Příloha č. 1
Skladby konstrukcí bytového domu

Bc. Jan Vitouš

Vedoucí diplomové práce: Ing. Miroslav Urban, Ph.D.

2017/2018
Obsah

1 Skladby konstrukcí pro výpočet tepelných ztrát a tvorbu modelu dynamické simulace1

1.1 Obvodové stěny SO1 – 1.NP .. 1
1.2 Obvodové stěny SO2 – 2.NP + 3.NP ... 1
1.3 Obvodové stěny SO3 – 3.NP + 4.NP .. 2
1.4 Obvodové stěny SO4 – 2.NP .. 2
1.5 Obvodové stěny SO5 – chodby 2.- 4.NP .. 2
1.6 Obvodové stěny SO6 – 1.PP nad terénem ... 2
1.7 Obvodové stěny SO7 – 1.PP pod terénem (do hloubky 1m) ... 3
1.8 Obvodové stěny SO8 – 1.PP pod terénem (od hloubky 1m) ... 3
1.9 Podlaha nad garáži ... 4
1.10 Podlaha mezi jednotlivými obytnými patry ... 4
1.11 Podlaha na terénu suterénních prostorů ... 4
1.12 Okna a dveře .. 4
1.13 Střecha plochá ... 5
1.14 Střecha plochá / podlaha terasy .. 5
1 Skladby konstrukcí pro výpočet tepelných ztrát a tvorbu modelu dynamické simulace

1.1 Obvodové stěny SO1 – 1.NP

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Čiré výšky, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omítka vápenocementová</td>
<td>10</td>
</tr>
<tr>
<td>Železobeton</td>
<td>180</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
</tr>
<tr>
<td>EPS</td>
<td>180</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
</tr>
</tbody>
</table>

\[U = 0,218 \, \text{W/m}^2\cdot\text{K} \]

\[U_{n,20} = 0,3 \, \text{W/m}^2\cdot\text{K} \]

1.2 Obvodové stěny SO2 – 2.NP + 3.NP

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Čiré výšky, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omítka vápenocementová</td>
<td>10</td>
</tr>
<tr>
<td>Porotherm 24 P+D</td>
<td>240</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
</tr>
<tr>
<td>EPS</td>
<td>140</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
</tr>
</tbody>
</table>

\[U = 0,239 \, \text{W/m}^2\cdot\text{K} \]

\[U_{n,20} = 0,3 \, \text{W/m}^2\cdot\text{K} \]
1.3 Obvodové stěny SO3 – 3.NP + 4.NP

<table>
<thead>
<tr>
<th></th>
<th>Thickness</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>Supertherm STI 25</td>
<td>240</td>
<td>mm</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>EPS</td>
<td>60</td>
<td>mm</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
<td>mm</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>U</td>
<td>0.250</td>
<td>W/m².K</td>
</tr>
<tr>
<td>Un,20</td>
<td>0.3</td>
<td>W/m².K</td>
</tr>
</tbody>
</table>

1.4 Obvodové stěny SO4 – 2.NP

<table>
<thead>
<tr>
<th></th>
<th>Thickness</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>Porotherm 24 AKU</td>
<td>250</td>
<td>mm</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>EPS</td>
<td>140</td>
<td>mm</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
<td>mm</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>U</td>
<td>0.236</td>
<td>W/m².K</td>
</tr>
<tr>
<td>Un,20</td>
<td>0.3</td>
<td>W/m².K</td>
</tr>
</tbody>
</table>

1.5 Obvodové stěny SO5 – chodby 2.- 4.NP

<table>
<thead>
<tr>
<th></th>
<th>Thickness</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>Železobeton</td>
<td>160</td>
<td>mm</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
<td>mm</td>
</tr>
<tr>
<td>EPS</td>
<td>200</td>
<td>mm</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
<td>mm</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
<td>mm</td>
</tr>
<tr>
<td>U</td>
<td>0.198</td>
<td>W/m².K</td>
</tr>
<tr>
<td>Un,20</td>
<td>0.75</td>
<td>W/m².K</td>
</tr>
</tbody>
</table>
1.6 Obvodové stěny SO6 – 1.PP nad terénem

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Výška (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
</tr>
<tr>
<td>Železobeton</td>
<td>250</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
</tr>
<tr>
<td>EPS</td>
<td>80</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>0,442</td>
</tr>
<tr>
<td>Un,20</td>
<td>0,75</td>
</tr>
</tbody>
</table>

1.7 Obvodové stěny SO7 – 1.PP pod terénem (do hloubky 1m)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Výška (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
</tr>
<tr>
<td>Železobeton</td>
<td>250</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
</tr>
<tr>
<td>XPS</td>
<td>100</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>0,35</td>
</tr>
<tr>
<td>Un,20</td>
<td>0,85</td>
</tr>
</tbody>
</table>

1.8 Obvodové stěny SO8 – 1.PP pod terénem (od hloubky 1m)

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Výška (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
</tr>
<tr>
<td>Železobeton</td>
<td>250</td>
</tr>
<tr>
<td>Lepící malta ETICS</td>
<td>10</td>
</tr>
<tr>
<td>XPS</td>
<td>50</td>
</tr>
<tr>
<td>Výztužná vrstva ETICS</td>
<td>6</td>
</tr>
<tr>
<td>Tenkovrstvá omítka</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>0,603</td>
</tr>
<tr>
<td>Un,20</td>
<td>0,85</td>
</tr>
</tbody>
</table>
1.9 Podlaha nad garáží

<table>
<thead>
<tr>
<th>Materiál</th>
<th>tl. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramická dlažba</td>
<td>20</td>
</tr>
<tr>
<td>Beton hutný</td>
<td>50</td>
</tr>
<tr>
<td>EPS 100S</td>
<td>50</td>
</tr>
<tr>
<td>Železobeton</td>
<td>250</td>
</tr>
<tr>
<td>EPS 70 F</td>
<td>100</td>
</tr>
</tbody>
</table>

\[U = 0,235 \text{ W/m}^2\text{.K} \]

\[U_{n,20} = 0,30 \text{ W/m}^2\text{.K} \]

1.10 Podlaha mezi jednotlivými obytnými patry

<table>
<thead>
<tr>
<th>Materiál</th>
<th>tl. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keramická dlažba</td>
<td>20</td>
</tr>
<tr>
<td>Beton hutný</td>
<td>50</td>
</tr>
<tr>
<td>EPS 100S</td>
<td>50</td>
</tr>
<tr>
<td>Železobeton</td>
<td>250</td>
</tr>
<tr>
<td>Omitka vápenocementová</td>
<td>10</td>
</tr>
</tbody>
</table>

\[U = 0,557 \text{ W/m}^2\text{.K} \]

\[U_{n,20} = 1,05 \text{ W/m}^2\text{.K} \]

1.11 Podlaha na terénu suterénních prostorů

<table>
<thead>
<tr>
<th>Materiál</th>
<th>tl. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton hutný</td>
<td>300</td>
</tr>
<tr>
<td>XPS</td>
<td>50</td>
</tr>
</tbody>
</table>

\[U = 0,564 \text{ W/m}^2\text{.K} \]

\[U_{n,20} = 0,85 \text{ W/m}^2\text{.K} \]

1.12 Okna a dveře

<table>
<thead>
<tr>
<th>Materiál</th>
<th>[U_w]</th>
<th>[U_{n,20}]</th>
<th>[g]</th>
<th>[procento zasklení]</th>
<th>[plastový rám UPVC šířky]</th>
<th>[izolační trojsklo]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,8</td>
<td>1,5/1,7</td>
<td>0,55</td>
<td>0,7</td>
<td>0,08</td>
<td></td>
</tr>
</tbody>
</table>

Stránka 4 / 5
1.13 Střecha plochá

<table>
<thead>
<tr>
<th>Hydroizolační souvrství</th>
<th>160 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS 150S (průměrná tloušťka)</td>
<td></td>
</tr>
<tr>
<td>Parozábrana</td>
<td></td>
</tr>
<tr>
<td>Železobeton</td>
<td>160 mm</td>
</tr>
<tr>
<td>Omitka vápenocementová</td>
<td>10 mm</td>
</tr>
<tr>
<td>$U =$</td>
<td>0,218 W/m².K</td>
</tr>
<tr>
<td>$U_{n,20} =$</td>
<td>0,24 W/m².K</td>
</tr>
</tbody>
</table>

1.14 Střecha plochá / podlaha terasy

<table>
<thead>
<tr>
<th>Nášlapné vrstvy</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroizolační souvrství</td>
<td></td>
</tr>
<tr>
<td>EPS 150S (průměrná tloušťka)</td>
<td>220 mm</td>
</tr>
<tr>
<td>Parozábrana</td>
<td></td>
</tr>
<tr>
<td>Železobeton</td>
<td>180 mm</td>
</tr>
<tr>
<td>Omitka vápenocementová</td>
<td>10 mm</td>
</tr>
<tr>
<td>$U =$</td>
<td>0,160 W/m².K</td>
</tr>
<tr>
<td>$U_{n,20} =$</td>
<td>0,24 W/m².K</td>
</tr>
</tbody>
</table>