras which
have filter carousel and can obtain one color channel per exposure. This method
has an advantage in the usage of the full resolution of the sensor, but for RGB
image three exposures are needed. The second method is spread mostly in Digital
Single-Lens Reflex camera (DSLR) and end-user cameras. They use Bayer color
filter array to acquire all three (red, green and blue) colors at one exposure, but
the resolution in each channel is lower due to filter cells placement, as can be seen
from Figure 2.2. To correctly decode image some kind of image interpolation must
be used. The method of interpolation can affect some details and artifacts in the
image. Then the appropriate method must be selected because astronomical images
with stars as regions of the high-frequency signal are specific and straightforward
bilinear transformation is not suitable for its tendency to create artifacts in those
places. For this reason, adaptive edge sensing method has been utilized. Laroche

10



2.2. MAIA

and Prescott’s interpolation [46] represents a good compromise between simplicity;
that means an only minimal change in a star shape and good artifact suppression.
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(a) Decomposed RGB image.
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(b) The original image of a stellar ob-
ject.

Figure 2.2: Comparison of the stellar object illustrated after interpolation of Bayer
mask (b) and same object shown with Bayer mask RGB sampling (a).

2.2 MAIA

The MAIA [47] is a project of double station observation of meteors using two video
systems coupled with image intensifiers located at the Ondřejov observatory and
the Kunžak observatory. The MAIA is space-variant astronomical imaging system
as well as the system WILLIAM. As it was described in [48] and [11], MAIA cameras
use an image intensifiers to get the best observation of the night sky. The image
intensifier allows real-time detection [49] of meteors down to masses of fractions of
one gram. Due to the usage of video recording instead of capturing images with
a camera, the MAIA does not have precise spatial resolution and high dynamic
range. However, because of video recording, it provides sequences from which is
possible to calculate the atmospheric trajectory of meteors and other properties.
The design of hardware setup is based on a previous analog system which was based
on VHS cam-coders. Here could be seen long tradition has the meteor detection
and analysis at the Astronomical Institute of the Czech Academy of Sciences of
the Czech Republic. Modern digital output with gigabit ethernet cameras allowed
automatic observation process.

The main components are the input lens, image intensifier, camera lens and the
camera itself. The input lens is Pentax SMC FA 1.4/50mm1. As mentioned the
MAIA is equipped with the image intensifier. Involved intensifier Photonis XX1332
has large diameter input (50 mm) and output (40 mm) apertures, high gain (typic-
ally 30 000 to 60 000 lm/lm) and the good resolution (typically 30 lp/mm). Image

1https://www.pentaxforums.com/lensreviews/SMC-Pentax-FA-50mm-F1.4-Lens.html
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acquisition is provided by monochromatic camera JAI CM-040GE2 with 1/2” pro-
gressive scan CCD sensor offering 776 x 585 (0.45 megapixels) resolution with 8.3
um square pixels (active area of the chip 6.49 x 4.83 mm). Image data are 10
or 8-bit, and the camera provides 61.15 frames per second with full resolution in
continuous operation. The important parameter is high non-linearity caused by
the automatic gain control in the image intensifier. The automatic gain control
provides the extremely high dynamic range. However, it causes the non-linearity.

(a) Acquired image during night observa-
tion.

(b) Star Trails - stellar motions during one
hour of observation.

Figure 2.3: Images acquired and processed by the MAIA system.

2http://www.jai.com/en/products/cm-040ge
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2.3 THETIS

The THETIS project focuses on the development of a Thermal Hyper-spectral Ima-
ging System integrating a Calomel-based Acousto-Optic Tunable Filter (AOTF)
for 5 µm and with possible extension to Visible spectrum (VIS) and the Thermal
Infra-Red (TIR) band, up to 10 µm. The potential of the THETIS instrument
is in observation of soil monitoring, volcanism, atmosphere and risk management
from Earth’s orbit (or another planetary orbit). Other potential applications can
be found in surveillance systems, environment monitoring (oil spills), where the
observation distance is smaller. Figure 2.4 shows a basic scheme of the THETIS
instrument. As can be seen, a FEO focuses the input light into the Calomel crystal
based AOTF, and the light propagates through the precise cube polarizer. The
transducer power-loads the AOTF unit by an acoustic wave that excites tempor-
ary local changes in the Calomel crystal forming the diffraction grid. The light
passing through this grid diffracts and results in the spectral image. However, to
obtain the full hyper-spectral image, it is necessary to change the acoustic frequency
and obtain a series of the spectral images. Smart processing of the image series
provides the hyperspectral images of the observed scene. However, the tuning of
the wavelength is limited by the band where the crystal filter is optimized.
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Figure 2.4: The set of Zernike polynomials used here. Table 4.1 includes the field
dependency of these polynomials.

The strength of the THETIS instrument is the bandwidth, where it can oper-
ate (VIS to TIR). The most important part is the AOTF unit, or more specific,
the Calomel crystal. This optical material allows work with such a wide range of
wavelengths and applications. However, the design of the AOTF unit is a complic-
ated task, based on calculating of light and acoustic wave propagation through the
crystal. Description of the AOTF design is well-written in work of Chang [50] or
Voloshinov [51]. An important part is the chosen interaction regime, i.e., Raman-
Nath or Bragg’s regime. The project THETIS is in the phase of breadboard model
at the moment, and all tests of acoustic matching, diffraction efficiency, etc. are
subjects of further research.
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2. SVPSF imaging systems

2.4 WILLIAM

The WILLIAM3 is the imaging system designed and manufactured at the Depart-
ment of Radioelectronics, FEE, CTU in Prague. It was first introduced in [39], and
it is the UWFOV imaging system designed for monitoring and evaluation of the
weather conditions. The main purpose of the WILLIAM was obtaining night sky
images and analysis weather conditions during the night with an extension to the
stellar object detection and identification [39,52]. The images acquired during the
day were not subjects of the analysis, until Blažek [53] described his approach of the
clouds color analysis. This approach allows evaluation of the weather conditions
during the day, and due to the results mentioned in [53], we can recognize rain and
storm clouds and sudden weather changes. The WILLIAM can also capture various
atmospheric phenomena like storms, halos, auroras, airglow. Furthermore, some
selected bright deep-sky objects and about 100,000 stars at ideal conditions with
low light condition stars up to 8.8 mag can be detected. An example of observed
magnitudes can be seen in Figure 2.5 and Figure 2.6.

(a) Detected stellar objects and visible mag-
nitudes.

(b) Detected stellar object C/2014 Q2 Lovejoy
[54].

Figure 2.5: Images acquired and processed by the WILLIAM imaging system.

Except mentioned weather condition evaluation, the WILLIAM imaging system
was used for obtaining of ultra-wide-field of view image datasets. These valuable
data were used while designing the algorithm of the PSF estimation, described
in [42]. Our approach to the PSF estimation and modeling of the UWFOV ima-
ging systems follows our effort of the description of the imaging systems described
in [55]. The data acquired by WILLIAM was used in a number of publications such
as by Fliegel [56], Anisimova [57], Vı́tek [58–60] and Trigo-Rodriguez [61]. At the
moment, the WILLIAM operates in two versions - the second and the third gener-
ation. The second generation of the WILLIAM is placed in Jarošov nad Nežárkou
in South Bohemia (GPS 49.185N, 15.072E). The third generation is placed on the
roof of Faculty of Electrical Engineering, Czech Technical University in Prague
(GPS 50.103N 14.3933E), see the map in Figure 2.8.

The first generation operated in Prague since mid-2014 and in 2017, was re-
placed by the third generation camera system equipped by the ZWO astronomical

3http://william.multimediatech.cz/
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2.4. WILLIAM

(a) Detected stellar objects and visible magnitudes.

Figure 2.6: Images acquired and processed by the WILLIAM imaging system.

camera. The second station (2nd generation) operates in Jarošov since mid-2015
and it is still equipped by DSLR camera.

(a) Acquired bolid. (b) Acquired flash.

Figure 2.7: Images acquired and processed by the WILLIAM imaging system.

2.4.1 Camera hardware
The core of the WILLIAM imaging system is naturally the camera. The first
generation of the WILLIAM used the Nikon D5100 DSLR camera4 with a 23.6 ×
15.6 mm and 4928×3264 pixels resolution back-illuminated Complementary Metal
Oxide Semiconductor (CMOS) sensor. This DSLR camera was later replaced by the

4http://imaging.nikon.com/lineup/dslr/d5100/
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2. SVPSF imaging systems

newer Nikon D5300 equipped by a sensor with same size 23.5×15.6 mm, but higher
resolution - 6000× 4000. The third generation is designed to operate astronomical
cameras. One of the stations, placed in Prague, uses the ASI 178MC color camera5

with a 7.4 × 5 mm and 3096 × 2080 pixels resolution CMOS sensor. However, a
housing of the third generation of the WILLIAM can hold even bigger cameras
such as ASI 1600MM-Cool6. The ASI 1600MM-Cool provides a high-resolution
cooled 17.6×13.3 mm and 4656×3520 pixels CMOS sensor. However, letters MM
in the name of the camera indicates that it is a monochromatic sensor-equipped
camera. The advantage is an absence of the Bayer mask and therefore sampling
among color channels. However, obtaining of the color image datasets is essential
for clouds analysis. Therefore we have to use additional color filters such as LRGB
filters7 provided by the manufacturer of the ASI camera. The 1.25” LRGB filters
have more than 92% transmission at pass-band, a multi-layer anti-reflection coating
and cut-off at 700-1100 nm in infra-red band.

Figure 2.8: The locations of the two stations of the WILLIAM.

As can be seen, we experiment with different types of astronomical cameras,
because different tasks require different cameras. For clouds detection algorithm is
suitable for the ASI 178MC camera or DSLR camera Nikon D5100. They produce
color images, that is essential for image clustering, and mentioned clouds detection
does not require a high-resolution sensor. The advantage of the Bayer mask is that
ASI 178MC obtain a color image by one capture and there is no image shift in RGB
channels when shooting multiple captures. Whereas the camera ASI 1600MM-
Cool with the high-resolution sensor is suitable for stellar objects observations. An
additional filter wheel allows using different high precision filters.

5https://astronomy-imaging-camera.com/products/usb-3-0/asi178mc-color/
6https://astronomy-imaging-camera.com/products/USB-3-0/asi1600mm-cool/
7https://astronomy-imaging-camera.com/products/filterfilter-wheel/

zwo-new-rgbl-filters-optimised-asi1600/
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Figure 2.9 shows a basic scheme of the new generation of the WILLIAM. As can
be seen, the scheduler controls tasks planned repeatedly or some occasional tasks
defined by the user. The camera systems are complemented by additional sensors
of the humidity, atmospheric air pressure, temperature, and it can be connected
to a conventional weather station. Furthermore, from Figure 2.9 can be seen that
different types of outputs can be achieved. When the camera system obtains an
image with evidence of rain or storm clouds in the image, the analyzing algorithm
should detect potential danger and create an alarm. This part of the system can
serve as prevention before the sudden rain. Another type of the output can be a
visualization of the detected clouds, statistics of cloud level and a number of visible
stellar objects.
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Figure 2.9: The scheme of the WILLIAM imaging system. The WILLIAM can
operate without user management. However, it is prepared to proceed scheduled
tasks defined by the user. Output can be realized in a form of graphs, alarms or
visualization of the clouds.
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2.4.2 Color processing
During designing of the new generation of the WILLIAM camera, we have used
findings reported in previous papers mentioned above. The new generation of the
WILLIAM reacts to last requirements in image processing of the weather condition
observations. We have introduced in [43] our SVPSF estimation algorithm and
clouds analysis including the results of the SVPSF model and MTF comparison of
both generations of cameras. We found explicit statistical criteria to distinguish
different cloud types from a clear sky in the luminous-less color diagrams. Measured
data provide valuable information about the used camera and optics that can be
used for compensation of the aberrations during analysis.

Figure 2.10: An example of acquired day image from Jarošov and the corresponding
image of clusters after segmentation.

As mentioned, the WILLIAM camera processes day images to obtain the in-
formation about cloud type. The algorithm is based on the processing of the color
information. The output of digital camera sensors is usually represented in RGB
channels with the information about both color and luminosity. Following proced-
ure describes the case of the color sensor with Bayer mask. This process makes use
of standardized calibration from AdobeRGB space. However, any other appropri-
ate calibration may be used (such as sRGB). If the monochromatic camera is used
then the corresponding calibration from the set of color filters (such as Johnson
photometric UBVRI or standard RGB) based on the knowledge of spectral response
into other color spaces is necessary. The influence of the atmospheric conditions
(clouds, clear sky, rain) on the color has been discussed in [62,63]. Transformation
into other color spaces such as CIE 1931 [64], CIE L*a*b* [65] or YCbCr [66] can
separate color from luminosity. This was proved to be useful for the automatic
cloud boundary recognition and rough cloud type classification [53]. The reason
is that for the RGB system it is necessary to use the combination of all three
channels, while for the other color transformations the luminosity channel can be
excluded for following image processing segmentation. Illustration of image after
segmentation is in Figure 2.10. Therefore, only a* and b* may be used in CIE
L*a*b*, x and z for CIE 1931 and only channels Cb and Cr for the color system
YCbCr. The considerable advantage of using, e.g., L*a*b* transformation instead
of the standard RGB system is to separate the clouds from the clear sky or even
to distinguish different types of clouds from the others [53].
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2.4. WILLIAM

A crucial part of the algorithm is the transformation into different color space,
and as well following image processing segmentation which uses just two chromin-
ance channels without the information about the cloud/sky luminosity. For this
purpose the K-means segmentation [67] has been proved as very useful [53]. Images
from WILLIAM database are separated into three independent sectors (clusters)
of similar colors regardless of the luminosity channel. The resulting color-color
diagrams (combination of two chrominance channels, such as R-G for RGB or x-y
for CIE 1931) can show up statistically the position of each color segment (for
instance stormy cloud or clear sky in the wide-field). Based on our preliminary
measurements from few hundreds of transformations it seems that dense and rainy
clouds such as Cumulus, Cumulonimbus, and Nimbostratus tend to occur in the
statistical areas for CIE 1931 [53].
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Chapter 3
Theoretical background

The following chapter focuses on the description of a mathematical background
that is used for modeling of the imaging systems. The chapter begins with the
PSF description, since it is the function including the influence of the system.
Follows the description of the wavefront modeling using the Zernike polynomials
and adaptation of these polynomials to an N-gonal aperture. Parts of this chapter
were published in [42], [68] and [69].

3.1 Point Spread function

The description of the general optical system should start with the geometrical
optics model. However, this model is not fully satisfactory as determined by Abbe
in 1873, when he proposed the theory of image formation [70, 71] assuming coher-
ent illumination. Although, it was Hopkins [18, 72, 73], who described his model
allowing the Fast Fourier transform (FFT) for practical calculations. Consider-
ing a basic image creation as transformation of the input wavefront through an
apertures (considering that lens has entrance and exit aperture), the PSF can be
expressed by Rayleigh-Sommerfeld equation, as described in [44], or using boundar-
ies by Helmholtz-Kirchhoff formulation that are essential formulations of aperture
integral describing image creation and providing corresponding diffraction pattern.
However, assuming the aperture and image size much smaller than z (the distance
from exit aperture to the image plane), the Fresnel approximation of complex field
U(u, v) becomes

U(u, v) = ejkz

jλz

∞∫∫
−∞

P (x, y) exp
(
jk

2z [(u− x)2 + (v − y)2]
)
dxdy, (3.1)

where P (x, y) is unity describing amplitude transmittance, k is the wavenumber.
The coordinate system is illustrated in Figure 3.1. The object plane is described
by the ξ, η coordinates; the exit pupil uses x, y notation, and the image plane uses
u, v notation.

21



3. Theoretical background

The Fresnel expression is, in fact, a paraxial solution for small angles around
the optical axis. Considering larger distances, where z > k(x2+y2)

2 , the Fraunhofer
approximation becomes valid as

U(u, v) = ejkz

jλz
exp

(
jk

2z (u2 + v2)
) ∞∫∫
−∞

P (x, y) exp
(
−j 2π

λz
(ux+ vy)

)
dxdy.

(3.2)

ρ
 z2

y
x

v

u

 Exit Pupil
Plane

Image Plane

z: op�cal axis

η 
ξ 

Object Plane

ρ 

θ 
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Normalised 
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(b) (c)

Normalised 
Image Plane

1û0
û

v ̂

x̂

H

ϕ 
v0̂

(a)

Figure 3.1: Graphical representation of the adopted coordinate systems. Subfigure
(a) illustrates all planes, subfigure (b) illustrates normalized exit pupil plane and
(c) illustrates notation of normalized Image plane.

However, optics is usually affected by various aberrations, such as distortion
which makes the PSF of the system space-variant, i.e., the PSF changes across
the field of view. It is, therefore, necessary to use a complicated model of the
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3.1. Point Spread function

system’s PSF with a perfect agreement with previous results with the Fraunhofer
diffraction pattern, using a description of the wavefront aberration W (x, y). It
should be noted, that both, Fresnel and Fraunhofer formulas can be expressed by
Fourier-transform. Let’s begin with a linear space-invariant optical imaging system,
which can be expressed as

h(u, v) = |F{P (x, y)}|2 =
∣∣∣∣F {p(x, y) exp

(
−i2π
λ2W (x, y)

)}∣∣∣∣2 , (3.3)

where p (x, y) is the unity inside and zero outside that defines the shape, the
size, and the transmission of the exit pupil, and W (x, y) is the phase deviation
of the wavefront from a reference sphere. The symbol of F denotes the Fourier-
transformation. The generalized exit pupil function is described in [44] as

P (x, y) = p(x, y) exp
(
−i2π

λ
W (x, y)

)
. (3.4)

An imaging system is space-invariant, if the image of a point source object
changes only in position, not in the functional form [22]. However, wide-field optical
systems give images where the point source object changes both in position and
in functional form. Thus, wide-field systems and their impulse responses lead to
space-variant optical systems. Then, from Equation (3.2) the light amplitude point
light source is the Fraunhofer expression at u = Mξ, v = Mη [6] [44] described as

h(u, v; ξ, η) = 1
λz1z2

∞∫∫
−∞

P (x, y) · · ·

· · · exp
{
−j 2π

λz2
[(u−Mξ)x+ (v −Mη)y]

}
dxdy.

(3.5)

Impulse response of the SVPSF then can be expressed as

h(u, v; ξ, η) = 1
λ2z1z2

∞∫∫
−∞

p(x, y) exp
(
−i2π

λ
W (x, y)

)
· · ·

· · · exp
{
−j 2π

λz2
[(u−Mξ)x+ (v −Mη)y]

}
dxdy,

(3.6)

with a defined magnification of the system

M = −z2

z1
, (3.7)
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3. Theoretical background

where z1 is the distance from the object plane to the principal plane and z2 is the
distance from the principal plane to the image plane.

3.2 Wavefront Aberration Functions

An ideal diffraction limited imaging system transforms a spherical input wave with
an inclination equal to the plane wave direction. As described by Hopkins [18],
real imaging systems convert the input plane wave into a deformed wavefront.
The difference between an ideal wavefront and an aberrated wavefront in the exit
aperture can be expressed as

W (x, y) = Wab(x, y)−Wsp(x, y), (3.8)

where W (x, y) are wavefronts - the surface of points characterized by the same
phase. Figure 3.2 illustrates the shape of the ideal spherical wavefront Wsp(x, y)
and aberrated wavefront Wab(x, y). Then the x̂, ŷ normalized coordinates are in-
troduced (see Figure 3.1b,c) at the exit pupil and ρ,θ polar coordinates. The
normalized image plane coordinates are û, v̂ and H, φ, respectively.

Pupil

Aberrated
Ideal

W(x, y) = Wab(x, y) – Wsp(x, y)

Wsp(x, y) Wab(x, y)

Op cal axis

Image 
plane

Figure 3.2: The difference between an ideal spherical wavefront and an aberrated
wavefront.

The aberrated wavefront can be represented by a set of primary Seidel aberra-
tions [74]. The primary aberrations are described by a series as

W (x, y) = A0 +A1ρcosθ +A2ρsinθ +A3ρ
2 +A4ρ

2cos (2θ) + . . .
. . . A5ρ

2sin (2θ) +A6ρ
3cosθ +A7ρ

3sinθ +A8ρ
4 + . . . ,

(3.9)
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3.2. Wavefront Aberration Functions

where expansion coefficients Ai relate to piston, tilt, defocus, astigmatism, coma
and spherical aberration. ρ and θ are a polar normalised pupil coordinates, ac-
cording to Figure 3.1. However, more popular representation of the wavefront
description is a set of orthonormal base functions, known as Zernike polynomi-
als. Zernike polynomials, which are described in [16] and in [75–78], are a set of
functions orthogonal over the unit circle, usually described in polar coordinates as
Zmn (ρ, θ), where ρ is the radius and θ is the angle with respect to the x̂-axis in the
exit aperture (see Figure 3.1b). They represent functions of optical distortions that
classify each aberration using a set of polynomials. The set of Zernike polynomials
is defined in [16]; other adoptions are in [75–78], and it can be written as

Zmn (ρ, θ) = Nm
n R

|m|
n (ρ) cos(mθ) m ≥ 0

Zmn (ρ, θ) = −Nm
n R

|m|
n (ρ) sin(mθ) m < 0

, (3.10)

with n describing the power of the radial polynomial and m describing the angular
frequency.

Nm
n =

√
2(n+ 1)
1 + δm0

, (3.11)

is the normalization factor with the Kronecker delta function δm0 = 1 for m = 0,
and δm0 = 0 for m 6= 0, and

R|m|n (ρ) =
(n−|m|)/2∑

s=0

(−1)s(n− s)!
s!
[

(n+|m|)
2 − s

]
!
[

(n−|m|)
2 − s

]
!
ρ(n−2s), (3.12)

is the radial part of the Zernike polynomial.

Any wavefront phase distortion over a circular aperture of unit radius can be
expanded as a sum of the Zernike polynomials as

W (ρ, θ) =
k∑
n

n∑
m=−n

amn Z
m
n (ρ, θ), (3.13)

which can be rewritten using Equation (3.10) as

W (ρ, θ) =
k∑
n

n∑
m=0

amn N
m
n R

|m|
n (ρ) cos(mθ)−

k∑
n

−1∑
m=−n

amn N
m
n R

|m|
n (ρ) sin(mθ),

(3.14)
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3. Theoretical background

where m has values of −n,−n+2, . . . n, k is the order of the polynomial expansion,
and amn = amn (H,ϕ) is the expansion coefficient of the Zmn aberration term in
the expansion, i.e., it is equal to the Root Mean Square (RMS) phase difference
for that mode. The wavefront aberration function across the field of view of the
optical system can then be described as

W (ρ, θ,H, ϕ) =
k∑

n=0

n∑
m=−n

amn (H,ϕ)Zmn (ρ, ϕ− θ), (3.15)

where the wavefront is described with normalized polar coordinates. A better
understanding can be provided by Table 3.1 and by Figure 3.3, which describes
the indexing of Zernike polynomials and the kind of aberration associated with an
index of Zernike polynomials.

Figure 3.3: The set of Zernike polynomials used in the model. Table 4.1 includes
the field dependency of these polynomials.

3.3 Introduction to aperture shapes

Optical design is not limited to circular shapes. Imaging systems can be designed
with various types of aperture shapes, e.g., squares, rectangles, ellipsoids or mirrors
with a hexagonal shape. However, N-gon polynomials require adapted orthogonal
polynomials, because the Zernike polynomials are not orthogonal over non-circular
apertures. The Zernike polynomials form a complete set of orthogonal basis func-
tions on the unit circle, where the addition or subtraction of several polynomials
does not affect the rest of the coefficients. Upton [79] published a description
of the Gram-Schmidt orthogonalization process (GSOP), which can be applied to
apertures of arbitrary shape. They provide treatment of each basis function as
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3.3. Introduction to aperture shapes

a linear combination of circular Zernike polynomials. However, the most import-
ant and most comprehensive works have been written by Mahajan starting with
a description of the Gram-Schmidt [80] orthogonalization process for non-circular
polynomials in [81]. In this work, the authors describe how to obtain the orthonor-
mal polynomial basis set for a hexagonal aperture by recursive GSOP. This work
was followed up by [33, 82], where Mahajan and Dai propose an analytic solution
for orthonormal basis functions for a hexagon, a rectangle, a square, an ellipse and
a slit as the limiting case of a rectangle. Works of Mahajan [33, 82] are included
in summarizing and extended paper [77]. As has been mentioned, Mahajan’s work
was based on a recursive algorithm of the GSOP. However, the GSOP recurs-
ive algorithm becames unstable when the number of basis functions is increased.
Dai [83], therefore, came up with a solution that uses a non-recursive method with
a matrix formulation.

The motivation of the following work is to obtain a set of orthonormal polyno-
mial basis functions for a general N-gon, based on the Zernike circular polynomi-
als. The N-gon is a general polygon with N vertices. Non-circular apertures can
be found for example in numerous applications such as polygonal mirrors of large
telescopes [84] or applications of the Calomel crystal with a square aperture win-
dow [29, 30, 85]. The next example of the non-circular aperture is the camera lens
aperture formed by tight blades that can change the size of the aperture, and the
blades form the shape of a polygon. Figure 3.4 shows an example of the pentagonal,
heptagonal and nonagonal aperture shapes of ordinary camera lenses used in the
WILLIAM experimental camera [39], e.g. Canon EF 50 mm f/1,8 II, Nikkor AF-S
18-70 mm f/3,5-4,5 DX and Nikkor AF 85 mm f/1,8 D. As has been mentioned,
published works have described the expression of analytic orthonormal polynomi-
als over symmetric aperture shapes, e.g., the square or the hexagon. However, for
applications such as WILLIAM and the Calomel crystal, it is required the orthonor-
mal polynomials of a general regular polygon. Moreover, it is required an analytic
solution for odd-sided regular aperture shapes such as pentagons, heptagons, and
nonagons. However, the analytic solution of odd-sided (x and y non-symmetrical
N-gon) aperture shapes produces laborious, complex polynomials. It is therefore

(a) The pentagonal aperture. (b) The heptagonal aperture. (c) The nonagonal aperture.

Figure 3.4: An example ofWILLIAM lenses: (a) The pentagon lens aperture
(Canon EF 50 mm f/1,8 II), (b) the heptagon lens aperture (Nikkor AF-S 18-
70 mm f/3,5-4,5 DX) and (c) the nonagon lens aperture (Nikkor AF 85 mm f/1,8
D).
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3. Theoretical background

analyzed a numerical solution of the orthonormalization process, and it is proposed
as an efficient numerical approximation of the orthonormal polynomials for general
aperture shapes including non-symmetrical, odd-sided aperture shapes. Table 3.1
lists 45 circle Zernike polynomials up to 8th order aberrations and relates the two
indices Zmn polynomials and single index Zj polynomials. The Zj follows Mahajan’s
single index scheme.

Table 3.1: Table of Zernike circle polynomials Zmn (x, y), related
notation Zj(x, y) according to Mahajan in Cartesian coordinates,
where ρ2 = x2 + y2.

Zmn (x, y) Zj(x, y) Polynomial
Z0

0 Z1 1
Z1

1 Z2 2x
Z−1

1 Z3 2y
Z0

2 Z4
√

3(2ρ2 − 1)
Z−2

2 Z5 2
√

6xy
Z2

2 Z6
√

6(x2 − y2)
Z−1

3 Z7
√

8y(3ρ2 − 2)
Z1

3 Z8
√

8x(3ρ2 − 2)
Z−3

3 Z9
√

8y(3x2 − y2)
Z3

3 Z10
√

8x(x2 − 3y2)
Z0

4 Z11
√

5(6ρ4 − 6ρ2 + 1)
Z2

4 Z12
√

10(x2 − y2)(4ρ2 − 3)
Z−2

4 Z13 2
√

10xy(4ρ2 − 3)
Z4

4 Z14
√

10(ρ4 − 8x2y2)
Z−4

4 Z15 4
√

10xy(x2 − y2)
Z1

5 Z16
√

12x(10ρ4 − 12ρ2 + 3)
Z−1

5 Z17
√

12y(10ρ4 − 12ρ2 + 3)
Z3

5 Z18
√

12x(x2 − 3y2)(5ρ2 − 4)
Z−3

5 Z19
√

12y(3x2 − y2)(5ρ2 − 4)
Z5

5 Z20
√

12x(16x4 − 20(x2)ρ2 + 5ρ4)
Z−5

5 Z21
√

12y(16y4 − 20y2ρ2 + 5ρ4)
Z0

6 Z22
√

7(20ρ6 − 30ρ4 + 12ρ2 − 1)
Z−2

6 Z23 2
√

14xy(15ρ4 − 20ρ2 + 6)
Z2

6 Z24
√

14(x2 − y2)(15ρ4 − 20ρ2 + 6)
Continued on next page
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3.3. Introduction to aperture shapes

Table 3.1 – continued from previous page
Zmn (x, y) Zj(x, y) Polynomial
Z−4

6 Z25 4
√

14xy(x2 − y2)(6ρ2 − 5)
Z4

6 Z26
√

14(8x4 − 8x2ρ2 + rho4)(6ρ2 − 5)
Z−6

6 Z27
√

14xy(32x4 − 32x2ρ2 + 6ρ4)
Z6

6 Z28
√

14(32x6 − 48x4ρ2 + 18x2ρ4 − ρ6)
Z−1

7 Z29 4y(35ρ6 − 60ρ4 + 30ρ2 − 4)
Z1

7 Z30 4x(35ρ6 − 60ρ4 + 30ρ2 − 4)
Z−3

7 Z31 4y(3x2 − y2)(21ρ4 − 30ρ2 + 10)
Z3

7 Z32 4x(x2 − 3y2)(21ρ4 − 30ρ2 + 10)
Z−5

7 Z33 4(7ρ2 − 6)(4x2y(x2 − y2) + y(ρ4 − 8x2y2))
Z5

7 Z34 4(7ρ2 − 6)(x(ρ4 − 8x2y2)− 4xy2(x2 − y2))
Z−7

7 Z35 8x2y(3ρ4 − 16x2y2) + 4y(x2 − y2)(ρ4 − 16x2y2)
Z7

7 Z36 4x(x2 − y2)(ρ4 − 16x2y2)− 8xy2(3ρ4 − 16x2y2)
Z0

8 Z37 3(70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1)
Z2

8 Z38
√

18(56ρ6 − 105ρ4 + 60ρ2 − 10)(x2 − y2)
Z−2

8 Z39 2
√

18xy(56ρ6 − 105ρ4 + 60ρ2 − 10)
Z4

8 Z40
√

18(28ρ4 − 42ρ2 + 15)(ρ4 − 8x2y2)
Z−4

8 Z41 4
√

18xy(28ρ4 − 42ρ2 + 15)(x2 − y2)

Z6
8 Z42

√
18(7x6 − 105x4y2 + 105x2y4 − 7y6 − 8x8 . . .

+112x6y2 − 112x2y6 + 8y8)

Z−6
8 Z43

√
18(−42x5y + 140x3y3 − 42xy5 + 48x7y . . .

−112x5y3 − 112x3y5 + 48xy7)
Z8

8 Z44
√

18(x8 − 28x6y2 + 70x4y4 − 28x2y6 + y8)
Z−8

8 Z45
√

18(−8x7y + 56x5y3 − 56x3y5 + 8xy7)

29



3. Theoretical background

3.4 N-gon basis decomposition to Zernike polynomials

As mentioned, a wavefront aberration W (x, y) over a circular aperture of unit
radius can be expanded as the sum of the Zernike polynomials [15, 42, 76–78, 86],
as

W (x, y) =
J∑
j=1

ajZj(x, y), (3.16)

using single index scheme, where j is the order of the polynomial (according to
Table 3.1) of J circle polynomials, and aj is the coefficient of the Zj mode in
the expansion. Using of the single index is appropriate for decomposition of the
circular polynomials to another aperture shapes. The generalized aperture function
is described by Equation (3.4).

Because the circular Zernike polynomials do not fulfill the orthogonal condition
over a non-circular aperture, the wavefront aberration over a general polygon must
be written as the expansion

W (x, y) =
J∑
j=1

ajPj(x, y), (3.17)

where Pj(x, y) are orthonormal polynomials obtained as the expansion

Pj(x, y) =
J∑
j=1

gjZj(x, y), (3.18)

where gj is the weight of the relevant Zernike polynomial Zj(x, y). The orthonor-
mality condition of polynomials Pj(x, y) is described as

1
A

∫
N−gon

Pj(x, y)Pj′(x, y)dxdy = δjj′ , (3.19)

where δjj′ is the Kronecker delta function. The area A of the N-gon inscribed
inside a unit circle is represented by

A =
R2N sin 2π

N

2 , (3.20)

where R is the radius equal to 1, and N is the number of vertices. As described
in [33], the GSOP [80] can be used to obtain the orthonormal polynomials Pj(x, y)
from the circle Zernike polynomials Zj(x, y), e.g.
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3.4. N-gon basis decomposition to Zernike polynomials

Pj+1(x, y) = Gj+1(x, y)
‖Gj+1(x, y)‖ = Gj+1(x, y)

[ 1
A

∫
N−gonG

2
j+1(x, y)dxdy]1/2

, (3.21)

where

Gj+1(x, y) =
j∑

k=1
dj+1,k(x, y)Pk(x, y) + Zj+1(x, y), j ∈ 〈1, 2, ..., J〉 , (3.22)

G1(x, y) = Z1(x, y) = 1, (3.23)

dj+1,k(x, y) = − 1
A

∫
N−gon

Zj+1(x, y)Pk(x, y)dxdy. (3.24)

It is evident that dj+1,k(x, y), Pj+1(x, y) and Gj+1(x, y) polynomials are ob-
tained recursively. When the dj+1,k(x, y) polynomial is equal to zero, the relevant
Zernike polynomial is not dependent, and gj is therefore equal to zero.

The equations described above contain an integral over an N-gon with N-
vertices. The analytic solution begins with the expression of (si, ci) ∈ (x, y) posi-
tions of the vertices as

si = R sin
(

2πi
N

)
, (3.25a)

ci = R cos
(

2πi
N

)
, (3.25b)

where si and ci are coordinates of the indexed vertex i ∈ 〈1, 2, ..., N〉 and the sym-
bols (A,B,C, ..., Z) are used for labeling N vertices. The indexing of the vertices is
illustrated in Figure 3.5 to Figure 3.9. The next step is to express the integration
limits of the N-gon. Let’s assume that the N-gon is described by a set of linear
functions

yi = nixi + qi, i ∈ 〈1, 2, ..., N〉 , (3.26)

where y and x are Cartesian coordinates, n is the slope, and q is the y-intercept of
a linear function. Then, using si and ci vertex positions, it can be obtained
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ni = ci − ci−1

si − si−1
, where

si−1 = sN

ci−1 = cN
, if i = 1, (3.27)

qi = ci−1 − nisi−1, where
si−1 = sN

ci−1 = cN
, if i = 1. (3.28)

Substituting Equation (3.27) and Equation (3.28) into Equation (3.26), the N-
gon limits illustrated in Figure 3.7 to Figure 3.9 are obtained as numbered sides
〈1, 2, ..., N〉 of the N-gon. Then the N-gon is divided into sections illustrated by
dashed lines. The number of sections is given by

M =
⌊
N

2

⌋
. (3.29)

Then we can write

dj+1,k(x, y) =

y−q1
n1∫

y−qN
nN

sN∫
s1

Zj+1(x, y)Pk(x, y)dxdy

︸ ︷︷ ︸
I1

+ · · ·

· · ·
M∑
m=2

y−qm
nm∫

y−qo
no

sm−1∫
sm

Zj+1(x, y)Pk(x, y)dxdy

︸ ︷︷ ︸
Im

,

(3.30)

where the index o = N + 1−m. Equation (3.30) has two parts. The part labeled
as I1 describes the integral over the top triangle of the polygon. The second part of
Equation (3.30), labeled as Im, describes the sum of the integrals over the remaining
sections of the polygon. Figure 3.5 shows an example of the division of a nonagon
into four sections. Similarly to separation in Equation (3.30), the integral inside
Equation (3.21) can be expressed as
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I₁ I₂ IM. . .

A 

B 

F 

H 
CH

y

x

E 

C 

D 

G 

A 

B 

F 

H 
CH

y

x

E 

C 

D 

G 

A 

B 

F 

H 
CH

y

x

E 

C 

D 

G 

A 

B 

F 

H 
CH

y

x

E 

C 

D 

G 

Figure 3.5: An example of nonagonal polygon section division used as the limits of
the integration. The nonagon is divided into 4 sections (Equation (3.29)) and the
boundaries are used in Equation (3.30) and Equation (3.31).

∫
N−gon

G2
j+1(x, y)dxdy =

y−q1
n1∫

y−qN
nN

sN∫
s1

G2
j+1(x, y)dxdy + · · ·

· · ·
M∑
m=2

y−qm
nm∫

y−qo
no

sm−1∫
sm

G2
j+1(x, y)dxdy.

(3.31)

Then Gj(x, y) and Pj(x, y) polynomials up to J can be recursively to obtained.
Using the procedure described above, we can obtain orthonormal polynomials for
a generalized N-gon. The results for square and hexagonal polynomials obtained
by this procedure are in good agreement with Mahajan’s results for square and
hexagonal aperture shapes [33]. However, we should pay attention to the orient-
ation of the polygon. The procedure always orients the polygon in such a way
that the top vertex is (0, 1) in Cartesian coordinates. Rotating the polygon to
another orientation causes changes in polynomials containing cos or sin. The next
section provides the results for pentagonal, heptagonal and nonagonal aperture
polynomials.

3.5 N-gon polynomials

The procedure mentioned above describes the GSOP [80,87]. By using this process,
we can obtain an analytical solution for a square aperture and a hexagonal aper-
ture that is in good agreement with the results for Mahajan’s hexagonal and square
polynomials [33]. However, an analytic solution for a pentagonal, heptagonal and
nonagonal polygon is more complex. This is due to their non-symmetry along the
x and y axis. As a consequence, the calculation of the higher order polynomials be-
comes ineffective, computationally complex and time-consuming. The polynomials
of the pentagon, heptagon, and nonagon are therefore given in analytical form up
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3. Theoretical background

to P11, H9 and N10, and these polynomials with j > (11, 9, 10) are written only
in the form of expressions of finite precision, because of the increasing complexity.
An analysis of the consequences of using finite numeric precision follows. Figure
3.6 illustrates all mentioned aperture shapes Coma interferograms (red), The 10λ
Coma PSF (violet) and corresponding PSF of the aberration-free system. It can
be seen that odd-sided aperture shapes provide PSF with multiple arms and these
PSFs are more similar to circle aperture PSF. The next subsection begins with a
description and an enumeration of the pentagonal polynomials.

Figure 3.6: The example of the square, pentagon, hexagon, heptagon, octagon and
nonagon aberration-free PSF, 3λ Coma PSF and interferogram of Coma aberration.

3.5.1 Pentagonal aperture
Figure 3.7 illustrates the coordinate system of a pentagon with its center at O(0, 0),
enumeration of the sides, labeling of the vertices and division of the N-gon into
sections (dashed lines). As can be seen, the pentagonal pupil can be divided by
the line labeled as F into two sections, consisting of the top triangle DAE and
the bottom trapezoid CBAD. The integration is then carried out over these two
regions, with the limits given by Equation (3.26).

It can be seen from Table 3.2 that all Pj(x, y) polynomials are dependent on each
other, except for P1(x, y), P2(x, y), P3(x, y), P5(x, y) and P6(x, y). Table 3.2 lists
only primary aberrations up to P11(x, y). They are written in their numerical form,
due to the complexity of the coefficients. However, a publicly available Dataset 1
(Ref. [69]), contains all pentagonal polynomials up to P45(x, y) and their numerical
form is expressed in Table A.2. Pentagonal polynomials up to P11(x, y) are provided
in analytical form. Polynomials where j > 11 are provided in their numerical form,
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3.5. N-gon polynomials

i.e. they are expressed with finite precision. Section 3.6 provides an analysis of the
use of finite precision.

O

A (s1,c1)

B (s2,c2)C (s3,c3)

D (s4,c4)

E (s5,c5)

y

x

1

2

3

4

5

F

=(0,1)

Figure 3.7: A unit pentagon in the Cartesian coordinate system inscribed inside a
unit circle.

Table 3.2: Zernike circle polynomials Zj(x, y) and pentagon polynomials Pj(x, y)
in Cartesian coordinates, where ρ2 = x2 + y2.

j Zj(x, y) Pj(x, y) Aberration
1 1 1 Piston
2 2x 1.1398Z2 x Tilt
3 2y 1.1398Z3 y Tilt
4

√
3(2ρ2 − 1) 0.5007Z1 + 1.2551Z4 Defocus

5 2
√

6xy 1.2878Z5 Astigmatism at 45◦
6

√
6(x2 − y2) 1.2878Z6 Astigmatism at 0◦

7
√

8y(3ρ2 − 2) 0.8252Z3 + 1.3473Z7 y Coma
8

√
8x(3ρ2 − 2) 0.8252Z2 + 1.3473Z8 x Coma

9
√

8y(3x2 − y2) −0.4142Z6 + 1.5144Z9 y Trefoil
10

√
8x(x2 − 3y2) −0.4142Z5 + 1.5144Z10 x Trefoil

11
√

5(6ρ4 − 6ρ2 + 1) 0.7142Z1 + 0.9995Z4 + 1.3696Z11 Primary spherical

3.5.2 Heptagonal aperture
As was mentioned above, a heptagonal aperture is often used in ordinary camera
lenses. Figure 3.8 shows that the lines labeled H and I can divide the heptagon
into the three sections, consisting of the top triangle FAG, the middle trapezoid
EBAF, and the bottom trapezoid DCBE. The integration is then carried out over
these three regions, with the limits described by Equation (3.26).

The resulting polynomials listed in Table 3.3 show a different kind of polynomial
dependency. Only Hp4(x, y), H7(x, y), H8(x, y) and Hp11(x, y) contain another
polynomial. All other heptagon polynomials listed in Table 3.3 stand alone. Table
3.3 lists only primary aberrations up to Hp11(x, y). They are written in their
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3. Theoretical background

numerical form, due to the complexity of the coefficients. However, the publicly
available Dataset 1 (Ref. [69]) contains all heptagon polynomials up to Hp45(x, y)
and their numerical form is expressed in Table A.4. Heptagon polynomials up
to Hp9(x, y) are provided in their analytical form. Polynomials where j > 9 are
provided in their numerical form, i.e., they are expressed with finite precision.
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5

6

7

=(0,1)

Figure 3.8: A unit heptagon in the Cartesian coordinate system inscribed inside a
unit circle.

Table 3.3: Zernike circle polynomials Zj(x, y) and heptagon polynomials Hpj(x, y)
in Cartesian coordinates, where ρ2 = x2 + y2.

j Zj(x, y) Hpj(x, y) Aberration
1 1 1 Piston
2 2x 1.0694Z2 x Tilt
3 2y 1.0694Z3 y Tilt
4

√
3(2ρ2 − 1) 0.2465Z1 + 1.1342Z4 Defocus

5 2
√

6xy 1.1412Z5 Astigmatism at 45◦
6

√
6(x2 − y2) 1.1411Z6 Astigmatism at 0◦

7
√

8y(3ρ2 − 2) 0.4121Z3 + 1.1952Z7 y Coma
8

√
8x(3ρ2 − 2) 0.4121Z2 + 1.1952Z8 x Coma

9
√

8y(3x2 − y2) 1.2152Z9 y Trefoil
10

√
8x(x2 − 3y2) 1.2152Z10 x Trefoil

11
√

5(6ρ4 − 6ρ2 + 1) 0.3621Z1 + 0.5489Z4 + 1.2385Z11 Primary spherical

3.5.3 Nonagonal aperture
A nonagonal aperture - a nine-bladed aperture - can be found in the higher class
of camera lenses. Figure 3.9 illustrates the coordinate system that is used for the
nonagon. Lines labeled J,K and L divide the nonagon into four sections, consisting
of the top triangle HAI, the trapezoid GBAH, the trapezoid FCBG, and the bottom
trapezoid EDCF.
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3.5. N-gon polynomials

As can be seen from Table 3.4, the resulting polynomials Nj(x, y) indicate a
kind of dependence similar to that for heptagonal polynomials. Thus, N4(x, y),
N7(x, y),N8(x, y) and N11(x, y) contain another polynomial. All other listed non-
agonal polynomials stand alone. Table 3.4 lists only primary aberrations up to
N11(x, y). They are written in their numerical form, due to the complexity of the
coefficients. However, the publicly available ’.mat’ Dataset 1 (Ref. [69]) contains all
heptagonal polynomials up to N45(x, y) and their numerical form is expressed in
Table A.6. Heptagonal polynomials up to N10(x, y) are provided in their analytical
form. Polynomials where j > 10 are provided in their numerical form, i.e., they
are expressed with finite precision.
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Figure 3.9: A unit nonagon in the Cartesian coordinate system inscribed inside a
unit circle.

Table 3.4: Zernike circle polynomials Zj(x, y) and nonagon polynomials Nj(x, y)
in terms of circular polynomials in Cartesian coordinates, where ρ2 = x2 + y2.

j Zj(x, y) Nj(x, y) Aberration
1 1 1 Piston
2 2x 1.0414Z2 x Tilt
3 2y 1.0414Z3 y Tilt
4

√
3(2ρ2 − 1) 0.1460Z1 + 1.0814Z4 Defocus

5 2
√

6xy 1.0838Z5 Astigmatism at 45◦
6

√
6(x2 − y2) 1.0838Z6 Astigmatism at 0◦

7
√

8y(3ρ2 − 2) 0.2430Z3 + 1.1206Z7 y Coma
8

√
8x(3ρ2 − 2) 0.2430Z2 + 1.1206Z8 x Coma

9
√

8y(3x2 − y2) 1.1271Z9 y Trefoil
10

√
8x(x2 − 3y2) 1.1271Z10 x Trefoil

11
√

5(6ρ4 − 6ρ2 + 1) 0.2082Z1 + 0.3306Z4 + 1.1541Z11 Primary spherical
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3. Theoretical background

3.6 An analysis of the finite precision calculation

Previous sections have mentioned issues in expressing the analytical form of the
odd-sided N-gon polynomials. The use of symbolic expressions when calculating
higher order orthonormal polynomials is highly demanding and inefficient. Numer-
ical finite precision expressions solve this issue. However, the sufficient precision
has to be considered, i.e., the number of digits in the polynomial coefficients. It
has been prepared series of calculations, in which can be observed the dependence
of the orthonormality on the decimal precision, see Figure 3.10. The second series
of calculations compares the wavefronts of the analytical form polynomials with
the wavefronts obtained from the numerical form polynomials.
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(a) The square aperture.
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(b) The pentagonal aperture.
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(c) The hexagonal aperture.
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(d) The heptagonal aperture.
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3.6. An analysis of the finite precision calculation
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(e) The octagonal aperture.
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(f) The nonagonal aperture.

Figure 3.10: An analysis of enumerated cross-polynomial matrix U according to
Equation (3.19) and Equation (3.32). The resulting matrix should satisfy Equation
(3.19), i.e. δjj′ = 0 for j 6=j′ and 1 for j = j′. The y axis has a logarithmic scale.

Figure 3.10 shows graphs enumerated for square, pentagonal, hexagonal, hep-
tagonal, octagonal and nonagonal aperture shapes. The even-sided N-gons were
enumerated for the purposes of comparison. The GSOP requires that the condition
given by Equation (3.19), be met, where the Kronecker delta function is equal to 1,
when two involved polynomials have the same index (j = j′), and 0 else. However,
the numerical form of the N-gon polynomials does not fully satisfy the condition
given by Equation (3.19). The matrices of the N-gon numerical polynomials have
1 on the diagonal, but the matrices contain small values (10−30 < kjj′ < 10−5)
off-diagonal. We therefore introduce

1
A

∫
N−gon

Pj(x, y)Pj′(x, y)dxdy = kjj′ , (3.32)

where function kjj′ has a value of 1 on diagonal and values of ≈ 0 off-diagonal.
Using Equation (3.32) over all N-gon polynomials, the cross-polynomial matrix U
is obtained with 1 on the diagonal and kjj′ anywhere else. This matrix can be
described as

U =


1 k1,2 · · · k1,n

k2,1 1 · · · k2,n
...

... . . . ...
k1,n k2,n · · · 1

 . (3.33)
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3. Theoretical background

Then we can write

u = 1
2

N∑
j=1

N∑
j′

kjj′ −
N∑
j=1

N∑
j′

δjj′ , (3.34)

where u is the sum of the off-diagonal values and N describes the number of polyno-
mials involved. Then they were enumerated the cross-polynomial matrices U of all
mentioned aperture shapes and obtained the sum defined by Equation (3.34). The
values obtained by summing the off-diagonal values define the amount of mutual
energy of the polynomials for j 6=j′. As can be seen from Figure 3.10, the matrices
of all aperture shapes were enumerated for the N = 5 to N = 45 involved polyno-
mials with the precision of 1 to 30 decimal points. Involving only 5 polynomials
increases the precision efficiency, and these polynomials give a residuum less than
10−30. Increasing the number of involved polynomials to N = 45 reveals decreas-
ing efficiency, and these polynomials stop reducing the orthonormality residuum
at around 10−20. Involving fewer polynomials (lower order polynomials) implies
using greater precision, i.e., more decimal places. This analysis concludes that the
use of more than 25 digits does not improve the results of a cross-polynomial or-
thonormality check. It is therefore sufficient and computationally efficient to use
25-digit precision.

As has been introduced above, the second analysis is devoted to differences
between the wavefront enumerated by analytical polynomials and by numerical
polynomials. By comparing these two wavefronts, we can obtain the direct differ-
ence, and we can calculate the Root Mean Square Error (RMSE) of the differential
wavefront. The wavefronts of 4 to 9 gons were calculated from polynomials with
j = 1 up to j = 11, i.e. the primary aberrations, see Figure 3.11. For the case of
the heptagon this comparison is up to j = 9, and for the nonagon, the comparison
is up to j = 10.
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(a) The square aperture.
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(c) The hexagonal aperture.

0 5 10 15 20 25 30
Digits (-)

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

R
M

SE
 (-

)

RMSE of the heptagonal wavefront differencies

H1
H2
H3
H4
H5
H6
H7
H8
H9

(d) The heptagonal aperture.
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(e) The octagonal aperture.
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(f) The nonagonal aperture.

Figure 3.11: The differences between wavefronts calculated from analytical poly-
nomials and the numerical polynomials. The y-axis has a logarithmic scale.

Figure 3.11 shows that the differences in the wavefronts of all aperture shapes
change up to the level of 10 digits. Then, the differences between the more complex
analytical form and the numerical form of the polynomials achieve values of around
10−15 for the heptagon and 10−12 for the nonagon. The use of more than 10 digits
does not improve the results, and the residuum remains constant. However, it can
be seen that the direct difference between the analytical wavefront and numerical
polynomial wavefront shows great similarity.

The last graph compares the values of the cross-polynomials given by Equation
3.34 for the analytical polynomials and the values given by the numerical polyno-
mials. As can be seen from Figure 3.12, where the red bars represent analytical

41



3. Theoretical background

polynomials, the matrix of the square, the hexagon, and the octagon contain 0 off-
diagonal values, i.e., they are orthonormal. However, the matrices of the pentagon,
the heptagon, and the nonagon contain very small (< 10−68) off-diagonal values,
even for the analytical polynomials. The blue bars represent numerical polyno-
mials, and it can be seen that the values of their off-diagonal coefficients achieve
10−21; 10−25. This graph provides a direct comparison of the analytical and nu-
merical polynomials. It can be seen that, especially for odd-sided N-gons, the
numerical polynomials provide an appropriate and efficient solution.
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Figure 3.12: A graph comparing the cross-polynomial matrix of the analytical poly-
nomials (red) and the numerical polynomials (blue). The y-axis has a logarithmic
scale.

Following up on previous works mentioned above, the orthonormal polynomials
of hexagonal and square aperture shapes has been verified by the orthonormal poly-
nomials of these aperture shapes provided in [33], and they are in good agreement.
The polynomials can be expressed for any regular N-gon on the basis of the Gram-
Schmidt orthogonalization process. As an example, it is proposed the orthonormal
polynomials of pentagonal, heptagonal and nonagonal lens apertures. Because of
the complexity of odd-sided N-gon analytical polynomials, an orthonormality ana-
lysis of numerical polynomials (the numerical form of the analytical polynomials)
was performed. The analysis showed the influence of the decimal precision. The
second analysis showed the dependency of numerical precision on the wavefront
divergence against the analytically enumerated wavefront. This analysis showed
that the numerical form polynomials provide wavefronts similar to those of the
analytical polynomials. The final analysis provided by the graph in Figure 3.12 is
a combination of the two previous analyses. It compares the analytical and numer-
ical cross-polynomial matrix residuals. While the symmetrical, even-sided N-gons
are perfectly orthonormal (the off-diagonal values are 0), the odd-sided polynomi-
als show small residuals, even in their analytical form. N-gons with 4 to 9 sides
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3.6. An analysis of the finite precision calculation

were enumerated to show their similarities in some aspects, e.g., their dependency
on decimal precision, and their differences when a comparison is made of the or-
thonormality. Due to the complexity of the odd-sided polynomials, they are used
in their numerical form.

Examining Tables 3.2 to 3.4, it can be observed an analogy with the results in
[33] for a hexagon. The pentagon needs more polynomials for balancing aberrations,
e.g. P4, P6 − P11, because of the poor approximation of the circle. However, the
way that the heptagonal and nonagonal polynomials are balanced is similar to the
way that the polynomials of the hexagon provided in [33] are balanced. The process
described above, and the enumerated polynomials, can be used for an aberration
description of N-gon apertures. Tables of square, pentagon, hexagon, heptagon,
octagon and nonagon polynomials in their numerical form up to 8th order are
listed in Appendix (Tables A.1, A.2, A.3, A.4, A.5, A.6).
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Chapter 4
Space-Variant optical model

The following chapter focuses on the introduction of the field dependency of the
used polynomials. The first section describes the expressions leading to space-
variant polynomials. The SVPSF model proposal follows. Parts of this chapter
were published in [42].

4.1 Field Dependency in the image plane

A description of the wavefront aberration of a circular rotationally symmetric op-
tical system can be adopted from [21], originally from [18] as

W (ρ, θ;H,ϕ) =
∞∑
p

∞∑
n

∞∑
m

WklmH
kρl cosm(ϕ− θ), (4.1)

where k = 2p + m and l = 2n + m. Symbol Wklm is used for the expansion
coefficients; the coordinates are defined in Figure 3.1c. The field dependency of
amn (H, ϕ) can be solved by comparing wavefront aberrations using Equations (3.15)
and (4.1) as

k∑
n=0

n∑
m=−n

amn (H,ϕ)Zmn (ρ, ϕ− θ) =
∞∑
p

∞∑
n

∞∑
m

WklmH
kρl cosm(ϕ− θ). (4.2)

Equation (4.2) can be obtained by expanding Equation (3.15) and rewriting
terms cosm(θ, ϕ) into terms containing a set of goniometric functions cos(mθ),
sin(mθ), r ∈ N and comparing the coefficients in this form with expanded Zernike
polynomials (as in Table 4.1). The resulting coefficients amn (H, ϕ) describing the
space variation of Zernike polynomials are presented in [21]. Coefficients Wklm are
then used for describing the aberration of the space-variant optical system. The
order of the aberration terms is defined by Hopkins in [18] as
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4. Space-Variant optical model

order = (sum of the powers of ρ and θ)− 1. (4.3)

4.2 Proposed Method

The method proposed in this paper is based on modeling the PSF of the system,
and comparing it with real image data without requiring measurements of the
wavefront aberrations. The fitting of the model takes place in the image plane.

There are three conditions for acquiring the set of calibration images. The first
criterion is that FWHM of the image of the light source should be sufficient for PSF
estimation. The experimental results show that FWHM size greater than 5 px is
enough for the algorithm. FWHM of the diffractive image of the source should be
smaller than 1 px. Otherwise, the diffractive function has to be added to the model
of the system. The image of the 200 µm pinhole has FWHM size 0.6 µm which
is less than the size of the pixel of our camera. The influence of the source shape
has to be taken into account. The second criterion is the Signal-to-Noise Ratio
(SNR), which should be greater than 20 dB. Section 4.4.1 contains a comparison
of results obtained with different SNR. The third criterion is that the number of
test images depends on the spatial variance of the system, i.e., a heavily distorted
optical system will require more test images to satisfy this criterion. We have to
choose the distance between two different PSFs in such a way that

RMSEIN (fi, fi+1) =

√√√√ 1
M ×N

N−1∑
u=0

M−1∑
v=0

(fi − fi+1)2 < 5%, (4.4)

where fi and fi+1 are the images of the point light source in the image plane.
M and N are the sizes of the fi and fi+1 images. In our example, a grid of 24
positions of the PSFs in one quadrant of the optical system is sufficient to estimate
the model. The wavefront is modeled using Zernike polynomials and known optical
parameters. In addition to the input image data, we need to know camera sensor
parameters such as resolution, the size of the sensor and optical parameters such
as the focal length (crop factor, if included), the F-number and the diameter of the
exit pupil. The obtained model of the PSF of the optical system is based on the
assessment of differential metrics.

We can describe the modeling of real UWFOV systems as a procedure with
three main parts: the optical part, the image sensor, and the influence of the sensor
noise. The space-variant impulse response h(u, v; ξ, η) can include the influence of
the image sensor (e.g., pixel shape and sensitivity profile, noise or quantization
error). The sensor has square pixels with uniform sensitivity. Then, the PSF of
the imaging system can be described as
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Table 4.1: The relation between indices and coefficients of the Zernike polynomials.

Zmn (ρ, θ) amn Expansion Coefficient Function Name

Z0
0 (ρ, θ) a0

0

1
2
[ 5

9W0,10,0 + 2
5W080 + 1

2W060 + 2
3W040 +W020 +H6 (W620 + 1

2W622
)
. . .

+H4 (W420 + 1
2W422 + 2

3W440 + 1
3W442 + 1

4W444
)
. . .

+H2 (W220 + 1
2W222 + 2

3W240 + 1
3W242 + 1

2W260 + 1
4W262

)]
. . .

+W800H
8 +W600H

6 +W400H
4 +W200H

2 +W000

Piston

Z1
1 (ρ, θ) a1

1

[
− 16

35W171 + 1
2W151 + 2

3W131 +W111 +H6W171 +H4 (W511 + 2
3W531 + 1

2W533+
)
. . .

+H2 (W311 + 1
2W351 − 9

40W533 + 2
3W331 + 1

2W333 + 3
5W353

)]
H cos(ϕ)

Tilt

Z−1
1 (ρ, θ) a−1

1

[
− 16

35W171 + 1
2W151 + 2

3W131 +W111 +H6W171 +H4 (W511 + 2
3W531 + 1

2W533+
)
. . .

+H2 (W311 + 1
2W351 − 9

40W533 + 2
3W331 + 1

2W333 + 3
5W353

)]
H sin(ϕ)

Z0
2 (ρ, θ) a0

2

1
2
[ 20

21W0,10,0 + 4
5W080 + 9

10W060 +W040 +W020 +H6 (W620 + 1
2W622

)
. . .

+H4 (W420 + 1
2W422 +W440 + 1

2W442 + 3
8W444

)
. . .

+H2 (W220 + 1
2W222 +W240 + 1

2W242 + 9
10W260 + 9

20W262
)] Focus

Z2
2 (ρ, θ) a2

2 1
2
[ 3

5W262 + 3
4W242 +W222 +H4W622 +H2 (W422 + 3

4W444 + 3
4W442

)]
H2 cos(2ϕ) Astigmatism

Z−2
2 (ρ, θ) a−2

2
1
2
[ 3

5W262 + 3
4W242 +W222 +H4W622 +H2 (W422 + 3

4W444 + 3
4W442

)]
H2 sin(2ϕ)

Z1
3 (ρ, θ) a1

3

1
3
[ 6

5W171 + 6
5W151 +W131 +H4 (W531 + 3

4W533
)
. . .

+H2 (W531 + 3
4W333 + 6

5W351 + 9
10W353

)]
H cos(ϕ)

Coma

Z−1
3 (ρ, θ) a−1

3

1
3
[ 6

5W171 + 6
5W151 +W131 +H4 (W531 + 3

4W533
)
. . .

+H2 (W531 + 3
4W333 + 6

5W351 + 9
10W353

)]
H sin(ϕ)

Z0
4 (ρ, θ) a0

4

1
6
[ 25

14W0,10,0 + 12
7 W080 + 3

2W060 +W040 +H4 (W440 + 1
2W442 + 3

8W444
)
. . .

+H2 (W240 + 1
2W242 + 3

2W260 + 3
4W262

)] Spherical

Z3
3 (ρ, θ) a3

3
1
4
(
W333 + 1

20W353 +H2W533
)
H3 cos(3ϕ) Elliptical

Z−3
3 (ρ, θ) a−3

3
1
4
(
W333 + 1

20W353 +H2W533
)
H3 sin(3ϕ) Coma

Z2
4 (ρ, θ) a2

4
1
4
[ 1

2W242 + 2
3W262 +H2 1

2 (W444 +W442)
]
H2 cos(2ϕ) Oblique

Z−2
4 (ρ, θ) a−2

4
1
4
[ 1

2W242 + 2
3W262 +H2 1

2 (W444 +W442)
]
H2 sin(2ϕ) Spherical

Z1
5 (ρ, θ) a1

5
1
10
[ 12

7 W171 +W151 +H2 (W351 + 3
4W353

)]
H cos(ϕ) 5th Coma

Z−1
5 (ρ, θ) a−1

5
1
10
[ 12

7 W171 +W151 +H2 (W351 + 3
4W353

)]
H sin(ϕ)

Z0
6 (ρ, θ) a0

6
1
20
[ 25

9 W0,10,0 + 2W080 +W060 +H2 (W260 + 1
2W262

)]
5th Spherical

Z3
5 (ρ, θ) a3

5
1
20W353H

3 cos(3ϕ)

Z−3
5 (ρ, θ) a−3

5
1
20W353H

3 sin(3ϕ)

Z4
4 (ρ, θ) a4

4
1
8W444H

4 cos(4ϕ)

Z−4
4 (ρ, θ) a−4

4
1
8W444H

4 sin(4ϕ)

Z1
7 (ρ, θ) a1

7
1
35W171H cos(ϕ)

Z−1
7 (ρ, θ) a−1

7
1
35W171H sin(ϕ)

Z2
6 (ρ, θ) a2

6
1
30W262H

2 cos(2ϕ)

Z−2
6 (ρ, θ) a−2

6
1
30W262H

2 sin(2ϕ)

Z0
8 (ρ, θ) a0

8
1
28W0,10,0 + 1

70W080 7th Spherical

Z0
10(ρ, θ) a0

10
1

252W0,10,0 9th Spherical
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4. Space-Variant optical model

h(u, v; ξ, η) = hopt(u, v; ξ, η) ∗ hsen(u, v), (4.5)

where hsen(u, v) is the PSF of the sensor and hopt(u, v; ξ, η) is the PSF of the optical
part. The symbol * describes the convolution. hsen(u, v) can be measured from the
sensor, and the influence of the spatial sampling is discussed later. hopt(u, v; ξ, η)
can be calculated from the system parameters and wavefront deformations using
the Fourier transform as described in Equation (3.6). The wavefront deformation is
modeled using Zernike polynomials for the target position in the image plane (see
Equation (3.15)). Ultra-wide field images typically have angular dependent PSF.
High orders of Zernike polynomials are therefore used in the approximation. The
wavefront approximation is used up to the 8th order plus the 9thspherical aberration
of the expansion function. The field dependence of the coefficients is formulated
in [21]. In our work, the set of field-dependent coefficients was expanded up to the
8th order plus the 9thspherical aberration. Table 4.1 provides the expressions of
the used Wklm coefficients according to the Zernike polynomials.

Let’s assume an imaging system with an unknown aberration model. We then
obtain with this system a grid of K test images of point light sources covering the
entire FOV as

{fi(u, v)}Ki=1 . (4.6)

Then, let

{fd(û, v̂)}Ld=1 , (4.7)

be the d-th realization of the model in the corresponding position in the image
as the original object. Sub-matrix fi is the image of the point light source in the
image plane, while matrix fd is the sub-image model computed by our method.
The size of the sub-arrays must be sufficient to cover the whole neighborhood of
the point light object on the positions {u0i, v0i)}

K
i=1.

As was mentioned above, symbols û, v̂ are used for image plane coordinates
in the normalized optimization space, and u, v are image plane coordinates. Note
that fi and fd can be located at any point over the entire field of view. The
step between the positions of the point light source has to be chosen to cover the
observable difference of the acquired point. The positions of the point light source
in the field of view play an important role in the convergence efficiency. In our
example, we divided the field of view each 10 degrees uniformly horizontally and
vertically. We, therefore, obtain a matrix of PSFs sufficient for a description of the
model. It turned out that finer division of the FOV is not necessary and does not
improve the accuracy of the model and it satisfies the condition in Equation (4.4).

The algorithm uses two evaluation methods. The first method is based on calcu-
lating the RMSE over the difference matrix in Equation (4.10) and optimizing the
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Table 4.2: An example of estimated Wklm coefficients and resulting set of coeffi-
cients. d stands for numbering of a realization.

d W111 W020 W040 W131 W220 W222 W311 · · · W0100

1 -1.6308 2.5148 4.6706 1.2561 0.2444 -0.3173 1.8344 · · · 0.0725
2 -1.7982 2.5301 4.6656 1.2627 0.2441 -0.3179 1.2103 · · · 0.0727
3 -1.4990 2.5439 4.9892 1.0591 0.3155 -0.2575 1.2050 · · · -0.1780
4 -1.7029 2.4587 3.7209 1.8654 0.3559 -0.2148 1.7499 · · · -0.0686
5 -1.5539 2.6428 4.5441 2.2722 0.3194 -0.1695 1.0072 · · · -0.0439
6 -1.5539 2.6428 4.5441 2.2722 0.3194 -0.1695 1.0072 · · · -0.0439
...

...
...

...
...

...
...

... . . . ...
L -1.7916 2.6058 4.5781 1.4836 0.3025 -0.2439 1.7116 · · · -0.0667

R
es

ul
tin

g
co

effi
ci

en
ts

-1.6308 2.5301 4.5781 1.2674 0.3025 -0.2439 1.4581 · · · -0.0596

Wklm parameters and the ∆û,∆v̂ positions for decreasing residuals. The second
method is based on deducting the original and model matrix to obtain the Max-
imum Difference (MD). Then, the residuals of this method indicate the deviation
against the original matrix. The first method with RMSE calculation provides
a better shape description. However, this method can result in local extremes.
The reduction can be resolved by using the MD calculation method. This method
minimizes the local extremes, because it is focused on minimizing the maximum
difference between the fi and fd object matrices, but the output can be a more
general shape of PSF.

Let’s now introduce operators RMSE(fi, fd) and MD(fi, fd), which are used
as descriptors of the differences between the original PSF and the model of PSF
(fi and fd).

RMSE(fi, fd) =

√√√√ 1
M ×N

N−1∑
ũ=0

M−1∑
ṽ=0

(fi(u, v)− fd(û, v̂))2. (4.8)

MD(fi, fd) = max
(u,v)

(|fi(u, v)− fd(û, v̂)|) . (4.9)

M and N are the sizes of the fi and fd sub-arrays. The optimization para-
meter of the Wklm coefficients uses the Nelder-Mead optimizing algorithm, which
is described in detail in [88]. Let Rfi,fd

be the optimizing operator, then

Rfi,fd
(û, v̂) = min

Wklm,∆u,∆v
[RMSE(fi, fd) ∨MD(fi, fd)] , (4.10)

49



4. Space-Variant optical model

Obtain 
Wklm(0,0),Δû,Δv 

at the first posi n,
d = 1

Obtain 
Wklm(û,0),Δû,Δv 

from points on the  
posi ons along 

the û-axis

Obtain 
Wklm(0,v),Δû,Δv 

from points on the  
posi ons along 

the v-axis

Obtain 
Wklm(û,v),Δû,Δv

from points on off-axis 
posi ons

Start condi on 
Wklm(0,0) from 
the first point

d = 2

Start condi on 
Wklm(û,0) from 
the previous 

point

Start condi on 
Wklm(0,v) from 
the previous 

point

Wklm(û,v) 
coefficients 

from the 
previous point

d W131 W040 W020 …
1 3.14 8.94 3.24 …
2 2.75 7.42 1.85 …… … … … …

L-2 2.83 7.82 1.57 …
L-1 2.95 8.41 1.72 …
L 2.73 7.43 1.86 …

median 2.77 7.92 1.67 ...

m
ed

ia
n

Nu
m

. o
f 

re
al

iza
on

s

Wklm(d) Wklm(d)

Wklm(d)

The output PSF model 
with es mated Wklm 

coefficients

Wklm(d)

Start condi n 
Wklm Coefficients 
from the previous 
order fi ng (4th, 

6th)

4th order 
polynomial 

model

6th order 
polynomial 

model

8th order 
polynomial 

model

2n
d 

lo
op

3
pool dr

4th order polynomial model

6th order polynomial model

8th order polynomial model

Results

Input image data 
and system 
parameters

Figure 4.1: Diagram of the proposed algorithm. Note that the Wklm coefficients
from 4th order estimate are used as a start condition for the 6th order estimate,
and the 6th order Wklm coefficients are used as a start condition for an estimate of
the 8th order Wklm coefficients.

where Wklm,∆û,∆v̂ are variables for minimizing the cost function. For multi-
parameter optimization tasks, the challenge is to find the global minimum of the
function. Considering this issue, we can find an appropriate set of starting para-
meters of the fit algorithm by smart selection of on-axis points (PSFs) on which
we will obtain appropriate Wklm,∆û,∆v̂ variables, and we will then increase the
precision of our model by selecting off-axis points and improving Wklm,∆û,∆v̂
variables. The process of point selection is illustrated in Figure 4.1, and the steps
in the algorithm are as follows:

• Select a point placed on the optical axis (this point is considered as SV
aberration free).

• The Wklm optimization coefficient is based on minimizing RMSE or the MD
metrics. Then we obtain

Rfi,fd
(0, 0)⇒Wklm(1),∆û,∆v̂, (4.11)

where Wklm (1) is the first realization of the fit, and ∆û,∆v̂ represent the
displacement of the object point in the image plane.
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• The next calibration point will be placed on the û-axis and next to the first
point.

• All Wklm coefficients from the first point fit will be used as start conditions
in the next step of the fit.

• In the next step, we will fit all the points along the û-axis by increasing
distance H.

• The previous result is used as the start condition for the next point.

Rfi,fd
(û, 0)⇒Wklm(d),∆û,∆v̂. (4.12)

• Then, we can continue along the v̂-axis by increasing distance H. This pro-
cedure gives the first view of the model.

Rfi,fd
(0, v̂)⇒Wklm(d),∆û,∆v̂, (4.13)

where Wklm (d) is the d-th realization of the fit.

• After fitting all the on-axis points, we will start to fit all the off-axis points.

Rfi,fd
(û, v̂)⇒Wklm,∆û,∆v̂. (4.14)

• After fitting all the points, we need to evaluate the output Wklm coefficients
which can describe the field dependency of our model.

• It was verified experimentally that the median applied to the set of estimated
Wklm coefficients provides better results of the output model than other stat-
istical methods. Thus, we need to find the median of every Wklm coefficient
over all fit realizations (the number of realizations is L) of the used points.
This step will eliminate extreme values of Wklm coefficients which can occur
at some positions of the PSF due to convergence issues caused by sampling of
the image or overfitting effects caused by high orders polynomials. Extreme
values indicate that the algorithm found some local minimum of the cost
function and not the global minimum. The values of the Wklm coefficients
are then significantly different from the coefficients obtained in the previous
position. These variations are given by the goodness of fit.

• The output set of Wklm coefficients then consists of values verified over the
field.

As is illustrated in Figure 4.1, the described procedure repeats in every order
(as defined in Equation (4.3)) of Wklm coefficients. The estimates of higher order
coefficients (6th and 8th) come from lower order coefficients that have already been
estimated from lower orders. If we want to describe our optical system with coeffi-
cients up to the 8th order, we will first need to obtain coefficients of the 4th order.
Then, it is necessary to repeat the procedure from Equation (4.11) to Equation
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4. Space-Variant optical model

(4.14) of the previously described procedure assuming 4th order Wklm coefficients
as a starting condition. Following the whole procedure, we will estimate the 6th

order coefficients. Then, repeating the procedure again with 6th order coefficients
as a starting condition, we can finally calculate 35 coefficients of the 8th order. The
result is a set of coefficients (the number of coefficients depends on the order that is
used) related to the optical system with the field dependency described in Section
4.1.
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Figure 4.2: A graph comparing the performance of Nelder-Mead and Quasi-Newton
optimization methods.

4.2.1 Optimization
As mentioned, the model uses the Nelder-Mead [88,89] optimization. However, the
algorithm can find many local minimums during the optimization. The existence of
many local minimums is a common issue of optimization. According to this obvious
issue, it was defined as the calibration algorithm, described in the previous section.
Following the prescribed steps leads to a successful finding of Wklm coefficients.
However, the Nelder-Nead optimizing method can be time-consuming and leads to
a high number of iterations. The Quasi-Newton optimization method, described by
Bonnas [90], Press [91] and others, shows to be the promising alternative. Figure
4.2 shows comparison of Nelder-Mead (blue) and Quasi-Newton (red) optimization
of MD parameter. As can be seen, the Quasi-Newton method provides straight-
forward optimization, when finding minimum of MD parameter. On the other
side, the Nelder-Mead obviously tests many combinations (left part of the graph,
blue markers) providing initially inappropriate results. However, after several iter-
ations, a suitable optimization is found, and as can be seen, the model providing
the MD = 7%, as for the Quasi-Newton optimization. From this perspective,
the Quasi-Newton optimization method indicates to be better tool. However, the
Nelder-Mead method proved to be more robust method on large number of tests.
It can be concluded, that Quasi-Newton method can be used for initial estimation
of parameters, but for searching for a complicated model, the Nelder-Mead method
proved to be the suitable method.
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4.3 Sampling

An important part of the SVPSF model that has to be considered is the sampling of
the exit pupil (in order to the wavefront sampling) and the image plane sampling.
The Fourier transform (FT) is involved in calculations of the pupil function and
corresponding transfer function, as illustrates Figure 4.3. In practical calculations
the FFT is used. However, we have to fulfill the Nyquist-Shannon theorem where
the sampling frequency fs = 1/∆x = 1/∆y must be more than two times higher
than the cutoff frequency

∆x = ∆y ≤ 1
2fcutoff

. (4.15)

The cutoff frequency can be expressed as

fcutoff = D

λf
, (4.16)

where D is the diameter of the exit pupil, λ is the wavelength and f is the focal
length. Then we can express the sampling distances as

∆x = ∆y = λfm

D
, (4.17)

where is used the scaling factor m, that can affect the size of PSF in the image
plane. As can be seen from Figure 4.3, the spatial frequency coordinates of image
plane are expressed as ∆u = ∆v = x

λf = y
λf .
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Figure 4.3: Illustration of the aperture function, PSF, MTF and OTF functions
relations. Illustrated PSF of the 10λ Coma aberration shows the size of the PSF
according to the aperture size (black circle).
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4.4 Quality of the model

This section aims to verify the method for estimating the Wklm coefficients. We,
therefore, simulated an artificial imaging system and tested the convergence of the
introduced algorithm to find proper Wklm parameters. The second subsection of
results involves modeling real imaging systems with the results of different orders
of the Zernike polynomials. The input conditions, such as SNR > 20 dB (peak to
noise) of all considered PSFs, the number of calibration images and FWHM, men-
tioned in Section 4.2 have to be taken into account before acquiring the calibration
images and applying the algorithm of the PSF estimate.

4.4.1 Numerical Stability Verification
This section deals with verifying the stability of the optimization convergence. The
test pattern, used for verifying the functionality of the algorithm was an image ob-
tained by generating random Wklm coefficients (i.e., random power of optical aber-
rations) and placing PSFs in locations covering the entire field of view (see Figure
4.4), assuming a rotational symmetric imaging system. To verify the algorithm, we
test PSFs in the locations marked with red circles.

Table 4.3: The sensor size, the resolution and the optical parameters of the simu-
lated artificial imaging system.

Resolution 3358 × 2536 px
Sensor size 18.1 × 13.7 mm
Pixel size 5.39 µm

Lens focus distance 10 mm
FOV 110◦

Table 4.3 summarizes the parameters of the simulated system. Table 4.4, Fig-
ures 4.5 and 4.6 show successive verification of the proposed algorithm by values of
MD and the RMSE operator, a fitted curve illustrating the trend of the results, and
standard deviation error bars. We can see that the difference between the original
and the model is within the order of thousandths. The difference is given only
by quantization noise and the sampling of the test pattern. The sampling of the
original PSF appears as a serious issue, and low resolution causes problems within
the convergence in the optimization of the Wklm parameters. The resolution of the
image may affect the accurate positioning of the PSF. For an explanation, we can
find the maximum of the PSF by calculating the center of the mass precisely, if the
sampling of the pattern is finer. Therefore, if we can find the maximum precisely,
we can use precise positioning û, v̂ for calculating the PSF of the system.

The graphs mentioned above provide information about the accuracy of the
model against the positioning of the PSF in the image. However, it can also be
useful to mention the accuracy of the model when the original image includes noise.
For this reason, we performed a test where one PSF, in the center of the image,
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Figure 4.4: Field of simulated PSFs with randomly generated Wklm coefficients.
We consider the simulated imaging system as rotationally symmetric. The points
in the red circle were used for verifying the algorithm.

Table 4.4: Selected on-axis points results of verification of the algorithm, where
normalized distance H is from 0 to 0.83 and φ is equal to zero. Image distance H is
normalized according to the sensor, and it is related to a FOV of 110◦; all optical
parameters are summarized in Table 4.3. Differences between the original PSF and
the model are within the order of thousandths. Thus, the proposed algorithm can
find the exact Wklm coefficients used for generating the test pattern illustrated in
Figure 4.4.

Metrics
Normalized Image Distance H (-)
0 0.17 0.33 0.50 0.67 0.83

RMSE (10−5) 8.2 7.3 8.8 16 57 270
MD (‰) 0.14 0.13 0.16 0.36 2.1 6.4

was affected by additional Gaussian noise. A test was performed in which the SNR
in the image under test was from 28 dB to 9 dB (see Figure 4.7). We can see that
the algorithm works quite well from 28 dB to 20 dB, and MD is less than 3%.
However, when SNR is below 20 dB, the error decreases rapidly. This is due to the
fact that our model focuses on optical aberrations, not on modeling the noise.

Figure 4.8 illustrates a direct comparison between the original PSF, the obtained
model and the difference between them in relation to RMSE and the MD operator.
This verification process was performed to verify whether the algorithm can find the
model Wklm parameters that are closest to the Wklm coefficients used in generating
the pattern illustrated in Figure 4.4.
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Figure 4.5: The verification results contain all points used in the verification. The
positions of all points are illustrated in Figure 4.4. MD according to the normalized
image distance.
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Figure 4.6: The verification results contain all points used in the verification. The
positions of all points are illustrated in Figure 4.4. RMSE according to the nor-
malized image distance.
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Figure 4.7: The dependence of SNR on MD. When SNR is lower than 20 dB, the
error of the model increases rapidly.

Figure 4.8: The result of fitting. A comparison between the original PSF and
the PSF model of the system. The graph on the right shows the intensity of the
difference between the original PSF and the model; it indicates a very good result
for the goodness of fit.
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Chapter 5
Verification of the SVPSF model

This chapter is structured to the sections covering an application of the introduced
SVPSF model on simulated data; experimental laboratory-acquired data and real
all-sky image data acquired by the WILLIAM imaging system. Within all results,
the specifics of the concrete imaging system are mentioned. The polynomial model
was applied and successfully verified on image datasets acquired by G2-83001, ASI
1600MM-Cool, and Nikon D5100 cameras. The last image dataset was simulated in
Zemax OpticStudio. This diversity of used imaging systems proves the versatility of
the model according to different types of sensors (CCD vs. CMOS) cooled/uncooled
systems and presence of the filtering mask (Bayer RGB mask).

5.1 Laboratory experiments

The first section describes the performance of the proposed model when dealing
with real data acquired in the laboratory. The experimental images were obtained
with the setup illustrated in Figure 5.1. A small white LED diode was used as a
light source, together with a pinhole 200 µm in diameter. The first image dataset
was acquired with a G2-8300 astronomical camera, providing a 3358 × 2536 pixel
CCD sensor, corresponding to a size of 18.1 × 13.7 mm, which gives a pixel size
of 5.39 µm. The camera was equipped with a Sigma 10 mm EX DC HSM fisheye
lens 2, which is the diagonal type of fisheye lens. A camera was mounted on a 2D
rotational stage. This configuration, together with an observation distance of 5 m,
gives the FWHM size of a PSF of around 6 pixels. Different positions of the light
source, to cover the entire FOV, were achieved by rotating the camera in both,
x and y axes. The advantage of this approach is that the same distance is kept
between the light source and the camera, assuming that nodal mounting3 has been
used.

1http://www.gxccd.com/art?id=374& lang=405
2http://www.sigmaphoto.com/10mm-f2-8-ex-dc-hsm-fisheye
3http://nodalninja.com
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Figure 5.1: The experimental setup, consisting of a camera stage and a light source
with a small aperture.

5.1.1 G2-8300 camera
The parameters of the imaging system based on G2-8300 camera are summarized
in Table 5.1 and they are the same as for the simulated system in the previous
chapter. However, it is necessary to take into account that the optical aberrations
are different, according to the real imaging system using the G2-8300 astronomical
cooled camera. The G2-8300 camera includes cooling that has been set down to
−15◦C during acquiring of the image dataset. A corresponding MTF function is
illustrated in Figure 5.2.

Table 5.1: The sensor size, the resolution and the optical parameters of the exper-
imental imaging system used for acquiring the image dataset.

Resolution 3358 × 2536 px
Sensor size 18.1 × 13.7 mm
Pixel size 5.39 µm

Lens focus distance 10 mm
FOV 110◦

Figure 5.3 provides the illustration of the estimated Wklm coefficients. The
graphs in Figures 5.4 - 5.6 and Table 5.2 show the results of the fit with a different
order of Wklm coefficients, a fitted curve illustrating the trend of the results, and
standard deviation error bars. Figure 5.7 shows a comparison of the results with
other PSF modeling methods. It can be seen, that the best result is obtained with
coefficients up to the 4th order. Then, with a higher order of the coefficients, we
obtain slightly worse results, even for the PSFs placed on the optical axis. With

60
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increasing image distance, the situation seems to deteriorate, and the difference
increases. One reason for this is the optimization convergence, which is worse for
the more involved Wklm coefficients in 6th and 8th orders. Another explanation is
provided by Figure 5.8 and Table 5.3. It can be seen that the absolute difference
is slightly worse for higher orders of Wklm coefficients, but that the shape of the
model or the precision of the obtained shape of the PSF is better. The image of
the differences in Figure 5.8 provides information proving that the maximum of the
difference is located in a smaller number of pixels in the central part of the PSF.
Thus the model seems to be well described in terms of the shape description. It can
be concluded that the higher order (6th and 8th) Wklm coefficients provide better
parameters of the model in terms of the shape description and better localization
of aberrations, but sometimes at the cost of a slightly worse absolute difference.
Table 5.2 shows another interesting phenomenon. The results obtained by 8th

order fitting are slightly better than the results obtained by 6th order fitting. It
was observed that the 6th order model aberrations are overfitted; the model adds
aberrations which are actually not present. However, use of the 8th order model
compensates these overfitting effects. Finally, it has to be admitted that it is not
always necessary to use high order Zernike polynomials, and our results illustrate
that a simple solution including only basic aberrations (up to the 4th order) provides
results of several percents.
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Figure 5.2: Graph of the MTF function of the G2-8300 camera.

Table 5.2: Selected on-axis point results for the MD difference between the original
and the estimated model, where H is from 0 to 0.83 and φ is equal to zero. The
MD differences of the polynomial orders are given as a percentage. Highlighted
columns contain results used later in the comparison.

Metrics
Normalized Image Distance H (-)
0 0.17 0.33 0.50 0.67 0.83

4th order 4.6 5.1 5.3 7.8 7.5 9.4
6th order 5.4 7.7 6.5 9.4 7.7 12.5
8th order 5 6.4 6.1 7.7 7.6 10
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Figure 5.3: Illustration of the all Wklm coefficients up to 8th order of the G2-8300
cooled CCD camera. W040 coefficient is contained in the piston and the defocus
Zernike polynomials. W220, W240, W242 relates to the Astigmatism and Oblique
Spherical. Wklm coefficients are normalized for the purpose of the illustration.
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Figure 5.4: Experimental results for the MD difference up to the 4th order. The
graph contains results from Table 5.2 and ten other points according to the nor-
malized image distance H. The points which are not mentioned in Table 5.2 are
selected similarly as illustrated in Figure 4.4. The angle φ of these points differs
from zero. These points are placed at positions covering the entire FOV.

When we compare the method for estimating field-dependent PSF with other
approaches mentioned in the introduction, we obtain similar results. Results from
all implemented approaches are illustrated in Figure 5.7. An approach based on
work by Piotrowski [1], labeled as the Interpolated model, provide results of the MD
operator from 7.8% to 9.9% over the FOV. Another approach based on Weddell’s
method [23], labeled as the Sectorized model, which divides the image into smaller
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Figure 5.5: Experimental results for the MD difference up to the 6th order.

invariant parts, provides similar results to the Interpolated model. However, it can
be seen that the Sectorized model may fail when the PSF model in one sector does
not precisely fit to all PSFs inside the sector. This can be seen in Figure 5.7, where
the results for the Sectorized model (marked with a black+) at H = 0.83, 0.88,
and 0.92 vary from 8% to 17%. The last method included here is fitting the PSFs
with a Gaussian function [92] which was chosen because it can be used as a model
of the diffraction limited optical system. This approach provides results from 14%
to 22%; however, we had not expected very good results from this method. The
Gaussian model was used as a complement to the space-variant methods. We also
implemented an approach that uses the Moffat function [92]. However, the results
provided by fitting the Moffat function start from 20% and go up to 40%. We
therefore concluded that the Moffat model is inappropriate, and we did not include
these results in Figure 5.7.

Table 5.3: A direct comparison of results estimated by 4th, 6th and 8th order
polynomials. This table is related to Figure 5.8. The results are calculated for one
position of the light source at H = 0.33. The total flux difference was calculated
for enumerating the overall intensity difference between the original PSF and the
model.

Metrics 4th Order 6th Order 8th Order

RMSE (-) 0.032 0.039 0.036
MD (%) 5.3 6.5 6.1
Total flux difference (‰) 0.31 0.35 0.37

63



5. Verification of the SVPSF model

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Normalized image distance H (-)

2

4

6

8

10

12

14

16

M
D

 (%
)

8th order
fitted curve

Figure 5.6: Experimental results for the MD difference up to the 8th order. The
graph contains results from Table 5.2 and ten other points according to the nor-
malized image distance H. The points which are not mentioned in Table 5.2 are
selected similarly as illustrated in Figure 4.4. The angle φ of these points differs
from zero. These points are placed at positions covering the entire FOV.
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Figure 5.7: A comparison of different modeling of a single optical system. All
models were fitted with the same set of PSFs.
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Figure 5.8: Results of the fitting. The PSF model is shown with different orders
of polynomials. The object was placed at 20◦ with respect to the optical axis (H
= 0.33). In Table 5.2 this PSF is marked with the blue column. The first row
relates to the 4th order results, the second row relates to the 6th order results and
the third row relates to the 8th order results.
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5.1.2 ASI1600MM-Cool camera
The second laboratory image dataset was acquired by ZWO ASI1600MM-Cool
CMOS camera using the same model of the fisheye lens - Sigma 10 mm EX DC
HSM. All details of this camera setup are summarized in Table 5.4. As can be seen,
the ASI1600MM-Cool camera provides higher resolution then G2-8300 camera,
and due to the larger sensor, the ASI1600MM-Cool provides larger FOV. Both
mentioned cameras include cooling and for the purpose of the experiment were
both cooled down to −15◦C. A comparison of Figure 5.9 and Figure 5.2 indicates
the similarity of spatial resolution of both cameras.

Table 5.4: The sensor size, the resolution and the optical parameters of the exper-
imental imaging system used for acquiring the image dataset.

Resolution 4656 × 3520 px
Sensor size 17.6 × 13.3 mm
Pixel size 3.8 µm

Lens focus distance 10 mm
FOV 160◦

As can be seen from Figure 5.10, dominant coefficients such as W040, W400,
W600, W060 indicate a strong influence of defocus, spherical and piston aberration.
Another strong coefficients such as W020, W200, W151, W533 indicate influence of
the piston, the coma and the elliptical coma. Corresponding coefficients of Zernike
polynomials can be found in Table 4.1.
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Figure 5.9: Graph of the MTF function of the ASI 1600MM-Cool camera.

The laboratory image dataset was acquired using the same scenario, i.e., we
have obtained a series of a laboratory image data of a white point light source
that was placed behind pinhole with 200 µm diameter. The ASI1600MM-Cool was
mounted on the nodal stage that guarantees to keep a focused distance from the
object to camera sensor. The acquired image data were then used for evaluation
of the UWFOV model of the imaging system. The image data contains point
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light source at different distances from the Optical axis (OA) assuming rotational
symmetric optical system, as illustrates Figure 5.1.
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Figure 5.10: Illustration of the Wklm coefficients of the WILLIAM imaging system
with ASI 1600MM-Cool camera. The W400 coefficient, as the dominant coefficient,
is contained in piston, spherical aberration and defocus Zernike polynomials.
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Figure 5.11: Results for the MD difference of the ASI1600MM-Cool camera.

The graph in Figure 5.11 provides results of the ASI1600MM-Cool image data
fitting by SVPSF model. As can be seen, obtained Wklm coefficients and therefore
the model provides the precision of 3.5% in the central part. Moving away from the
optical axis, the precision of the model slightly decries to 6.5%. However, overall
the model of the ASI1600MM-Cool camera provides very good results, partially
thanks to the size of the PSF that achieves 15 px in diameter. This size reduces
the issue with sampling and possible interference with sensor’s pixel grid. As can
be seen from Figure 5.12 the model indicate good agreement with the originally
acquired PSF.
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Figure 5.12: An example of the original and estimated PSFs related to the image
dataset acquired by ASI1600MM-Cool. As can be seen, their difference reach
3.9%, and these PSFs are almost identical.
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5.2. Real sky image data fitting

5.2 Real sky image data fitting

5.2.1 Camera Nikon D5100
The third dataset represents the image data acquired by the first generation of the
system WILLIAM equipped by the camera Nikon D5100. As has been mentioned,
the WILLIAM system is an all-sky camera, and the acquired dataset contains
night sky images with stellar objects. Since the projection of these objects has
a size similar to the pixel size, we assume the stellar object as a point source
of the light, that can be considered as system’s PSF. Here mentioned results of
fit are calculated using one stellar object at several images acquired during one
night. Then the object covers almost the entire field of view as it is acquired
at different positions during the night. Nevertheless, image data from WILLIAM
system include various types of distortions. Except for optics aberrations, it is
blurring caused by atmosphere turbulence. However, more complicated issue causes
the interpolation of RGB channels from Bayer mask mentioned above. Even when
we use the advanced method of interpolation (Laroche-Prescot), the PSF model
of such a system cannot describe this type of distortion. As has been seen from
Figure 2.2, using the Bayer mask in high precision scientific systems (according to
precise photometry, for meteorology clouds clustering is using of the Bayer mask
suitable) seems to be the risky and inappropriate solution. The object is sampled
in different color channels, and output interpolation of channels misrepresents the
object shape.

Table 5.5: The sensor size, the resolution and the optical parameters of the exper-
imental imaging system used for acquiring the image dataset.

Resolution 4928 × 2448 px
Sensor size 23.6 × 15.7 mm
Pixel size 5.39 µm

Lens focus distance 10 mm
FOV 170◦ (diagonally)

As for the previous cameras, the specifications of the Nikon D5100 are provided
in Table 5.5, and measured MTF can be seen from Figure 5.13, including the mod-
ulation function for red, blue and green channel and the luminosity. As can be seen,
the DSLR camera provides slightly higher resolution than the ASI1600MM-Cool
camera. However, this small disadvantage is compensated by the high gain and
the sensitivity of the astronomical camera sensor. Figure 5.14 illustrates estimated
Wklm coefficients. The graph shows the strong influence of W220 that indicates the
power of the piston and the defocus. However, other strong coefficients arose, such
as W240, W331, W333, W551 or W171. These coefficients indicate the influence of the
spherical, the tilt, the coma, and the 5th coma aberrations.

The estimation complexity can be seen in Figure 5.15, where are illustrations
of different stellar object profiles at various positions in the FOV. We can see how
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Figure 5.13: Graph of the MTF function. The upper graph shows Nikon D5100
camera (RGB channels and grayscale plots including the Nyquist frequency for R,
B, and G channel), lower graph is the ASI 1600MM-Cool camera plot.

complicated these profiles can be and how important is to have a high-resolution
sensor for acquiring night sky image data. Then we have to realize; these profiles
are already interpolated data. That means, in fact, RGB channels are even more
undersampled. This leads to a conclusion about the wise decision of choosing a
sensor for scientific or other precise observation and measurement. As can be seen
from our results, the monochromatic camera (in fact, we can use the color camera,
but equipped with color wheel) provide better results, when we try to model such
an imaging system.
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Figure 5.14: Illustration of the Wklm coefficients of the WILLIAM imaging system
with Nikon D5100 camera. W220 indicates the power of the Piston and the Defocus.
However, other strong coefficients arose, such as W240, W331, W333, W551 or W171.
These coefficients indicate the influence of the Spherical, the Tilt, the Coma, and
the 5th Coma aberrations.

Resulting precision of the estimated PSF model can be seen from Figure 5.16.
At a glance can be seen that resulting precision is worse than for previous datasets.
Namely 10% at the OA up to 20% at the edge of the FOV. One of the explanation
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Figure 5.15: Three stellar objects profiles. Cuts in x and y-axis show complicated
profiles of the PSFs acquired by the WILLIAM imaging system.
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Figure 5.16: Results for the MD difference of the Nikon D5100 camera.
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Figure 5.17: A comparison of the RMSE difference of the ASI1600MM-Cool and
Nikon D5100 cameras.

is the noise, because the Nikon D5100 camera has no cooling, and processed image
dataset was calibrated by not the up-to-date dark frame. However, as has been
mentioned in Section 5, the noise tolerance should be sufficient. The explanation
has to take into consideration the acquiring conditions that the stellar object was
not perfectly focused. Whether by the influence of the atmospheric turbulence
or by overexposing. These facts, which can be simply eliminated in laboratory
acquirement, can cause the issues during the PSF estimation and the resulting
model of PSF cannot precisely describe. However, when the MD metrics exhibits
single (one pixel) errors that cause large percentage differences, we can use the
second metrics, RMSE, that is not sensitive to extremal singular errors. By the
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RMSE metrics, the model can be compared with the original PSF in the meaning
of the overall intensity error.

Figure 5.17 show the comparison of the RMSE values of the Nikon D5100 and
the ASI1600MM-Cool cameras PSF fitting. As can be seen, the calculated RMSE
results of differences are similar to each other. It should be noted that the size of the
PSF of both cameras is approximately the same. It can be concluded, that modeling
of the real-sky images complicates the modeling task by another phenomenon such
as the atmosphere turbulence or time-shift, but it can be modeled with desired
precision. However the much difficult issue is the mentioned influence of the Bayer
mask, and further research should address this part of the model.

5.3 Image data simulated by Zemax

The previous sections described the performance of the model on the acquired image
datasets. The last dataset was simulated in Zemax OpticStudio4, that is broadly
used for designing the optics. The optics used for the simulation was a simple
doublet with aperture diameter 20 mm and focal length 100 mm, illustrated in
Figure 5.18. As can be seen from Figure 5.19 and Figure 5.20, PSFs of the doublet
optics are for image height 5 mm distorted by the sum of aberrations. However,
uncompensated aberrations of the doublet example are suitable for the SVPSF
model testing. The image data with an obvious SVPSF represents suitable input
for the model verification. However, the change between the central PSF and the
marginal PSF sets a high demand on the model estimation.

Figure 5.18: The layout of the simulated doublet. The aperture has 20 mm dia-
meter, and the focal length is 100 mm.

Figure 5.19 illustrates the grid and also the size of the simulated PSFs. Three
PSF are shown in detail. As can be seen, the violet square illustrates the central
PSF of the size of only one pixel, which indicates perfect PSF. However, the yellow

4https://www.zemax.com/opticstudio
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square and the red square show two marginal PSFs, that indicate strong aberra-
tions. As can be seen, the size of PSF is only several pixels. This small size of the
PSF can cause issues during the estimation of the Wklm coefficients as for the case
of Nikon D5100 camera coefficients estimate. However, we have to realize, that the
dataset simulated in the Zemax does not contain the noise and it is not time-shifted
due to the overexposure. The set of estimated Wklm coefficients is illustrated in
Figure 5.21, where can be seen the dominant W131 coefficient that relates to the
coma aberration. The other strong coefficients W220, W240, W420, W331 and W620
show the dependence on the piston, the defocus and the tilt aberrations.
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Figure 5.19: Illustration of the simulated grid of PSFs by Zemax. The details on
the right side show the amount of aberrations.

Resulting SVPSF model provides precision of the MD metrics below 5% at the
OA and up to 10% at the edge of the FOV. Taking into account the small size of
the provided PSFs, the resulting model provides a fairly good estimation of the
simulated system.

(a) PSF at optical axis. (b) PSF at 5 mm image height.

Figure 5.20: An example of a) on-axis PSF and b) off-axis PSF. As can be seen,
the system produces heavily aberrated impulse response.
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Figure 5.21: Illustration of theWklm coefficients of the doublet simulated by Zemax.
W131 coefficient that relates to the coma aberration. The other strong coefficients
W220, W240, W420, W331 and W620 show the dependence on the piston, the defocus
and the tilt aberrations. Wklm coefficients are normalized for the purpose of the
illustration.
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Figure 5.22: The precision of the PSF model for the doublet image data achieves
4% in the central part and 7% at the edge of the FOV.

5.3.1 Summary of results
The proposed method includes detailed information about the shape of the PSF of
the imaging system. Information about the shape of the PSF can be important for
PSF fitting photometry in astronomy [93], for deconvolution algorithms in micro-
scopy [94] [95] and for other applications. The model of the UWFOV system was
successfully used by Fliegel [56] for a comparison of the deconvolution methods.
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In this context, a direct estimate of field-dependent Zernike polynomials brings a
new approach to the description of space-variant imaging systems. The method
was also used for modeling the WILLIAM all-sky camera [55], where the modeling
method faced the issue of the presence of the Bayer mask in the system.

The proposed method for estimating PSF from an optical system is novel in a
direct estimate of optical aberrations of the optical system. It is a difficult task
to describe a system of this type, and UWFOV systems further greatly complicate
this situation, since they are heavily aberrated. By this method, it is summarized
a complex mathematical approach, and provides an algorithm for modeling the
PSF of space-variant optical systems. The proposed algorithm has been verified
with simulated data, and has been applied to real image data, showing the error
of the model around 5%. A comparison of images with different SNR provide MD
results around 3% for images with SNR greater than 20 dB. The algorithm has
been compared with other space-variant modeling methods. It has been shown to
be competitive since the results are better than or equal to the results provided
by other modeling methods. Other space-variant models provide accuracy around
8.5%. The results demonstrate that the approach described here is also suitable for
UWFOV systems. The results compare models of imaging systems of 4th, 6th, and
8th orders of Zernike polynomials and show some benefits of using different orders.
The accuracy of the results of different cameras varies from 3% to 10% in the central
part of FOV and from 8% to 20% at the margin. However, we have to distinguish
between better results of fit for cameras without Bayer mask and slightly worse
results for the Nikon camera with the Bayer mask. The average precision of the
model is below 10% precision. The contribution to the description of aberration
is via a method for obtaining aberration coefficients in an unknown optical system
and for using them in the model of space-variant PSF. The algorithm was used
to model the WILLIAM system [55], and the model provided by the approach
described here was used in a comparison [56] of deconvolution methods.
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Chapter 6
Conclusions

Modeling of Space Variant Optical Systems focuses on methods for describing ima-
ging systems. The model is based on the implementation of Zernike polynomials
and their field-dependent amn coefficients. The thesis presents the search for a model
that can describe the UWFOV imaging system or generally a SVPSF system, for
which the PSF has not been adequately described. Improperly modeled PSF limits
further processing of the images, e.g., deconvolution, astrometry, and photometry.

6.1 Summary

The thesis is divided into six parts, covering the theoretical research necessary to
address the aim, the adaptation of known modeling techniques (Zernike polynomi-
als), and the proposal of a model.

Chapter 1 introduces known contributions to the design and the description of
an optical system. Three major works, by Weddell, Piotrowski, and Zheng, were
identified as convincing, and they provided the inspiration for the thesis. However,
each of these works contains blind spots, which have been resolved in this thesis.

Chapter 2 introduces the SVPSF imaging systems that the author of this thesis
has been involved in as a team member. In the case of the WILLIAM project,
the author is the principal designer. In 2018, the THETIS project is in the phase
of preparing a breadboard, and further work will address the performance of the
Calomel crystal in acousto-optic tunable filters.

The theoretical background in Chapter 3 addresses the expressions leading to a
description of the wavefront. An important part of this chapter is the adaptation
of Zernike polynomials to a non-circular aperture. This step allows the model to
be used in various kinds of specialized optical systems.

Chapter 4 starts on the main idea of the thesis, i.e., the field dependency of
polynomials. A described set of field-dependent coefficients connects the polyno-
mials and the position of the PSF in the FOV. However, a description of the field
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6. Conclusions

dependency is useless without an algorithm for obtaining the coefficients. Chapter
4 presents the necessary steps in detail, and also the accuracy of the model.

Verification of the proposed model is presented in Chapter 5. The model is
subjected to a quantitative analysis, which demonstrates the versatility of the ap-
proach. The coefficients of the model are estimated for CCD, for CMOS astronom-
ical cooled cameras, for the DSLR camera and for the optical model simulated in
Zemax OpticStudio. The results of the estimated model are successfully compared
with the approaches introduced in Chapter 1.

6.2 Contributions of the Thesis

• The novel PSF model with space-variant coefficients of the Zernike polyno-
mials describing the field dependency of PSF is described in Chapter 4.

• An algorithm for estimating the field-dependent coefficients is proposed, to-
gether with two evaluation methods.

• A novel set of N-gon polynomials is introduced in Chapter 3. This chapter
includes an analytic description and a performance analysis of the proposed
polynomials.

• The proposed model of the SVPSF is verified on a series of simulated labor-
atory acquired and real-sky image data. The results are faced with results
obtained by other PSF estimation methods, and they demonstrate the suit-
ability of the solution. Optimization of the coefficients is identified as a weak
point of the model, due to difficulty with finding the global minimum of the
function. An algorithm that helps to find a suitable set of coefficients is
proposed.

6.3 Future Work

The thesis provides a workbench for modeling a complicated imaging system with
SVPSF. Further work should address the influence of sensor grid sampling, and
implementation of interpolation methods suitable for small objects. The model
can be extended to different evaluation methods that meet specific requirements.

Furthermore, the PSF model can be extended in a part of noise modeling,
e.q. [96] and [97]. Because in a present form, the model expects the robustness up
to the noise level (see Chapter 4). Implementation of mentioned techniques can
improve the model for real scenes including a significant level of noise.

The model introduced in the thesis can be operated for the opposite purpose,
i.e., as a simulator. It can be used for simulating PSF fields, according to the work
of Blažek [98]. A simulation of the PSF grid was used in the Chapter 4, where the
simulated dataset was obtained by creating a PSF with random coefficients. Using
the simulator and the principle introduced by Blažek [98], the field of space-variant
objects can, therefore, be simulated (Figure 6.1).
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6.3. Future Work

Figure 6.1: An example of the top-left quadrant of the simulated field of objects in
comparison to a real-sky image.
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Appendix A
Tables of N-gon polynomials

Table A.1: Table of square polynomials Sj(x, y) in Cartesian coordinates.

Sj(x, y) Polynomial
S1 1
S2 61/2x

S3 61/2y

S4 101/2((3x2)/2 + (3y2)/2 − 1/2)
S5 3101/2xy

S6 3x2 − 3y2

S7 (6511/2y(15x2 + 15y2 − 7))/31
S8 (6511/2x(15x2 + 15y2 − 7))/31
S9 (21551/2y(33x2 + 2y2 − 3))/31
S10 −(21551/2x(2x2 + 33y2 − 3))/31
S11 (2151/2671/2(51/2(6(x2 + y2)2 − 6x2 − 6y2 + 1) + (51/2(150x2 + 150y2 −

43))/105))/268
S12 16.202x4 − 9.7211x2 + 9.7211y2 − 16.202y4

S13 (53033xy(7.0x2 + 7.0y2 − 3.0))/5000
S14 9.7185x2 − 106.9x2y2 − 10.042x4 + 9.7185y2 − 10.042y4 − 0.71269
S15 32.404xy(x2 − 1.0y2)
S16 0.000017405x(730366.0x2 + 1.1532E6y2 − 360388.0) + 5.2687x(10.0(x2 +

y2)2 − 12.0x2 − 12.0y2 + 3.0)
S17 0.000017405y(1.1532E6x2 + 730366.0y2 − 360388.0) + 5.2687y(10.0(x2 +

y2)2 − 12.0x2 − 12.0y2 + 3.0)
S18 −(x(1.0123E7x2y2 − 498566.0x2 + 197911.0x4 − 5.2574E6y2 +

9.9254E6y4 + 221100.0))/50000
S19 (y(1.0123E7x2y2 − 5.2574E6x2 + 9.9254E6x4 − 498566.0y2 + 197911.0y4 +

221100.0))/50000
S20 −(x(3.0399E7x2y2 − 2.5502E6x2 + 2.4306E6x4 − 5.6194E6y2 +

4.7054E6y4 + 372377.0))/100000
S21 −(y(3.0399E7x2y2 − 5.6194E6x2 + 4.7054E6x4 − 2.5502E6y2 +

2.4306E6y4 + 372377.0))/100000
S22 59.144x2y2 − 119.84(x2 + y2)2 + 79.896(x2 + y2)3 + 31.336x2 + 21.271x4 +

31.336y2 + 21.271y4 − 2.1444
S23 (xy(3.803E6x2y2 − 1.6134E6x2 + 1.9015E6x4 − 1.6134E6y2 + 1.9015E6y4 +

311155.0))/5000
S24 4.8151(x2 − 1.0y2)(15.0(x2 + y2)2 − 20.0x2 − 20.0y2 + 6.0) + 0.0045858(x2 −

1.0y2)(2800.0x2 + 2800.0y2 − 1590.0)
Continued on next page
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A. Tables of N-gon polynomials

Table A.1 – continued from previous page
Sj(x, y) Polynomial

S25 −0.001xy(142177.0x2 − 255911.0x4 − 142177.0y2 + 255911.0y4)
S26 574.9x2y2 − 1079.7x2y4 − 1079.7x4y2 − 25.933x2 + 76.512x4 − 53.964x6 −

25.933y2 + 76.512y4 − 53.964y6 + 1.0511
S27 −(xy(1.285E7x2y2 − 2.53E6x2 + 2.5686E6x4 − 2.53E6y2 + 2.5686E6y4 +

350200.0))/10000
S28 338.14x2y4 − 338.14x4y2 − 3.6832x2 + 29.042x4 − 28.114x6 + 3.6832y2 −

29.042y4 + 28.114y6

S29 6.3607y(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) +
0.00098845y(190233.0x2y2 − 91815.0x2 + 118900.0x4 − 57515.0y2 +
57165.0y4 + 11787.0)

S30 6.3607x(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) +
0.00098845x(190233.0x2y2 − 57515.0x2 + 57165.0x4 − 91815.0y2 +
118900.0y4 + 11787.0)

S31 (y(1.0572E8x2y4−9.9281E7x2y2+2.092E8x4y2+2.4831E7x2−1.0364E8x4+
1.0422E8x6 + 2.315E6y2 − 2.641E6y4 + 749799.0y6 − 614766.0))/100000

S32 −(x(2.092E8x2y4−9.9281E7x2y2+1.0572E8x4y2+2.315E6x2−2.641E6x4+
749799.0x6 + 2.4831E7y2 − 1.0364E8y4 + 1.0422E8y6 − 614766.0))/100000

S33 −(y(2.9204E8x2y4 − 1.8201E8x2y2 + 3.0121E8x4y2 + 1.682E7x2 −
4.1429E7x4 + 2.2686E7x6 + 8.1479E6y2 − 2.0458E7y4 + 1.3512E7y6 −
678777.0))/100000

S34 −(x(3.0121E8x2y4 − 1.8201E8x2y2 + 2.9204E8x4y2 + 8.1479E6x2 −
2.0458E7x4 + 1.3512E7x6 + 1.682E7y2 − 4.1429E7y4 + 2.2686E7y6 −
678777.0))/100000

S35 −(y(2.3543E7x2y4 − 2.6723E7x2y2 + 9.1688E7x4y2 + 3.6004E6x2 −
1.7595E7x4 + 1.6378E7x6 + 779988.0y2 − 1.1926E6y4 + 481666.0y6 −
92317.0))/25000

S36 (x(9.1688E7x2y4 − 2.6723E7x2y2 + 2.3543E7x4y2 + 779988.0x2 −
1.1926E6x4 + 481666.0x6 + 3.6004E6y2 − 1.7595E7y4 + 1.6378E7y6 −
92317.0))/25000

S37 441.04x2y4 − 339.59x2y2 + 441.04x4y2 + 428.07(x2 + y2)2 − 665.89(x2 +
y2)3 + 332.94(x2 + y2)4 − 55.321x2 − 118.78x4 + 91.668x6 − 55.321y2 −
118.78y4 + 91.668y6 + 2.3448

S38 7.9915E − 13(x2 − 1.0y2)(1.1398E14x2y2 − 8.125E13x2 + 7.2915E13x4 −
8.125E13y2 + 7.2915E13y4 + 1.9811E13) + 5.54(x2 − 1.0y2)(56.0(x2 +
y2)3 − 105.0(x2 + y2)2 + 60.0x2 + 60.0y2 − 10.0)

S39 0.015156xy(151977.0x2y2 − 69060.0x2 +70161.0x4 − 69060.0y2 +70161.0y4 +
14610.0)+32.509xy(56.0(x2 +y2)3 −105.0(x2 +y2)2 +60.0x2 +60.0y2 −10.0)

S40 6329.5x2y4 − 1573.1x2y2 + 6329.5x4y2 − 6587.7x2y6 − 12734.0x4y4 −
6587.7x6y2 + 45.422x2 − 235.7x4 + 408.22x6 − 220.95x8 + 45.422y2 −
235.7y4 + 408.22y6 − 220.95y8 − 1.2159

S41 50.344xy(x2 − 1.0y2)(28.0(x2 + y2)2 − 42.0x2 − 42.0y2 + 15.0) +
0.0011176xy(x2 − 1.0y2)(494800.0x2 + 494800.0y2 − 309022.0)

S42 1981.5x2y4 − 1981.5x4y2 − 3540.5x2y6 + 3540.5x6y2 − 9.1219x2 +
110.48x4 − 263.86x6 + 167.76x8 + 9.1219y2 − 110.48y4 + 263.86y6 − 167.76y8

S43 −(xy(7.7562E7x2y4 − 4.9849E7x2y2 + 7.7562E7x4y2 + 4.9476E6x2 −
1.2864E7x4 + 8.8896E6x6 + 4.9476E6y2 − 1.2864E7y4 + 8.8896E6y6 −
404522.0))/5000

S44 1026.4x2y2 − 5077.3x2y4 − 5077.3x4y2 + 4863.1x2y6 + 16190.0x4y4 +
4863.1x6y2 − 25.294x2 + 152.32x4 − 256.58x6 + 130.03x8 − 25.294y2 +
152.32y4 − 256.58y6 + 130.03y8 + 0.58427

S45 −0.002xy(1.7919E6x2y4 − 1.7919E6x4y2 − 62170.0x2 + 389600.0x4 −
381111.0x6 + 62170.0y2 − 389600.0y4 + 381111.0y6)
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Table A.2: Table of pentagon polynomials Pj(x, y) in Cartesian coordinates.

Pj(x, y) Polynomial
P1 1
P2 (2331/2x(7 − 51/2)1/2)/11
P3 (2331/2y(7 − 51/2)1/2)/11
P4 −(2461/2(13 − 51/2)1/2((731/2)/12 + 151/2/12 − 231/2x2 − 231/2y2))/41
P5 (6101/2xy(5 − 51/2)1/2)/5
P6 (3101/2(x2 − y2)(5 − 51/2)1/2)/5
P7 −(43468991/2y(433 − 3451/2)1/2(1521/2 + 101/2 − 3321/2x2 −

3321/2y2))/181709
P8 −(43468991/2x(433 − 3451/2)1/2(1521/2 + 101/2 − 3321/2x2 −

3321/2y2))/181709
P9 −(236491/2(235 − 8651/2)1/2(3021/2x2 − 6101/2x2 − 3021/2y2 + 7021/2y3 +

6101/2y2 − 21021/2x2y))/18245
P10 −(436491/2x(235 − 8651/2)1/2(3021/2y − 6101/2y − 3521/2x2 +

10521/2y2))/18245
P11 36.751x2y2 − 14.913x2 + 18.375x4 − 14.913y2 + 18.375y4 + 2.0455
P12 19.307x4 − 11.148x2 − 5.1382x2y + 11.148y2 + 1.7127y3 − 19.307y4

P13 (x(3.8614E6x2y − 2.2297E6y − 171277.0x2 + 513822.0y2 +
3.8614E6y3))/100000

P14 1.8935y − 45.897x2y2 + 5.7371(x2 + y2)2 − 4.9845x2y − 4.9845y3

P15 −0.00001x(498455.0x2 −2.2948E6x2y +498455.0y2 +2.2948E6y3 −189355.0)
P16 1.4836E − 32x(8.0651E32x2 − 6.0477E32x2y + 8.0651E32y2 +

6.0477E32y3 − 3.5335E32) + 5.1395x(10.0(x2 + y2)2 − 12.0x2 − 12.0y2 + 3.0)
P17 10.176y + 13.459x2y2 + 102.79x2y3 − 49.708x2y + 51.395x4y − 2.2432x4 −

49.708y3 − 2.2432y4 + 51.395y5

P18 −0.0001x(616166.0x2y2 − 103155.0y + 220866.0x2y + 185688.0x2 −
308088.0x4 − 557055.0y2 + 220866.0y3 + 924244.0y4)

P19 61.616x2y3 − 55.705x2y + 92.424x4y + 5.1576x2 − 11.043x4 − 5.1576y2 +
18.568y3 + 11.043y4 − 30.808y5

P20 35.908xy4 − 71.816x3y2 + 7.1816x5

P21 40.016x4y − 80.031x2y3 − 28.24x2y2 + 8.4576x2 − 14.12x4 + 8.4576y2 −
14.12y4 + 8.0031y5 − 0.79777

P22 46.991x2y2 + 40.562x2y3 − 122.45(x2 + y2)2 + 81.632(x2 + y2)3 −
20.281x4y + 32.579x2 + 23.496x4 + 32.579y2 + 23.496y4 − 4.0562y5 − 2.274

P23 3.338E − 32x(1.0774E33x2y2 − 8.1575E32y + 1.5614E33x2y + 2.86E32x2 −
5.3871E32x4 − 8.58E32y2 + 1.5614E33y3 + 1.6161E33y4) +
12.49xy(15.0(x2 + y2)2 − 20.0x2 − 20.0y2 + 6.0)

P24 93.673x4y2 − 93.673x2y4 − 35.965x2y3 + 28.64x2y − 53.947x4y + 23.854x2 −
98.838x4 + 93.673x6 − 23.854y2 − 9.5467y3 + 98.838y4 + 17.982y5 − 93.673y6

P25 −0.0001x(722399.0x2y2 + 1.1603E6x2y − 1.8733E6x4y − 279499.0x2 +
361200.0x4 −279499.0y2 −1.1603E6y3 +361200.0y4 +1.8733E6y5 +43638.0)

P26 174.04x2y2 − 4.3638y − 72.239x2y3 − 234.17x2y4 − 234.17x4y2 + 27.949x2y −
36.12x4y − 29.007x4 + 46.833x6 + 27.949y3 − 29.007y4 − 36.12y5 + 46.833y6

P27 −0.00001x(7.0243E6x2y2 + 1.9989E7x2y3 + 1.1644E6x2y − 8.6276E6x4y −
2.5956E6x2 + 3.5122E6x4 − 2.5956E6y2 − 1.1644E6y3 + 3.5122E6y4 −
3.3656E6y5 + 386244.0)

P28 3.8624y − 17.466x2y2 + 70.243x2y3 + 182.8x2y4 − 117.03x4y2 − 25.956x2y +
35.122x4y +2.9109x4 +3.4168x6 −25.956y3 +2.9109y4 +35.122y5 −16.572y6

P29 192.26x2y4 − 94.297x2y2 − 641.77x2y3 − 14.439y + 82.905x4y2 +
704.15x2y5 + 704.15x4y3 + 130.54x2y − 320.88x4y + 234.72x6y + 15.716x4 −
23.872x6 + 130.54y3 + 15.716y4 − 320.88y5 − 31.162y6 + 234.72y7

Continued on next page
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A. Tables of N-gon polynomials

Table A.2 – continued from previous page
Pj(x, y) Polynomial

P30 6.7062x(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) +
3.3531E − 32x(4.8604E33x2y2 + 2.1743E33x2y3 + 1.8748E33x2y −
3.9349E33x4y − 2.1068E33x2 + 2.4302E33x4 − 2.1068E33y2 −
1.8748E33y3 + 2.4302E33y4 + 2.6303E33y5 + 3.6937E32)

P31 68.805x2y4 − 356.44x2y3 − 68.805x4y2 + 159.5x2y5 + 797.52x4y3 +
141.38x2y − 534.67x4y + 478.51x6y − 12.612x2 + 62.731x4 − 68.805x6 +
12.612y2 − 47.126y3 − 62.731y4 + 178.22y5 + 68.805y6 − 159.5y7

P32 7.5954x(x2 − 3.0y2)(21.0(x2 + y2)2 − 30.0x2 − 30.0y2 + 10.0) − 1.8989E −
31x(1.3284E32y + 5.2285E32x2y2 + 1.4494E33x2y3 − 6.6072E32x2y +
7.247E32x4y + 1.5182E32x2 − 2.6143E32x4 − 4.5547E32y2 −
6.6072E32y3 + 7.8428E32y4 + 7.247E32y5)

P33 205.35x2y2 + 459.43x2y3 − 314.89x2y4 − 314.89x4y2 − 689.59x2y5 −
383.1x4y3 − 229.71x4y + 383.1x6y − 26.254x2 + 102.68x4 − 104.96x6 −
26.254y2 + 102.68y4 − 45.943y5 − 104.96y6 + 76.621y7 + 1.354

P34 −0.0004x(799611.0x2y4 − 1.0529E6x2y2 + 1.4393E6x4y2 + 105299.0x4 −
159922.0x6 + 526444.0y4 − 799611.0y6)

P35 70.557x2y4 − 36.875x2y3 − 4.788E − 39x2y2 − 70.557x4y2 + 298.46x2y5 −
332.51x4y3 + 8.8852x2y − 55.312x4y + 165.45x6y − 10.843x2 + 58.969x4 −
70.557x6 + 10.843y2 − 2.9617y3 − 58.969y4 + 18.437y5 + 70.557y6 − 37.771y7

P36 −(x(3.6875E6x2y2 − 2.1687E6y − 2.8223E7x2y3 − 5.7988E7x2y4 +
2.4898E7x4y2 + 1.1794E7x2y − 1.4111E7x4y + 296177.0x2 − 1.8437E6x4 +
1.1703E6x6 − 888522.0y2 + 1.1794E7y3 + 5.5312E6y4 − 1.4111E7y5 +
1.7029E6y6))/100000

P37 469.56x2y4 − 343.09x2y3 − 346.19x2y2 + 469.56x4y2 + 518.47x2y5 +
288.04x4y3 + 477.19(x2 + y2)2 − 742.29(x2 + y2)3 + 371.15(x2 + y2)4 +
171.55x4y − 288.04x6y − 55.81x2 − 173.1x4 + 156.52x6 − 55.81y2 −
173.1y4 + 34.309y5 + 156.52y6 − 57.608y7 + 2.3539

P38 241.8x2y3 + 651.88x2y4 − 651.88x4y2 − 213.25x2y5 − 443.62x4y3 −
878.49x2y6 + 878.49x6y2 − 84.357x2y + 362.7x4y − 390.7x6y − 41.051x2 +
300.2x4 − 651.88x6 + 439.25x8 + 41.051y2 + 28.119y3 − 300.2y4 − 120.9y5 +
651.88y6 + 124.3y7 − 439.25y8

P39 1.8488E − 31x(4.0444E32y − 1.3079E33x2y2 + 3.715E33x2y3 +
4.0834E33x2y4 + 1.4313E32x4y2 − 1.8436E33x2y + 1.8575E33x4y −
1.5209E32x2 + 6.5395E32x4 − 6.2424E32x6 + 4.5628E32y2 −
1.8436E33y3 − 1.9618E33y4 + 1.8575E33y5 + 1.7765E33y6) +
15.687xy(56.0(x2 + y2)3 − 105.0(x2 + y2)2 + 60.0x2 + 60.0y2 − 10.0)

P40 7.3894y − 507.51x2y2 + 488.49x2y3 + 1473.8x2y4 + 1555.8x4y2 −
620.38x2y5 − 620.38x4y3 − 1046.3x2y6 − 2615.7x4y4 − 1046.3x6y2 −
83.093x2y + 244.24x4y − 206.79x6y + 84.585x4 − 305.69x6 + 261.57x8 −
83.093y3 + 84.585y4 + 244.24y5 − 300.23y6 − 206.79y7 + 261.57y8

P41 37.367xy(x2 − 1.0y2)(28.0(x2 + y2)2 − 42.0x2 − 42.0y2 + 15.0) − 4.4037E −
32x(1.2409E33x2y3 − 1.1093E34x2y2 + 1.4088E34x2y4 + 1.4088E34x4y2 +
5.0449E33x2y − 8.492E33x4y + 1.8869E33x2 − 5.5463E33x4 +
4.6959E33x6 + 1.8869E33y2 − 5.0449E33y3 − 5.5463E33y4 +
7.7475E33y5 + 4.6959E33y6 − 1.678E32)

P42 8.2665y − 42.523x2y2 + 597.48x2y3 + 1180.8x2y4 − 762.91x4y2 −
792.61x2y5 − 792.61x4y3 − 1652.9x2y6 − 530.59x4y4 + 1228.4x6y2 −
97.224x2y + 298.74x4y − 264.2x6y + 7.0872x4 + 23.005x6 − 49.844x8 −
97.224y3 + 7.0872y4 + 298.74y5 − 106.57y6 − 264.2y7 + 155.96y8

P43 −0.00002x(3.963E7x2y4 − 6.4789E7x2y3 − 2.9874E7x2y2 + 3.963E7x4y2 +
8.2644E7x2y5 + 6.142E7x4y3 − 1.4174E6x2y + 2.7793E7x4y −
4.1483E7x6y + 4.8612E6x2 − 1.4937E7x4 + 1.321E7x6 + 4.8612E6y2 +
1.4174E6y3 −1.4937E7y4 +1.108E7y5 +1.321E7y6 −2.0259E7y7 −413333.0)
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Table A.2 – continued from previous page
Pj(x, y) Polynomial

P44 69.451x4y2 − 236.14x2y3 − 69.451x2y4 − 3.3307E − 39x2y2 + 160.32x2y5 +
602.68x4y3 − 325.8x2y6 + 1183.8x4y4 − 621.26x6y2 + 73.637x2y −
354.21x4y + 401.39x6y + 1.0461x2 − 17.792x4 + 69.451x6 − 56.954x8 −
1.0461y2 − 24.546y3 + 17.792y4 + 118.07y5 − 69.451y6 − 131.9y7 + 90.778y8

P45 −(x(1.4043E7x2y4 − 4.7228E6x2y2 − 5.5561E6x2y3 − 41843.0y +
2.0129E6x4y2 +2.7805E7x2y5 −1.0077E7x4y3 +711677.0x2y−2.778E6x4y+
5.6605E6x6y − 490922.0x2 + 2.3614E6x4 − 2.5812E6x6 + 1.4728E6y2 +
711677.0y3 − 7.0843E6y4 − 2.778E6y5 + 7.6299E6y6 + 248766.0y7))/20000

Table A.3: Table of hexagon polynomials Hxj(x, y) in Cartesian coordinates.

Hxj(x, y) Polynomial
Hx1 1
Hx2 (2301/2x)/5
Hx3 (2301/2y)/5
Hx4 2151/2((12x2)/43 + (12y2)/43 − 5/43)
Hx5 (41051/2xy)/7
Hx6 (61/271/2101/2(x2 − y2))/7
Hx7 (41547701/2y(25x2 + 25y2 − 14))/3685
Hx8 (41547701/2x(25x2 + 25y2 − 14))/3685
Hx9 (472101/2y(3x2 − y2))/103
Hx10 (4101/2x(x2 − 3y2))/3
Hx11 (14431/249871/2(51/2(6(x2 + y2)2 − 6x2 − 6y2 + 1) + (51/2(2640x2 +

2640y2 − 799))/3010))/4987
Hx12 16.756x4 − 10.643x2 + 10.643y2 − 16.756y4

Hx13 (3xy(55853.0x2 + 55853.0y2 − 35478.0))/5000
Hx14 10.085x4 − 2.6291x2 − 28.75x2y2 + 2.6291y2 − 0.50191y4

Hx15 (xy(857944.0x2 − 2.9754E6y2 + 525811.0))/100000
Hx16 0.00014843x(49168.0x2 + 49168.0y2 − 22493.0) + 4.5944x(10.0(x2 + y2)2 −

12.0x2 − 12.0y2 + 3.0)
Hx17 0.00014843y(49168.0x2 + 49168.0y2 − 22493.0) + 4.5944y(10.0(x2 + y2)2 −

12.0x2 − 12.0y2 + 3.0)
Hx18 5.4489x(x2 − 3.0y2) + 6.3571x(x2 − 3.0y2)(5.0x2 + 5.0y2 − 4.0)
Hx19 1.7612y(3.0x2 − 1.0y2) + 4.2296y(3.0x2 − 1.0y2)(5.0x2 + 5.0y2 − 4.0)
Hx20 −0.0001x(272822.0x2y2 + 132366.0x2 − 221155.0x4 + 132366.0y2 −

459522.0y4 − 21760.0)
Hx21 −0.0001y(919044.0x2y2 − 132366.0x2 − 136411.0x4 − 132366.0y2 +

101966.0y4 + 21760.0)
Hx22 23.893x2y2 − 105.03(x2 + y2)2 + 70.017(x2 + y2)3 + 33.148x2 + 11.947x4 +

33.148y2 + 11.947y4 − 2.4706
Hx23 (xy(1.5702E6x2y2 − 934144.0x2 + 785122.0x4 − 879288.0y2 + 785122.0y4 +

237299.0))/5000
Hx24 78.512x4y2 − 78.512x2y4 − 8.2298x2y2 + 23.729x2 − 89.3x4 + 78.512x6 −

23.729y2 + 92.043y4 − 78.512y6

Hx25 −0.0001xy(1.5183E6x2y2 + 344399.0x2 − 816822.0x4 − 1.7896E6y2 +
2.3351E6y4 + 151066.0)

Hx26 160.05x2y2 − 234.95x2y4 − 159.04x4y2 + 7.5528x2 − 62.805x4 + 77.356x6 −
7.5528y2 + 9.4554y4 + 1.4422y6

Hx27 40.855xy5 − 136.18x3y3 + 40.855x5y
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A. Tables of N-gon polynomials

Table A.3 – continued from previous page
Hxj(x, y) Polynomial

Hx28 229.43x2y4 − 77.426x2y2 − 5.7698x4y2 + 10.448x2 − 38.713x4 + 45.117x6 +
10.448y2 − 38.713y4 + 29.437y6 − 0.56537

Hx29 5.4564y(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) +
9.9215E − 11y(8.7273E11x2y2 − 3.388E11x2 + 2.9388E11x4 −
3.388E11y2 + 3.5087E11y4 + 6.306E10)

Hx30 5.4564x(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) +
9.9215E − 11x(5.8776E11x2y2 − 3.388E11x2 + 3.7937E11x4 −
3.388E11y2 + 4.3636E11y4 + 6.306E10)

Hx31 2.4846E − 21y(3.0x2 − 1.0y2)(4.7119E21x2 + 4.7119E21y2 − 2.9756E21) +
4.8994y(3.0x2 − 1.0y2)(21.0(x2 + y2)2 − 30.0x2 − 30.0y2 + 10.0)

Hx32 7.7733E − 6x(x2 − 3.0y2)(6.5082E6x2 + 6.5082E6y2 − 3.8839E6) +
8.4476x(x2 − 3.0y2)(21.0(x2 + y2)2 − 30.0x2 − 30.0y2 + 10.0)

Hx33 −0.00005y(1.5547E7x2y4 − 1.2312E7x2y2 + 1.1163E7x4y2 + 836855.0x2 +
1.4534E6x4 −3.5859E6x6 +836855.0y2 −1.5903E6y4 +798266.0y6 −77505.0)

Hx34 (x(2.9067E6x2y2+202733.0x2y4−4.1814E6x4y2+836855.0x2−3.1122E6x4+
2.9903E6x6 + 836855.0y2 − 6.1559E6y4 + 7.3744E6y6 − 77505.0))/20000

Hx35 −0.00001y(2.6428E7x2y2 − 5.3582E7x2y4 + 753577.0x4y2 − 3.4935E6x2 +
7.2021E6x4 − 9.7453E6x6 − 3.4935E6y2 + 9.6069E6y4 − 6.6204E6y6 +
310311.0)

Hx36 −0.00001x(1.4404E7x2y2 − 5.1949E7x2y4 + 2.3858E6x4y2 − 3.4935E6x2 +
1.0809E7x4 − 1.0445E7x6 − 3.4935E6y2 + 1.3214E7y4 − 7.3199E6y6 +
310311.0)

Hx37 207.58x2y4 − 141.55x2y2 + 146.86x4y2 + 371.0(x2 + y2)2 − 577.11(x2 +
y2)3 + 288.55(x2 + y2)4 − 60.399x2 − 70.777x4 + 61.097x6 − 60.399y2 −
70.777y4 + 57.048y6 + 2.7453

Hx38 50.987x2y2 +497.21x2y4 −633.06x4y2 −679.97x2y6 +679.97x6y2 −42.962x2 +
279.29x4 − 551.55x6 + 339.98x8 + 42.962y2 − 296.28y4 + 578.72y6 − 339.98y8

Hx39 12.142xy(56.0(x2 + y2)3 − 105.0(x2 + y2)2 + 60.0x2 + 60.0y2 − 10.0) +
5.2752E − 16xy(5.4846E17x2y2 − 2.2554E17x2 + 1.7122E17x4 −
3.5441E17y2 + 3.7725E17y4 + 6.7292E16)

Hx40 1686.8x2y4 − 500.39x2y2 + 1113.3x4y2 − 1307.6x2y6 − 2250.8x4y4 −
493.07x6y2 − 14.792x2 + 205.02x4 − 566.78x6 + 428.7x8 + 14.792y2 −
38.218y4 + 6.7669y6 + 21.456y8

Hx41 (xy(1.1471E7x2y2 − 2.122E7x2y4 − 3.2142E6x4y2 + 903622.0x2 −
5.4648E6x4 + 4.9307E6x6 − 5.7683E6y2 + 1.6936E7y4 − 1.3076E7y6 +
295844.0))/10000

Hx42 1913.2x2y4 − 316.43x2y2 + 155.31x4y2 − 2152.3x2y6 − 1429.9x4y4 +
245.74x6y2 + 24.654x2 − 158.22x4 + 403.36x6 − 323.96x8 + 24.654y2 −
158.22y4 + 286.16y6 − 152.68y8 − 0.84269

Hx43 −0.001xy(938966.0x2y4 − 975366.0x2y2 + 938966.0x4y2 + 292611.0x4 −
402411.0x6 + 292611.0y4 − 402411.0y6)

Hx44 471.48x2y4 − 76.057x2y2 + 39.322x4y2 − 826.9x2y6 + 279.13x4y4 −
170.83x6y2 − 9.6478x2 + 98.095x4 − 267.16x6 + 223.32x8 + 9.6478y2 −
72.743y4 + 165.0y6 − 104.71y8

Hx45 −(xy(3.5765E6x2y4 − 1.7286E6x2y2 + 359977.0x4y2 + 240277.0x2 −
455688.0x4 + 443300.0x6 + 443088.0y2 − 1.273E6y4 + 868855.0y6 −
38591.0))/2000
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Table A.4: Table of heptagon polynomials Hpj(x, y) in Cartesian coordinates.

Hpj(x, y) Polynomial
Hp1 1
Hp2 (4211/2xsin((2pi)/7)1/2(6829cos((3pi)/7) − 1733cos((2pi)/7) −

4735cos(pi/7) + 3827)1/2)/(7(7352sin((2pi)/7) − 5880sin(pi/7) −
3279sin((3pi)/7))1/2)

Hp3 (431/2ysin((2pi)/7)1/2(176cos((2pi)/7) − 182cos(pi/7) − 174cos((3pi)/7) +
93)1/2)/(Exp((pi1i)/7)30i − Exp((pi2i)/7)36i + Exp((pi3i)/7)25i +
5Exp((pi1i)/14) + 6Exp((pi3i)/14) − 15i)1/2

Hp4 y(2.3633E − 11 − 6.9972E − 13i) + x2(3.929 − 3.2085E − 23i) + y2(3.929 −
3.2085E − 23i) − (1.718 + 4.6581E − 12i)

Hp5 xy(5.5906 − 2.4576E − 13i)
Hp6 x2(2.7953 + 3.4782E − 23i) − y(4.6035E − 11 − 1.2493E − 12i) − y2(2.7953 +

3.4782E − 23i)
Hp7 y(0.8242 − 5.2613E − 14i) + y(3.0x2 + 3.0y2 − 2.0)(3.3806 + 2.1955E − 25i)
Hp8 x(0.8242 + 1.0945E − 10i) + x(3.0x2 + 3.0y2 − 2.0)(3.3806 − 1.2114E − 19i)
Hp9 y(3.0x2 − 1.0y2)(3.4372 + 2.2824E − 23i) − y(2.9546E − 11 − 1.084E − 12i)
Hp10 3.4372x(x2 − 3.0y2)
Hp11 16.616(x2 + y2)2 − 14.715x2 − 14.715y2 + 2.1808
Hp12 15.83x4 − 10.469x2 + 10.469y2 − 15.83y4

Hp13 (xy(316600.0x2 + 316600.0y2 − 209399.0))/10000
Hp14 4.1634(x2 + y2)2 − 33.307x2y2 + 2.0495x2y − 0.68316y3

Hp15 0.68316x(x2 − 3.0y2) + 16.653xy(x2 − 1.0y2)
Hp16 (x(880933.0x2y2 − 472100.0x2 + 440466.0x4 − 472100.0y2 + 440466.0y4 +

105844.0))/10000
Hp17 (y(880933.0x2y2 − 472100.0x2 + 440466.0x4 − 472100.0y2 + 440466.0y4 +

105844.0))/10000
Hp18 2.2917x(x2 − 3.0y2) + 4.6444x(x2 − 3.0y2)(5.0x2 + 5.0y2 − 4.0) +

4.0739xy(x2 − 1.0y2)
Hp19 46.444x2y3 − 6.1109x2y2 − 48.858x2y + 69.666x4y + 1.0185x4 + 16.286y3 +

1.0185y4 − 23.222y5

Hp20 4.9748x(5.0(x2 + y2)2 − 20.0x2(x2 + y2) + 16.0x4) + 2.8722E −
32xy(2.7648E32x2 + 2.7648E32y2 − 1.4526E32)

Hp21 24.874x4y−49.748x2y3−2.0861x2+3.9706x4+2.0861y2−3.9706y4+4.9748y5

Hp22 67.795(x2 + y2)3 − 91.961(x2 + y2)2 + 33.378x2 + 33.378y2 − 2.5325
Hp23 2.6831E − 33x(8.2163E33x2y − 4.942E33x2y2 − 4.5839E33y + 4.942E32x4 +

8.2163E33y3 +2.471E33y4)+10.039xy(15.0(x2 +y2)2 −20.0x2 −20.0y2 +6.0)
Hp24 75.295x4y2 − 75.295x2y4 − 13.26x2y3 + 6.6301x4y + 23.968x2 − 89.371x4 +

75.295x6 − 23.968y2 + 89.371y4 + 1.326y5 − 75.295y6

Hp25 −0.00001x(1.472E6x2y2 + 9.4415E6x2y − 1.3014E7x4y + 433266.0x2 −
736011.0x4 − 1.2998E6y2 − 9.4415E6y3 + 2.208E6y4 + 1.3014E7y5)

Hp26 141.62x2y2 + 14.72x2y3 − 162.68x2y4 − 162.68x4y2 − 12.998x2y +
22.08x4y − 23.604x4 + 32.536x6 + 4.3326y3 − 23.604y4 − 7.3601y5 + 32.536y6

Hp27 1.573E −32x(1.6304E33x2y2 −7.1055E32x2 +8.1518E32x4 −7.1055E32y2 +
8.1518E32y4+1.2412E32)+5.8856xy(6.0(x2+y2)2−32.0x2(x2+y2)+32.0x4)

Hp28 1.9524y + 25.645x2y3 + 88.284x2y4 − 88.284x4y2 − 11.177x2y + 12.823x4y +
5.8856x6 − 11.177y3 + 12.823y5 − 5.8856y6

Hp29 23.019x2y4 − 577.12x2y3 − 15.891y − 23.019x4y2 + 558.66x2y5 +
558.66x4y3 + 130.9x2y − 288.56x4y + 186.22x6y + 1.5346x6 + 130.9y3 −
288.56y5 − 1.5346y6 + 186.22y7

Hp30 5.3206x(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) + 1.3302E −
32x(4.6123E33x2y2 − 2.3074E33x2y3 + 6.9223E32x4y − 2.1593E33x2 +
2.3062E33x4 − 2.1593E33y2 + 2.3062E33y4 + 6.9223E32y5 + 4.0529E32)
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Hp31 43.947x2y2 − 304.04x2y3 − 57.612x2y4 − 57.612x4y2 + 120.24x2y5 +
601.17x4y3 + 135.13x2y − 456.06x4y + 360.7x6y − 7.3245x4 + 11.522x6 −
45.042y3 − 7.3245y4 + 152.02y5 + 11.522y6 − 120.24y7

Hp32 5.7255x(x2 − 3.0y2)(21.0(x2 + y2)2 − 30.0x2 − 30.0y2 + 10.0) − 1.4314E −
31x(2.7587E32x2y2 + 2.0469E32x2y − 3.22E32x4y + 8.5319E31x2 −
1.3793E32x4 − 2.5596E32y2 − 2.0469E32y3 + 4.138E32y4 + 3.22E32y5)

Hp33 327.23x2y3 − 28.472x2y4 + 28.472x4y2 − 397.2x2y5 − 220.67x4y3 −
163.62x4y + 220.67x6y + 6.318x2 − 28.645x4 + 28.472x6 − 6.318y2 +
28.645y4 − 32.723y5 − 28.472y6 + 44.134y7

Hp34 1.5762E − 32x(8.0167E32y − 3.2391E33x2y2 + 7.2254E33x2y3 −
3.6347E33x2y + 3.6127E33x4y + 3.2391E32x4 − 3.6347E33y3 +
1.6195E33y4 + 3.6127E33y5) − 1.5762(x(8.0x2y2 − 1.0(x2 + y2)2) +
4.0xy2(x2 − 1.0y2))(28.0x2 + 28.0y2 − 24.0)

Hp35 31.265(x2 + y2)3 − 34.846(x2 + y2)2 + 10.087x2 + 10.087y2 − 7.1619y(x2 −
1.0y2)(16.0x2y2 − 1.0(x2 + y2)2) − 14.324x2y(16.0x2y2 − 3.0(x2 + y2)2) −
0.58506

Hp36 232.97x3y4 − 139.78x5y2 − 46.594xy6 + 6.6563x7

Hp37 52.954x2y5 − 88.257x4y3 + 302.83(x2 + y2)2 − 517.87(x2 + y2)3 +
285.79(x2 + y2)4 + 17.651x6y − 61.45x2 − 61.45y2 − 2.5216y7 + 2.8163

Hp38 105.43x2y3 + 561.26x2y4 − 561.26x4y2 − 141.02x2y5 − 78.344x4y3 −
665.01x2y6 + 665.01x6y2 − 52.717x4y + 78.344x6y − 43.828x2 + 289.85x4 −
561.26x6 + 332.51x8 + 43.828y2 − 289.85y4 − 10.543y5 + 561.26y6 +
15.669y7 − 332.51y8

Hp39 1.3995E − 32x(2.2219E33y + 7.5337E33x2y2 + 1.7775E34x2y3 −
5.598E33x2y4 − 1.0076E34x4y2 − 9.4897E33x2y + 8.8877E33x4y −
7.5337E32x4 + 1.1196E33x6 − 9.4897E33y3 − 3.7668E33y4 +
8.8877E33y5 + 5.598E33y6) + 11.875xy(56.0(x2 + y2)3 − 105.0(x2 + y2)2 +
60.0x2 + 60.0y2 − 10.0)

Hp40 1206.9x2y4 − 115.21x2y3 − 456.9x2y2 + 1206.9x4y2 + 51.879x2y5 +
259.39x4y3 − 731.68x2y6 − 1829.2x4y4 − 731.68x6y2 + 43.955x2y −
172.81x4y + 155.64x6y + 76.151x4 − 241.38x6 + 182.92x8 − 14.651y3 +
76.151y4 + 57.603y5 − 241.38y6 − 51.879y7 + 182.92y8

Hp41 26.132xy(x2 − 1.0y2)(28.0(x2 + y2)2 − 42.0x2 − 42.0y2 + 15.0) − 1.5398E −
32x(1.6846E34x2y4 − 7.4818E33x2y2 + 3.3692E33x4y2 + 5.6741E33x2y −
8.5723E33x4y − 9.5151E32x2 + 3.7409E33x4 − 3.3692E33x6 +
2.8545E33y2 − 5.6741E33y3 − 1.1223E34y4 + 8.5723E33y5 + 1.0107E34y6)

Hp42 3.7829y + 205.0x2y3 + 658.08x2y4 − 658.08x4y2 − 233.59x2y5 −
233.59x4y3 − 815.1x2y6 + 815.1x6y2 − 38.632x2y + 102.5x4y − 77.865x6y +
43.872x6 − 58.222x8 − 38.632y3 + 102.5y5 − 43.872y6 − 77.865y7 + 58.222y8

Hp43 (x(4.3872E7x2y3 − 1.025E7x2y2 + 1.168E7x2y4 + 1.168E7x4y2 −
4.0755E7x2y5 − 4.0755E7x4y3 − 1.3162E7x4y + 1.7466E7x6y +
1.9316E6x2 − 5.125E6x4 + 3.8932E6x6 + 1.9316E6y2 − 5.125E6y4 −
1.3162E7y5 + 3.8932E6y6 + 1.7466E7y7 − 189155.0))/50000

Hp44 3.2151y +180.77x2y3 +49.357x2y4 −49.357x4y2 −209.65x2y5 −209.65x4y3 −
299.42x2y6 +565.18x4y4 −152.72x6y2 −33.452x2y +90.383x4y −69.883x6y +
3.2904x6 + 2.8346x8 − 33.452y3 + 90.383y5 − 3.2904y6 − 69.883y7 + 13.313y8

Hp45 −(x(3.2904E6x2y3 − 9.0383E6x2y2 + 1.0482E7x2y4 + 1.0482E7x4y2 +
1.894E7x2y5 − 2.6275E7x4y3 − 987144.0x4y + 4.8014E6x6y + 1.6726E6x2 −
4.5192E6x4 + 3.4942E6x6 + 1.6726E6y2 − 4.5192E6y4 − 987144.0y5 +
3.4942E6y6 − 1.6578E6y7 − 160766.0))/50000
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Table A.5: Table of octagon polynomials Oj(x, y) in Cartesian coordinates.

Oj(x, y) Polynomial
O1 1
O2 (2211/2x(4 − 21/2)1/2)/7
O3 (2211/2y(4 − 21/2)1/2)/7
O4 −(98701/2(19 − 421/2)1/2(431/2 + 61/2 − 1231/2x2 − 1231/2y2))/1974
O5 (61151/2xy(8 − 321/2)1/2)/23
O6 (31151/2(8 − 321/2)1/2(x2 − y2))/23
O7 −(17632861/2y(304 − 6521/2)1/2(5221/2 − 10521/2x2 − 10521/2y2 +

16))/293881
O8 −(17632861/2x(304 − 6521/2)1/2(5221/2 − 10521/2x2 − 10521/2y2 +

16))/293881
O9 (227651/2y(16 − 721/2)1/2(3x2 − y2))/79
O10 (227651/2x(16 − 721/2)1/2(x2 − 3y2))/79
O11 −(212(1/4)338149551/2(4938121/2 − 20662)1/2(((1385151/2)/6909 −

(178301/2)/2303)((231/2)/3+
O12 15.149x4 − 10.301x2 + 10.301y2 − 15.149y4

O13 (xy(151499.0x2 + 151499.0y2 − 103011.0))/5000
O14 3.5722(x2 + y2)2 − 28.578x2y2

O15 16.881xy(x2 − 1.0y2)
O16 (x(847511.0x2y2 − 464433.0x2 + 423766.0x4 − 464433.0y2 + 423766.0y4 +

106300.0))/10000
O17 (y(847511.0x2y2 − 464433.0x2 + 423766.0x4 − 464433.0y2 + 423766.0y4 +

106300.0))/10000
O18 1.5671x(x2 − 3.0y2) + 4.2991x(x2 − 3.0y2)(5.0x2 + 5.0y2 − 4.0)
O19 1.5671y(3.0x2 − 1.0y2) + 4.2991y(3.0x2 − 1.0y2)(5.0x2 + 5.0y2 − 4.0)
O20 (x(663544.0x2 − 9.2405E6x2y2 + 42727.0x4 − 1.9906E6y2 +

9.0268E6y4))/250000
O21 (y(9.0268E6x4 − 1.9906E6x2 − 9.2405E6x2y2 + 663544.0y2 +

42727.0y4))/250000
O22 15.746x2y2 − 98.482(x2 + y2)2 + 65.655(x2 + y2)3 + 33.421x2 + 7.873x4 +

33.421y2 + 7.873y4 − 2.5739
O23 (xy(561455.0x2y2 − 343555.0x2 + 280722.0x4 − 343555.0y2 + 280722.0y4 +

94815.0))/2000
O24 70.181x4y2 − 70.181x2y4 + 23.704x2 − 85.887x4 + 70.181x6 − 23.704y2 +

85.887y4 − 70.181y6

O25 −0.0008xy(123188.0x2 − 169088.0x4 − 123188.0y2 + 169088.0y4)
O26 123.05x2y2−131.25x2y4−131.25x4y2−20.509x4+26.25x6−20.509y4+26.25y6

O27 −0.00002xy(2.0448E6x2y2 + 1.6748E6x2 − 3.2177E6x4 + 1.6748E6y2 −
3.2177E6y4 − 377422.0)

O28 95.778x2y4 − 95.778x4y2 − 3.7742x2 + 16.748x4 − 10.977x6 + 3.7742y2 −
16.748y4 + 10.977y6

O29 (y(5.2607E6x2y4 − 5.5706E6x2y2 + 5.2607E6x4y2 + 1.2929E6x2 −
2.7853E6x4 + 1.7536E6x6 + 1.2929E6y2−

O30 (x(5.2607E6x2y4 − 5.5706E6x2y2 + 5.2607E6x4y2 + 1.2929E6x2 −
2.7853E6x4 + 1.7536E6x6 + 1.2929E6y2−

O31 (y(546666.0x2y4 − 1.4802E6x2y2 + 2.7333E6x4y2 + 657244.0x2 −
2.1222E6x4 + 1.64E6x6 − 219088.0y2 + 7

O32 −0.0002x(2.7333E6x2y4 − 1.4802E6x2y2 + 546666.0x4y2 − 219088.0x2 +
720488.0x4 − 546666.0x6 + 657244.

O33 (y(2.3592E7x2y2 − 3.3078E7x2y4 − 3.9973E6x4y2 + 2.8471E6x2 −
2.6447E7x4 + 2.988E7x6 − 949044.0y2+

O34 (x(2.3592E7x2y2 − 3.9973E6x2y4 − 3.3078E7x4y2 − 949044.0x2 +
571133.0x4 + 799466.0x6 + 2.8471E6y2−

Continued on next page
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Table A.5 – continued from previous page
Oj(x, y) Polynomial

O35 −0.00001y(1.1525E7x2y2 − 2.5616E7x2y4 + 8.4121E6x4y2 − 2.2163E6x2 +
5.7626E6x4 − 8.5387E6x6 − 2.2163

O36 0.00001x(1.1525E7x2y2 + 8.4121E6x2y4 − 2.5616E7x4y2 − 2.2163E6x2 +
5.7626E6x4 − 3.6775E6x6 − 2.2163E

O37 17.696x2y2 + 271.92(x2 + y2)2 − 466.69(x2 + y2)3 + 249.73(x2 + y2)4 −
58.48x2 + 8.8478x4 − 58.48y2

O38 515.3x2y4 − 515.3x4y2 − 612.42x2y6 + 612.42x6y2 − 43.777x2 + 282.28x4 −
533.12x6 + 306.21x8 + 43

O39 1.2888E − 31xy(1.135E33x2y2 − 7.1072E32x2 + 7.0576E32x4 −
7.1072E32y2 + 7.0576E32y4 + 1.692E32) + 10.936x

O40 998.18x2y4 − 405.99x2y2 + 998.18x4y2 − 561.64x2y6 − 1404.1x4y4 −
561.64x6y2 + 67.665x4 − 199.6

O41 28.235xy(x2 − 1.0y2)(28.0(x2 + y2)2 − 42.0x2 − 42.0y2 + 15.0) − 4.9913E −
31xy(1.9188E32x2 − 2.8676E32

O42 758.2x2y4 − 758.2x4y2 − 926.92x2y6 − 7.2442E − 38x4y4 + 926.92x6y2 −
8.5751x2 + 66.302x4 − 105.87

O43 (xy(2.2883E6x2y2 − 1.4758E6x2y4 − 1.4758E6x4y2 + 1.326E6x2 −
5.3791E6x4 + 5.0859E6x6 + 1.326E6y2−

O44 506.19x4y4 − 202.48x2y6 − 202.48x6y2 − 74.922(x2 + y2)2 + 149.27(x2 +
y2)3 − 94.176(x2 + y2)4+

O45 370.25x5y3 − 370.25x3y5 + 52.893xy7 − 52.893x7y

Table A.6: Table of nonagon polynomials Nj(x, y) in Cartesian coordinates.

Nj(x, y) Polynomial
N1 1
N2 2.0829x

N3 2.0829y

N4 x2(3.7464 + 2.5375E − 23i) + y2(3.7464 + 2.5375E − 23i) − (1.7271 +
1.1817E − 12i)

N5 xy(5.3095 − 1.3788E − 13i)
N6 x2(2.6548 − 1.2066E − 13i) − y2(2.6548 − 1.2066E − 13i)
N7 y(0.48598 − 4.1331E − 12i) + y(3.0x2 + 3.0y2 − 2.0)(3.1695 − 1.9206E − 24i)
N8 x(0.48598 + 1.1177E − 11i) + x(3.0x2 + 3.0y2 − 2.0)(3.1695 − 7.7846E − 22i)
N9 y(2.768E − 13 − 1.2556E − 12i) + y(3.0x2 − 1.0y2)(3.1879 − 1.0423E − 23i)
N10 x(x2 − 3.0y2)(3.1879 − 6.107E − 26i) − x(6.92E − 12 − 2.9345E − 14i)
N11 15.484(x2 + y2)2 − 14.339x2 − 14.339y2 + 2.2163
N12 14.653x4 − 10.162x2 + 10.162y2 − 14.653y4

N13 (xy(293066.0x2 + 293066.0y2 − 203244.0))/10000
N14 3.7037(x2 + y2)2 − 29.63x2y2

N15 14.815xy(x2 − 1.0y2)
N16 (3x(273455.0x2y2 − 152399.0x2 + 136722.0x4 − 152399.0y2 + 136722.0y4 +

35439.0))/10000
N17 (3y(273455.0x2y2 − 152399.0x2 + 136722.0x4 − 152399.0y2 + 136722.0y4 +

35439.0))/10000
N18 1.2242x(x2 − 3.0y2) + 4.1388x(x2 − 3.0y2)(5.0x2 + 5.0y2 − 4.0)
N19 3.6725x2y − 1.2242y3 + 4.1388y(3.0x2 − 1.0y2)(5.0x2 + 5.0y2 − 4.0)
N20 (x(425600.0x4 − 212299.0x2y − 4.256E6x2y2 + 212299.0y3 +

2.128E6y4))/100000
Continued on next page
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Nj(x, y) Polynomial

N21 3.1844x2y2 − 42.56x2y3 + 21.28x4y − 0.53074x4 − 0.53074y4 + 4.2559y5

N22 63.723(x2 + y2)3 − 89.187(x2 + y2)2 + 33.335x2 + 33.335y2 − 2.5996
N23 (xy(1.3587E6x2y2 − 843888.0x2 + 679344.0x4 − 843888.0y2 + 679344.0y4 +

236211.0))/5000
N24 67.934x4y2 − 67.934x2y4 + 23.621x2 − 84.389x4 + 67.934x6 − 23.621y2 +

84.389y4 − 67.934y6

N25 −1.0E − 6x(8.6215E7x2y − 7.317E6x2y2 − 1.1202E8x4y + 731700.0x4 −
8.6215E7y3 + 3.6585E6y4 + 1.1202E8y5)

N26 129.32x2y2 + 7.317x2y3 − 140.03x2y4 − 140.03x4y2 − 3.6585x4y −
21.554x4 + 28.006x6 − 21.554y4 − 0.7317y5 + 28.006y6

N27 (x(718288.0x2y2 − 9.6751E6x2y3 + 2.9025E6x4y + 221377.0x2 −
359144.0x4 − 664122.0y2 + 1.0774E6y4 + 2.9025E6y5))/100000

N28 72.563x2y4 − 7.1828x2y3 − 72.563x4y2 + 6.6412x2y − 10.774x4y +
4.8376x6 − 2.2137y3 + 3.5914y5 − 4.8376y6

N29 4.879y(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) + 2.4395E −
32y(1.5053E33x2y2 − 7.218E32x2 + 7.5267E32x4 − 7.218E32y2 +
7.5267E32y4 + 1.3856E32)

N30 4.879x(35.0(x2 + y2)3 − 60.0(x2 + y2)2 + 30.0x2 + 30.0y2 − 4.0) + 1.2197E −
32x(3.0107E33x2y2 − 1.4436E33x2 + 1.5053E33x4 − 1.4436E33y2 +
1.5053E33y4 + 2.7712E32)

N31 13.916x4y2−13.916x2y4−280.27x2y3+105.48x2y5+527.42x4y3+130.51x2y−
420.4x4y+316.45x6y−0.92772x6−43.504y3+140.13y5+0.92772y6−105.48y7

N32 5.023x(x2 − 3.0y2)(21.0(x2 + y2)2 − 30.0x2 − 30.0y2 + 10.0) − 1.2558E −
32x(1.6816E33x2y2 − 1.4775E33x2y3 + 4.4326E32x4y + 5.3562E32x2 −
8.4079E32x4 − 1.6069E33y2 + 2.5224E33y4 + 4.4326E32y5)

N33 288.93x2y3 − 23.522x2y2 + 29.567x2y4 + 29.567x4y2 − 329.51x2y5 −
183.06x4y3 − 144.47x4y + 183.06x6y + 3.9203x4 − 5.9134x6 + 3.9203y4 −
28.893y5 − 5.9134y6 + 36.612y7

N34 1.3076E − 32x(1.1993E33x2y − 1.9031E33x2y2 − 1.809E33x4y +
1.9031E32x4 − 1.1993E33y3 + 9.5155E32y4 + 1.809E33y5) −
1.3076(x(8.0x2y2 −1.0(x2 +y2)2)+4.0xy2(x2 −1.0y2))(28.0x2 +28.0y2 −24.0)

N35 13.512x2y4 − 13.512x4y2 + 114.57x2y5 − 190.95x4y3 + 38.189x6y −
3.2901x2 + 14.251x4 − 13.512x6 + 3.2901y2 − 14.251y4 + 13.512y6 − 5.4556y7

N36 −0.00001x(658011.0y + 5.405E6x2y3 − 1.9094E7x2y4 + 1.1457E7x4y2 −
2.8501E6x2y + 2.7025E6x4y − 545566.0x6 − 2.8501E6y3 + 2.7025E6y5 +
3.8189E6y6)

N37 294.26(x2 + y2)2 − 485.0(x2 + y2)3 + 257.26(x2 + y2)4 − 61.789x2 −
61.789y2 + 2.9228

N38 524.02x2y4 − 524.02x4y2 − 22.919x2y5 + 38.198x4y3 − 596.84x2y6 −
1.1641E − 10x4y4 + 596.84x6y2 − 7.6396x6y − 43.962x2 + 280.84x4 −
524.02x6 + 298.42x8 + 43.962y2 − 280.84y4 + 524.02y6 + 1.0914y7 − 298.42y8

N39 2.5121E − 33x(7.4261E33y + 5.6561E34x2y3 − 1.5206E34x2y4 +
9.1234E33x4y2 − 3.0971E34x2y + 2.8281E34x4y − 4.3445E32x6 −
3.0971E34y3 + 2.8281E34y5 + 3.0411E33y6) + 10.658xy(56.0(x2 + y2)3 −
105.0(x2 + y2)2 + 60.0x2 + 60.0y2 − 10.0)

N40 1081.5x2y4 − 61.185x2y3 − 430.58x2y2 + 1081.5x4y2 + 78.818x2y5 +
43.788x4y3 − 621.89x2y6 − 1554.7x4y4 − 621.89x6y2 + 30.592x4y −
43.788x6y + 71.763x4 − 216.3x6 + 155.47x8 + 71.763y4 + 6.1185y5 −
216.3y6 − 8.7575y7 + 155.47y8

N41 1.3087E − 32x(3.3458E33x2y4 − 4.6751E33x2y2 + 6.0224E33x4y2 −
3.5224E33x2y + 5.1657E33x4y + 4.6751E32x4 − 6.6915E32x6 +
3.5224E33y3 + 2.3375E33y4 − 5.1657E33y5 − 3.3458E33y6) + 22.21xy(x2 −
1.0y2)(28.0(x2 + y2)2 − 42.0x2 − 42.0y2 + 15.0)

Continued on next page
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Nj(x, y) Polynomial

N42 562.25x2y4 − 60.131x2y3 − 562.25x4y2 + 25.953x2y5 + 129.76x4y3 −
653.37x2y6 + 653.37x6y2 + 23.903x2y − 90.197x4y + 77.858x6y + 37.483x6 −
46.669x8 − 7.9676y3 + 30.066y5 − 37.483y6 − 25.953y7 + 46.669y8

N43 −0.00002x(3.0066E6x2y2 − 3.7483E7x2y3 − 6.4882E6x2y4 −
1.2976E6x4y2 + 3.2669E7x2y5 + 3.2669E7x4y3 + 1.1245E7x4y −
1.4001E7x6y + 398388.0x2 − 1.5033E6x4 + 1.2976E6x6 − 1.1951E6y2 +
4.5098E6y4 + 1.1245E7y5 − 3.8929E6y6 − 1.4001E7y7)

N44 2.0694y + 102.31x2y3 − 111.12x2y5 − 111.12x4y3 − 171.14x2y6 +
427.85x4y4 − 171.14x6y2 − 20.199x2y + 51.154x4y − 37.039x6y + 6.1121x8 −
20.199y3 + 51.154y5 − 37.039y7 + 6.1121y8

N45 1.28E − 9x(8.6809E10x2y4 − 7.9928E10x2y2 + 8.6809E10x4y2 −
2.674E11x2y5 + 2.674E11x4y3 − 3.8201E10x6y + 1.5781E10x2 −
3.9964E10x4 + 2.8936E106 + 1.5781E10y2 − 3.9964E10y4 + 2.8936E10y6 +
3.8201E10y7 − 1.6167E9)
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[48] S. Vı́tek, P. Koten, P. Páta, and K. Fliegel, “Double-Station Automatic
Video Observation of the Meteors,” Advances in Astronomy pp. 1–4 (2010).

[49] V. Stanislav and N. Maria, “Real-Time Detection of Sporadic Meteors in the
Intensified TV Imaging Systems,” Sensors 18, 77 (2017).

[50] I. Chang, “Collinear beam acousto-optic tunable filters,” Electronics Letters
28, 1255 (1992).

[51] V. B. Voloshinov and N. V. Polikarpova, “Acousto-optic investigation of
propagation and reflection of acoustic waves in paratellurite crystal,”
Applied Optics 48, C55 (2009).

96



Bibliography
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[A.2] Páta, P.; Kĺıma, M.; Bednář, J.; Janout, P.; Barta, C.; Hasal, R.; Maresi,
L.; Grabarnik, S. OFT Sectorization Approach to Analysis of Optical
Scattering in Mercurous Chloride Single Crystals, In: Optics Express,
2015, 23(16), 21509-21526.
ISSN 1094-4087 Shares: 17/17/17/17/8/8/8/8
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transformace, In: Jemná mechanika a optika, 2015, 60(11-12), 311-313.
ISSN 0447-6441 Shares: 25/25/25/25

101



Publications of the Author Relevant to the Thesis

Indexed in ISI:
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[A.12] Anisimova, E.; Bednář, J.; Blažek, M.; Janout, P.; Fliegel, K.; Páta, P.;
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