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Abstrakt

V posledńıch letech se vyvinulo velké množstv́ı rozličných doporučovaćıch al-
goritmů. Jednu věc maj́ı ale všechny společnou. Jejich hyper-parametry se
muśı pečlivě zvolit, aby dosahovaly dobrých výsledk̊u.

Tato práce se zabývá výběrem takových algoritmů a navrhnut́ım optimal-
izačńı procedury, která bude schopná nalézt vhodné hyper-parametry těchto
algoritmů. Výsledky jsou pak ověřeny na reálných datasetech.

Kĺıčová slova Rekomendačńı systémy, hluboké učeńı, hyper-parametrická
optimalizace

Abstract

Various recommendation algorithms have been proposed in recent years. How-
ever, each of them has one thing in common. It is essential to tune their
hyper-parameters in order to achieve good results.

This work has focused on selecting modern and scalable algorithms. The
aim has been to design and implement an optimization procedure capable
of fine-tuning their hyper-parameters and evaluate the results on real-world
datasets.
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Introduction

Motivation And Objectives

Recommender systems are literally everywhere around us. They recommend
to us how to spend free time, which movie to watch, book to read, what to buy,
even which job to choose. Recommendation systems are an essential part of
many areas. It is a critical tool to promote sales and services for many online
websites and mobile applications.

However, not all companies have resources to develop their own recom-
mender system. In many cases, it can be a preferable way to use ready-to-use
tools. The company Recommbee offers one of these tools. Recombee provides
an intuitive RESTful recommendation API, which is used by various interna-
tional internet companies for recommendation to their users. This can lead to
an interesting problem. Each company has a different business model, collects
different data, offers different products and so on. Such data are a content of
Recommbee database.

Therefore, the first goal of this thesis is to select modern and scalable
recommendation algorithms, which are able to exploit data and offer an accu-
rate recommendation. Further, to design an optimization procedure capable
of fine-tuning hyper-parameters selected algorithms and validate results on
several real-world datasets.

Problem Definition

The goal is to select modern and scalable recommendation algorithms, design
fine-tuning procedure capable to tune hyper-parameters of selected algorithms
and this procedure validate on several datasets.
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Introduction

Organisation Of The Thesis

The thesis is structured as follows: Chapter 1 presents a recommender sys-
tems overview and survey of selected algorithms together with a brief overview
of hyper-parameter optimization techniques. Chapter 2 contains an analysis
of chosen algorithms and design of fine-tuning procedure. Following Chap-
ter 3 describes an algorithms implementation and the last Chapter 4 covers
experiments.
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Chapter 1
Survey

In the survey part we will first look at recommender systems, show their
brief overview and describe basic types. Then we will focus on a subset of
algorithms, which are suitable for this work. Each selected algorithm will be
briefly described as discussed.

Next, we will move focus on hyper-parameter optimization, one of the
essential parts of machine learning, although it sometimes suffers from a lack
of care. This part will be covered only very briefly, due to an enormously wide
range, which is beyond the scope of this work.

1.1 Recommender Systems Overview

Recommender systems are techniques and tools providing a recommendation
to users. We often speak about a recommendation of items to a user, where
an item is a general term used to denote what the system recommends to
users. The goal of Recommender System is providing useful and practical
suggestions, often personalized toward user’s preferences or taste [1].

1.1.1 Recommender System Classification

We can usually categorize recommendation algorithms into several types based
on techniques, that produce a recommendation. According to [2], we will clas-
sify Recommender Systems based on technique, that produce recommenda-
tion. For clarity, the Figure 1.1 visualise the classification.

1.1.1.1 Personalized Recommendation System

This type of system leverages user’s past behavioral and based on it recom-
mend desired items. Further, one can divide personalized systems into the
following subcategories.

3



1. Survey

1.1.1.1.1 Content-based Filtering Content-based system is based on
the analysis of the content of the items. It is intended to recommend items
with a content similar to items, which the user enjoyed in the past or is looking
at in the present. These type of recommenders are often based on creating a
user profile, which stores user’s preferences, taste, and features of items [1].

1.1.1.1.2 Collaborative Filtering Collaborating filtering approaches can
be divided into two types: user-based CF and item-based CF. Both approaches
are based on social interactions. The advantage of these types is that they
do not need to extract any feature from items. Furthermore, they are able to
recommend any items, even items with content, which does not correspond
to any of the previous items that the user liked. User-based CF suggests rec-
ommendation based on considering users having similar interest. Unlike the
user-based collaborative filtering, the item-based CF looks for items similar
to items user already rated. The crucial part of the algorithm is how the
similarity is computed. From the collaborative point of view, two items are
similar if the users agree about ratings [1].

Generally, CF-based models cannot deal with a new user or an item, be-
cause they require a history of ratings of the user or the item to calculate the
similarities, for the determination of the neighborhood. This issue is called
cold start problem [3].

1.1.1.1.3 Knowledge-based This type of system is used in specific do-
mains, where the interaction history is very sparse or does not play a significant
role. In this type of system, the algorithm considers the knowledge about the
item and its features, user taste (asked explicitly), and various recommenda-
tion criteria before providing the recommendation [2].

1.1.1.1.4 Hybrid-based Hybrid recommender systems combine two or
more recommendation techniques to obtain better performance and mitigate
drawbacks of any individual technique [4].

1.1.1.1.5 Demographic This technique is a recommendation based on
the knowledge of demographic data about the user, such as age, gender, em-
ployment status, location and so on. The recommendation exploits demo-
graphic similarities among users [2].

1.1.1.2 Non-Personalized

Non-Personalized recommender system does not incorporate the personal pref-
erences of the user. All recommendations are identical, regardless on the user
[5].
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1.2. Recommendation Algorithms

Figure 1.1: Recommender System Classification

1.2 Recommendation Algorithms

This section covers several recommendation algorithms. The first part is ded-
icated to traditional recommendation algorithms and the second part intro-
duces models that incorporate deep learning techniques.

1.2.1 Traditional Recommendation Algorithms

This section cover two types of algorithms. One is memory-based algorithm,
which tries to identifying the neighbors of user or item and the remaining two
are model-based algorithm, which belongs to family of latent factors models.

1.2.1.1 Memory-based Collaborative Filtering Techniques

Memory-based CF algorithms use the entire set or a sample of the user-item
interactions. It is assumed, that each user is part of a group of people with sim-
ilar taste. By identifying the neighbors of the user, a prediction of preferences
on new items is served. The most common representative are neighborhood-
based CF algorithms. This type of CF algorithm uses the following steps
[6]:

• calculate the similarity or weight wi,j between two users or two items,

• serve a suggestion for the active user by taking the weighted average of
all the ratings of the user or item on a certain item or user.
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1. Survey

1.2.1.1.1 Neighborhood-based Algorithm Similarity computation be-
tween items or users is a critical step. In case of item-based CF algorithm,
the basic idea is to compute the similarity of all pairs of items. A similarity or
weight wi,j between two items is calculated by taking the ratings of the users
who have rated both of the items and then applying a similarity measure.
The prediction is then computed by taking a weighted average (for example
equation 1.1) of the target user’s ratings r on these similar items. User-based
CF algorithm first calculates the similarity wu,v, between users u and v who
have both rated the same items [6].

pu,i =
∑

n∈N ru,n − wi,n∑
n∈N |wi,n|

(1.1)

There are many different methods to calculate similarity or weight between
users or items. Usual measures are for example correlation-based similarity
(Eq. 1.2), cosine-based similarity (Eq. 1.3) and so on [6].

wu,v =
∑

i∈I(ru,i − r̂u)(rv,i − r̂v)√∑
i∈I(ru,i − r̂u)2

√∑
i∈I(rv,i − r̂v)2

(1.2)

wi,j =
~i ·~j
‖~i‖‖~j‖

(1.3)

1.2.1.1.2 Scalability Complexity of the neareset neighbor algorithm grows
with both the number of users and the number of items, hence it has limited
scalability for large datasets. From view of interactions dynamic, user-based
CF suffers more than item-based CF. Unlike similarity between users, items
similarity is more or less static, therefore it enables precomputing of item-item
similarity [7].

1.2.1.2 Matrix Factorization

Matrix Factorization algorithm belongs to a family of latent factors model.
Latent factor model tries to explain the ratings by characterizing both user
and item by a vector inferred from the ratings pattern. When user and item
do highly correspond, it provides a lead to a recommendation.

Matrix Factorization models map users and items to a joint latent factors
f dimensional space. User-item interaction are modeled as inner products in
that space. Each user is then represented by vector ~u ∈ Rf and each item by
vector ~v ∈ Rf . The dot product ~uT

u~vi captures the interactions between user
u and item i [8]. This approximates rating given by user u to item i:

ru,i = ~uT
u~vi (1.4)
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1.2. Recommendation Algorithms

The most challenging part is finding the mapping of each item and user to
factor vectors uu, vi ∈ Rf . However, when the mapping is complete, recom-
mender system can easily estimate unobserved ratings by using the equation
1.4.

A common way to learn the factor vectors uu and vi is to minimize the
regularized squared error on the set of observed and unobserved ratings 1.5.

min
u∗,v∗

∑
(u,i)∈K

cu,i(ru,i − uT
u vi)2 + λ(‖uu‖2 + ‖vu‖2) (1.5)

Here, K is the set of the all (u, i) pairs, the constant λ controls the extent of
regularization and cu,i is confidence of rating [9].

1.2.1.2.1 Learning Procedures Several learning algorithms have been
developed for searching the minimum of 1.5. The most common ones are
stochastic gradient descent, alternating least squares and coordinate descent.

1.2.1.2.1.1 Stochastic Gradient Descent The algorithm loops through
all ratings in the training set, for each training example compute associated
error eu,i = ru,i − uT

u vi. Then update parameters according to Eq. 1.6.

uu = uu + γ · (cu,ieu,i · vi − λuu)
vi = vi + γ · (cu,ieu,i · uu − λvi)

(1.6)

1.2.1.2.1.2 Alternating Least Square The ALS technique is based
on switching between fixed uu and fixed vi. When all u are fixed the optimiza-
tion problem becomes quadratic and can be solved optimally. Then system
recomputes vi by solving a least squares problem (in general e.g. 1.7) and vice
versa [8].

θ = (XTCX)−1XTCY (1.7)

In general, stochastic gradient descent is easier and faster than ALS, how-
ever ALS can be easily parallelized. The algorithm computes each uu and
vi independently of the other users, items factors respectively. Due to this
independence, computation can be massively distributed [8].

1.2.1.2.1.3 Coordinate Descent Approaches The basic idea of co-
ordinate descent is similar to ALS. A single variable is updated at a time while
keeping others fixed [10].

1.2.1.2.1.4 Extensions In recent years, lots of extensions have been
developed, for example adding user, item, and global biases. The prediction
of the rating is then decomposed to 4 parts µ, bi, bu and uT

u vi 1.8, where µ is

7



1. Survey

the overall average rating, and the parameters bu and bi indicate the observed
deviation of user u and item i, respectively, from the average. Further, adding
user and item bias terms tend to capture much of the observed signal, their
accurate modeling is vital. Hence, this allows each component to explain only
the part of a signal relevant to it [8].

Another example is temporal dynamics, which enriched the static model
with the ability to model temporal effects [8]. The terms bt

i, bt
u and ut

uT v
t
i can

then vary over time 1.9.

r̂u,i = µ+ bi + bu + uT
u vi (1.8)

r̂t
u,i = µt + bt

i + bt
u + ut

uT v
t
i (1.9)

1.2.1.2.1.5 Scalability The time complexity per iteration of SGD is
O(|K|k), ALS O(|K|k2 + (m+ n)k3) and coordinate descent based algorithm
(CCD++) O(|K|k), where K is the set all observed ratings, m is the number
of users, n the number of items, and k the number of factors (size of latent
vector representation). Despite the fact, that ALS has the worst asymptotic
complexity, massive parallelization can mitigate this issue. Further, the SGD
suffers from sensitivity on the choice of the learning rate, when compared to
CCD++[11].

1.2.1.3 Factorization Machines

The Factorization Machines is another example of factorization models sim-
ilarly to MF. It combines the advantages of Support Vector Machines with
factorization models. FMs model interactions between variables using factor-
ized parameters. Thanks, this property, FMs are capable estimate interaction
even in a problem with huge sparsity where other models fail [12]. Equation
1.10 shows factorization machine of degree d = 2.

ŷ(~x) = w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

< vi, vj > xixj (1.10)

where ~x is vector of features, w0 is global bias, wi models the strength of i-th
feature, vi and vj are latent representations of feature xi and xj , < vi, vj >
is dot product and model interactions between the i-th and j-th feature. The
FM can be extended to arbitrary degree of interaction.

1.2.1.3.1 Learning Procedure The author proposed several learning
procedures such as stochastic gradient descent, alternating least squares, and
Markov Chain Monte Carlo. Even stochastic gradient descent can learned

8



1.2. Recommendation Algorithms

parameters efficiently. The gradient of the FM model is [12]:

∂

∂θ
ŷ(~x) =


1, if θ is w0

xi, if θ is wi

xi
∑n

j=1 vj,fxj − vi,fx
2
i , if θ is vi,f

(1.11)

1.2.1.3.2 Scalability The model equation 1.10 is feasible to compute in
linear time O(kn), where n is a number of features and k size of latent rep-
resentation. Thus, the algorithm does not suffer from pairwise interactions
[12].

1.2.2 Deep Learning based Recommendation Algorithms

In many fields such as computer vision and speech recognition, deep learning
(DL) is tremendously successful. This trend continues the past few decades
and the academia and industry have been in a race to apply deep learning to
a wider range of application. Recently, deep learning has been appearing in
the domain of recommendation systems and brings more opportunities in rein-
venting the user experiences for better customer satisfaction. Deep learning
can efficiently capture the nonlinear and non-trivial user-item relationships
and leverage abundant data sources such as contextual, textual and visual
information [13].

1.2.2.1 Deep Learning Techniques

This part will briefly introduce deep learning techniques, which are used in
following recommender system algorithms.

1.2.2.1.1 Multilayer Perceptron Multilayer Perceptron is a feedforward
neural network with multiple (one or more) hidden layers between input layer
and output layer. The perceptron can hold arbitrary activation function.

1.2.2.1.2 Autoencoder Autoencoder is an unsupervised model, which is
trained to reconstruct its input data in the output layer.

1.2.2.1.3 Recurrent Neural Network Recurrent Neural Network has
been designed to be able model sequential data. In RNN are loops and mem-
ories to remember previous computations. Variants such as Long Short Term
Memory (LSTM )and Gated Recurrent Unit (GRU) have been developed to
improve network capabilities.

9



1. Survey

1.2.2.2 Collaborative Deep Learning

Collaborative Deep Learning is a hierarchical Bayesian model, which jointly
models deep representation for the content information and collaborative fil-
tering for the ratings matrix. The model combines stacked denoising autoen-
coder (SDAE) with probabilistic matrix factorization. SDAE is a deep neural
network, which is able to process various side information. PMF acts as the
task-specific component. These two parts are tightly coupled and enable CDL
to balance the influences of side information (SDAE) and ratings (PMF) [13].
The generative process can be defined as follow:

• For each layer l of the SDAE network,

– For each column n of weight matrixWl, drawWl,∗n ∼ N (0, λ−1
w IDl

).
– Draw the bias vector bl ∼ N (0, λ−1

w IDl
)

– For each row i of Xl,i∗ ∼ N (σ(Xl−1,i∗Wl + bl), λ−1
s IDl

)

• For each layer item i,

– Draw a clean input Xc,i∗ ∼ N (XL,i∗, λ
−1
n IIi)

– Draw a latent offset vector εi ∼ N (0, λ−1
u ID) and set the latent

item vector: Vi = εi +XT
L
2 ,i∗

• Draw a latent user vector for each user u, uu ∼ N (0, λ−1
u , ID)

• Draw a rating ru,i for each user-item pair (u, i), ru,i ∼ N (uT
u vi, C

−1
u,i )

where Wl and bl arethe weight matrix and biases vector for layer l, Xl rep-
resents layer l. λw, λs, λn, λv, λu, are hyper-parameters, Cu,i is a confidence
parameter for measuring the confidence to observation, Xc is the clean input,
X0 is corupted input [13].

Several technique to find parameters of model may be applied. The authors
expoited an EM-style algorithm for obtaining the maximum a posteriori es-
timates. In this case, one maximizes join-log-likelihood of U, V,Xl, Xc,Wl, bl,
and R given λw, λs, λn, λv, λu. Then, equation 1.12 can give intuition behind
the model.

L =− λu

2
∑

u

‖uu‖2 −
λw

2
∑

l∈layers

(‖Wl‖2 + ‖bl‖2)

− λv

2
∑

j

‖vj −XT
L
2 ,j∗‖

2 − λn

2
∑

j

‖XL,j∗ −Xc,j∗‖2

− λs

2
∑

l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖2

−
∑
u,i

Cu,i

2 (ru,i − uT
u vi)2.

(1.12)

10



1.2. Recommendation Algorithms

If λs goes to infinity, it simplifies model and the likelihood reduces to 1.13:

L =− λu

2
∑

u

‖uu‖2 −
λw

2
∑

l∈layers

(‖Wl‖2 + ‖bl‖2)

− λv

2
∑

j

‖vj − fe(Xs,j∗,W
+)T ‖2 − λn

2
∑

j

‖fr(Xs,j∗,W
+)−Xc,j‖2

−
∑
(u,i)

Cu,i

2 (ru,i − uT
u vi)2

(1.13)
where W+ denotes the collection of all layers weights and biases, fe(·,W+) is
encoder function and fr(·,W+) computes encoding and then reconstructs the
content vector of item j. The first two terms are regularization, second line
terms balance model reconstruction error between item content vector Xc,j

and item latent vector vj and the last term incorporate task-specific compo-
nent. One can approximate the prediction rating as 1.14 for both models.

Ri,j ≈ uT
i vj (1.14)

1.2.2.2.1 Learning Procedure One of the possible learning procedure is
very similar to the idea of ALS. Learning algorithm alternates between fixed
W+ and latent representations U , V of users, items, respectively. Latent
representations updates (Equations 1.15) lead to the updates rules similar to
1.2.1.2.1.2 and for W and b, authors use a modified version of backpropagation
[13].

uu = (V TCuV + λuIk)−1V TCuRu

vi = (UTCiU + λiIk)−1(UTCiRi + λvfe(X0,j∗,W
+))

(1.15)

1.2.2.2.2 Scalability Authors presented update rules have the computa-
tional complexity of updating ui (O(k2J + k3)), where k is the size of la-
tent representation and J is the number of items. Update vj has complexity
O(k2I + k3 +SK1), where I is the number of users, S is the size of the vocab-
ulary, and K1 is dimensionality of output in the first layer.

1.2.2.3 Wide & Deep

This general model can be used for both regression and classification problems.
The wide part of the model is single layer perceptron, and the deep learning
part is multilayer perceptron. The authors suggested that combining these
two components enable to capture both memorization and generalization. For
catching the direct features from historical data is proposed the memorization
component and deep learning component produce more general and abstract
representation [13].

11



1. Survey

Formally, the wide component is a generalized linear model 1.17, where x
is the vector of features, w and b are model parameters. The features include
various transformed and raw features. The authors noted, that cross-product
transformation is one of the most important [14].

y = wTx+ b (1.16)

The deep component is a feed-forward neural network. Categorical features
are first transformated to low-dimensional and dense real-valued vectors of-
ten referred as an embeddings. At the start, the embeddings are initialized
randomly and during model training are updated to minimize the final loss
function. These embeddings are then fed into the hidden layers. Each hidden
layer calculates the following computation:

a(l+1) = f(W (l)a(l) + b(l)) (1.17)

where l is the layer number, f is the activation function and a(l), b(l) and W (l)

are the activations, bias, and weights at l-th layer.

1.2.2.3.1 Learning Procedure The wide component and deep compo-
nent are coupled using a weighted sum of their outputs and then fed into
one common logistic loss function for joint training. Thus, during training
both components are trained simultaneously. The authors suggested using
backpropagation for training[14].

1.2.2.3.2 Scalability The authors have evaluated the Wide & Deep model
on a massive-scale commeracial app store Google Play. At the peak, the model
has had to score over 10 million apps per second [14].

1.2.2.4 Session-based GRU4Rec

GRU4Rec is significantly differ from models mentioned before. The task of
previous models is simply recommend the most relevant items to user, whereas
the goal of GRU4Rec is recommend item based on user session. The authors
argue, that this approach is more suitable for many e-commerce recommender
systems. Particularly small retailers, most of news and media sites, because
they do not typically track the user-id’s of the users that visit their sites over
a long period of time. Further, cookies and browser fingerprinting are not
always reliable enough [15].

To overcome this issue, authors have proposed GRU-based reccurent neural
network (RNN). The current state of session is fed to the RNN while the
output of is the item of the next event in the session. The state of the session
is either the item of the current event or the events in the session so far. The
authors have used 1-of-N encoding in the first case, i.e. binary vector equal
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1.2. Recommendation Algorithms

to the number of items filled with zeros except the coordinate corresponding
to the active item and weighted sum of theses representations [15].

The architecture is composed from GRU layer(s) and additionaly feedfor-
ward layers can be added between the last and the output layer. The output
layer predicted preferences of the items of being the next in the session. When
more then one GRU layers are used, the hidden state of the previous layer
is the input of the next one. Further, optionally, the input can be connected
to the successive GRU layers. The authors has reported, that this option
improves performance [15].

1.2.2.4.1 Learning Procedure The authors proposed a session-parallel
mini-batches, a sampling method for output and own loss function. Mini-
batches have been constructed as follow:

• create ordered sessions,

• use first event of the first X sessions to form input, desired outputs are
the seconds events of active session,

• the next mini-batch is formed from the seconds events and so on,

• if any session end, the next available session is put in its place.

The loss function 1.18 belongs to family of ranking losses and measure
relative rank of the relevant item according to sampled items. Ns is sample
size, σ is a sigmoid function, r̂ are predicted item scores.

Ls = 1
Ns

Ns∑
j=1

σ(r̂s,j − r̂s,i) + σ(r̂2
s,j) (1.18)

Due to a potentially large number of items, computing scores for each of them
would be unusable in practice. Therefore the authors have suggested sam-
pling items in proportion to their popularity. Instead of generating separate
samples, they have been used items from previous mini-batches as negative
examples [15].

1.2.2.4.2 Scalability The authors have suggested a method for signifi-
cantly reducing time complexity. However, the authors in [16] argue, that
much more simple methods as frequent-pattern-based approaches can be com-
petitive in accuracy and result strongly depends on datasets characteristics.
Compare to GRU4Rec these simple models learn much faster and applying
the rules is very fast. Despite this fact, the authors expect that continuously
improved RNN-based methods will be able to outperform the frequent pattern
based algorithms used in their evaluations [16].
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1. Survey

1.3 Hyper-parameters Optimization Techniques

In the context of a recommender system, hyper-parameters optimization is
essential for adequate performance in real-world applications. For example,
on the recommender system related ads recommendation, authors reported
results, which thanks online tuning of algorithm showed a significant 4.3 %
revenue lift overall traffic [17].

An offline-world fine-tuning is as essential as fine-tuning in a real-world
running application. Deploying low-performance models can lead to decreas-
ing revenue, user’s satisfaction, a number of users, etc. Therefore is necessary
do a careful model preselections.

Most of the recommender algorithms have numerous hyper-parameters,
which can be tuned and accordingly significantly change their behavior. To
deal with optimization of high number and ill-conditioned hyper-parameters
has developed several techniques and different approaches.

1.3.1 Problem Definition

Most of machine learning task can be described as training model M which
minimizes some predefined loss functions L(Xtest;M) on given test data Xtest.
The model M is constructed by a learning algorithm A using a training set
Xtrain. The algorithm A can be parametrized by hyper-parameters H itself,
e.g. M = A(Xtrain, H). The goal of hyper-parameters search is to find a set of
hyper-parameters H of model M that yield to minimize function L(Xtest,M)
[18]. Formally:

H∗ = arg min
H

L(Xtest;A(Xtrain;H)) (1.19)

1.3.2 Hyper-parameter Optimization Techniques

This section provides a brief overview of optimization techniques that have
been reported in recent years in the domain of recommendation systems.

1.3.2.1 Grid Search

Grid search is a method, which calculates all possible hyper-parameters set-
tings. It works only with discrete hyper-parameters since the continuous
hyper-parameters space is infinite. Therefore is often necessary discretize
continuous hyper-parameters. Recommendations algorithms have often sev-
eral hyper-parameters and then is grid search highly inefficient, due to the
exponential growth of possible combinations of hyper-parameters.

1.3.2.2 Random Search

Random search uniformly samples hyper-parameters within given bounds. De-
spite this simplicity, the random search has huge advantage in easy paralleliza-
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tion.

1.3.2.3 Greedy Search

Gready search optimize only one hyper-parameter a time, while fixing re-
maining hyper-parameters. For each hyper-parameter is selected m random
samples and then fixated to the best from the random samples. The procedure
is then repeated with remaining hyper-parameters.

1.3.2.4 Random Walk

Random Walk is an iterative method. In each step, it computes the perfor-
mance of each neighbour, based on a selection mechanism select one of the
neighbours and makes step towards this neighbour.

1.3.2.5 Simulated Annealing

Simulated Annealing is related to the random walk method. It uses tempera-
ture as a control variable that manages probability of selection worse solutions
than the current one by selection mechanism. As temperature decrease, the
probability of choosing worse solution also decrease.

1.3.2.6 Nelder-Mead

Nelder-Mead method search minimum of function by spanning a simplex in the
hyper-parameter space. The simplex has k+1 vertices, where k is the number
of hyper-parameters. The simplex can move in space of hyper-parameters by
leveraging four transformation: reflection, contraction, expansion and shrink-
ing [19].

1.3.2.7 Particle Swarm Optimization

Particle swarm optimization is inspired by behaviours of swarms. A popu-
lation of particles called swarm move in the space of hyper-parameters and
maintains its velocity and its best position. The entire swarm store the global
best position. Each particle adjust its position according to personal and
global best position.

1.3.2.8 Genetic Algorithm

Genetic algorithm is inspired by the process of natural selection present in
evolution. Each individual is part of a population and it is a candidate for a
solution. The information about the individual is encoded to an array. The
following process of optimization is iterative. In each round, the individuals
are combined, possibly mutated and selected based on a fitness function. Only
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those individuals with high fitness are likely to transfer their information to
the next generation.

1.3.2.9 Sequential Model-based Optimization

Model-based optimization methods build a regression model that predicts the
performance of a target algorithm. These models iterate between the addi-
tional data collection and constructing approximation model, often called sur-
face or surrogate model. The model is fitted to a training set (θ1, y1), . . . (θn, yn)
of observed performance yi when target algorithm run with hyper-parameters
θi. The Gaussian process as surrogate model is common choice [20].
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Chapter 2
Solution Analysis

2.1 Algorithms Analysis

The goal of selected algorithms is to be able to operate with various datasets
without expert knowledge about the content of these datasets. The datasets
contain a huge number of interactions and items related auxiliary informa-
tion. MF algorithm is one of the most successful algorithms in domain of
recommendation systems which for training leverage only user-item interac-
tions [21]. In contrast with MF, CDL algorithm is capable use various kind of
auxiliary information and therefore, in some cases, increase recommendation
quality. For these reasons, MF and CDL have been chosen.

2.1.1 Matrix Factorization

From wide family of matrix factorization based algorithms [22], the algorithm
in [23] has been mainly followed because of stability of learning algorithm and
parallelization potencial. Further, it is extended by optional user and item
bias terms.

The system learns by minimizing the squared error function:

min
u∗,v∗

∑
ru,i∈observed

(1 + α)(ru,i − r̂u,i)2 +
∑

ru,i∈missing

(0− r̂u,i)2

+
∑

u

λnu‖uu‖2 +
∑

i

λni‖vi‖2
(2.1)

where r̂u,i is bu + bi + uT
u vi, bi and bu are bias terms for user u respectively

item i, ru,i is observed rating given user u to item i, uu and vi are user u
respectively item i latent vectors, term 1 + α plays a role of weight, nu and
ni are numbers of observed ratings for user u respectively item i and λ is
regularization parameter.

To deal with a searching minimum of function 2.1 one can use several
techniques as we have discussed earlier in section 1.2.1.2. The Weighted Al-
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2. Solution Analysis

ternating Least Square optimization method has been used in this work. The
solution of the Least square problem is obtained by solving a system of linear
equations a.k.a normal equation [24]. Following pseudocode describes algo-
rithm without biases [23]:

1 initialize V, U;
2 for i to N do
3 UtU ← UTU
4 foreach i ∈ items do
5 UtU ← UtU +αUT

obsUobs + λniI;
6 Utr ← (1 + α)Uobsrobs;
7 Vi ← solve(UtU,Utrobs);
8 end
9 V tV ← V TV

10 foreach u ∈ users do
11 V tV ← V tV + αV T

obsVobs + λnuI;
12 V tr ← (1 + α)Vobsrobs;
13 Uu ← solve(V tV, V trobs);
14 end
15 end

Algorithm 1: Weighted ALS Matrix Factorization

I in 1 refers to identity matrix, Vobs and Uobs to latent factors corresponded
to observed user-items interactions.

Matrix factorization with biases (Algorithm 2) has almost identical pseu-
docode except that it is necessary to subtract biases from ratings, add dummy
columns filled with value one and then do carefully indexing during optimiza-
tions. Superscript (1) expresses added dummy columns, (:,:) indexing matrices
and I0 resp. I0 identity matrix with zero in the first resp. the last diagonal
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2.1. Algorithms Analysis

element.

1 initialize V (1), U (1);
2 for i to N do
3 UtU ← U (1)(:, : −1)TU (1)(:, : −1)
4 foreach i ∈ items do
5 Uobs ← U

(1)
obs(: −1)

6 bu ← U
(1)
obs(−1)

7 UtU ← UtU +αUT
obsUobs + λniI

0;
8 Utr ← (1 + α)Uobs(robs − bu);
9 Vi(: −1)← solve(UtU,Utrobs);

10 end
11 V tV ← V (1)(:, 1 :)TV (1)(:, 1 :)
12 foreach u ∈ users do
13 Vobs ← V

(1)
obs (1 :)

14 bv ← V
(1)

obs (0)
15 V tV ← V tV + αV T

obsVobs + λnuI0;
16 V tr ← (1 + α)Vobs(robs − bv);
17 Uu(1 :)← solve(V tV, V trobs);
18 end
19 end

Algorithm 2: Weighted ALS Matrix Factorization with biases

2.1.2 Collaborative Deep Learning

Simplified version of CDL [25] with minor change has been used in this work.
That change incorporates adjusting each user’s latent vector regularization to
λu multiply by his number of ratings.

The simplified version was presented as part of the KDD 2016 [26]. Hence,
that version is possible to separate into two components, i.e., autoencoder and
Matrix Factorization and one can recycle the implementation of the matrix
factorization 2.1.1 with just minor adjustments.
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2. Solution Analysis

The system learns by minimizing the following function [27]:

min
u∗,v∗,W ∗,b∗

∑
ru,i∈observed

(1 + α)(ru,i − r̂u,i)2 +
∑

ru,i∈missing

(0− r̂u,i)2

+ λunu

∑
u

‖uu‖2

+ λw

∑
l∈layers

(‖Wl‖2 + ‖bl‖2)

+ λv

∑
j

‖vj − fe(Xs,j ,W
+)T ‖2

+ λn

∑
j

‖fr(Xs,j ,W
+)−Xc,j‖2

(2.2)

where W and b are autoencoder’s weights and biases, Xs,j is vector of item j
content, Xc,j is vector of reconstructed item j content, vj is the item j latent
representation comming from the Matrix Factorization component, fe is the
encoder function and fr is function returned the reconstructed content vector.

The first line of equation refers to matrix factorization component, the
second line is user’s regularization term, the third line is autoencoder’s weights
and biases, the fourth line forces item’s latent vectors and item’s encoded
representation to be similar in Frobenius norm and the last line do the same
with original and reconstructed item’s content.

The pseudocode 3 describes learning procedure of simplified CDL. One can
see, that the autoencoder component and the matrix factorization component
are not trained jointly, but alternating between each other. While parameters
one of the components have been training, parameters second component are
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fixed.
1 initialize V, U;
2 preprocess content of items;
3 for i to N do
4 foreach (Xbatch, Vbatch) ∈ batches do
5 trainAutoEncoder(Xbatch, Vbatch);
6 end
7 theta← AutoEncoder(X);
8 UtU ← UTU ;
9 foreach i ∈ items do

10 UtU ← UtU +αUT
obsUobs + λvI;

11 Utr ← (1 + α)Uobsrobs + λvthetai;
12 Vi ← solve(UtU,Utrobs);
13 end
14 V tV ← V TV ;
15 foreach u ∈ users do
16 V tV ← V tV + αV T

obsVobs + λuI;
17 V tr ← (1 + α)Vobsrobs;
18 Uu ← solve(V tV, V trobs);
19 end
20 end

Algorithm 3: Collaborative Deep Learning

2.1.3 User Recommendation Calculation

Conventional approach to user recommendation computation is for each item
to calculate score as dot product (equation 2.3) between latent user repre-
sentation and latent item’s representation and then sort them in descending
order. On the top of the list are the most relevant items to the user.

score(u, v) = u · v =
n∑

i=1
uivi = u1v1 + u2v2 + · · ·+ unvn (2.3)

Second approach tested in this work is compute the score as a cosine similarity
between user u and item v 2.4.

score(u, v) = cos(u, v) = u · v
‖u‖‖v‖

=
∑n

i=1 uivi√∑n
i=1 u

2
i

∑n
i=1 v

2
i

(2.4)

2.2 Optimization Procedure

Probably the most relevant source to this thesis is the work [21]. Authors
benchmarked various algorithms on four real-world datasets. The algorithm
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chosen for hyper-parameter optimization was the matrix factorization with
the objective to optimize the RMSE (root mean square error). As the con-
clusion, the authors suggested that in scenarios, where marginal improvement
plays the critical role the Nelder-Mead algorithm should be used. The algo-
rithm achieved the best performance on all datasets, followed by simulated
annealing. Although Nelder-Mead algorithm achieved the best performance,
improvement compared to random search was neglectful. Therefore after con-
sidering many advantages of random search, such as full parallelization, sim-
plicity, constant and nearly negligible computation time, they recommend use
it for hyper-parameter optimization in the domain of recommender systems.

Authors in [28] demonstrated on state-of-the-art ANN models for dialog
act classification, that optimizing hyper-parameters using Gaussian Processes
(GP) further improves the results and reduces the computational time by a
factor of 4 compared to a random search. Further they compared various
GP settings and impact of the number of initial random hyper-parameter
combinations.

Based on these results, Gaussian Processes and Random Search methods
have been chosen as algorithms suitable for fine-tuning recommendation algo-
rithms.

2.2.1 Evaluation Measures

As in [27] we have adopted recall as a measure of recommender algorithm
accuracy. We sort the predicted ratings of the candidate items and recommend
the top K items to the target user. Equation 2.5 show recall calculation. The
final result reported is the average recall over all users.

recall@K ← #Lrec

min(K,#L) (2.5)

where #Lrec is number of items that the user likes among the top K, #L is
total number of items that the user likes.

As an additional measure, catalog coverage has ben chosen. Catalog cov-
erage can be express as the percentage of the available items which effectively
are ever recommended to a user[29]. It is given by equation 2.6:

coverage@K ←

∣∣∣∣ ⋃
u∈test users

Iu

∣∣∣∣
|I|

(2.6)

where Iu is a set of recommended items to user during evaluation phase and
I is set of all items in catalog.

2.2.2 Optimization Procedure Design

At first, it is necessary to identify hyper-parameters suitable for fine tun-
ing. This is done by initial Random Search (RS). Based on results of the
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initial random search, part of hyper-parameters let be fixed and remaining
hyper-parameters are searched by grid search to expose simple and obvious
dependencies between hyper-parameters and algorithm performance. The per-
formance of an algorithm is measured by recall desribed in 2.2.1.

After detecting obvious dependencies between hyper-parameters and al-
gorithm performance, a selected subset of hyper-parameters is fixed or set to
an appropriate range and remaining hyper-parameters are tuned according to
GP or RS. Algorithm 4 is an overview of the process.

input : D (dataset), A (recommendation algorithm),O (either GP or
RS), RS (Random Search), H (space of A hyper-parameters)

1 res ←{};
2 for i to N do
3 θ ← selecthyper-parameters(RS, A, H);
4 model ← train(A, θ , Dtrain);
5 res ← eval(model,Dtest);
6 end
7 H ← adjust(H, eval(res));
8 res ← {};
9 for i to M do

10 θ ← selecthyper-parameters(O, A, H);
11 model ← train(A, θ , Dtrain);
12 res ← eval(model, Dtest);
13 end
14 eval(res);

Algorithm 4: Evaluation procedure

Further, due to strong relationship between MF and CDL, second approach
has been designed. CDL and MF have broad intersection of hyper-parameters.
Therefore, one can try to leverage the knowledge gained from MF optimiza-
tion and set CDL hyper-parameters to the same values as associated hyper-
parameters of the optimal MF model. Algorithm 5 shows an overview of the
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process.
input : D (dataset), A (CDL algorithm), O (either GP or RS), HMF

(MF optimal hyper-parameters), HCDL (space of CDL
hyper-parameters)

1 HCDL ← adjust(HCDL, HMF );
2 res ← {};
3 for i to M do
4 θ ← selecthyper-parameters(O, A, HCDL);
5 model ← train(A, θ , Dtrain);
6 res ← eval(model, Dtest);
7 end
8 eval(res);

Algorithm 5: Evaluation procedure
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Chapter 3
Realization

Within the scope of this thesis, a dataset preprocessing pipeline, a recom-
mender algorithm evaluation pipeline, a hyper-parameter fine-tuning pipeline
and two algorithms have been implemented. During implementation, we have
focused on scalability and a potential possibility to deploy particular algorithm
as a component of the real-world hybrid recommender system.

3.1 Programming Language

The whole system is written in Python focusing on easy extensibility and
editability. The main reason for choosing Python as a programming language
is that it enables fast prototyping of an idea [30]. Also, Python contains an
enormous amount of machine learning libraries.

3.2 Library Usage

Following libraries has been used in this work.

• NumPy 1 – NumPy is a fundamental package for scientific computing
with Python.

• PyTorch 2 – PyTorch is a popular deep learning framework with pythonic
syntax.

• Spark 3 – Apache Spark is a powerful open source processing engine
built around speed, ease of use, and sophisticated analytics 4.

1http://www.numpy.org/
2http://pytorch.org/
3http://spark.apache.org/docs/2.1.0/api/python/pyspark.html
4https://databricks.com/spark/about
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• Scikit-optimize 5 – Scikit-optimize (skopt) is a simple and efficient library
to minimize (very) expensive and noisy black-box functions.

• Scikit-learn 6 – Scikit-learn provides simple and efficient tools for data
mining and data analysis.

• Matplotlib 7 – Matplotlib is a Python 2D plotting library which pro-
duces publication quality figures in a variety of hardcopy formats and
interactive environments across platforms.

• Pandas 8 – Pandas is an open source library providing high-performance,
easy-to-use data structures and data analysis tools for the Python pro-
gramming language.

• Majka 9 – Majka is a free morphological analyzer. Majka includes
databases for Czech, Slovak, Polish, Swedish, German, French, Italian,
English, Portuguese and others.

• TensorFlow 10 – TensorFlow is mainly designed for deep neural network
models.

• Jupyter 11 – Jupyter Notebook is an open-source web application that
allows create and share documents that contain live code, equations,
visualizations and narrative text.

3.3 Implementation

The diagram 3.1 provides an overview of the whole system, each component
is then described in following sections.

3.3.1 Data Access

nonpublic datasets (described in 4.1) were provided in the PostgreSQL database.
The Spark Python API (PySpark) 12 was used to connect to the database and
basic filtering operations. The main advantage of this approach is that PyS-
park allows multicore data processing. After data loading and basic filtering,
PySpark data structures have been transformated to Pandas data structure
for easier manipulation.

5https://scikit-optimize.github.io/
6http://scikit-learn.org/stable/
7https://matplotlib.org/
8https://pandas.pydata.org/
9https://nlp.fi.muni.cz/czech-morphology-analyser/

10https://www.tensorflow.org/get˙started/
11http://jupyter.org/
12http://spark.apache.org/docs/2.1.0/api/python/pyspark.html

26



3.3. Implementation

Figure 3.1: System Overview

3.3.2 Data Preprocessing

Despite the fact that this work has focused on minimizing the need to incorpo-
rate data analysis and the expertise of datasets owners, some pre-processing
of datasets has been required. At the end of preprocessing serialized data has
been stored in disk.

3.3.2.1 Numeric Data Preprocessing

Numerical columns have been transformed according to the formula 3.1, where
c indicated column, vc

i original value in row of column c, µ̂c is mean and σ̂c is
standard deviation of values in particular column and v̂c

i transformated value
vc

i .

v̂c
i ←

vc
i − µ̂c

σ̂c
(3.1)

3.3.2.2 Categorical Data Preprocessing

Rows with categorical data (e.g. tags, categories) have been simply split by
appropriate separator.

3.3.2.3 Text Preprocessing

In cases, when columns contain text in natural language, for instance, news
article description or title, a lemmatizer has been used. In the scope of this
work, datasets suitable for this type of processing have been only in the Czech
language. The data processing steps for each row have been as follows:
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• removing punctuation,

• removing stopwords (the lists of Czech stopwords 13 and 14),

• collecting the first lemma suggested by Majka,

• chaining collected lemmas.

3.3.2.4 Image Preprocessing

For image preprocessing has been used script available in GitHub 15. The
script is a wrapper for feature extraction in TensorFlow. It offers well known
pre-trained models on ImageNet 16. From offered models, the Inception v4
has been selected cause reported high performance compared to other mod-
els. Further, the script allows choosing the extraction layer that returns the
resulting embeddings. The Logits layer has been chosen.

Because the datasets do not contain images but only links to images, the
first step has been downloading images to disk and then using the script for
feature extraction mentioned above. To summarize, whole procedure has been
looked as follows:

• collecting all links to images,

• using the linux command wget to download images to disk,

• using the script to extract features from images.

After image feature extraction, each one has been described as vector of size
1001 with real numbers.

3.3.2.5 Leveraging Preprocessed Data

After data has been preprocessed, categorical columns and lemmatized text
data have been chained and transformed to a vector with parameterizable size
by function HashingVectorizer 17.

HashingVectorizer function turns a collection of text documents into a
matrix holding token occurrence counts (or binary occurrence information).
It allows normalizing token frequencies, either l1 norm or projected on the
euclidean unit sphere. The HashingVectorizer implementation leverages the
hashing trick to find the token string name to feature integer index mapping.

Hashed data has been then chained with numerical columns. This ap-
proach is universal and it is possible to replicate on an arbitrary dataset.

13https://github.com/stopwords-iso/stopwords-cs
14https://github.com/crodas/TextRank/blob/master/lib/TextRank/Stopword/czech-

stopwords.txt
15https://github.com/tomrunia/TF˙FeatureExtraction
16https://github.com/tensorflow/models/tree/master/research/slim#pre-trained-

models
17http://scikit-learn.org/stable/modules/generated/sklearn.feature˙extraction.text.HashingVectorizer.html
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3.3.3 Algorithms

The following sections describe implementation details of chosen algorithms
and bring some insight to implementation scalability. Simply put, the imple-
mentation of Collaborative Deep Learning uses the implementation of MF.
Therefore MF results also apply to the MF component of CDL.

3.3.3.1 Matrix Factorization

As noted in the section 2.1.1, Weighted Alternative Least Squares approach
with solving a normal equation has been used. This approach has one im-
mediately visible advantage and one disadvantage. Because calculation of a
user latent vector is independent to other users (same for items), calculations
are easy to parallelize. This property is leveraged, for example, by the ML-
lib library (Apache Spark) 18. On the other hand, solving a system of linear
equations is asymptotically cubic for a solver used in this work19.

The reason, why the official implementation has not been used, is that
original version 20 is implemented in C++ and MATLAB, therefore, it would
be hard and expensive to incorporate it into the current hybrid recommender
system. Further, due to a sequential implementation of simplified version 21,
this version is not scalable and it is not feasible to use it for huge datasets.

3.3.3.1.1 Computation Parallelization Due to the global interpreter
locker (GIL) 22, it is not feasible to use a thread-level parallelization for com-
putations speed up. Therefore, Python package multiprocessing has been used
23 for a process-level parallelization. It allows distributing calculations of user
and item latent representations to multiple processes.

A new artifical dataset has been generated for measurements. The dataset
contains approximately 1 million users, 100 thousand items and 10 millions
interactions. Each measured parametrization has been repeated three times
and reported best achieved wall time. For measurement, standard IPython
function timeit 24 has been used. The calculations were run on a machine
with 6 physical cores and 6 logical cores. More details are in appendix A.1.2.

Fig. 3.2 shows speed up with respect to the number of processes. On
the x-axis is number of processes used to compute latent representations and
on the y-axis is duration in minutes. One can see, that duration decreases
according to a number of physical cores. After the number of physical cores is
exceeded, the time consumed by computation stays approximately the same.

18https://spark.apache.org/docs/2.2.1/mllib-collaborative-filtering.html
19http://www.netlib.org/lapack/lug/node71.html
20https://github.com/js05212/CDL
21https://github.com/js05212/MXNet-for-CDL
22https://wiki.python.org/moin/GlobalInterpreterLock
23https://docs.python.org/3.6/library/multiprocessing.html
24http://ipython.readthedocs.io/en/stable/interactive/magics.html
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Figure 3.2: Scalability: number of processes

3.3.3.1.2 Data Structures To leverage process-level parallelization, it
has been necessary to choose an appropriate data structure for storing la-
tent representations of users and items. For this purpose has been chosen a
data structure multiprocessing.Array, which is offered by the same package as
process-level parallelization. This structure allows to share memory between
processes.

Furthermore, it has been shown it is very important to choose the right
data structure for quick access to user and item data. Therefore, a new data
structure has been implemented, which is fit to the MF implementation in
this work. It is allows by fast indexing in Python list data structure access
to data. One disadvantage is that for users and items, the structures have
to be created separately, so it claims twice as much memory, but on present
hardware, this is not restrictive.

3.3.3.1.3 Latent Representation Calculation For linear algebraic op-
erations necessary for computation latent representations, the package NumPy
has been used. To get maximal performance, disabling multithreading support
in NumPy package has been necessary.

In the Figure 3.3 one can see a relation between the size of latent repre-
sentation and the duration of calculation. As before, each measurement has
been repeated three times and reported the best-achieved wall time. One
can see exponentially increasing duration with respect to the size of latent
representation.
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Figure 3.3: Scalability: size of latent representation

3.3.3.2 Deep Collaborative Filtering

As noted before, one component of CDL is the adjusted MF implementation.
This modification does not change the complexity of MF implementation.
Therefore in the following part, we will focus more on an Autoencoder com-
ponent.

3.3.3.2.1 Matrix Factorization and Autoencoder linking A whole
model has been designed using the framework PyTorch. The framework be-
haves as a common Python package. Hence, connection to MF component
has been comfortable. Effectively, both models are in the same Python script
and share same variables.

3.3.3.2.2 Autoencoder Architecture The Autoencoder architecture fol-
lows the CDL author’s suggestions in his article [27] and in his code accessible
on GitHub 25. Generally, it consists of a various number of layers, with ReLu
or originally sigmoid activation functions and trained by stochastic gradient
descent with momentum or by ADAM optimizer.

In contrast with original article, an input and output layer is fed by a
vectorized preprocessed auxiliary information as described in the previous
part 3.3.2.5, not by bag of words.

3.3.3.2.3 Scalability Comparison The implementation suggested in this
work contains process-level parallelization of computation MF component

25https://github.com/js05212/MXNet-for-CDL/blob/master/collaborative-dl.ipynb
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Figure 3.4: Scalability: original simplified CDL (loosely dashed) and proposed
CDL (solid) implemenation

compared to the proposed implementation of the author of CDL. The Fig-
ure 3.4 shows comparison of these two implementations. For the compari-
son, dataset CiteULike has been used, and models have beet set to the same
hyper-parameters. The x-axis shows number of processes and the y-axis shows
duration.

3.3.4 Algorithm Performance Evaluation

Due to the significant number of models that have to be evaluated during
hyper-parameter optimization, it is necessary to have a fast evaluation. Be-
cause the chosen measures allow to evaluate each user separately, similarly to
3.3.3.1.1, process-level parallelization has been used for reduction of evaluation
time.

3.3.5 Fine-tuning pipeline

Ready-to-use optimizers from the package scikit-optimizer have been used
in a fine-tuning pipeline. Based on the analysis in section 1.3, a Bayesian
optimization using Gaussian Processes (function gp minimize) and a random
search by uniform sampling (function dummy minimize) have been selected.

The entire fine-tuning environment has been implemented in Jupyter Note-
book. The code in Jupyter Notebooks is separated into cells, each cell can
be run repeatedly and in any order, while variables are shared among cells,
moreover it enable to render charts directly in the IDE, all these features make
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Jupyter Notebook an ideal tool for comfortable hyper-parameters tuning, re-
sponding to results and reporting them.

The whole fine-tuning procedure can be described by following steps:

• loading data from disk,

• setting searching space of hyper-parameters,

• running optimizer,

• storing results to disk,

• loading results,

• results analysis.
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Chapter 4
Experiments

Experiments are conducted on one public dataset and two nonpublic datasets
from different domains. The goal of the experiments is to compare two hyper-
optimization technique and also compare two algorithms quantitatively.

4.1 Datasets

Within the scope of this work, three datasets from a different real-world do-
mains for experiments were chosen. The first CiteULike has been used in [27]
for evaluation CDL performance and it is available from 26. CiteULike allows
users to create their own collections of articles. There are abstract, title, and
tags for each article. It contains 5551 users, 16980 items and 49960 interac-
tions. The remaining three datasets are not public and have been provided
by the company Recombee 27.

One of nonpublic datasets, henceforth Fashion, contains data about user-
item interactions as detail views, purchases, bookmarks and items description
as a price, categories, a brand, a title, a link to an image. Fashion dataset
contains ca. 100 000 items, 8 million users, 30 millions of items detail views
and about 2 million purchases.

The last dataset comes from news webpage, henceforth News. Besides
user-item interactions it contains article features such as a title, tags, and
authors of articles. It contains about 450 000 articles, 100 million users and
600 million interactions.

4.2 Evaluation Scheme

Due to the size of nonpublic datasets and vast amount of experiments during
fine-tuning, each dataset has been subsampled to approximately 25 000 users.

26http://www.wanghao.in/CDL.htm
27https://www.recombee.com/
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4. Experiments

Further, users in each dataset have been randomly divided into two non-
overlapping subsets (90 % training, 10 % testing), see 2.2.2. The training set
consists of 90 % of users with all their interactions. The testing set consist of
the remaining 10 % users. Items that are not in the training set are removed
from the testing set. For each user in the testing set, we hide an item in his
history, the remaining items are used to calculate user’s latent representation.
The latent representation is used to calculate personalized recommendations.
We repeat this procedure N times. Furthermore we record list of top K
recommended items and if the hidden item appears in it. The number of
successful trials divided by min(K , #user′s interactions − 1) (see 2.5) is
value of user’s recall. N recorded lists are used to calculate coverage according
to 2.6. K and N have been set to 10 during evaluation.

4.3 Experimental Settings

At first, the original simplified CDL implementation (osCDL) has been eval-
uated and compared to CDL implementation proposed in this thesis (nCDL).
For this purpose, the dataset CiteUlike has been used. Other evaluations
have been done on datasets CiteULike, Fashion and News with proposed im-
plementation 2.1.2. The Fashion dataset has been evaluated in two variants of
auxiliary information. First, the text features have been leveraged and later
image embeddings. The optimization algorithms have been set to the default
settigns except number of calls and for GP the acquisition function has been
set to EIs. In this setting, GP takes into account the function compute time
and expected improvement. According to 2.2.2, suitable hyper-parameters for
fine-tuning have been identified for MF and CDL. This has been done based
on first optimization procedure by random search algorithm. The MF suitable
hyper-parameters are:

• size of latent representation,

• regularization,

• weight of observed ratings,

• activation of user and item bias term,

• score computation method.

An ideal number of iterations has oscillated around number 15. Because the
time complexity grows cubicly with the size of latent representation, the size
has been fixed to 80 for further experiments. The Figure 4.3 shows relation
between size of latent representation and recall-coverage curves.

The CDL hyper-parameters suitable for fine-tuning are:

• λv and λn controlling reconstruction errors,
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4.4. Quantitative Comparison
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Figure 4.1: Coverage-Recall curve

• dropout,

• learning rate.

The hyper-parameters related to MF has not been listed for brevity. Size of
mini-batches and input content vector have been derived from first random
search such as number of iterations, which has been set to 60.

4.4 Quantitative Comparison

This part covers the quantitative comparison. First we compare original CDL
implementation and proposed implementation. Then, the ability of optimiza-
tion algorithms find optimal or suboptimal hyper-parameter settings of target
algorithm. The last part is devoted to comparison MF and CDL accuracy,
coverage and time complexity of training.

4.4.1 Implementation Accuracy Comparison

Figure 4.2 shows comparation osCDL, nCDL, osCDL’s MF component and
nCDL’s MF component accuracy. For clarity, nMF component has been mod-
ified to mimic original MF component. Hyper-parameters CDLs has been set
according to 28. MF components have started with the same random seed. As
one can see, MF components have exactly the same results, however nCDL
with the same hyper-parameters as osCDL is worse. Despite doing my best, I

28https://github.com/js05212/MXNet-for-CDL/blob/master/collaborative-dl.ipynb
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Figure 4.2: Accuracy: comparison between osCDL and nCDL

could not get closer to implementation osCDL. The osCDL is based on mxnet
framework 29, whereas nCDL on PyTorch. These two frameworks do not have
exact intersect of features and I believe, as results of MF components sug-
gest, that difference between the performance of both models is caused by the
fact, that nCDL autocoencoder does not exactly imitate osCDL Autoencoder
implementation, mainly optimization procedure. However, as further results
show, with different hyper-parameters, nCDL is able to beat nMF. Further,
interestingly, the osMF models have beaten the osCDL models on almost
same dataset (except excluded users for testing set) and measure, where the
authors presented significant better performance then other models (MF was
not included in this evaluation).

4.4.2 Optimization Algorithm Convergence and Algorithms
Accuracy

According to results mentioned in 2.2 both RS and GP are able to find sim-
ilarly performance suboptimal hyperparameters after similar numbers of op-
timization steps. Also in almost all datasets MF algorithm shows better ac-
curacy and beats more complex model, which has a capability of leverage
auxiliary information. Further, CDL needs approximately five times more
iterations than MF to achieve similar results.

29https://mxnet.apache.org/
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Figure 4.5: News MF convergence: RS vs. GP
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Conclusion

Within the scope of this thesis we covered several scalable traditional and
deep learning based recommendation algorithms. We gave a brief overview of
recommendation and hyper-parameter optimization techniques.

Further, two algorithms have been implemented, namely Matrix Factor-
ization and Collaborative Deep Learning. Both implementations incorporate
process-level parallelization and are thus well scalable.

For evaluation and fine-tuning of hyperparameters, the optimization pipeline
has been proposed and implemented. The random search and gaussian process
have been leveraged for the purpose of hyper-parameter tuning.

Three datasets have been used for evaluation of the algorithms and the
whole pipeline. One public dataset and two unpublic datasets. The exper-
iments show, that fine-tuning pipeline is capable tune hyper-parameters of
the algorithms,while performance of both optimizers is very similar. In the
end, surprising results the comparison of two recommendation algorithms has
shown. More complex model Collaborative Deep Learning with an incorpo-
ration of auxiliary information has not been able to significantly beat simple
Matrix Factorization.
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Appendix A
Appendix

A.1 Measurements

A.1.1 Machine

• 6 physical + 6 logical core Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz

• 252 GB RAM

• OS Linux dev02 4.9.0-4-amd64 #1 SMP Debian 4.9.51-1 (2017-09-28)
x86 64 GNU/Linux

• Python 3.6

• NumPy 1.13.0

A.1.2 Measurement of relationship between number of
processes and time

A.1.2.1 Matrix Factorization parametrization

• size of latent representation: 50

• alpha: 100

• regularization: 0.03

• number of iterations: 2

• bias: no

• normed: no
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A.1.3 Measurement of relationship between size of latent
representation and time

A.1.3.1 Matrix Factorization parametrization

• alpha: 100

• regularization: 0.03

• number of iterations: 2

• bias: no

• normed: no

• number of iteration: 1

A.1.3.2 Performance Comparison

• alpha: 1

• beta: 0.01

• optimizer: sgd

• learning rate: 0.1

• decay: 0

• momentum: 0.9

• dropout: 0.2

• size of lantent representation: 50

• size of auxiliary information embedding: 8 000

• number of iterations: 17

• regularization users: 1

• regularization items: 10
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Appendix B
Acronyms

CDL Collaborative Deep Learning

MF Matrix Factorization

GRU Gated Recurrent Unit

LSTM Long short-term memory

CF Collaborative filtering

ALS Alternating Least Squares

SGD Stochastic Gradient Descent

FM Factorization Machines

53





Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

DP_Drdák_Jakub_2018.pdf............the thesis text in PDF format
DP_Drdák_Jakub_2018.ps...............the thesis text in PS format
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