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“If you want to find the secrets of the universe, think in terms of energy, frequency and

vibration.”
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Laminated glass is layered material, which consist of brittle solid glass layers and polymer

viscous interlayer. This composition makes analysis hard and complex. Several simplify-

ing approaches was invented, but little knowledge about its behavior requires performing

relatively accurate and demanding analyses. In this paper such one is introduced, where

we focus on the dynamic analysis of laminated glass beams and on the analysis of vis-

cous properties of polymer interlayer. The thesis is divided into two parts. The first one

is focused on the material description via the generalized Maxwell model introducing

the way of extracting data from the rheometer experiment. In this part the calibration

process is also introduced. In the second part, the rheometer data for two types of an

interlayer ply are used for eigenvalue analysis of three-layered beams, the finite element

analysis and the experimental measurement. From the results it is evident, that avail-

able measurement methods are very accurate for natural frequency prediction, but not so

satisfying for damping estimate. Therefore, the work presents natural vibration analysis

methodology for laminated glass beams and introduces problems for further research.



ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Abstrakt
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Magisterský stupeň

Jaroslav Schmidt

Lepené sklo je vrstvený kompozitní materiál, který je složen ze skleněných vrstev a

viskózních polymerních mezivrstev. Kvůli této vrstvené kompozici je mechanická analýza

složitá a časově náročná. V minulosti byla sice vyvinuta řada zjednodušujících metod pro

výpočet vlastností lepeného skla, ale stále ještě nedostatečné znalosti o chování tohoto

materiálu volají po použití přesných a časově náročných analýz. Tato práce se zaměřuje

na provedení takové analýzy. Konkrétně se práce zaměřuje na analýzu vlastního kmitání

nosníků z lepeného skla. Práce je rozdělena do dvou základních částí. První se zaměřuje

na vytvoření modelu pro popis viskózních vlastností polymerní mezivrstvy. Ta vykazuje

silnou časovou a teplotní závislost. Pro správnou kalibraci materiálového modelu jsou po-

užity experimentální data z rheometru. Výstupem z kalibračního procesu je plný popis

zobecněného Maxwellova řetězce. Tyto data slouží jako vstupní parametry do následné

modální analýzy nosníků, která je součástí druhé části práce. Zde je odvozena a před-

stavena jak numerická analýza vlastního kmitání tak i následná experimentální validace.

Z výsledků práce je zřejmé, že námi představený numerický model je schopen s velkou

přesností predikovat vlastní frekvence nosníků z lepeného skla. Ukázalo se, že předpověď

tlumení nedává tak uspokojivé výsledky. Práce tedy představuje modální analýzu dvou

typů vrstvených nosníků a představuje problémy pro další výzkum.
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Chapter 1

Introduction to laminated glass

Laminated glass is a layered composite material consisting of glass plates and polymer
plies. It is useful to understand the reason leading to laminated glass invention to replace
the solid glass. Therefore, the history of glass is briefly introduced and the properties of
glass are discussed in this section. Laminated glass invention is discussed subsequently.

1.1 Brief history of glass

Glass is present on Earth from time immemorial because volcanic glass obsidian is one of
its naturally occurring types. This material is rapidly cooled magmatic rock where only
a very limited crystal growth occurred. First type of glass made by human comes from
Egypt dated around 3500 BC. Different types of jewellery and vessels were manufactured.
Next milestone has taken place in Roman Empire, where clear glass was made and named
glesum (originator of the word glass). At that time, production was difficult task and
glass products were luxury goods. Glass pane in window was a sign of great wealth.
During the Middle Ages glass expanded and many houses and almost all important
sacral buildings had glass windows (in the form of stained glass). It was a progress from
the architectural point of view, but glass still did not play any structural role. In 20th
century, new types of glass were invented, for example toughened or tempered glass, the
wire glass and finally the laminated glass. The Principle and properties of laminated
glass are described in section 1.4 in greater detail. For now, it is sufficient to note that
the idea of laminated glass made it possible to think about glass as structural element.
More information about the history of glass can be found e.g. in [1] or [2].

1.2 Solid glass behavior

Laminated glass is a complicated material for description, therefore it is important to
properly investigate the behavior of individual parts. The behavior of solid glass, which
particularly leads to invention of tempered and laminated glass, is discussed in this
section.

Glass is almost purely elastic material with relatively high strength. In virtual experiment
on perfect solid glass cube without defects under uniaxial load, the result would be the

1



Introduction 2

same stiffness and strength in tension as in compression. Unfortunately, when we do
real experiment, strength in tension is significantly smaller than in compression. This
phenomenon is caused by various initial defects on the surface and can be explained by
stress concentration.

(a) Elastic material (b) Elastoplastic material

Figure 1.1: Stress curve in tip of crack

Glass is solid and perfectly homogeneous material at first look, but actually there are
microscopic flaws and defects on the plate surface. If the material is capable of plastic
yielding then the plastic zone in the crack tip is created, see figure 1.1b. In plastic zone
there is a constant level of stress, therefore growth of crack is prevented by force balance.
Unfortunately, glass is an elastic material and has almost zero yield capacity. Thus the
stress close to the crack tip increases, see figure 1.1a. Inglis [3] showed that stress in
the root is a function of the crack tip curvature. In glass, crack is very sharp (curvature
near infinite) and stress also goes to infinity at the crack root. Fortunately, at the tips of
real glass defects the stress is not infinite and the glass handles certain stress level before
collapse. Stress concentration problem appears only when the tensile stress is applied.
For compressive force, cracks are closed and stress is transmitted by contact. This fact
is illustrated in figure 1.2. Therefore, stress concentration at tip cause orderly smaller
strength in tension against compression. Theoretically, compression strength is equal to
material point strength.

(a) Unloaded scratched
beam (b) Loaded scratched beam

Figure 1.2: Glass flaws on surface

Similar stress distribution arises when glass material is loaded by force acting on small
area. If the force is larger than the material point strength, glass is not capable to balance
internal and external forces. In the theoretical case of concentrated force acting on an
infinitesimal area, the stress grows to infinity because of non yielding capacity. In this
and the previous case, glass behaves elastically until it reaches certain limit in strength.
After that, the material collapses without warning. Such behavior is termed fragility or
brittleness.

The limited strength was the reason why glass was used only as window infill and not
as a load bearing structural material. This has changed with the invention of tempered
glass which is discussed in the next section.
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1.3 Tempered glass

We discussed earlier, that microscopic cracks reduce the glass strength. To partially
eliminate this effect it is possible to modify the initial stress in the glass plane. As
shown above, the stress concentration appears only in tension while compression state is
favorable. Idea is a preload table of glass by specific tempering.

If glass is heated to 620-675◦C [4] in furnace and then rapidly cooled, non zero stress
appears along the thickness. Surface will be compressed compared to the middle core
which will be in tension. The stress distribution σT after cooling is illustrated in Figure
1.3. The figure also shows the stress σF corresponding to a positive bending moment
acting on the cross section. It is obvious that preloading improves the bending capacity
of a glass beam.

The initial state is a properly heated table with a uniform temperature in each point. If
cooling process starts, the surface layers are cooled earlier and begin to shrink (tension
appears). During first few seconds there is a reverse effect than we want. But after
temperature of oven reaches the transition temperature, the surface solidifies and the
core is still in a viscous state. In this phase the relaxation is taking place in the middle
of the table and the stress is reversed to a required state. Finally, the rest will also cool
down and the stress from Figure 1.3 is imprisoned inside.

Figure 1.3: Stress distribution along the thickness of prestressed glass beam loaded
bending moment

Although tempered glass has higher strength, it has a different post-breakable behavior.
When a common glass collapses, the crack appears and the stored elastic energy is
dissipated. Glass tables normally bursts in several large cracks pattern. On the other
hand, prestressed glass stores a certain amount of energy before loading which leads to
post-breakable pattern consisting of a large number of relatively harmful pieces. The
stored energy also leads to impossibility of post processing cutting or hole drilling in
tempered glass. All geometric modification must be done before tempering.

As was explained, the tempered glass is efficient material due to a higher strength in
tension but – quid pro quo – the tempered glass has a different post-breakable behavior
and a "brittle" glass core. This type is yet better for glass beams and other structural
construction, but if the beam fails, the tempered glass does not handle any load and
construction completely fails. To improve a post-breakable behavior, the laminated glass
was invented.



Introduction 4

1.4 Laminated glass

Laminated glass is a layered composite material containing several solid glass layers and
polymer interlayers. In this paper we restrict our attention to three-layer beams, which
scheme and photo of composition is in Figure 1.4.

(a) Scheme (b) Photo

Figure 1.4: Three-layer laminated glass

Laminated glass was invented in automobile industry where it was used for car wind-
screens. If car is in motion, dynamic impacts of small objects frequently occurs and the
glass is susceptible to damage. Increasing strength by tempered glass is not the solution,
because when glass still bursts, pieces in form of shard could fly into cabin and hurt
someone. These dangers motivated the invention of laminated glass which keeps post-
breakable pieces together by transparent polymer interlayer. Laminated glass has many
advantages and is an appealing material mainly due to transparency. From automobile
industry this invention was extended to other sectors including civil engineering. Lami-
nated glass began to be used as structural elements. Examples include roof, facade, floor
systems, columns, staircases, etc.

Polymer ply bonding two glass tables together significantly changes kinematics of the
beam and the failure mode. In pure tension and compression (without considering buck-
ling) the interlayer is active, but its effect is negligible. Therefore, we will focus only
on bending in the following. To define bounds lets imagine two limit cases: monolithi-
cally bonded beams and two beams without cohesion. These two types are illustrated in
Figure 1.5a. Top beam represents monolithically bonded tables, where one table carries
compression and the other transfers the tension load. On the other hand, bottom beam
represents two loosely laid beams where tables are bending independently and the zero
shear transmission causes a zero interaction. The image in the middle of Figure 1.5a
represents the laminated glass beam where two rigid glass plates are bonded by a flexible
ply. This interlayer is not as stiff as glass. Consequently, a monolithic beam and beam
without cohesion are boundary cases and the laminated glass behavior is somewhere
between. From picture it is obvious that the dominant deformation of a polymer ply is
shear. That is why we focus on the shear material parameters of the interlayer in the
rest of the text.

The main advantage of laminated glass is the improvement of post-failure behavior.
Phases of damage are illustrated in Figure 1.5b. If failure criterion is not exceeded,
both glass tables are in elastic state and the stress distribution follows the Hooke law.
This is the phase A from Figure 1.5b. Due to interlayer interaction, the stress in glass
around a polymer ply is smaller than in the outer surface, which means that in the
bottom surface the maximum tension stress is reached. If a critical load exceeds the
threshold, the bottom glass plate breaks. Crack commonly passes across the whole
thickness. Glass pieces are held together by interlayer, but rigidity of composite suddenly
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decreases. Interlayer is loaded by tension and the bending moment is carried by top glass
table. This phase is labeled as B in Figure 1.5b. In the third phase, labeled C in the
figure, the top table is also damaged and the load is transferred by the interlayer only.
In case of float glass, intact polymer ply and the contact compressive stress in damaged
glass can transfer some moment. In case of tempered glass, pieces of broken glass are
small and the transition of compressive stress is limited. Due to a negligible bending
stiffness of the interlayer the completely broken tempered glass behaves like a membrane
and only axial tension is transferred.

(a) Kinematic of beam (b) Phases of damage

Figure 1.5: Laminated glass kinematics and damage stages in bending

1.5 Laminated glass model

To get a sense about glass, a general behavior was presented. Now, we can introduce
individual approaches and models for a description of the behavior.

The laminated glass is a complicated and complex material (literally – we will see later
when phasor arithmetic is introduced). Solid glass is almost perfectly elastic isotropic
material and can be described by two constants, for example E, ν or G and ν. Polymer
ply is time and temperature depend at least. For time dependence we utilize theory
of viscoelasticity [5] and for temperature we employ the time-temperature superposition
concept. Details about viscoelasticity will be discussed in the next chapter. By assuming
these theories, the description of the material becomes more challenging. Analytical
solution can be obtained only for special cases. For dynamic loading, where complex
numbers are used, the closed form solutions are unknown for practically all problems.
This impossibility leads to the development of easy-to-use approaches, such as effective
thickness concept, which also fulfills needs of engineering practice.

Figure 1.6: Effective thickness principle diagram
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Generally, effective thickness approaches search for thickness of simple (mostly isotropic
and homogeneous) material, which has the same selected property as the original mate-
rial. For laminated glass it usually means that we search for effective thickness heff of a
monolithic solid glass beam, which have similar certain property, e.g. bending stiffness
or natural frequencies, close to the value of laminated beam. Therefore, we approximate
property Ψ by effective Ψeff , mathematically denoted as

Ψ ≈ Ψeff (heff (G,M,B)) ,

where G is a set of geometric parameters andM a set of material parameters of an lam-
inated glass and B is a set of parameters, which includes boundary conditions. Principle
diagram of a laminated glass effective thickness is illustrated in Figure 1.6.

Two basic types of load and response are investigated: static and dynamic. For static,
several effective thickness approaches was developed with satisfactory results. For ex-
ample, Gallupi’s effective thickness [6] for the prediction of deflection and stress based
on variational principle. In dynamics we usually solve problems of eigenvalues, eigen-
vectors and damping of the system. For this task, there is only a few effective thickness
approaches. One for eigen-value problems is the dynamic effective thickness from López-
Aenlle, Pelayo [7]. For natural frequencies prediction this is approach relatively satisfying
but it can not reliably predict damping of a laminated glass beam. Recently, a new dy-
namic effective thickness [8], which can also predict damping with satisfactory accuracy
was introduced based on the Gallupi approach.

Effective thickness approaches are useful tool, but it is not panacea. In special cases or for
validation of different approaches, it can be necessary to employ more accurate methods.
Impossibility to derive close form solutions leads to the use of numerical methods, such
as FEM which follows modern scientific trend.

There is always possibility to use 3D elements for discretization of laminated glass plates.
This leads, however, to large number of unknown if we want to maintain certain propor-
tionality between elements size. It is caused by the small thickness of the interlayer due
to the overall thickness. This type of mesh is very schematically illustrated in Figure
1.7a. To reduce the number of elements, it is convenient to use more specialized element
which includes informations about all layers. This type of multi-layered discretization
is again schematically illustrated in Figure 1.7b. From comparison of these types it is
obvious that though multi-layered element has more degrees of freedom, it still provides
a significant reduction of total number of unknowns. Such type of super element for
laminated glass was introduced for example in [9].

(a) Mesh over thickness (b) Mesh with layered elements

Figure 1.7: Different types of elements and corresponding FE meshes
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Both approaches (effective thickness and FE analysis) depend on a set of material param-
eters M. Glass is described by two elastic constants, but interlayer is viscoelastic and
must be described by series of parameters. In this paper it is assumed that polymer ply
can be characterized by the generalized Maxwell chain extended by WLF equation for
temperature dependence. This model requires at least four (realistically about twenty)
free parameters, which need to be specified. In the following chapters the viscoelastic
model is outlined and the way how to calibrate its parameters from dynamic experiment
is described.





Chapter 2

Dynamic viscoelasticity

Many construction materials have stable properties in time and their behavior can be
described by several parameters that are constant in time. This is most often caused
by fact, that atoms in crystalline grid are in equilibrium and their position is given by
potential of atomic, electrostatic and external forces, which must be minimal. However,
a typical interlayer in laminated glass is a polymer composed of mutually intertwined
polymer chains [10] and time-dependent behaviors occur due to different chain transfor-
mations under constant external force.

A material point from axial tensile test can be conceptually represented by single spring
with parameter, which corresponds to elastic Young modulus E. It turns out that we can
used this so called rheological segments also for time-dependent material models. For
theory of viscoelasticity, one more segment apart from spring must be added. The missing
link is damper, which keeps the constant ratio between the stress and deformation rate.
So, if we act on damper with a constant force, deformation increases linearly in time. If
we use only one damper for the characterization of material point, we get ideal Newtonian
fluid, but it does not meet requirements for polymers. Therefore, it is appropriate to use
combination of several rheological segments.

2.1 Basic types of connection

It is important to understand, that viscoelasticity is engaged only for polymer interlayer,
where shear deformation is dominant, recall Figure 1.5a. Thats why shear parameters for
rheological models are used. Mentioned rheological schemes always represent material
point behavior under axial load.

(a) Maxwell model (b) Kelvin model

Figure 2.1: Two basic types of rheological connection

9
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In the next text, variables or parameters with lower index e correspond to elastic mem-
bers, meanwhile lower index v belongs to a damper. Members without index represent
behavior of the whole cell. In addition, indexing will be apparent from the following
two equations, which are identical for all rheological models. The behavior of a single
spring is intuitive. Spring is described by one parameter G, which is coefficient of pro-
portionality between the shear deformation γe and the stress τ (both functions of time),
thus

τe(t) = Gγe(t). (2.1)

Similar relationship exist for damper, but it represents Newtonian fluid as mentioned
above, so the parameter η which is associated with this member is the coefficient of
proportionality between the shear stress τv and the rate of deformation γ̇v, thus

τv(t) = ηγ̇v(t), (2.2)

where the dot denotes differentiation by time. Further properties are already dependent
on a connection scheme.

Kelvin model The first type of material model is composed of one damper and one
spring in parallel connection, see Figure 2.1b. The behavior is evident from a simple
thought experiment, when we try to imagine the response of the model and after that
we introduce mathematical equations. We apply force on the boundary of Kelvin cell
and because both members are deformed simultaneously and the damper cannot de-
form immediately, the strain is zero at the beginning of such an experiment. On the
other hand, if the time goes to infinity the damper deformation can grow infinitely but
spring is limited by τ̂ /G, where τ̂ is the prescribed stress. The observation is that after
prescribing force, first few moments the contribution of the damper prevails and the
deformation grows almost linearly. Later, the contribution of the spring becomes more
relevant and the strain evolves to the final value τ̂ /G. The mathematical solution con-
firm this conception. Condition of continuity and the equilibrium condition have the
following form

τ(t) = τe(t) + τv(t), (2.3)

γ(t) = γe(t) = γv(t). (2.4)

Combining of equation (2.3) with properties of members (2.1) and (2.2) and applying
the continuity condition (2.4) the following differential equation of relationship between
stress and strain for Kelvin cell is obtained

τ(t) = Gγe(t) + ηγ̇v(t) = Gγ(t) + ηγ̇(t). (2.5)

For the validation of results of the thought experiment, we set the strain as an unknown
function and the stress as the prescribed function, which is zero to time t0, jumps up
to τ̂ in time t0 and is kept constant in times t > t0. For simplicity, we choose t0 = 0.
For uniqueness of the solution in every time, we set the stress in time t = t0 as τ̂ . The
differential equation now has the form

γ(t) +
η

G
γ̇(t) =

τ̂

G
, (2.6)
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and the appropriate solution for time t ≥ 0 becomes

γ(t) =
τ̂

G

(
1− exp

(
−G
η
t

))
. (2.7)

For time t < 0, a trivial solution is only permissible. Solution (2.7) is plotted in Figure
2.2 in dimensionless units. If we compare mathematical solution (2.7) with our thought
experiment, we get match.
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Figure 2.2: Response of strain to constant prescribed stress in the Kelvin model

Maxwell model The second type of material model is serial connection of damper
and spring, see Figure 2.1a. We start with thought experiment again. On the boundary
of Maxwell cell we prescribe force at a particular time and since then we keep this
force constant. In the first moment, the damper is not deformed and all responding
deformation belongs to the spring. Spring responds immediately to the applied stress
by a sudden increase in the elastic strain. Since spring is stretched, its deformation does
not increase anymore. In this configuration, there is no deformation restrictions, so the
deformation of damper linearly increases in time after the mentioned deformation jump.
We can write it mathematically. From continuity and equilibrium conditions we get

τ(t) = τe(t) = τv(t), (2.8)

γ(t) = γe(t) + γv(t). (2.9)

Equation (2.9) with conditions (2.1), (2.2) and (2.8) while considering a sudden increase
of the applied stress τ̂ in time t ≥ 0 can be rewritten as

γ(t) = τ̂

(
1

G
+
t

η

)
. (2.10)

If we consider a trivial solution in time t < 0, than discontinuity in function γ(t) occurs at
time t = 0. This is consistent with our assumption about jump increase of deformation.
Solution (2.10) is plotted in Figure 2.3.

Both material models are useful, however both have different field of application. From
graph in Figures 2.2 and 2.3 it may seem that the Kelvin model is better due to its
continuous and exponential course of deformation. This is true for modeling creep,
where the stress is prescribed. But for relaxation problem this is exactly the opposite.
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Figure 2.3: Response of strain on constant prescribed stress in Maxwell model

In this case, the deformation is prescribed and the responding stress is unknown and
behavior analysis leads to the exponential course for the Maxwell model. It follows
that for polymer, where relaxation plays an important role, the Maxwell model is more
suitable. In the following text, where the dynamic load is applied to the rheological
model, only the Maxwell model will be employed. More about general viscoelasticity can
be found in [5].

2.2 Maxwell model under harmonic load

Goal of this section is to describe the behavior of the Maxwell model under dynamic
harmonic loading and to show that this problem naturally leads to a solution involving
complex numbers. Firstly, we reformulate differential equation for the Maxwell model
from equations (2.8) and (2.9) to a form with general load γ(t)

τ̇(t) +
G

η
τ(t) = Gγ̇(t). (2.11)

Solution of equation (2.11), where τ(t) is unknown function and γ(t) is prescribed, is
strongly dependent on the right hand side. Firstly, we investigate the homogeneous
solution. We assume that the modulus G is non-zero. For the zero right hand side it
holds

γ̇(t) = 0,∀t (2.12)

Consequently γ(t) = const = γ̂. It is evident that the homogeneous solution is equal
to the static solution with constant strain prescribed. Equation (2.11) with condition
(2.12) is the first order homogeneous differential equation with constant coefficients and
its solution by [11] is given in the form

τ(t) = Ce
−G
η
t

= Ce−
t
tc = τh(t). (2.13)

The constant C will be quantified later. In equation (2.13) we define tc := η/G, which is
so called the relaxation time. Its physical meaning can be understood from graph 2.2b.

Let us review differential equation (2.11) again. The main topic of thesis is dynamic
loading and vibrations. This means that it is important to understand the behavior of
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the Maxwell model under the prescribed harmonic deformation. We assume that for
times t ≤ 0 the deformation γ(t) = 0 is prescribed and only trivial solution occurs. For
time t > 0 the harmonic loading is prescribed in the form

γ(t) = γ0 sinωt, (2.14)

where ω is the angular velocity and γ0 is the strain amplitude. The time evolution (2.14)
is plotted in Figure 2.4 by the solid line assuming ω = 1 and γ0 = 1. The strain rate
reads

γ̇(t) = γ0ω cosωt. (2.15)

Combining (2.15) and (2.11) leads to the inhomogeneous differential equation in the form

τ̇(t) +
G

η
τ(t) = Gγ0ω cosωt. (2.16)

Because of linearity of equation (2.16), a general solution can be obtained as a summation
of the homogeneous solution (2.13) and some particular solution. It is difficult to get
general particular solution only from properties of equation and therefore we try to limit
solution space to 2 dimensions. We do that by requiring particular solution in form

τp(t) = A sinωt+B cosωt. (2.17)

If identity (2.17) is substituted to (2.16) and compared trigonometric coefficients, system
of linear equations is obtained. By solving this linear system an unique particular solution
is obtained from space of functions (2.17), where parameters A and B are set as

A =
ω2t2c

ω2t2c + 1
Gγ0, (2.18)

B =
ωtc

ω2t2c + 1
Gγ0, (2.19)

where we used definition of relaxation time tc. Finally, particular solution is

τp(t) =
ω2t2c

ω2t2c + 1
Gγ0 sinωt+

ωtc
ω2t2c + 1

Gγ0 cosωt (2.20)

and total solution τ(t) = τh(t) + τp(t) with initial condition τ(t = 0) = 0 takes form

τ(t) =
ω2t2c

ω2t2c + 1
Gγ0 sinωt+

ωtc
ω2t2c + 1

Gγ0 cosωt− ωtc
ω2t2c + 1

Gγ0e
− t
tc , (2.21)

where we define two parameters G′ and G′′

G′ :=
ω2t2c

ω2t2c + 1
G, (2.22)

G′′ :=
ωtc

ω2t2c + 1
G, (2.23)

so
τ(t) = G′γ0 sinωt+G′′γ0 cosωt−G′′γ0e

− t
tc , (2.24)

Its physical meaning will be demonstrated later. Solution (2.21) is plotted in graph
2.4 for time around t = 0. Until strain is zero, also responding stress is zero. Since
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Figure 2.4: Graph of prescribed strain and corresponding stress with all parameters
equal zero

prescribed strain is excited, corresponding stress also starts to oscillate, but not at regular
intervals and not with regular amplitudes. This phenomenon is visible at the beginning
of excitation in graph and is called transient event. It is caused by a sudden change of
state of the system. In this thesis, only eigen-oscillations are investigated, so the behavior
during transient events is irrelevant. It can also be evident from mathematical solution
(2.21), where the transient event disappears in the limit case t→∞, when last member
in (2.21) goes to zero. This fact is important in the next section, where the complex
numbers for harmonic vibrations are employed and the complex number notation can
not take into account the transient events. Oscillation functions for the Maxwell cell in
a theoretical point t→∞ is plotted in Figure 2.5.
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Figure 2.5: Vibration of Maxwell model without transient events

In this point, we try to understand the meaning of individual members from equation
(2.21) only by intuition. For example, we can assume for a while, that the model is
ideally elastic. This assumption leads to the idea that the stress must be described also
only by sine function as strain. Second member in equation (2.21) disappears. Now from
the rest of equation it is obvious that member G′ plays the role of elastic modulus. If the
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second member from (2.21) is not zero but small, then the superposition of sine signal
with high amplitude and cosine signal with low amplitude cause small phase shift of the
resultant stress. When cosine coefficient increases, the phase shift increases. Thus, it
can be said, that the cosine member corresponds to damping of model and therefore G′′

controls the energy dissipation. It turns out that this conception is correct.

2.3 Phasor formulation

In this section the notion of phasor for vibration description is introduced. Phasor rep-
resents a vector in the complex plane which rotates with a constant angular frequency
around the origin. Each phasor is characterized by a constant magnitude and by the
position in a frozen time. The position can be a complex number which implies that
the phasor is also a complex number in general. The phasors are mainly used for vibra-
tions and harmonic motions because if we project a rotating vector to the real axis in
dependence on time, we get a goniometric function. This can be evident from Figure
2.6, where unusually the real axis is represented in the vertical direction.

Figure 2.6: Phasor in complex plane generating sinus wave on real axis

If the phasor generates a sine wave to the real axis, than it generates a cosine wave to
the complex axis, it corresponds to Euler equation [11]

eix = cosx+ i sinx. (2.25)

This means that the rotating vector with angular velocity ω and amplitude A can be
expressed with respect to (2.25) as Aeiωt. This formula, where amplitude A ∈ C is
phasor, represents one rotating vector in the complex plane, see again 2.6. The phasor
is still a complex number, so all algebra taken from the theory of complex numbers is
unchanged. In the next text the theory of viscoelasticity is formulated using phasors. In
this section complex numbers are denoted with asterisk.

We can express the prescribed strain (2.14) as

γ(t) = Re(γ0e
iωt). (2.26)

The right hand side generates a cosine wave with the amplitude γ0. Here we are using
cosine function for the excited load, which affects the transient event only and has no
influence on the harmonic response. It is convenient to remove the real part operator
and write the strain in the complex form. This transfers the task to the complex plane
and after an arbitrary analysis, the real result is obtained as a real part of the resultant
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complex number. So the generalized prescribed complex strain is

γ∗(t) = γ∗0e
iωt = γ0e

iωt. (2.27)

The corresponding stress can be expressed analogically. Particular solution (2.17) can
be generalized as

τ∗(t) = τ∗0 e
iωt = (B − iA)eiωt, (2.28)

where the phasor τ∗0 is complex. Particular solution (2.17) can be obtained as a real part
of the above equation, thus

τ(t) = Re(τ∗(t)). (2.29)

Equations (2.27) and (2.28) generate two generally different rotating vectors in the com-
plex plane. These vectors have different amplitude and also different angular position
but must have the same angular velocity. Example of this situation is plotted in Figure
2.7. There two phasors generate two harmonic curves with the phase shift between theirs
peaks.

Figure 2.7: Two phasors in complex plane generating two shifted goniometric func-
tions on real axis

Now, we can define complex modulus G∗ as a proportion of the stress and strain phasors.
Thus

G∗ :=
τ∗0 e

iωt

γ0eiωt
=
τ∗0
γ0
. (2.30)

Parameter (2.30) does not rotate, so it is not a phasor, but it is still a complex number
which relates the strain and stress phasors analogous to "Hooke’s law" τ∗ = G∗γ∗.
Fraction τ∗0 /γ0 cannot be enumerate because the complex stress τ∗ is unknown. Missing
information are contained in the differential equation of the Maxwell model. To arrive
at the solution in the complex form it is necessary to express the time derivative of the
complex strain and stress as

γ̇∗(t) = iωγ∗0e
iωt, (2.31)

τ̇∗(t) = iωτ∗0 e
iωt. (2.32)

Now, equations (2.31) and (2.32) can be substituted into differential equation (2.11). We
obtain

iωτ∗0 e
iωt +

G

η
τ∗0 e

iωt = Giωγ∗0e
iωt. (2.33)
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Here, we used definition (2.30), so the complex modulus is a fraction of stress and strain
phasor, where phasor members eiωt are reduced and we get

G∗ =
τ∗

γ∗
=
τ∗0 e

iωt

γ0eiωt
=
τ∗0
γ0

= G
iωtc

iωtc + 1
. (2.34)

To convert the expression of standard shape z∗ = zr + izi, it must be expanded by the
formula iωtc − 1. It results in

G∗ = G
iωtc

iωtc + 1
· iωtc − 1

iωtc − 1
= G

ω2t2c
ω2t2c + 1

+ iG
ωtc

ω2t2c + 1
. (2.35)

Note that the real and the imaginary parts of G∗ are equal to G′ defined in (2.22) and G′′

defined in (2.23), respectively. The first quantity is known as the storage modulus and
the second one as the loss modulus. The naming is derived from the physical meaning of
the moduli. The storage modulus corresponds to the stored energy (elastic behavior) and
the loss modulus corresponds to the lost energy dissipated as heat (viscous behavior).
The total complex modulus is therefore

G∗ = G′ + iG′′, (2.36)

where
G′ = Re(G∗), G′′ = Im(G∗). (2.37)

In this case, the storage and loss moduli are a function of internal parameters of the
Maxwell cell and of angular velocity. If we want to know the resultant stress, we multiply
the phasor of the prescribed strain by the modulus G∗. In this thesis, it appears useful to
solve the inverse problem, where we know the strain and stress amplitudes with various
frequencies, for finding internal parameters. For this tasks, it is convenient to express
the storage and loss moduli in other way.

From Figure 2.7 it is evident that the evolution of responding stress looks like a harmonic
function. Indeed, each linear combination of sine and cosine members with the same
angular velocity can be overwritten as a single harmonic function shifted in time. Thus,
the stress can be rewritten to

τ(t) = τ0 cos (ωt+ δ), (2.38)

where τ0 is the amplitude of stress and δ is the phase shift. So it says, that the stress
corresponds to deformation, but with a different amplitude and is delayed by δ. We can
generalize this idea to phasor formulation, so

τ∗(t) = τ0e
i(ωt+δ) = τ0e

iωteiδ. (2.39)

We recall definition (2.30), which leads to formula for the complex modulus

G∗ =
τ∗

γ∗
=
τ0e

iωteiδ

γ∗0e
iωt =

τ0

γ0
eiδ. (2.40)

If we project modulus (2.40) to real and imaginary axis, we get relationships, which
evaluate the storage and loss moduli from the strain and stress amplitudes and its phase
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shift. The projection to real axis is

G′ =
τ0

γ0
cos δ. (2.41)

And by the projection to complex plane we obtain

G′′ =
τ0

γ0
sin δ. (2.42)

With this identities, we can investigate the geometric interpretation of the storage and
loss modulus. Firstly, we assume an elastic response, so the rotating vectors have zero
phase shift and the corresponding phasors are real. This phasor diagram is illustrated in
Figure 2.8a. In this case, the strain and stress have the same direction in the complex
plane, so the complex modulus is equal to the elastic one and it holds G = τ0/γ0. For
viscoelastic response, the situation is more interesting. In diagram (2.8b), stress phasor
is turned by δ due to strain. Now we can decompose the phasor of τ∗ to the direction of
γ∗ and to the direction perpendicular to γ∗. First one represents the same situation as for
the elastic case, recall Figure 2.8a, and fraction of this component and magnitude of strain
amplitude corresponds to equation (2.41). This confirms our expectation, that storage
modulus is connected with elastic behavior. Second member, corresponding to equation
(2.42), can not affect the magnitude of stress amplitude because it is perpendicular to
the stress phasor. So, energy associated with this component is lost. This is why this
member is called the loss modulus.

(a) Elastic (b) Viscoelastic

Figure 2.8: Phasor diagrams for elastic and viscoelastic response

2.4 Generalized Maxwell model

It turns out that a single Maxwell cell is not flexible enough for a general description
of viscous material such as polymers. Luckily, assembling several Maxwell cells in par-
allel chain can better describe complex viscoelastic materials. This model is called the
generalized Maxwell model (or Prony series) and is illustrated in Figure 2.9.

If we want to find the relation between harmonic stress and strain, we again must find
the storage and loss modulus, generally the complex modulus G∗. The approach based
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Figure 2.9: Generalized maxwell model

on calculation of equations (2.41) and (2.42) remains unchanged, because equations are
derived regardless of the internal construction of the material model. But equations
(2.35) no longer applies to the whole system. We re-examine some aspects from a simple
Maxwell model, but with application of phasors. If we prescribe deformation, every
segment is deformed equally. Therefore,

γ∗0e
iωt = γ0,∞e

iωt = γ∗0,ie
iωt, (2.43)

where i = 1, 2 . . . n is the number of a viscoelastic branch, γ0,∞e
iωt is the strain of the

elastic branch and γ∗0,ie
iωt is the complex strain of the i-th branch.

Second types of equations are equilibrium conditions. As evident from Figure 2.9 the
total stress of the Maxwell chain is a sum of stresses in individual Maxwell units. We
get condition

τ∗0 e
iωt = τ0,∞e

iωt +

n∑
i=1

τ∗0,ie
iωt. (2.44)

Adopting Hooke’s law on the first term and equation (2.30) on summands we get following
identity

τ∗0 e
iωt = G∞γ0,∞e

iωt +

n∑
i=1

G∗i γ
∗
0,ie

iωt. (2.45)

Assuming (2.43) it is possible to rewrite equation (2.45) as

τ∗0 e
iωt =

(
G∞ +

n∑
i=1

G∗i

)
γ∗0e

iωt = G∗γ∗0e
iωt. (2.46)

So we can define the complex modulus for the generalized Maxwell model as

G∗ = G∞ +
n∑
i=1

G∗i . (2.47)

The storage and the loss modulus of the generalized Maxwell model is obtained as real
and imaginary part of the complex modulus, respectively. Thus

G′ := Re(G∗) = G∞ +

n∑
i=1

Gi
ω2t2c,i

ω2t2c,i + 1
, (2.48)
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G′′ := Im(G∗) =
n∑
i=1

Gi
ωtc,i

ω2t2c,i + 1
. (2.49)

2.5 Parameters identification

The dynamic behavior of the generalized Maxwell model is described by dynamic mod-
ulus, which gives the stress response. For full description, we need to determine all free
parameters in the model. These parameters are the set of elastic moduli G1, . . . , Gn and
the set of relaxation times tc,1, . . . , tc,n. For simplicity, we denote the first set as {Gi}
and the second as {tc,i}. Relaxation time tc,i can be investigated as free parameter,
but this leads to multi-criteria optimization during parameters identification. However,
relaxation time has a physical meaning of time of interest. This can be seen from the
following example. We assume one Maxwell unit and we want to quantify the storage
modulus in the frequency domain. The result of this task in the logarithm scale is dis-
played in Figure 2.10, where only the shape is important. The curve has predictive
value in the center, around frequency equal to 1, but farther from the center, say for
the value above 10 and below 0.1, the curve is very flat and the predictive value is low.
The frequency of center point, in this case 1, corresponds to the selected value of the
relaxation time. If we want to investigate neighborhood of another frequency, we just
change the relaxation time tc. But, if the domain of interest is unacceptably large, we
can not describe it by one Maxwell cell and we need to add another cell with a different
value of tc.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10  100  1000

Frequency (Hz)

Figure 2.10: Storage modulus of one Maxwell cell in frequency domain

Consequently, the set of relaxation times {tc,i} can be chosen based on the frequency
domain of interest. This simplifies the identification of parameters {Gi}.

There is one more advantage of the Maxwell model, which is worth mentioning. We
derived the relation for complex modulus in the previous sections. We found that the
complex modulus is a function of internal parameters {Gi}. Mathematically written

G∗(ω) = G′(ω) + iG′′(ω) = G∗(G∞, G1, . . . , Gn). (2.50)
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In addition, the solution in the time domain has the form given by equation (2.51). We
present it without proof

G(t) = G∞ +
n∑
i=1

Gie
t/tc = G(G∞, G1, . . . , Gn). (2.51)

From form (2.51) it is obvious that it is also a function of internal moduli {Gi}. So, the
use of this generalized Maxwell model suggests that we can describe not only the vibration
problem, but also each time-dependent model by these set of {Gi}. Question stay how
gain this parameters. One possible way is get it from experiments by calibration. In
next sections, we discuss one type of dynamic experiment which can provide the complex
modulus for a laminated glass interlayer and we also discuss the data processing for the
identification of parameters of Maxwell model.

2.6 Influence of temperature

(a) Before shifting (b) After shifting

Figure 2.11: Meaning of scale factor in logarithmic scale

The interlayer is a polymer, which is strongly dependent on temperature. For the descrip-
tion of temperature dependency we follow the time-temperature superposition principle
[10]. This concept presumes that the storage and loss moduli depend not only on fre-
quency but also on temperature. If the material has some mechanical property µ(t, T )
a function of time and temperature, we can simplify the relation by binding time and
temperature via factor aT expressed for a chosen temperature TR. So the property
µ(aT · t, TR) is a function of time only. Applying this concept to our frequency analysis
we get a similar relationship but with inverse use of the shift factor. So for the complex
modulus G∗ it holds

G∗(ω, T ) = G∗(aR(T ) · ω, TR), (2.52)

where shift factor aR(T ) is

aR(T ) =
1

aT (T )
(2.53)

Equation (2.52) represents the scale transformation of modulus G∗, but it is more con-
venient to think in logarithmic scale, where the shift factor cause only shifting of curves,
see Figure 2.11. For calculation of shift factor, we use empirical relation called the
Williams-Landel-Ferry (WLF) equation [12], which has the following form

log aR(T ) =

(
−C1(T − TR)

C2 + T − TR

)
, (2.54)
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where log is a decadic logarithm, C1 and C2 are free parameters available for calibra-
tion and TR is reference temperature. Two shifted curves for the complex modulus are
illustrated in Figure 2.11a. But from experiments we get only part of this curve, this is
indicated in picture by the solid line. If we performed shifting, see Figure 2.11b, we get
new continuous curve for one reference temperature, but with extended domain. This
larger one is called the mastercurve. Consequently, evaluating the shift factor not only
brings a full description of the temperature influence, but also suppling points with high
and low frequencies which are difficult to obtained experimentally.

Next, we assume that the polymer foil is fully described by the generalized Maxwell model
and the WLF equation. The free model parameters are calibrated from experimental
data.



Chapter 3

Experiments

In the previous chapter, we introduced the model for laminated glass interlayer. Because
it is a viscous time-depend material, we employed the generalized Maxwell chain for the
description of the material point behavior. This model has many free parameters (one
for each unit of the Maxwell chain) and it is necessary to calibrate them for a particular
material. To do this we can use the data from either static or dynamic experiments. We
prefer to use the dynamic tests because they fully describe thermorheological properties
of the polymer interlayer. Other types of experiments are discussed for example in [13].
In this thesis, we are dealing with rheometer experiment only. This type of experiment
was introduced in [14] and we perform tests in this course.

3.1 Rheometer experiment

(a) Rheometer HAASE
MARS

(b) Laminated glass speci-
men in rheometer

Figure 3.1: Rheometer apparatus

A rheometer is an apparatus, which measures viscous properties of liquids or solids.
There are two different types of rheometers, distinguished according to the prescribed
parameter. Rotational rheometer prescribes shear stress or strain, whereas extensional
type prescribes normal tension or compression. For experiments presented in this paper

23
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we used rotational shear rheometer, type DSR (Dynamic shear rheometer). Specifically,
the rheometer HAASE MARS photographed in Fig. 3.1a, was used. Figure 3.2 shows the
basic principle of this type of apparatus. A sample is placed between two plates. Bottom
plate, hatched in the picture, is fixed and the top plate, filled by solid gray, is movable.
The top plate is called the adapter. A harmonic torque is applied to the upper plate and
the device monitors the induced strain. The applied torque corresponds to picture 3.2,
so the adapter rotates about vertical axis, which is perpendicular to horizontal plate. We
assume that only the shear strain appears in the sample in such experiment configuration.

The polymer ply is a material which is also very strongly temperature depend, so we need
test specimens under a representative temperature range. Rheometer HAASE MARS
does not have temperature chamber and only the bottom plate can be heated or cooled.
This is not obstacle, because we can insulate the sample and the adapter by some addi-
tional teflon case, which helps to maintain a stable temperature inside. Disadvantage is,
that we must wait until the temperature field is stationary within the sample.

Figure 3.2: Principal scheme of rheometer

Our goal is to obtain the complex modulus G∗ of the polymer layer. The processing
software computes the complex modulus based on the known diameter of the adapter
and its known distance from the base plate. The sample of the laminated glass, however,
has different geometry so we have to adjust the value. The apparatus prescribes a
harmonic, for example sine, evolution of the stress and records the corresponding strain.
From this two recorded harmonic signals the software extracts amplitudes of the stress
and strain and also the phase shift δ. With these quantities the evaluation of the complex
modulus is straightforward

G∗ = G′ + iG′′ =
τ0

γ0
cos δ + i

τ0

γ0
sin δ, (3.1)

where index 0 represent amplitude of a given quantity.

However, processing software expects a linear strain distribution over the entire height of
the sample. This assumption is adequate for asphalt mixtures, for which the rheometer
DSR was designed, but it is not fullfiled for laminated glass and therefore the value
of the complex modulus produced by the device has to be adjusted. Fortunately, the
transformation procedure is straightforward. It is derived in the next section.

3.2 Transformation of rheometer output

Dynamic shear type of rheometer is mostly used for asphalts mixtures, for which mount-
ing the sample is simple task. Asphalt is heated and a drop of liquid mixture is put on
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bottom plate. Appropriate height of the sample is set by the user and a vertical shift of
the upper plate spreads asphalt between horizontal plates (see Fig. 3.3a). In this case,
the asphalt specimen has the same diameter as the upper adapter and a linear distri-
bution of strain along the height can be assumed. From Figure 3.3b it is evident, that
this assumption does not hold for the laminated glass sample. Due to a high difference
in stiffness of glass and polymer it is justifiable to neglect the deformation of glass and
assume that all strain occur in the interlayer. The strain has a linear distribution over
the thickness of the ply.

(a) Asphalt setup (b) Laminated glass setup

Figure 3.3: Rheometer setup

Further adjustment is necessary because one of the rheometer input parameter is circum-
ferential stress, but the specimen is loaded by the prescribed torque, which is calculated
from this value. This means that if the laminated glass sample has smaller radius than
the adapter (see Figure 3.3b), different torque is evaluated. It should be obvious that
we need to transform the data for both the thickness and radius. For the derivation
of transformation equation, we start from the relation between torques and rotations in
upper surface. The derivation of the transformation formula is based on the theory of
elasticity.

Figure 3.4: Torsional strain

Rheometer software is aware of the radius of adapter Ra and the height of the whole
sample hs from geometry and position of adapter. In case of asphalt sample, if we
imagine rotation of the upper plate about angle θ whilst lower plate is fixed, see Figure
3.4, peripheral shear strain is given by equation

γs(t) =
δs(t)

hs
= Ra

θ(t)

hs
. (3.2)

For the laminated glass sample we further assume that the glass deformation is zero, so
the same rotation θ generates the strain in the plastic interlayer, which is different from
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(3.2) in general. Foil has height hf and radius Rs, so the shear strain reads

γf (t) =
δf (t)

hs
= Rs

θ(t)

hf
. (3.3)

In equations (3.2) and (3.3) θ is rotation. We want the relation between strains assuming
rotations be the same. Combining these equations yields the relation between γs and γf
in the form

γf (t) = γs(t)
Ra
Rs

hs
hf
. (3.4)

One of the input is the prescribed circumferential stress. The software recalculates this
value into torque T . Relation between torque T and circumferential stress τs follows
from theory of elasticity [15] and is provided by

T (t) =
τs(t)Ip
Ra

=
τs(t)

Ra

1

2
πRa

4. (3.5)

If the same torque is applied to the sample with smaller radius Rf , it holds

T (t) =
τf (t)Ip
Rs

=
τf (t)

Rs

1

2
πRs

4. (3.6)

Again, combining equations (3.5) and (3.6) gives

τf (t) = τs(t)
Rs

3

Rf
3 . (3.7)

We already mentioned that the rheometer calculates the complex modulus from equation
(3.1). In terms of phasors, we can rewrite this equation as

G∗s =
τ0,s

γ0,s
eiδ, (3.8)

where τ0,s is the amplitude of τs(t) and γ0,s is the amplitude of γs(t). But, we need to
calculate the modulus from foil values τ0,f and γ0,f . For reformulating, we used equations
(3.4) and (3.7). The complex modulus of the foil then reads

G∗f =
τ0,f

γ0,f
eiδ =

τ0,s

γ0,s

Rs
4

Rf
4

hf
hs
eiδ =

Rs
4

Rf
4

hf
hs
G∗s = G∗s · P (Ra, Rs, hs, hf ). (3.9)

Therefore, the desired modulus G∗f can be obtained by multiplying the reometer modulus
G∗s by factor P (Ra, Rs, hs, hf ), which depends on radii and heights.

3.3 Calibration of the Maxwell model

From the experiments, we get the complex modulus in form G
∗
(ω, T ) = G

′
(ω, T ) +

iG′′(ω, T ) for each measured temperature and frequency. We denote measured values
with bar. Now, when we have this data, we can use it for the identification of free
parameters of the material model. This is an important step because the data are
discrete per and can not be directly used in further analysis.
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3.3.1 Linear calibration

Calibration of shear moduli {Gi} and G∞ from measured pairs G′ and G′′ for one specific
temperature leads to linear fitting problem. It is caused by linearity of equations (2.48)
and (2.49), to recall

G′(ω) = G∞ +
n∑
i=1

Gi
ω2t2c,i

ω2t2c,i + 1
, (3.10)

G′′(ω) =
n∑
i=1

Gi
ωtc,i

ω2t2c,i + 1
(3.11)

where n is the number of viscoelastic Maxwell cells.

Calibration of parameters of a linear system is very straightforward and the presented
solution follows [16]. The objective function, which is minimized is chosen to be the sum
of squares of residues between the point on a theoretical curve and the discrete measured
value. So the objective function is

F ({Gi}, G∞) :=
m∑
j=1

(
G′(ωj)−G

′
j

)2
+

m∑
j=1

(
G′′(ωj)−G

′′
j

)2
, (3.12)

where m is the number of discrete measurements and G′j and G
′′
j are the values obtained

from experiments for frequency ωj .

Minimizing condition for the objective function based on calculus have the following
general form

∂F

∂G∞
= 0,

∂F

∂Gi
= 0, i = 1, . . . , n. (3.13)

Specifically, for the objective function (3.12), we get

∂F

∂G∞
=

m∑
j=1

2
(
G′(ωj)−G

′
j

)
= 0, (3.14)

∂F

∂Gi
=

m∑
j=1

2
(
G′(ωj)−G

′
j

) ω2t2c,i
ω2t2c,i + 1

+

m∑
j=1

2
(
G′′(ωj)−G

′′
j

) ωtc,i
ω2t2c,i + 1

= 0. (3.15)

Minimizing conditions (3.14) and (3.15) is linear in parameters and can be solved explic-
itly. If we arrange unknown parameters to vector βT = {G1, G2, · · · , Gn, G∞} we can
formulate this system of linear equation in the form

Aβ = b, (3.16)

where components of the system matrix A and the right side vector b are following

Ai,j =

m∑
k=1

t2c,iω
2
k

1 + t2c,iω
2
k

t2c,jω
2
k

1 + t2c,jω
2
k

+

m∑
k=1

tc,iωk
1 + t2c,iω

2
k

tc,jωk
1 + t2c,jω

2
k

, (3.17)

Ai,n+1 = An+1,i =

m∑
k=1

t2c,iω
2
k

1 + t2c,iω
2
k

, (3.18)
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An+1,n+1 = m, (3.19)

bi =
m∑
k=1

t2c,iω
2
k

1 + t2c,iω
2
k

G
′
k +

m∑
k=1

tc,iωk
1 + t2c,iω

2
k

G
′′
k, (3.20)

bn+1 =
m∑
k=1

G
′
k. (3.21)

Solution of (3.16) gives the optimal set of {Gi} and G∞.

3.3.2 Nonlinear calibration

When we want to include influence of temperature, we must also calibrate parameters
C1 and C2 from equation (2.54), but WLF equation is nonlinear in its free parameters.
Since we want to avoid the approximate approach based of visually shifting the curves
into a single master curve we utilize the coupled method, presented in [17], for fitting all
parameters of the model, i.e. the elastic moduli and the parameters Ci. This method
finds one mastercurve for the chosen reference temperature. Consequently, the vector of
parameters β is expanded by two members, thus

βT = {G∞, G1, G2, . . . , Gn, C1, C2}. (3.22)

For better implementation of the solution method, we introduce the vector of residuals
r, which contains residuals of a theoretical curve and the measured data. Formally

rT(β) = {{G′(ωiaT (Ti))−G
′
i}, {G′′(ωiaT (Ti))−G

′′
i }}, i = 1, . . . ,m. (3.23)

Again, we minimize the objective function F , which is defined as a sum of squares of the
residuals. It can be represented by scalar dot product of two vectors r, thus

F (β) := r(β)Tr(β). (3.24)

The objective function (3.24) looks similar to linear fitting case. But now, the vector of
residuals r contains the shift factor aT , which is nonlinearly dependent on C1 and C2.
We want still to minimize the objective function F , but the solution can not be found
in the closed form. We employed the Gauss-Newton method [11], which iteratively finds
the minimum of the objective functions in form (3.24). We only introduce this method
here, the derivation of relations can be found in appendix A. Iterations start from point
β(0) and each next step is evaluated from identity

β(s+1) = β(s) −
(
JTJ

)−1
JTr(β(s)), (3.25)

where J is the Jacobian matrix of the residual vector r

J =
∂

∂β
r(β(s)). (3.26)

Each iterative step is fully determined by identities (3.25) and (3.26). Listing of items
of the Jacobian matrix can be found in appendix B together with the implementation
pseudocode.
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Results from rheometer

The theoretical background of the rheometer measurements and the Maxwell model
calibration was introduced in the previous section. In this section we present the results
of real experiments performed on laminated glass with two types of polymer foils.

Samples for rheometer tests are typically cylindrical. Samples were drilled out of from
the laminated glass plate. It is preferable option, because polymer ply might change its
properties during the lamination process and it has a different behavior in the laminated
and unlaminated state. Samples are 20 mm in diameter with typical heights of layers
about 5/0.76/5 mm. Some variability of total thickness in orders of 10−2 mm was
observed and it is attributed to the variability of foil thickness only. Two types of
polymer plies were tested. First is the ethylene-vinyl acetate (EVA) foil and second is
the polyvinyl butyral (PVB) ply. Description of chemistry of these polymers is out of
scope of this thesis. We only note, that these two materials belong to the most common
polymers used in the laminated glass.

4.1 Measurement scenario

We measured several samples from each polymer type with similar scenarios. Basic set
of frequencies, which the sample was subjected to, is the following

F = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0}[Hz]

and the temperature set is

T = {10◦C, 20◦C, 30◦C, 40◦C, 50◦C, 60◦C}.

EVA scenario In next pseudo table the measurement scenario for EVA foil type is
introduced. In day zero, the sample was glued to rheometer by high stiffness epoxid glue.
This type was ideal, because it creates only a small layer of glue between the sample and
adapter. In post processing, we assume that no deformation occurs in this negligible
layer. We have to wait until glue hardens, so the measurements started the next day. So
called the first measurement run was performed firstly, when the sample was heated up
to one of temperature from T and measurement was performed over each frequency. This

29
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DAY 0: Sample EVA was glued to rheometer
DAY 1: 1strun: Measurement of sample loaded by temperature set

T and harmonic strains with frequencies F
DAY 2: 2ndrun: Measurement of sample loaded by temperature set

T and harmonic strains with frequencies F
DAY 3: 3rdrun: Measurement of sample loaded by temperature set

T and harmonic strains with frequencies F

Table 4.1: Measurement scenario for EVA foil

procedure was repeated for each temperature. The second and third run were performed
in the same manner, but over smaller frequency set

F = F\{0.001, 0.005}.

Each run was carried out within one day. Over night, the specimen was always left with-
out heating, exposed to room temperature only. The scenario for EVA foil is summarized
in table 4.1.

PVB scenario The second run is over smaller set of frequencies, because the mea-
surement for frequencies 0.001 and 0.005 Hz is time-consuming and moreover the second
run serves only to check the results. In case of EVA foil, a different behavior in the
second run against the first one was observed. Consequently, we added third run for
better understanding what is going on. This phenomenon was not observed in PVB test,
so the third run of measurements was not necessary. Scenario for PVB polymer ply is
summarized in table 4.2.

DAY 0: Sample PVB was glued to rheometer
DAY 1: 1strun: Measurement of sample loaded by temperature set

T and harmonic strains with frequencies F
DAY 2: 2ndrun: Measurement of sample loaded by temperature set

T and harmonic strains with frequencies F

Table 4.2: Measurement scenario for PVB foil

4.2 Results

Property Value
Specimen label EVA07
Radius Rs 10 mm
Height hs 10.327 mm
Height of glasses tg 9.6 mm
Foil height hf = hs − tg 0.727 mm

Table 4.3: EVA07 parameters

Property Value
Specimen label PVB03
Radius Rs 10 mm
Height hs 10.356 mm
Height of glasses tg 9.6 mm
Foil height hf = hs − tg 0.756 mm

Table 4.4: PVB03 parameters

Experiments were performed on several cylindrical specimens with EVA and PVB foil. In
this section, we introduce the results for one specimen with EVA and one PVB sample.
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Dimensions of these specimens are arranged in tables 4.3 and 4.4. The specimen label
uniquely identifies the sample. Rs and hs are the radius and total height of the cylinder.
The height is measured by the rheometer device, so it is exactly the distance between
the bottom plate and the movable adapter. Height of glasses tg is sum of the thicknesses
of both solid glass layers. This value was obtained after experiments, when the polymer
interlayer was removed. From thicknesses hs and tg the height of foil as hf = hs − tg is
calculated. We observed that the real thickness of foil is not exactly 0.75 mm but it is
relatively close. Parameters in tables directly serves for the calculation of transformation
coefficient P (Ra, Rs, hs, hf ) from equation (3.9). The last unknown parameter is the
radius of adapter Ra which is given by the adapter geometry and in our case is Ra = 25
mm. After the experiment and transformation via equation (3.9) was done we obtained
the values of storage and loss moduli for EVA07 and PVB03 sample. The results are
illustrated in Figures 4.2 and 4.1.
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Figure 4.1: Storage and loss moduli of PVB03 sample in dependence on frequency
for two consecutive runs

Individual graphs are arranged in the figures as follows. Left and right column represent
the storage, respectively the loss modulus and individual rows are tied to one of the
consecutive runs. For EVA foil, there are three rows for three runs and for PVB foil
two runs are presented only. Each graph illustrate dependence of moduli on frequency
in logarithm scale. We measured data for frequency up to 100 Hz, although in our set F
assumed the maximum of 50Hz. From the plotted results it is evident that frequencies
50-100 Hz are very volatile. This unreliable domain is always excluded from our analysis.
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Figure 4.2: Storage and loss moduli of EVA07 sample in dependence on frequency
for three consecutive runs

The difference between the two types of polymers is evident from the graphs. For lower
temperatures, say 10◦C, 20◦C and 30◦C, the PVB foil has a higher stiffness than the
EVA foil, while for other temperatures the trend is opposite. The PVB foil has a rapid
decline with increasing temperature, whereas EVA is relatively stable in the temperature
domain. The same behavior is observed for the loss moduli. It is also interesting that
for the EVA foil the loss and the storage modulus differs by orders. In case of PVB, the
curves are closer and the values are roughly of the same order. Graphs also show two
strangeness in polymers behavior. First oddity can be obvious from the loss modulus plot
labeled as EVA07-S1-loss in Figure 4.2. The curves for temperatures 10◦C, 20◦C, 30◦C
and 60◦C looks alright, but the remaining curves overlap the others and have unlikely
shape. This phenomenon occurred on several specimens but the cause is unknown.



Results from rheometer 33

The loss modulus for the EVA foil has lower values, so the cause can be the device
inaccuracies. Second discrepancy follows from the graphs for storage moduli in Figure
4.2. If we compare the graphs for different measurement runs we observe, that the curves
for certain temperature differs quite significantly. For temperature 30◦C it can be seen
from Figure 4.3. Figure 4.4 is the same comparison for temperature 60◦C, where the
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Figure 4.3: Curves for EVA07 sample for temperature 30◦C over three consecutive
runs
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Figure 4.4: Curves for EVA07 sample for temperature 60◦C over three consecutive
runs

curves have not this strange behavior. The difference in stiffness in the first and the
following measurement runs was not observed on PVB samples. It is not so obvious from
graph 4.3a, but the results from the third run often lie close to curve from the second
run, but always there was some shifting down (softening) after the first measurement
day. This softening was observed over all temperatures with exception of 60◦C. It can
be caused by tempering or by mechanical loading. Either way there is some type of long
term hysteresis. In other words, the EVA foil is not only time and temperature depend,
but also load-history depend. This behavior has not been sufficiently explained yet and
research is still ongoing.
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Figure 4.5: Curves for PVB03 sample for temperature 30◦C and 40◦C over three
consecutive runs

4.3 Calibration

In the previous chapter, we have introduced the calibration procedure theoretically and
now it will be applied to our measured data. We have two goals. Primarily, we want to
obtain free parameters of the generalized Maxwell model and the shift factor parameters
of the WLF equation and secondary we want to extract the master curve (which is
basically the same task). Firstly, we must define a region of interest by choosing the
number of Maxwell cells and values of relaxation times τi. Sufficient compromise is one
relaxation time (one Maxwell unit) for one decade, thus set τi,E for the EVA foil is
selected as

τi,E = 10i, i = {−3,−2, . . . , 6, 7}, n = 11,

and for the PVB foil the set τi,P is

τi,P = 10i, i = {−3,−2, . . . , 9, 10}, n = 14.

After running the calibration process we obtain value of free parameters Gi, G∞, C1

and C2, which fully describe our material model. For specimens EVA07 the values are
summarized in table 4.5, where only the first run (S1) was considered. For sample PVB03
(all runs, S1 and S2) results are listed in table 4.6.

Parameter Value Parameter Value
G1 984825.3 Pa G10 158709.4 Pa
G2 213045.1 Pa G11 363715.6 Pa
G3 302524.2 Pa G12 107063.5 Pa
G4 301446.8 Pa G13 169494.8 Pa
G5 187313.9 Pa G14 229645.9 Pa
G6 486441.7 Pa G∞ 752332.8 Pa
G7 159285.0 Pa C1 335.98
G8 296281.9 Pa C2 1340.58 ◦C
G9 288590.1 Pa

Table 4.5: Parameters of generalized Maxwell chain and WLF equation for EVA07
mastercurve
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Parameter Value Parameter Value
G1 946751.8 Pa G8 77670.3 Pa
G2 1384505.4 Pa G9 84159.5 Pa
G3 3963454.0 Pa G10 94135.1 Pa
G4 4088688.3 Pa G11 92988.0 Pa
G5 581477.5 Pa G∞ 113026.4 Pa
G6 242174.8 Pa C1 18.33
G7 78461.4 Pa C2 121.58 ◦C

Table 4.6: Parameters of generalized Maxwell chain and WLF equation for PVB03
mastercurve

Correctness of the calibration process is best seen on the master curve, which is con-
structed based on the optimal parameters C1 and C2. The resulting graphs for the EVA
foil are shown in Figure 4.6 and for the PVB foil in Figure 4.7, where the experimental
data are plotted with crosses and the theoretical master curve given by the Maxwell
model and the WLF equation is plotted by the solid line.
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Figure 4.6: Mastercurve of storage modulus for specimen with EVA foil for experi-
mental data and curve of mathematical estimation
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Figure 4.7: Mastercurve of storage modulus for specimen with PVB foil for experi-
mental data and curve of mathematical estimation
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It is obvious from the graphs of storage moduli (on the left) that the calibration process
and the resulting model curve fit the experimental data very well. As for the loss moduli
situation is more complicated. For the PVB foil there it is very sufficient estimation of
loss mastercurve, but for EVA foil is not. It was discussed before, that the measurement
of the loss moduli of the EVA foil has a high inaccuracy and this inaccurate confirmed
here. Also the shape of each temperature curve of the experimental data suggests poor
calibration ability. However, for now, there is no alternative than to use these parameters
for further analysis.

Calibration analysis for the EVA foil is done for the first run (S1) only, because the
EVA specimens exhibits some type of hysteresis discussed above. This phenomenon
can be seen in graph 4.8, where all measurement runs are plotted. It is obvious, that
one mastercurve can not include this discrepancy in the measured data since it is not
described by our WLF-Maxwell model. This behavior needs further investigation.
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Figure 4.8: Mastercurve of EVA foil for all measurement runs.



Chapter 5

Finite element for laminated glass

In previous parts of the thesis, we discussed the experiment for laminated glass interlayer
and calibration process for the determination of viscoelastic model parameters. In second
part of the thesis, we focus on the laminated glass at a structural level. Our goal is to
perform finite element analysis to examine natural vibration of laminated glass beams
such that the result match the macroscopic experiments. Till the end, a three layer
element will be formulated. The polymer interlayer is loaded predominantly in shear,
so we need to consider the Mindlin hypothesis, which anticipates planar cross-section
not necessarily perpendicular to the center line. Although deriving the Mindlin element
for FEM is a common task and can be found in most FEM books, its derivation is
presented here to show specifics of the adopted multilayer theory. For more details we
recommended for example [18] or [19].

5.1 Mindlin beam ODE

FEM is one of the numerical method for solving differential equations. General descrip-
tion of beams is very complicated nonlinear problem, but if we accept several simplifying
assumptions, we get linear differential equations for deformation of the beam centerline.
Final equation arises from three basic types of equation sets. We consecutively introduce
these sets with the used assumptions. In general, position coordinates are restricted
by beam domain B ⊂ R3 and time domain is set by interval T = 〈0, T 〉 ⊂ R. Every
four-coordinate vector is picked from this domain B × T .

Equilibrium conditions

First, we investigate conditions of equilibrium and get relation between internal forces.
If we limit our attention to small deflections only, we can assembly these conditions
on undeformed beam (first order analysis) with relatively good accuracy. With this
assumption, we can imagine infinitesimal element cut out of the beam. Forces acting
on this element are illustrated in Figure 5.1. Because we analyze natural vibrations, no
external forces are considered. Black dot represents a concentrated mass of the beam

37
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Figure 5.1: Reactions on infinitesimal small piece of beam without external forces

element. Inertia forces and angular momentum from this mass are

Fi,x(x+ dx/2, t) = ρ(x+ dx/2)A(x+ dx/2)ü(x+ dx/2, t)dx, (5.1)
Fi,z(x+ dx/2, t) = ρ(x+ dx/2)A(x+ dx/2)ẅ(x+ dx/2, t)dx, (5.2)
Mi(x+ dx/2, t) = ρ(x+ dx/2)Iy(x+ dx/2)ϕ̈y(x+ dx/2, t)dx, (5.3)

where we consider that area A(x, t) = A(x), moment of inertia Iy(x, t) = Iy(x) and
density ρ(x, t) = ρ(x) are not function of time. It can be shown that placement of
concentrated mass in the x-direction is irrelevant for inertia forces, so we can replace
point (x+dx/2, t) by only (x, t) for clarity. Now, we can assembly equilibrium conditions
in two directions (x and z) and the momentum condition around the center of gravity of
the beam element. We obtain

→ : N(x+ dx, t)−N(x, t)− ρ(x)A(x)ü(x, t)dx = 0,

↓ : V (x+ dx, t)− V (x, t)− ρ(x)A(x)ẅ(x, t)dx = 0,

: M(x+ dx, t)−M(x, t)− 1
2V (x, t)dx− 1

2V (x+ dx, t)dx− ρ(x)Iy(x)ϕ̈y(x, t)dx = 0.

(5.4)
We can expand the normal and shear force into the Taylor series and neglect members
of quadratic and higher orders. For the general force F (x, t) it holds

F (x+ dx, t) ≈ F (x, t) +
∂F (x, t)

∂x
dx+O(dx2). (5.5)

Similarly we can extend moment of force around infinitesimally close point, where only
the first member of Taylor series is linear. Therefore

F (x+ dx, t)dx ≈ F (x, t)dx+O(dx2). (5.6)

If we substitute assumptions (5.5) and (5.6) into equilibrium conditions (5.4) and divide
all equations by element size dx, we get the final relations between internal forces given
by the following identities

∂N

∂x
(x, t)− ρ(x)A(x)ü(x, t) = 0, (5.7)
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∂V

∂x
(x, t)− ρ(x)A(x)ẅ(x, t) = 0, (5.8)

∂M

∂x
(x, t)− V (x, t)− ρ(x)Iy(x)ϕ̈y(x, t) = 0. (5.9)

Geometric equations

Before we apply geometric equations to our model, we must describe the displacement
field. We consider that the beam is bent in the plane xz and is incompressible in z
direction. Axis direction can be obvious from Figure 5.2. As stated, for simplicity of
displacement field u(x, z) we assume validity of the Mindlin beam hypothesis, which says

Cross-section that was planar before the deformation and perpendicu-
lar to centerline is planar also after deformation, but not necessarily
perpendicular to center line.

The Mindlin theory is schematically illustrated in Figure 5.2, where dots represent per-
pendicular cross section to the centerline, i.e. rotation of the cross section due to bending,
and the solid line represents the cross section with influence of shear. If we denote rota-
tion ϕy we can described the displacement field as

u(x, z, t) = u0(x, t) + uϕ(x, z, t) = u0(x, t) + ϕy(x, t)z, (5.10)

where u0(x, t) is the normal stretch of the center line and uϕ(x, z, t) is the horizontal
displacement caused by the cross section rotation, see Figure 5.2. Moreover, we assume
small deformation theory. Thus, we assume that projection of element length into x-axis
is preserved (not real length of element) and also we assume validity of ϕy ≈ tanϕy.
This assumptions are reflected in identity (5.10) and also imply the following geometric
equations

εx(x, z, t) =
∂u(x, z, t)

∂x
=
∂u0(x, t)

∂x
+
∂ϕy(x, t)

∂x
z = ε0(x, t) + κy(x, t)z, (5.11)

γzx(x, t) =
∂w(x, t)

∂x
+
∂u(x, z, t)

∂z
=
∂w(x, t)

∂x
+ ϕy(x, t), (5.12)

where ε0(x, t) is the strain of the centerline and κy(x, t) is curvature.

Physical equations

For relation between strain and stress we employ general Hook’s law. This is sufficient
for solid glass layer, but for viscous interlayer this model is inappropriate.1 In addition,
we assume that material moduli E(x, y, z, t) = E and G(x, y, z, t) = G are constant in
space and time, so Hooke’s laws states

σx(x, z, t) = Eεx(x, z, t), (5.13)

τxz(x, t) = k(x)Gγzx(x, t), (5.14)
1However, transition to viscoelastic Mindlin beam is very straightforward. The natural vibration

problem is solved in the domain of complex numbers C instead of R.
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Figure 5.2: Deflection of Mindlin beam

where k(x) is the shear coefficient which takes into account the difference between real
shear stress and shear stress on Mindlin beam, where it is constant across the height.
Parameter value k(x) is derived from equality of mentioned stresses. It comes out

k(x) =
I2
y (x)

A(x)
∫
A(x)

S
2
y(z,x)

b2(z,x)
dA(x)

, (5.15)

and for a rectangular cross section is k = 5/6. With identities (5.11) and (5.12) physical
equations become

σx(x, z, t) = E (ε0(x, t) + κy(x, t)z) , (5.16)

τxz(x, t) = k(x)G

(
∂w(x, t)

∂x
+ ϕy(x, t)

)
. (5.17)

ODE for Mindlin beam

We can obtain internal forces by integrating corresponding stress components over the
cross-section. From definition of internal forces it follows

N(x, t) =

∫
A(x)

σx(x, z, t)dA(x), (5.18)

V (x, t) =

∫
A(x)

τxz(x, t)dA(x) =

∫
A(x)

k(x)Gγxz(x, t)dA(x) =

∫
A∗(x)

Gγxz(x, t)dA
∗(x),

(5.19)

M(x, t) =

∫
A(x)

zσx(x, z, t)dA(x), (5.20)

where the reduced area A∗(x) is defined as

A∗(x) := k(x)A(x). (5.21)

Next, we express internal forces in dependence on the centerline displacements as

N(x, t) = E

∫
A(x)

(
∂u0(x, t)

∂x
+
∂ϕy(x, t)

∂x
z

)
dA(x) = EA(x)

∂u(x, t)

∂x
, (5.22)
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V (x, t) = G

∫
A∗(x)

(
∂w(x, t)

∂x
+ ϕy(x, t)

)
dA∗(x) = GA∗(x)

(
ϕy(x, t) +

∂w

∂x
(x, t)

)
,

(5.23)

M(x, t) = E

∫
A(x)

(
∂u0(x, t)

∂x
z +

∂ϕy(x, t)

∂x
z2

)
dA(x) = EIy(x)

∂ϕy(x, t)

∂x
. (5.24)

Finally, we assembly the differential equations from the above identities. In particular
we substitute relations (5.18)-(5.20) to equations (5.7)-(5.9) and we get the description
of the Mindlin beam via these linear differential equations

∂

∂x

(
EA(x)

∂u0

∂x
(x, t)

)
− ρ(x)A(x)ü0(x, t) = 0,

∂

∂x

(
GA∗(x)

(
ϕy(x, t) +

∂w

∂x
(x, t)

))
− ρ(x)A(x)ẅ(x, t) = 0,

∂

∂x

(
EIy(x)

∂ϕy
∂x

(x, t)

)
−GA∗(x)

(
ϕy +

∂w

∂x
(x, t)

)
− ρ(x)Iy(x)ϕ̈y(x, t) = 0.

(5.25)

(5.26)

(5.27)

Solution of these equations depends on the prescribed boundary conditions. So we need
to specify them. First, we denote curve representing centerline as abstract Ω ⊂ R and
than boundary of this region by Γ = ∂Ω. Boundaries are the same for all three unknown
functions u0(x, t), w(x, t), ϕ(x, t), but we must decompose the boundary to two disjointed
sets, where Γu is the boundary with the prescribed values of unknowns functions and
Γf is the boundary with prescribed forces and Γu ∪ Γf = Γ and Γu ∩ Γf = ∅. This
decomposition is different for displacements u0, w, ϕy, Formally written as

Γu = Γuu + Γuf , (5.28)

Γw = Γwu + Γwf , (5.29)

Γϕ = Γϕu + Γϕf . (5.30)

In natural vibration analysis, we consider no external forces, so roughly speaking we can
neglect boundary conditions on Γf (In fact, forces act on boundary Γf , but are equal to
zero and corresponding members vanish). Only kinematic conditions remain

u0(x) = u0,∀x ∈ Γu,

w(x) = w,∀x ∈ Γw,

ϕy(x) = ϕy(x), ∀x ∈ Γϕ,

(5.31)
(5.32)
(5.33)

where overlined quantities represented the prescribed values of individual functions.
In the following text we reduce our general requirements and we put characteristics
A(x), Iy(x) and ρ(x) independent of x.

5.2 Weak solution

Strong solution of (5.25)-(5.27) can not be found in closed form for most of the engi-
neering tasks and we need to reduce our requirements. In particular, we do not require
equations to be satisfied everywhere but only on average over the Ω, that means∫

Ω
δu0(x)

(
∂

∂x

(
EA

∂u0

∂x
(x, t)

)
− ρAü0(x, t)

)
dΩ = 0, (5.34)
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∫
Ω
δw(x)

(
∂

∂x

(
GA∗

(
ϕy(x, t) +

∂w

∂x
(x, t)

))
− ρAẅ(x, t)

)
dΩ = 0, (5.35)∫

Ω
δϕy(x)

(
∂

∂x

(
EIy

∂ϕy
∂x

(x, t)

)
−GA∗

(
ϕy +

∂w

∂x
(x, t)

)
− ρIyϕ̈y(x, t)

)
dΩ = 0,

(5.36)
where δu0(x), δw(x), δϕ(x) are test weight functions. These are arbitrary but on bound-
ary Γu we know exact solution, so the test functions must satisfy

δu0(x) = 0, ∀x ∈ Γuu, (5.37)
δw(x) = 0, ∀x ∈ Γwu , (5.38)
δϕ(x) = 0, ∀x ∈ Γϕu . (5.39)

Note that the second derivatives of unknown functions appear in the above integrals.
The order of the derivatives can be reduced by generalized integration by parts (Gauss
divergence theorem [11]), which states∫

Ω
f(x)

d

dx
g(x)dΩ =

∫
Γ
f(x)g(x)dΓ−

∫
Ω
g(x)

d

dx
f(x)dΩ. (5.40)

The first term on the right hand side vanishes, because acting forces on Γf are equal to
zero and the test function is zero on boundary Γu. However, Γ = Γu+Γf , so the member
itself must be zero. This yields∫

Ω
f(x)

d

dx
g(x)dΩ = −

∫
Ω
g(x)

d

dx
f(x)dΩ. (5.41)

Applying the Gauss theorem of above form to (5.34)-(5.36) gives∫
Ω

dδu0(x)

dx

(
EA

∂u0

∂x
(x, t)

)
+ δu0(x)ρAü0(x, t)dΩ = 0, (5.42)

∫
Ω

dδw(x)

dx

(
GA∗

∂w

∂x
(x, t)

)
+ δw(x)

∂

∂x
(GA∗ϕy(x, t)) + δw(x)ρAẅ(x, t)dΩ = 0,

(5.43)∫
Ω

dδϕy(x)

dx

(
EIy

∂ϕy
∂x

(x, t)

)
+ δϕy(x)GA∗

(
ϕy +

∂w

∂x
(x, t)

)
+ δϕy(x)ρIyϕ̈y(x, t)dΩ = 0.

(5.44)
This is the weak solution in the divergence form.

As a side note let us highlight the direct link between the weak formulation and the
principle of virtual displacement. If we assume that test functions have the physical
meaning of virtual displacement, then equation (5.42) can be written as∫

V
δεσxdV +

∫
V
δu0(x)XdV = 0, (5.45)

where δε = δu′0(x) is a virtual strain, σx = Eu′0(x) is the normal stress and X = ρü0 is
the inertia force of an infinitesimal element. But, this is energy equilibrium of principle
of virtual displacement. Similar conclusion can be drawn for other equations. So if we
assume equality of virtual displacements and test functions, then these principles are
identical.
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5.3 Discretization

It is convenient to split the domain Ω into small segments Ωe, where
⋃
e Ωe = Ω and⋂

e Ωe = ∅. We require the unknown function to solve the set of differential equation in
the weak form. We approximate the unknown functions in terms of the shape functions
and nodal values. If we denote the left node by lower index 1 and the right node by
index 2, we can arrange the element nodal values into vectors

reu(t) = {ue1(t), ue2(t)}T δreu(t) = {δue1(t), δue2(t)}T, (5.46)
rew(t) = {we1(t), we2(t)}T δrew(t) = {δwe1(t), δwe2(t)}T, (5.47)
reϕ(t) = {ϕe1(t), ϕe2(t)}T δreϕ(t) = {δϕe1(t), δϕe2(t)}T. (5.48)

Now, we describe internal displacement field on element as a product of nodal values
(5.46)-(5.48) and the matrix of shape (base) functions, which are independent of time.
Next, we take the derivative of the displacement field with respect to x. Vectors (5.46)-
(5.48) are space independent, so we differentiate only the base functions. The matrix
of the element base functions is denoted Ne and its derivatives Be. The displacement
approximation reads

u0(x, t) ≈ Ne
u(x)reu(t) w(x, t) ≈ Ne

w(x)rew(t) ϕy(x, t) ≈ Ne
ϕ(x)reϕ(t),

u0(x, t) ≈ Beu(x)reu(t) w(x, t) ≈ Bew(x)rew(t) ϕy(x, t) ≈ Beϕ(x)reϕ(t).
(5.49)

In FEM we assume that the virtual displacements (test functions) are interpolated by
the the same base functions, so we get

δu0(x, t) ≈ Ne
u(x)δreu(t) δw(x, t) ≈ Ne

w(x)δrew(t) δϕy(x, t) ≈ Ne
ϕ(x)δreϕ(t),

δu0(x, t) ≈ Beu(x)δreu(t) δw(x, t) ≈ Bew(x)δrew(t) δϕy(x, t) ≈ Beϕ(x)δreϕ(t).
(5.50)

In what follows we omit x and t dependencies in brackets and use the following abbrevi-
ated notation

Nere ≡ Ne(x)re(t), Bere ≡ Be(x)re(t). (5.51)

Now we can substitute this discrete system (5.49)-(5.50) to a divergence form of the weak
solution (5.42)-(5.44) and we immediately get∫

Ωe
(Beuδr

e
u)TEABeur

e
u + (Ne

uδr
e
u)TρANe

ur̈
e
udΩe = 0, (5.52)

∫
Ωe

(Bewδr
e
w)TGA∗

(
Ne
ϕr

e
ϕ + Bewr

e
w

)
+ (Ne

wδr
e
w)TρANe

wr̈
e
wdΩe = 0, (5.53)∫

Ωe
(Beϕδr

e
ϕ)TEIyB

e
ϕr

e
ϕ +

(
Ne
ϕδr

e
ϕ

)T
GA∗

(
Ne
ϕr

e
ϕ + Bewr

e
w

)
+ (Ne

ϕδr
e
ϕ)TρIyN

e
ϕr̈

e
ϕdΩe = 0.

(5.54)



Finite element for laminated glass 44

If we define element stiffness matrices

Ke
u :=

∫
Ωe

(Beu)TEABeudΩe, (5.55)

Ke
w :=

∫
Ωe

(Bew)TGA∗BewdΩe, (5.56)

Ke
ϕ :=

∫
Ωe

(
Beϕ
)T
EIyB

e
ϕdΩe +

∫
Ωe

(
Ne
ϕ

)T
GA∗Ne

ϕdΩe, (5.57)

Ke
wϕ :=

∫
Ωe

(Bew)TGA∗Ne
ϕdΩe, (5.58)

Ke
ϕw :=

∫
Ωe

(
Ne
ϕ

)T
GA∗BewdΩe (5.59)

and mass element matrices

Me
u :=

∫
Ωe

(Ne
u)T ρANe

udΩe, (5.60)

Me
w :=

∫
Ωe

(Ne
w)T ρANe

wdΩe, (5.61)

Me
ϕ :=

∫
Ωe

(
Ne
ϕ

)T
ρIyN

e
ϕdΩe, (5.62)

we arrive at the set of discrete equations written in the compact form

(δreu)T (Ke
ur

e
u + Me

ur̈
e
u) = 0, (5.63)

(δrew)T
(
Ke
wr

e
w + Ke

wϕr
e
ϕ + Me

wr̈
e
w

)
= 0, (5.64)

(δreϕ)T
(
Ke
ϕr

e
ϕ + Ke

ϕwr
e
w + Me

ϕr̈
e
ϕ

)
= 0. (5.65)

Since the leftmost term of each above equation contains arbitrary functions, the equation
is fulfilled when the second bracket is equal to zero. Furthermore the equations can be
written as one

Kere + Mer̈e = 0, (5.66)

where Ke is the element stiffness matrix and Me is the element mass matrix and re is
the vector of generalized nodal displacements

Ke =

Ke
u 0 0
0 Ke

w Ke
wϕ

0 Ke
ϕw Ke

ϕ

 Me =

Me
u 0 0

0 Me
w 0

0 0 Me
ϕ

 , (5.67)

re = {reu, rew, reϕ}T. (5.68)

Because (5.66) must be satisfied on every element and neighboring elements share the
nodal displacement we must satisfy the following global system of equations

Kr + Mr̈ = 0, (5.69)

where K and M are the global stiffness and mass matrices. The process of assembling K
and M from each element is called localization [19] and it is formally denoted as

K = Loc〈Ke〉e M = Loc〈Me〉e. (5.70)
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5.4 Linear approximation and discussion

Now we have a general description for the local stiffness and mass matrices, but its actual
form depends on the chosen base functions. We use linear shape functions. It turns out
that for beams this simplest approximation is sufficient. First, we define an element
domain Ωe and its boundary Γe as

Ωe := x, x ∈< 0, Le > Γe = {0, Le}, (5.71)

where Le is the length of the beam element centerline and x is the local x-axis. We use
the same base functions for the displacement and rotation fields (real and virtual). For
the element domain we get the shape functions

Ne
u = Ne

w = Ne
ϕ =

(
1− x

Le
,
x

Le

)
, (5.72)

and their derivatives
Beu = Bew = Beϕ =

(
− 1

Le
,

1

Le

)
. (5.73)

This linear approximation is the simplest one, but if we use it for displacements as well
as for rotations, we get the following contradiction. Consider the case of pure bending
without a shear force. For this case the shear strain defined by (5.12) has to be zero on
the entire element domain. Then, applying the linear approximation for w(x) and ϕ(x)
leads to

γzx(x) =
dw(x)

dx
+ ϕy(x) ≈ 1

Le
(w2 − w1) + ϕ1 +

x

Le
(ϕ2 − ϕ1) = 0. (5.74)

This is satisfied only for
ϕ2 − ϕ1 = 0, (5.75)

which on the other hand implies zero curvature defined as

κ =
∂ϕ(x)

∂x
≈ 1

Le
(ϕ2 − ϕ1). (5.76)

Curvature κ is obviously not zero in pure bending case. It is clear that this linear approx-
imation cannot describe the kinematics of this special case without further modification.
This phenomenon is called shear locking. To reduce this effect we use selective integra-
tion approach, which assumes constant approximation of rotation ϕy in the shear strain
term

γzx(x) ≈ 1

Le
(w2 − w1) +

1

2
(ϕ2 + ϕ2). (5.77)

For obtaining the local stiffness and mass matrices we substitute the linear base functions
into equations (5.55)-(5.59) derived in the previous section in matrix Kϕ. Note that in
submatrix Kϕ we perform selective integration, i.e. we consider the approximation (5.77).
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We get the element stiffness matrix

Ke =



EA
Le 0 0 −EA

Le 0 0

0 GA∗

Le −GA∗

2 0 −GA∗

Le −GA∗

2

0 −GA∗

2
GA∗Le

4 +
EIy
Le 0 GA∗

2
GA∗Le

4 − EIy
Le

−EA
Le 0 0 EA

Le 0 0

0 −GA∗

Le
GA∗

2 0 GA∗

Le
GA∗

2

0 −GA∗

2
GA∗Le

4 − EIy
Le 0 GA∗

2
GA∗Le

4 +
EIy
Le


, (5.78)

and the element mass matrix

Me =



ρALe

3 0 0 ρALe

6 0 0

0 ρALe

3 0 0 ρALe

6 0

0 0
ρAIyLe

3 0 0
ρIyLe

6

ρALe

6 0 0 ρALe

3 0 0

0 ρALe

6 0 0 ρALe

3 0

0 0
ρIyLe

6 0 0
ρIyLe

3


, (5.79)

where we assume that nodal displacements are arranged in the following order

re = {u1, w1, ϕ1, u2, w2, ϕ2}T. (5.80)

We described how to solve the set of differential equations by the finite element method
in this section, but we used engineering variant of this approach. It is also good to
emphasize its links to mathematical variant of this method. Ritz method [11] finds the
solution of ODE in form

f(x) =
n∑
i=1

αigi(x), (5.81)

where gi(x) are chosen continuous functions. The set of αi is obtained by minimizing
energy of the system. FEM is based on Ritz method, but functions gi(x) are chosen non
zero only on small region. Example of two such functions is illustrated in Figure 5.3,
where we can interpolate solution in interval 〈3, 4〉 by linear combination by these two
functions. In the context of the previous (engineering) approach, the function gi(x) for
i-th node can be seen as the combination of the corresponding shape functions on the
neighboring elements and assumed zero elsewhere, recall f1(x) from Figure 5.3 extended
to domain 〈0, 10〉. Consequently, values of constants αi represent nodal displacements.

5.5 Multi-layer model

In the previous section we have formulated the Mindlin beam element with a homoge-
neous cross section. But laminated glass beams have the multilayered cross section. In
this section we restrict our considerations to three-layered beams –two solid glass plate
and one viscous interlayer– and formulate super element for this case. We start from
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Figure 5.3: Example of two approximation functions in finite element approach

the Mindlin beam element for each layer and define additional constraints to enforce
deformation continuity on the glass-polymer contact. One way is to use the Lagrange
multipliers for assembling the constrained energy functional, where in the additional La-
grange multipliers have a physical meaning of the force between layers, see [20]. But in
this case this method is unnecessarily complex and we add additional degrees of free-
dom to the system. Therefore we enforce the continuity between layers by kinematic
conditions which are easily expressed for this case.

Let’s index the generalized displacements of the left edge nodes by odd numbers and of
right nodes by even numbers, see Figure 5.4a.

(a) (b)

Figure 5.4: Kinematics of layered multi-node beam

If we arrange the generalized nodal displacements into vector in the following order

re = {u1, w1, ϕ1, u2, w2, ϕ2, u3, w3, ϕ3, u4, w4, ϕ4, u5, w5, ϕ5, u6, w6, ϕ6}T, (5.82)

for simple unconstrained case we get the following stiffness and mass matrices

Ke
s =

Ke
1 0 0
0 Ke

2 0
0 0 Ke

3

 , (5.83)

Me
s =

Me
1 0 0

0 Me
2 0

0 0 Me
3

 , (5.84)

where Ke
i and Me

i are matrices for the i-th layer. Assuming the layers are independent,
we get the off diagonal terms equal to zero. To arrive of the constrained problem we
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introduce restrictive conditions. For practical applications the sandwich beam is assumed
incompressible in the transverse direction so relative vertical displacements of nodes in
one cross section are negligible. Therefore we get the set of constraints

w1 = w3 = w5, (5.85)
w2 = w4 = w6. (5.86)

Next we need to enforce the continuity of horizontal displacements ui at the interfaces.
Such a situation is illustrated in Figure 5.4b, where the deformed face of the left end of
the beam element is drawn. Kinematic constraints then read

ϕ1
h1

2
+ u1 = −ϕ3

h2

2
+ u3, (5.87)

ϕ3
h2

2
+ u3 = −ϕ5

h3

2
+ u5, (5.88)

ϕ2
h1

2
+ u2 = −ϕ4

h2

2
+ u4, (5.89)

ϕ4
h2

2
+ u4 = −ϕ6

h3

2
+ u6. (5.90)

Now we have 18 degree of freedom on one beam element and 8 restrictive conditions.
It follows that only 10 degrees of freedom are independent. Several combinations are
permissible but we choose the following master degrees of freedom

rem = {u1, w1, ϕ1, u5, ϕ5, u2, w2, ϕ2, u6, ϕ6}T (5.91)

and the remaining (slaves degrees of freedom) are determined by constraints. Now we
can construct the transformation matrix T which binds all degrees of freedom to master
degrees of freedom via relation

re = Trem. (5.92)

Now recall the equilibrium condition before the virtual displacements were eliminated

(δre)TKre + (δre)TMr̈e = 0. (5.93)

If we substitute (5.92) to (5.93) we get

(δrem)TTTKTrem + (δrem)TTTMTr̈em = 0. (5.94)

We define the super element stiffness matrix as

Ke
r = TTKe

sT, (5.95)

and the super element mass matrix

Me
r = TTMe

sT, (5.96)
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where the transformation matrix T containing the restrictive conditions is given by [21]

T =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1
2 0 h1

4
1
2 −h3

4 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

− 1
h2

0 − h1
2h2

1
h2
− h3

2h2
0 0 0 0 0

0 0 0 0 0 1
2 0 h1

4
1
2 −h3

4
0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 − 1
h2

0 − h1
2h2

1
h2
− h3

2h2
0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1



. (5.97)

The global stiffness and mass matrices are again obtained by the localization process

Kr = Loc〈Ke
r〉e Mr = Loc〈Me

r〉e. (5.98)

5.6 Viscoelastic beam

The last step in the formulation of the finite beam element for the laminated glass is
extension to viscoelasticity. We mentioned earlier that the transition to viscoelastic
beam for modal analysis can be done by assuming complex modulus G∗(ω) ∈ C instead
of real elastic shear modulus G ∈ R. Note that the complex modulus is also frequency
dependent. This modification is performed on unconstrained matrix Ke

s, so the three
layer glass-polymer-glass beam has the following super element stiffness matrix

Ke
r = TTKe

sT, (5.99)

where

Ke
s =

Ke
1 0 0
0 Ke

2(G∗2(ω)) 0
0 0 Ke

3

 . (5.100)

Matrices Ke
1 and Ke

3 are real and remain the same as in equation (5.78), while viscoelastic
members are added in submatrix Ke

2. This matrix can be decomposed into linear and
nonlinear part but in this manner we first decompose the complex shear modulus, defined
by equation (2.47), to arrive at

G∗(ω) = G∞ +
n∑
i=1

Gi︸ ︷︷ ︸
G0

−
n∑
i=1

Gi
1

ω2t2c,i + 1
+ i

n∑
i=1

Gi
ω2t2c,i

ω2t2c,i + 1︸ ︷︷ ︸
Gω(ω)

, (5.101)
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where G0 is the frequency independent part and Gω(ω) is the complex, frequency de-
pendent part. Then the stiffness matrix can be also decomposed to

Kr(ω) = Kr,0 + Kr,ω(ω), (5.102)

and further
Kr(ω) = G0Kr,c +Gω(ω)Kr,c, (5.103)

where Kr,c is the matrix of constants. It is straightforward to show that matrix Ke
r,0 is

2(1+ν)A
Le 0 0 −2(1+ν)A

Le 0 0

0 A∗

Le −A∗

2 0 −A∗

Le −A∗

2

0 −A∗

2
A∗Le

4 +
2(1+ν)Iy

Le 0 A∗

2
A∗Le

4 − 2(1+ν)Iy
Le

−2(1+ν)A
Le 0 0 2(1+ν)A

Le 0 0

0 −A∗

Le
A∗

2 0 A∗

Le
A∗

2

0 −A∗

2
A∗Le

4 − 2(1+ν)Iy
Le 0 A∗

2
A∗Le

4 +
2(1+ν)Iy

Le


. (5.104)



Chapter 6

Dynamic analysis

In this section we use the finite element derived in section 5 to analyze the natural
frequencies and damping of laminated glass beam.

6.1 Natural vibration analysis

Basic natural vibration is represented by equation (5.69), but it was derived based on
not so strong assumptions, so we show the validity of this equation by a more general
principle.

Theoretical physics, specifically Lagrangian mechanics, promotes such a way of view. La-
grangian mechanics can be used as general principle of mechanical systems. Lagrangian
[22] is a special function of time, all generalized coordinates and all generalized veloc-
ities in general. For mechanical systems, there is mostly no time dependency and the
Lagrangian is equal to the difference between the sum of kinetic energies and the sum of
potential energies, so

L(ri, ṙi) =
∑
i

Ek(ṙi)−
∑
i

Ep(ri), (6.1)

where L(ri, ṙi) is the Lagrangian. In our system no external forces are applied and the
internal forces have character of a linear springs, so the potential energy is given as a
sum of the elastic stored energies. Then, the Lagrangian is given as

L(ri, ṙi) =
∑
i

1

2
miṙi −

∑
i

1

2
kiri, (6.2)

where ri are generalized coordinates. We can imagine that each nodal degree of freedom
in our system is one of the generalized coordinates and energies of this discrete system
can be expressed via mass and stiffness matrices in quadratic form

L(rm(t), ṙm(t)) =
1

2
ṙm(t)TMṙm(t)− 1

2
rm(t)TKrm(t), (6.3)

where rm is the vector of global master degrees of freedom. The Lagrange equation can
be extended to more dimensions as well to give the form

∂L
∂rm

− d

dt

∂L
∂ṙm

= 0. (6.4)

51
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This equation is a general expression of a stationary condition of the system, which is
described via Lagrangian L. We can enforce the stationary condition by substituting the
Lagrangian into the Lagrange equation. For case (6.3) we get

∂L
∂rm

− d

dt

∂L
∂ṙm

= −Krm(t)− d

dt
Mṙm(t) = −Krm(t)−Mr̈m(t) = 0, (6.5)

Therefore, we get the same result as earlier in equation (5.69).

Krm(t) + Mr̈m(t) = 0. (6.6)

This is the global equilibrium condition for our system and the solution of this equation
describes its behavior. In the footsteps of classical vibration analysis [23] we prescribe
time dependencies of unknowns as a dot product of a unit vector rotating in the complex
plane and time independent amplitudes, so

rm(t) = eiωtrm. (6.7)

By differentiating this expression we get the acceleration

r̈m(t) = −ω2eiωtrm. (6.8)

With these assumptions the general equation (6.6) is transformed into

Krm(t) + Mr̈m(t) = Krm − ω2Mrm =
(
K− ω2M

)
rm = 0. (6.9)

We are searching for such r which satisfies equation (6.9), while r must be non trivial.
From mathematical point of view it is the task of searching for eigenvalues. Equation
(6.9) has two possible solutions depending on the bracket form. Either it does not have
a solution or it has infinitely many solutions (not arbitrary). The second case is what we
are looking for. To guarantee existence of a nontrivial solution the system of equations
has to be singular and thus

det
(
K− ω2M

)
= 0. (6.10)

From this identity we can obtain eigen-values (i.e. modal frequencies) and then eigen-
vectors (i.e. modal shapes) can be calculated from (6.9). Their evaluation can be rel-
atively expensive but not impossible. The situation becomes more complicated if we
include viscous interlayer. This is discussed in the next section.

6.2 Application to elastic-viscoelastic-elastic beams

Considering complex and frequency dependent stiffness matrix, the updated eigenvalue
problem is provided by (

G0Kr,c +Gω(ω)Kr,c − ω2Mr

)
rm = 0. (6.11)

For a well-posed problem we must add a normalization condition. The form of this
identity is not very important for the solution but can be important for the conver-
gence. We used condition that eigen-vector belonging to the complex frequency must be
perpendicular to real solution, taken from [24], written as

rT0 (rm − r0) = 0, (6.12)
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where r0 is the real solution, that means the solution of the eigenvalue problem(
Kr,0 − ω2

0Mr

)
r0 = 0. (6.13)

We can summarize our problem into the following three equations(
Kr,0 +Gω(ω)Kr,c − ω2Mr

)
rm = 0,

rT0 (rm − r0) = 0,(
Kr,0 − ω2

0Mr

)
r0 = 0.

(6.14)

(6.15)

(6.16)

6.3 Numerical solution

We can assume that the solution of the third equation (6.16) can be evaluated analytically
or numerically directly (from a mathematical software for example) and that we know
its solution r0 and ω0. Remaining two equations must be solved numerically employing
complex numbers. We used the Newton method to solve it. We do not describe the
principle of Newton method but it can be found in Appendix A. Employing the Newton
method in each iteration step of the nonlinear problem f(x) = 0 we get the updating
formula

x(k+1) = x(k) + ∆x(k+1), (6.17)

where the increment is given by linearization

J(x(k))∆x(k+1) = f(x(k)). (6.18)

Our system has two unknowns, scalar frequency ω (note that ω ∈ C) and eigenvector
rm. The incremental equation for our system can be expressed as(

r
(k+1)
m

ω(k+1)

)
=

(
r

(k)
m

ω(k)

)
+

(
∆r

(k+1)
m

∆ω(k+1)

)
, (6.19)

where the Jacobian matrix J can be obtained by differentiation the left hand side of
equations (6.14) and (6.16). We get

J(r(k)
m , ω(k)) =

(
Kr(ω

(k))− (ω(k))2Mr

(
∂Gω
∂ω (ω(k))Kc − ω(k)2Mr

)
r

(k)
m

rT0 0

)
(6.20)

and the iterative process becomes

J(r(k)
m , ω(k))

(
∆r

(k+1)
m

∆ω(k+1)

)
= −

((
Kr(ω

(k))− (ω2)(k)Mr

)
r

(k)
m

rT0

(
r

(k)
m − r0

) )
. (6.21)

This iterative Newton process for nonlinear systems is illustrated in pseudo code in
algorithm 1. We emphasize that this analysis is performed in the complex domain and
the obtained frequency is also complex. Now, we need to get some relation between
the complex number from the Newton iteration method and real natural frequency and
damping. From numerical solution we have the i-th modal frequency in the complex
expression

ω2
i = a+ ib, (6.22)
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Algorithm 1: Newton method for solving eigenvalue problem, taken from [25]
Data:
Set tolerance ε;
Assemble K0, Kc, M;
Get r0, ω0 solving

(
Kr,0 − ω2

0Mr

)
r0 = 0;

for MODE i do
initialization: k ← 0, ω(0) = ω0, r(0) = r0;
while ε(k) > ε do

evaluate: Gω(ω(k)), ∂Gω
∂ωk

;
get ∆ω(k+1), ∆r(k+1) by solving (6.21);
update ω(k+1) ← ω(k) + ∆ω(k + 1);
update r(k+1) ← r(k) + ∆r(k + 1);

calculate ε(k) =
||(Kr(ω(k+1))−(ω(k+1))2M)r(k+1)||2

||r(k+1)||2
;

k ← k + 1;
end
ω ← ω(k);
rm ← r(k);

end

where

a = Re
(
ω2
i

)
, b = Im

(
ω2
i

)
. (6.23)

We know that each point vibrates with the same angular frequency. Its displacement
depend on time and can be expressed using the Euler identity as

r(t) = Aeiωit, (6.24)

where A is the real initial amplitude. Now we can substitute our complex angular
frequency in form a+ ib into this equation to get

r(t) = Aei
2√a+ibt. (6.25)

Note the square root in the exponent. This is quite unpleasant but fortunately it usually
holds a � b for laminated glass with viscous interlayer. Therefore we can expand the
square root function into the binomial series and take only the first two terms without
loss of accuracy, so the expansion becomes

2
√
a+ ib = 2

√
a

2

√
1 + i

b

a
≈ 2
√
a

(
1 + i

b

2a

)
. (6.26)

We can substitute this approximation back into equation (6.25) to get

r(t) = Aeiωt = Aei
√
ate−

√
a(b/2a)t. (6.27)

The exponent in the first term is an imaginary number, so it corresponds to oscillatory
properties of the system, meanwhile the exponent in the second term is real and corre-
sponds to the amplitude decline in time, i.e. to the damping. It follows that the real
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natural frequency is frequency of the first exponential term, so

ωi = 2
√
a = 2

√
Re(ω2

i ), (6.28)

where ωi is real natural frequency of the i-th mode. Similarly we can investigate the
value of damping. If we label the time dependent amplitude as B we get from (6.27) the
following identity

B(t) = Ae−αt = Ae−
√
a(b/2a)t, (6.29)

where α is called the rate of exponential decay and for this case is equal to

α = 2
√
a
b

2a
. (6.30)

Finally, in dynamic systems, damping is characterized via damping ratio [23], which is
defined as a fraction of exponential decay rate and natural frequency, so for damping
ratio ζ we get the following final identity

ζ =
α

ωi
= 2
√
a
b

2a

1

2

√
Re(ω2

i )
= 2
√
a
b

2a

1
2
√
a

=
b

2a
=

Im(ω2
i )

2 Re(ω2
i )
, (6.31)

and if we define the loss factor as η = b/a we get

ζ =
η

2
. (6.32)

This identity is derived with the assumption that b� a. This assumption is acceptable
for damping up to 5%, but for more dampened systems, more accurate relationship must
be employed. More accurate relation between the loss factor η and damping ratio ζ
comes from [26]

η = 2ζ 2
√

1− ζ2. (6.33)

In our case the first expression is sufficiently accurate and we utilize it in the modal
analysis described in the next section.





Chapter 7

Validation

We have now prepared everything for the validation of our model via experiments. In
this chapter we describe natural frequency experiments performed on laminated glass
beams and we discuss the results presented in [25]. We also show comparison with the
results from our numerical models.

7.1 Experiment setup

In this section we limit our attention to only one boundary condition of beam, namely
free-free beam (without supports). To simulate these conditions, a laminated glass beam
was suspended on a pair of soft strings as shown in Figure 7.1. Four beams were tested,

Figure 7.1: Experimental setup for simulation of free-free boundary conditions

two types of foils (EVA and PVB) and two types of glass plates (float glass and heat
strengthened). Experiment scenario was the same for all of these specimens and it
proceeded in the footsteps of [27]. A miniature piezoelectric accelerometer type 4519-
003 was stick to one corner of the laminated glass plate. After that the sample was
impacted by a impact hammer type 8206 at points placed evenly in grid 3x9 (27 points).
From the accelerometer we obtained a set of frequency response functions and the post-
processing software MEscopeVES extracted the modal parameters, specifically natural
frequencies and half of bandwidth. Meaning of these parameters is illustrated in Figure
7.3, where energy is plotted as a function of frequency. In the post-processing software
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the energy boundary for bandwidth is set to 3dB. If we denote half of the bandwidth as
σit holds

2σ = ∆ω = ω2 − ω1 [rads−1]. (7.1)

Based on the solution of damped oscillator we can compute damping ratio by formula

ζ =
σ

2
√
ω2
c + σ2

[%]. (7.2)

From the experiment we obtained first six modal shapes (three bending and three tor-
sional) for each specimen, see Figure 7.2, showing the output from the post-processing
software MEscopeVES. In the next section the results for EVA and PVB types of lami-
nated glass are discussed individually. Numerical calculations were performed based on
the model presented in the previous chapters.

Bending mode shapes Torsional mode shapes

Figure 7.2: First six mode shapes from MEscopeVES software on tested 3x9 grid

Mechanical properties of solid glass layers are the same despite tempering process, so we
consider that both types of glass plates (float glass and heat strengthened) are described
by the same parameters, which are summarized in table 7.1, where density ρ and Poisson’s
ratio is taken from [28] and Young’s modulus was measured by nano indentation using
T750 Hysitron TriboIndenter in the Centre of Excellence Telč.
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Figure 7.3: Bandwidth of damped system with 3dB level

Parameter Label Value
Density ρ1 = ρ3 [kgm−3] 2500
Young’s modulus of elasticity E1 = E3 [GPa] 76.6
Poisson’s ratio ν1 = ν3 [-] 0.22

Table 7.1: Mechanical properties of solid glass layers

7.2 EVA and PVB foil

Material parameters for the viscoelastic foil were taken from rheometer measurements
by a processing calibration, see Chapter 3 and Chapter 4, and the resulting prony series
and other fitted parameters are summarized in tables 7.2 and 7.3. Density is taken from
the manufacturer and the reference temperature is set to 20◦C.

Parameter Label EVA PVB
Density ρ2 [kgm−3] 950 1100
Long-term shear modulus G∞ [kPa] 1009 85.1
Poisson’s ratio ν2 [-] 0.49 0.49
Reference temperature T0 [◦C] 20 20
Parameter C1 C1 [-] 113 234
Parameter C2 C2 [◦C] 404 1341

Table 7.2: Mechanical properties of EVA foil interlayer

EVA
tc,i Gi[kPa] tc,i Gi[kPa]

10−3 1177 104 126
10−2 447 105 425
10−1 265 106 203
100 323 107 224
101 267 108 206
102 350 109 133
103 411 1010 278

PVB
tc,i Gi[kPa] tc,i Gi[kPa]

10−3 952 104 132
10−2 869 105 28.9
10−1 2400 106 76.8
100 5010 107 47.5
101 2479 108 9.9
102 650 109 160
103 130

Table 7.3: Prony series for EVA and PVB foils
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Natural frequency [Hz] Damping ratio [%]
Mode EVA-HS EVA-AN EVA-NM EVA-HS EVA-AN EVA-NM

1st bending 80.32 81.08 82.26 1.298 1.286 0.70
2nd bending 182.4 183.8 182.37 2.298 2.252 0.99
3rd bending 318.0 320.3 317.05 2.302 2.218 0.96

Table 7.4: Experiment and numerical results for laminated glass with EVA foil

Natural frequency [Hz] Damping ratio [%]
Mode PVB-HS PVB-AN PVB-NM PVB-HS PVB-AN PVB-NM

1st bending 92.33 92.48 90.54 1.231 1.270 0.85
2nd bending 247.9 248.0 215.14 2.611 2.648 1.23
3rd bending 471.2 470.5 372.78 3.656 3.658 1.21

Table 7.5: Experiment and numerical results for laminated glass with PVB foil
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Figure 7.4: Quantile-quantile plots for storage and loss moduli of laminated glass
with EVA foil and errors

The results from experiments and numerical calculations for both interlayer types are
presented in tables 7.4 and 7.5, where only the bending modes are compared because the
beam theory derived in Section 5 does not describe torsion effects. Suffix AN (Annealed
glass) and HS (Heat strengthened) belongs to experiments and suffix NM means the
Newton method, i.e. the method actually used in the analysis. The comparison of the
results is provided in the form of graphs in Figures 7.4 and 7.5. The first row contains
quantile-quantile plots for the storage and loss moduli, where the dashed line represents
perfect match of experiments and numerical models. The second row presents errors of
experiments due to computation model.
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First, note that the experimentally obtained and computed natural frequencies relatively
match each other. Although the third mode of laminated glass plate with PVB foil has
high error, other cases have reasonable error. But it is not true for the estimation of loss
factor (or damping ratio), where the relative difference between experiment and model
goes up to 80%. These hight errors have several possible sources and are still under
investigation. We plan to perform the same experimental modal analysis with a single
monolithic glass to obtain the level of damping in hinges. The problem can be also in
rheometer experiments because rheometer measures the storage and loss modulus with
the same absolute error. Since the loss modulus is relatively small it is significantly less
certain than the storage modulus. In future, we plan to develop approach, which could
solve this issue.
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Figure 7.5: Quantile-quantile plots for storage and loss moduli of laminated glass
with PVB foil and errors





Chapter 8

Conclusions

This chapter shortly summarizes the thesis and concludes what we have learned.

A brief history of glass and the path of laminated glass invention is introduced in chapter
1. The theory of viscoelasticity for modal analysis is outlined in chapter 2 where the
integration of the temperature influence into the model is also introduced. Chapters 3
and 4 are focused on the rheometer experiments and post processing of the measurement
data. The calibration of the Maxwell model from chapter 2 leads to fully described model
for a viscous interlayer. The remainder of the text is a transition from the material
point description to the analysis of laminated glass beams at a structural level. In
chapter 5 the Mindlin beam element is derived and the super element for a three-layer
beam with viscoelastic interlayer is assembled. These elements are used for dynamic
natural vibration analysis in the next section and natural frequencies and loss factors
are calculated by the Newton method. In the last chapter the validation of the model is
performed against experimental measurements of unsupported beams. The thesis covers
three main steps of research: A mathematical model for the material and the structure
is defined first. Then experimental measurements are performed. Finally the model is
compared to the experimental data to validate it.

The thesis is focused on creating laminated glass model suitable mainly for natural vi-
bration analysis. However, extension to arbitrary temperature and time dependent case
with a general right hand side is a relatively inexpensive matter. Major part of the thesis
is about polymer viscoelasticity under harmonic loading and about calibration process
because the material model of the polymer ply is an important component of structural
analysis. In chapter 3, experimental setup for cylindric samples drilled out from lam-
inated glass table is introduced. Rheometer device is not designed primarily for this
type of experiment and modification of interpreting the data and measurement process
is necessary. In chapter 3 an appropriate procedure is designed and transformation for
software data is derived. In the next chapter the results for EVA and PVB type of
polymer interlayer are presented and post processing is performed. Complex modulus
G composed of storage modulus G′ and loss modulus G′′ is evaluated. Experimental
data behave strangely for frequencies above 50 Hz. This was observed for all specimens
regardless of the polymer type. This is probably caused by inaccuracy of the rheometer.
Therefore only the data for lower frequencies were used for the calibration process for
finding the Maxwell chain parameters. In thesis the calibration process is design and its
results are presented. For PVB foil the calibration was accurate for fitting the storage
modulus as well as the loss modulus. The model accurately describes the temperate
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and time dependency of the foil. The EVA storage modulus calibration also gives a
good match with the experimental data but the errors in the loss modulus are quite
high. Moreover this type of polymer exhibits hysteresis and its parameters evolve with
loading history. This phenomenon can not be described with the presented viscoelastic
model. In future we plan to continue in the experimental research utilizing more accurate
rheometer device.

The second part of the text employs the finite element method for natural vibration
analysis of laminated glass beams. Investigation is focused on evaluating natural fre-
quencies and damping parameters, i.e. the loss factor and the damping ratio. Chapter 5
derives the viscoelastic layer beam super element. This step reduces number of degrees
of freedom and simplifies the analysis. In next two chapters natural vibration analysis
is performed on laminated glass beams. Both the experimental program and numerical
model are described, and the comparison of the numerical results with the measurements
is presented in the last chapter. For prediction of natural frequencies, the model match
the experiment and the errors are relatively low. For PVB foil error is up to 3%. For
second type of interlayer, the results give small error for the first mode shape but for the
second and third eigenvalues the error increases. For the third mode shape this value is
about 20%. Taking into account that the first mode shape is the most important, these
errors are acceptable. Higher errors order we get for prediction of damping. For both
types of foil the error in loss factors was obtained about 40-70%. This phenomenon has
not been explained by our model with calibrated parameters of the generalized Maxwell
model from rheometer. In further investigation we focus on two possible effects that can
negatively influence the model. First, the loss modulus is smaller by orders compared
to the storage modulus and it is measured by rheometer with a higher absolute error.
New rheometer measurements on cylindrical specimens may improve the loss modulus
estimation and consequently it can improve the predicted damping at a structural level.
Second, we assume that the solid glass does not dampen and the energy dissipation takes
place only in the interlayer. We plan in future to performed similar modal analysis on
a solid layer glass table and measure damping. It will show whether our assumption
is valid or not. Further research will focus on the improvement of the mathematical
description and on the accuracy improvement of the experimental process.



Appendix A

Newton methods

In thesis the Newton method is used in two versions. This appendix briefly shows, how
this method works. We begin with the basic 1D Newton method for finding zero value
of f(x) (see A.1). In the next iteration step we find a point x(s+1), where the tangent
line at x(s) is zero.

Figure A.1: Newton method graphically

So, for the next iteration step we get

x(s+1) = x(s) − f(x(s))

f ′(x(s))
. (A.1)

We can extend this 1D problem to n-dimensional space, where we are looking for a zero
value of a vector function F (β), where β is an n-dimensional base vector. Inverse of the
first derivative f ′(x) is extended to inverse of the Jacobian matrix, so we get

β(s+1) = β(s) − J−1
F F (β(s)), (A.2)

where we want to find a vector β∗ for which F (β∗) = 0 or at least ||F (β∗)||2 < ε.
Value ε is a sufficient error. The Newton method in form (A.2) is used in chapter 6 for
solving natural vibration problem, where the complex analysis is performed. But, it can
be shown, that nothing changed when β, F (β) ∈ C. Chapter 3 also introduces a non-
linear calibration problem, which is based on the Newton method. It is an optimization
problem, so we do not want to find a zero point, but a minimal point (point, where the
first derivative is zero). Consequently, the first order Jacobian matrix J is changed to
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the second order Hessian matrix H, so equation (A.2) can be rewrites as

β(s+1) = β(s) −H−1
F f(β(s)), (A.3)

where
f(β(s)) =

∂

∂β
F (β(s)). (A.4)

This calibration process is an optimization problem in the form

F (β) = rT(β)r(β), (A.5)

so we can substitute it into (A.4) to get

f(β) =
∂

∂β
rT(β)r(β) = 2rT(β)

∂r(β)

∂β
≡ 2JTr (β)r(β), (A.6)

and for the Hessian matrix H we obtain (for simplicity we use tensor notation)

Hij = 2
m∑
i=1

(
∂ri
∂βj

∂ri
∂βk

+ ri
∂2ri

∂βj∂βk

)
, (A.7)

where the second order member is neglected and finally we arrive at the expression for
the Hessian matrix

HF (β) ≈ 2Jr(β)TJr(β). (A.8)

Putting all pieces together provides the final iteration identity for this method called the
Gauss-Newton algorithm, so

β(s+1) = β(s) −H−1
F (β(s))f(β(s)) = β(s) − (JTr (β(s))Jr(β

(s)))−1JTr (β(s))r(β(s)). (A.9)



Appendix B

Gauss-Newton method for fitting

In this appendix the Jacobian of Gauss-Newton method for the calibration process is
presented. If we have n cells in the generalized Maxwell chain and m is number of
measurements, we get the following Jacobian matrix

J =



∂r1

∂G1
. . .

∂r2m

∂G1

... . . .
...

∂r1

∂Gn
. . .

∂r2m

∂Gn
∂r1

∂G∞
. . .

∂r2m

∂G∞
∂r1

∂C1
. . .

∂r2m

∂C1

∂r1

∂C2
. . .

∂r2m

∂C2



, (B.1)

where for j ∈ 〈1,m〉 it holds

∂rj
∂Gi

=
(aTωj)

2t2c,i
(aTωj)2t2c,i + 1

, (B.2)

∂rj
∂G∞

= 1, (B.3)

∂rj
∂C1

=

n∑
i=1

Gi
2aTω

2
j t

2
c,i(

a2
Tω

2
j t

2
c,i + 1

)2

∂aT
∂C1

, (B.4)

∂rj
∂C2

=
n∑
i=1

Gi
2aTω

2
j t

2
c,i(

a2
Tω

2
j t

2
c,i + 1

)2

∂aT
∂C2

, (B.5)

and for j ∈ 〈m+ 1, 2m〉
∂rj
∂Gi

=
aTωjtc,i

(aTωj)2t2c,i + 1
, (B.6)
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∂rj
∂G∞

= 1, (B.7)

∂rj
∂C1

=
n∑
i=1

Gi
ωjtc,i(1− a2

Tω
2
j t

2
c,i)(

a2
Tω

2
j t

2
c,i + 1

)2

∂aT
∂C1

, (B.8)

∂rj
∂C2

=
n∑
i=1

Gi
ωjtc,i(1− a2

Tω
2
j t

2
c,i)(

a2
Tω

2
j t

2
c,i + 1

)2

∂aT
∂C2

. (B.9)

And where
∂aT
∂C1

= aT (T )
TR − T

C2 + T − TR
ln 10, (B.10)

∂aT
∂C2

= aT (T )
C1(T − TR)

(C2 + T − TR)2
ln 10. (B.11)

The Gauss-Newton method algorithm is written in pseudo code in algorithm table 2.

Algorithm 2: Gauss-Newton method for solving calibration problem
Data:
Set tolerance ε;
Set initial guess β0;
initialization: k ← 0, β(0) = β0;
while ε(k) > ε do

evaluate: Jr(β(k));
evaluate residuum r(β(k));
update β(k+1) ← β(k) −

(
JTr (β(k))Jr(β(k))

)−1
JTr (β(k))r(β(k));

calculate ε(k) = ||β(k+1) − β(k)||2;
k ← k + 1;

end
β ← β(k);
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