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Instructions

Interpolation between shapes is a common task in geometry processing, fundamentally involving non-trivial
geometric considerations. Aiming towards real-time, robust applications, we investigate how state-of-the-art
methods may be accelerated and made robust with the introduction of multi-level methods and modern
parallel and hybrid computer architectures.
1. Get familiar with the sub-field of shape interpolation within the field of geometry processing.
2. In C/C++, implement a variant of a shape-interpolation method from the literature and assess its
performance.
3. Produce a prototype interactive application relying on this implementation.
4. Implement a multi-level extension of the method and assess its performance in terms of
   a) scalability of time to solution for a family of relevant interpolation problems,
   b) robustness to mesh complexity.
5. Implement one of the computational kernels for execution on a GPU.
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Abstrakt

Tato práce zkoumá téma interpolace tvar̊u. Zahrnuje úvod do souvisej́ıćıch
témat - numerických metod, paralelńıch výpočt̊u & CUDA. Práce obsahuje
implementaci jednoho z algoritmt̊u pro interpolaci tvar̊u s v́ıceúrovňovým
rozš́ı̌reńım včetně implementace v CUDA.

Kĺıčová slova Interpolace tvar̊u, paralelńı výpočty, CUDA, Grafika, Výpočetńı
geometrie, Numerické metody, Śı̌t

Abstract

This work examines the problem of shape interpolation. It contains an over-
view of related topics - numerical methods, parallel computing & CUDA. It
provides an implementation of an shape interpolation algorithm with multi-
level extension including an implementation in CUDA.

Keywords Shape Interpolation, Parallel computing, CUDA, Graphics, Com-
putational Geometry, Numerical Methods, Mesh
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Chapter 1
Introduction

With the rapid progress during last few decades in the area of computer hard-
ware, devices with high computational power have become widespread and
hand in hand with that goes an increased demand for visually appealing graph-
ics, including 3D graphics. In such area, objects are commonly represented as
a set of polygons, formed by a connected network of points, forming a mesh.
Despite the exponential (as it has been predicted by Moore and his law [1])
growth of performance efficient algorithms are still required. Shape interpol-
ation is a problem where a sequence of shapes - represented as meshes - is
given and intermediate ones are desired to obtain.

1.1 Motivation

For a long time there has been an exponential growth of performance where
frequency increase has played a major role. However, with the exponential
growth of frequency the power consumption grew in similar manner. The
unsuccessful NetBurst architecture of INTEL showed us that forever going
frequency increase is not an option and during the last decade we could ob-
serve a stall in the frequencies of CPUs [2]. This phenomenon has led to a
paradigm shift in the area of computing. The limitation set by the infeasible
frequency cap has been overcome by supplying multiple computational cores,
allowing multiple things to be computed at the same time. Intel reported that
lowering a frequency of a core by 20 percent saved about 50 percent of the
energy. The aspect of power consumption is empathised in HPC, where the
power required to run such computer can be over years higher than the com-
puter itself [3] and also in the area of mobile computing, where power supply
is limited.

But having a different paradigm at the side of hardware requires a similar
change in the software that is run on such architecture. In last decade GP-
GPU computing has become a popular option - using GPU as a highly par-
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1. Introduction

allel SIMD device [4]. CPUs are designed in a way to have low latency and
for execution of various code due to which a significant area of the CPU is
designated for control flow (branch prediction) and caching. GPUs used for
GPGPU computing do not have sophisticated caching and branch prediction,
but rather high number of computational units, due to which they provide
high throughput with higher delay, making them optimal for homogeneous
computation - where one instruction is applied on multiple data (also called
single instruction multiple data - SIMD). The different architecture requires
problems of interests to be formulated in different, parallel manner. Parallel
and scalable algorithms are of interest.

1.2 Application - Use cases

Application domain of shape interpolation includes various areas. Starting
with cinematography, where designer animates a character. He or she then
can model just several poses in a second and then rely on a shape interpolation
to model the rest. In such scenario a robustness of the algorithm might be the
primary concern over a computational speed or power to performance ration.
On the other side are mobile devices, which are restricted in term of power
supply and for which power efficiency is of a great importance. A virtual
reality game can receive information about position of other players and their
body parts and interpolate the received information for smoother effect. A
more general mesh interpolation for meshes with different connectivity can be
used in graphics for interesting animation of object transformation.
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Chapter 2
Analysis

2.1 Problem description

Shape interpolation is a problem where given two meshes (or possibly more) we
want to obtain a series of intermediate meshes that best represent the move-
ment or transformation from one to another. In fact the shape interpolation
problem consists of 2 parts - vertex correspondence problem, where we need
mark which vertices correspond to each other between the two given meshes
(we can also interpolate between two same meshes), which can be done in a
user assisted manner or automatically. Second problem is vertex path problem
- computing the location of the vertices of the intermediate shapes.

For shapes that are under the effect of translation, scale or shear a simple
linear interpolation can be used, however such approach might lead to a shape
distortion for rotation due to its non-Euclidian nature. As shown on figure 2.1
a linear interpolation for rotating object will result in shrinkage of the object,
which is not desired 1. For shape interpolation algorithms we are interested
how well the algorithm interpolates - how an object is distorted, how a human
would perceive such shapes as natural - but also the computational speed. In
the movie industry a high quality solution is desired, but in the case of mobile
computing a real-time interpolation is desired despite its worse quality. There
is a trade-off between the quality and processing time or number of shapes
interpolated per second.

1Mesh on the picture has been created by Martin Kilian and is available on http:
//graphics.stanford.edu/˜niloy/research/shape_space/shape_space_sig_07.html
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2. Analysis

Figure 2.1: Mesh deformation caused by linear interpolation on rotating object

2.2 Related and previous work

The shape interpolation problem is quite flexible in term of possible way how
to approach it and get the desired outcome. Marras et al.[5] do not treat the
shape as a single object, but decompose the shape into rigid parts that do
not require special treatement and are interpolate lineary and joints, that are
then an object of non-linear, edge-based interpolation in order to speed up
the interpolation computation. Alexa et al.[6] percieve the mesh interpola-
tion of the volume, the interior of the object rather than its boundary and
try to identify local affine transformations. Robert W. Sumner and Jovan
Popović[7] interpolate a shape by a deformation transfer from another, se-
mantically correspondent shape. T Winkler et al.[8] present an approach that
lineary interpolates the intrinsic properties of the mesh (edge lengths and
dihedral angles), but also consider the interpolation between more than 2
shapes and extrapolation. Martin Kilian et al. [9] introduce a Riemannian
geometry based framework that works in the space of isometric deformations.
Stefan Fröhlich and Mario Botsch[10] focus on combining the physics-based
and example-driven techniques.

2.3 Energy function

For the purpose of shape interpolation it is useful to have a metric of how
much the interpolated shape has been distorted. Such function can be called
an energy function and will be denoted E.

E : P → R

It takes the whole serie of interpolated meshes and produces a single num-
ber - energy, an indicator of the distortion. For the given metric we are trying
to find a series of shapes that minimises the energy.
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2.4. GPGPU Computing

2.4 GPGPU Computing

The evolution of computer hardware does not bring only increased frequen-
cies and higher density of transistors, but also architectural shifts and new
concepts. In the past all the computation in the computer was done by CPU
and possibly its specialised coprocessors. With the shift from text interface
to graphical interfaces more performance was needed for operations related to
graphics and specialised unit dedicated to graphics has emerged. Both CPU
and GPU serve different purposes and therefore differ significantly in their
architectures and design.

The CPU is a general-purpose processing unit, that executes arbitrary code.
It is designed for execution of serial code and it tries to minimize or hide
delays that an execution of code could cause - as this would efficiently make
the process to stall and finish later. Due to that modern CPUs have hierarchy
of cache memories, branch prediction, speculative execution, out-of-order exe-
cution. The ratio of cache memory and circuits to ALUs is much higher than
for GPU.

Contrary to CPU, GPU is designed to process 3D graphics, which includes
a lot of computation that can be done in parallel. An example might be a
rotation of an object, which can be expressed as vector-matrix multiplications.
Due to the nature of such computations GPUs are equipped with a lot of small
and simple processing units. They are mainly focused on throughput. The
difference can be understood when inspecting the number of cores. Intel Core
i7-8700K has 6 cores, where NVIDIA GTX 1080 has 2560 cores. These cores
are not comparable, as they differ significantly in complexity and capabilities.

Nowadays it is possible to utilise GPU not only to render graphics, but also
to run user code. NVIDIA has it proprietary platform CUDA, another wide-
spread possibility is OpenCL, which is contrary to NVIDIA’s CUDA available
on other platforms too. In the past it was necessary to model calculation to
OpenGL or DirectX calls as explained in [11]. The reason why we do not use
GPUs with huge performance (88731 GFLOPS for NVIDIA GTX 1080 2) is
that in order to exploit its theoretical peak performance we need to express
our problem in parallel manner, which is completely different concept than
writing code in the traditional, sequential fashion. Moreover, not all problems
can be computed in parallel as their nature is sequential. NVIDIA CUDA,
which is used in this work, is an extension to C++. It takes special functions
(kernels) marked with special keyword global , that is then run by every
instantiated core. This concept is called SIMD - Single Instruction, Multiple

2NVIDIA specifications - https://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
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2. Analysis

Data. Such concept is also applied to CPUs - instructions sets such as SEE
(Intel) or 3DNow! (AMD) can perform an operation on multiple registers, but
at much smaller scale.

g l o b a l
void vecAddKernel (double ∗ inputA , double ∗ inputb ,

double ∗output , int count ){
int idx = blockIdx . x∗blockDim . x + threadIdx . x ;

i f ( idx < count )
c [ idx ] = a [ idx ] + b [ idx ] ;

}

void vecAddGPU(double ∗h inputA , double ∗h inputb ,
double ∗h output , int count ){

double ∗d inputA ;
double ∗d inputB ;
double ∗d output ;

s i z e t arrayByteS ize = count∗ s izeof (double ) ;

// A l l o c a t e memory on the d e v i c e (GPU)
cudaMalloc(&d inputA , a r r ayS i z e ) ;
cudaMalloc(&d inputB , a r r ayS i z e ) ;
cudaMalloc(&d output , a r r ayS i z e ) ;

//Copy input to the d e v i c e (GPU)
cudaMemcpy( d inputA , h inputA , arrayByteSize ,

cudaMemcpyHostToDevice ) ;
cudaMemcpy( d inputB , h inputB , arrayByteSize ,

cudaMemcpyHostToDevice ) ;

int b lo ckS i z e = 1024 ;
int g r i d S i z e = g r i d S i z e = ( count−1)/ b l o ckS i z e +1;

//Run the k e r n e l
vecAddKernel<<<g r idS i z e , b lockS ize>>>(d inputA ,

d inputB , d output , count ) ;

//Copy r e s u l t back to h os t
cudaMemcpy( h output , d output , arrayByteSize ,

cudaMemcpyDeviceToHost ) ;

// Free a l o c a t e d memory on the d e v i c e (GPU)

6



2.5. Implemented method

cudaFree ( d a ) ;
cudaFree ( d b ) ;
cudaFree ( d c ) ;

}
Listing 2.1: Vector addition CUDA example

The code snippet listing 2.1 shows a simple example of vector (1D arrays)
addition executed on GPU. Each thread will execute the same function (vec-
AddKernel). What differ is the data that is accessed based on the index that
is calculated from the thread and block ID. By using these each thread can
access different data. Contrary to conventional paralellism on CPUs, where
we can run multiple threads with different code, here we are restricted to the
same code (function), at least for one kernel call. We can surely overcome
this by an if statement, however this is not the proper usage of the CUDA
paradigm. Threads are grouped to warps (details are omited) and when an if
statement result in different paths to be taken by threads in the same group
(warp), a code divergence will occur. This effectivelly makes the two diver-
gent sets of threads be executed sequentialy rather than at the same time.
Therefore, thread divergence shall be avoided wherever possible. NVIDIA,
as an author with a commercial interest in the adoption of the technology,
provides documentation and guides, where details about the CUDA architec-
ture, including memory hierarchy, blocks, warps, memory synchronisation and
compute capability are explained[12].

Another approach that can be taken is an adoption of higher-level librar-
ies such as Thrust that allows a develop to abstract from the details of GPU
programming and use STL-like looking parallel datastructures and algorithms
(including sorting and reduction) without writing any kernel function.3

2.5 Implemented method

In this work I take a variation of method Kilian et al.[9] proposed. They define
the metric for a mesh in the following way:

E(P ) :=
n∑
i=0

(〈〈Xi, Xi〉〉Pi + 〈〈Xi, Xi〉〉Pi+1) (2.1)

Given the following definitions of the riemannian metric,

〈〈X,Y 〉〉M,λ := 〈〈X,Y 〉〉M + λ〈〈X,Y 〉〉L2
M (2.2)

the regularisation term,

〈〈X,Y 〉〉L2
M :=

∑
p∈M
〈XP , YP 〉AP (2.3)

3NVIDIA’s developer website about the Thrust library - https://
developer.nvidia.com/thrust
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2. Analysis

the semi Riemannian part of the metric (as isometric as possible),

〈〈X,Y 〉〉IM :=
∑

(p,q)∈M
〈Xp −Xq, p− q〉〈Yp − Yq, p− q〉 (2.4)

we got an equation:

E(P ) :=
n∑
i=0

(
∑

(p,q)∈Pi

〈Xp −Xq, p− q〉2 + λ
∑
p∈Pi

〈XP , XP 〉AP+

∑
(p,q)∈Pi+1

〈Xp −Xq, p− q〉2 + λ
∑

p∈Pi+1

〈Xp, Xp〉AP )
(2.5)

The purpose of creating a metric is not only to define how the meshes are
distorted in the interpolation problem, but also to be able to minimise it and
make the resulting interpolated shapes as least deformed as possible (and the
definition of distorted is given by the metric).

For the minimisation (optimisation) we will use an iterative method (im-
proving the solution with every step), which will operate with the derivative
of the metric.

The advantage of this metric is that it consists of a lot of summations,
for which can use the derivative sum rule - that a derivative of sum is sum
of derivatives. Meshes P0 and Pn are the input meshes and their positions
are fixed - we are looking only for the positions for the poses in between.
Therefore for the gradient calculation we can drop the gradient assigned to
these 2 meshes.

After expanding all sums in the equations, it is possible to determine that
a gradient of a mesh is determined only by itself and its neighbouring meshes.
To determine the derivative of mesh Pi we can drop all terms that do not
contain vertices from the mesh (as their derivative is zero). We get:

E(x)
∂xi

= (〈〈Xi−1, Xi−1〉〉Pi +〈〈Xi, Xi〉〉Pi +〈〈Xi, Xi〉〉Pi+1 +〈〈Xi+1, Xi+1〉〉Pi+1)′

(2.6)
We can expand further to get:

E(x)
∂xi

=
∑

(v,q)∈Pi−1

〈Xp −Xq, p− q〉2 + λ
∑

p∈Pi−1

〈XP , XP 〉AP+

∑
(p,q)∈Pi

〈Xp −Xq, p− q〉2 + λ
∑
p∈Pi

〈XP , XP 〉AP+

∑
(p,q)∈Pi

〈Xp −Xq, p− q〉2 + λ
∑
p∈Pi

〈XP , XP 〉AP+

∑
(p,q)∈Pi+1

〈Xp −Xq, p− q〉2 + λ
∑

p∈Pi+1

〈Xp, Xp〉AP

(2.7)
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2.6. Multilevel approach

2.5.1 Minimisation method

We now have defined a metric - a function that that takes a series of meshes
and gives a real number that denotes a level of deformation. We also have a
way to compute the gradient (partial derivative for every vertex). Now wan
use these in an iterative method that, in steps, modify the mesh in a way
that its energy decreases. A simple iterative optimisation method is gradient
descent. It is simple and requires only the function and its gradient, but the
cost is slow rate of convergence. It works with an idea to take a direction in
which a function decreases the most and make a step in this way:

Xn+1 = Xn − γ∇f(x)

In this equation γ represents a step size. It can be set in advance (it is
guaranteed that there exist enoug small γ that the method converges) or we
can adjust it as we iterate - lower the step until Xn < Xn − gamma∇f(x).

More sophisticated method is Netwon’s method. It works with Hessian
matrix, which is a matrix of second-order partial derivatives. It has faster rate
of convergence, but it requires more and it need more computation to apply
the Hessian matrix. For such purpose quasi-Newton’s method might come in
use. Such method do not use Hessian matrix directly but only approximate
it in some way. An example of a quasi-Newton’s method is BFGS [13].

2.6 Multilevel approach

Multilevel approach in the problem of shape interpolation is utilised with the
intention of speeding the computation up. It is built on the principle that ver-
tex positions are not random or independent, instead being quite the contrary
- highly dependent on each other, especially on the adjascent vertices. We can
exploit such relation and create a simplified mesh that will omit some vertices
or merge some vertices together. Such mash will be faster to operate with
and later we can add the vertices back, estimating their positions relatively
to their neighbours.

Let’s demonstrate this approach on example. The figure 2.2 shows a pose
of a simple 2D mesh, which has 9 vertices (A-I) and 8 faces. Second image
shows a simplified version of the same mesh. It consists of only 4 vertices
and 2 faces. We can then modify the mesh. The third pictures shows the
mesh moved, rotated, scaled and slightly deformed with respect to the first
pose. Fourth picture shows interpolation back to the finer grid and estimates
a location of the vertices that have been added back. We can expect E to be
between A,C,G,I, or D to be between A, G, E and similarly for other vertices.
In fact, we can we can take this further and not make a one simpler mesh,

but rather make a hierarchy of meshes from the original fine mesh to the most
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Figure 2.2: Demonstration of restriction and interpolation on a simple 2D
mesh

simplified coarse one. We then start to work with the coarsest mesh and use
the result as a starting point for the interpolated, finer level. Such interpol-
ated mesh will then require less iterations of optimisation

Such approach is similar to multigrid methods [14] that are used to solve
partial differential equations by applying steps such as:

• Smoothing - applying several iterations of an iterative optimisation method
to reduce error

• Restriction - Reducing to a coarser grid
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2.6. Multilevel approach

• Interpolation - Interpolating the computed values on a finer grid

In this work a multilevel approach is possible only on uniform meshes with
recurring structure with external information and what vertices do merge. The
paper written by Kilian at el. [9] explain briefly the interpolation step, how
the initial positions of the newly added vertices are set - linear combination of
the relative position to the neighbouring vertices of the corresponding vertices
in the fixed bordering meshes (proportional to distance to these two). How-
ever, this relies heavily on how the mesh simplification (or sometimes called
decimation) is executed, which is not mentioned in their work.
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Chapter 3
Proposed solution

3.1 Scope of work

This thesis contains a codebase that might be divided into 3 parts - Matlab
code, C++ code and a CUDA kernel.

Matlab has been used in this work due to its qualities in quick prototyping,
flexibility and easy visualisations. A first version of the algorithm is imple-
mented in Matlab also with simple gradient descent method as well as with
naive BFGS method [13] (C++ and CUDA part relies on third party librar-
ies). The Matlab code also contains a mesh generator. A function that can
generate a bar-looking mesh with specified attributes including length of the
bar (number of layers or floors), level of details, rotation and curvature. It is
possible to use some of the publicly accessible meshes, but having the option
to generate a mesh (or rather a series of meshes) with desired properties offers
more flexibility. Figure 3.1 shows how such mesh can be generated and re-
spective steps. A validation of the gradient is verified by the finite differences
method, which is also implemented in Matlab.

The C++ part contains interactive graphical application which allows user
to examine the whole process of the interpolation step by step, run simple lin-
ear interpolation to observe the mesh deformation, run the optimisation step
and do time or space refinement.

CUDA kernel is able to perform the mesh interpolation on GPU.

3.2 Used libraries

Several third-party libraries have been used in this work:

• OpenFrameworks [15] - It is relatively easy to use framework for 2D

13



3. Proposed solution

Figure 3.1: Steps in which an example bar mesh is generated

and 3D graphics. It based on OpenGL and free to use (being distributed
under the MIT license). It is written in C++ and it is possible to be
used only in supported IDEs, which makes portability and development
across multiple platforms (e.g. Windows and OS X with Visual Studio
and Xcode respectively) complicated.

• Eigen [16] - C++ library for linear algebra. It is made as templates,
distributed only as header files, does not have any external dependencies
except the standard library and has a strong emphasis on cross-platform
compatibility. Eigen is being widely used across academia as well as
industry. Eigen is being distributed under the MPL2 license.

• CppOptimizationLibrary [17] - C++ library with implementation of

14



3.2. Used libraries

several numerical methods (such as Gradient Descent, Conjugate Gradi-
ent or BFGS) with emphasis on performance and simplicity of usage.
Despite the statement that the Optimisation library is not dependent
on additional dependencies it is built on Eigen, which it uses as for its
type definitions (Matrix, Vector, Infinity).

• CUDA L-BFGS [18] - CUDA implementation of the L-BFGS method.
It runs as a black box - user makes a derived class of the cost function
class, define two methods (the cost function itself and its gradient). Last
update to this library has been done in the year 2012. It is distributed
under CC BY 3.0 license (Creative Commons, Attribution).
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Chapter 4
Implementation

4.1 Implementation details

Derivation validity - It is desired to verify that the equations (derivation) are
correct, otherwise we would not obtain a correct gradient and the minimisation
could not work. For such purpose we compare the derivation (analytic, explicit
formula) with an approximation calculated with the finite difference method.

E(x)
∂xi

= lim
h→0

E(x+ hvi)− E(x)
h

≈ E(x+ εvi)− E(x)
ε

In the equation above vi represents a vector of the same size as x, full of
zeros except the ith position, which is one. ε can be set to square root of a
machine precision.

All the equation used in the gradient generation procedure has been tested by
looking at the difference between analytic gradient and the one obtained by
finite difference method and its result has members smaller than 1e− 7 which
lies below the numerical precision.

4.2 Test methodology and used meshes

Tests are partially run on a local machine and on a cluster of Institute of
Computation Science of Università della Svizzera italiana, more specifically
on a compute node with GPU.

ICS cluster GPU node specifications:

• CPU: 2x Intel E5-2650 v3, 20 (2 x 10) cores

• GPU: NVIDIA GeForce GTX 1080, 2560 CUDA cores

• Memory: 128GB RAM
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4. Implementation

Local Machine specifications:

• CPU: AMD Ryzen 5 1600, 6 cores (12 threads)

• Memory: 32GB RAM

Versions of software, libraries and frameworks used:

• Matlab: R2014b (8.4.0 150421)

• Visual Studio: Community 2015, 14.0.25431.01 Update 3

• OpenFrameworks: 0.9.8 (project for Visual Studio 2015)

• Eigen: 3.3.4

• CUDA L-BFGS: 1.0.3 (commit 7a9f786b23817e3c43bf0cb90ee3cb2978b0d702)

• CppOptimizationLibrary: commit e94e71c1e885ccec8c17500cde5c7a9eb2edb88b

• Nvidia CUDA Compiler (NVCC): 8.0.26

A bar-shaped mesh has been generated for testing purposes with several
levels of refinement with the following properties:

Mesh name Refinement level #vertices #triangles
Testmesh0 0 44 84
Testmesh1 1 170 336
Testmesh2 2 674 1344
Testmesh3 3 2690 5376
Testmesh4 4 10754 21504
Testmesh5 5 43010 86016
Testmesh6 6 172034 344064
Testmesh7 7 688130 1376256

Figure 4.1: Number of vertices and faces for generated test meshes

In Test 1 I compare only time refinement. Testmesh0 is refined 13 times.
Matlab code is also tested as a refference point.

Test 2 is running the complete C++ algorithm. It repeat 3x the following
steps: Smoothing, smoothing, time refinement, space refinement.
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4.3. Test results

4.3 Test results

Test 1 - time refinement:

Step Matlab C++
1 0.0117023 0.00125195
2 0.0174346 0.00319447
3 0.0280488 0.00479267
4 0.0356849 0.00895311
5 0.0639783 0.01635160
6 0.1257640 0.03412160
7 0.2454310 0.06654880
8 0.5263180 0.14157400
9 1.0076800 0.29367100

10 1.9933400 0.58383800
11 4.3546600 1.12278000
12 9.8749600 2.20736000
13 21.440200 4.34765000

Figure 4.2: Test 1, time refinement - measured in seconds

Figure 4.2 shows that growth rate appears to be constant, and that im-
plementation in Matlab is 4-5 times slower, which is expectable due to the
nature of the two languages.

Test 2 - complete algorithm:

Initial Mesh Time
Testmesh3 1.10679
Testmesh4 3.96666
Testmesh5 26.91700

Figure 4.3: Test 2, complete algorithm - measured in seconds

figure 4.3 shows how well the algoritm scale for bigger meshes. It is
important to note that the growth of vertices in the test meshes is exponential
(e.g. Testmesh4 is has 4 times more vertices than Testmesh3).
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Chapter 5
Conclusion

5.1 Evaluation

I presented an implementation of a modern shape interpolation algorithm
including a prototype in Matlab and GPU kernel written in CUDA. I provided
additional matlab code for generation of test meshes and verification of the
implemented gradient calculation. The C++ impelemntation of the algorithm
is wrapped in interactive graphical application which allows user to examine
the method in an easily understood way.

5.2 Encountered problems

In this section I will shortly explain what problems have I encountered when
working on the thesis. First and ever-present problem was numerical stability
of the calculation. When optimising the mesh sequence I observed improve-
ment of the mesh shapes and decrease of the energy, however when the conver-
gence slowed down, it sometimes happened that the result came as a matrix
of NaN (IEEE 754 floating point special value that represents a result of an
operation that is not defined such as zero to the power of zero, sum of positive
and negative infinity etc.)[19]. This would require more deliberate analysis
to find the root cause, which is made harder by using third party libraries as
black boxes and especially CUDA due to its parallel nature is hard to debug.

Another problem showed to be compatibility and support of used libraries.
The Graphics framework OpenFrameworks has only limited number of sup-
ported IDEs. On a Windows machine I decided to use Visual Studio, which
has only one supported version - 2015. Porting this codebase then to Mac-
Book running OS X or PC running a Linux distribution has showed to be a
complicated task. Also, the CUDA L-BFGS library is written as a CMake
project, which can be imported to Visual Studio, but only it is more re-
cent 2017 version. Even thou Visual Studio 2015 supports CUDA extended
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C++ files (ending with .cu) and can compile them using the NVCC (Nvidia
CUDA Compiler), an attempt to import the library into the project manually
has failed and Visual Studio does not provide explanatory error messages for
NVCC compiled files.

The numerical methods used in this work rely on the derivative of the en-
ergy function. If an incorrect derivative is provided, it might not be easy to
detect. If a minor mistake is done, the optimisation method can still converge
(however more slowly). A correctness of the derivative has been verified using
the finite differences method, however the used C++ numerical library has a
function to check if the solution is probably correct (using the same method),
but this function claims the derivative is wrong. Therefore, there is either a
mistake in the library, flaw in the verification using finite differences or the
port of the code from Matlab to C++.

The implemented method has 3 steps - smoothening, time and space inter-
polation. When running the whole algorithm as a procedure rather than in
interactive mode it is important to decide how many smoothening steps to
apply before interpolation. Since the very general definition of the problem
we can have meshes of various sizes (tens to hundreds thousands of vertices)
and we might want to have a mesh sequence with different number of meshes
as a result. The energy function returns a number that differs based on these
factors and generally does not provide good information whether the current
mesh sequence is good enough. Thus, a proper number of smoothening steps
with respect to computational time and quality of the result is hard to de-
termine.

The implemented method is described in the paper[9]. It defines its nota-
tion for vertecies, using top and bottom index to indicate position of shape
in a sequence and position of a vertex within a shape. However sometimes
the indices are switched, which causes confusion as the method explanation is
dense.

5.3 Possible improvements

In order to solve the problem with platform and IDE dependence an option of
replacing the OpenFrameworks with different alternative to do the visualisa-
tion might be considered. Currently the calculation itself relies on the ofVec3f
class - an implementation of a vector of 3 numbers in single precision - and its
methods as cross product and overloaded operators including multiplication
with scalar and addition. This could be replaced with a class based on current
Eigen functionality.
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5.3. Possible improvements

A general mesh decimation algorithm could be integrated or a proper bring-
your-own-algorithm interface for mesh decimation and mesh hierarchy creation
could be adopted in order not to be restricted to a special subclass of meshes
with uniform recurring structure with additional vector reduction information.

A sophisticated suite of regression tests could be incorporated. Precomputed
results for given meshes could be present for test comparrison. Currently it is
hard to verify whether the algorithm is working properly as this is an optim-
isation problem.

As CUDA is proprietary to NVIDIA and restricted only to their GPUs. A
kernel written in OpenCL would allow people to use the software regardless
on their platform of use.
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[7] Sumner, R. W.; Popović, J.: Deformation transfer for triangle meshes.
ACM Transactions on Graphics (TOG), ročńık 23, č. 3, 2004: s. 399–405.
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Appendix A
Acronyms

CUDA Compute Unified Device Architecture

BFGS Broyden–Fletcher–Goldfarb–Shanno

CPU Central Processing Unit

GPU Graphics Processing Unit

3D Three-dimensional

SIMD Single Instruction, Multiple Data

GPGPU General Purpose Computing on Graphics Processing Units

IDE Integrated Development Environment

MIT Massachusetts Institute of Technology

CC Creative Commons

MPL Mozilla Public License

IEEE Institute of Electrical and Electronics Engineers

NVCC Nvidia CUDA Compiler

ALU Arithmetic logic unit

GFLOPS Giga-Floating Point Operations Per Second

AMD Advanced Micro Devices
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Appendix B
Contents of enclosed DVD

Code/OF Application/apps/myApps/ThesisProject/src.Directory with
C++ source codes

CudaLBFGS/include.....Additional custom header files for CUDA kernel
CudaLBFGS/projects ........... Directory with CUDA kernel source file
Latex ......... Directory with files related to LATEX and PDF generation

BP Hrabec Simon 2017.tex.................Template for final thesis
BP simple.tex .................. Template for more compact version
images.....Directory with image files that are contained in the thesis
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

Matlab..................................Directory with all matlab files
testbar0-7 ...................................... Generated shapes
Mesh generation...Directory with code that creates example meshes
derivation test.....Directory with code that implements test using
finite differences

Output.................................Directory with generated PDFs
BP Hrabec Simon 2017.pdf..........Proper version of thesis in PDF
BP simple.pdf.......................More compact version of thesis

Text............................Directory with actual text of the thesis
Makefile..................Makefile that runs LATEX and generate PDFs
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