

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Katedra biomedicínské techniky

Retrospektivní studie z hlediska dosahované kvality obrazu na skiagrafickém a skiaskopickém pracovišti

Bakalářská práce

Studijní program:	Biomedicínská a klinická technika		
Studijní obor:	Biomedicínský technik		
Autor bakalářské práce:	Petr Novák DiS.		
Vedoucí bakalářské práce:	doc. Ing. Jiří Hozman, Ph.D.		
Konzultant:	Ing. Antonín Koutský		

Kladno 2017

České vysoké učení technické v Praze, Fakulta biomedicínského inženýrství

Katedra biomedicínské techniky

Akademický rok: 2016/2017

Zadání bakalářské práce

Student:	Petr Novák, DiS.
Obor:	Biomedicínský technik
Téma:	Retrospektivní studie z hlediska dosahované kvality obrazu na skiagrafickém a skiaskopickém pracovišti
Téma anglicky:	A retrospective study in terms of achieving the image quality on radiographic and fluoroscopic workplace

Zásady pro vypracování:

Na souboru dat reprezentujících pravidelné kontroly na vybraných radiodiagnostických pracovištích ilustrujte vývoj kvality výsledného obrazu. Kvalitu obrazu hodnoťte pro měření parametrů jako soulad radiačního pole a světelného pole, soulad radiačního pole a receptoru obrazu, rozlišení při vysokém kontrastu, test AEC a další. Parametry popište ve vztahu k platným technickým normám a též dokumentům SÚJB. Srovnání obrazu realizujte pro případ splnění a nesplnění rozsahu daného parametru. Určete statisticky významný parametr, který se nejvíce podílel na změně kvality obrazu za sledované období.

Seznam odborné literatury:

[1] Kol., Soubor ČSN EN 61223-X-Y. Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací., ed. 1, Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 1997, 28 až 136 s., Třídicí znak 85 4012

[2] Kol., Publikace SÚJB (modrá řada). Metodické pokyny a doporučení (modrá řada bez pruhu), 1999-2016, [Citováno 8.1.2017], https://www.sujb.cz/dokumenty-a-publikace/publikace-sujb/

 Zadání platné do:
 11.09.2018

 Vedoucí:
 doc. Ing. Jiří Hozman, Ph.D.

 Konzultant:
 Ing. Antonín Koutský (KOUTSKÝ - měření a posuzování RTG, s.r.o.)

vedoucí katedry / pracoviště

V Kladně dne 20.02.2017

děkan

PROHLÁŠENÍ

Prohlašuji, že jsem bakalářskou práci s názvem "*Retrospektivní studie z hlediska dosahované kvality obrazu na skiagrafickém a skiaskopickém pracovišti*" vypracoval samostatně a použil k tomu úplný výčet citací použitých pramenů, které uvádím v seznamu přiloženém k diplomové práci.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů.

V Kladně 15. 5. 2017

Petr homit

Petr Novák DiS.

PODĚKOVÁNÍ

Rád bych zde poděkoval vedoucímu této práce, panu doc. Ing. Jiřímu Hozmanovi, Ph.D. za poskytnuté rady a podporu při vypracování této práce. Dále bych poděkoval konzultantovi této práce, panu Ing. Antonínu Koutskému, za poskytnutí cenných rad. A v neposlední řadě bych chtěl poděkovat své rodině, dětem a kolegům v zaměstnání, že mi umožnili alespoň trochu času pro studium.

ABSTRAKT

Retrospektivní studie z hlediska dosahované kvality obrazu na skiagrafickém a skiaskopickém pracovišti

V práci byly vytyčeny dva cíle. Prvním byla retrospektivní studie kvality obrazu na skiagrafických a skiaskopických přístrojích během pravidelných zkoušek provozní stálosti. Druhým cílem bylo zjistit parametr, který nejvíce ovlivňuje kvalitu obrazu při nedodržení parametrů zkoušky provozní stálosti.

Studie byla provedena na celkem 7 radiodiagnostických přístrojích - skiagrafie s přímou a nepřímou digitalizací, skiaskopický přístroj, C rameno se zesilovačem a flat panelem, pojízdný přístroj s přímou a nepřímou digitalizací.

Na základě změřených dat bylo zjištěno, že i přes veškeré změny vstupních parametrů nastavení se rozlišení pro nízký a vysoký kontrast statisticky významně neliší od referenčních hodnot zkoušky provozní stálosti. Tato stabilita kvality obrazu je způsobena následnou úpravou obrazu, která je součástí systému přístroje (u nepřímé digitalizace se jedná o čtecí zařízení). Pro statistické vyhodnocení byl použit Wilcoxonův párový test, na základě kterého lze konstatovat statisticky významný vliv změny parametru nastavení na kvalitu obrazu ve třech případech.

Klíčová slova

zkouška provozní stálosti, retrospektivní studie, skiagrafie, skiaskopie, rozlišení obrazu, kvalita obrazu

ABSTRACT

A retrospective study in terms of achieving the image quality on radiographic and fluoroscopic workplace

Two objectives were set in this thesis. The first was a retrospective study of the quality of an image on radiographic and fluoroscopic apparatuses during regular tests of operational stability. The second objective was to ascertain the parameter that influences image quality the most if the parameters of an operational stability test (OST) are not observed.

The study was conducted on a total of 7 radiodiagnostic apparatuses – direct digital and computed radiography, a fluoroscopic apparatuses, a C-arm with an intensifier and flat panel, a mobile apparatuse with direct digital and computed radiography.

Based on the data measured, it has been found out that in spite of all the changes in the input setting parameters, the resolutions for low and high contrast does not differ statistical significantly from the reference values of an operational stability test. Such stability of image quality is due to following image editing, which is part of apparatuse system (in the case of computed radiography, it is the reading device). The Wilcoxon signed-rank test was employed for statistical evaluation, based on which a statistical significantly influence of a change in the settings of a parameter on image quality can be state in three cases.

Keywords

Stability test of X-ray apparatuses, retrospective study, radiographic workplace, fluoroscopic workplace, image resolution, image quality

Obsah

Sez	znam	zkratel	۲	8
1	Úvo	d		. 10
	1.1	Přehle	ed současného stavu	. 10
		1.1.1	Česká technická norma	. 13
	1.2	Cíle p	ráce	. 14
2	Met	ody		. 15
	2.1	ZPS u	skiagrafických stacionárních i mobilních zařízení s CR systémem	. 16
		2.1.1	Kontrola kvality obrazu fantomu a detekce prahového kontrastu a	ì
		rozliše	ení	. 16
	2.2	Testo	vací pomůcky	. 17
	2.3	Metoc	dy zpracování a vyhodnocení dat	. 22
		2.3.1	Wilcoxonův test	. 22
3	Výsl	edky		. 24
	3.1	Retros	spektivní studie	. 24
		3.1.1	Skiagrafické pracoviště s CR systémem	. 25
		3.1.2	Skiagrafické pracoviště s DDR	. 27
		3.1.3	Skiaskopické pracoviště	. 30
		3.1.4	Pojízdný přístroj CR	. 33
		3.1.5	Pojízdný přístroj s DDR	. 35
		3.1.6	C rameno s flat panelem	. 36
		3.1.7	C rameno se zesilovačem	. 38
	3.2	Nedoo	držení parametrů ZPS	. 40
		3.2.1	Skiagrafické pracoviště	. 42
		3.2.2	Pojízdný přístroj	. 44
		3.2.3	Skiaskopické pracoviště	. 46
		3.2.4	C rameno	. 47
	3.3	Statist	tické zpracování	. 50
4	Disk	use		. 52
5	Záv	ěr		. 53
Sez	znam	použité	E literatury	. 55

Seznam zkratek

Zkratka	Význam
a_1, a_2, b_1, b_2	Odchylky mezi kraji světelného a radiačního pole stanovované pro účely testu souladu světelného a radiačního pole
AEC	Expoziční automatika (Automatic Exposure Control)
AERC	Funkce automatického řízení expozičního příkonu (Automatic Exposure Rate Control)
Al	Hliník
CR	Nepřímá digitalizace (Computed Radiography)
Cu	Měď
ČSN	Česká technická norma
DAP	Součin dávky a plochy (Dose Area Product)
DDR	Přímá digitalizace (Direct Digital Radiography)
EXI	Expoziční index (Exposure Index)
FFD	Vzdálenost ohniska k filmu (Focus to Film Distance)
FOV	Zorné pole (Field of View)
Gy	Gray
HCR	Rozlišení při vysokém kontrastu (High-contrast resolution)
IEC	Mezinárodní elektrotechnická komise (The International Electrotechnical Commission)
kV	Kilovolt
KAP	Součin kermy a plochy (Kerma Area Product)
LCR	Rozlišení při nízkém kontrastu (Low-contrast resolution)
LP/mm	Počet párů čar na milimetr (Line Pairs per milimeter)
mA	Miliampér
mAs	Miliampérsekunda
RDG	Radiodiagnostické
RTG	Rentgen, rentgenový/á/é, vztahující se k rentgenovému zařízení

SÚJB	Státní úřad pro jadernou bezpečnost
SW	Software
VZPS	Výchozí zkouška provozní stálosti
ZDS	Zkouška dlouhodobé stability
ZIZ	Zdroj ionizujícího záření
ZPS	Zkouška provozní stálosti

1 Úvod

Zkoušky provozní stálosti (ZPS) patří k povinným kontrolám skiagrafických a skiaskopických přístrojů na každém radiodiagnostickém oddělení. Jejím cílem je udržení kvality obrazu vedoucí ke správné diagnostické interpretaci (Obr. 1.1).

Jako radiologický asistent tyto zkoušky provádím již několik let na radiodiagnostických pracovištích v Masarykově nemocnici Ústí nad Labem a Chomutově. Toto téma bakalářské práce jsem zvolil nejen z důvodu množství naměřených dat během několika posledních let, ale především pro svoji vyšší osobní vzdělanost ohledně ZPS, její vyhodnocení a následný postup při nesrovnalostech ve výsledcích.

Obr. 1.1: Zhoršená kvalita obrazu vlivem poruchy zesilovače zjištěná během ZPS, patrná na diagnostickém snímku. Ziehm Vision, nemocnice Chomutov. Fotografie: autor.

1.1 Přehled současného stavu

Od 1. ledna 2017 vstoupil v platnost nový atomový zákon č. 263/2016 Sb. [1], který nahrazuje dosavadní zákon č. 18/1997 Sb., o mírovém využívání jaderné energie a ionizujícího záření (atomový zákon) a o změně a doplnění některých zákonů. Nový atomový zákon byl přijat 14. července 2016.

Společné povinnosti držitele povolení a registranta k nakládání se zdroji ionizujícího záření (ZIZ) pak Atomový zákon, kromě jiného, ukládá podle § 25 odst. 1 písm. f), sledovat, měřit, hodnotit, ověřovat a zaznamenávat veličiny a skutečnosti

důležité z hlediska jaderné bezpečnosti, radiační ochrany, technické bezpečnosti, monitorování radiační situace, zvládání radiační mimořádné události a zabezpečení a informace o nich uchovávat a předávat Úřadu [2].

Držitel povolení vykonávající činnost v rámci plánované expoziční situace a registrant jsou povinni dle § 68 odst. 1 písm. g) provádět ověřování vlastností zdroje ionizujícího záření prostřednictvím zkoušky provozní stálosti, pokud se nejedná o nevýznamný zdroj ionizujícího záření nebo otevřený radionuklidový zdroj, výsledky této zkoušky hodnotit a v případě nevyhovujících výsledků provést nápravná opatření [3].

Vzhledem k tomu, že zejména v oblasti lékařského ozáření je nezbytné nastavit správnou praxi při radiologických výkonech a při kontrole radiologických zařízení (v souladu s požadavky právních předpisů), vydává Státní úřad pro jadernou bezpečnost (SÚJB) "Doporučení" [4].

"Doporučení" se týká rozsahu ZPS skiagrafických a skiaskopických rentgenových zařízení a má sloužit jako pomůcka při plánování a provádění zkoušek provozní stálosti. V "Doporučení" se klade důraz na účast místního radiologického fyzika v celém procesu zajištění a provádění zkoušek provozní stálosti.

Rozsah testů se může měnit podle provozu a typu rtg zařízení. Uvedený rozsah v tomto doporučení je minimální doporučený rozsah zkoušek provozní stálosti na skiagrafických a skiaskopických pracovištích (Tabulka 1.1, Tabulka 1.2, Tabulka 1.3). Případné změny resp. doplnění testů je v kompetenci radiologického fyzika.

Požadavek na zkoušky provozní stálosti rtg zařízení je, aby testy byly jednoduché a měly dostatečnou vypovídací úroveň o kvalitě obrazu a radiační ochraně.

11

Test	Četnost
Vizuální a funkční kontrola rtg zařízení	Denně
Artefakty	Denně
Soulad radiačního a světelného pole - zařízení vyrobená před rokem 2000 a pro pojízdná rtg zařízení - ostatní zařízení	Měsíčně Čtvrtletně
Soulad radiačního pole a receptoru obrazu - zařízení vyrobená před rokem 2000 - zařízení vyrobená po roce 2000 včetně	Měsíčně Čtvrtletně
Stabilita vstupních parametrů	Čtvrtletně
Kontrola AEC u stacionárních rtg zařízení	Čtvrtletně
Kontrola kvality obrazu fantomu a detekce prahového kontrastu a rozlišení	Čtvrtletně

Tabulka 1.1: Minimální rozsah a četnost zkoušek provozní stálosti u skiagrafických

stacionárních mobilních zařízení s CR systémem [4].

Tabulka 1.2: Kontrola rtg zařízení s DDR systémem [4].

Test	Četnost
Vizuální a funkční kontrola systému	Denně
Expoziční index	Průběžně
Artefakty	Denně
Kontrola AEC	Čtvrtletně
Stabilita vstupních parametrů	Čtvrtletně
Soulad radiačního a světelného pole	Čtvrtletně
Soulad radiačního pole a receptoru obrazu	Čtvrtletně
Homogenita	Půlročně
Limitní rozlišení vysoký kontrast	Půlročně
Limitní rozlišení nízký kontrast	Půlročně

 Tabulka 1.3: Minimální rozsah a četnost zkoušek provozní stálosti na skiaskopickém pracovišti

 [4].

Test	Četnost
Vizuální a funkční kontrola	Průběžně
Soulad radiačního pole a receptoru obrazu - zařízení vyrobená před r.2000 Soulad radiačního pole a receptoru obrazu - pojízdná rtg zařízení Soulad radiačního pole a receptoru obrazu - vězehne ostataí rta	Měsíčně Měsíčně
zařízení	Čtvrtletně
Rozlišení při nízkém kontrastu	Čtvrtletně
Rozlišení při vysokém kontrastu	Čtvrtletně
Test AERC	Čtvrtletně

Místní radiologický fyzik sestavuje radiologické standardy zkoušek provozní stálosti pro každý radiodiagnostický přístroj. Určuje jejich četnost, parametry a toleranci na základě návrhu výrobce a doporučeného standardu s uvážením reálného provozu na pracovišti.

Držitel povolení k nakládání se zdroji ionizujícího záření (zdravotnické zařízení) je povinen umožnit místnímu radiologickému fyzikovi nebo jím pověřenému pracovníkovi přístup na pracoviště za účelem kontroly provádění, vyhodnocování a zapisování výsledků zkoušek provozní stálosti. Je také povinen umožnit přístup k záznamům ze zkoušek provozní stálosti.

Další povinností je uchovávat záznamy zkoušek provozní stálosti a filmových či digitálních materiálů ke zkouškám provozní stálosti minimálně po dobu 1 roku od provedení ZPS.

1.1.1 Česká technická norma

IEC (Mezinárodní elektrotechnická komise) je celosvětovou normalizační organizací, zahrnující všechny národní elektrotechnické komitéty (národní komitéty IEC). Cílem IEC je podpora mezinárodní spolupráce ve všech otázkách týkajících se normalizace v oblasti elektrotechniky a elektroniky. Za tím účelem, kromě jiných činností, IEC vydává mezinárodní normy. Mají formu doporučení pro mezinárodní použití publikovaných formou norem, technických zpráv nebo pokynů a v tomto smyslu jsou přijímány národními komitéty [5].

Rozsah a požadavky ZPS pro nepřímou / přímou skiagrafii a skiaskopii stanovuje:

- norma ČSN IEC 61223-2-9 Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací - Část 2-9: Zkoušky stálosti - Zařízení pro nepřímou skiaskopii a nepřímou skiagrafii [6].
- norma ČSN IEC 61223-2-11 Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací - Část 2-11: Zkoušky stálosti - Zařízení pro všeobecnou přímou skiagrafii [7].

Platnost těchto norem byla k 1. září 2016 bez náhrady zrušena [6], [7].

1.2 Cíle práce

Prvním cílem práce je retrospektivní studie kvality obrazu během zkoušek provozní stálosti na vybraných skiagrafických a skiaskopických přístrojích v Masarykově nemocnici Ústí nad Labem prováděných v pravidelných čtvrtletních intervalech. Je zde uveden vývoj expozičních parametrů, rentgenového a světelného pole a kvality obrazu. Zvolen byl vždy jeden rentgenový přístroj z kategorií – skiagrafie s přímou a nepřímou digitalizací, skiaskopický přístroj, C rameno se zesilovačem a flat panelem, pojízdný přístroj s přímou a nepřímou digitalizací. Celkem se jednalo 7 přístrojů.

Druhým cílem této práce je zjistit faktor při zkoušce provozní stálosti, který má za následek největší změnu kvality obrazu. Vždy jsou pro každý ze 7 již zmíněných přístrojů zvoleny parametry (ohnisková vzdálenost, přídavný filtr, orgánová předvolba), pro které se předpokládá změna nejen expozičních parametrů a plošné kermy, ale především kvality obrazu. Pro statistické vyhodnocení naměřených dat byl použit Wilcoxonův párový test.

2 Metody

Rozsah zkoušky provozní stálosti se upřesňuje při přejímací zkoušce a při zkouškách dlouhodobé stability. Místní radiologický fyzik může rozsah a pravidelnost ZPS upravit. Může se jednat o průběžné a denní zkoušky prováděné obsluhou rtg přístroje (radiologický asistent), nebo o měsíční, čtvrtletní, pololetní a roční zkoušky prováděné proškoleným pracovníkem.

Referenční hodnoty se stanovují jako střední hodnoty výsledků jednotlivých testů v rámci výchozí zkoušky provozní stálosti (VZPS).

Po každé nápravné údržbě nebo po jiném servisním zásahu do zobrazovacího řetězce, který by mohl ovlivnit kvalitu zobrazení či radiační ochranu, se mají provádět všechny testy, jejichž parametry či výsledky by mohly být servisním zásahem ovlivněny. ZPS se provádí (v příslušném rozsahu) také při podezření na chybnou funkci přístroje.

Nevyhovují-li výsledky zkoušky provozní stálosti stanoveným kritériím, musí se provést příslušná nápravná opatření stanovená u každého testu.

Výsledky ZPS se zaznamenávají do protokolů o těchto zkouškách, které obsahují:

- jméno osoby, která test provedla,
- datum testu,
- jednoznačnou identifikaci zařízení, kterého se zkouška týká,
- specifikace expozičních parametrů, nastavení a zkušebních pomůcek, které jsou důležité pro daný test,
- vyjádření o souladu výsledku testu s požadavky.

O negativních výsledcích ZPS a z nich odvozených opatřeních musí být informováni všichni pracovníci používající dané zařízení [4].

2.1 ZPS u skiagrafických stacionárních i mobilních zařízení s CR systémem

Přechodem od filmové skiagrafie ke skiagrafii využívající nepřímé a přímé digitalizace odpadá řada zkoušek a kontrol jako:

- Senzitometrie test slouží k monitorování stability vyvolávacího procesu
- Stálost optické hustoty
- Homogenita snímku
- Retence ustalovače na filmu
- Kontakt mezi zesilující fólií a filmem
- Světlotěsnost kazet
- Relativní citlivost systému kazeta zesilující fólie
- Světlotěsnost temné komory
- Ochranné osvětlení temné komory
- Jas a homogenita jasu negatoskopu

Vzhledem k zadání této práce, týkající se studií kvality obrazu, zde uvádím pouze citaci z "Doporučení" AZ: Kontrola kvality obrazu fantomu a detekce prahového kontrastu a rozlišení [4].

2.1.1 Kontrola kvality obrazu fantomu a detekce prahového kontrastu a rozlišení

Cíl zkoušky: Včasné odhalení zhoršené kvality obrazu, která může vést ke ztrátě diagnostické informace. Subjektivní zkouška - nutné, aby ji prováděla stále stejná osoba.

Pomůcky:

- fantom s objekty pro určení prostorového rozlišení a stanovení nízkokontrastních detailů, nebo testovací pomůcky pro vysoký a nízký kontrast
- zeslabující vrstva deska Cu velikost min. 10x10 cm o tloušťce cca 1 mm, nebo deska Al 25 mm.

- *Postup zkoušky:* Hodnocení se provede vždy na stejném diagnostickém monitoru a odečte se číslo skupiny a odpovídající hodnota počtu párů čar na milimetr s použitím elektronické lupy a počet viditelných objektů nízkého kontrastu (odpovídající hodnotě uvedené výrobcem pro použitou pomůcku).
- *Požadavky:* Odečtená skupina rozlišitelných čar nebo počet viditelných detailů se nesmí zhoršit o více než 2 skupiny od hodnoty stanovené jako referenční.
- Nápravná opatření: V případě překročení tolerancí opakovat měření. Pokud ostatní testy vyhovují, kontaktovat servisní firmu až v případě stejného zjištění v další periodicky prováděné zkoušce.
- Frekvence: čtvrtletně

Provádí: osoba pověřená kontrolou kvality rtg zařízení

2.2 Testovací pomůcky

Ke každé ZPS je potřeba vhodný fantom a přídavný filtr jako náhrada za pacienta. Zvolená, vhodná testovací pomůcka je uvedena ve standardu ZPS a u každé zkoušky stabilně používána.

Testovací pomůcky používané pro přejímací zkoušky, zkoušky dlouhodobé stability a zkoušky provozní stálosti musí mít platné osvědčení o ověření nebo kalibraci.

Jako přídavný filtr používáme (Obr. 2.1):

- hliníkový filtr tl. 25 mm
- měděný filtr tl. 1mm, popř. 0,5 nebo 2,1 mm

Obr. 2.1: Přídavná filtrace Cu 1mm, Al 25 mm. Fotografie: autor.

Fantomy:

- Quart SP Vario
- Digi 13
- TOR FG 18
- Quart SP Vario rozměry 280x280x10 mm, standardně FOV 240x180 mm (Obr. 2.2, Obr. 2.3)

Testovací parametry

- rozlišení pro vysoký kontrast
- rozlišení pro nízký kontrast
- optická hustota
- kontrola světelného a radiačního pole
- kontrola artefaktů
- kontrola dynamického rozsahu rtg obrazu

Obr. 2.2: Quart SP Vario. Fotografie: autor.

Obr. 2.3: Rtg obraz fantomu Quart SP Vario. Fotografie: autor.

- Digi 13 rozměry 300 x 300 x 10 mm, pro FoV 240 x 240 mm (Obr. 2.4, Obr. 2.5) Popisuje:
 - rozlišení pro vysoký kontrast
 - rozlišení pro nízký kontrast
 - kontrolu dynamického rozsahu
 - kontrolu homogenity obrazového receptoru
 - kontrolu světelného a radiačního pole
 - kontrolu prostorové rozlišovací schopnosti

Obr. 2.4: Fantom Digi 13. Fotografie: autor.

Obr. 2.5: Rtg obraz fantomu Digi 13. Fotografie: autor.

3. TOR FG 18 - rozměr 180 mm (Obr. 2.6, Obr. 2.7)

Testovací parametry:

- rozlišení pro vysoký kontrast (21 bloků, 0.5-5.0 lp/mm)
- rozlišení pro nízký kontrast (18 detailů, 0.9-16%, 11 mm průměr)
- kruhová geometrie

Obr. 2.6: Fantom TOR FG18. Fotografie: autor.

Obr. 2.7: Rtg obraz fantomu TOR FG18. Fotografie: autor.

2.3 Metody zpracování a vyhodnocení dat

K určení parametru, který má za následek největší změnu kvality obrazu, jsem naměřená data rozdělil do 7 skupin (FFD, přídavný filtr, orgánová předvolba a pulzní režim, popř. vyhodnocení s elektronickou lupou). Vzhledem k malému počtu vstupních dat nelze data vyhodnocovat pomocí parametrických testů. Referenční hodnotou je hodnota rozlišení při standardním nastavení ZPS. Jedná se o párová data, u kterých z důvodu nedostatečně velkého výběru nelze testovat normalitu, byl pro hodnocení vybrán neparametrický párový test, Wilcoxonův test [9].

2.3.1 Wilcoxonův test

Používá se pro hodnocení párových pokusů, kdy sledovaná veličina neodpovídá Gaussovu normálnímu rozdělení. Porovnává 2 měření provedená u jednoho výběrového souboru. Testuje hypotézu rovnosti distribučních funkcí na základě ověření symetrického rozložení sledované náhodné veličiny.

Prvním krokem Wilcoxonova testu je výpočet rozdílu (Z) párových dat naměřených standardní metodou (X) a dat naměřených při změně parametru (X') u jedné skupiny (1).

$$Z_i = X_i - X_i' \tag{1}$$

pro $i \in \langle 1, n \rangle$, kde *n* je celkový počet skupin parametrů. Pokud je rozdíl roven nule, musí být z dalšího postupu vyřazen. Takto vypočtené rozdíly jsou uspořádány do vzestupného pořadí.

Poté je každému rozdílu přiřazeno pořadové číslo R_i^+ pro $z_i > 0$ a R_i^- pro $z_i < 0$.

V případě, že jsou si rozdíly rovny, je jim přiřazeno pořadové číslo, které je průměrem pořadových čísel, která by příslušné rozdíly obdržely. Dále vypočítáme koeficienty W^+ a W^- dle rovnice (2).

$$W^{+} = \sum_{i=1}^{n} R_{i}^{+}$$
, resp. $W^{-} = \sum_{i=1}^{n} R_{i}^{-}$ (2)

Pro porovnání s tabelovanou kritickou hodnotou ($W(\alpha, n)$) [9] je zvoleno pravě to W, které je menší (je použito jako testovací kritérium). V případě, že se v souboru rozdílů vyskytuji pouze kladné či záporné rozdíly, nabývá druhý parametr W hodnoty nula, tj. když v souboru rozdílů bude platit, že všechny rozdíly jsou větší než nula, potom platí, že W^{-} je rovné nule, respektive pokud budou všechny rozdíly menší než nula, potom platí, že W^{+} je rovné nule. V případě, kdy platí že $W < (w(\alpha, n))$ zamítáme nulovou hypotézu (H_0) tedy, že porovnávané soubory dat mají symetrické rozložení záporných a kladných rozdílů párových hodnot.

3 Výsledky

Tato kapitola je rozdělena do dvou podkapitol. První je zaměřena na retrospektivní studii kvality obrazu a výsledků ZPS radiodiagnostických přístrojů při pravidelných čtvrtletních kontrolách. Druhá podkapitola je experimentální a jejím obsahem jsou naměřené hodnoty pro různé parametry nastavení ZPS (FFD, expoziční hodnoty, přídavný filtr). Výsledkem je pak nalezení statisticky nejvýznamnějšího parametru/ů ovlivňující/ch kvalitu obrazu.

3.1 Retrospektivní studie

Jen v Masarykově nemocnici Ústí nad Labem je v současné době prováděna ZPS u 29 radiodiagnostických přístrojů (14 C ramen, 8 pojízdných přístrojů, 4 skiagrafická pracoviště, 2 skiaskopická pracoviště, angiolinka). Z tohoto důvodu v této práci uvádím vždy jen jednoho zástupce přístroje z následujících skupin:

- skiagrafické pracoviště s CR přístroj Swissray
- skiagrafické pracoviště s DDR přístroj Visaris
- skiaskopické pracoviště přístroj Axiom Luminos
- pojízdný přístroj s CR přístroj Mobileart
- pojízdný přístroj s flat panelem přístroj Mobile X-ray Systém FDR Go
- C rameno se zesilovačem přístroj Brivo OEC
- C rameno s flat panelem Ziehm Vision FD

U každého přístroje je vždy uvedena stručná identifikace. Naměřené hodnoty ZPS, jejich vyhodnocení a splnění podmínek pro provoz.

Jak již bylo zmíněno, rozsah ZPS určuje místní radiologický fyzik (v našem případě pan Ing. Koutský). Vzhledem k počtu rtg přístrojů v nemocnici, časovému omezení ZPS a nedostupnosti přístrojů během pracovní doby jsou ZPS prováděny v minimálním rozsahu, jejich provedení je co nejjednodušší a jsou prováděny čtvrtletně bez ohledu na jejich uvedení do provozu. Kompletní rozsah zkoušek je prováděn u ZDS.

3.1.1 Skiagrafické pracoviště s CR systémem

Identifikace zařízení

Výrobce: Swissray

Firemní označení: Gen - X - 2000P 80

Datum instalace: 1997

Charakter zařízení:

- skiagrafie vybavená expoziční automatikou
- na rtg zařízení je nepřímá digitalizace obrazu (CR)

Další části zobrazovacího řetězce:

- skiagrafické kazety Kodak DirectView CR Casette
- paměťové fólie Kodak GP Storage Phosphor Screen
- vyhodnocovací zařízení (čtečka paměťových fólií) Kodak CR 850

Umístění / využití:

- budova plicního oddělení, Masarykova nemocnice v Ústí nad Labem
- denní provoz průměrně 25 rtg vyšetření

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola (Tabulka 3.1)
- kontrola artefaktů
- přesnost světelného pole (Tabulka 3.3, Tabulka 3.4)
- velikost rtg pole (Tabulka 3.5)
- test při vysokém kontrastu (Tabulka 3.3, Tabulka 3.4)
- stabilita vstupních hodnot expozičních hodnot, EXI (Tabulka 3.2)

Testovací fantomy a pomůcky:

- Al fantom (zeslabující vrstva) tl. 25 mm
- testovací fantom DIGI 13 pro test při vysokém a nízkém kontrastu

Parametry:

- FFD pro vyšetřovací stůl 100 cm, pro vertigraf 100 cm
- kazeta velikosti 43 x 35 cm vložena do stolu / vertigrafu (držák s Bucky clonou)
- manuálně nastavená velikost světelného pole 24 x 24 cm
- expozice s AEC, orgánová předvolba lebka
- čtečka paměťových fólií režim lebka

Výsledky měření:

Tabulka 3.1: Roční výsledky vizuální a mechanické kontroly, přítomnosti artefaktů v obraze.

Datum měření	Vizuální a mechanická kontrola	Artefakty
28. 1. 2016	Bez zjištění závad	Bez viditelných artefaktů
13. 4. 2016	Bez zjištění závad	Bez viditelných artefaktů
20. 7. 2016	Vadná aretace rtg lampy	Bez viditelných artefaktů
6. 10. 2016	Bez zjištění závad	Bez viditelných artefaktů
17. 1. 2017	Bez zjištění závad	Bez viditelných artefaktů
5. 4. 2017	Bez zjištění závad	Bez viditelných artefaktů

Tabulka 3.2: Roční přehled vývoje stability expozičních parametrů a expozičního indexu.

Datum měření	Vysoké r	napětí (kV)	Elektrické mr	nožství (mAs)	Expoziční index	
Datum merem	Stůl	Vertigraf	Stůl	Vertigraf	Stůl	Vertigraf
28. 1. 2016	75	75	16	21,8	1290	1280
13. 4. 2016	75	75	15,6	21,4	1210	1220
20. 7. 2016	75	75	15,4	22,6	1210	1230
6. 10. 2016	75	75	16,0	22,0	1210	1210
17. 1. 2017	75	75	16,4	22,2	1300	1240
5. 4. 2017	75	75	16,4	22,4	1230	1260

Tabulka 3.3: Roční odchylky světelného pole a vývoj rozlišení obrazu pro vyšetřovací stůl.

Datum měření		Přesno	st světeli	Rozlišení pro vysoký		
Datummerem	a1	a2	b1	b2	Odchylka (%)	kontrast (lp/mm)
28. 1. 2016	-1,4	-1	-0,2	0,1	2,4 / 0,3	1,6 / 2,5
13. 4. 2016	-1,2	-1	-0,4	-0,1	2,2 / 0,5	1,6 / 2,5
20. 7. 2016	-1	-1,2	0	0,2	2,2 / 0,2	1,8 / 2,5
6. 10. 2016	-1,2	-0,8	-0,2	0,1	2,0 / 0,3	1,6 / 2,5
17. 1. 2017	-1,1	-0,6	0	0,1	1,7 / 0,1	1,8 / 2,5
5. 4. 2017	-1,2	-0,8	-0,2	0,2	2,0 / 0,4	1,6 / 2,5

Datum měření	Přes	nost svě	Rozlišení pro vysoký			
Datummerem	a1	a2	b1	b2	Odchylka (%)	kontrast (lp/mm)
28. 1. 2016	-1	0	0,2	1	1,0 / 1,2	1,6 / 2,5
13. 4. 2016	-1,2	-0,2	0,3	1	1,4 / 1,3	1,6 / 2,5
20. 7. 2016	-0,5	-0,6	0,6	0,9	1,1 / 1,5	1,8 / 2,5
6. 10. 2016	-0,5	-0,3	0,6	1,1	0,8 / 1,7	1,8 / 2,5
17. 1. 2017	-0,8	-0,5	0,3	1,1	1,3 / 1,4	1,6 / 2,5
5. 4. 2017	-1,2	-0,8	0,6	1,1	2,0 / 1,7	1,6 / 2,5

Tabulka 3.4: Roční přehled odchylek světelného pole v ose a, b od nastaveného rozměru 24 x 24 cm pro vertigraf. Rozlišení obrazu bez / s elektronickou lupou na diagnostickém monitoru.

Tabulka 3.5: Rozměry rentgenového pole v osách a, b pro nastavení světelného pole 24 x 24

cm.								
Datum měření	Stůl	(cm)	Vertigraf (cm)					
	osa a	osa b	osa a	osa b				
28. 1. 2015	21,6	25,9	22,5	26,4				
13. 4. 2016	21,3	25,5	22,1	26,6				
20. 7. 2016	22,1	25,7	22,6	26,4				
6. 10. 2016	22,3	26	22,3	26,7				
17. 1. 2017	22,0	26	22,3	26,7				
5. 4. 2017	22,8	25,4	21,6	26,7				

• rozlišení při vysokém kontrastu (Tabulka 3.3, Tabulka 3.4)

- nepřípustné zhoršení o více jak 2 skupiny
- max. změřené zhoršení o 1 skupinu vyhovuje

3.1.2 Skiagrafické pracoviště s DDR

Identifikace zařízení

Výrobce: Visaris d.o.o. Beograd; Srbsko

Firemní označení: Vision C

Datum instalace: prosinec 2015

Charakter zařízení:

- rentgenové stacionární diagnostické skiagrafické zařízení
- digitální zpracování rtg obrazu systémem DDR

Další části zobrazovacího řetězce:

- detektor (flat panel) ve vyšetřovacím stole
- detektor (flat panel) ve vertikálním stojanu
- protirozptylové mřížky ve stole a vertikálním stojanu
- DAP metr ionizační komora

Umístění / využití:

- RDG oddělení, Masarykova nemocnice v Ústí nad Labem., o.z.
- denní a pohotovostní provoz, průměrně 350 rtg vyšetření / 24 hod

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola
- kontrola artefaktů
- přesnost světelného pole (Tabulka 3.7, Tabulka 3.8)
- velikost rtg pole (Tabulka 3.9)
- test při vysokém kontrastu (Tabulka 3.7, Tabulka 3.8)
- stabilita vstupních hodnot expozičních hodnot, kermy (Tabulka 3.6)

Testovací fantomy a pomůcky:

- Al fantom (zeslabující vrstva) tl. 25 mm
- testovací fantom DIGI 13 pro test při vysokém a nízkém kontrastu

Parametry:

- FFD pro vyšetřovací stůl 100 cm, pro vertigraf 150 cm
- automatické nastavení clon velikost světelného pole 24 x 24 cm
- expozice s AEC, orgánová předvolba lebka

Datum	Vysoké (k	napětí V)	Elektrické (m	é množství As)	DAP (Gy*cm ²)	
mereni	Stůl	Vertigraf	Stůl	Vertigraf	Stůl	Vertigraf
15. 4. 2016	78	78	19,50	37,00	255,7	244,7
22. 7. 2016	78	78	19,00	27,00	219,9	182,9
7. 10. 2016	78	78	19,50	35,00	204,3	192,0
20. 1. 2017	78	78	16,50	25,50	215,3	155,6
7. 4. 2017	78	78	14,50	22,50	180,2	170,2

Tabulka 3.6: Přehled vývoje stability expozičních parametrů a plošné kermy.

Tabulka 3.7: Přehled odchylek světelného pole v ose a, b od nastaveného rozměru 24 x 24 cm pro vyšetřovací stůl. Vývoj rozlišení obrazu bez / s elektronickou lupou na diagnostickém monitoru.

Datum	Př	esnost	Rozlišení pro vysoký			
měření	a1	a2	b1	b2	Odchylka (%)	kontrast (lp/mm)
15. 4. 2016	-0,4	-0,5	-0,7	-0,5	0,9 / 1,2	2,2 / 3,4
22. 7. 2016	-0,5	-0,8	-0,9	-1,1	1,3 / 2,0	1,8 / 3,1
7. 10. 2016	-0,6	-0,6	-0,3	-0,5	1,2 / 0,8	2,0 / 3,4
20. 1. 2017	-0,5	-0,9	-0,7	-0,4	1,4 / 1,1	2,2 / 3,7
7. 4. 2017	-0,4	-0,5	-0,9	-0,9	0,9 / 1,8	2,2 / 3,4

Tabulka 3.8: Přehled odchylek světelného pole v ose a, b od nastaveného rozměru 24 x 24 cm pro vertigraf. Vývoj rozlišení obrazu bez / s elektronickou lupou na diagnostickém monitoru.

Datum	Přes	snost sv	Rozlišení pro vysoký			
měření	a1	a2	b1	b2	Odchylka (%)	kontrast (lp/mm)
15. 4. 2016	1,2	0,9	0,2	0,9	2,1 / 1,1	2,2 / 3,4
22. 7. 2016	-1	-0,5	-0,4	-0,3	1,5 / 0,7	1,8 / 3,1
7. 10. 2016	0,4	-0,1	-0,2	0	1,4 / 0,2	2,0 / 3,4
20. 1. 2017	0,3	0,3	-0,4	-0,2	0,6 / 0,6	2,2 / 3,7
7. 4. 2017	0,3	0,1	-0,1	0,5	0,4 / 0,6	2,2 / 3,4

Tabulka 3.9: Rozměry rentgenového pole v osách a, b pro nastavení světelného pole 24 x 24

$^{\circ}$	m	
c	111.	

Dotum měžení	Stů	l (cm)	Vertigraf (cm)		
Datum merem	osa a	osa b	osa a	osa b	
15. 4. 2016	24,4	25,6	25,9	24,9	
22. 7. 2016	25,0	26,3	25,4	24,6	
7. 10. 2016	24,8	25,2	25,3	24,1	
20. 1. 2017	25,5	25,4	24,3	24,2	
7. 4. 2017	25,4	24,2	25,1	25,3	

- rozlišení při vysokém kontrastu (Tabulka 3.7, Tabulka 3.8)
 - nepřípustné zhoršení o více jak 2 skupiny, doporučení dle ZDS: ≥ 2,4 lp/mm, závada k zastavení provozu: < 1,6 lp/mm
 - maximální zjištěné zhoršení o 2 skupiny vyhovuje

3.1.3 Skiaskopické pracoviště

Identifikace zařízení

Výrobce: Siemens

Firemní označení: Axiom Luminos dRF Max

Datum instalace: září 2015

Charakter zařízení:

• stacionární skiagraficko – skiaskopické zařízení s DDR receptorem obrazu

Další části zobrazovacího systému:

- DDR Pixium 434F-3
- DAP Kerma X plus HS Integ.

Umístění / využití:

- RDG oddělení, Masarykova nemocnice v Ústí nad Labem., o.z.
- denní a pohotovostní provoz

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola
- kontrola artefaktů
- přesnost světelného pole při skiagrafii (Tabulka 3.11)
- test při vysokém a nízkém kontrastu (Tabulka 3.11, Tabulka 3.13)
- stabilita vstupních hodnot expozičních hodnot, kermy pro skiagrafii (Tabulka 3.10)
- stabilita vstupních hodnot expozičních hodnot pro skiaskopii (Tabulka 3.12)

Testovací fantomy a pomůcky:

- Al fantom (zeslabující vrstva) tl. 25 mm
- skiagrafie testovací fantom DIGI 13 pro test při vysokém a nízkém kontrastu
- skiaskopie testovací fantom DIGI 13, od 7. 10. 2016 TOR FG 18

Parametry:

- FFD 115 cm
- automatické nastavení clon velikost světelného pole 24 x 24 cm
- automatické nastavení clon při skiaskopii, včetně ZOOM
- expozice s AEC, skiagrafie v režimu DFR JOD Single, skiaskopie DFR JOD 1/s

Tabulka 3.10: Roční přehled vývoje stability expozičních parametrů a plošné kermy pro režim
skiagrafie.

Datum měření	Vysoké napětí (kV)	Elektrické množství (mAs)	DAP (µGy*m²)
29. 1. 2016	64,3	21,6	40,49
15. 4. 2016	64,3	22,9	39,93
22. 7. 2016	64,3	23,5	39,53
7. 10. 2016	64,3	31,4	52,26
20. 1. 2017	64,3	30,9	52,45
7. 4. 2017	64,3	31,3	52,29

Tabulka 3.11: Roční přehled odchylek světelného pole od nastavené velikosti 24 x 24 cm pro skiagrafii. Vývoj rozlišení obrazu pro skiagrafii bez / s elektronickou lupou.

Datum	Přesnost světelného pole (cm)					Rozlišení pro vysoký	
měření	a1	a2	b1	b2	Odchylka (%)	kontrast (lp/mm)	
29. 1. 2016	-0,1	-0,3	-0,2	-0,4	0,4 / 0,6	2,0 / 2,2	
15. 4. 2016	-0,2	-0,4	-0,2	-0,4	0,6 / 0,6	2,0 / 2,2	
22. 7. 2016	-0,3	-0,4	-0,2	-0,5	0,7 / 0,7	2,0 / 2,2	
7. 10. 2016	-0,3	-0,2	-0,5	-0,5	0,5 / 1,0	2,0 / 2,2	
20. 1. 2017	-0,1	-0,3	-0,3	-0,5	0,4 / 0,8	2,0 / 2,2	
7. 4. 2017	-0,2	-0,3	-0,2	-0,5	0,5 / 0,7	2,0 / 2,2	

Datum	Bez zvětšení		ZOO	M 1	ZOOM 2	
měření	kV	mA	kV	mA	kV	mA
29. 1. 2016	80,8	15,1	82,8	15,8	85	16,5
15. 4. 2016	81,8	15,4	84	16	86,3	16,7
22. 7. 2016	81,8	15,4	84,3	16,3	86,3	16,7
7. 10. 2016	75	13,3	77,0	13,9	79,0	14,5
20. 1. 2017	75	13,3	77,0	13,9	79,0	14,3
7. 4. 2017	75	13,3	76,8	13,9	78,8	14,5

Tabulka 3.12: Roční přehled vývoje stability expozičních hodnot včetně režimů ZOOM.

Tabulka 3.13: Roční přehled vývoje rozlišení pro nízký a vysoký kontrast obrazu včetněrežimu ZOOM. Od 7. 10. 2016 změna fantomu z DIGI 13 na TOR FG 18.

Datum	Bez zv	ětšení	ZOO	M 1	ZOOM 2	
měření	LCR	HCR	LCR	HCR	LCR	HCR
merem	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)
29. 1. 2016	-	1,4	-	1,6	-	1,8
15. 4. 2016	-	1,2	-	1,6	-	1,8
22. 7. 2016	-	1,2	-	1,6	-	1,8
7. 10. 2016	4,5	1,4	4,5	1,8	4,5	2,0
20. 1. 2017	4,5	1,25	4,5	1,8	4,5	2,0
7. 4. 2017	4,5	1,4	4,5	2,0	4,5	2,0

• rozlišení při vysokém kontrastu (Tabulka 3.11, Tabulka 3.13)

 skiagrafie – rozlišení pro vysoký kontrast se nesmí snížit o 2 skupiny oproti hodnotě změřené při přejímací zkoušce nebo výchozím měření, závada k zastavení provozu: rozlišení < 1,6 lp/mm naměřená hodnota stabilně 2,0 lp/mm – vyhovuje

- skiaskopie - rozlišení ≥ 0.9 lp/mm pro použitý rozměr receptoru > 30 cm

- rozlišení \geq 1,1 lp/mm pro použitý rozměr receptoru 20 - 30 cm

- rozlišení \geq 1,3 lp/mm pro použitý rozměr receptoru <20~cm

závada k zastavení provozu: rozlišení < 0,8 lp/mm

nejnižší naměřená hodnota pro fantom DIGI 13 je 1,2 lp/mm - **vyhovuje** pro fantom TOR FG 18 je 9 bloků = 1,25 lp/mm – **vyhovuje**

• rozlišení při nízkém kontrastu (Tabulka 3.13)

skiaskopie – počet viditelných nízkokontrastních detailů se nesmí lišit od počtu zaznamenaného při výchozím testu více než o jeden nejnižší LCR je 9 disků = kontrast 4,5% - vyhovuje

3.1.4 Pojízdný přístroj CR

Identifikace zařízení

Výrobce: Shimadzu Corporation

Firemní označení: Mobileart eco

Datum instalace: únor 2004

Charakter zařízení:

- pojízdná skiagrafie bez expoziční automatiky
- na rtg je nepřímá digitalizace obrazu

Další části zobrazovacího systému:

- skiagrafické kazety Kodak DirectView CR Casette
- paměťové fólie Kodak GP Storage Phosphor Screen
- vyhodnocovací zařízení (čtečka paměťových fólií) Kodak CR 850
- DAP metr ve clonách

Umístění / využití:

- RDG oddělení, Masarykova nemocnice v Ústí nad Labem., o.z.
- ARO + Centrální JIP, od 2/2017 Dětská chirurgie + Dětský JIP

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola
- kontrola artefaktů
- přesnost světelného pole (Tabulka 3.14)
- velikost rtg pole (Tabulka 3.14)
- test při vysokém kontrastu (Tabulka 3.15)
- stabilita vstupních hodnot kermy, expozičního indexu (Tabulka 3.15)

Testovací fantomy a pomůcky:

- Cu fantom (zeslabující vrstva) tl. 1 mm
- Quart SP vario

Parametry:

- FFD 100 cm
- manuální nastavení clon velikost světelného pole 18 x 24 cm
- expozice bez AEC režim lebka 70 kV/6,3 mAs
- čtečka paměťových fólií Kodak režim lebka

Datum měžoní		Rtg pole (cm)				
Datum merem	a1	a2	b1	b2	Odchylka	a/b
29. 1. 2016	0,7	0	0,2	0	0,7 / 0,2	1,1 / 0,5
14. 4. 2016	1,1	0	0	0,1	1,1/0,1	0,9 / 0,8
21. 7. 2016	1,1	0	0	0,2	1,1 / 0,2	1,2 / 1,6
7. 10. 2016	1	0	0,3	0	1,0 / 0,3	0,8 / 1,0
17. 1. 2017	0,9	0	0,8	0	0,9 / 0,8	0,6 / 1,2
6. 4. 2017	1,0	0	0,3	0	1,0 / 0,3	0,6 / 0,6

Tabulka 3.14: Přehled odchylek světelného a rtg pole od nastaveného rozměru 18 x 24 cm.

 Tabulka 3.15:
 Roční přehled expozičního indexu a plošné kermy. Vývoj rozlišení pro vysoký kontrast bez / s elektronickou lupou.

Datum měření	Expoziční index	Kerma (µGy*m²)	Rozlišení pro vysoký kontrast (lp/mm)
29. 1. 2016	1370	12,16	2,2 / 3,1
14. 4. 2016	1330	11,47	2,2 / 3,4
21. 7. 2016	1320	11,24	2,2 / 3,4
7. 10. 2016	1310	11,31	2,0 / 3,1
17. 1. 2017	1390	11,48	2,0 / 3,1
6. 4. 2017	1340	11,67	2,0/3,1

- rozlišení při vysokém kontrastu (Tabulka 3.15)
 - nepřípustné zhoršení o více jak 2 skupiny, závada k zastavení provozu:
 < 1,6 lp/mm
 - doporučení: \geq 2,4 lp/mm
 - nejnižší naměřené rozlišení 2,0 lp/mm, max. zhoršení o 1 skupinu vyhovuje

3.1.5 Pojízdný přístroj s DDR

Identifikace zařízení

Výrobce: Shimadzu Corporation

Firemní označení: Mobile X-ray Systém FDR Go

Datum instalace: srpen 2016

Charakter zařízení:

- pojízdná skiagrafie bez expoziční automatiky
- na rtg je přímá digitalizace obrazu (DDR)

Další části zobrazovacího systému:

• flat panel 35 x 43, flat panel 24 x 30 výrobce FUJIFILM

Umístění / využití:

- RDG oddělení, Masarykova nemocnice v Ústí nad Labem., o.z.
- ARO + Centrální JIP

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola, kontrola artefaktů
- přesnost světelného pole (Tabulka 3.16)
- velikost rtg pole (Tabulka 3.16)
- test při vysokém kontrastu (Tabulka 3.17)
- stabilita vstupních hodnot kermy (Tabulka 3.17)

Testovací fantomy a pomůcky:

- Cu fantom (zeslabující vrstva) tl. 1 mm
- Quart SP vario

Parametry:

- FFD 100 cm
- manuální nastavení clon velikost světelného pole 18 x 24 cm
- expozice bez AEC režim lebka 70 kV/6,3 mAs

Tabulka 3.16: Naměřené odchylky světelného	a rentgenového pole v osách a / b od
--	--------------------------------------

Dotum měžoní		Přes	snost sv	Rtg pole (cm)		
Datum mereni	a1	a2	b1	b2	Odchylka	a / b
7. 10. 2016	0	0	0,1	0	0 / 0,1	0,8 / 0,2
17. 1. 2017	0,3	0	0	0,1	0,3 / 0,1	0,3 / 0,3
6. 4. 2017	0,1	0	0	0,2	0,1 / 0,2	0,3 / 0,3

nastaveného	nole	18	x	24	cm
nastaveneno	pore	10	л	24	UIII

Tabulka 3.17: Naměřená plošná kerma, vývoj rozlišení pro vysoký kontrast bez /

s elektronickou lupou.

Datum měření	Kerma (mGy*cm²)	Rozlišení pro vysoký kontrast (lp/mm)
7. 10. 2016	96,1	2,8 / 3,4
17. 1. 2017	91,5	2,5 / 3,4
6. 4. 2017	98,3	2,5 / 3,4

- rozlišení při vysokém kontrastu (Tabulka 3.17)
 - nepřípustné zhoršení o více jak 2 skupiny, závada k zastavení provozu:
 < 1,6 lp/mm, doporučení: ≥ 2,4 lp/mm
 - nejnižší rozlišení 2,2 lp/mm **vyhovuje**

3.1.6 C rameno s flat panelem

Identifikace zařízení

Výrobce: Ziehm Imaging GMBH

Firemní označení: Ziehm Vision FD

Datum instalace: únor 2016

Charakter zařízení:

- pojízdná skiaskopie vybavená expoziční automatikou
- na rtg je přímá digitalizace obrazu (DDR)

Další části zobrazovacího systému:

• flat panel 20 x 20 cm

Umístění / využití:

• Centrální operační sály, převážně traumatologie

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola
- kontrola artefaktů
- test při vysokém kontrastu (Tabulka 3.19)
- test při nízkém kontrastu (Tabulka 3.19)
- stabilita vstupních hodnot expozičních parametrů včetně režimů ZOOM (Tabulka 3.18)
- velikost rtg pole

Testovací fantomy a pomůcky:

- Cu fantom (zeslabující vrstva) tl. 1 mm
- TOR FG 18

Parametry:

- FFD 111 cm
- expozice s AEC
- kontinuální režim skiaskopie

Tabulka 3.18: Naměřené expoziční parametry včetně režimů ZOOM.

Datum	Bez zv	ětšení	ZOO	M 1	ZOOM 2	
měření	kV	mA	kV	mA	kV	mA
11. 4. 2016	66	8,8	67	9,2	67	9,3
18. 7. 2016	66	8,9	67	9,2	67	9,4
7. 10. 2016	66	8,8	67	9,3	67	9,3
17. 1. 2017	66	8,9	67	9,2	67	9,3
3. 4. 2017	66	9,0	67	9,3	67	9,4

Datum	Bez zv	většení	ZOC	OM 1	ZOOM 2		
měření	LCR	HCR	LCR	HCR	LCR	HCR	
merem	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)	
11. 4. 2016	3,9	2,5	3,9	2,8	3,9	3,15	
18. 7. 2016	3,9	2,8	3,9	2,8	3,9	3,15	
7. 10. 2016	3,9	2,5	3,9	2,8	3,9	3,55	
17. 1. 2017	3,9	2,8	3,9	2,8	3,9	3,55	
3.4 2017	3,9	2,24	3,9	2,8	3,9	3,15	

Tabulka 3.19: Rozlišení pro nízký a vysoký kontrast včetně režimů ZOOM.

- rozlišení při nízkém kontrastu (Tabulka 3.19)
 - stabilně 10 disků = 3,9% **vyhovuje**
- rozlišení při vysokém kontrastu (Tabulka 3.19)
 - nepřípustné zhoršení o více jak 2 skupiny
 - max. změřená odchylka o 2 skupiny vyhovuje

3.1.7 C rameno se zesilovačem

Identifikace zařízení

Výrobce: GE Hualun Medical Systems

Firemní označení: Brivo OEC 865

Datum instalace: leden 2014

Charakter zařízení:

- pojízdná skiaskopie, vybavené expoziční automatikou
- na rtg zařízení je zesilovač rtg obrazu

Umístění / využití:

• Centrální operační sály

ZPS

Rozsah ZPS:

- vizuální a mechanická kontrola
- kontrola artefaktů

- test při vysokém kontrastu (Tabulka 3.21)
- test při nízkém kontrastu (Tabulka 3.21)
- stabilita vstupních hodnot expozičních parametrů (Tabulka 3.20)
- velikost rtg pole

Testovací fantomy a pomůcky:

- Cu fantom (zeslabující vrstva) tl. 1 mm
- TOR FG 18

Parametry:

- FFD 96 cm
- expozice s AEC
- kontinuální režim skiaskopie
- základní zvětšení průměr vstupního pole zesilovače obrazu 22 cm
- ZOOM 1 průměr vstupního pole zesilovače obrazu 15 cm
- ZOOM 2 průměr vstupního pole zesilovače obrazu 10 cm

Datum	Bez zvětšení		ZOO	0M 1	ZOOM 2	
měření	kV	mA	kV	mA	kV	mA
25. 1. 2016	76	1,9	69	2,2	69	3,0
11. 4. 2016	70	1,6	70	2,2	70	3,2
18. 7. 2016	69	1,6	70	2,2	70	3,2
7. 10. 2016	70	1,6	70	2,2	70	3,2
17. 1. 2017	70	1,6	70	2,2	70	3,2
3. 4. 2017	70	1,6	70	2,3	70	3,2

Tabulka 3.20: Přehled expozičních parametrů včetně režimů ZOOM.

Tabulka 3.21: Počet viditelných disků z maximálního počtu 18 pro LCR, počet viditelnýchbloků z maximálního počtu 21 pro HCR.

Datum	Bez zv	většení	ZO	OM 1	ZOOM 2		
	LCR	HCR	LCR	HCR	LCR	HCR	
merenn	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)	
25. 1. 2016	3,9	2,00	3,9	2,80	3,9	3,55	
11. 4. 2016	3,3	2,00	3,3	2,50	3,3	3,55	
18. 7. 2016	3,9	2,00	3,9	2,80	3,9	3,55	
7. 10. 2016	3,9	2,24	3,9	2,80	3,9	3,55	
17. 1. 2017	3,9	2,24	3,9	3,55	3,9	4,00	
3. 4. 2017	3,3	2,24	3,3	2,80	3,3	3,15	

- rozlišení při nízkém kontrastu (Tabulka 3.21)
 - závada: nepřípustné zhoršení o více jak 1 skupinu
 - max. změna včetně ZOOM 1 a ZOOM 2 je o 1 skupinu vyhovuje
 - je rozeznatelný bílý kruh v šedém obdélníku i černý kruh v tmavě šedém obdélníku
 - celkem bylo rozeznatelných minimálně 10 disků pro rozlišitelnost při nízkém kontrastu z 18 disků v testovací pomůcce = 3,9%
- rozlišení při vysokém kontrastu (Tabulka 3.21)
 - nepřípustné zhoršení o více jak 2 skupiny
 - max. změřená odchylka mezi dvěma následujícími odchylkami je o 2 skupiny - vyhovuje

3.2 Nedodržení parametrů ZPS

Chybné nastavení parametrů během ZPS se projeví v nevyhovujících výsledcích měření. Může se jednat o odlišné nastavení expozičních hodnot, odlišná ohnisková vzdálenost, použití jiných přídavných filtrů. Výsledkem je nesplnění požadavku pro stabilitu expozičních hodnot, kermy, expozičního indexu, překročení limitu velikosti světelného a radiačního pole, nebo změny v rozlišení obrazu. Pro vyvarování se možných komplikací by ZPS měly být provedeny stále stejnou osobou, která se řídí standardy ZPS, kde jsou přesně uvedena všechna nastavení, jako jsou expoziční parametry, ohnisková vzdálenost, použité fantomy a filtry.

Kromě chyb způsobených lidským faktorem, může být komplikace v samotném nastavení na přístroji. Jedná se především o problém s přesným nastavením sklonu rentgenky (přístroj bez digitálního zobrazení úhlu) tak, aby rtg záření dopadalo kolmo na fantom (Obr. 3.1, Obr. 3.2). To se projeví v geometrické odchylce světelného a rtg pole, ale především v rozlišení pro vysoký kontrast. Další problém je v centraci světelného pole na fantom, kde s větší vzdáleností (u vertigraf až 150 cm), je šíře kříže centrace zvětšena (šíře osy je i 2 cm) a okraje světelného pole nemusí být dostatečně kontrastní (Obr. 3.3). Chyba v centraci může způsobit nesplnění požadavků ZPS pro 2% toleranci světelného a 3% toleranci rtg pole.

V této kapitole jsem se zaměřil na chybné nastavení parametrů při ZPS, odrážející se v kvalitě obrazu. Pro každé pracoviště je uvedeno měření s možným chybným nastavením a výsledné hodnoty z těchto testů.

Obr. 3.1: Nastavení sklonu rentgenky u pojízdného přístroje – Polymobil a Mobileart eco. Fotografie: autor.

Obr. 3.2: Centrace rentgenové lampy na fantom (pojízdný přístroj Mobileart eco). Fotografie: autor.

Obr. 3.3: Vlevo zvětšená šíře čar kříže centrace, vpravo centrace pomocí laseru. Fotografie: autor.

3.2.1 Skiagrafické pracoviště

Ohnisková vzdálenost

Postup: FFD byla postupně nastavena od 80 - 130 cm (Tabulka 3.22, Tabulka 3.23). Expozice s FFD 150 cm (u přístroje Swissray Gen – X – 2000P 80) dopadla chybovou hláškou - AEC FEEDBACK error exi, ačkoli výsledný obraz byl v dobrém rozlišení (2,2/2,8 LP/mm) a splnil i kritéria pro expoziční index (1250). Standardní FFD pro ZPS je 100 cm. Světelné pole bylo nastaveno v rozměru 24 x 24 cm.

Tabulka 3.22: Vliv FFD na změnu expozičních hodnot, expozičního indexu a rozlišení pro vysoký kontrast – přístroj Swissray Gen – X – 2000P 80.

FFD	Velikos	st světel	ného po	le (cm)	Expoziční	parametry	EVI	HCR
(cm)	a1	a2	b1	b2	kV	mAs	EXI	(lp/mm)
80	0	0,3	0	0,1	75	9,4	1160	2,0 / 2,8
90	0	0,2	0	0,1	75	11,8	1160	2,0 / 2,8
100	0	0,3	0	0,3	75	14,2	1230	1,8 / 2,5
110	0	0,4	0	0,3	75	17,6	1280	2,0 / 2,8
120	0	0,6	0	0,5	75	20,6	1310	2,2 / 2,8
130	0	0,6	0	0,5	75	24,8	1270	2,0 / 2,8

FFD	Velikos	st světel	ného po	le (cm)	Expoziční parametry		DAP	HCR (In (mm)
(cm)	a1	a2	b1	b2	kV	mAs	(mgy*cm)	(ip/mm)
80	-2,1	-2,4	-2,2	-2,1	78	9 <i>,</i> 5	189,5	2,8/3,1
90	-0,8	-0,9	-1,2	-1,2	78	11,0	215,3	2,8/3,4
100	-0,7	-1	-0,9	-0,7	78	13,0	211,0	2,8/3,4
110	-0,3	-0,4	-0,9	-0,7	78	15,5	195,3	2,8/3,4
120	-0,1	-0,2	-0,3	-0,2	78	18,5	188,1	2,8/3,4
130	0,1	0	-0,4	-0,4	78	21,0	159,3	2,8/3,7

Tabulka 3.23: Vliv FFD na změnu expozičních hodnot, plošné kermy a rozlišení pro vysoký kontrast – přístroj Visaris Vision C.

Přídavný filtr

Postup: Stabilně se používá pro ZPS 25 mm Al, pro zkoušky AEC 0,5; 1,0 a 2,1 mm Cu. Přídavný filtr 2,1 mm Cu u přístroje Swissray Gen – X – 2000P 80 signalizuje chybovou hlášku (AEC feedback error), ačkoli snímek je stále s dobrým rozlišením (2,0/2,8). U přístroje Visaris Vision C byla provedena měření i pro filtr 3,1 mm Cu (kombinace 2,1 + 1,0 mm Cu). (Tabulka 3.24, Tabulka 3.25).

Tabulka 3.24: Vliv přídavného filtru na změnu expozičních hodnot, expozičního indexu a rozlišení pro vysoký kontrast - přístroj Swissray Gen – X – 2000P 80.

Přídavný filtr	Expoziční p	arametry	EVI	HCP (In /mm)
	kV	mAs		
0,5 mm Cu	75	11,2	1310	2,2 / 2,8
1,0 mm Cu	75	21	1240	1,8 / 2,8
2,1 mm Cu	AEC feedb	ack error	860	2,0 / 2,8
25 mm Al	75	16	1210	1,8 / 2,5

Tabulka 3.25: Vliv přídavného filtru na změnu expozičních hodnot, plošné kermy a rozlišení pro vysoký kontrast - přístroj Visaris Vision C.

Přídavný filtr	Expoziční p	arametry	DAP	
	kV	mAs	(mGy*cm²)	nck (ip/mm)
1,0 mm Cu	78	17,5	232,2	2,5/3,4
2,1 mm Cu	78	30,5	409,3	2,5/3,4
3,1 mm Cu	78	100,0	1432,8	2,5/3,4
25 mm Al	78	13,0	211	2,8/3,4

Orgánová předvolba

Postup: Orgánová předvolba byla zvolena pro tři odlišné expozice – plíce, kyčel a lebku (Tabulka 3.26, Tabulka 3.27). Světelné pole bylo nastaveno na rozměr 24x24 cm.

1										
Orgánová	Expoziční p	parametry	EVI	HCR						
předvolba	kV	mAs	EXI	(lp/mm)						
Plíce	125	1,8	1420	1,8 / 2,5						
Kyčel	70	38	1330	2,0 / 2,5						
Lebka	75	16	1210	1,8 / 2,5						

Tabulka 3.26: Vliv orgánové předvolby na změnu expozičních hodnot, expozičního indexu a rozlišení pro vysoký kontrast - přístroj Swissray Gen – X – 2000P 80.

Tabulka 3.27: Vliv orgánové předvolby na změnu expozičních hodnot, plošné kermy arozlišení pro vysoký kontrast - přístroj Visaris Vision C.

Orgánová	Expoziční p	parametry	DAP	HCR	
předvolba	lba kV mAs		(mGycm²)	(lp/mm)	
Plíce	125	1,5	47,6	2,8/3,7	
Kyčel	75	20,5	250,3	2,8/3,4	
Lebka	78	13,0	211,0	2,8/3,4	

3.2.2 Pojízdný přístroj

Ohnisková vzdálenost

Postup: FFD byla postupně nastavena od 80 – 120 cm (Tabulka 3.28, Tabulka 3.29). FFD pro ZPS je 100 cm. Světelné pole bylo nastaveno v rozměru 18 x 24 cm. Pojízdný přístroj nemá expoziční automat, nastaveny ručně na expoziční hodnotu 70 kV/6,3 mAs.

Tabulka 3.28: Vliv FFD na změnu expozičního indexu, plošné kermy a rozlišení pro vysokýkontrast – pojízdný přístroj Mobileart eco.

FFD	Veliko	st světel	ného pol	le [cm]	EVI	Kerma		
(cm)	a1	a2	b1	b2		(µGy*m²)		
80	0,9	0	0,3	0	1520	18,26	2,5/3,1	
90	0,8	0	0,3	0	1460	14,45	2,5/3,1	
100	1,0	0	0,4	0	1380	11,51	2,2/3,1	
110	1,0	0	0,7	0	1290	9,39	2,5/3,4	
120	1,3	0	0,8	0	1230	8,02	2,5/3,1	

FFD	Veliko	st světel	ného po	le (cm)	Karma (mCu*am ²)	HCR (lp/mm)	
(cm)	a1	a2	b1	b2	Kerma (mGy*cm)		
80	0,2	0	0	0	138,5	2,5 / 3,4	
90	0,2	0	0	0	114,1	2,8 / 3,4	
100	0,2	0	0	0,2	92,1	2,5 / 3,4	
110	0	0	0	0,1	72,6	2,8 / 3,4	
120	0,1	0	0	0	59,4	2,5 / 3,4	

Tabulka 3.29: Vliv FFD na změnu plošné kermy a rozlišení pro vysoký kontrast – pojízdný přístroj Mobile X-ray Systém FDR Go.

Přídavný filtr

Postup: Byly použity přídavné filtry 0,5 a 2,1 mm Cu (Tabulka 3.30, Tabulka 3.31), stabilně se používá pro ZPS 1mm Cu. Světelné pole bylo stabilně nastaveno na rozměr 18x24 cm. Expoziční parametry zvoleny 70 kV/6,3 mAs.

Tabulka 3.30: Vliv přídavného filtru na změnu expozičního indexu, plošné kermy a rozlišení pro vysoký kontrast – pojízdný přístroj Mobileart eco.

Dřídovný filtr	Veliko	st světe	elného po	ole (cm)	EVI	DAP	HCR
Pridavny filtr	a1	a2	b1	b2	EXI	(µGy*m²)	(lp/mm)
0,5 mm Cu	0,9	0	0,5	0	1770	14,33	2,2/3,4
1,0 mm Cu	0,9	0	0,5	0	1380	11,51	2,2/3,4
2,1 mm Cu	0,9	0	0,5	0	930	11,40	2,2/2,8

Tabulka 3.31: Vliv přídavného filtru na změnu plošné kermy a rozlišení pro vysoký kontrast – pojízdný přístroj Mobile X-ray Systém FDR Go.

Přídavný filtr	Velikost	: světel	ného po	ole (cm)	DAP		
Pridavny Iller	a1	a2	b1	b2	(mGy*cm²)		
0,5 mm Cu	0,2	0	0	0,2	88,8	2,5 / 3,4	
1,0 mm Cu	0,2	0	0	0,2	89,3	2,5 / 3,1	
2,1 mm Cu	0,2	0	0	0,2	89,0	2,5 / 2,8	

Orgánová předvolba

Postup: Orgánová předvolba byla zvolena pro tři odlišné expozice – plíce, pánev a lebka (Tabulka 3.32, Tabulka 3.33). Světelné pole bylo stabilně nastaveno na rozměr 18x24 cm. Pojízdné přístroje jsou bez expoziční automatiky, expoziční parametry jsou nastaveny manuálně (70 kV/6,3 mAs, plíce - 80 kV/3,2 mAs, pánev - 68 kV/25 mAs).

Orgánová předvolba	Velikos	t světel	ného po	le (cm)	ГVI	DAP	HCR
(expoziční parametr)	a1	a2	b1	b2	EXI	(µGy*m²)	(lp/mm)
Lebka	0,8	0	0,5	0	1340	11,37	2,2/3,4
Plíce	0,9	0	0,5	0	1510	7,51	2,5/3,4
Pánev	0,9	0	0,5	0	1840	42,72	2,2/3,4

Tabulka 3.32: Vliv orgánové předvolby na změnu expozičního indexu a rozlišení pro vysokýkontrast – pojízdný přístroj Mobileart eco.

Tabulka 3.33: Vliv orgánové předvolby na změnu expozičního indexu a rozlišení pro vysokýkontrast – pojízdný přístroj Mobile X-ray Systém FDR Go.

Orgánová předvolba	Veliko	st světel	ného pol	DAP	HCP (In /mm)		
(expoziční parametr)	a1	a2	b1	b2	(mGy*cm²)		
Lebka	0,2	0	0	0,2	89,3	2,5 / 3,4	
Plíce	0,2	0	0	0,2	63,4	2,5 / 3,4	
Pánev	0,2	0	0	0,2	302,1	2,5 / 3,4	

3.2.3 Skiaskopické pracoviště

Ohnisková vzdálenost

Postup: Skiaskopické pracoviště Axiom Luminos umožňuje expozici jen s FFD 115 a 150 cm (Tabulka 3.34). Měření bylo provedeno ve skiagrafickém režimu DFR JOD Single s AEC, použit fantom Digi 13 s přídavným filtrem 25 mm Al. Světelné pole nastaveno na rozměr 24 x 24 cm.

 Tabulka 3.34: Vliv FFD na změnu expozičních parametrů, plošné kermy a rozlišení pro vysoký kontrast.

FFD	Veliko	st světel	ného pol	e (cm)	Expoziční parametry			HCR
(cm)	a1	a2	b1	b2	kV	mAs	(µGy*m)	(Ip/mm)
115	-0,1	-0,5	-0,2	-0,5	64,3	23,5	39,52	1,4/2,2
150	0	-0,4	-0,2	-0,5	64,3	42,5	36,73	1,6/2,2

Přídavný filtr

Postup: Použité přídavné filtry Cu (Tabulka 3.35), stabilně se používá pro ZPS přídavný filtr 25 mm Al, fantom Digi 13. Světelné pole bylo stabilně nastaveno na

rozměr 24x24 cm, skiagrafický režim DFR JOD Single. Stejné filtry byly použity i pro skiaskopický mód DFR JOD 1/s (Tabulka 3.36, Tabulka 3.37). Měření provedeno s fantomem TOR FG 18 včetně režimů ZOOM. Pro přídavný filtr 3,1 mm Cu je expozice přerušena chybovou hláškou Measured dose too low.

Tabulka 3.35: Vliv přídavného filtru na změnu expozičních parametrů, plošné kermy a rozlišení pro vysoký kontrast – režim skiagrafie.

Přídavný filtr	Expoziční	parametry	$DAD(uCu*m^2)$	HCR (lp/mm)			
	kV	mAs	DAP (µGy*m)				
0,5 mm Cu	64,3	16,3	26,66	1,6/2,2			
1,0 mm Cu	1,0 mm Cu 64,3 46,2		75,52	1,8/2,2			
2,1 mm Cu	64,3	49,1	80,33	1,6/2,2			
3,1 mm Cu	Measured dose too low						
25 mm Al	64,3	23,5	39,52	1,4/2,2			

Tabulka 3.36: Vliv přídavného filtru na změnu expozičních parametrů – režim skiaskopie.

Přídavný	Bez zv	ětšení	ZOO	M 1	ZOOM 2		
filtr	kV	mA	kV	mA	kV	mA	
25 mm Al	75,0	13,3	77,0	13,9	78,8	14,5	
0,5 mm Cu	72,5	12,5	74,5	13,1	76,0	13,7	
1,0 mm Cu	77,0	13,9	79,0	14,5	80,5	14,9	
2,1 mm Cu	81,3	15,4	83,5	16,0	85,3	16,5	

Tabulka 3.37: Vliv přídavného filtru na změnu rozlišení pro nízký a vysoký kontrast – režim skiaskopie.

Dřídovný	Bez zv	ětšení	ZOO	M 1	ZOO	M 2
filtr	LCR	HCR	LCR	HCR	LCR	HCR
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)
25 mm Al	4,5	1,40	3,9	2,24	3,9	2,00
0,5 mm Cu	4,5	1,40	5,5	2,00	4,5	2,24
1,0 mm Cu	4,5	1,40	4,5	2,24	4,5	2,00
2,1 mm Cu	5,5	1,40	5,5	2,24	6,6	2,00

3.2.4 C rameno

C rameno má pevně danou FFD. Rentgenová lampa i zesilovač, popřípadě flat panel jsou stabilně upevněny na rameni. Pro přístroj Brivo OEC 865 je FFD 96 cm, pro přístroj Ziehm Vision FD 111 cm. Toto pevné spojení umožňuje také přesnou centraci rtg svazku na fantom umístěný na zesilovači.

Přídavný filtr

Postup: Použité přídavné filtry Cu (Tabulka 3.38, Tabulka 3.39, Tabulka 3.40, Tabulka 3.41), stabilně se pro ZPS používá přídavný filtr 1 mm Cu a fantom TOR FG 18. Skiaskopický režim je kontinuální při zapnutém AEC. Měření je provedeno včetně režimů ZOOM.

Tabulka 3.38: Vliv přídavného filtru na změnu expozičních parametrů u přístroje Brivo OEC.

Přídavný	Bez zv	ětšení	ZOO	M 1	ZOO	ZOOM 2		
filtr	kV	mA	kV	mA	kV	mA		
0,5 mm Cu	64	1,3	64	1,9	64	2,6		
1,0 mm Cu	70	1,6	70	2,3	70	3,2		
2,1 mm Cu	75	1,9	76	2,7	76	3,7		
3,1 mm Cu	87	2,5	88	3,6	87	4,0		

Tabulka 3.39: Vliv přídavného filtru na změnu expozičních parametrů u přístroje Ziehm VisionFD.

Přídavný	Bez zv	ětšení	ZOO	M 1	ZOO	M 2
filtr	kV	mA	kV	mA	kV	mA
0,5 mm Cu	60	7,1	62	7,4	62	7,4
1,0 mm Cu	66	8,7	67	9,2	67	9,4
2,1 mm Cu	71	11,7	72	11,5	72	11,5
3,1 mm Cu	84	10,4	85	10,4	86	10,4

Tabulka 3.40: Vliv přídavného filtru na změnu LCR a HCR u přístroje Brivo OEC.

Přídovný	Bez zv	ětšení	ZOO	M 1	ZOO	OM 2
filtr	LCR	HCR	LCR	HCR	LCR	HCR
inci	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)
0,5 mm Cu	3,9	2,24	3,9	3,15	3,9	4,00
1,0 mm Cu	3,9	2,24	3,9	2,80	3,9	3,55
2,1 mm Cu	3,9	2,24	3,9	2,80	3,9	3,55
3,1 mm Cu	3,9	2,24	3,9	2,50	3,9	3,15

Přídavný	Bez zv	ětšení	Z00	M 1	ZOOM 2		
	LCR	HCR	LCR	HCR	LCR	HCR	
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)	
0,5 mm Cu	3,9	2,50	3,9	2,50	3,9	3,15	
1,0 mm Cu	3,9	2,50	3,9	2,50	3,9	3,15	
2,1 mm Cu	3,9	2,50	3,9	2,50	3,9	2,80	
3,1 mm Cu	3,9	2,00	3,9	2,24	3,9	2,50	

Tabulka 3.41: Vliv přídavného filtru na změnu LCR a HCR u přístroje Ziehm Vision FD.

Pulzní režim

Postup: Během ZPS je ponechán režim kontinuální, jelikož je nejčastěji použit v provozu. Pro tento test jsem zvolil režim 1 a 8 pulsů/sekundu (Tabulka 3.42, Tabulka 3.43, Tabulka 3.44, Tabulka 3.45).

Tabulka 3.42: Vliv pulzního režimu na změnu expozičních parametrů u přístroje Brivo OEC.

Pulzní režim	Bez zv	ětšení	ZOC	M 1	ZOOM 2		
	kV	mA	kV	mA	kV	mA	
Kontinuální	64	1,3	64	1,9	64	2,6	
1 p/s	70	1,6	70	2,3	70	3,2	
8 p/s	71	1,6	70	2,2	70	3,2	

Tabulka 3.43: Vliv pulzního režimu na změnu expozičních parametrů u přístroje Ziehm Vision

FD.

Pulzní režim	Bez zv	ětšení	ZOC	M 1	ZOOM 2		
	kV	mA	kV	mA	kV	mA	
Kontinuální	66	8,7	67	9,2	67	9,4	
1 p/s	66	8,6	66	9,1	67	9,3	
8 p/s	66	8,7	67	9,2	67	9,3	

Tabulka 3.44: Vliv pulzního režimu na změnu LCR a HCR u přístroje Brivo OEC.

	Bez zv	ětšení	ZOC	DM 1	ZOOM 2		
Pulzní režim	LCR	HCR	LCR	HCR	LCR	HCR	
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)	
Kontinuální	3,9	2,24	3,9	3,15	3,9	4,00	
1 p/s	3,9	2,24	3,9	2,80	3,9	3,55	
8 p/s	3,9	2,24	3,9	2,80	3,9	3,55	

	Bez zv	ětšení	ZOO	M 1	ZOOM 2		
Pulzní režim	LCR	HCR	LCR	HCR	LCR	HCR	
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)	
Kontinuální	3,9	2,50	3,9	2,50	3,9	3,15	
1 p/s	3,9	2,24	3,9	2,50	3,9	2,80	
8 p/s	3,9	2,24	3,9	2,50	3,9	3,15	

Tabulka 3.45: Vliv pulzního režimu na změnu LCR a HCR u přístroje Ziehm Vision FD.

Expoziční parametr

Postup: Při tomto měření byla vypnutá automatická kontrola expozice a manuálně nastavena rozdílná hodnota kV, popř. mAs (Tabulka 3.46, Tabulka 3.47).

Tabulka 3.46: Vliv expozičního parametru na změnu LCR a HCR u přístroje Brivo OEC.

	Bez z	většení	ZOC	OM 1	ZOO	0M 2
Expozice	LCR	HCR	LCR	HCR	LCR	HCR
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)
70 kV/1,6 mAs	3,9	2,24	3,9	3,15	3,9	4,00
80 kV/3,2 mAs	Nehodnotitelné – přeexponované					
60 kV/1,0 mAs	3,9	2,00	3,9	2,50	3,9	3,55

Tabulka 3.47: Vliv expozičního parametru na změnu LCR a HCR u přístroje Ziehm Vision FD.

	Bez z	většení	ZO	OM 1	ZOC	OM 2
Expozice	LCR	HCR	LCR	HCR	LCR	HCR
	(%)	(lp/mm)	(%)	(lp/mm)	(%)	(lp/mm)
66 kV/8,7 mAs	3,9	2,50	3,9	2,50	3,9	3,15
80 kV/10 mAs	Nehodnotitelné – přeexponované					
60 kV/7,0 mAs	3,9	2,80	3,9	2,80	3,9	2,80

3.3 Statistické zpracování

Z naměřených dat bylo pomocí Wilcoxonova párového testu zjištěno, zda lze výsledné hodnoty považovat z hlediska rozložení hodnot okolo mediánu za shodné (H_0) nebo nikoli (H_1). U H_0 zamítáme hypotézu o shodnosti rozdělení (tzn. pokusný zásah je účinný – hodnoty před a po pokusu se liší ve svém rozložení. U H_1 nemůžeme zamítnout hypotézu o shodnosti rozdělení veličiny *X* a *X'* (pokusný zásah je neúčinný). Tabelová hodnota je převzata z [9].

Vzhledem k malému množství dat a vyřazení naměřených dat totožných s referenční hodnotou (Z=0), byly např. hodnoty s různou FFD spojeny do jedné skupiny.

Výsledky Wilcoxonova testu jsou uvedeny v Tabulce 3.48, kde v prvním sloupečku je skupina sledovaného parametru, v druhém sloupci nižší hodnota ze součtu pořadí, ve třetím sloupci je kritická hodnota Wilcoxonova párového testu pro zvolenou hladinu významnosti a počet párů testů $W(\alpha, n)$, v posledním sloupci je vyjádření o zamítnutí nulové hypotézy.

 Tabulka 3.48: Výsledky rozhodnutí o nulové hypotéze na základě Wilcoxonova párového testu u sledovaných parametrů.

Sledovaný parametr	W	$W_{(0,05, n)}$	Zamítnutí H ₀
FFD	0 (W ⁺)	13,8 (n = 12)	ANO
FFD (elektronická lupa)	4 (W ⁺)	3,7 (n = 8)	NE
Přídavný filtr	13,5 (W ⁻)	3,7 (n = 8)	NE
Přídavný filtr (elektronická lupa)	12 (W ⁻)	0,6 (n = 6)	NE
Přídavný filtr (LCR, Luminos)	0 (W ⁻)	2,1 (n = 7)	ANO
Přídavný filtr (HCR, skiaskopie)	13,5 (W ⁻)	8,1 (n = 10)	NE
Orgánová předvolba	0 (W ⁺)	0 (n = 4)	ANO

4 Diskuse

Retrospektivní studie kvality obrazu a vliv změny parametrů na kvalitu obrazu byla provedena na 7 radiodiagnostických přístrojích - skiagrafie s přímou a nepřímou digitalizací, skiaskopický přístroj, C rameno se zesilovačem a flat panelem, pojízdný přístroj s přímou a nepřímou digitalizací (Podkapitola 3.1).

Retrospektivní studie kvality obrazu byla vyhodnocena z pravidelných zkoušek provozní stálosti v posledních 16 měsících, kde je jednou z kontrol kvality obrazu posouzení rozlišení pro nízký a vysoký kontrast. Pro každý přístroj je dle radiologického standardu ZPS přesně daný přídavný filtr a fantom. Dle fantomu se subjektivně (lepší variantou by bylo objektivní hodnocení SW Imatest [10]) hodnotí změna počtu párů čar/mm (Podkapitola 2.2). Retrospektivní studie kvality obrazu ukázala, že při dodržení parametrů ZPS je kvalita obrazu zachována. Kromě kontroly kvality obrazu, zmiňuji v této práci také další výsledky ze ZPS – vývoj expozičních parametrů, expozičního indexu, kermy, změnu světelného a rentgenového pole.

Druhým úkolem této práce bylo zjistit statisticky významný parametr, který nejvíce ovlivňuje kvalitu obrazu. Postupně byly vyzkoušeny všechny parametry, o kterých jsem se domníval, že by kvalitu obrazu změnily. Jednalo se o FFD, přídavný filtr, expoziční parametry, pulzní režim u skiaskopie (Podkapitola 3.2). Některé parametry byly mimo expoziční možnosti přístroje a test byl ukončen chybovou hláškou přístroje. Nebyl testován sklon rentgenové lampy na detektor, kde je předem jasné, že rozlišení bude nižší se zvyšujícím se sklonem dopadajícího rtg záření.

Naměřené hodnoty byly z důvodu postprocesingové úpravy, která je součástí skiagrafie s DDR a CR (čtecí zařízení) v mezích požadavků ZPS. 48% naměřených dat (hodnocených bez elektronické lupy) bylo shodných s referenční hodnotou, 30% dosahovalo lepšího rozlišení.

Pro statistické vyhodnocení byl zvolen Wilcoxonův párový test z důvodu malého množství naměřených dat. Data byla proto shromážděna do 7 skupin – FFD, přídavný filtr, orgánová předvolba pro hodnocení bez / s elektronickou lupou (Tabulka 3.48). Získal jsem tak statistický výsledek pro celou skupinu parametrů.

5 Závěr

Tato práce prokázala stabilitu kvality obrazu během zkoušek provozní stálosti při dodržení parametrů nastavení dle standardů. Na všech hodnocených přístrojích došlo k maximálnímu zhoršení rozlišení pro vysoký kontrast o dva stupně, u rozlišení pro nízký kontrast o jeden stupeň, což splňuje požadavek ZPS (Podkapitola 3.1, Graf 5.1).

Graf 5.1: Rozlišení pro vysoký kontrast během čtvrtletních ZPS pro skiagrafická pracoviště.

Druhá část – experimentální, měla za úkol najít statisticky významný parametr, ovlivňující kvalitu obrazu. Graf 5.2 a Graf 5.3 znázorňují změny v kvalitě obrazu vlivem odlišných parametrů FFD a přídavného filtru. Pro statistické hodnocení byl zvolen Wilcoxonův párový test z důvodu malého počtu naměřených dat (vlivem postprocesingové úpravy obrazu byly naměřené hodnoty z 48% totožné s referenční hodnotou získanou během ZPS a pro statistické hodnocení nepoužitelné). Data byla rozdělena do 7 skupin (Tabulka 3.48), kde pomocí Wilcoxonova testu byl jako významný parametr, ovlivňující kvalitu obrazu určen:

- FFD pro přístroj Swissray a pojízdné přístroje v testu pro HCR
- Přídavný filtr pro přístroj Luminos (režim skiaskopie) v testu pro LCR
- Orgánová předvolba pro přístroj Swissray a pojízdný přístroj Mobileart Eco v testu pro HCR

Vzhledem k tomu, že pouze u skiaskopických přístrojů (Luminos, C ramena) je výsledek minimálně zkreslen postprocesingovou úpravou obrazu, je tento výsledek nejvěrohodnější. Naměřené rozlišení pro nízký kontrast u přístroje Luminos v závislosti na přídavný filtr nesplňuje ani požadavek ZPS, kdy se zhoršila o 2 skupiny. Bohužel tyto přístroje neumožňují nastavení pro porovnání s dalšími parametry (FFD, orgánová předvolba). Přístroje s postprocesingovou úpravou obrazu bez možnosti zpětného kroku k raw datům mohou být z tohoto testu vyřazeny.

Kladný výsledek tohoto experimentu je i prokázání správné funkce postprocesingového zpracování obrazu rdg přístrojů a tím udržení kvality obrazu i při nedodržení parametrů ZPS. V praxi to znamená dostatečnou diagnostickou kvalitu obrazu i v případě, kdy obsluha rdg přístroje (radiologický asistent) provede chybu v nastavení vyšetření (samozřejmě v určitých limitech).

Graf 5.2: Vliv FFD na rozlišení pro vysoký kontrast u skiagrafických přístrojů.

Graf 5.3: Vliv přídavného filtru na rozlišení pro vysoký kontrast v režimu skiagrafie.

Seznam použité literatury

- [1] Státní úřad pro jadernou bezpečnost. Zákon č. 263/2016 Sb., atomový zákon
 [online] 2016 Dostupné z: <u>https://www.sujb.cz/legislativa/nove-atomove-pravo/</u>
 [cit. 2017-4-30]
- [2] Státní úřad pro jadernou bezpečnost. Zákon č. 263/2016 Sb., atomový zákon
 [online] 2016 s.18 Dostupné z: https://www.sujb.cz/fileadmin/sujb/docs/legislativa/263-2016.pdf [cit. 2017-4-30]
- [3] Státní úřad pro jadernou bezpečnost. Zákon č. 263/2016 Sb., atomový zákon
 [online] 2016 s.40 Dostupné z: https://www.sujb.cz/fileadmin/sujb/docs/legislativa/263-2016.pdf [cit. 2017-4-30]
- [4] Státní úřad pro jadernou bezpečnost. Zákon č. 263/2016 Sb., atomový zákon [online] 2016 s.40 Dostupné z: https://www.sujb.cz/fileadmin/sujb/docs/legislativa/263-2016.pdf [cit. 2017-4-30]
- [5] Státní úřad pro jadernou bezpečnost. Metodické pokyny a doporučení. Zkoušky provozní stálosti skiagrafická digitální pracoviště (rev. 1) [online] 2010. Dostupné z: <u>https://www.sujb.cz/dokumenty-a-publikace/publikace-sujb/</u> [cit. 2017-3-5]
- [6] Český normalizační institut. ČSN IEC 61223-2-9 Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací - Část 2-9: Zkoušky stálosti – Zařízení pro nepřímou skiaskopii a nepřímou skiagrafii [online]. Březen 2001. Dostupné z: <u>http://csnonlinefirmy.unmz.cz/html_nahledy/85/61229/61229_nahled.htm</u> [cit.2017-3-5]
- [7] Úřad pro technickou normalizaci metrologii a státní zkušebnictví. ČSN IEC 61223-2-9 Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací - Část 2-9: Zkoušky stálosti - Zařízení pro nepřímou skiaskopii a nepřímou skiagrafii [online]. Dostupné z: https://csnonline.unmz.cz/Detailnormy.aspx?k=61229 [cit. 2017-3-5]
- [8] Úřad pro technickou normalizaci metrologii a státní zkušebnictví. ČSN IEC 61223-2-11 Hodnocení a provozní zkoušky při zpracování lékařských obrazových informací - Část 2-11: Zkoušky stálosti - Zařízení pro všeobecnou přímou skiagrafii [online]. Dostupné z: <u>https://csnonline.unmz.cz/Detailnormy.aspx?k=61231</u> [cit. 2017-3-5]
- [9] Wilcoxon Signed Rank Test. Boston University: School of Public Health [online]. Boston: Boston University, 2016 [cit. 2017-04-25]. Dostupné z:

http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Nonparametric/BS704_Nonparametric6.html [cit. 2017-5-1]

[10] Imatest. Optimize Image Quality Testing [online]. [cit. 2017-04-25]. Dostupné z: <u>http://www.imatest.com/</u>