CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF CIVIL ENGINEERING

MASTER'S THESIS

2018

KATEŘINA SOUKUPOVÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavební Thákurova 7, 166 29 Praha 6

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE		
Příjmení: Soukupová J	Iméno: Kateřina	Osobní číslo: 410831
Zadávající katedra: Katedra ocelových a dřevěnýc	h konstrukcí	
Studijní program: Stavební inženýrství		
Studijní obor: Konstrukce a dopravní stavby		
II. ÚDAJE K DIPLOMOVÉ PRÁCI	E	-
Název diplomové práce: Posouzení a zatížitelnos	t železničního mostu v	Praze Motole
Název diplomové práce anglicky: The assesment	t and the load capacity of	of the bridge in Prague - Motol
Pokyny pro vypracovaní: Provedení prohlídky mostní konstrukce a posouzer Dále pak vytvoření prostorového výpočetního mod Posouzení výsledků podrobného výpočtu a zjednoc Zpracování přehledných výkresovů mostu.	ií jejího stavu. lelu a stanovení zatížite lušeného ručního posou	lnosti mostu. uzení.
Seznam doporučené literatury: METODICKÝ POKYN PRO URČOVÁNÍ ZATÍŽ	ŽITELNOSTI ŽELEZN	NČNÍCH MOSTNÍCH OBJEKTŮ. 2015.
Jméno vedoucího diplomové práce: doc. Ing. Pav	vel Ryjáček, Ph.D.	
Datum zadání diplomové práce: 9.10.2017	Termín odevzdá Údaj uveďte v soula	ní diplomové práce: 7.1.2018 adu s datem v časovém plánu příslušnéhý ak. roku
Pátrois yetrouciho prace		Podpis vedoucího katedry

III. PŘEVZETI ZADANÍ

Beru na vědomí, že jsem povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je nutné uvést v diplomové práci a při citování postupovat v souladu s metodickou příručkou ČVUT "Jak psát vysokoškolské závěrečné práce" a metodickým pokynem ČVUT "O dodržování etických principů při přípravě vysokoškolských závěrečných prací".

10.10.2017

Datum převzetí zadání

Podpis studenta(ky)

Statutory declaration

I declare that I have developed and wrote the enclosed master's thesis completely by myself and that I have listed all the information sources used in accordance with the Methodological Guideline of the Ethics of Higher Education Final Works. I also agree with the possible publication of the results of the thesis.

In Prague, 4th January 2018

.....

signature of the author

Acknowledgement

I would first like to thank my thesis advisor doc. Ing. Pavel Ryjáček, Ph.D. for valuable advice and expert comments when consulting my master's thesis.

I also have to express my deep gratitude to my family, especially my parents, and Eduard Karmazín for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of writing this thesis. This accomplishment would not have been possible without them.

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Posouzení a zatížitelnost železničního mostu v Praze Motole

Master's thesis

Department: Department of Steel and Timber Structures Study program: Structural and Transportation Engineering

Thesis supervisor at CTU in Prague: doc. Ing. Pavel Ryjáček, Ph.D. *Thesis supervisor at TUM in Munich: Dr.-Ing. Joseph Ndogmo*

Kateřina Soukupová

Prague 2018

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Master's thesis

A.O. Title sheets

Abstract

The topic of this master's thesis is an assessment of a steel railway bridge at stationing 12,478 km of the existing line Smíchov-Hostivice in Prague. The bridge consists of a box girder with an orthotropic bridge deck and a track ballast. It is a simply supported beam with a span of 42,8 meters carried by four cast-iron bearings on massive concrete abutments. In the area of the bridge the axis of the rail runs in a shape of a spiral. The road under the bridge is horizontally curved. The axes are in angle 35°. First part of the thesis is an inspection and diagnostics of the bridge. Consequently, all parts of steel structure are calculated and load capacity in assessed.

Key words

steel structure railway bridge orthotropic bridge deck load capacity box girder buckling and shear lag

Abstrakt

Předmětem této diplomové práce je posouzení ocelového železničního mostu ve staničení 12,478 km stávající trati Smíchov-Hostivice v Praze. Most je tvořen komorovým nosníkem s ortotropní mostovkou a kolejovým ložem. Jedná se o prostě podepřený nosník o rozpětí 42,8m podepřený čtyřmi ocelolitinovými ložisky na masivních betonových opěrách. V místě přemostění je osa železniční trati v přechodnici. Silniční komunikace pod mostem leží v oblouku. Úhel os v místě křížení je 35°. První částí diplomové práce je prohlídka mostní konstrukce a posouzení jejího stavu. Následně jsou posouzeny všechny části ocelové konstrukce a je stanovena zatížitelnost.

Klíčová slova

ocelová konstrukce železniční most ortotropní mostovka zatížitelnost komorový most boulení a smykové ochabnutí

Attachment list:

Part A.0: Title sheets Part A.1: Technical report of bridge inspection Part A.2: Detailed static analysis

Part B: Preliminary static analysis

Part C: Drawing documentation

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Master's thesis

A.1. Technical report of bridge inspection

Contents

1	Introduction					
2	2 Description of construction					
3	Sub	structure	6			
4	Sup	erstructure	8			
5	Equ	lipment of bridge	8			
	5.1	Drainage	8			
	5.2	Floors on maintenance walkways	9			
	5.3	Railing	9			
	5.4	Maintenance equipment	10			
	5.5	Other equipment	10			
6	Veri	ification of used materials	10			
	6.1	Used equipment and measurement method	10			
	6.2	Results of measurement	11			
7	Con	clusion	12			
	7.1	Recommended repairs and maintenance	13			
Li	st of u	ised literature	14			
Li	st of p	pictures	15			

1 Introduction

The topic of my master's thesis is an assessment of a railway bridge on a track between Prague-Smíchov and Hostivice (km 12,478). The bridge was built in year 1980 and it takes place over road JZM Motol in deep cutting. Anticorrosive coating was renewed last time in year 1983. The axis of a single track runs in spiral of curve with radius R=366m. Positive vertical alignment in direction of stationing is 11,2‰.

Under construction goes road in left curve with radius r=200m and vertical alignment is 4,55‰, it rises in direction of stationing. An angle of tangents in place of crossing point is 35°22'. Transverse slope of road is 4,5%. A width road is 16,84m. Head clearance under the bridge is 5,09m.

Picture 1-1 – position of the bridge

Picture 1-2 - view of the bridge from the direction of Nové Butovice

Kateřina Soukupová

2 Department of Steel and Timber Structures

MATERIALS:

LOAD BEARING STEEL STRUCTURE (EXCLUDING UPPER LONGITUDINAL STIFFENERS): STEEL 37 (S235) UPPER LONGITUDINAL STIFFENERS: STEEL 51 (S355) BEARINGS: CAST IRON SCREW JOINTS: HIGHT STRENGTH BOLTS 10.9

SURFACE WORKING:

OUTSIDE SURFACE:

METALIZATION IN COMPOSITION 70µZn and 150µAI SYNTHETIC SURFACE COLOR S2013

INSIDE SURFACE:

TWO LAYERS OF COLOR 02005

THREE LAYERS OF COLOR S2302-Plumbinex

STRUCTURE OF TRACK BALLAST:

TRACK BALLAST (FRACTION 16/32, DRUMED GRAVEL) ... MINIMAL THICKNESS 400mmPROTECTIVE CEMENT SCREED WITH WIRE INSERT ... THICKNESS 50mmINSULATING INSERT STICKED WITH GLUE... THICKNESS 10mmPLATE OF BRIDGE DECKKateřina Soukupová3Department of Steel and Timber Structures

A.1. Technical report of bridge inspection

CTU, Faculty of Civil Engineering

Picture 1-3 - view of the bridge from the direction of Motol

2 Description of construction

A steel box girder bridge is single span. A monorail lies on continuous ballast bed. Span of bridge is 42,8m. The construction has an upper orthotropic bridge deck. The longitudinal stiffeners have open cross section and are placed in distance of 0,56m. Cross girders are 2,4m distant.

Hight of webs of main box girder is 3420mm and their axial distance is 2800m. Flanges and webs are stiffened by cross girders and longitudinal stiffeners. Shape of superstructure is S49. Continuous rail lies on timber sleepers.

Basic parameters of construction:

- Established name: Bucharova
- <u>Coordinates of the middle of construction</u>: 50°03′39.880"N, 14°20′01.9474"E
- <u>Length of bridge</u>: 89,6m
- Length of steel construction: 44,8m
- <u>Span of bridge</u>: 42,8m
- <u>Width of bridge</u>: 6,41m
- <u>Electrification:</u> none
- Critical running speed: 70km/h
- Track class load with associated speed: C3-70
- Angle of crossing: 35°22'
- <u>Skew:</u> left
- Number of rails: 1
- Thickness of ballast bed: 400mm

Construction is welded. For screwed connection of webs of main box girder and upper cross girders are used high strength steel screws. Bridge joints are perpendicular to rail axis.

On support S1 (direction of Prague-Smíchov) is a pair of rocker type expansion bearings and on support S2 (direction Hostivice) are placed fixed bearings.

Picture 2-1 - bolted joints of box girder and cross girder

The condition of the steel structure is good, without any discovered defects. The inside of the chamber beam is dry and without corrosion. The stiffeners and the inspection footbridge are also in order. The bridge bearings on the S1 support are slightly clogged, without corrosion. Concrete under the bearings is cracked and under the left bearing on the side from the back wall is it missing. The bearings on the S2 support are polluted and the rollers are not lubricated but functional. The distance between the main beam and the back wall is 70 mm at the beginning and 115 mm at the end. There are no defects found out by a visual inspection of welds and high strength bolts. The behaviour of the structure is quiet when a train is passing. Inside the box girder is a large amount of waste.

Picture 2-2 – inspection walkway inside a bridge

A.1. Technical report of bridge inspection

CTU, Faculty of Civil Engineering

Picture 2-3 - fixed bearing (type II-P-5)

Picture 2-4 - expansion bearing (type II-V-5)

3 Substructure

Substructure of the bridge consists of massive concrete abutments without surface working (beam seat, back wall and abutment wall) and longitudinal joint. Wing walls are on surface protected by concrete plaster.

<u>Abutment S1:</u> There are traces of running water on the back wall, with vertical shrinkage cracks with a maximum width of 0,2mm. The beam seat is partly covered with waste and irregularly cracked. The concrete under the bearings is in good condition. On the abutment wall, there is a horizontal crack 1 mm wide, the masonry is polluted by illegal graffiti. Surface is irregularly cracked, water leaks through.

On the left wing wall, at the lower part is an area of about 1,0 m², where the masonry is fallen off, and an area of about 2,0m² is drained and there is a risk of further falling. At the beginning are two vertical cracks with a width up to 1 mm on the entire wing wall height, at the bottom leak a binder. On the cornice, there is a few horizontal and vertical cracks with leakage of the binder (creation of crust). The right wing wall also has horizontal and vertical cracks.

<u>Abutment S2:</u> Places with poorly compacted concrete are visible on the back wall, there are traces of running water and vertical shrinkage cracks with a maximum width of 0,2mm. The beam seat is in good condition. At the top is a horizontal crack 1mm wide.

At the end of the left wing wall the surface is fallen off in areas of $2x0,70m^2$. Vertical cracks are full height. On the cornice, there is a few of horizontal and vertical cracks with binder leakage. The right wing wall also has a vertical crack, the concrete is degraded there, the reinforcement cover is not sufficient and the reinforcement corrodes.

A.1. Technical report of bridge inspection

CTU, Faculty of Civil Engineering

Picture 3-1 – bulging wing walls – abutment S1 on the left side and S2 on the right side

Picture 3-2 - water leakage and vertical crack on abutment S2

Picture 3-3 Left: signs of poorly compacted concrete, right: water leakage by expansion joints

4 Superstructure

The track is on the bridge in a right curve with a cant of the track 34-68mm. Rails are welded and their type is S49 with a flat ribbed plate. Sleepers are made of oak timber. There are no rail joints. Between the track ballast and steel structure is protective cement screed of thickness 5cm. There are guard rails with dimension L160x100x14mm. Their distance from running surface of rails is 180-190mm.

The clamping screws of the rail fasteners are not tightened. The sleepers are cracked longitudinally, but otherwise their condition is good. The surface coating of the guard rails is damaged from 10% of the area (classification Ri 4). There is one screw missing in every joint. The track ballast is without defects.

Picture 4-1 - details of superstructure of the bridge

5 Equipment of bridge

5.1 Drainage

The orthotropic bridge deck is drained by a transverse slope 1,5% and square longitudinal draining channels fastened vertical cross girders. The water is lead along abutments to canalisation.

Drainage of a bridge deck is functional, drainage of expansion joints is damaged and the water leaks through.

A.1. Technical report of bridge inspection

Picture 5-1 - details of drainage

5.2 Floors on maintenance walkways

The floors are made of 5mm thick chequer plate attached with screws. The plate is in a good condition (Ri0), some screws are missing and some of them are corroded.

Picture 5-2 - detail of maintenance walkway

5.3 Railing

Railing is made of welded steel. It has vertical filling. Hight of the railing is 1,1m on both sides. First and last vertical profile of railing have safety coating. Length of railing is 90m without dilatation. Vertical profiles are above wing walls embedded into concrete cornice and above steel structure are they welded to ends of upper cross girders.

On the left side is the fourth post from the end of the bridge pushed out of concrete. Outside of the load-bearing structure, some welds of railing are cracked. The railing in the area of steel structure is solid.

5.4 Maintenance equipment

On support S2 (direction Hostivice) is placed a steel ladder. Anchor bolts of ladder are partially torn from the masonry of abutment. Entrance in the box girder is unsecured from both sides. There is a steel walkway inside. At the beginning and the end of walkway are the ladders for descending to the bottom of the box beam.

Picture 5-3 - maintenance ladders

5.5 Other equipment

On the outside of the web of the box girder are fixed handles, on which are fastened steel structures for advertising banners.

6 Verification of used materials

6.1 Used equipment and measurement method

A portable digital KT-C hardness tester with probe D was used to measure hardness of a materials. It allows to measure steel hardness by the Leeb method and it converts it into different scales, also to the strength of steel in MPa.

Picture 6-1 - hardness tester KT-C

For measurement, it is necessary to remove the coating layer. Therefore, the test place was always polished with an angular grinder for smooth glossy metal, as it is seen the next pictures.

Most of the construction should be made of steel S235 (360MPa tensile strength), only the longitudinal stiffeners of the orthotropic bridge deck should be made of steel S355 (tensile strength 510MPa). Since the materials are listed in the documentation of the bridge, just 10 measurements are done for each material and the average value is calculated from them.

Picture 6-2 – grinded steel surface

6.2 Results of measurement

Average values of strengths of steel are shown below:

Picture 6-3 - average values of strength – flange of box girder (left), longitudinal stiffener (right)

It can be stated, that the longitudinal stiffeners are actually made of steel with a tensile strength of 510MPa and the rest of the structure has a tensile strength 360MPa. The average results are higher than standard values. Deviations are not too big and the lower values are probably caused by imperfect abrasion of the coating.

7 Conclusion

The steel part of bridge construction is in good condition and the quality of materials is verified. Defects of concrete abutments are described above.

All parts of steel structure of the bridge are assessed and the results are introduced in the attachment A.2 Detailed static analysis. The load capacity of main box girder, longitudinal stiffener and cross girder is also calculated in B. Preliminary static analysis, it is compared with results of detailed analysis and evaluated as resembling.

The detailed static analysis consists of list of loads, material characteristics, description of computational model and assessment of all parts of steel structure. Load capacity of main box girder is verified in midspan, cross section above a support and cross section in place, where thickness of flanges changes. Assessments of cross girders, longitudinal stiffeners, stiffeners inside box girder, the plate of bridge deck and joints of these parts are included. In closing is verified load capacity of bearings and a combined response of structure and track.

During the calculation was found out, that the rigidness of longitudinal stiffeners does not meet the requirements of standard EN 1993-1-5. For this reason, a nonlinear calculation is made and it leads to conclusion, that the torsion stiffness of the stiffeners does not increase the buckling of the panels.

Construction and its components are assessed for ultimate limit state, serviceability limit state and fatigue. All parts are satisfactory for traffic load LM71. Stress in upper fibre of main box girder in midspan is determinative for load capacity of the bridge. The value is z_{LM71} =1,051 and it meets the requirement for line category of the bridge C3 with associated speed 70km/h.

7.1 Recommended repairs and maintenance

Load-bearing part of steel construction including the bearings is without corrosion weakening and the corrosion protection is in good condition (Ri 0). Operational cleaning is recommended. Surrounding of the bearings and the interior of the box girder are contaminated by waste.

Rails, timber sleepers and track ballast are also in good condition. Corrosion protection of guarding rail is damaged (Ri 4). It is necessary to renew the coating. The degree of corrosion aggression is S5-I, because the bridge runs across a road on which vehicles with spreading agents can be operated. According to regulation ČD S5/4, the protective coating system OSN15 is designed. Previously, the surface must be cleaned, required surface preparation is St3. It is recommended to tighten the screws of the rail fasteners and add the missing L-profile bolts.

Drainage along the bridge is fine. It is advisable to replace the drainage of expansion joints of the bridge in order to prevent the water from flowing down the back walls. There are missing screws of maintenance walkways, which should be added. Anchor bolts of ladder, which are torn from the masonry of abutment should be fixed.

Picture 7-1 - defects of concrete abutments

With regard to concrete supports, it would be advisable to remediate wet masonry and bulging parts, whereupon the repair of the covering concrete wall should be carried out by inserting a new fitting and concrete. A vertical crack in which corrodes the reinforcement should be repaired. In this case, remediation of the reinforced concrete structure is done by method called reprofilation using special cement mortars. It is performed in following ways: mechanical removal of degraded parts of concrete, removal of reinforcement rust and its subsequent passivation, refinement of the concrete structure to the original shape using reprofiled mortars.

List of used literature

- [1] ČSN EN 1990 ed.2 (73 0002): *Eurokód: Zásady navrhování konstrukcí*. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 100 s.
- [2] ČSN EN 1991-1-1 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-1: Obecná zatížení Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: ČNI, 2004, 44 s.
- [3] ČSN EN 1991-1-4 ed.2 (73 0035): *Eurokód 1: Zatížení konstrukcí Část 1-4: Obecná zatížení Zatížení větrem.* Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013, 124 s.
- [4] ČSN EN 1991-1-5 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-5: Obecná zatížení Zatížení teplotou. Praha: ČNI, 2005, 44 s.
- [5] ČSN EN 1991-1-7 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-7: Obecná zatížení Mimořádná zatížení. Praha: ČNI, 2007, 64 s.
- [6] ČSN EN 1991-2 (73 6203): Eurokód 1: Zatížení konstrukcí Část 2: Zatížení mostů dopravou. Praha: ČNI, 2005, 152 s.
- [7] ČSN EN 1993-1-1 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-1: Obecná pravidla a pravidla pro pozemní stavby. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 94 s.
- [8] ČSN EN 1993-1-5 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí Část 1-5: Boulení stěn. Praha:
 ČNI, 2008, 56 s.
- [9] ČSN EN 1993-1-8 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-8: Navrhování styčníků. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 120 s.
- [10] ČSN EN 1993-1-9 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí Část 1-9: Únava. Praha: ČNI, 2006, 44 s.
- [11] ČSN EN 1993-2 (73 6205): Eurokód 3: Navrhování ocelových konstrukcí Část 2: Ocelové mosty. Praha: ČNI, 2008, 102 s.
- [12] ROTTER, Tomáš a Jiří STUDNIČKA. *Ocelové mosty*. Praha: Česká technika-nakladatelství ČVUT, 2006. ISBN 80-01-03410-0.
- [13] RYJÁČEK, Pavel. *Ocelové mosty: cvičení.* V Praze: České vysoké učení technické, 2015. ISBN 978-80-01-05672-1.
- [14] SOKOL, Zdeněk a František WALD. *Ocelové konstrukce: tabulky*. 2., přeprac. vyd. V Praze: České vysoké učení technické, 2010. ISBN 978-80-01-04655-5.
- [15] STUDNIČKA, Jiří. *Ocelové konstrukce: normy*. 2. vyd. V Praze: České vysoké učení technické, 2014. ISBN 978-80-01-05489-5.
- [16] STUDNIČKA, Jiří a Milan HOLICKÝ. Ocelové konstrukce 20: zatížení staveb podle Eurokódu. Praha: Vydavatelství ČVUT, 2003. ISBN 80-01-02751-1.
- [17] Směrnice SŽDC Metodický pokyn pro určování zatížitelnost železničních mostních objektů. 2005.
- [18] UIC Code 774-3 (R): *Track/bridge Interaction, Recommentation for calculations.* Paris: International Union of Railways, 2001, ISBN 2-7461-0257-9.
- [19] TNŽ 73 6277: Ocelová ložiska železničních mostů. Ložiska odlévaná a svařovaná. Praha: Výzkumný ústav železniční, 1994.
- [20] POKORNÝ, Bohdan. Protokol o podrobné prohlídce mostního objektu provedené dle Vyhlášky MD č. 177/95 Sb., a předpisu SŽDC S5 Správa mostních objektů, 2014.
- [21] ČD S5/4 Předpis: Protikorozní ochrana ocelových konstrukcí. České dráhy. 2001.
- [22] Prováděcí project oelové konstrukce železničního mostu na komunikaci JZM-Motol, Železniční most v km 12,478 na trati Smíchov-Hostivice. Mostárna Frýdek-místek. 1978

List of pictures

Picture 1-1 – position of the bridge Picture 1-2 – view of the bridge from the direction of Nové Butavice	2
Picture 1-3 - view of the bridge from the direction of Motol	4
Picture 2-1 - bolted joints of box girder and cross girder	5
Picture 2-2 – inspection walkway inside a bridge Picture 2-3 - fixed hearing (type II-P-5)	5
Picture 2-4 - expansion bearing (type II-V-5)	6
Picture 3-1 – bulging wing walls – abutment S1 on the left side and S2 on the right side	7
Picture 3-2 - water leakage and vertical crack on abutment S2	7
Picture 3-3 Left: signs of poorly compacted concrete, right: water leakage by expansion joints	7
Picture 4-1 - details of superstructure of the bridge	8
Picture 5-1 - details of drainage	9
Picture 5-2 - detail of maintenance walkway	9
Picture 5-3 - maintenance ladders	10
Picture 6-1 - hardness tester KT-C	
Picture 6-2 – grinded steel surface	
Picture 6-3 - average values of strength – flange of box girder (left), longitudinal stiffener (right)	11
Picture 7-1 – defects of concrete abutments	13

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Master's thesis

A.2. Detailed static analysis

Contents

1	Action of	n structure	3
	1.1 Pe	rmanent loads	3
	1.1.1	Self-weight of the structure	3
	1.1.2	Other permanent loads	3
	1.2 Va	riable loads	4
	1.2.1	Traffic loads	4
	1.2.2	Distribution of traffic loads	4
	1.2.3	Dynamic analysis	6
	1.2.4	Dynamic factors	7
	1.2.5	Centrifugal forces	7
	1.2.6	Nosing force	8
	1.2.7	Actions due to traction and braking	9
	1.2.8	Actions for non-public footpaths	9
	1.2.9	Wind actions	
	1.2.10	Thermal actions	12
	1.2.11	Derailment actions	12
	1.3 Co	mbination of actions	
2	Materia	l	14
3	Comput	ational model	15
4	Static a	nalysis	18
	4.1 Bo	x girder	
	4.1.1	Effective cross section – compressive force, midspan	
	4.1.2	Effective cross section – compressive force, L=7,8m	23
	4.1.3	Effective cross section – bending moment My, midspan	27
	4.1.4	Effective cross section – bending moment M _y , L=7,8m	30
	4.1.5	Effective cross section – bending moment M _z , midspan	33
	4.1.6	Effective cross section – bending moment M_z ,L=7,8m	37
	4.1.7	Cross section in midspan	41
	4.1.8	Cross section in stationing L=7,8m	43
	4.1.9	Cross section in stationing L=0,0m	44
	4.1.10	Combination of share force and bending moment	46
	4.1.11	Resistance to transverse forces	48
	4.1.12	Fatigue	49
	4.1.13	Loading capacity	53
	4.1.14	Joints	55
	4.1.	14.1 Bolted joint of webs	55
	4.1.	14.2 Welded joint of webs	58
	4.1.15	Stability of construction	59

1 Department of Steel and Timber Structures

4.1.16	Comparative assessment of stress in a box girder	60
4.1.17	Serviceability limit state	61
4.2 Cr	oss girder	62
4.2.1	Midspan	62
4.2.2	Cross section above support	63
4.2.3	Load capacity	66
4.2.4	Bolted joint of web	67
4.2.5	Fatigue	70
4.3 Er	nd cross girder	74
4.3.1	Load capacity	76
4.4 Lo	ongitudinal stiffener	79
4.4.1	Cross section in midspan	79
4.4.2	Cross section in stationing L=7,4m	81
4.4.3	Cross section above support	83
4.4.4	Fatigue	84
4.4.5	Load capacity	86
4.5 St	iffener inside box girder	
4.5.1	Load capacity	87
4.6 Bi	idge deck	
4.6.1	Load capacity	89
4.7 Ve	erification of rigid stiffeners	90
4.7.1	Upper cross girder	90
4.7.2	Upper longitudinal stiffener	91
4.7.3	Longitudinal stiffeners of web and lower flange	91
4.7.4	End transverse stiffener of web	92
4.7.5	Transverse stiffener of web	92
4.7.6	Non -linear analysis of behaviour of longitudinal stiffener in torsion	94
4.8 Co	omparison of preliminary a detailed assessment	
4.9 Be	earings and a combined response of structure and track	97
4.10	Summary of load capacity	100
4.11	Compatibility of the interface between vehicle and infrastructure	100
5 Conclu	sion	102
List of used	literature	104
List of pictu	res	105

1 Action on structure

1.1 Permanent loads

1.1.1 Self-weight of the structure

Self-weight of the structure is autogenerated by the program SCIA Engineer for the first method of calculation, which is integration of stress on section of the bridge to get the values of internal forces.

For the second method, where a thickness of plates is changed in case of counting with effective areas of sections, is the self-weight of every part placed in the program manually according to the real weight of all beams and plates.

1.1.2 Other permanent loads

protective cement screed with liner and insulation, total thickness 5 cm m^2

$$g_{k2} = 0.05 * 24 = 1.20 kN/$$

cable trays and cables

$$g_{k3} = 2 \times 0.80 k N / m$$

track ballast, thickness 400mm

$$g_{k4} = 0.4 * 20 = 8.00 kN/m^2$$

rails and fasteners

$$g_{k5} = 1,80 kN/m$$

- external railing, non-load bearing plate on side $g_{k6} = 0,70 + 0,9 = 1,6kN/m$
- inner maintenance walkway

$$g_{k7} = 1,25kN/m$$

For permanent load are considered these deviation:

 $g_{k2,\max} = 1,2 * 1,4 = 1,68 kN/m^2$ $g_{k2,\min} = 1,2 * 0,8 = 0,96 kN/m^2$ $g_{k3,\max} = 0.8 * 1.2 = 0.96 kN/m$ $g_{k3,\max} = 0.8 * 0.8 = 0.64 kN/m$ $g_{k4,\max} = 8,00 * 1,3 = 10,40 kN/m^2$ $g_{k4,\min} = 8,00 * 0,7 = 5,60 kN/m^2$

Partial factor for permanent loads: $\gamma_{FG} = 1,25$ (coefficient for steel member, without any control, older than 30 years).

Picture 1.1-1 - maximal and minimal deviation of other permanent loads

Picture 1.1-2 – other permanent loads

1.2 Variable loads

1.2.1 Traffic loads

For traffic loads is used the load model LM71 and load classification factor α =1,00. The load is placed in the most unfavourable position for each element, alleviating effects are being neglected. For maximal effect of the wind is used the load model "unloaded train", which consists of load with a characteristic value of 10kN/m.

Partial factor for traffic loads is $\gamma_{Q,LM71} = 1,30$ (coefficient for steel member, without any control, older than 30 years).

1.2.2 Distribution of traffic loads

Eccentricity of the vertical load in case of the shape of the rails is added to the model of the bridge as a polyline path of the loads.

The lateral displacement of vertical loads is considered. Ratio of wheel loads is taken 1,25:1. In longitudinal direction are point forces of load model LM71 distributed on three neighbouring rail supports in ratio 1:2:1. The distribution of loads beneath sleepers is in slope of 4:1 in longitudinal and transverse direction.

Dimension of the sleepers is 260x150mm and their length is 2600mm. Their axial distance is 600mm. The distance between the wheels is assumed 1500 mm.

• longitudinal distributional width

$$b_{p1} = 260 + \frac{1}{4} * 330 * 2 = 425$$
mm

• transverse distributional width

$$b_{p2} = 2600 + \frac{1}{4} * 330 * 2 = 2765$$
mm

• distributed point force of load model LM71

$$Q_{vk} = 125/0,425 = 294,12$$
kN/m

• uniformly distributed load of model LM71 $q_{vk} = 80 * 0.6/0.425 = 112.94$ kN/m Assessment of an eccentricity of traffic loads:

- influence of eccentricity of wheel loads
 - $E_1 = \frac{r}{18} = \frac{1500}{18} = 83 \text{mm}$ influence of tilting the track $E_2 = -45 \sim -90 \text{mm}$

Picture 1.2-1 - eccentricity caused by the tilting of the track

• maximal outside eccentricity

 $E_L = -45 + 83 = +38$ mm

maximal inside eccentricity

$$E_{\rm P} = -90 - 83 = -173$$
mm

$$i_z = -\frac{1}{b_{r2}} = -\frac{1}{2,765} = -0,362kN/m^2$$

• unit bending moment

$$M_{1L} = \frac{1 * E_L}{1000} = \frac{1 * 38}{1000} = 0,038kNm/m$$
$$M_{1R} = \frac{1 * E_R}{1000} = \frac{1 * 173}{1000} = 0,173kNm/m$$

• distributed unit load – outside eccentricity

$$q_{L,L} = i_z + 6 * \frac{M_{1L}}{b_{p2}^2} = -0.362 - 6 * \frac{0.038}{2.765^2} = -0.392 kN/m^2$$
$$q_{R,L} = i_z - 6 * \frac{M_{1L}}{b_{p2}^2} = -0.362 + 6 * \frac{0.038}{2.765^2} = -0.332 kN/m^2$$

• distributed unit load – inside eccentricity

$$q_{R,L} = i_z + 6 * \frac{M_{1R}}{b_{p2}^2} = -0,362 + 6 * \frac{0,173}{2,765^2} = -0,226kN/m^2$$
$$q_{R,R} = i_z - 6 * \frac{M_{1R}}{b_{p2}^2} = -0,362 - 6 * \frac{0,173}{2,765^2} = -0,498kN/m^2$$

Picture 1.2-2 – plan view of the bridge – position of a rail axis and an axis of the bridge

To set the transverse load distribution to the program is the distributional width divided to ten parts. The distance x_1 and x_2 is measured from the axis of the rail. It is also counted with 100mm possible eccentricity of the position of the track.

	from	to	from	to	averag	e loads
	x _{1L} [mm]	x _{2L} [mm]	x _{1P} [mm]	x _{2P} [mm]	q∟[kN/m]	q _P [kN/m]
1	-1483	-1206	-1283	-1006	-0,389	-0,240
2	-1206	-930	-1006	-730	-0,383	-0,267
3	-930	-653	-730	-453	-0,377	-0,294
4	-653	-377	-453	-177	-0,371	-0,321
5	-377	-100	-177	100	-0,365	-0,348
6	-100	177	100	377	-0,359	-0,376
7	177	453	377	653	-0,353	-0,403
8	453	730	653	930	-0,347	-0,430
9	730	1006	930	1206	-0,341	-0,457
10	1006	1283	1206	1483	-0,335	-0,484

In longitudinal direction is every point force of load model LM71 distributed to six forces according to the rules of distribution (distributed on 3 sleepers in ratio 1:2:1, in every longitudinal distributional width are located two point forces).

Picture 1.2-3 - transversal and longitudinal distribution of unit traffic load

1.2.3 Dynamic analysis

According EN 1991-2 is the dynamic analysis not required, because the line speed is under 200km/h and first natural bending frequency n_0 is within limits.

$$23,58 * L^{-0,592} = 23,58 * 42,8^{-0,592} = 2,551 \le n_0 = \frac{17,75}{\sqrt{\delta_0}} = \frac{17,75}{\sqrt{26,9}} = 3,422 \le 94,76 * L^{-0,748} = 94,76 * 42,8^{-0,748} = 5,706$$

Picture 1.2-4 - deflection at mid span due to permanent load

1.2.4 Dynamic factors

Dynamic factor for track with standard maintenance:

$$\phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73 = \frac{2,16}{\sqrt{42,8} - 0,2} + 0,73 = 1,071$$

Deck plate (both directions), continuous longitudinal ribs:

$$\begin{aligned} L_{\phi} &= 3 * 2,4 = 7,200m\\ 2,16\\ \phi_3 &= \frac{2,16}{\sqrt{7,200} - 0,2} + 0,73 = 1,600 \end{aligned}$$

Cross girders:

$$\phi_3 = \frac{L_{\phi} = 2 * 2,8 = 5,6m}{\sqrt{5,600} - 0,2} + 0,73 = 1,727$$

End cross girders:

$$\phi_3 = \frac{L_{\phi} = 3,600m}{\sqrt{3,600} - 0,2} + 0,73 = 2,000$$

1.2.5 Centrifugal forces

For the calculation is used a line speed 70 km/h. Reduction factor is f =1 for speed under 120km/h. The force is horizontal and perpendicular to the track axis at a height of 1,8m above the rail. It is combined with the appropriate vertical load. The radius of curvature is at one end of the bridge $R_1 = 886,762m$ and the second $R_2 = 434,726m$. The mean radius r = 660,744m is considered. Load classification factor is α =1,00 and dynamic factor is not used for centrifugal forces. Partial factor for centrifugal forces is $\gamma_{O,LM71} = 1,30$.

$$Q_{tk} = \frac{V^2}{127 * r} * (f * Q_{vk}) = \frac{70^2}{127 * 660,744} * (1 * 250) = 14,60kN$$
$$q_{tk} = \frac{V^2}{127 * r} * (f * q_{vk}) = \frac{70^2}{127 * 660,744} * (1 * 80) = 4,67kN/m$$

The centrifugal force is given into program as vertical load, that is counted as a distribution of a bending moment caused by eccentrically placed centrifugal force.

• a unit horizontal force, a unit bending moment

$$\mathbf{k} = \frac{V^2 * f}{127 * r} = \frac{70^2 * 1}{127 * 660,744} = 0,05839$$

• unit bending moment

$$M_1 = k * r = 0,05839 * 2,5 = 0,146 kNm/m$$

• distributed unit load

Picture 1.2-5 - transversal distribution of centrifugal forces

Kateřina Soukupová

7 Department of Steel and Timber Structures

	from	to	average loads
	x ₁ [mm]	x ₂ [mm]	q1 [kN/m]
1	-1383	-1106	-0,103
2	-1106	-830	-0,080
3	-830	-553	-0,057
4	-553	-277	-0,034
5	-277	0	-0,011
6	0	277	0,011
7	277	553	0,034
8	553	830	0,057
9	830	1106	0,080
10	1106	1383	0,103

Table 2 - transversal distribution of centrifugal forces

1.2.6 Nosing force

As nosing force is considered a concentrated force Q_{sk} =100kN acting horizontally, at the top of the rails, perpendicular to the centre-line of track. Load classification factor is α =1,00 and dynamic factor is not used. Partial factor for centrifugal forces is $\gamma_{Q,Qs}$ = 1,30. Nosing force is always combined with the vertical traffic load.

• distributed unit load

$q_1 = \pm 6 * \frac{M_1}{b_p^2} = \pm 6 * \frac{1.0 * 0.7}{2.765^2} = \pm 0.549 kN/m^2$					
	from	to	average loads		
	x1[mm]	x ₂ [mm]	q1 [kN/m]		
1	-1383	-1106	-0,494		
2	-1106	-830	-0,385		
3	-830	-553	-0,275		
4	-553	-277	-0,165		
5	-277	0	-0,055		
6	0	277	0,055		
7	277	553	0,165		
8	553	830	0,275		
9	830	1106	0,385		
10	1106	1383	0,494		

Table 3 - transversal distribution of nosing force

Picture 1.2-6 – transversal and longitudinal distribution of nosing force

It is distributed on three neighbouring rail supports in ratio 1:2:1, in every longitudinal distributional width are located two point forces.

1.2.7 Actions due to traction and braking

This load acts at the top of the rails in the longitudinal direction. It is uniformly distributed over the corresponding influence length. Load classification factor is α =1,00 and dynamic factor is not used. Partial factor for centrifugal forces is $\gamma_{Q,Qab} = 1,30$. The force is always combined with the vertical traffic load.

Traction force:

 $Q_{lak} = 33 * L_{ab} = 33 * 42,8 = 1412,4kN \ge 1000kN \rightarrow Q_{lak} = 1000kN$ Braking force:

$$Q_{lbk} = 20 * L_{ab} = 20 * 42,8 = 856kN \le 6000kN$$

For a continuous track on the bridge is considered, that 60% of the traction force is transmitted by the bearings and the load-bearing steel structure.

Picture 1.2-7 - acions due to traction

1.2.8 Actions for non-public footpaths

Partial factor for loads of footpaths is $\gamma_{Q,fp} = 1,50$. Load of inner maintenance walkway: $q_{fp,1} = 2,0 * 0,8 = 1,64kN/m$ Load of upper non-public footpaths: $q_{fp,1} = 5,0 * 0,7 = 3,50kN/m$

Picture 1.2-8 - actions for non-public footpaths

1.2.9 Wind actions

The height of the bridge construction is 4,100m, the height of an open parapet is considered to be 0,6m and the train height for the calculation is 4m. Partial factor for wind actions is $\gamma_{0,w} = 1,35$.

- density of air
- $\rho = 1,25 kg/m^3$
- the reference height under terrain z=7,086m
- terrain factor

$$k_r = 0.19 * \left(\frac{z_0}{z_{0II}}\right)^{0.7} = 0.19 * \left(\frac{0.05}{0.05}\right)^{0.7} = 0.19$$

• roughness coefficient (terrain category II)

$$c_r(z) = k_r * ln \frac{z}{z_0} = 0,19 * ln \frac{7,086}{0,05} = 0,9412$$

- wind area 2 ... v_{b,0}=25m/s
- directional factor und season factor $c_{dir} = c_{season} = 1,0$
- basic wind velocity
- $v_b = c_{dir} * c_{season} * v_{b,0} = 1,0 * 1,0 * 25 = 25m/s$
- orography factor $c_o(z) = 1,0$
- turbulence factor $k_I = 1,0$
- mean wind velocity $v_m(z) = c_r(z) * c_o(z) * v_b = 0.9412 * 1.0 * 25 = 23.53m/s$

• turbulence intensity

$$I_{\nu}(z) = \frac{k_{I}}{c_{0}(z) * \ln\left(\frac{z}{z_{0}}\right)} = \frac{1,0}{1,0 * \ln\left(\frac{7,086}{0,05}\right)} = 0,202$$

- peak velocity pressure $q_{wk} = (1 + 7 * I_v(z)) * \frac{1}{2} * \rho * v_m^2 = (1 + 7 * 0.202) * \frac{1}{2} * 1.25 * 23.53^2 * 10^{-3} =$
- $= 0,835kN/m^{2}$ wind actions without train $\frac{b}{d_{tot}} = \frac{6410}{4700} = 1,364 \rightarrow c_{f,x} = 2,155$ $q_{wk1} = c_{f,x} * q_{wk} = 2,155 * 0,835 = 1,800kN/m^{2}$ Wind on railing causes a bending moment: $m_{wk1} = 1,800 * 0,6 * (0,3 + 0,68) = 1,058kNm/m$ wind actions on the bridge and train
 - $\frac{b}{d_{tot}} = \frac{6410}{8100} = 0,791 \rightarrow c_{f,x} = 2,341$ $q_{wk2} = c_{f,x} * q_{wk} = 2,341 * 0,835 = 1,956 kN/m^2$

Wind on a train causes a bending moment below. It is distributed in the distributional width under sleepers.

$$m_{wk1} = 1,956 * 4,0 * 2,0 = 15,648 kNm/m$$

• distributed unit load

$$q_1 = \pm 6 * \frac{M_1}{b_p^2} = \pm 6 * \frac{15,648}{2,765^2} = \pm 12,281 kN/m^2$$

Picture 1.2-9 - wind actions without a train

Picture 1.2-10 - wind actions with a train wind actions in vertical direction ... $c_{f,x} = 0.9$ $q_{wk1} = c_{f,x} * q_{wk} = 0.9 * 0.835 = 0.752 kN/m^2$ $e_y = 0.25 * b_{tot} = 0.25 * 6.41 = 1.603m$

Picture 1.2-11 – vertical wind actions
1.2.10 Thermal actions

The steel parts of the bridge are grouped as Type 1. Thermal actions consist of a uniform temperature component and a temperature difference component. Partial factor for thermal actions is $\gamma_{F,t} = 1.5$.

Uniform temperature component:

- T_{max}=40°C ... maximal shade air temperature
- T_{min}= -32°C ... minimal shade air temperature
- T₀=10°C ... initial bridge temperature
- maximal uniform bridge temperature component

 $T_{e,max} = T_{max} + 16 = 40 + 16 = 56^{\circ}$ C

• minimal uniform bridge temperature component

$$T_{e,min} = T_{min} - 3 = -32 - 3 = -35^{\circ}C$$

- maximum expansion range of the uniform bridge temperature component $\Delta T_{N,exp} = T_{e,max} - T_0 = 56 - 10 = 46^{\circ}\text{C}$
- maximum contraction range of the uniform bridge temperature component $\Delta T_{N,con} = T_0 - T_{e,min} = 10 - (-35) = 45^{\circ}\text{C}$

Temperature difference linear component:

- $\Delta T_{m,heat} = 18*0,6=11^{\circ}C$ temperature difference for top warmer than bottom
- $\Delta T_{m,cool}$ =13*1,4=18°C temperature difference for bottom warmer than top

Simultaneity of both components:

- $\Delta T_{m,cool} + \omega_n * \Delta T_{N,exp} = 18 + 0.35 * 46 = 34.1^{\circ}\text{C}$ $\omega_m * \Delta T_{m,cool} + \Delta T_{N,exp} = 0.75 * 18 + 46 = 59.5^{\circ}\text{C}$ $\Delta T_{m,cool} + \omega_n * \Delta T_{N,con} = 18 + 0.35 * 45 = 33.8^{\circ}\text{C}$ $\omega_m * \Delta T_{m,cool} + \Delta T_{N,con} = 0.75 * 18 + 45 = 58.5^{\circ}\text{C}$
- For expansion is considered a temperature +59,5°C, for contraction -58,5°C.

1.2.11 Derailment actions

There are two design situations considered. First design situation includes derailment of railway vehicles, which remain in the track area on both wheel tracks. Second design situation includes a vehicle balanced on the edge of the bridge, load model LM71 is taken as a uniformly distributed load of maximal length 20m.

• distributed unit load

$$q_1 = -\frac{0.7}{0.45} = -1.556 kN/m^2$$

Picture 1.2-13 - transversal and longitudinal distribution of derailment actions (design situation I)

• distributed unit load

Picture 1.2-15 - transversal and longitudinal distribution of derailment actions (design situation II)

1.3 Combination of actions

Groups of loads for rail traffic (the values inside brackets are used for alleviating effects):

- Gr11 (vertical maximum + longitudinal maximum)
- 1 * LM71 + 1(0) * braking + 0,5(0) * centrifugal force + 0,5(0) * nosing force
- Gr12 (vertical maximum + transverse maximum)
- $1*\textit{LM71} + 0{,}5(0)*\textit{braking} + 1(0)*\textit{centrifugal force} + 1(0)*\textit{nosing force}$
- Gr13 (longitudinal maximum)

1(0,5) * *LM*71 + 1 * *braking* + 0,5(0) * *centrifugal force* + 0,5(0) * *nosing force* • Gr14 (lateral maximum)

- 1(0,5) * LM71 + 0,5(0) * braking + 1 * centrifugal force + 1 * nosing force
- Gr15 (lateral stability with "unloaded train")
 - 1 * unloaded train + 1(0) * centrifugal force + 1(0) * nosing force

It is counted with the design situations 6.10a and 6.10b according to EN 1990 for ultimate limit states:

 $\gamma_{G,j,sup} * G_{k,j,sup} \left(\gamma_{j,inf} * G_{k,j,inf} \right) + \sum \gamma_{Q,i} * \psi_{0,i} * Q_{k,i} \quad (6.10a)$

 $\xi * \gamma_{G,j,sup} * G_{k,j,sup} \left(\xi * \gamma_{j,inf} * G_{k,j,inf}\right) + \gamma_{Q,1} * Q_{k,1} + \sum \gamma_{Q,i} * \psi_{0,i} * Q_{k,i} \quad (6.10b)$ Accidental combination of actions:

 $G_{k,j,\sup}(G_{k,j,\inf}) + A_d + \psi_{1,1} * Q_{k,1} + \sum \psi_{2,i} * Q_{k,i}$

Serviceability limit state:

$$G_{k,j,\sup}(G_{k,j,\inf}) + Q_{k,1} + \sum \psi_{0,i} * Q_{k,i} \text{ (characteristic)}$$

$$G_{k,j,\sup}(G_{k,j,\inf}) + \psi_{1,1} * Q_{k,1} + \sum \psi_{2,i} * Q_{k,i} \text{ (frequent)}$$

$$G_{k,j,\sup}(G_{k,j,\inf}) + \sum \psi_{2,i} * Q_{k,i} \text{ (quasi - permanent)}$$

2 Material

All parts of the construction except of longitudinal stiffeners of upper plate are made of steel type 37. The yield and ultimate stress depend on the thickness of material.

 $t \le 25mm$... $f_y = 235MPa, f_u = 360MPa$

 $t \ge 25mm \dots f_y = 215MPa, f_u = 360MPa$

The longitudinal stiffeners of upper plate are made of steel type 52. The yield and ultimate stress:

$$t \le 50mm \dots f_y = 355MPa, f_u = 510MPa$$

Particular partial factors: $\gamma_{M0}=1,0$ $\gamma_{M1}=1,1$ $\gamma_{M2}=1,25$

3 Computational model

Computational model was created in program Scia Engineer 17.01.1030. The bridge is modelled as a simple beam. There are four supports, on one side they are hinged and on other side sliding in longitudinal direction.

Picture 3 - 1 – rendered 3D model

Flanges and webs of box girder are 2D members. Longitudinal stiffeners and cross girders are input as plate ribs. Longitudinal stiffeners of upper flange have open cross section P240x16.

Picture 3 - 3 - longitudinal stiffener of upper flange

Cross girders of upper flange have arbitrary profile according to drawing documentation.

Picture 3 - 4 - cross girder of upper flange

Picture 3 - 5 - cross sections of cross girder of upper flange

Longitudinal stiffeners of web and lower flange has a cross section L160x100x14.

Picture 3 - 6 - longitudinal stiffener of webs and lower flange

Cross girders of web have following cross sections. End transverse stiffeners above supports is more massive.

Picture 3 - 7 - intermediate transverse stiffener (left) and end transverse stiffeners (right) - web

Cross girders of lower flange have following cross sections. End cross stiffeners above supports has different cross sections than the intermediate ones.

Picture 3 - 8 - intermediate cross girder (left) and end cross girder (right) – lower flange

Picture 3 - 9 - position of stiffeners

Above supports is modelled diaphragm. It consists of 2D member and stiffeners according to drawing documentation

Picture 3 - 10 - diaphragm above support

There are inner stiffeners inside box girder, which are entered as beams with hinges on both ends. Eccentricity of connection is taken into consideration with rigid arms. Cross section of these stiffeners is SHS100x100x8.

Picture 3 - 11 - inner stiffeners in box girder

Maintenance walkways are considered in model just as action on structure. As a last part of load bearing structure are modelled plates framing the track ballast and its stiffeners.

Picture 3 - 12 - plates framing the track ballast

Mash of 2D members is generated according to type of calculation. Mostly is used an average size of element 10cm.

Picture 3 - 13 - generated mash

4 Static analysis

4.1 Box girder

4.1.1 Effective cross section – compressive force, midspan

<u>Generally:</u>

For the three ways of stress distribution (normal force, bending moment M_y and M_z) are calculated effective cross sections in a midspan and in stationing L=7,8m, where a thickness of flanges changes.

It is considered a local buckling for every subpanel, a shear lag of flanges and a global buckling. For one or two stiffeners in a compression zone is calculation simplified by a fictitious isolated strut supported on an elastic foundation (annex A.2, EN 1993-1-5). If there are more stiffeners in a compression zone, elastic critical plate buckling is calculated by formula in annex A.1, EN 1993-1-5.

A vertical plate framing a track ballast is stiffened on a top by plate 80x8mm. Below is verified, whether it is possible to consider this plate as an internal compression element (not outstanding), although the upper stiffener is subtle. For this part of construction is made non-linear calculation with eccentricity b/200=591/200=3,0mm. On a picture bellow is a development of stress caused by wind.

interna	al elemer	nt	outsta	nding ele	ement
ψ=	1,00		ψ=	1,00	
kσ=	4,000		kσ=	0,430	
b=	450	mm	b=	450	mm
t=	12	mm	t=	12	mm
f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000	
λ _P =	0,660		λ _P =	2,014	
ρ=	1,000		ρ=	0,450	
b eff =	450	mm	b eff=	203	mm

For outstanding element is supposed, that the stress is concentrated in length 203mm. It does not fit the real behaviour:

6,8MPa*0,203*12=16,6kN <5,6MPa*0,45*12=30,2kN

Supposing the plate behaviour as an internal element, it does not buckle and stress should be uniformly distributed. In a non-linear result of calculation there is a peak of stress for horizontal load. The resultant of the stress on this vertical plate is placed 288mm above the upper flange of box girder, in case of uniformly distributed stress it should be 296mm. There is no stress peak caused by vertical load, which is dominant. Because of that we can neglect the difference of 8mm. For buckling of this plate is used formula for plate supported on both sides.

Picture 4.1-1 – stress in plate framing track ballast – horizontal loads

Picture 4.1-2 – stress in plate framing track ballast – horizontal loads

Picture 4.1-3 - numbers of subpanels

Local	buckli	ng:					•				
subpan	el no. 1		subpar	nel no. 2		subpa	nel no. 3		subpar	nel no. 4	
ψ=	1,00		ψ=	1,00		ψ=	1,00		ψ=	1,00	
kσ=	4,000		kσ=	4,000		kσ=	4,000		kσ=	4,000	
b=	441	mm	b=	544	mm	b=	331	mm	b=	351	mm
t=	18	mm	t=	18	mm	t=	18	mm	t=	12	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,431		λ _P =	0,532		λ _P =	0,324		λ _P =	0,515	
ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000	
b eff=	441	mm	b eff=	544	mm	b eff=	331	mm	b eff=	351	mm
b _{e1} =	221	mm	b _{e1} =	272	mm	b _{e1} =	166	mm	b _{e1} =	176	mm
subpan	el no. 5		subpar	nel no. 6		subpa	nel no. 7		subpar	nel no. 8	
ψ=	1,00		ψ=	1,00		ψ=	1,00		ψ=	1,00	
kσ=	0,430		kσ=	4,000		kσ=	4,000		kσ=	0,430	
b=	240	mm	b=	446	mm	b=	1140	mm	b=	203	mm
t=	16	mm	t=	12	mm	t=	14	mm	t=	25	mm
f _y =	355	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	0,814		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,990		λ _P =	0,654		λ _P =	1,434		λ _P =	0,436	
ρ=	0,818		ρ=	1,000		ρ=	0,590		ρ=	1,000	
b eff =	196	mm	b eff =	446	mm	b _{eff} =	673	mm	b eff =	203	mm
			b _{e1} =	223	mm	b _{e1} =	337	mm	•		
subpan	el no. 9		subpar	nel no. 10)	subpa	nel no. 1	1	Į		
ψ=	1,00		ψ=	1,00		ψ=	1,00				
kσ=	4,000		kσ=	4,000		kσ=	4,000				
b=	431	mm	b=	588	mm	b=	700	mm			
t=	25	mm	t=	25	mm	t=	25	mm			
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa			
ε=	1,000		ε=	1,000		ε=	1,000				
λ _P =	0,304		λ _P =	0,414		λ _P =	0,493				
ρ=	1,000		ρ=	1,000		ρ=	1,000				
b _{eff} =	431	mm	b _{eff} =	588	mm	b _{eff} =	700	mm			
b _{e1} =	216	mm	b _{e1} =	294	mm	b _{e1} =	350	mm			

Global buckling:

	А	thickness	of	the	inner	part	of	upper	flange	is	modified	according	to	formula
$A_{c,eff}$ =	$= \rho_c$	$* A_{c,eff,loc}$	The	e redu	iced thi	ckness	s of	plate is	15,6mm					

Plate effe	ect - inner part		<u>Column</u>	effect - inner j	part
Ac,eff,loc=	52925	mm²	σ _{cr,sl} =	1692,8	MPa
Ac=	55680	mm²	ψ1=	1	
β _{a,c} =	0,951		ψ2=	1	
t=	18	mm	b1=	544	mm
b=	2786	mm	b2=	544	mm
σ _E =	7,931	MPa	b _{1,inf} =	272	mm
a=	2388	mm	b _{2,inf} =	272	mm
α=	0,857		b _{1,eff} =	544	mm
I _{sI} =	270037619	mm⁴	b _{2,eff} =	544	mm
I _p =	1487908	mm⁴	b _{1,inf,eff} =	272	mm
γ=	181,5		b _{2,inf,eff} =	272	mm
∑A _{sl} =	15360	mm²	I _{sl,1} =	64832595	mm ⁴
A _p =	50148	mm²	A _{sl,1} =	13920	mm²
δ=	0,306		a=	2388	mm
ψ=	1		bc=	544	mm
			b _{sl1} =	544	mm
k _σ =	191,2		σ _{cr,c} =	1692,8	MPa
σ _{cr,p} =	1516,4	MPa	$A_{sl1,eff}=$	13222	mm²
λ _p =	0,384		β _{a,c} =	0,950	
ρ=	1,000		$\lambda_c =$	0,363	
			i=	68,2	mm
			e=	93,4	mm
Interaction	on - inner part		$\alpha_{e}=$	0,613	
ξ=	0		Ф=	0,616	
ρ _c =	0,898		χ _c =	0,898	

Overhanging part does not buckle itself ($\sigma_{com,Ed}$ =148,5MPa< ρ_c*f_y/γ_{M1} =0,928*235/1,1=198,3MPa). But there is a stress peak caused by buckling of inner panel, so the thickness is modified in the same way.

Plate effe	ct - stiffener	5	Column ef	fect	
I _{sl} =	63563131	mm⁴	σ _{cr,sl} =	1778,1	MPa
b1=	455	mm	ψ1=	1	
b2=	560	mm	ψ2=	1	
b=	1015	mm	b1=	441	mm
t=	18	mm	b2=	544	mm
a _c =	3957	mm	b _{1,inf} =	220,5	mm
a=	2388	mm	b _{2,inf} =	272	mm
A _{c,eff,loc} =	12295	mm²	b _{1,eff} =	441	mm
A _c =	12993	mm²	b _{2,eff} =	544	mm
β _{a,c} =	0,946		b _{1,inf,eff} =	220,5	mm
A _{sl,1} =	12993	mm²	b _{2,inf,eff} =	272,0	mm
σ _{cr,sl} =	2012,0	MPa	I _{sl,1} =	63563131	mm ⁴
v=	0,3		A _{sl,1} =	12993	mm²
b _c =	544	mm	a=	2388	mm
b _{sl1} =	544	mm	b _c =	544	mm
			b _{sl1} =	544	mm
σ _{cr,p} =	2012,0	MPa	$\sigma_{cr,c}=$	1778,1	MPa
λ _p =	0,332		A _{sl1,eff} =	12295	mm²
ψ=	1,00		β _{a,c} =	0,946	
ρ=	1,000		λc=	0,354	
			i=	69,9	mm
			e=	93,0	mm
Interactio	on - outside p	art	α _e =	0,610	
ξ=	0,132		Ф=	0,609	
ρ _c =	0,928		χc=	0,904	

A thickness of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =62,5MPa< $\rho_c*f_y/\gamma_{M1}=0.846*235/1,1=180,7MPa$.

Plate effe	ect - one stiffe	ener	Plate effe	ect - both stiffe	eners	Column ef	fect - web	
I _{sI} =	45557133	mm ⁴	I _{sl} =	91114265,9	mm ⁴	σ _{cr,sl} =	845,3	MPa
b1=	1140	mm	b1=	1710	mm	ψ1=	1,00	
b2=	1140	mm	b2=	1710	mm	ψ2=	1,00	
b=	2280	mm	b=	3420	mm	b1=	1140	mm
t=	14	mm	t=	14	mm	b2=	1140	mm
a _c =	8109	mm	a _c =	13070	mm	b _{1,inf} =	570	mm
a=	2388	mm	a=	2388	mm	b _{2,inf} =	570	mm
Ac,eff,loc=	26105	mm²	$A_{c,eff,loc} =$	26105	mm²	b _{1,eff} =	673	mm
A _c =	39176	mm²	Ac=	39176	mm²	b _{2,eff} =	673	mm
β _{a,c} =	0,666		β _{a,c} =	0,666		b _{1,inf,eff} =	337	mm
σ _{cr,sl} =	851,6	MPa	σ _{cr,sl} =	846,2	MPa	b _{2,inf,eff} =	337	mm
v=	0,3		v=	0,3		I _{sl,1} =	45557133	mm ⁴
b _c =	2280	mm	b _c =	3420	mm	A _{sl,1} =	19588	mm²
b _{sl1} =	2280	mm	b _{sl1} =	3420	mm	a=	2388	mm
σ _{cr,p1} =	851,6	MPa	σ _{cr,p2} =	846,2	MPa	bc=	3420	mm
λ _{p1} =	0,429		λ _{p2} =	0,430		b _{sl1} =	3420	mm
ψ=	1,00		ψ=	1,00		$\sigma_{cr,c}=$	845,3	MPa
ρ1=	1,000		ρ2=	1,000		$A_{sl1,eff}=$	13052	mm²
						β _{a,c} =	0,666	
σ _{cr,p} =	846,2	MPa				λc=	0,430	
ρ=	1,000					i=	48,2	mm
						e=	95,4	mm
Interactio	<u>on - web</u>					α _e =	0,668	
ξ=	0,001					Ф=	0,670	
ρ _c =	0,846					χc=	0,846	

A thickness of lower flange is modified according to formula $A_{c,eff} = \rho_c * A_{c,eff,loc}$. The reduced thickness of plate is 18,7mm.

Plate effe	ect - inner part		<u>Column e</u>	effect - inner p	bart
A _{c,eff,loc} =	72715	mm²	σ _{cr,sl} =	913,1	MPa
Ac=	72715	mm²	ψ1=	1	
β _{a,c} =	1,000		ψ2=	1	
t=	25	mm	b1=	700	mm
b=	2786	mm	b2=	588	mm
σ _E =	15,299	MPa	b _{1,inf} =	350	mm
a=	2388	mm	b _{2,inf} =	294	mm
α=	0,857		b _{1,eff} =	700	mm
I _{sI} =	201424136	mm ⁴	b _{2,eff} =	588	mm
I _p =	3986378,2	mm⁴	b _{1,inf,eff} =	350	mm
γ=	50,528		b _{2,inf,eff} =	294	mm
∑A _{sl} =	13840	mm²	I _{sl,1} =	49892689	mm ⁴
A _p =	69650	mm²	A _{sl,1} =	19860	mm²
δ=	0,199		a=	2388	mm
ψ=	1		b _c =	544	mm
			b _{sl1} =	544	mm
k _σ =	59,7		$\sigma_{cr,c}=$	913,1	MPa
σ _{cr,p} =	912,7	MPa	A _{sl1,eff} =	19860	mm²
λ _p =	0,507		β _{a,c} =	1,000	
ρ=	1,000		λc=	0,507	
			i=	50,1	mm
			e=	97,9	mm
Interactio	on - inner part		α _e =	0,666	
ξ=	0,000		Ф=	0,731	
ρ _c =	0,795		χ _c =	0,795	

Picture 4.1-4 – effective cross section – compressive force, midspan

 $\begin{aligned} A_{eff} &= 0,27548m^2 (whole\ cross\ section) \\ A_{eff,sl} &= 0,01882m^3 (A_{eff,sl}\ ...\ yeald\ strength\ 355MPa) \end{aligned}$

4.1.2 Effective cross section – compressive force, L=7,8m

Picture 4.1-5 - numbers of subpanels

Local	bucklin	ıg:			-		j				
subpa	nel no. 1		subpa	nel no. 2		subpa	nel no. 3	}	subpa	nel no. 4	
ψ=	1,00		ψ=	1,00		ψ=	1,00		ψ=	1,00	
kσ=	4,000		kσ=	4,000		kσ=	4,000		kσ=	4,000	
b=	441	mm	b=	544	mm	b=	331	mm	b=	355	mm
t=	14	mm	t=	14	mm	t=	14	mm	t=	12	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,555		λ _P =	0,684		λ _P =	0,416		λ _P =	0,521	
ρ=	1,000		ρ=	0,992		ρ=	1,000		ρ=	1,000	
b eff =	441	mm	b eff =	539	mm	b eff=	331	mm	b eff=	355	mm
b _{e1} =	221	mm	b _{e1} =	270	mm	b _{e1} =	166	mm	b _{e1} =	178	mm
subpa	nel no. 5		subpa	nel no. 6		subpa	nel no. 7	7	subpa	nel no. 8	
ψ=	1,00		ψ=	1,00		ψ=	1,00		ψ=	1,00	
k _σ =	0,430		k _σ =	4,000		k _σ =	4,000		k _σ =	0,430	
b=	240	mm	b=	450	mm	b=	1140	mm	b=	203	mm
t=	16	mm	t=	12	mm	t=	14	mm	t=	14	mm
f _y =	355	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	0,814		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,990		λ _P =	0,660		λ _P =	1,434		λ _P =	0,779	
ρ=	0,818		ρ=	1,000		ρ=	0,590		ρ=	0,974	
b eff =	196	mm	b eff =	450	mm	b eff =	673	mm	b eff=	198	mm
			b _{e1} =	225	mm	b _{e1} =	337	mm			
subpa	nel no. 9		subpa	nel no. 1	0	subpa	nel no. 1	1			
ψ=	1,00		ψ=	1,00		ψ=	1,00				
k _σ =	4,000		k _σ =	4,000		k _σ =	4,000				
b=	437	mm	b=	588	mm	b=	700	mm			
t=	14	mm	t=	14	mm	t=	14	mm			
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa			
ε=	1,000		ε=	1,000		ε=	1,000				
λ _P =	0,550		λ _P =	0,739		λ _P =	0,880				
ρ=	1,000		ρ=	0,950		ρ=	0,852				
b _{eff} =	431	mm	b _{eff} =	559	mm	b _{eff} =	596	mm			
b _{e1} =	216	mm	b _{e1} =	279	mm	b _{e1} =	298	mm			

Global buckling:

	Α	thickness	of	the	inner	part	of	upper	flange	is	modified	according	to	formula
A _{c,eff} :	$= \rho_c$	$* A_{c,eff,loc}$	The	e redu	iced thi	cknes	s of	plate is	12,3mm	•				

Plate effe	ect - inner part		<u>Column</u>	Column effect - inner part				
A _{c,eff,loc} =	43704	mm²	σ _{cr,sl} =	1871,2	MPa			
Ac=	46720	mm²	ψ1=	1				
β _{a,c} =	0,935		ψ2=	1				
t=	14	mm	b1=	544	mm			
b=	2786	mm	b2=	544	mm			
σ _E =	4,798	MPa	b _{1,inf} =	272	mm			
a=	2388	mm	b _{2,inf} =	272	mm			
α=	0,857		b _{1,eff} =	539	mm			
I _{sl} =	252109659,7	mm ⁴	b _{2,eff} =	539	mm			
I _p =	700072	mm⁴	b _{1,inf,eff} =	270	mm			
γ=	360,120		b _{2,inf,eff} =	270	mm			
∑A _{sl} =	15360	mm²	I _{sl,1} =	60132189	mm ⁴			
A _p =	39004	mm²	A _{sl,1} =	11680	mm²			
δ=	0,394		a=	2388	mm			
ψ=	1		b _c =	544	mm			
			b _{sl1} =	544	mm			
k _σ =	353,6		σ _{cr,c} =	1871,2	MPa			
σ _{cr,p} =	1696,7	MPa	A _{sl1,eff} =	10919	mm²			
λ _p =	0,360		β _{a,c} =	0,935				
ρ=	1,000		λc=	0,343				
			i=	71,8	mm			
			e=	85,3	mm			
Interaction	on - inner part		$\alpha_{e}=$	0,597				
ξ=	0		Ф=	0,601				
ρ _c =	0,913		χ _c =	0,913				

Overhanging part does not buckle itself ($\sigma_{com,Ed}$ =86,0MPa< ρ_{C} *f_y/ γ_{M1} =0,928*235/1,1=198,3MPa). But there is a stress peak caused by buckling of inner panel, so the thickness is modified in the same way.

Plate effe	t - stiffener !	5	<u>Column</u>	effect	
I _{sl} =	58780762	mm ⁴	σ _{cr,sl} =	1949,5	MPa
b1=	455	mm	ψ1=	1	
b2=	560	mm	ψ2=	1	
b=	1015	mm	b1=	441	mm
t=	14	mm	b2=	544	mm
a _c =	4685	mm	b _{1,inf} =	220,5	mm
a=	2388	mm	b _{2,inf} =	272	mm
Ac,eff,loc=	10230	mm²	b _{1,eff} =	441	mm
A _c =	10959	mm²	b _{2,eff} =	539	mm
β _{a,c} =	0,933		b _{1,inf,eff} =	220,5	mm
A _{sl,1} =	10959	mm²	b _{2,inf,eff} =	269,7	mm
σ _{cr,sl} =	2079,9	MPa	I _{sl,1} =	58780762,1	mm ⁴
v=	0,3		A _{sl,1} =	10959	mm²
bc=	544	mm	a=	2388	mm
b _{sl1} =	544	mm	bc=	544	mm
			b _{sl1} =	544	mm
σ _{cr,p} =	2079,9	MPa	σ _{cr,c} =	1949,5	MPa
λ _p =	0,325		A _{sl1,eff} =	10230	mm²
ψ=	1,00		$\beta_{a,c}=$	0,933	
ρ=	0,993		$\lambda_c =$	0,335	
			i=	73,2	mm
			e=	83,2	mm
Interactio	n - outside pa	art	$\alpha_{e}=$	0,592	
ξ=	0,067		Ф=	0,596	
ρ _c =	0,928		χ _c =	0,918	

A thicknes of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =46,0MPa< < ρ_c*f_y/γ_{M1} =0,846*235/1,1=180,7MPa.

Plate effe	ect - one stiff	ener	Plate effe	ect - both stif	feners	Column et	ffect - web	
I _{sI} =	45557133	mm ⁴	I _{sl} =	91114266	mm ⁴	σ _{cr,sl} =	845,3	MPa
b1=	1140	mm	b1=	1710	mm	ψ1=	1,00	
b2=	1140	mm	b2=	1710	mm	ψ2=	1,00	
b=	2280	mm	b=	3420	mm	b1=	1140	mm
t=	14	mm	t=	14	mm	b2=	1140	mm
a _c =	8109	mm	a _c =	13070	mm	b _{1,inf} =	570	mm
a=	2388	mm	a=	2388	mm	b _{2,inf} =	570	mm
A _{c,eff,loc} =	26105	mm²	$A_{c,eff,loc} =$	26105	mm²	b _{1,eff} =	673	mm
Ac=	39176	mm²	Ac=	39176	mm²	b _{2,eff} =	673	mm
β _{a,c} =	0,666		β _{a,c} =	0,666		b _{1,inf,eff} =	337	mm
σ _{cr,sl} =	851,6	MPa	σ _{cr,sl} =	846,2	MPa	b _{2,inf,eff} =	337	mm
v=	0,3		v=	0,3		I _{sl,1} =	45557133	mm ⁴
b _c =	2280	mm	b _c =	3420	mm	A _{sl,1} =	19588	mm²
b _{sl1} =	2280	mm	b _{sl1} =	3420	mm	a=	2388	mm
σ _{cr,p1} =	851,6	MPa	σ _{cr,p2} =	846,2	MPa	b _c =	3420	mm
λ _{p1} =	0,429		λ _{p2} =	0,430		b _{sl1} =	3420	mm
ψ=	1,00		ψ=	1,00		$\sigma_{cr,c}=$	845 <i>,</i> 3	MPa
ρ1=	1,000		ρ2=	1,000		$A_{sl1,eff}=$	13052	mm²
						β _{a,c} =	0,666	
σ _{cr,p} =	846,2	MPa				λc=	0,430	
ρ=	1,000					i=	48,2	mm
			_			e=	95,4	mm
Interaction	on - web					$\alpha_{e}=$	0,668	
ξ=	0,001					Ф=	0,670	
ρ _c =	0,846					χc=	0,846	

A thickness of lower flange is modified according to formula $A_{c,eff} = \rho_c * A_{c,eff,loc}$. The reduced thickness of plate is 11,1mm.

Plate effe	<u>ct - inner part</u>		Column	effect - inner	part
Ac,eff,loc=	44538	mm²	σ _{cr,sl} =	1183,1	MPa
A _c =	46810	mm²	ψ1=	1	
β _{a,c} =	0,951		ψ2=	1	
t=	14	mm	b1=	700	mm
b=	2786	mm	b2=	588	mm
σ _E =	4,798	MPa	b _{1,inf} =	350	mm
a=	2388	mm	b _{2,inf} =	294	mm
α=	0,857		b _{1,eff} =	596	mm
I _{sl} =	166743759	mm⁴	b _{2,eff} =	559	mm
I _p =	700072	mm⁴	b _{1,inf,eff} =	298	mm
γ=	238,181		b _{2,inf,eff} =	279	mm
∑A _{sl} =	13840	mm²	I _{sl,1} =	41157793	mm⁴
A _p =	39004	mm²	A _{sl,1} =	12644	mm²
δ=	0,355		a=	2388	mm
ψ=	1		b _c =	544	mm
			b _{sl1} =	544	mm
k _σ =	241,3		σ _{cr,c} =	1183,1	MPa
σ _{cr,p} =	1157,7	MPa	A _{sl1,eff} =	11714	mm²
λ _p =	0,439		β _{a,c} =	0,926	
ρ=	1,000		$\lambda_c =$	0,429	
			i=	57,1	mm
			e=	82,6	mm
Interactio	<u>n - inner part</u>		$\alpha_{e}=$	0,620	
ξ=	0		Ф=	0,663	
ρ _c =	0,856		χ _c =	0,856	

Picture 4.1-6 – effective cross section – compressive force, L=7,8m

 $\begin{aligned} A_{eff} &= 0,22703m^2 \; (whole \; cross \; section), \\ A_{eff,sl} &= 0,01882m^3 (A_{eff,sl} \; ... \; yeald \; strength \; 355MPa) \end{aligned}$

4.1.3 Effective cross section – bending moment M_y, midspan

Picture 4.1-7 - numbers of subpanels

Upper	flange - I	DUCKIIN	g and sh	lear lag										
subpa	nel no. 1		subpa	nel no. 2		subpa	nel no. 3		subpa	inel no. 4		subpa	nel no. 5	
ψ=	1		ψ=	1		ψ=	1		ψ=	1		ψ=	1	
k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000	
b=	441	mm	b=	545	mm	b=	544	mm	b=	545	mm	b=	331	mm
t=	18	mm	t=	18	mm	t=	18	mm	t=	18	mm	t=	18	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,431		λ _P =	0,533		λ _P =	0,532		λ _P =	0,533		λ _P =	0,324	
ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000	
b _{eff} =	441	mm	b _{eff} =	545	mm	b _{eff} =	544	mm	b _{eff} =	545	mm	b _{eff} =	331	mm
			α0=	1,000		α0=	1,000					α0=	1,000	
			b0=	1862	mm	b0=	1400	mm				b0=	1732	mm
			Le=	42800	mm	Le=	42800	mm				Le=	42800	mm
			к=	0,044		к=	0,033					к=	0,040	
			β=	0,988		β=	0,993					β=	0,990	
			teff=	17,8	mm	teff=	17,9	mm				teff=	17,8	mm
b _{e1} =	221	mm	teff= b _{e1} =	17,8 273	mm mm	b _{e1} =	17,9 272	mm mm	b _{e1} =	273	mm	teff= b _{e1} =	17,8 166	mm mm
b _{e1} = Web -	221 buckling	mm	teff= b _{e1} =	17,8 273	mm mm	b _{e1} =	17,9 272	mm mm	b _{e1} =	273	mm	teff= b _{e1} =	17,8 166	mm mm
b _{e1} = Web - subpa	221 buckling nel no. 6	mm	teff= b _{e1} =	17,8 273 nel no. 7	mm mm	teff= b _{e1} =	17,9 272 nel no. 8	mm mm	b _{e1} =	273 inel no. 9	mm	teff= b _{e1} = subpar	17,8 166 nel no. 10	mm mm
b _{e1} = Web - subpa ψ=	221 buckling nel no. 6 0,76	mm	teff= b _{e1} = subpa	17,8 273 nel no. 7 0,85	mm mm	teff= b _{e1} = subpa ψ=	17,9 272 nel no. 8 0,73	mm mm	b _{e1} = subpa ψ=	273 inel no. 9 0,27	mm	teff= b _{e1} = subpar	17,8 166 nel no. 10 -1,75	mm mm
b _{e1} = Web - subpa ψ= k _σ =	221 buckling nel no. 6 0,76 4,529	mm	$\begin{array}{c} \textbf{teff=}\\ b_{e1}=\\ \hline\\ subpa\\ \psi=\\ k_{\sigma}=\\ \end{array}$	17,8 273 nel no. 7 0,85 0,487	mm mm	teff= b _{e1} = subpa ψ= k _σ =	17,9 272 nel no. 8 0,73 4,614	mm mm	b _{e1} = subpa ψ= k _σ =	273 nel no. 9 0,27 6,236	mm	teff= $b_{e1}=$ $subpation \psi =$ $k_{\sigma}=$	17,8 166 nel no. 10 -1,75 45,343	mm mm
b _{e1} = Web - subpa ψ= k _σ = b=	221 buckling nel no. 6 0,76 4,529 351	mm	$\begin{array}{c} \textbf{teff=}\\ b_{e1}=\\ \hline\\ \textbf{subpa}\\ \psi=\\ k_{\sigma}=\\ b=\\ \end{array}$	17,8 273 nel no. 7 0,85 0,487 240	mm mm	teff= b _{e1} = subpa ψ= k _σ = b=	17,9 272 nel no. 8 0,73 4,614 446	mm mm	$b_{e1}=$ subpa $\psi=$ $k_{\sigma}=$ b=	273 inel no. 9 0,27 6,236 1140	mm	teff= $b_{e1}=$ $subpare\psi =k_{\sigma}=b=$	17,8 166 nel no. 10 -1,75 45,343 1126	mm mm
$b_{e1} =$ Web - subpa $\psi =$ $k_{\sigma} =$ b = t =	221 buckling nel no. 6 0,76 4,529 351 12	mm mm mm	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \boldsymbol{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{t}=\\ \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16	mm mm mm	$\begin{array}{c} \textbf{teff=}\\ b_{e1}=\\ \textbf{subpa}\\ \boldsymbol{\psi}=\\ k_{\sigma}=\\ b=\\ t=\\ \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12	mm mm mm	$b_{e1}=$ subpa $\psi=$ $k_{\sigma}=$ b= t=	273 inel no. 9 0,27 6,236 1140 14	mm mm mm	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpan}\\ \boldsymbol{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \end{array}$	17,8 166 nel no. 10 -1,75 45,343 1126 412	mm mm mm
$b_{e1} =$ Web - subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{v} =$	221 buckling nel no. 6 0,76 4,529 351 12 235	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \boldsymbol{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{t}=\\ \textbf{f}_{y}=\\ \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16 355	mm mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \boldsymbol{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{t}=\\ \textbf{f}_{v}=\\ \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235	mm mm mm MPa	$b_{e1}=$ $\psi=$ $k_{\sigma}=$ b= t= $f_{\gamma}=$	273 inel no. 9 0,27 6,236 1140 14 235	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpar}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \end{array}$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14	mm mm mm mm
$b_{e1}=$ $Web -$ $subpa$ $\psi=$ $k_{\sigma}=$ $b=$ $t=$ $f_{y}=$ $\epsilon=$	221 buckling nel no. 6 0,76 4,529 351 12 235 1,000	mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1}= \\ \\ \textbf{w}_{e1} \\ \textbf{w}_{\sigma}= \\ \textbf{w}_{\sigma}= \\ \\ \textbf{b}= \\ \textbf{t}= \\ \textbf{f}_{y}= \\ \\ \textbf{\epsilon}= \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16 355 0,814	mm mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \hline \textbf{b}_{e1} = \\ \hline \textbf{b}_{e1} = \\ \textbf{k}_{\sigma} = \\ \textbf{b}_{e1} = \\ \textbf{b}_{e1} = \\ \textbf{t}_{e1} = \\ \textbf{f}_{y} = \\ \textbf{\epsilon} = \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000	mm mm mm MPa	$b_{e1} =$ $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$	273 inel no. 9 0,27 6,236 1140 14 235 1,000	mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1}= \\ \\ \textbf{w}_{e1} \\ \textbf{w}_{e2} \\ \textbf{w}_{e3} \\ \textbf{w}_{e3}$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14 235	mm mm mm mm MPa
$b_{e1} = \frac{b_{e1}}{b_{e1}}$ $\psi = \frac{b_{e2}}{b_{e2}}$ $b_{e3} = \frac{b_{e3}}{b_{e3}}$ $t_{e3} = \frac{b_{e3}}{b_{e3}}$	221 buckling nel no. 6 0,76 4,529 351 12 235 1,000 0,484	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \boldsymbol{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{t}=\\ \textbf{f}_{y}=\\ \boldsymbol{\epsilon}=\\ \boldsymbol{\lambda}_{P}=\\ \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16 355 0,814 0,930	mm mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \\ \textbf{b}_{e1} = \\ \\ \boldsymbol{\psi}_{e1} \\ \boldsymbol{\psi}_{e2} \\ \boldsymbol{\psi}_{e3} \\ \textbf{b}_{e3} = \\ \\ \textbf{b}_{e1} \\ \textbf{b}_{e3} \\ \\ \textbf{b}_{e3} = \\ \\ \boldsymbol{\lambda}_{e1} = \\ \\ \boldsymbol{\lambda}_{e2} = \\ \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000 0,609	mm mm mm MPa	$b_{e1} =$ $\psi =$ $k_{\sigma} =$ b = t = $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$	273 nel no. 9 0,27 6,236 1140 14 235 1,000 1,148	mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \\ \textbf{subpat} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{b}_{c} = \\ \textbf{t} = \\ \textbf{f}_{y} = \\ \textbf{\epsilon} = \end{array}$	17,8 166 -1,75 45,343 1126 412 14 235 1,000	mm mm mm mm MPa
$b_{e1} = \frac{b_{e1}}{b_{e1}}$ b_{e1} b_{e2} b_{e3} t_{e3} $f_{y} = \frac{b_{e3}}{b_{e3}}$ $\lambda_{p} = \frac{b_{e3}}{p_{e3}}$	221 buckling 0,76 4,529 351 12 235 1,000 0,484 1,000	mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpaid} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{t} = \\ \textbf{f}_{v} = \\ \textbf{\epsilon} = \\ \textbf{\lambda}_{P} = \\ \textbf{\rho} = \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16 355 0,814 0,930 0,858	mm mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \hline \textbf{b}_{e1} = \\ \hline \textbf{b}_{e1} \\ \textbf{b}_{e1} \\ \textbf{b}_{e1} \\ \textbf{b}_{e1} \\ \textbf{b}_{e1} \\ \textbf{b}_{e1} \\ \textbf{c}_{e1} \\ \textbf{c}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000 0,609 1,000	mm mm mm MPa	$b_{e1} =$ $subpa$ $\psi =$ $k_{\sigma} =$ $b =$ $t =$ $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$	273 0,27 6,236 1140 14 235 1,000 1,148 0,735	mm mm MPa	$\begin{array}{l} \mbox{teff=} \\ \mbox{best}\\ bes$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14 235 1,000 0,421	mm mm mm mm MPa
$b_{e1} = \frac{b_{e1}}{b_{e1}}$ $\psi = \frac{b_{e1}}{b_{e1}}$ $\psi = \frac{b_{e1}}{b_{e1}}$ $\psi = \frac{b_{e1}}{b_{e1}}$ $\psi = \frac{b_{e1}}{b_{e1}}$	221 buckling nel no. 6 0,76 4,529 351 12 235 1,000 0,484 1,000 351	mm mm MPa mm	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1}= \\ \\ \textbf{subpai} \\ \boldsymbol{\psi}= \\ \textbf{k}_{\sigma}= \\ \textbf{b}= \\ \textbf{t}= \\ \textbf{f}_{v}= \\ \textbf{\epsilon}= \\ \boldsymbol{\lambda}_{P}= \\ \boldsymbol{\rho}= \\ \textbf{b}_{eff}= \end{array}$	17,8 273 nel no. 7 0,85 0,487 240 16 355 0,814 0,930 0,858 206	mm mm mm MPa	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpa} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{t} = \\ \textbf{f}_{v} = \\ \textbf{\epsilon} = \\ \textbf{\lambda}_{P} = \\ \textbf{\rho} = \\ \textbf{b}_{eff} = \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000 0,609 1,000 446	mm mm mm MPa	$b_{e1}=$ subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$	273 inel no. 9 0,27 6,236 1140 14 235 1,000 1,148 0,735 838	mm mm MPa mm	$\begin{array}{c} \mbox{teff=} \\ \mbox{best}\\ bes$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14 235 1,000 0,421 1,000	mm mm mm mm MPa
$b_{e1} = b_{e1} = b$	221 buckling nel no. 6 0,76 4,529 351 12 235 1,000 0,484 1,000 351 166	mm mm MPa mm	$\begin{array}{l} \mbox{teff=} \\ \mbox{be}_1 = \\ \mbox{subpa} \\ \mbox{ψ}_2 \\ \mbox{k_{σ}} = \\ \mbox{b}_2 \\ \mbox{t}_2 \\ $t$$	17,8 273 nel no. 7 0,85 0,487 240 16 355 0,814 0,930 0,858 206	mm mm mm MPa mm	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpa} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{t} = \\ \textbf{f}_{\gamma} = \\ \textbf{\epsilon} = \\ \textbf{\lambda}_{P} = \\ \textbf{\rho} = \\ \textbf{b}_{eff} = \\ \textbf{b}_{e1} = \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000 0,609 1,000 446 209	mm mm mm MPa mm	$b_{e1}=$ subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$ $b_{e1} =$	273 nel no. 9 0,27 6,236 1140 14 235 1,000 1,148 0,735 838 354	mm mm MPa mm	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpan} \\ \boldsymbol{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{b}_{c} = \\ \textbf{t} = \\ \textbf{f}_{v} = \\ \textbf{c} = \\ \textbf{k}_{P} = \\ \boldsymbol{\rho} = \\ \textbf{b}_{eff} = \end{array}$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14 235 1,000 0,421 1,000 412	mm mm mm MPa mm
$b_{e1} = b_{e1} = b_{e1} = b_{e1} = b_{e1} = b_{e2} = b$	221 buckling nel no. 6 0,76 4,529 351 12 235 1,000 0,484 1,000 351 166 185	mm mm MPa mm mm	teff= b_{e1} = subpa ψ = k_{σ} = b= t= f_y = ϵ = λ_p = ρ = b_{eff} =	17,8 273 0,85 0,487 240 16 355 0,814 0,930 0,858 206	mm mm mm MPa mm	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpa} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{t} = \\ \textbf{f}_{\gamma} = \\ \textbf{\epsilon} = \\ \textbf{\lambda}_{P} = \\ \textbf{\rho} = \\ \textbf{b}_{eff} = \\ \textbf{b}_{e2} = \\ \end{array}$	17,9 272 nel no. 8 0,73 4,614 446 12 235 1,000 0,609 1,000 446 209 237	mm mm mm MPa mm mm	$b_{e1} =$ $subpa$ $\psi =$ $k_{\sigma} =$ $b =$ $t =$ $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$ $b_{e1} =$ $b_{e2} =$	273 nel no. 9 0,27 6,236 1140 14 235 1,000 1,148 0,735 838 354 484	mm mm MPa mm mm	$\begin{array}{c} \textbf{teff=} \\ \textbf{b}_{e1} = \\ \textbf{subpan} \\ \textbf{\psi} = \\ \textbf{k}_{\sigma} = \\ \textbf{b} = \\ \textbf{b}_{c} = \\ \textbf{t} = \\ \textbf{f}_{v} = \\ \textbf{c} = \\ \textbf{k}_{p} = \\ \textbf{\rho} = \\ \textbf{b}_{eff} = \\ \textbf{b}_{e1} = \end{array}$	17,8 166 nel no. 10 -1,75 45,343 1126 412 14 235 1,000 0,421 1,000 412 165	mm mm mm mm MPa mm

Lower flange - shear lag

t=	25	mm
α0=	1,000	
b0=	1400	mm
Le=	42800	mm
к=	0,033	
β=	0,993	
teff=	24,8	mm

Global buckling:

	А	thickness	of	the	inner	part	of	upper	flange	is	modified	according	to	formula
$A_{c,eff}$:	$= \rho_c$	$*A_{c,eff,loc}$. The	e redu	iced thi	cknes	s of	plate is	15,4mm					

Plate eff	ect - inner par	t	<u>Column</u>	effect - inner	part
Ac,eff,loc=	53223	mm²	σ _{cr,sl} =	1692,8	MPa
A _c =	55680	mm²	ψ1=	1	
β _{a,c} =	0,956		ψ2=	1	
t=	18	mm	b1=	544	mm
b=	2786	mm	b2=	544	mm
σ _E =	7,931	MPa	b _{1,inf} =	272	mm
a=	2388	mm	b _{2,inf} =	272	mm
α=	0,857		b _{1,eff} =	544	mm
I _{sl} =	270754550	mm ⁴	b _{2,eff} =	544	mm
I _p =	1487908	mm ⁴	b _{1,inf,eff} =	272	mm
γ=	181,970		b _{2,inf,eff} =	272	mm
∑A _{sl} =	15360	mm²	I _{sl,1} =	64832595	mm ⁴
A _p =	50148	mm²	A _{sl,1} =	13920	mm²
δ=	0,306		a=	2388	mm
ψ=	1		b _c =	544	mm
			b _{sl1} =	544	mm
k _σ =	191,7		σ _{cr,c} =	1692,8	MPa
σ _{cr,p} =	1520,4	MPa	A _{sl1,eff} =	13306	mm²
λ _p =	0,384		β _{a,c} =	0,956	
ρ=	1,000		$\lambda_c =$	0,364	
			i=	68,2	mm
			e=	93,5	mm
Interacti	on - inner par	t	$\alpha_{e}=$	0,613	
ξ=	0		Ф=	0,617	
ρ _c =	0,897		χ _c =	0,897	

Overhanging part does not buckle itself ($\sigma_{com,Ed}$ =148,5MPa< ρ_c*f_y/γ_{M1} =0,927*235/1,1=198,0MPa). But there is a stress peak caused by buckling of inner panel, so the thickness is modified in the same way.

Plate effe	ect - stiffene	r 7	Column	effect	
I _{sl} =	63707243	mm ⁴	σ _{cr,sl} =	1780,9	MPa
b1=	455	mm	ψ1=	1	
b2=	560	mm	ψ2=	1	
b=	1015	mm	b1=	441	mm
t=	18	mm	b2=	545	mm
a _c =	3959	mm	b _{1,inf} =	220,5	mm
a=	2388	mm	b _{2,inf} =	272,5	mm
$A_{c,eff,loc} =$	12347	mm²	b _{1,eff} =	441	mm
Ac=	13002	mm²	b _{2,eff} =	545	mm
β _{a,c} =	0,950		b1,inf,eff=	220,5	mm
A _{sl,1} =	13002	mm²	b _{2,inf,eff} =	272,5	mm
σ _{cr,sl} =	2014,6	MPa	I _{sl,1} =	63707243	mm ⁴
v=	0,3		A _{sl,1} =	13002	mm ²
b _c =	544	mm	a=	2388	mm
b _{sl1} =	544	mm	bc=	544	mm
			b _{sl1} =	544	mm
σ _{cr,p} =	2014,6	MPa	σ _{cr,c} =	1780,9	MPa
λ _p =	0,333		$A_{sl1,eff}=$	12456	mm ²
ψ=	1,00		β _{a,c} =	0,958	
ρ=	1,000		$\lambda_c =$	0,356	
			i=	70,0	mm
			e=	91,0	mm
Interaction	on - outside	part	$\alpha_{e}=$	0,607	
ξ=	0,131		Φ=	0,610	
ρc=	0,927		χ _c =	0,904	Í

A thickness of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =62,5MPa< $<\rho_c*f_y/\gamma_{M1}$ =1,000*235/1,1=235,0MPa.

Plate eff	ect - web		<u>Column</u>	effect - web	
I _{sI} =	63508030	mm ⁴	σ _{cr,sl} =	1523,2	MPa
b1=	1140	mm	ψ1=	0,27	
b2=	2280	mm	ψ2=	-1,75	
b=	3420	mm	b1=	1140	mm
t=	14	mm	b2=	412	mm
a _c =	11259	mm	b _{1,inf} =	658	mm
a=	2388	mm	b _{2,inf} =	165	mm
Ac,eff,loc=	16197	mm²	b _{1,eff} =	838	mm
A _c =	18643	mm²	b _{2,eff} =	412	mm
β _{a,c} =	0,869		b _{1,inf,eff} =	484	mm
σ _{cr,sl} =	1526,3	MPa	b _{2,inf,eff} =	165	mm
v=	0,3		I _{sl,1} =	63508030	mm ⁴
b _c =	1565	mm	A _{sl,1} =	15154	mm²
b _{sl1} =	419	mm	a=	2388	mm
			b _c =	1565	mm
			b _{sl1} =	419	mm
σ _{cr,p} =	5700,7	MPa	σ _{cr,c} =	5689,3	MPa
λ _p =	0,189		A _{sl1,eff} =	12708	mm²
ψ=	0,00		β _{a,c} =	0,839	
ρ=	1,000		λc=	0,186	
			i=	64,7	mm
			e=	111,3	mm
Interacti	on - web		α _e =	0,645	
ξ=	0,002		Ф=	0,513	
ρ _c =	1,000		χ _c =	1,000	

Picture 4.1-8 - Effective cross section – bending moment My, midspan

 $w_{y,el,eff} = 0.33629m^3$ $e_y = -0.065m$

These values are calculated for the upper fibres of the beam, which are determinative for assessment.

4.1.4 Effective cross section – bending moment M_y, L=7,8m

Picture 4.1-9 - numbers of subpanels

Upper	Ipper flange - buckling and shear lag													
subpa	nel no. 1		subpa	nel no. 2		subpa	nel no. 3		subpa	nel no. 4		subpa	nel no. 5	
ψ=	1		ψ=	1		ψ=	1		ψ=	1		ψ=	1	
k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000	
b=	441	mm	b=	545	mm	b=	544	mm	b=	545	mm	b=	331	mm
t=	14	mm	t=	14	mm	t=	14	mm	t=	14	mm	t=	14	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,555		λ _P =	0,685		λ _P =	0,684		λ _P =	0,685		λ _P =	0,416	
ρ=	1,000		ρ=	0,991		ρ=	0,992		ρ=	0,991		ρ=	1,000	
b _{eff} =	441	mm	b _{eff} =	540	mm	b _{eff} =	539	mm	b _{eff} =	540	mm	b _{eff} =	331	mm
			α0=	0,995		α0=	0,996					α0=	1,000	
			b0=	1862	mm	b0=	1400	mm				b0=	1732	mm
			Le=	42800	mm	Le=	42800	mm				Le=	42800	mm
			к=	0,043		к=	0,033					к=	0,040	
			β=	0,988		β=	0,993					β=	0,990	
			teff=	13,8	mm	teff=	13,9	mm				teff=	13,9	mm
b _{e1} =	221	mm	b _{e1} =	270	mm	b _{e1} =	270	mm	b _{e1} =	270	mm	b _{e1} =	166	mm
Web -	buckling		-						-			-		
subpa	nel no. 6		subpa	nel no. 7		subpa	nel no. 8		subpa	nel no. 9		subpa	nel no. 10	
ψ=	0,74		ψ=	0,83		ψ=	0,71		ψ=	0,19		ψ=	-3,00	
k _σ =	4,572		k _σ =	0,493		k _σ =	4,662		k _σ =	6,590		k _σ =	95,680	
b=	355	mm	b=	240	mm	b=	450	mm	b=	1140	mm	b=	1126	mm
t=	12	mm	t=	16	mm	t=	12	mm	t=	14	mm	b _c =	273	mm
f _y =	235	MPa	f _y =	355	MPa	f _y =	235	MPa	f _y =	235	MPa	t=	14	mm
ε=	1,000		ε=	0,814		ε=	1,000		ε=	1,000		f _y =	235	MPa
λ _P =	0,487		λ _P =	0,924		λ _P =	0,612		λ _P =	1,117		ε=	1,000	
ρ=	1,000		ρ=	0,862		ρ=	1,000		ρ=	0,754		λ _P =	0,290	
b _{eff} =	355	mm	b _{eff} =	207	mm	b _{eff} =	450	mm	b _{eff} =	860	mm	ρ=	1,000	
b _{e1} =	167	mm				b _{e1} =	210	mm	b _{e1} =	358	mm	b _{eff} =	273	mm
b _{e2} =	188	mm				b _{e2} =	240	mm	b _{e2} =	502	mm	b _{e1} =	109	mm
Lower	flange - s	shear la	g									b _{e2} =	164	mm
t=	14	mm												
α0=	1,000													
h0-	1400	mm												

42800

0,033

0,993

13,9

mm

mm

Le=

κ= β=

teff=

Global buckling:

	А	thickness	of	the	inner	part	of	upper	flange	is	modified	according	to	formula
$A_{c,eff}$:	$= \rho_c$	$*A_{c,eff,loc}$. The	e redu	iced thi	cknes	s of	plate is	12,1mm					

Plate effe	ect - inner part		<u>Column</u>	effect - inner	part
Ac,eff,loc=	44135	mm²	σ _{cr,sl} =	1871,2	MPa
Ac=	46720	mm²	ψ1=	1	
β _{a,c} =	0,945		ψ2=	1	
t=	14	mm	b1=	544	mm
b=	2786	mm	b2=	544	mm
σ _E =	4,798	MPa	b1,inf=	272	mm
a=	2388	mm	b _{2,inf} =	272	mm
α=	0,857		b _{1,eff} =	539	mm
I _{sl} =	263482493	mm⁴	b _{2,eff} =	539	mm
I _p =	700072	mm ⁴	b _{1,inf,eff} =	270	mm
γ=	376,365		b _{2,inf,eff} =	270	mm
∑A _{sl} =	15360	mm²	I _{sl,1} =	60132189	mm ⁴
A _p =	39004	mm²	A _{sl,1} =	11680	mm²
δ=	0,394		a=	2388	mm
ψ=	1		b _c =	544	mm
			b _{sl1} =	544	mm
k _σ =	369,5		σ _{cr,c} =	1871,2	MPa
σ _{cr,p} =	1772,8	MPa	A _{sl1,eff} =	11034	mm ²
λ _p =	0,354		β _{a,c} =	0,945	
ρ=	1,000		$\lambda_c =$	0,344	
			i=	71,8	mm
			e=	85,3	mm
Interaction	<u>on - inner part</u>		α _e =	0,597	
ξ=	0		Φ=	0,602	
ρ _c =	0,912		χ _c =	0,912	

Overhanging part does not buckle itself ($\sigma_{com,Ed}$ =86,0MPa< ρ_{C} *f_y/ γ_{M1} =0,928*235/1,1=198,3MPa). But there is a stress peak caused by buckling of inner panel, so the thickness is modified in the same way.

Plate effe	ect - stiffener	7	<u>Column e</u>	effect	
I _{sl} =	58795187	mm ⁴	σ _{cr,sl} =	1948,7	MPa
b1=	455	mm	ψ1=	1	
b2=	560	mm	ψ2=	1	
b=	1015	mm	b1=	441	mm
t=	14	mm	b2=	545	mm
a _c =	4685	mm	b _{1,inf} =	220,5	mm
a=	2388	mm	b _{2,inf} =	272,5	mm
Ac,eff,loc=	10316	mm²	b _{1,eff} =	441	mm
Ac=	10966	mm²	b _{2,eff} =	540	mm
β _{a,c} =	0,941		b _{1,inf,eff} =	220,5	mm
A _{sl,1} =	10966	mm²	b _{2,inf,eff} =	270,0	mm
σ _{cr,sl} =	2079,1	MPa	I _{sl,1} =	58795187	mm ⁴
v=	0,3		A _{sl,1} =	10966	mm²
b _c =	544	mm	a=	2388	mm
b _{sl1} =	544	mm	b _c =	544	mm
			b _{sl1} =	544	mm
σ _{cr,p} =	2079,1	MPa	$\sigma_{cr,c}=$	1948,7	MPa
λ _p =	0,326		A _{sl1,eff} =	10316	mm²
ψ=	1,00		β _{a,c} =	0,941	
ρ=	0,998		λc=	0,337	
			i=	73,2	mm
			e=	81,3	mm
Interactio	on - outside p	<u>art</u>	α _e =	0,590	
ξ=	0,067		Ф=	0,597	
ρc=	0,928		χc=	0,917	

A thickness of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =46,0MPa< ρ_c*f_y/γ_{M1} =1,000*235/1,1=213,6MPa.

Plate effe	ect - web		<u>Column e</u>	effect - web	
I _{sl} =	62711855	mm ⁴	σ _{cr,sl} =	1574,7	MPa
b1=	1140	mm	ψ1=	0,19	
b2=	2280	mm	ψ2=	-3,00	
b=	3420	mm	b1=	1140	mm
t=	14	mm	b2=	273	mm
a _c =	11224	mm	b _{1,inf} =	666	mm
a=	2388	mm	b _{2,inf} =	109	mm
Ac,eff,loc=	14480	mm²	b _{1,eff} =	860	mm
Ac=	16768	mm²	b _{2,eff} =	273	mm
β _{a,c} =	0,864		b _{1,inf,eff} =	502	mm
σ _{cr,sl} =	1577,9	MPa	b _{2,inf,eff} =	165	mm
v=	0,3		I _{sl,1} =	62711855	mm ⁴
b _c =	1426	mm	A _{sl,1} =	14475	mm²
b _{sl1} =	280	mm	a=	2388	mm
			b _c =	1426	mm
			b _{sl1} =	280	mm
σ _{cr,p} =	8036,0	MPa	σ _{cr,c} =	8019,7	MPa
λ _p =	0,159		A _{sl1,eff} =	12965	mm ²
ψ=	0,00		β _{a,c} =	0,896	
ρ=	1,000		λc=	0,162	
			i=	65,8	mm
			e=	109,3	mm
Interaction	<u>on - web</u>		α _e =	0,639	
ξ=	0,002		Ф=	0,501	
ρ _c =	1,000		χc=	1,000	

Picture 4.1-10 - Effective cross section – bending moment My, L=7,8m

 $w_{y,el,eff} = 0,27261m^3, e_y = -0,062m$

These values are calculated for the upper fibres of the beam, which are determinative for assessment.

4.1.5 Effective cross section – bending moment M_z, midspan

Picture 4.1-11 - numbers of subpanels

Buckli	Buckling - subpanels										
subpar	nel no. 1		subpa	nel no. 2		subpa	nel no. 3		subpa	nel no. 4	
ψ=	0,81		ψ=	0,72		ψ=	0,63		ψ=	0,41	
kσ=	4,410		kσ=	4,621		kσ=	4,880		kσ=	5,635	
b=	331	mm	b=	545	mm	b=	545	mm	b=	544	mm
t=	18	mm	t=	18	mm	t=	18	mm	t=	18	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,308		λ _P =	0,496		λ _P =	0,483		λ _P =	0,448	
ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000	
b eff=	331	mm	b eff =	545	mm	b eff =	545	mm	b eff=	544	mm

subpa	nel no. 5		subpa	nel no. 6		subpa	nel no. 7		subpa	nel no. 8	
ψ=	-0,47		ψ=	1,00		ψ=	1,00		ψ=	1,00	
kσ=	12,904		kσ=	4,000		kσ=	0,430		kσ=	4,000	
b=	544	mm	b=	446	mm	b=	240	mm	b=	1140	mm
b _c =	373	mm	t=	12	mm	t=	16	mm	t=	14	mm
t=	18	mm	f _y =	235	MPa	f _y =	355	MPa	f _y =	235	MPa
f _y =	235	MPa	ε=	1,000		ε=	0,814		ε=	1,000	
ε=	1,000		λ _P =	0,654		λ _P =	0,990		λ _P =	1,434	
λ _P =	0,296		ρ=	1,000		ρ=	0,818		ρ=	0,590	
ρ=	1,000		b eff=	446	mm	b eff=	196	mm	b eff=	673	mm
b eff=	373	mm	b _{e1} =	178	mm				α0=	0,768	
b _{e1} =	149	mm	b _{e2} =	268	mm				b0=	1710	mm
b _{e2} =	224	mm							Le=	42800	mm
									к=	0,031	
									β=	0.994	
									1 1-	-)	
									teff=	13,9	mm
									teff=	13,9 337	mm mm
subpa	nel no. 9		subpa	nel no. 10)	subpa	nel no. 11		teff= b _{e1} = subpa	13,9 337 nel no. 12	mm mm
subpa ψ=	nel no. 9 0,87		subpa ψ=	nel no. 10 0,70	1	subpai ψ=	nel no. 11 0,43		teff= b _{e1} = subpa ψ=	13,9 337 nel no. 12 -0,55	mm mm
subpa ψ= k _σ =	nel no. 9 0,87 0,440		subpa ψ= k _σ =	nel no. 10 0,70 4,675	<u> </u>	subpar ψ= k _σ =	nel no. 11 0,43 5,543		teff= b _{e1} = subpa ψ= k _σ =	13,9 337 nel no. 12 -0,55 14,269	mm mm
subpa ψ= k _σ = b=	nel no. 9 0,87 0,440 203	mm	subpa ψ= k₀= b=	nel no. 10 0,70 4,675 431	mm	subpai ψ= k₀= b=	nel no. 11 0,43 5,543 588	mm	teff= $b_{e1}=$ subpa $\psi=$ $k_{\sigma}=$ b=	13,9 337 nel no. 12 -0,55 14,269 700	mm mm
subpa ψ= k _σ = b= t=	nel no. 9 0,87 0,440 203 25	mm mm	subpa ψ= kσ= b= t=	nel no. 10 0,70 4,675 431 25	mm mm	subpar ψ= k₀= b= t=	nel no. 11 0,43 5,543 588 25	mm mm	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453	mm mm mm
subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$	nel no. 9 0,87 0,440 203 25 235	mm mm MPa	$subpa \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_y = $	nel no. 10 0,70 4,675 431 25 235	mm mm MPa	subpart $\psi =$ $k_{\sigma} =$ b = t = $f_y =$	nel no. 11 0,43 5,543 588 25 235	mm mm MPa	$\frac{\text{teff=}}{\text{b}_{e1}=}$ $\frac{\text{subpa}}{\psi=}$ $k_{\sigma}=$ $b=$ $b_{c}=$ $t=$	13,9 337 nel no. 12 -0,55 14,269 700 453 25	mm mm mm mm
$subpa \psi = k_{\sigma} = b = t = f_{y} = \epsilon =$	nel no. 9 0,87 0,440 203 25 235 1,000	mm mm MPa	$subpa \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_{y} = \\ \epsilon =$	nel no. 10 0,70 4,675 431 25 235 1,000	mm mm MPa	$subpart \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_{y} = \\ \epsilon = $	nel no. 11 0,43 5,543 588 25 235 1,000	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \textbf{f}_{y}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235	mm mm mm mm MPa
$subpa \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_{\gamma} = \\ \epsilon = \\ \lambda_{P} = $	nel no. 9 0,87 0,440 203 25 235 1,000 0,431	mm mm MPa	$subpa \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_y = \\ \epsilon = \\ \lambda_P = $	nel no. 10 0,70 4,675 431 25 235 1,000 0,281	mm mm MPa	subpart $\psi =$ $k_{\sigma} =$ b = t = $f_y =$ $\epsilon =$ $\lambda_P =$	nel no. 11 0,43 5,543 588 25 235 1,000 0,352	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \textbf{f}_{v}=\\ \textbf{\epsilon}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235 1,000	mm mm mm mm MPa
$subpa \\ \psi = \\ k_{\sigma} = \\ b = \\ t = \\ f_{y} = \\ \epsilon = \\ \lambda_{P} = \\ \rho = $	nel no. 9 0,87 0,440 203 25 235 1,000 0,431 1,000	mm mm MPa	subpa ψ = k_{σ} = t= f_{y} = ϵ = λ_{P} = ρ =	nel no. 10 0,70 4,675 431 25 235 1,000 0,281 1,000	mm mm MPa	subpart $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$	nel no. 11 0,43 5,543 588 25 235 1,000 0,352 1,000	mm mm MPa	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \textbf{f}_{v}=\\ \textbf{\epsilon}=\\ \textbf{\lambda}_{P}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235 1,000 0,261	mm mm mm MPa
$subpa$ $\psi =$ $k_{\sigma} =$ $b =$ $t =$ $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$	nel no. 9 0,87 0,440 203 25 235 1,000 0,431 1,000 203	mm mm MPa mm	subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$	nel no. 10 0,70 4,675 431 25 235 1,000 0,281 1,000 431	mm mm MPa mm	subpart $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$	nel no. 11 0,43 5,543 588 25 235 1,000 0,352 1,000 588	mm mm MPa mm	$\begin{array}{c} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \textbf{f}_{v}=\\ \textbf{\epsilon}=\\ \textbf{\lambda}_{P}=\\ \textbf{\rho}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235 1,000 0,261 1,000	mm mm mm MPa
$subpa$ $\psi =$ $k_{\sigma} =$ $b =$ $t =$ $f_{\gamma} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$	nel no. 9 0,87 0,440 203 25 235 1,000 0,431 1,000 203	mm mm MPa mm	subpa $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$ $b_{e1} =$	nel no. 10 0,70 4,675 431 25 235 1,000 0,281 1,000 431 201	mm mm MPa <u>mm</u>	subpart $\psi =$ $k_{\sigma} =$ b = t = $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$ $b_{e1} =$	nel no. 11 0,43 5,543 588 25 235 1,000 0,352 1,000 588 257	mm mm MPa mm	$\begin{array}{l} \textbf{teff=}\\ \textbf{b}_{e1}=\\ \textbf{subpa}\\ \textbf{\psi}=\\ \textbf{k}_{\sigma}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{b}=\\ \textbf{b}_{c}=\\ \textbf{t}=\\ \textbf{f}_{V}=\\ \textbf{k}=\\ \textbf{\lambda}_{P}=\\ \textbf{\rho}=\\ \textbf{b}_{eff}=\\ \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235 1,000 0,261 1,000 453 25 235 1,000 0,261 1,000 453	mm mm mm mm MPa
subpa ψ= k_{σ} = b= t= f_{γ} = ε= $λ_{P}$ = ρ= b_{eff} =	nel no. 9 0,87 0,440 203 25 235 1,000 0,431 1,000 203	mm MPa mm	$subpa$ $\psi =$ $k_{\sigma} =$ $b =$ $f_{y} =$ $\epsilon =$ $\lambda_{P} =$ $\rho =$ $b_{eff} =$ $b_{e1} =$ $b_{e2} =$	nel no. 10 0,70 4,675 431 25 235 1,000 0,281 1,000 431 201 230	mm mm MPa mm mm	subpart $\psi =$ $k_{\sigma} =$ b = $f_y =$ $\epsilon =$ $\lambda_P =$ $\rho =$ $b_{eff} =$ $b_{e2} =$	nel no. 11 0,43 5,543 588 25 235 1,000 0,352 1,000 588 257 331	mm mm MPa mm mm	$\begin{array}{c} \mathbf{teff=} \\ \mathbf{b}_{e1} = \\ \mathbf{subpa} \\ \mathbf{\psi} = \\ \mathbf{k}_{\sigma} = \\ \mathbf{b} = \\ \mathbf{b}_{c} = \\ \mathbf{b}_{c} = \\ \mathbf{t} = \\ \mathbf{f}_{v} = \\ \mathbf{c} = \\ \mathbf{\lambda}_{P} = \\ \mathbf{\rho} = \\ \mathbf{b}_{eff} = \\ \mathbf{b}_{e1} = \end{array}$	13,9 337 nel no. 12 -0,55 14,269 700 453 25 235 1,000 0,261 1,000 453 181	mm mm mm mm MPa mm

Global buckling:

A thickness of the inner part of upper flange is not modified, because of validity of formula $\sigma_{\text{com,Ed}}=161,8\text{MPa}<\rho_{\text{C}}*f_{y}/\gamma_{\text{M1}}=0.947*235/1,1=202,3\text{MPa}.$

Plate effe	ect - stiff. 7L		Plate effect - sti	ff. 7R	Plate effect - bo	oth stiff.	<u>Column</u>	effect - inner	part
I _{sl} =	64700312	mm ⁴	62685500	mm ⁴	127385812	mm ⁴	σ _{cr,sl} =	1715,2	MPa
b1=	560	mm	560	mm	840	mm	ψ1=	0,63	
b2=	560	mm	1680	mm	1960	mm	ψ2=	0,41	
b=	1120	mm	2240	mm	2800	mm	b1=	545	mm
t=	18	mm	18	mm	18	mm	b2=	544	mm
a _c =	4302	mm	6216	mm	9285	mm	b _{1,inf} =	296	mm
a=	2388	mm	2388	mm	2388	mm	b _{2,inf} =	237	mm
A _{sl,eff,loc} =	24212	mm²	24212	mm²	24212	mm²	b _{1,eff} =	545	mm
A _{sl,1} =	13710	mm²	12346	mm²	26056	mm²	b _{2,eff} =	544	mm
A _{sl} =	26056	mm³	26056	mm³	26056,1	mm³	b1,inf,eff=	296	mm
β _{a,c} =	0,929		0,929		0,929		b _{2,inf,eff} =	237	mm
σ _{cr,sl} =	1876,7	MPa	1885,3	MPa	1784,6	MPa	I _{sl,1} =	64700312	mm ⁴
v=	0,3		0,3		0,3		A _{sl,1} =	13710	mm²
b _c =	2800	mm	2800	mm	2800	mm	a=	2388	mm
b _{sl1} =	2240	mm	1680	mm	1960	mm	bc=	1493	mm
σ _{cr,p1} =	2345,8	MPa	3142,1	MPa	2549,4	MPa	b _{sl1} =	933	mm
λ _{p1} =	0,305		0,264		0,293		σ _{cr,c} =	2744,3	MPa
ψ=	0		0		0		$A_{sl1,eff}=$	13013	mm²
ρ1=	1,000		1,000		1,000		β _{a,c} =	0,949	
							λc=	0,285	
σ _{cr,p} =	2345,8	MPa					i=	68,7	mm
ρ=	1,000		-				e=	92,7	mm
Interactio	on - inner pa	<u>rt</u>					α _e =	0,611	
ξ=	0,000						Φ=	0,567	
ρ _c =	0,947						χ_=	0,947	

A thickness of the outside part of upper flange is not modified, because of validity of formula $\sigma_{com,Ed}$ =148,5MPa< ρ_c *f_y/ γ_{M1} =0,964*235/1,1=205,9MPa.

Plate eff	ect - stiffene	r 7	<u>Column</u>	effect	
I _{sI} =	61807899	mm ⁴	σ _{cr,sl} =	1898,7	MPa
b1=	345	mm	ψ1=	0,81	
b ₂ =	560	mm	ψ2=	0,72	
b=	905	mm	b1=	331	mm
t=	18	mm	b2=	545	mm
ac=	3521	mm	b _{1,inf} =	173	mm
a=	2388	mm	b _{2,inf} =	255	mm
A _{c,eff,loc} =	11134	mm²	b _{1,eff} =	331	mm
A _c =	11832	mm²	b _{2,eff} =	545	mm
β _{a,c} =	0,941		b _{1,inf,eff} =	173	mm
A _{sl,1} =	11832	mm²	b _{2,inf,eff} =	255	mm
σ _{cr,sl} =	2297,0	MPa	I _{sl,1} =	61807899	mm ⁴
v=	0,3		A _{sl,1} =	11832	mm²
bc=	2613	mm	a=	2388	mm
b _{sl1} =	1944	mm	b _c =	2613	mm
			b _{sl1} =	1944	mm
σ _{cr,p} =	3087,5	MPa	σ _{cr,c} =	2552,1	MPa
λ _p =	0,268		$A_{sl1,eff}=$	11134	mm²
ψ=	0,59		β _{a,c} =	0,941	
ρ=	1,000		$\lambda_c =$	0,294	
			i=	72,3	mm
			e=	87,1	mm
Interacti	on - oustside	part	α_{e} =	0,598	
ξ=	0,210		Ф=	0,572	
ρ _c =	0,964		χ c=	0,942	

A thickness of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =62,5MPa< $<\rho_c*f_y/\gamma_{M1}=0.847*235/1,1=181,0MPa$.

ĺ	Plate effe	ect - one stiff	ener	Plate effect - both s	tiffeners	<u>Column</u>	effect - web	
	I _{sl} =	45557133	mm ⁴	91114266	mm ⁴	σ _{cr,sl} =	845 <i>,</i> 3	MPa
	b1=	1140	mm	1710	mm	ψ1=	1,00	
	b2=	1140	mm	1710	mm	ψ2=	1,00	
	b=	2280	mm	3420	mm	b1=	1140	mm
	t=	14	mm	14	mm	b2=	1140	mm
	a _c =	8109	mm	13070	mm	b _{1,inf} =	570	mm
	a=	2388	mm	2388	mm	b _{2,inf} =	570	mm
	A _{c,eff,loc} =	25990	mm²	25990	mm ²	b _{1,eff} =	673	mm
	Ac=	39176	mm²	39176	mm²	b _{2,eff} =	673	mm
	β _{a,c} =	0,663		0,663		b _{1,inf,eff} =	337	mm
	σ _{cr,sl} =	851,6	MPa	846,2	MPa	b _{2,inf,eff} =	337	mm
	v=	0,3		0,3		I _{sl,1} =	45557133	mm ⁴
	b _c =	2280	mm	3420	mm	A _{sl,1} =	19588	mm²
	b _{sl1} =	2280	mm	3420	mm	a=	2388	mm
	σ _{cr,p1} =	851,6	MPa	846,2	MPa	b _c =	3420	mm
	λ _{p1} =	0,428		0,429		b _{sl1} =	3420	mm
	ψ=	1,00		1,00		σ _{cr,c} =	845,3	MPa
	ρ1=	1,000		1,000		A _{sl1,eff} =	12995	mm²
						β _{a,c} =	0,663	
	σ _{cr,p} =	846,2	MPa			λc=	0,429	
	ρ=	1,000				i=	48,2	mm
						e=	95,4	mm
	Interaction	<u>on - web</u>				α _e =	0,668	
	ξ=	0,001				Φ=	0,669	
	ρ _c =	0,847				χc=	0,846	

A thickness lower flange is not modified, because of validity of formula $\sigma_{com,Ed}=10,4MPa < \rho_{C}*f_{y}/\gamma_{M1}=0,875*235/1,1=186,9MPa$. (10,4MPa is caused by horizontal load)

Plate effe	ect - stiff. 7L		Plate effect - sti	ff. 7R	Plate effect - k	oth stiff.	Column	effect - inner	<u>part</u>
I _{sI} =	47617378	mm ⁴	48032792	mm ⁴	95650171	mm ⁴	σ _{cr,sl} =	1085,0	MPa
b1=	444	mm	600	mm	744	mm	ψ1=	0,70	
b2=	600	mm	1756	mm	2056	mm	ψ2=	0,43	
b=	1044	mm	2356	mm	2800	mm	b1=	431	mm
t=	25	mm	25	mm	25	mm	b2=	588	mm
a _c =	2921	mm	4750	mm	6512	mm	b _{1,inf} =	230	mm
a=	2388	mm	2388	mm	2388	mm	b _{2,inf} =	257	mm
A _{sl,eff,loc} =	32605	mm²	32605	mm²	32605	mm²	b _{1,eff} =	431	mm
A _{sl,1} =	15951	mm²	16554	mm²	32505	mm ²	b _{2,eff} =	588	mm
A _{sl} =	32505	mm³	32505	mm³	32505	mm³	b _{1,inf,eff} =	230	mm
β _{a,c} =	1,003		1,003		1,003		b _{2,inf,eff} =	257	mm
σ _{cr,sl} =	1565,3	MPa	1121,4	MPa	1088,7	MPa	I _{sl,1} =	47617378	mm ⁴
v=	0,3		0,3		0,3		A _{sl,1} =	15951	mm ²
b _c =	2800	mm	2800	mm	2800	mm	a=	2388	mm
b _{sl1} =	2356	mm	1756	mm	2056	mm	b _c =	1493	mm
σ _{cr,p1} =	1860,3	MPa	1788,0	MPa	1482,6	MPa	b _{sl1} =	1059	mm
λ _{p1} =	0,356		0,363		0,399		σ _{cr,c} =	1530,5	MPa
ψ=	0		0		0		A _{sl1,eff} =	15951	mm ²
ρ1=	1,000		1,000		1,000		β _{a,c} =	1,000	
							λc=	0,392	
σ _{cr,p} =	1482,6	MPa					i=	54,6	mm
ρ=	1,000						e=	93,8	mm
Interaction	on - inner pa	<u>rt</u>					α _e =	0,645	
ξ=	0,000						Ф=	0,639	
ρ _c =	0,875						χc=	0,875	

A.2. Detailed static analysis

Picture 4.1-12 - Effective cross section – bending moment Mz, midspan

 $w_{z,el,eff} = 0,23221m^3$ $e_z = -0,092m$

These values are calculated for the upper fibres of the beam, which are determinative for assessment.

4.1.6 Effective cross section – bending moment M_z,L=7,8m

Picture 4.1-13 - numbers of subpanels

Buckling - subpanels												
subpar	nel no. 1		subpar	el no. 2		subpar	nel no. 3		subpar	subpanel no. 4		
ψ=	0,81		ψ=	0,73		ψ=	0,63		ψ=	0,42		
k _σ =	4,407		k _σ =	4,615		k _σ =	4,868		k _σ =	5,592		
b=	331	mm	b=	545	mm	b=	545	mm	b=	544	mm	
t=	14	mm	t=	14	mm	t=	14	mm	t=	14	mm	
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000		
λ _P =	0,397		λ _P =	0,638		λ _P =	0,621		λ _P =	0,579		
ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000		
b _{eff} =	331	mm	b _{eff} =	545	mm	b _{eff} =	545	тт	b _{eff} =	544	mm	
b _{e1} =	158	mm	b _{e1} =	255	mm	b _{e1} =	249	mm	b _{e1} =	237	mm	
b _{e2} =	173	mm	b _{e2} =	290	mm	b _{e2} =	296	mm	b _{e2} =	307	mm	
subpar	nel no. 5		subpar	el no. 6		subpar	nel no. 7		subpar	nel no. 8		
ψ=	-0,40		ψ=	1,00		ψ=	1,00		ψ=	1,00		
k _σ =	11,924		k _σ =	4,000		kσ=	0,430		k _σ =	4,000		
b=	544	mm	b=	450	mm	b=	240	mm	b=	1140	mm	
b _c =	391	mm	t=	12	mm	t=	16	mm	t=	14	mm	
t=	14	mm	f _y =	235	MPa	f _y =	355	MPa	f _y =	235	MPa	
f _y =	235	MPa	ε=	1,000		ε=	0,814		ε=	1,000		
=3	1,000		λ _P =	0,660		λ _P =	0,990		λ _P =	1,434		
λ _P =	0,396		ρ=	1,000		ρ=	0,818		ρ=	0,590		
ρ=	1,000		b _{eff} =	450	mm	b _{eff} =	196	mm	b _{eff} =	673	mm	
b _{eff} =	391	mm	b _{e1} =	180	mm				α0=	0,768		
b _{e1} =	157	mm	b _{e2} =	270	mm				b0=	1710	mm	
b _{e2} =	235	mm							Le=	42800	mm	
									к=	0,031		
									β=	0,994		
									teff=	13,9	mm	
									b _{e1} =	337	mm	
subpar	nel no. 9		subpar	el no. 10		subpar	nel no. 11		subpar	nel no. 12		
ψ=	0,87		ψ=	0,71		ψ=	0,44		ψ=	-0,49		
k _σ =	0,440		k _σ =	4,666		k _σ =	5,508		k _σ =	13,286		
b=	203	mm	b=	431	mm	b=	588	mm	b=	700	mm	
t=	14	mm	t=	14	mm	t=	14	mm	b _c =	471	mm	
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	t=	14	mm	
ε=	1,000		ε=	1,000		ε=	1,000		f _y =	235	MPa	
λ _P =	0,770		λ _P =	0,502		λ _P =	0,630		ε=	1,000		
ρ=	0,982		ρ=	1,000		ρ=	1,000		λ _P =	0,483		
b _{eff} =	199	mm	b _{eff} =	431	mm	b _{eff} =	588	тт	ρ=	1,000		
			b _{e1} =	201	mm	b _{e1} =	257	mm	b _{eff} =	471	mm	
			b _{e2} =	230	mm	b _{e2} =	331	mm	b _{e1} =	188	mm	
									b _{e2} =	283	mm	

Global buckling:

A thickness of the inner part of upper flange is not modified, because of validity of formula $\sigma_{\text{com,Ed}}=82,7\text{MPa}<\rho_{\text{C}}*f_{\text{y}}/\gamma_{\text{M1}}=0.956*235/1,1=204,2\text{MPa}.$

Plate effe	ect - stiff. 7L		Plate effect - stil	ff. 7R	Plate effect - bo	oth stiff.	Column	effect - inner	part
I _{sl} =	59849305	mm ⁴	60449455	mm ⁴	120298760	mm ⁴	σ _{cr,sl} =	1888,0	MPa
b1=	560	mm	560	mm	840	mm	ψ1=	0,63	
b ₂ =	560	mm	1680	mm	1960	mm	ψ2=	0,42	
b=	1120	mm	2240	mm	2800	mm	b1=	545	mm
t=	14	mm	14	mm	14	mm	b2=	544	mm
a _c =	5094	mm	7437	mm	11052	mm	b _{1,inf} =	295	mm
a=	2388	mm	2388	mm	2388	mm	b _{2,inf} =	237	mm
A _{sl,eff,loc} =	20258	mm²	20258	mm²	20258	mm²	b _{1,eff} =	545	mm
A _{sl,1} =	11521	mm²	10548	mm²	22070	mm²	b _{2,eff} =	544	mm
A _{sl} =	22070	mm³	22070	mm³	22069,8	mm³	b _{1,inf,eff} =	295	mm
β _{a,c} =	0,918		0,918		0,918		b _{2,inf,eff} =	237	mm
σ _{cr,sl} =	1978,4	MPa	2104,8	MPa	1985,4	MPa	I _{sl,1} =	59849305	mm ⁴
v=	0,3		0,3		0,3		A _{sl,1} =	11521	mm²
b _c =	2800	mm	2800	mm	2800	mm	a=	2388	mm
b _{sl1} =	2240	mm	1680	mm	1960	mm	bc=	1511	mm
σ _{cr,p1} =	2473,0	MPa	3508,0	MPa	2836,3	MPa	b _{sl1} =	951	mm
λ _{p1} =	0,295		0,248		0,276		σ _{cr,c} =	2999,4	MPa
ψ=	0		0		0		$A_{sl1,eff}=$	10824	mm²
ρ1=	1,000		1,000		1,000		β _{a,c} =	0,939	
							λc=	0,271	
σ _{cr,p} =	2473,0	MPa					i=	72,1	mm
ρ=	1,000		-				e=	84,6	mm
Interactio	on - inner pa	<u>rt</u>					$\alpha_e =$	0,596	
ξ=	0,000						Ф=	0,558	
ρ _c =	0,956						χ _c =	0,956	

A thickness of the outside part of upper flange is not modified, because of validity of formula $\sigma_{com,Ed}$ =86,0MPa< ρ_{c} *f_y/ γ_{M1} =0,961*235/1,1=205,3MPa.

Plate eff	ect - stiffene	r 7	<u>Column</u>	effect	
I _{sI} =	56819684	mm ⁴	σ _{cr,sl} =	2053,4	MPa
b1=	345	mm	ψ1=	0,81	
b ₂ =	560	mm	ψ2=	0,73	
b=	905	mm	b1=	331	mm
t=	14	mm	b2=	545	mm
a _c =	4163	mm	b _{1,inf} =	173	mm
a=	2388	mm	b _{2,inf} =	255	mm
A _{c,eff,loc} =	9359	mm²	b _{1,eff} =	331	mm
A _c =	10057	mm²	b _{2,eff} =	545	mm
β _{a,c} =	0,931		b _{1,inf,eff} =	173	mm
A _{sl,1} =	10057	mm²	b _{2,inf,eff} =	255	mm
σ _{cr,sl} =	2273,9	MPa	I _{sl,1} =	56819684	mm ⁴
v=	0,3		A _{sl,1} =	10057	mm²
b _c =	2620	mm	a=	2388	mm
b _{sl1} =	1951	mm	b _c =	2620	mm
			b _{sl1} =	1951	mm
σ _{cr,p} =	3053,7	MPa	σ _{cr,c} =	2757,5	MPa
λ _p =	0,268		A _{sl1,eff} =	9359	mm²
ψ=	0,59		β _{a,c} =	0,931	
ρ=	1,000		λc=	0,282	
			i=	75,2	mm
			e=	78,5	mm
Interacti	on - outside	part	α_{e} =	0,584	
ξ=	0,107		Ф=	0,563	
ρ _c =	0,961		χ _c =	0,951	

A thickness of web is not modified, because of validity of formula $\sigma_{com,Ed}$ =46,0MPa< $\rho_c*f_y/\gamma_{M1}=0.847*235/1,1=181,0MPa$.

Plate effe	ect - one stiff	ener	Plate effect - both s	tiffeners	Column	effect - web	
I _{sI} =	45557133	mm^4	91114266	mm ⁴	σ _{cr,sl} =	845,3	MPa
b1=	1140	mm	1710	mm	ψ1=	1,00	
b2=	1140	mm	1710	mm	ψ2=	1,00	
b=	2280	mm	3420	mm	b1=	1140	mm
t=	14	mm	14	mm	b2=	1140	mm
a _c =	8109	mm	13070	mm	b _{1,inf} =	570	mm
a=	2388	mm	2388	mm	b _{2,inf} =	570	mm
Ac,eff,loc=	25990	mm²	25990	mm²	b _{1,eff} =	673	mm
Ac=	39176	mm²	39176	mm ²	b _{2,eff} =	673	mm
β _{a,c} =	0,663		0,663		b1,inf,eff=	337	mm
σ _{cr,sl} =	851,6	MPa	846,2	MPa	b _{2,inf,eff} =	337	mm
v=	0,3		0,3		I _{sl,1} =	45557133	mm ⁴
b _c =	2280	mm	3420	mm	A _{sl,1} =	19588	mm²
b _{sl1} =	2280	mm	3420	mm	a=	2388	mm
σ _{cr,p1} =	851,6	MPa	846,2	MPa	bc=	3420	mm
λ _{p1} =	0,428		0,429		b _{sl1} =	3420	mm
ψ=	1,00		1,00		σ _{cr,c} =	845,3	MPa
ρ1=	1,000		1,000		A _{sl1,eff} =	12995	mm²
					β _{a,c} =	0,663	
σ _{cr,p} =	846,2	MPa			λc=	0,429	
ρ=	1,000				i=	48,2	mm
					e=	95,4	mm
Interactio	<u>on - web</u>				α _e =	0,668	
ξ=	0,001				Ф=	0,669	
ρ _c =	0,847				χ _c =	0,846	

A thickness lower flange is not modified, because of validity of formula $\sigma_{com,Ed}=10,4$ MPa< $<\rho_c*f_y/\gamma_{M1}=0,906*235/1,1=193,6$ MPa. (10.4MPa is caused by horizontal load)

Plate effe	ect - stiff. 7L		Plate effect - sti	iff. 7R	Plate effect - bot	h stiff.	Column e	ffect - inner p	oart
I _{sl} =	38637664	mm ⁴	41460457	mm ⁴	80098121	mm ⁴	$\sigma_{cr,sl}=$	1338,9	MPa
b1=	444	mm	600	mm	744	mm	ψ1=	0,71	
b2=	600	mm	1756	mm	2056	mm	ψ2=	0,44	
b=	1044	mm	2356	mm	2800	mm	b1=	431	mm
t=	14	mm	14	mm	14	mm	b2=	588	mm
a _c =	4283	mm	7073	mm	9623	mm	b _{1,inf} =	230	mm
a=	2388	mm	2388	mm	2388	mm	b _{2,inf} =	258	mm
Asl,eff,loc=	21404	mm²	21404	mm²	21404	mm ²	b _{1,eff} =	431	mm
A _{sl,1} =	10488	mm²	10888	mm²	21376	mm²	b _{2,eff} =	588	mm
A _{sl} =	21376	mm³	21376	mm³	21375,9	mm ³	b _{1,inf,eff} =	230	mm
β _{a,c} =	1,001		1,001		1,001		b _{2,inf,eff} =	258	mm
σ _{cr,sl} =	1467,2	MPa	1401,9	MPa	1367,0	MPa	I _{sl,1} =	38637664	mm ⁴
v=	0,3		0,3		0,3		A _{sl,1} =	10488	mm²
b _c =	2800	mm	2800	mm	2800	mm	a=	2388	mm
b _{sl1} =	2356	mm	1756	mm	2056	mm	b _c =	1511	mm
σ _{cr,p1} =	1743,7	MPa	2235,3	MPa	1861,7	MPa	b _{sl1} =	1077	mm
λ _{p1} =	0,367		0,324		0,356		$\sigma_{cr,c}=$	1879,0	MPa
ψ=	0		0		0		A _{sl1,eff} =	10460	mm²
ρ1=	1,000		1,000		1,000		β _{a,c} =	0,997	
							λc=	0,353	
σ _{cr,p} =	1743,7	MPa					i=	60,7	mm
ρ=	1,000						e=	76,2	mm
Interaction	on - inner par	rt					α _e =	0,603	
ξ=	0,000						Ф=	0,609	
ρ _c =	0,906						χc=	0,906	

A.2. Detailed static analysis

Picture 4.1-14 - Effective cross section – bending moment Mz, L=7,8m

 $w_{z,el,eff} = 0,20130m^3$ $e_z = -0,116m$

These values are calculated for the upper fibres of the beam, which are determinative for assessment.

4.1.7 Cross section in midspan

A determinative combination of load (formula 6.10b, gr12/gr14):

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature max linear	0,90
	traction force	0,65
	wind Z-	1,01
	wind L with train	1,01
	LM71 - L - maximal M	1,39
	centrifugal force - maximal M	1,30
	nosing force - L - maximal M	1,30

Position of traffic load causing the critical bending moment (the middle point of traffic load is situated in stationing 21,48m)

-		*	1 11	 11 10	114		10 10	****	++++	 			-
						 							1
N											8		1

Picture 4.1-15 - critical position of traffic load

Inner forces found out by integration of stress on cross section:

N_{Ed}	<u>+</u> 192,4	kN
$V_{y,Ed}$	14,5	kN
$V_{z,Ed}$	47,4	kN
M _{y,Ed}	60864,5	kNm
$M_{z,Ed}$	6092,6	kNm

Resistance to bending moments:

 $M_{y,el,Rd} = w_{y,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,33629 * \frac{235000}{1,1} = 71843,8 \text{kNm}$ $M_{z,el,Rd} = w_{z,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,23221 * \frac{235000}{1,1} = 49608,5 \text{kNm}$ • Flexural buckling: Buckling length: $L_{cr,y} = 42800mm \dots span of a simple beam$ Non-dimensional slenderness: $\lambda_{1} = \pi * \sqrt{\frac{E}{f_{y}}} = \pi * \sqrt{\frac{210000}{235}} = 93,913$ $\lambda' = \frac{L_{cr}}{i_{y}} * \frac{\sqrt{\frac{A_{eff}}{A}}}{\lambda_{1}} = \frac{42800}{1429} * \frac{\sqrt{\frac{0,22703}{0,28265}}}{93,913} = 0,286$ **Reduction factor:**
$$\begin{split} & \varphi = 0.5 * \left[1 + \alpha * (\lambda' - 0.2) + {\lambda'}^2 \right] = 0.5 * \left[1 + 0.34 * (0.286 - 0.2) + 0.286^2 \right] = \\ & = 0.556 \\ & \chi_y = \frac{1}{\varphi + \sqrt{\varphi^2 - {\lambda'}^2}} = \frac{1}{0.556 + \sqrt{0.556^2 - 0.286^2}} = 0.968 \end{split}$$

• Torsional-flexural buckling: Buckling length: $L_{cr,\omega} = 42800mm \dots span of a simple beam$ Non-dimensional slenderness:

$$\begin{split} \lambda_{1} &= \pi * \sqrt{\frac{E}{f_{y}}} = \pi * \sqrt{\frac{210000}{235}} = 93,913 \\ \lambda_{\omega} &= \sqrt{\frac{I_{p}}{\frac{I_{\omega}}{L_{cr,\omega}^{2}}} + \frac{I_{t}}{25}} = \sqrt{\frac{1,14773}{\frac{0,07471}{42,8^{2}}} + \frac{0,41847}{25}} = 8,270 \\ I_{p} &= I_{y} + I_{z} + A * a^{2} = 0,57758 + 0,56958 + 0,28265 * 0,045^{2} = 1,14773m^{4}} \\ i_{p} &= \sqrt{\frac{I_{p}}{A}} = \sqrt{\frac{1,14773}{0,28265}} * 10^{3} = 2015,0mm \\ I_{t} &= \frac{4 * A_{k}^{2}}{9_{s}\frac{ds}{t(s)}} = \frac{4 * (3,434 * 2,814)^{2}}{2 * \frac{3434}{14} + 2 * \frac{2814}{14}} = 0,41847 \\ \lambda_{z} &= \frac{L_{cr}}{i_{z}} = \frac{42800}{1420} = 30,141 \\ \lambda_{z\omega} &= \sqrt{\lambda_{z}^{2} + \alpha * \lambda_{\omega}^{2}} = \sqrt{30,141^{2} + 0,000477 * 8,270^{2}} = 30,142 \\ \alpha &= \left(\frac{a_{z}}{i_{p}}\right)^{2} = \left(\frac{44}{2015}\right)^{2} = 0,000477 \\ \lambda'_{z\omega} &= \lambda_{z\omega} * \frac{\sqrt{\frac{A_{eff}}{A}}}{\lambda_{1}} = 30,142 * \frac{\sqrt{\frac{0,22703}{0,28265}}}{93,913} = 0,288 \end{split}$$

Resistance to normal forces (including an addition of longitudinal flanges, their yield strength is 120MPa higher):

$$N_{Rd} = \chi * A_{eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,969 * (0,22703 * \frac{235000}{1,1} + 0,01882 * \frac{120000}{1,1}) = 48987,8kN$$

$$\frac{N_{Ed,max}}{N_{Rd}} = \frac{787,3}{48987,8} = 0,016 < 0,040 \rightarrow N_{Rd} = A_{eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,27548 * \frac{235000}{1,1} + 0,01882 * \frac{120000}{1,1} = 60905,6kN$$

Buckling resistance is calculated supposing the minimal area of cross section (thickness of flanges 14mm). The maximal normal force on a beam 787,3kN (combination formula 6.10b, gr13, a cross section above the support) is still smaller than 4% of buckling resistance, so the buckling effects can be ignored for every cross section of the box girder.

Combination of compression and biaxial bending (upper fibre of a beam):

$$\eta_{1} = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed} + N_{Ed} * e_{z,N}}{M_{z,el,Rd}} = \\ = \frac{192,4}{60905,6} + \frac{60864,5 + 192,4 * 0,065}{71843,8} + \frac{6092,6 + 192,4 * 0,092}{49608,5} = 0,974$$

SATISFACTORY (97,4%)

4.1.8 Cross section in stationing L=7,8m

A determinative combination of load (formula 6.10b, gr12/gr14):

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature max linear	0,90
	traction force	0,65
	wind Z-	1,01
	wind L with train	1,01
	LM71 - L - maximal M	1,39
	centrifugal force - maximal M	1,30
	nosing force - L - maximal M	1,30

Position of traffic load causing the critical bending moment (the middle point of traffic load is situated in stationing 7,88m)

	-#-	Built	HAIL	1111 NI		<u> </u>	 	_			 	
						6 D						П
1												7
												/

Picture 4.1-16 - critical position of traffic load

Inner forces found out by integration of stress on cross section:

N _{Ed}	-318,4	kN
$V_{y,Ed}$	301,2	kN
V _{z,Ed}	3653,8	kN
M _{y,Ed}	36512,7	kNm
M _{z,Ed}	3628,0	kNm

Resistance to bending moments:

$$M_{y,el,Rd} = w_{y,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,27261 * \frac{235000}{1,1} = 58239,4 \text{kNm}$$
$$M_{z,el,Rd} = w_{z,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,20130 * \frac{235000}{1,1} = 43005,0 \text{kNm}$$

Resistance to normal forces (including an addition of longitudinal flanges, their yield strength is 120MPa higher):

$$N_{Rd} = A_{eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,22703 * \frac{235000}{1,1} + 0,01882 * \frac{120000}{1,1} = 50555,0kN$$

Combination of compression and biaxial bending (upper fibre of a beam):

$$\eta_{1} = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed} + N_{Ed} * e_{z,N}}{M_{z,el,Rd}} =$$

= $\frac{318,4}{50555,0} + \frac{36512,7 + 318,4 * 0,062}{58239,4} + \frac{3628,0 + 318,4 * 0,116}{43005,0} = 0,719$
SATISFACTORY (71,9%)

4.1.9 Cross section in stationing L=0,0m

Maximal shear force:

A determinative combination of load for shear force (formula 6.10b, gr12/gr14):

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature maximal	0,90
	wind Z-, left	1,01
	wind L with train	1,01
	LM71 - L - maximal V	1,39
	centrifugal force - maximal V	1,30
	nosing force - L - maximal V	1,30

Position of traffic load causing the critical shear force (the middle point of traffic load is situated in stationing 3,04m)

TAR	TUWU	Design		1		- # ++				 			 -	H
				ł	ł		ł							ł
			2			8						2	-	17
M						. · · · ·					193		1.5	V

Picture 4.1-17 – critical position of traffic load LM71

Inner forces found out by integration of stress on cross section:

$V_{y,Ed}$	537,8 kN
$V_{z,Ed}$	5784,9 kN
M _{x,Ed}	2268,1 kNm

Maximal torsional moment:

A determinative combination of load for maximal torsional moment (formula 6.11b):

Linear - ultimate	self-weight	1,00
	other permanent load	1,00
	average	1.000
	other permanent load maximal	1,00
	temperature maximal	0,50
	wind Z-, left	0,50
	wind L with train	0,50
	derailment 1 - max V	1,00

Position of traffic load causing the critical shear force and torsional moment (the middle point of traffic load is situated in stationing 2,89m)

•	-	<u> </u>		-						 									-
1m	- 1	-	19			1 1 I I		1.1	_	 111	111	111		111	111				
							1 6			1 3			. 7.			R 1		1	
											-			1	5	1			
		_			81 - 16		10 10					21	1	100	1. 1.	100	1.1		1
- N																			1
1	L .	_													3 N	S			

Picture 4.1-18 - critical position of traffic load - derailment, design situation I

Inner forces found out by integration of stress on cross section:

$$\psi L = L * \sqrt{\frac{GI_t}{EI_{\omega}}} = 42.8 * \sqrt{\frac{81 * 0.41847}{210 * 0.07471}} = 62.9 > 10 \rightarrow internal St. Venant torsion$$

Shear buckling for a whole web (for a=2200mm): $\alpha = \frac{a}{h_w} = \frac{2200}{3420} = 0,643$ $k_\tau = 4,1 + \frac{6,3 + 0,18 * \frac{I_{sl}}{t^{3} * h_w}}{\alpha^2} + 2,2 * \sqrt[3]{\frac{I_{sl}}{t^3 * h_w}} = 4,1 + \frac{6,3 + 0,18 * \frac{2*33348536}{14^3 * 3420}}{0,643^2} + 2,2 * \sqrt[3]{\frac{2 * 33348536}{14^3 * 3420}} = 26,662$ $\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{3420}\right)^2 = 3,184MPa$ $\tau_{cr} = k_\tau * \sigma_E = 26,662 * 3,184 = 84,891MPa$ $\lambda_w = 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{84,891}} = 1,264 (determinative)$

Shear buckling for a subpanel (for a=2200mm): $\alpha = \frac{a}{100} - \frac{2200}{1000} - 1.930$

$$\begin{aligned} u &= h_w = 1140 = 1,950 \\ k_\tau &= 5,34 + 4 * \left(\frac{h_w}{a}\right)^2 = 5,34 + 4 * \left(\frac{1140}{2200}\right)^2 = 6,414 \\ \sigma_E &= 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{1140}\right)^2 = 28,655MPa \\ \tau_{cr} &= k_\tau * \sigma_E = 6,243 * 28,655 = 183,795MPa \\ \lambda_w &= 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{183,795}} = 0,859 \end{aligned}$$

Shear resistance:

$$\chi_w = \frac{0.83}{\lambda_w} = \frac{0.83}{1.264} = 0.657$$

A left web is more loaded, because traffic load is not uniformly distributed, V_{Ed1}=3150,8kN:

$$\begin{split} V_{bw,Rd} &= \frac{\chi_w * f_{yw} * h_w * t}{\sqrt{3} * \gamma_{M1}} = \frac{0,657 * 235 * 3420 * 14}{\sqrt{3} * 1,1 * 1000} = 3880,0 \text{kN} \\ \tau_{t,Ed} &= \frac{M_{x,d}}{2 * A_k * t_{min}} = \frac{2268,1}{2 * (3,434 * 2,814) * 14} = 8,383MPa \\ V_{bw,T,Rd} &= \left[1 - \frac{\tau_{t,Ed}}{(f_y/\sqrt{3})/\gamma_{M0}}\right] * V_{bw,Rd} = \left[1 - \frac{8,383}{(235/\sqrt{3})/1,0}\right] * 3880 = 3640,3 \text{kN} > 1000 \\ \end{array}$$

> 3150.8kN

<u>SATISFACTORY (86,5%)</u>

Resistance to maximal torsional moment, $V_{Ed1}=3287,9$ kN (shear force in one web): $\tau_{t,Ed} = \frac{M_{x,d}}{2 * A_k * t_{min}} = \frac{4631,6}{2 * (3,434 * 2,814) * 14} = 17,118MPa$ $\frac{T_{Ed}}{T_{Rd}} = \frac{\tau_{t,Ed}}{(f_y/\sqrt{3})/\gamma_{M0}} = \frac{17,118}{235/\sqrt{3}/1,0} = 0,126$ $V_{bw,T,Rd} = [1 - T_{Ed}/T_{Rd}] * V_{bw,Rd} = [1 - 0,126] * 3880,0 = 3390,5kN > 3287,9$ kN

SATISFACTORY (97,0%)

4.1.10 Combination of share force and bending moment

Assessment is done in place of $V_{Ed} = \frac{V_{bw,T,Rd}}{2}$, the cross section is found by iteration for following combination of loads, which causes maximal bending moment:

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature max linear	0,90
	traction force	1,30
	wind Z-	1,01
	wind L with train	1,01
	LM71 - L - maximal M	1,39
	centrifugal force - maximal M	1,30
	nosing force - L - maximal M	1,30

Shear buckling for a whole web (for a=2400mm):

$$\begin{aligned} \alpha &= \frac{a}{h_w} = \frac{2400}{3420} = 0,702 \\ k_\tau &= 4,1 + \frac{6,3 + 0,18 * \frac{I_{sl}}{t^{3*h_w}}}{\alpha^2} + 2,2 * \sqrt[3]{\frac{I_{sl}}{t^3 * h_w}} = \\ &= 4,1 + \frac{6,3 + 0,18 * \frac{2*33348536}{14^3*3420}}{0,702^2} + 2,2 * \sqrt[3]{\frac{2 * 33348536}{14^3 * 3420}} = 23,710 \\ \sigma_E &= 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{3420}\right)^2 = 3,184MPa \\ \tau_{cr} &= k_\tau * \sigma_E = 23,710 * 3,184 = 75,493MPa \\ \lambda_w &= 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{75,493}} = 1,341 (determinative) \end{aligned}$$

Shear buckling for a subpanel (for a=2400mm):

$$\alpha = \frac{a}{1} = \frac{2400}{1} = 2,105$$

$$\begin{aligned} h_w & 1140 \\ h_w & 1140 \\ k_\tau &= 5,34 + 4 * \left(\frac{h_w}{a}\right)^2 = 5,34 + 4 * \left(\frac{1140}{2400}\right)^2 = 6,243 \\ \sigma_E &= 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{1140}\right)^2 = 28,655MPa \\ \tau_{cr} &= k_\tau * \sigma_E = 6,243 * 28,655 = 178,879MPa \\ \lambda_w &= 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{178,879}} = 0,871 \end{aligned}$$

Shear resistance:

• For
$$V_{Ed} = \frac{V_{bw,T,Rd}}{2} = 3520,3$$
kN (stationing 8,75m)

N_{Ed}	-310,3	kN
$M_{x,Ed}$	1234,8	kNm
$M_{y,Ed}$	38746,4	kNm

$$\chi_w = \frac{0.83}{\lambda_w} = \frac{0.83}{1.341} = 0.619$$

$$V_{bw,Rd} = \frac{2 + \chi_w + f_{yw} + h_w + t}{\sqrt{3} + \gamma_{H1}} = \frac{2 + 0.619 + 235 + 3420 + 14}{\sqrt{3} + 1,1 + 1000} = 7311,1 \text{kN}$$

$$t_{t,Ed} = \frac{M_{x,d}}{2 + A_k + t_{min}} = \frac{1234,8}{2 + (3,434 + 2,814) + 14} = 4,564MPa$$

$$V_{bw,T,Rd} = \left[1 - \frac{t_{x,Ed}}{(f_p/\sqrt{3})/T_{H0}}\right] + V_{bw,Rd} = \left[1 - \frac{4,564}{(235/\sqrt{3})/1,1}\right] + 7311,1 = 7040,6 \text{kN}$$

$$V_{bw,T,Rd} = \left[1 - \frac{t_{x,Ed}}{(f_p/\sqrt{3})/T_{H0}}\right] + V_{bw,Rd} = \left[1 - \frac{4,564}{(235/\sqrt{3})/1,1}\right] + 7311,1 = 7040,6 \text{kN}$$

$$V_{bw,T,Rd} = \left[1 - \frac{t_{x,Ed}}{(f_p/\sqrt{3})/T_{H0}}\right] + V_{bw,Rd} = \left[1 - \frac{4,564}{(235/\sqrt{3})/1,1}\right] + 7040,6 \text{kN}$$

$$V_{bw,T,Rd} = \frac{1}{2} \frac{1}{3} \frac{1$$

Shear force and bending moment <u>do not interact</u>.
4.1.11 Resistance to transverse forces

Subpanel: Effective loaded length: $m_1 = \frac{f_{yf} * b_f}{f_{yy} * t_{yy}} = \frac{235 * 434}{235 * 14} = 31,000$ $m_2 = 0.02 * \left(\frac{h_w}{t_e}\right)^2 = 0.02 * \left(\frac{1140}{14}\right)^2 = 132,612$ $l_y = s_s + 2 * t_f * (1 + \sqrt{m_1 + m_2}) = 425 + 2 * 14 * (1 + \sqrt{31 + 132,612}) = 811,2mm$ Reduction factor for effective length: $k_F = 6 + 2 * \left[\frac{h_W}{a}\right]^2 = 6 + 2 * \left[\frac{1140}{2400}\right]^2 = 6,451$ $F_{cr} = 0.9 * k_F * E * \frac{t_w^3}{h_w} = 0.9 * 6.451 * 210 * \frac{14^3}{1140} = 2934.7 kN$ $\lambda'_{f} = \sqrt{\frac{l_{y} * t_{w} * f_{yw}}{F_{cr}}} = \sqrt{\frac{811,2 * 14 * 235}{2934,7 * 10^{3}}} = 0,954$ $\chi_F = \frac{0.5}{\lambda_F'} = \frac{0.5}{0.954} = 0.524$ Resistance to local buckling: $L_{eff} = \chi_F * l_v = 0,524 * 811,2 = 425,3mm$ $F_{Rd} = \frac{f_{yw} * L_{eff} * t_w}{\gamma_{M1}} = \frac{235 * 425,3 * 14}{1,1} * 10^{-3} = 1272,1kN$ Whole web: Effective loaded length $m_1 = \frac{f_{yf} * b_f}{f_{yw} * t_w} = \frac{235 * 434}{235 * 14} = 31$ $m_2 = 0.02 * \left(\frac{h_w}{t_c}\right)^2 = 0.02 * \left(\frac{3420}{14}\right)^2 = 1193.5$ $l_{y} = s_{s} + 2 * t_{f} * \left(1 + \sqrt{m_{1} + m_{2}}\right) = 425 + 2 * 14 * \left(1 + \sqrt{31 + 1193,5}\right) = 1432,8mm$ Reduction factor for effective length: $k_F = 6 + 2 * \left[\frac{h_w}{a}\right]^2 = 6 + 2 * \left[\frac{3420}{2400}\right]^2 = 10,061$ $F_{cr} = 0.9 * k_F * E * \frac{t_W^3}{h} = 0.9 * 10,061 * 210 * \frac{14^3}{3420} = 1525,7kN$ $\lambda'_{f} = \sqrt{\frac{l_{y} * t_{w} * f_{yw}}{F_{cr}}} = \sqrt{\frac{1432,8 * 14 * 235}{1525,7 * 10^{3}}} = 1,758$ $\chi_F = \frac{0.5}{\lambda_{f'}} = \frac{0.5}{1.758} = 0.284$ Resistance to local buckling: $L_{eff} = \chi_F * l_y = 0,284 * 1432,8 = 407,6mm$ $F_{Rd} = \frac{f_{yw} * L_{eff} * t_w}{\gamma_{M1}} = \frac{235 * 407,6 * 14}{1,1} * 10^{-3} = 1219,0kN \rightarrow determinative$ $F_{Ed} = \frac{0,332 + 0,498}{2} * \left(\frac{2,765}{2} + 0,300\right) * 125 * 1,3 * 1,071 + (0,115 + 0,549) * \frac{2,765}{4} * 1,3 = 1219,0kN \rightarrow determinative$ = 122,1kN (... wheel force with maximal eccentricity, centifugal and nosing force) $\eta_2 = \frac{F_{Ed}}{F_{Rd}} = \frac{122,1}{1219,0} = 0,100 \le 1$ Interaction between transverse force, bending moment and axial force (midspan):

 $\eta_2 + 0.8 * \mu_1 = 0.100 + 0.8 * 0.697 = 0.658 \le 1.4 \rightarrow not \ determinative \ influence$

4.1.12 Fatigue

<u>Upper fibre of box girder (EN 1993-1-9, table 8.1, detail 1):</u>

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71} &\leq \frac{\Delta \sigma_C}{\gamma_{Mf}} \\ \lambda_1 &= 0.64 \ (for \ span \ L = 42.8m) \\ \lambda_2 &= 0.83 \ (traffic \ per \ year \ 10^6 t) \\ \lambda_3 &= 1.00 \ (design \ life \ 100 \ years) \\ \lambda_4 &= 1.00 \ (monorail) \\ \lambda &= \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 0.64 * 0.83 * 1.00 * 1.00 = 0.531 \end{split}$$

Picture 4.1-21 - maximal stress caused by traffic load

 $\Phi_3 * \Delta \sigma_{71} = 1,071 * 72,2 = 77,326MPa$ 1,0 * 0,531 * 77,326 = 41,060MPa $\leq \frac{160}{1,15} = 139,130MPa$ SATISFACTORY (29,5%)

Load capacity:

 $z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{139,130}{41,060} = \mathbf{3}, \mathbf{387} \rightarrow not \ determinative$

<u>Upper fibre of web (EN 1993-1-9, table 8.1, detail 6):</u>

$$\gamma_{Ff} * \lambda * \Phi_{3} * \Delta \tau_{71} \leq \frac{\Delta \tau_{C}}{\gamma_{Mf}}$$

$$\lambda_{1} = 0.64 \ (for \ span \ L = 42.8m)$$

$$\lambda_{2} = 0.83 \ (traffic \ per \ year \ 10^{6}t)$$

$$\lambda_{3} = 1.00 \ (design \ life \ 100 \ years)$$

$$\lambda_{4} = 1.00 \ (monorail)$$

$$\lambda = \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 0.64 * 0.83 * 1.00 * 1.00 = 0.531$$

Picture 4.1-22 - maximal shear force caused by traffic load

$$\begin{split} \Phi_3 * \Delta \tau &= \Phi_3 * \frac{V_{Ed,1} * S_f}{t * I_y} = 1,071 * \frac{1948,5 * 0,15266}{14 * 0,55558} = 40,958 MPa \\ 1,0 * 0,531 * 40,958 = 21,749 MPa \leq \frac{100}{1,15} = 86,957 MPa \\ \underline{SATISFACTORY}(25,0\%) \end{split}$$

Load capacity: $z_{\text{LM71}} = \frac{\Delta \tau_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \tau_{71}} = \frac{86,957}{21,749} = \mathbf{3}, \mathbf{997} \rightarrow not \ determinative$

<u>Bolted joint of web - double covered symmetrical connection with preloaded high strength</u> <u>bolts (EN 1993-1-9, table 8.1, detail 8):</u>

Picture 4.1-23 - maximal stress caused by traffic load

$$\Phi_3 * \Delta \sigma_{71} = 1,071 * 61,0 = 65,331MPa$$

1,0 * 0,531 * 65,331 = 34,691MPa $\leq \frac{112}{1,15} = 97,391MPa$
SATISFACTORY (35,6%)

Load capacity:

$$z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{97,391}{34,691} = 2,807 \rightarrow not \ determinative$$

610

Welds of web and flanges - automatic or fully mechanized fillet weld carried out form both sides (EN 1993-1-9, table 8.2, detail 3), welds of longitudinal stiffener and lower flange (EN 1993-1-9, table 8.4, detail 1):

$$\gamma_{Ff} * \lambda * \Phi_{3} * \Delta \sigma_{71} \leq \frac{\Delta \sigma_{C}}{\gamma_{Mf}}$$

$$\lambda_{1} = 0.64 \ (for \ span \ L = 42.8m)$$

$$\lambda_{2} = 0.83 \ (traffic \ per \ year \ 10^{6}t)$$

$$\lambda_{3} = 1.00 \ (design \ life \ 100 \ years)$$

$$\lambda_{4} = 1.00 \ (monorail)$$

$$\lambda = \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 0.64 * 0.83 * 1.00 * 1.00 = 0.531$$

Picture 4.1-24 - maximal bending moment caused by traffic load Stress in weld (lower welds, critical detail category is 56 - stiffeners) $\Phi_3 * \Delta \sigma_{71} = 1,071 * \frac{M_{Ed}}{w_y} = 1,071 * \frac{22653,5}{0,39366} * 10^{-3} = 61,632MPa$ $1,0 * 0,531 * 61,632 = 32,727MPa \le \frac{56}{1,15} = 48,696MPa$ <u>SATISFACTORY (67,2%)</u> Load capacity: $z_{LM71} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{48,696}{32,727} = 1,488 \rightarrow not determinative$

Welds of web and flanges - continuous fillet weld transmitting a shear flow (EN 1993-1-9, table 8.5, detail 8): $\Delta \tau_{C}$

$$\gamma_{Ff} * \lambda * \Phi_3 * \Delta \tau_{71} \leq \frac{\Delta \tau_C}{\gamma_{Mf}}$$

$$\lambda_1 = 0,64 (for span L = 42,8m)$$

$$\lambda_2 = 0,83 (traffic per year 10^6 t)$$

$$\lambda_3 = 1,00 (design life 100 years)$$

$$\lambda_4 = 1,00 (monorail)$$

$$\lambda = \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 0,64 * 0,83 * 1,00 * 1,00 = 0,531$$
Final shear force caused by traffic load stress in weld (upper welds are deciding)

$$\Phi_2 * \Delta \tau = \Phi_3 * \frac{V_{Ed,1} * S_f}{2 * a * I_y} = 1,071 * \frac{1948,5 * 0,15266}{2 * 6 * 0,55558} = 47,785MPa$$

$$1,0 * 0,531 * 47,785 = 25,374MPa \le \frac{80}{1,15} = 69,565MPa$$

SATISFACTORY (36,5%)

Load capacity: $z_{\text{LM71}} = \frac{\Delta \tau_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \tau_{71}} = \frac{69,565}{25,374} = 2,742 \rightarrow not \ determinative$

Vertical weld of plate framing the track ballast and its stiffener - vertical stiffeners welded to beam or plate girder (EN 1993-1-9, table 8.4, detail 7):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71} &\leq \frac{\Delta \sigma_C}{\gamma_{Mf}} \\ \lambda_1 &= 0,64 \; (for \; span \; L = 42,8m) \\ \lambda_2 &= 0,83 \; (traffic \; per \; year \; 10^6 t) \\ \lambda_3 &= 1,00 \; (design \; life \; 100 \; years) \\ \lambda_4 &= 1,00 \; (monorail) \\ \lambda &= \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 0,64 * 0,83 * 1,00 * 1,00 = 0,531 \end{split}$$

					6	1					
											Π
Ι						,54					V
		1				553					-
						22					

Picture 4.1-26 - maximal bending moment caused by traffic load M_{Ed} 22653,5

$$\Phi_3 * \Delta \sigma_{71} = \Phi_3 * \frac{M_{Ed}}{w_y} = 1,071 * \frac{22033,3}{0,33629} * 10^{-3} = 72,146MPa$$

$$1,0 * 0,531 * 72,146 = 38,310MPa \le \frac{80}{1,15} = 69,565MPa$$

SATISFACTORY (55,1%) – for transverse welds of vertical stiffeners of webs is a stress lower, so it is not necessary to assess

Load capacity:

$$z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{69,565}{33,902} = \mathbf{1}, \mathbf{816} \rightarrow not \ determinative$$

Kateřina Soukupová

Department of Steel and Timber Structures 51

Constructional welds of lower flange - longitudinal butt weld, not grinded (EN 1993-1-9, table 8.2, detail 10) and transverse splices, grounded flash to flange surface (EN 1993-1-9, table 8.3, detail 1):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71} &\leq \frac{\Delta \sigma_C}{\gamma_{Mf}} \text{ (all welds are in detail category 112)} \\ \lambda_1 &= 0,64 \text{ (for span } L = 42,8m) \\ \lambda_2 &= 0,83 \text{ (traffic per year 10^6t)} \\ \lambda_3 &= 1,00 \text{ (design life 100 years)} \\ \lambda_4 &= 1,00 \text{ (monorail)} \\ \lambda &= \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 0,64 * 0,83 * 1,00 * 1,00 = 0,531 \end{split}$$

Picture 4.1-27 - maximal bending moment caused by traffic load

$$\Phi_3 * \Delta \sigma_{71} = \Phi_3 * \frac{M_{Ed}}{w_y} = 1,071 * \frac{22359,0}{0,38844} * 10^{-3} = 61,648MPa$$

1,0 * 0,531 * 61,648 = 32,735MPa $\leq \frac{112}{1,15} = 97,391MPa$

SATISFACTORY (33,6%)

Load capacity: $z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{97,391}{32,735} = 2,975 \rightarrow not \ determinative$

Constructional welds of upper flange - longitudinal butt weld, not grinded (EN 1993-1-9, table 8.2, detail 10) and transverse splices, not grounded flush (EN 1993-1-9, table 8.3, detail 9):

 $\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71} \leq \frac{\Delta \sigma_c}{\gamma_{Mf}}$ (transverse splices have determinative detail category 80) $\lambda_1 = 0,64$ (for span L = 42,8m) $\lambda_2 = 0.83$ (traffic per year $10^6 t$) $\lambda_3 = 1,00$ (design life 100 years) $\lambda_4 = 1,00 (monorail)$ $\lambda = \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 0,64 * 0,83 * 1,00 * 1,00 = 0,531$

				5	(
Γ											1
					,04						/
					66						

Picture 4.1-28 - maximal bending moment caused by traffic load $\Phi_3 * \Delta \sigma_{71} = \Phi_3 * \frac{M_{Ed}}{w_v} = 1,071 * \frac{22359,0}{0,46352} * 10^{-3} = 51,663MPa$

2

 $1,0 * 0,531 * 51,663 = 27,433 MPa \le \frac{80}{1.15} = 69,565 MPa$ SATISFACTORY (39,4%)

Load capacity: $z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{69,565}{27,433} = 2,536 \rightarrow not \ determinative$

4.1.13 Loading capacity

<u>Midspan:</u>

N_{Ed}	192,4	kN	N _{Ed,LM71}	189,3	kN	N _{Ed,rs}	3,1	kN
$M_{y,Ed}$	60864,5	kNm	M _{y,Ed,LM71}	32060,7	kNm	M _{y,Ed,rs}	28803,8	kNm
$M_{z,Ed}$	6092,6	kNm	M _{z,Ed,LM71}	3362,9	kNm	M _{z,Ed,rs}	2729,7	kNm

$$\begin{split} \eta_{1,\mathrm{rs}} &= \frac{\mathrm{N}_{\mathrm{Ed},\mathrm{rs}}}{\mathrm{N}_{\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{y},\mathrm{Ed},\mathrm{rs}} + \mathrm{N}_{\mathrm{Ed},\mathrm{rs}} * \mathrm{e}_{\mathrm{y},\mathrm{N}}}{\mathrm{M}_{\mathrm{y},\mathrm{el},\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{z},\mathrm{Ed},\mathrm{rs}} + \mathrm{N}_{\mathrm{Ed},\mathrm{rs}} * \mathrm{e}_{\mathrm{z},\mathrm{N}}}{\mathrm{M}_{\mathrm{z},\mathrm{el},\mathrm{Rd}}} = \\ &= \frac{3,1}{60905,6} + \frac{28803,8 + 3,1 * 0,065}{71843,8} + \frac{2729,9 + 3,1 * 0,092}{49608,5} = \\ &= 0,456 \\ \eta_{1,\mathrm{LM71}} &= \frac{\mathrm{N}_{\mathrm{Ed},\mathrm{LM71}}}{\mathrm{N}_{\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{y},\mathrm{Ed},\mathrm{LM71}} + \mathrm{N}_{\mathrm{Ed},\mathrm{LM71}} * \mathrm{e}_{\mathrm{y},\mathrm{N}}}{\mathrm{M}_{\mathrm{y},\mathrm{el},\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{z},\mathrm{Ed},\mathrm{LM71}} + \mathrm{N}_{\mathrm{Ed},\mathrm{LM71}} * \mathrm{e}_{\mathrm{z},\mathrm{N}}}{\mathrm{M}_{\mathrm{z},\mathrm{el},\mathrm{Rd}}} = \\ &= \frac{189,3}{60905,6} + \frac{32060,7 + 189,3 * 0,065}{71843,8} + \frac{3362,9 + 189,3 * 0,092}{49608,5} = \\ &= 0,518 \end{split}$$

$$z_{\text{LM71}} = \frac{1 - \eta_{1,\text{rs}}}{\eta_{1,\text{LM71}}} = \frac{1 - 0.456}{0.518} = 1,051$$

Stationing L=7,8m (change of thickness of flanges):

N_{Ed}	318,4	kN	N _{Ed,LM71}	306,3	kN	$N_{Ed,rs}$	12,1	kN
$M_{y,Ed}$	36512,7	kNm	M _{y,Ed,LM71}	18667,6	kNm	M _{y,Ed,rs}	17845,0	kNm
M _{z,Ed}	3628,0	kNm	M _{z,Ed,LM71}	1898,8	kNm	M _{z,Ed,rs}	1729,2	kNm

$$\begin{split} \eta_{1,\mathrm{rs}} &= \frac{\mathrm{N}_{\mathrm{Ed},\mathrm{rs}}}{\mathrm{N}_{\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{y},\mathrm{Ed},\mathrm{rs}} + \mathrm{N}_{\mathrm{Ed},\mathrm{rs}} * \mathrm{e}_{\mathrm{y},\mathrm{N}}}{\mathrm{M}_{\mathrm{y},\mathrm{el},\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{z},\mathrm{Ed},\mathrm{rs}} + \mathrm{N}_{\mathrm{Ed},\mathrm{rs}} * \mathrm{e}_{\mathrm{z},\mathrm{N}}}{\mathrm{M}_{\mathrm{z},\mathrm{el},\mathrm{Rd}}} = \\ &= \frac{12.1}{50555,0} + \frac{17845,0 + 12.1 * 0,062}{58239,4} + \frac{1829,2 + 12,1 * 0,116}{43005,0} = \\ &= 0,347 \\ \eta_{1,\mathrm{LM71}} &= \frac{\mathrm{N}_{\mathrm{Ed},\mathrm{LM71}}}{\mathrm{N}_{\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{y},\mathrm{Ed},\mathrm{LM71}} + \mathrm{N}_{\mathrm{Ed},\mathrm{LM71}} * \mathrm{e}_{\mathrm{y},\mathrm{N}}}{\mathrm{M}_{\mathrm{y},\mathrm{el},\mathrm{Rd}}} + \frac{\mathrm{M}_{\mathrm{z},\mathrm{Ed},\mathrm{LM71}} + \mathrm{N}_{\mathrm{Ed},\mathrm{LM71}} * \mathrm{e}_{\mathrm{z},\mathrm{N}}}{\mathrm{M}_{\mathrm{y},\mathrm{el},\mathrm{Rd}}} = \\ &= \frac{306,3}{50555,0} + \frac{18667,6 + 306,3 * 0,062}{58239,4} + \frac{1798,8 + 306,3 * 0,116}{43005,0} = \\ &= 0,372 \\ z_{\mathrm{LM71}} &= \frac{1 - \eta_{1,\mathrm{rs}}}{\eta_{1,\mathrm{LM71}}} = \frac{1 - 0,347}{0,372} = 1,756 \\ \mathrm{M}_{Ed} &= 1,756 * 18667,6 + 17845,0 = 50625,3\mathrm{kNm} \\ \eta_{1} &= \frac{M_{Ed}}{M_{el,N,Rd}}} = \frac{50625,3}{59046,7} = 0,857 > \frac{M_{f,N,Rd}}{M_{el,N,Rd}}} = 0,713 \\ &\rightarrow interaction of bending and shear force \end{split}$$

$$\frac{V_{z,Ed}}{M_{x,Ed}} = \frac{3653,8 \text{ kN}}{1478,3 \text{ kNm}} \frac{V_{z,Ed,LM71}}{M_{x,Ed,LM71}} = \frac{1968,9 \text{ kN}}{867,7 \text{ kNm}} \frac{V_{z,Ed,rs}}{M_{x,Ed,rs}} = \frac{1684,9 \text{ kN}}{610,7 \text{ kNm}}$$

$$\tau_{t,Ed} = \frac{M_{x,d}}{2 * A_k * t_{min}}$$

$$\frac{T_{Ed}}{T_{Rd}} = \frac{\tau_{t,Ed}}{(f_y/\sqrt{3})/\gamma_{M1}}$$

 $V_{bw,T,Rd} = [1 - T_{Ed}/T_{Rd}] * V_{bw,Rd}$

Because a shear resistance depends on value of torsional moment, load capacity is found iteratively in excel table below. For assessment is used formula for interaction of shear force and bending moment (EN 1993-1-5):

$$\begin{split} \eta_{1} &+ \left(1 - \frac{M_{f,N,Rd}}{M_{el,N,Rd}}\right) * (2 * \eta_{3} - 1)^{2} \leq 1,0 \\ \eta_{1} &= \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed} + N_{Ed} * e_{z,N}}{M_{z,el,Rd}} \\ \eta_{3} &= \frac{V_{Ed}}{V_{bw,T,Rd}} \\ M_{f,N,Rd} &= M_{f,Rd} * \left(1 - \frac{N_{Ed}}{A_{f} * \frac{f_{y}}{\gamma_{M1}}}\right) = 42491,2 * (1 - \frac{N_{Ed}}{0,16457 * 235000/1,1}) kNm \\ M_{el,N,Rd} &= M_{el,Rd} * \left(1 - \frac{N_{Ed}}{A * \frac{f_{y}}{\gamma_{M1}}}\right) = 59369,4 * (1 - \frac{N_{Ed}}{0,27417 * 235000/1,1}) kNm \end{split}$$

Inner forces are for loading capacity expressed: $X_{Ed} = z_{LM71} * X_{Ed,LM71} + X_{Ed,rs}$

Z _{LM71} =	1,658		η ₁ =	0,964	
N_{Ed}	520,0	kN	$T_{Ed}/T_{Rd}=$	0,061	
M _{y,Ed}	48795,9	kNm	V _{bw,Rd} =	7279,7	kN
M _{z,Ed}	4877,4	kNm	η ₃ =	0,680	>0,5
V _{z,Ed}	4949,3	kN	k=1-M _{f,F}	Rd/Mpl,Rd=	0,284
M _{x,Ed}	2049,2	kNm	η₁+k*	(2ŋ₃-1)²=	1,000

Stationing L=0,0m

V _{z,Ed,1}	3150,8	kN	V _{z,Ed,LM71,1}	1633,0	kN	V _{z,Ed,rs,1}	1517,8	kN
M _{x,Ed}	2268,1	kNm	M _{x,Ed,LM71}	1331,2	kNm	M _{x,Ed,rs}	936,9	kNm

$$\eta_{3,rs} = \frac{V_{Ed,rs,1}}{V_{bw,T,Rd}} = \frac{1517,8}{3640,3} = 0,417$$

$$\eta_{3,LM71} = \frac{V_{Ed,LM71,1}}{V_{bw,T,Rd}} = \frac{1633,0}{3640,3} = 0,449$$

$$z_{LM71} = \frac{1 - \eta_{3,rs}}{\eta_{3,LM71}} = \frac{1 - 0,417}{0,449} = 1,298$$

4.1.14 Joints

4.1.14.1 Bolted joint of webs

Picture 4.1-29 - spacings of bolts on web

It is verified, if the bolted joint can bear max. shear force and bending moment of web:

$$z_{LM71} * M_{Ed} = 1,051 * \left[3165,2 + 1255,35 * \left(1,995 - \frac{3,42}{2} \right) \right] = 3702,4$$
kNm

For joint are used bolts M24 class 10.9 organised in twice two rows with spacings: $e_1=50$ mm, $p_1=130$ mm, $e_2=50$ mm, $p_2=100$ mm, 27 bolts in each row.

Vertical force component for one bolt:

$$V_{\nu} = \frac{V_{Ed}}{54} = \frac{2237,3}{54} = 41,431kN$$

Horizontal force component for one bolt (counted from bellow):

e⊤=	1995	mm	
č.	e[mm]	F⊬[kN]	M[kN]
1	1945	251,544	489,3
2	1815	234,7	426,0
3	1685	217,9	367,2
4	1555	201,1	312,7
5	1425	184,3	262,6
6	1295	167,5	216,9
7	1165	150,7	175,5
8	1035	133,9	138,5

9	905	117,0	105,9
10	805	104,1	83,8
11	675	87,3	58,9
12	545	70,5	38,4
13	415	53,7	22,3
14	285	36,9	10,5
15	155	20,0	3,1
16	25	3,2	0,1
17	105	13,6	1,4
18	235	30,4	7,1
19	335	43,3	14,5
20	465	60,1	28,0
21	595	77,0	45,8
22	725	93,8	68,0
23	855	110,6	94,5
24	985	127,4	125,5
25	1115	144,2	160,8
26	1245	161,0	200,5
27	1375	177,8	244,5
Σ			3702,4

$$V_h = \frac{F_H}{2} = \frac{251,544}{2} = 125,772kN$$

Design force:

$$V_{Ed,1} = \sqrt{V_v^2 + V_h^2} = \sqrt{41,431^2 + 125,772^2} = 132,420kN$$

Shear resistance per shear plane:
$$F_{v,Rd} = \frac{\alpha_V * A_s * f_{ub} * i}{\gamma_{M2}} = \frac{0,5 * 353 * 1000 * 2}{1,25} * 10^{-3} = 282,400kN$$

Bearing resistance:
$$F_{b,Rd} = \frac{\alpha_b * k_1 * d * t * f_u}{\gamma_{M2}} = \frac{0,641 * 2,5 * 24 * 14 * 360}{1,25} * 10^{-3} = 155,077kN$$

$$\alpha_b = min\left(\frac{e_1}{3 * d_0}, \frac{p_1}{3 * d_0} - 0,25, \frac{f_{ub}}{f_u}, 1\right) = min\left(\frac{50}{3 * 26}, \frac{130}{3 * 26} - 0,25, \frac{1000}{490}, 1\right)$$

$$= 0,641$$

$$k_1 = min\left(2,8 * \frac{e_2}{d_0} - 1,7;2,5\right) = min\left(2,8 * \frac{50}{26} - 1,7;2,5\right) = 2,5$$

Critical load capacity. $F_{b,Rd} = 155,077kN > V_{Ed,1} = 132,420kN$ <u>SATISFACTORY</u>

Stationing L=17,2m:

It is verified, if the bolted joint can bear max. shear force and bending moment of web:

					-90						
F	-		_				 		-	 	F
					V						Γ
7	<u> </u>										

 $z_{LM71} * V_{Ed} = 1,051 * 809,4 = 850,7$ kN

Г												
				1306	,16	>						
												-

$$z_{LM71} * M_{Ed} = 1,051 * \left[3904,0 + 1306,2 * \left(1,858 - \frac{3,42}{2}\right)\right] = 4306,3$$
kNm

For joint are used bolts M24 class 10.9 organised in twice two rows with spacings: $e_1=50$ mm, $p_1=130$ mm, $e_2=50$ mm, $p_2=100$ mm, 27 bolts in each row.

Vertical force component for one bolt:

$$V_{v} = \frac{V_{Ed}}{54} = \frac{850,7}{54} = 15,754kN$$

Horizontal force component for one bolt (counted from bellow):

e⊤=	1858	mm	
č.	e[mm]	FH[kN]	M[kN]
1	1808	288,083	520,9
2	1678	267,4	448,6
3	1548	246,7	381,8
4	1418	225,9	320,4
5	1288	205,2	264,3
6	1158	184,5	213,7
7	1028	163,8	168,4
8	898	143,1	128,5
9	768	122,4	94,0
10	668	106,4	71,1
11	538	85,7	46,1
12	408	65,0	26,5
13	278	44,3	12,3
14	148	23,6	3,5
15	18	2,9	0,1
16	112	17,8	2,0
17	242	38,6	9,3
18	372	59,3	22,0
19	472	75,2	35,5
20	602	95 <i>,</i> 9	57,7
21	732	116,6	85,4
22	862	137,3	118,4
23	992	158,1	156,8
24	1122	178,8	200,6
25	1252	199,5	249,8
26	1382	220,2	304,3
27	1512	240,9	364,3
Σ			4306,3

$$V_{h} = \frac{F_{H}}{2} = \frac{288,083}{2} = 144,042kN$$

Design force:
$$V_{Ed,1} = \sqrt{V_{v}^{2} + V_{h}^{2}} = \sqrt{15,754^{2} + 144,042^{2}} = 144,900kN$$

Shear resistance per shear plane:
$$F_{v,Rd} = \frac{\alpha_{v} * A_{s} * f_{ub} * i}{\gamma_{M2}} = \frac{0,5 * 353 * 1000 * 2}{1,25} * 10^{-3} = 282,400kN$$

Bearing resistance:
$$F_{b,Rd} = \frac{\alpha_{b} * k_{1} * d * t * f_{u}}{\gamma_{M2}} = \frac{0,641 * 2,5 * 24 * 14 * 360}{1,25} * 10^{-3} = 155,077kN$$

A.2. Detailed static analysis

CTU, Faculty of Civil Engineering

$$\alpha_{b} = \min\left(\frac{e_{1}}{3 * d_{0}}, \frac{p_{1}}{3 * d_{0}} - 0.25, \frac{f_{ub}}{f_{u}}, 1\right) = \min\left(\frac{50}{3 * 26}, \frac{130}{3 * 26} - 0.25, \frac{1000}{490}, 1\right)$$
$$= 0.641$$
$$k_{1} = \min\left(2.8 * \frac{e_{2}}{d_{0}} - 1.7; 2.5\right) = \min\left(2.8 * \frac{50}{26} - 1.7; 2.5\right) = 2.5$$

Critical load capacity. $F_{b,Rd} = 155,077kN > V_{Ed,1} = 144,900kN$ SATISFACTORY

Verification of the carrying capacity of the weakened part of the web:

 $\chi_w = 0,657$

$$V_{bw,Rd} = \frac{\chi_w * f_{yw} * h_w * t}{\sqrt{3} * \gamma_{M1}} = \frac{0.657 * 235 * (3420 - 27 * 26) * 14}{\sqrt{3} * 1.1 * 1000} = 3083.6 \text{kN} \ge Z_{LM71} * V_{Ed} = 1.051 * 1976.7 = 2077.51 \text{kN}$$

$$N_{net,Rd} = A_{net} * f_y = \left(50 + \frac{130}{2} - 26\right) * 14 * 235 * 10^{-3} = 292,810 \text{kN} \ge V_{Ed,1} = 144,900 \text{kN}$$

SATISFACTORY

Verification of slip-resistance:

Slip resistance (coefficients $k_P=0,63$ and $k_S=0,45$ according to original documentation): $F_{p,C} = k_P * A_s * f_{ub} = 0,63 * 353 * 1000 * 10^{-3} = 222,390 kN$

$$F_{s,Rd} = \frac{k_s * \mu * i}{\gamma_{M3}} * F_{p,C} = \frac{1,0 * 0,45 * 2}{1,25} * 222,390 = 160,121kN$$

Critical load capacity:
 $F_{s,Rd} = 160,121kN > V_{Ed,1} = 144,900kN$
SATISFACTORY

4.1.14.2 Welded joint of webs

For connection of web and flanges of box girder is used double sided fillet weld a=6mm. <u>Cross section above support (upper welds are deciding</u>):

$$\tau_{II,1} = \frac{V_{Ed,1} * S_f}{2 * a * I_y} = \frac{3150,8 * 0,15266}{2 * 6 * 0,55558} = 76,52MPa$$

$$\tau_{\perp,1} = \sigma_{\perp,1} = 0MPa$$

$$\sqrt{\sigma_{\perp,1}^2 + 3 * (\tau_{\perp,1}^2 + \tau_{II,1}^2)} = \sqrt{0 + 3 * (0^2 + 76,52^2)} = 132,54MPa < \frac{f_u}{\beta_w * \gamma_{M2}} = \frac{360}{0,8 * 1,25} = 360,0MPa$$

SATISFACTORY (36,8%)

 $\begin{aligned} & \underline{Cross\ section\ in\ midspan}\ (lower\ welds\ are\ deciding):}\\ & \sigma_{II,1} = \frac{M_{Ed}}{w_y} = \frac{60864,5}{0,39366} * 10^{-3} = 154,612MPa\\ & \tau_{\perp,1} = \sigma_{\perp,1} = \tau_{II,1} = 0MPa\\ & \sqrt{\sigma_{II,1}^2 + 3 * (\tau_{\perp,1}^2 + \tau_{II,1}^2)} = \sqrt{154,612^2 + 3 * (0^2 + 0^2)} = 154,612MPa < \frac{f_u}{\beta_w * \gamma_{M2}}\\ & = \frac{360}{0,8 * 1,25} = 360,0MPa\\ & \underline{SATISFACTORY\ (43,5\%)} \end{aligned}$

4.1.15 Stability of construction

Combination of loads for verification of stability of bridge position (gr15):

self-weight	0,95
other permanent load	0,95
average	
other permanent load minimal	0,95
wind L with train	1,35
unloaded train	0,95
centrifugal force - unloaded train	1,30

Picture 4.1-30 - support reactions - unloaded train

Combination of loads (derailment) for verification of stability of bridge position:

self-weight	1,00	self-weight	1,00
other permanent load average	1,00	other permanent load average	1,00
other permanent load minimal	1,00	other permanent load minimal	1,00
wind L with train	0,50	wind L	0,50
derailment 1 - max M	1,00	derailment 2 - max M	1,00

Picture 4.1-31 – support reactions - derailment, design situation I and II

All support reactions are compressive, so the formula $M_{stab} \ge M_{destab}$ is valid and the construction is stable.

4.1.16 Comparative assessment of stress in a box girder

The stress for the determinative combination is drawn on following pictures:

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature max linear	0,90
	traction force	0,65
	wind Z-	1,01
	wind L with train	1,01
	LM71 - L - maximal M	1,39
	centrifugal force - maximal M	1,30
	nosing force - L - maximal M	1.30

The thickness of plates is changed according to dimension of effective cross sections. For every subpanel is used an average thickness (including weakening by local and global buckling, shear lag).

Picture 4.1-32 - stress in box girder - upper flange

The maximal normal stress in midspan reach 96,2% of yield strength. This result is very similar as in chapter 4.1.7 (97,4%), so the calculation is considered valid. The small difference of results is caused by fact, that the effective cross sections for compressive normal force and bending moment M_z are conservative. For the normal force is considered all cross section in compressive zone and for bending moment M_z is compressed whole web, so values of A_{eff} and $w_{z,el,eff}$ are slightly lower than it would be for real stress diagram.

4.1.17 Serviceability limit state

 $\frac{\text{Web breathing:}}{t} = \frac{1140}{14} = 81,4 \le 55 + 3,3 * L = 196,2 \rightarrow web \text{ breathing can be neglected}$

Vertical deformation:

Deformation caused by permanent load are eliminated by precamber.

Picture 4.1-35 - vertical deformation caused by variable loads

 $w_{max} = 38,4mm < \frac{L}{600} = \frac{42800}{600} = 71,3mm$ SATISFACTORY (53,8%)

Load capacity:

$$\eta_{\rm rs} = \frac{w_{max,rs}}{w_{lim}} = \frac{4,3}{71,3} = 0,060$$
$$\eta_{\rm LM71} = \frac{w_{max,LM71}}{w_{lim}} = \frac{34,1}{71,3} = 0,478$$

$$z_{\text{LM71}} = \frac{1 - \eta_{\text{rs}}}{\eta_{\text{LM71}}} = \frac{1 - 0,060}{0,478} = 1,967$$

Rotation at the end of deck:

Picture 4.1-36 - rotation caused by variable loads

 $\theta_{max} = 3,3mrad < \theta_{lim} = 5mrad$ <u>SATISFACTORY (62,0%)</u>

Load capacity: $\theta = 0.3$

$$\eta_{\rm rs} = \frac{\theta_{max,rs}}{\theta_{lim}} = \frac{0.3}{5.0} = 0,060$$
$$\eta_{\rm LM71} = \frac{\theta_{max,LM71}}{\theta_{lim}} = \frac{3.0}{5.0} = 0,600$$

$$z_{\rm LM71} = \frac{1 - \eta_{\rm rs}}{\eta_{\rm LM71}} = \frac{1 - 0.060}{0.600} = 1,567$$

Serviceability limit state is not determinative for load capacity.

4.2 Cross girder

4.2.1 Midspan

Combination of loads causing maximal bending moment (gr12, formula 10.b)

• calculation of dimension of an effective cross section including a buckling and a shear lag

ψ=	1		ψ=	1	
k _σ =	4,000		k _σ =	4,000	
b=	2400	mm	b=	2400	mm
t=	14	mm	t=	18	mm
f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000	
λ _P =	3,018		λ _P =	2,347	
ρ=	0,307		ρ=	0,386	
b _{eff} =	737	mm	b _{eff} =	927	mm
α ₀ =	0,554		α ₀ =	0,621	
b ₀ =	1200	mm	b ₀ =	1200	mm
L _{e,1} =	1960	mm	L _{e,1} =	1960	mm
L _{e,2} =	2240	mm	L _{e,2} =	2240	mm
к1=	0,339		к1=	0,380	
к ₂ =	0,536		к ₂ =	0,536	
sagg	ing bend	ing	sagg	ing bend	ing
β ^κ =	0,829		β ^κ =	0,779	
beff=	611	mm	beff=	722	mm
hogg	ging benc	ling	hogging bending		
β ^κ =	0,438		β ^κ =	0,438	
beff=	1051	mm	beff=	1051	mm

Picture 4.2-2 – eff. cross section in areas of positive and negative bending moment, flange thickness 14mm $w_{y,eff,14+} = 0,0021454m^3 \rightarrow determinative$

Picture 4.2-3 – eff. cross section in areas of positive and negative bending moment, flange thickness 18mm $w_{y,eff,18+} = 0,0022312m^3$ $w_{y,eff,18-} = 0,0022834m^3$

$$N_{Rd} = A * \frac{f_{yk}}{\gamma_{M1}} = 0,017394 * \frac{235}{1,1} * 1000 = 3716,0kN$$

$$M_{y,el,Rd} = w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0021454 * \frac{235}{1,1} * 1000 = 458,3kNm$$

Lower fibre of cross girder (bending moment M_z is negligible):

$$\mu_1 = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_y}{M_{y,el,Rd}} = \frac{28,0}{3716,0} + \frac{306,8 - 28,0 * 0,099}{458,3} = 0,671$$

SATISFACTORY (67,1%)

4.2.2 Cross section above support

Combination of loads causing maximal shear force (gr12, formula 10.b):

Picture 4.2-4 - shear force diagram

Cross section does not buckle in bending.

Shear resistance above a support: $V_{Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{235 * 430 * 12}{\sqrt{3} * 1,0 * 1000} = 700,1kN > 606,8kN$ <u>SATISFACTORY (86,7%)</u>

• For $V_{Ed} = 545,2$ kN ... $M_{Ed} = 104,4$ kNm $M_{el,Rd} = w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0022373 * \frac{235}{1,1} * 1000 = 478,0$ kNm $M_{f,Rd} = w_{y,eff,f} * \frac{f_{yk}}{\gamma_{M1}} = 0,0015222 * \frac{235}{1,1} * 1000 = 325,2$ kNm

A.2. Detailed static analysis

$$\mu_{1} = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y}}{M_{y,el,Rd}} = \frac{49,9}{5032,0} + \frac{104,4 - 49,9 * 0,055}{478,0} = 0,223 \ll \frac{M_{f,Rd}}{M_{y,el,Rd}} = \frac{325,2 * (1 - \frac{49,9}{0,017914 * 235000/1,1})}{478,0 * (1 - \frac{49,9}{0,023554 * 235000/1,1})} = 0,678 \dots interaction \ does \ not \ assess$$

Combination of loads causing maximal shear force and bending moment (derailment – design situation II):

Picture 4.2-8 – effective cross section for My in section 2-2

200

Kateřina Soukupová

4

$$\begin{split} N_{Rd} &= A * \frac{f_{yk}}{\gamma_{M1}} = 0,021728 * \frac{235}{1,1} * 1000 = 4641,9kN \\ M_{y,el,Rd} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0015000 * \frac{235}{1,1} * 10^3 * (1 - \frac{9,21}{0,001922 * 235000/1,1}) = 313,3kNm \\ \mu_1 &= \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_y}{M_{y,el,Rd}} = \frac{9,8}{4641,9} + \frac{141,7 - 9,8 * 0,040}{320,5} = 0,443 \\ \eta_3 &= \frac{V_{Ed}}{V_{Rd}} = \frac{321,3}{326,7} = 0,983 \\ M_{f,Rd} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0011679 * \frac{235}{1,1} * 10^3 * (1 - \frac{9,21}{0,0017514 * 235000/1,1}) = 243,4kNm \\ \eta_1 + \left(1 - \frac{M_{f,Rd}}{M_{el,Rd}}\right) * (2 * \eta_3 - 1)^2 = 0,443 + \left(1 - \frac{243,4}{313,3}\right) * (2 * 0,983 - 1)^2 = 0,651 \le 1,0 \\ \underline{SATISFACTORY}(98,3\% - \text{shear resistance}) \end{split}$$

4.2.3 Load capacity

For shear resistance above web (load capacity is not determined for derailment, critical combination of loads includes following variable loads: horizontal wind, vertical wind with right eccentricity, vertical load of LM71 with maximal right eccentricity and dynamic factor $\phi_3 = 1,727$, nosing force)

inear - ultimate	self-weight	1,06
	other permanent load	1,06
	average	
	other permanent load	1,06
	maximal	
	wind Z-, right	1,01
	wind R with train	1,01
	CG3-LM71,Qr-maxV	2,25
	CG3-NFr-maxV	1,30

V _{z,Ed}	606,8 kN	V _{z,Ed,LM71}	535,1 kN	V _{z,Ed,rs}	71,7 kN
M _{y,Ed}	104,4 kNm	M _{y,Ed,LM71}	63,1 kNm	$M_{y,Ed,rs}$	41,3 kNm

$$\eta_{3,\text{LM71}} = \frac{V_{\text{Ed},\text{LM71}}}{V_{Rd}} = \frac{535,1}{700,1} = 0,764$$
$$\eta_{3,\text{rs}} = \frac{V_{\text{Ed},\text{rs}}}{V_{Rd}} = \frac{71,7}{700,1} = 0,102$$
$$z_{\text{LM71}} = \frac{1 - \eta_{3,\text{rs}}}{\eta_{3,\text{LM71}}} = \frac{1 - 0,102}{0,764} = 1,175$$

$$\begin{split} N_{Ed} &= 23,1*1,175+26,8 = 53,9kNm \\ M_{Ed} &= 63,1*1,175+41,3 = 115,4kNm \end{split}$$

$$\mu_{1} = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y}}{M_{y,el,Rd}} = \frac{53,9}{5032,0} + \frac{115,4 - 53,9 * 0,055}{478,0} = 0,246 \ll \frac{M_{f,Rd}}{M_{y,el,Rd}} = \frac{325,2 * (1 - \frac{49,9}{0,017914 * 235000/1,1})}{478,0 * (1 - \frac{49,9}{0,023554 * 235000/1,1})} = 0,678 \dots interaction \ does \ not \ assess$$

4.2.4 Bolted joint of web

Thickness of flange 18mm:

It is verified, if the bolted joint can bear maximal stress caused by bending of web:

$$\sigma_{Ed} = z_{LM71} * \frac{M_{Ed}}{w_{y,eff}} = 1,175 * \frac{305,9}{0,0022312} * 10^{-3} = 161,094MPa$$

Picture 4.2-9 – maximal bending moment for cross girder of flanges thickness 18mm $M_{w,Ed} = w_{v,w} * \sigma_{Ed} =$

$$=\frac{\frac{1}{12}*0,012*0,47^3+0,012*0,47*\left(\frac{0,47}{2}-0,345\right)^2}{0,361}*161,094*10^3$$
$$=76.784kNm$$

For joint are used bolts M20 class 10.9 organised in two rows (one on each side) with spacings: $e_1=60$ mm, $p_1=70$ mm, $e_2=50$ mm, $p_2=100$ mm, 6 bolts in each row.

Horizontal force component for one bolt:

6 7	65	31,5	2,0 76 784
5	5	2,4	0,0
4	75	36,4	2,7
3	145	70,3	10,2
2	215	104,3	22,4
1	285	138,2	39,4
č.	e[mm]	F _H [kN]	M[kN]
e⊤=	345	mm	

$$V_{h} = 138,197kN$$

Design force:
$$V_{Ed,1} = \sqrt{V_{v}^{2} + V_{h}^{2}} = \sqrt{0^{2} + 138,197^{2}} = 138,197kN$$

Shear resistance per shear plane: $F_{\nu,Rd} = \frac{\alpha_V * A_s * f_{ub} * i}{\gamma_{M2}} = \frac{0.5 * 245 * 1000 * 2}{1.25} * 10^{-3} = 196,000kN$ Bearing resistance: $F_{b,Rd} = \frac{\alpha_b * k_1 * d * t * f_u}{\gamma_{M2}} = \frac{0.909 * 2.5 * 20 * 12 * 360}{1.25} * 10^{-3} = 163,636kN$ $\alpha_b = min\left(\frac{e_1}{3 * d_0}, \frac{p_1}{3 * d_0} - 0.25, \frac{f_{ub}}{f_u}, 1\right) = min\left(\frac{60}{3 * 22}, \frac{70}{3 * 22} - 0.25, \frac{1000}{490}, 1\right)$ = 0.909 $k_1 = min\left(2.8 * \frac{e_2}{d_0} - 1.7; 2.5\right) = min\left(2.8 * \frac{50}{22} - 1.7; 2.5\right) = 2.5$ Critical load capacity: $F_{b,Rd} = 163,636kN > V_{Ed,1} = 138,197kN$ <u>SATISFACTORY</u>

Thickness of flange 14mm:

It is verified, if the bolted joint can bear maximal stress caused by bending of web:

Picture 4.2-10 – maximal bending moment for cross girder of flanges thickness 18mm $M_{w,Ed} = w_{y,w} * \sigma_{Ed} =$

$$=\frac{\frac{1}{12}*0,012*0,47^{3}+0,012*0,47*\left(\frac{0,47}{2}-0,309\right)^{2}}{0,325}*159,212*10^{3}$$

= 65,991kNm

For joint are used bolts M20 class 10.9 organised in two rows (one on each side) with spacings: $e_1=60$ mm, $p_1=70$ mm, $e_2=50$ mm, $p_2=100$ mm, 6 bolts in each row.

Horizontal force component for one bolt:

e⊤=	309	mm	
č.	e[mm]	F _H [kN]	M[kN]
1	249	138,5	34,5
2	179	99,6	17,8
3	109	60,6	6,6
4	39	21,7	0,8
5	31	17,2	0,5
6	101	56,2	5,7
Σ			65 <i>,</i> 991

$$V_{h} = 138,541kN$$

Design force:
$$V_{Ed,1} = \sqrt{V_{\nu}^{2} + V_{h}^{2}} = \sqrt{0^{2} + 138,197^{2}} = 138,197kN$$

Shear resistance per shear plane: $F_{v,Rd} = \frac{\alpha_V * A_s * f_{ub} * i}{\gamma_{M2}} = \frac{0.5 * 245 * 1000 * 2}{1.25} * 10^{-3} = 196,000kN$ Bearing resistance: $F_{b,Rd} = \frac{\alpha_b * k_1 * d * t * f_u}{\gamma_{M2}} = \frac{0.909 * 2.5 * 20 * 12 * 360}{1.25} * 10^{-3} = 163,636kN$ $\alpha_b = min\left(\frac{e_1}{3 * d_0}, \frac{p_1}{3 * d_0} - 0.25, \frac{f_{ub}}{f_u}, 1\right) = min\left(\frac{60}{3 * 22}, \frac{70}{3 * 22} - 0.25, \frac{1000}{490}, 1\right)$ = 0.909 $k_1 = min\left(2.8 * \frac{e_2}{d_0} - 1.7; 2.5\right) = min\left(2.8 * \frac{50}{22} - 1.7; 2.5\right) = 2.5$ Critical load capacity: $F_{b,Rd} = 163,636kN > V_{Ed,1} = 138,541kN$ SATISFACTORY

Serviceability limit state - verification of slip-resistance:

It is verified, if the bolted joint (category B) can bear maximal stress caused by bending of web without slip:

Picture 4.2-11 - maximal bending moment for cross girder, serviceability limit state

$$M_{w,Ed} = w_{y,w} * \sigma_{Ed} =$$

$$=\frac{\frac{1}{12}*0,012*0,47^{3}+0,012*0,47*\left(\frac{0,47}{2}-0,309\right)^{2}}{0,325}*122,517*10^{3}$$
$$=50,781kNm$$

Horizontal force component for one bolt:

e _T =	309	mm	
č.	e[mm]	F _H [kN]	M[kN]
1	249	106,609	26,5
2	179	76,6	13,7
3	109	46,7	5,1
4	39	16,7	0,7
5	31	13,3	0,4
6	101	43,2	4,4
Σ			50,781

 $V_h = 106,609kN$ Design force:

$$V_{Ed,1} = \sqrt{{V_v}^2 + {V_h}^2} = \sqrt{0^2 + 106,609^2} = 106,609kN$$

Slip resistance (coefficients $k_P=0,63$ and $k_S=0,45$ according to original documentation): $F_{p,C} = k_P * A_s * f_{ub} = 0.63 * 245 * 1000 * 10^{-3} = 154,350kN$ $F_{s,Rd} = \frac{k_s * \mu * i}{\gamma_{M3}} * F_{p,C} = \frac{1.0 * 0.45 * 2}{1.25} * 154,350 = 111,132kN > V_{Ed,1} = 106,609kN$

The joint is slip resistant only for serviceability limit state. Ultimate limit state may result in slippage. So bellow is verified bending resistance of cross girder (assessment in chapter 4.2.1), where cross section consists of flanges, the web is neglected:

$$N_{Rd} = A * \frac{f_{yk}}{\gamma_{M1}} = 0,011754 * \frac{235}{1,1} * 1000 = 2511,1kN$$

$$M_{y,el,Rd} = w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0016862 * \frac{235}{1,1} * 1000 = 360,2kNm$$

$$\mu_1 = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_y}{M_{y,el,Rd}} = \frac{28,0}{3716,0} + \frac{306,8 - 28,0 * 0,099}{360,2} = 0,852$$
SATISFACTORY (85.2%) – not determinative (percentage of use of cross gird)

not determinative (percentage of use of cross girder 86,7%)

4.2.5 Fatigue

Lower fibre of cross girder (EN 1993-1-9, table 8.1, detail 1):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_{3} * \Delta\sigma_{71} &\leq \frac{\Delta\sigma_{C}}{\gamma_{Mf}} \\ \lambda_{1} &= 1,03 \ (for \ span \ L = 2 * 2,8 = 5,6m) \\ \lambda_{2} &= 0,83 \ (traffic \ per \ year \ 10^{6}t) \\ \lambda_{3} &= 1,00 \ (design \ life \ 100 \ years) \\ \lambda_{4} &= 1,00 \ (monorail) \\ \lambda &= \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 1,03 * 0,83 * 1,00 * 1,00 = 0,855 \\ \hline & & & & \\ Picture \ 4.2 \cdot 12 \ - maximal \ bending \ moment \ caused \ by \ traffic \ load \\ \Phi_{3} * \Delta\sigma_{71} &= \Phi_{3} * \frac{M_{Ed}}{w_{y,eff}} = 1,727 * \frac{125,2}{0,0021454} * 10^{-3} = 100,783MPa \\ 1,0 * 0,855 * 100,783 = 86,170MPa \leq \frac{160}{1,15} = 139,130MPa \\ \frac{SATISFACTORY \ (61,9\%)}{V_{Ff} * \lambda * \Phi_{3} * \Delta\sigma_{71}} = \frac{139,130}{86,170} = 1,615 \rightarrow not \ determinative \end{split}$$

<u>Upper fibre of web (EN 1993-1-9, table 8.1, detail 6), welds of web and flanges - continuous fillet weld transmitting a shear flow (EN 1993-1-9, table 8.2, detail 8):</u>

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_{3} * \Delta \tau_{71} &\leq \frac{\Delta \tau_{C}}{\gamma_{Mf}} \\ \lambda_{1} &= 1,03 \ (for \ span \ L = 2 * 2,8 = 5,6m) \\ \lambda_{2} &= 0,83 \ (traffic \ per \ year \ 10^{6}t) \\ \lambda_{3} &= 1,00 \ (design \ life \ 100 \ years) \\ \lambda_{4} &= 1,00 \ (monorail) \\ \lambda &= \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 1,03 * 0,83 * 1,00 * 1,00 = 0,855 \\ & & & \\ \hline & & \\ Picture \ 4.2-13 \ \cdot maximal \ shear \ force \ caused \ by \ traffic \ load \\ \Phi_{3} * \Delta \tau &= \Phi_{3} * \frac{V_{Ed,1} * S_{f}}{t * I_{y}} = 1,727 * \frac{222,0 * 0,0016245}{12 * 0,00080459} = 64,507 MPa \\ 1,0 * 0,855 * 64,507 = 55,154 MPa \leq \frac{80}{1,15} = 69,565 MPa \\ \hline SATISFACTORY \ (79,3\%) \\ Load \ capacity: \\ z_{LM71} &= \frac{\Delta \tau_{C}/\gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_{3} * \Delta \tau_{71}} = \frac{69,565}{55,154} = 1,261 \rightarrow not \ determinative \end{split}$$

Bolted joint of web - double covered symmetrical connection with preloaded high strength bolts (EN 1993-1-9, table 8.1, detail 8), welds of web and flanges - automatic or fully mechanized fillet welds carried out from both sides, containing stop/start position (EN 1993-1-9, table 8.2, detail 3) – both have detail category 112

<u>Constructional welds of lower flange – transverse splices, grounded flush to plate surface</u> parallel to direction of the arrow (EN 1993-1-9, table 8.3, detail 1):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_{3} * \Delta \sigma_{71} &\leq \frac{\Delta \sigma_{c}}{\gamma_{Mf}} \\ \lambda_{1} &= 1,03 \ (for \ span \ L = 2 * 2,8 = 5,6m) \\ \lambda_{2} &= 0,83 \ (traffic \ per \ year \ 10^{6}t) \\ \lambda_{3} &= 1,00 \ (design \ life \ 100 \ years) \\ \lambda_{4} &= 1,00 \ (monorail) \\ \lambda &= \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 1,03 * 0,83 * 1,00 * 1,00 = 0,855 \\ \hline \\ \hline \\ \hline \\ Picture \ 4.2-15 \ - maximal \ bending \ moment \ caused \ by \ traffic \ load \\ \Phi_{3} * \Delta \sigma_{71} &= \Phi_{3} * \frac{M_{Ed}}{w_{y,eff}} = 1,727 * \frac{125,2}{0,0021454} * 10^{-3} = 100,783MPa \\ 1,0 * 0,855 * 100,783 = 86,170MPa \leq \frac{112}{1,15} = 97,391MPa \\ \\ SATISFACTORY \ (88,5\%) \\ Load \ capacity: \end{split}$$

$$z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{97,391}{86,170} = \mathbf{1}, \mathbf{130} \rightarrow determinative$$

Constructional welds of upper flange - transverse splices, not grounded flush (EN 1993-1-9, table 8.3, detail 9):

$$\gamma_{Ff} * \lambda * \Phi_{3} * \Delta \sigma_{71} \leq \frac{\Delta \sigma_{C}}{\gamma_{Mf}}$$

$$\lambda_{1} = 1,03 (for span L = 2 * 2,8 = 5,6m)$$

$$\lambda_{2} = 0,83 (traffic per year 10^{6}t)$$

$$\lambda_{3} = 1,00 (design life 100 years)$$

$$\lambda_{4} = 1,00 (monorail)$$

$$\lambda = \lambda_{1} * \lambda_{2} * \lambda_{3} * \lambda_{4} = 1,03 * 0,83 * 1,00 * 1,00 = 0,855$$
Picture 4.2-16 - maximal bending moment caused by traffic load

$$\Phi_{3} * \Delta \sigma_{71} = \Phi_{3} * \frac{M_{Ed}}{w_{y,eff}} = 1,727 * \frac{125,2}{0,0039881} * 10^{-3} = 54,217MPa$$

$$1,0 * 0,855 * 54,217 = 46,356MPa \leq \frac{80}{1,15} = 97,391MPa$$
SATISFACTORY (66,6%)

Load capacity: $z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{69,565}{46,356} = \mathbf{1}, \mathbf{501} \rightarrow not \ determinative$

<u>Upper weld of web and flange – longitudinal filled weld with a cope hole with radius 50mm</u> (EN 1993-1-9, table 8.2, detail 9):

$$z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{61,736}{42,205} = \mathbf{1}, \mathbf{463} \rightarrow not \ determinative$$

Kateřina Soukupová

72 Department of Steel and Timber Structures

Connection of longitudinal stringer to cross girder (EN 1993-1-9, table 8.9, detail 2):

 $\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71} \leq \frac{\Delta \sigma_C}{\gamma_{Mf}}$ $\lambda_1 = 1,03$ (for span L = 2 * 2,8 = 5,6m) $\lambda_2 = 0.83$ (traffic per year $10^6 t$) $\lambda_3 = 1,00$ (design life 100 years) $\lambda_4 = 1,00 (monorail)$ $\lambda = \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 1,03 * 0,83 * 1,00 * 1,00 = 0,855$ 107,20/ 123,93 125,15 Picture 4.2-18 - maximal bending moment caused by traffic load 221,95 178,69 3,95 3,95 2,54 2,54 2,54 ଞ୍ Picture 4.2-19 - maximal shear force caused by traffic load Stringer 1 (maximal normal stress is under a cope hole by the upper flange): $\Delta \sigma = \frac{\Delta M_s}{w_{net,s}} = \frac{79.9}{0.0060888} * 10^{-3} = 13,122MPa$ $\Delta \tau = \frac{\Delta V_s}{A_{w,net,s}} = \frac{135.4}{4320} * 10^3 = 31,343MPa$ $\Phi_3 * \Delta \sigma_{71,eq} = \Phi_3 * \frac{1}{2} * \left(\Delta \sigma + \sqrt{\Delta \sigma^2 + \Delta \tau^2} \right) =$ $= 1,727 * \frac{1}{2} * \left(13,122 + \sqrt{13,122^2 + 31,343^2} \right) = 40,672MPa$ Stringer 2: $\Delta \sigma = \frac{\Delta M_s}{w_{net,s}} = \frac{123,9}{0,0060888} * 10^{-3} = 20,349MPa$ $\Delta \tau = \frac{\Delta V_s}{A_{w,net,s}} = \frac{37,1}{4320} * 10^3 = 10,848MPa$ $1 \quad (\sqrt{A_{\pi}\tau^2 + \Lambda\tau^2}) = 0$ $\Phi_3 * \Delta \sigma_{71,eq} = \Phi_3 * \frac{1}{2} * \left(\Delta \sigma + \sqrt{\Delta \sigma^2 + \Delta \tau^2} \right) =$ $= 1,727 * \frac{1}{2} * \left(20,349 + \sqrt{20,349^2 + 10,848^2} \right) = 37,483 MPa$ $1,0 * 0,855 * 40,672 = 34,774MPa \le \frac{56}{1.15} = 48,696MPa$ SATISFACTORY (71,4%)

Load capacity: $z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_3 * \Delta \sigma_{71}} = \frac{48,696}{34,774} = \mathbf{1}, \mathbf{400} \rightarrow not \ determinative$

4.3 End cross girder

SATISFACTORY (76,0%)

• Flexural buckling – vertical plane: $\lambda' = \frac{L_{cr,z}}{i_y} * \frac{1}{\lambda_1} = \frac{983}{208} * \frac{1}{93,913} = 0,050 \le 0,200 \rightarrow cross \ sectional \ check$ 14 300

Picture 4.3-3 - effective cross section for compression

N	$Y_{Rd} = A_e$	$eff * \frac{f_{yk}}{\gamma_{M1}}$	= 0,0	1689	$96 * \frac{235}{1,1}$	5 - * 1000	= 3609	Э,6kN
	ψ=	1		1	ψ=	1		
	k _σ =	4,000			k _σ =	0,430		
	b=	2200	mm		b=	1000	mm	
	t=	14	mm		t=	14	mm	
	f _y =	235	MPa		f _y =	235	MPa	
	ε=	1,000			ε=	1,000		
	λ _P =	2,767			λ _P =	3,835		
	ρ=	0,333			ρ=	0,248		
	b _{eff} =	732	mm		b _{eff} =	248	mm	
	α ₀ =	0,577			α ₀ =	0,498		
	b ₀ =	1100	mm		b ₀ =	1000	mm	
	L _{e,1} =	1960	mm		L _{e,1} =	1960	mm	
	L _{e,2} =	2240	mm		L _{e,2} =	2240	mm	
	κ ₁ =	0,324			κ ₁ =	0,254		
	κ ₂ =	0,491			κ ₂ =	0,446		
	sagg	ing bend	ing		sag	ging bend	ing	
	β"=	0,847			β ^κ =	0,916		
	beff=	620	mm		beff=	227	mm	
	hogg	ging benc	ling		hog	ging bend	ling	
	β ^κ =	0,487			β ^κ =	0,539		
	beff=	1071	mm		beff=	539	mm	

Picture 4.3-5 - effective cross section for hogging bending moment M_y

Picture 4.3-4 - effective cross section for sagging bending moment My

$$\begin{split} M_{y,el,Rd,+} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0030489 * \frac{235}{1,1} * 1000 = 651,4kNm \\ M_{y,el,Rd,+} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0028804 * \frac{235}{1,1} * 1000 = 615,4kNm \end{split}$$

Lower fibre of the end cross girder above web:

$$\mu_1 = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_y}{M_{y,el,Rd}} = -\frac{98,3}{3609,6} + \frac{273,5 + 98,3 * 0,111}{651,4} = 0,409$$

Combination of loads causing maximal shear force and bending moment (derailment – design situation II):

Linear - ultimate	self-weight	1,00
	other permanent load	1,00
	average	
	other permanent load maximal	1,00
	maintenance load	1,00
	wind Z-, left	0,50
	CG,D2-maxV	1,00

$$V_{Rd,1} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{235 * 430 * 14}{\sqrt{3} * 1,0 * 1000} = 816,8kN > 375,0kN$$
$$V_{Rd,2} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{235 * 301 * 14}{\sqrt{3} * 1,0 * 1000} = 571,7kN > 337,7kN$$

Interaction of shear force and bending moment in cross section 2-2:

Picture 4.3-8 – effective cross section for M_y in section 2-2

$$\begin{split} N_{Rd} &= A * \frac{f_{yk}}{\gamma_{M1}} = 0,023464 * \frac{235}{1,1} * 1000 = 5012,8kN \\ M_{y,el,Rd} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0022864 * \frac{235}{1,1} * 10^3 * (1 - \frac{61,3}{0,02346 * 235000/1,1}) = 482,5kNm \\ \mu_1 &= \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_y}{M_{y,el,Rd}} = -\frac{61,3}{5012,8} + \frac{141,7 + 61,3 * 0,038}{488,5} = 0,283 \\ \eta_3 &= \frac{V_{Ed}}{V_{Rd}} = \frac{337,7}{571,7} = 0,591 \\ M_{f,Rd} &= w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,0017473 * \frac{235}{1,1} * 10^3 * (1 - \frac{61,3}{0,01925 * 235000/1,1}) = 367,7kNm \\ \eta_1 + \left(1 - \frac{M_{f,Rd}}{M_{el,Rd}}\right) * (2 * \eta_3 - 1)^2 = 0,283 + \left(1 - \frac{367,7}{482,5}\right) * (2 * 0,591 - 1)^2 = 0,290 \le 1,0 \\ SATISFACTORY (59,1\% - shear resistance) \end{split}$$

4.3.1 Load capacity

 Cross in place of longitudinal stiffener:

 Vz,Ed
 519,5
 kN
 Vz,Ed,LM71
 337,7
 kN
 Vz,Ed,rs
 182,2
 kN

$$\eta_{3,rs} = \frac{V_{Ed,rs}}{V_{bw,T,Rd}} = \frac{182,2}{683,8} = 0,266$$

$$\eta_{3,LM71} = \frac{V_{Ed,LM71}}{V_{bw,T,Rd}} = \frac{337,7}{683,8} = 0,494$$

$$z_{LM71} = \frac{1 - \eta_{3,rs}}{\eta_{3,LM71}} = \frac{1 - 0,266}{0,494} = 1,486$$

The end cross girder is supported by vertical stiffener. Shear resistance of this stiffener is verified bellow. It should carry the difference of shear force ΔV_{Ed} =597,0kN. Effective cross section consists of full area of stiffener and adjacent part of plate (length 15 ϵ t).

A.2. Detailed static analysis

$$\begin{split} l_t &= 2,0461 * 10^{\circ} mm^4 \\ \lambda_z &= \frac{L_{cr}}{i_z} = \frac{1911}{50} = 38,22 \\ \lambda_{z\omega} &= \kappa_z * \sqrt{\lambda_z^2 + \lambda_\omega^2} = 0,797 * \sqrt{42,57^2 + 38,22^2} = 45,60 \\ \kappa_z &= \sqrt{\frac{1 + (a_z/i_p)}{2}} = \sqrt{\frac{1 + (17/62,8)}{2}} = 0,797 \\ \lambda'_{z\omega} &= \frac{\lambda_{z\omega}}{\lambda_1} = \frac{45,60}{93,913} = 0,486 \\ \text{Reduction factor:} \\ \varphi &= 0,5 * \left[1 + \alpha * (\lambda' - 0,2) + {\lambda'}^2\right] = 0,5 * \left[1 + 0,49 * (0,486 - 0,2) + 0,486^2\right] = \\ &= 0,688 \\ \chi_{z\omega} &= \frac{1}{\varphi + \sqrt{\varphi^2 - {\lambda'}^2}} = \frac{1}{0,688 + \sqrt{0,688^2 - 0,486^2}} = 0,851 \rightarrow determinative \\ N_{\text{Rd}} &= \chi * A * \frac{f_{yk}}{\gamma_{M1}} = 0,851 * 3760 * \frac{235}{1,1} * 10^{-3} = 683,6kN \ge 597,0kN \end{split}$$

Picture 4.3-12 - stress in stiffener under end cross girder according to software (maximal: 171,6MPa)

Vertical stiffener can carry the difference of shear force in end cross girder.

Maximal shear force in lower cross girder: V_{Ed} =393,1kN. Other inner forces are neglectable (M_{Ed} =42,3kNm).

$$V_{Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{235 * 366 * 14}{\sqrt{3} * 1,0 * 1000} = 698,2kN > 393,1kN$$

The load capacity Z_{LM71} =1,486 is valid.

Stress in all parts of the end cross girder is smaller than in intermediate cross girders. Therefore, there is no need to verify bolted joint of a web and a fatigue.

4.4 Longitudinal stiffener

For maximal load of longitudinal stiffener is considered traffic load with maximal eccentricity (chapter 1.2.2). It is also counted with 100mm possible eccentricity of the position of the track according to following picture:

Critical combination of loads for longitudinal stiffener (gr12, formula 10.b, dynamic factor for global effects is considered 1,071, for local effects 1,600):

	γ	ψ٥	ξ
permanent load	1,25	-	0,85
LM71 -for normal force φ=1,071 - for bending moment φ=1,600	1,30	-	
centrifugal force	0,00	-	(favourable)
nosing force (right)	1,30	-]
traction force	0,65	-	
maintenance load	1,50	0,8	
wind horizontal (right)	1,35	0,75	
wind vertical	1,35	0,75	
linear temperature minimal	1,50	0,6	

4.4.1 Cross section in midspan

For every load is found its critical position on a bridge and the alleviating effects are neglected. Inner forces diagrams:

Picture 4.4-2 – maximal normal force in longitudinal stiffener, midspan

Picture 4.4-3 – minimal bending moment My in longitudinal stiffener, midspan

Picture 4.4-5 - bending moment M_z in longitudinal stiffener, midspan

Effective cross section of longitudinal stiffener for normal force is calculated in chapter 4.1.3:

Effective cross section for bending moments:

ψ=	1		ψ=	0	
k _σ =	4,000		k _σ =	7,810	
b=	560	mm	b=	560	mm
t=	18	mm	t=	18	mm
f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000	
λ _P =	0,548		λ _P =	0,392	
ρ=	1,000		ρ=	1,000	
b _{eff} =	560	mm	b _{eff} =	560	mm
α ₀ =	1,000		α ₀ =	1,000	
b ₀ =	280	mm	b ₀ =	240	mm
L _{e,1} =	1680	mm	L _{e,1} =	1680	mm
$L_{e,2}=$	1200	mm	L _{e,2} =	1200	mm
к1=	0,167		κ1=	0,143	
к ₂ =	0,233		κ ₂ =	0,200	
sagg	ing bend	ling	sage	ging bend	ling
β ^κ =	0,973		β ^κ =	0,983	
beff=	545	mm	beff=	236	mm
hoge	ging benc	ling	hogging bending		
β ^κ =	0,809		β ^κ =	0,850	
beff=	453	mm	beff=	204	mm

Picture 4.4-7 – effective cross section for M_y

Picture 4.4-6 – effective cross section for M_z

Stress in lower fibre: (interaction coefficients k_{ij} are not used, for T-cross section of longitudinal stiffener there would be according to standard $k_{ij}<1$, but it is valid for beams, in calculation below is the stiffener for compression taken as a part of whole cross girder)

$$\sigma_{x} = \frac{N_{Ed}}{A_{eff}} + \frac{M_{y,Ed}}{w_{y,el,eff}} = \frac{1702,1}{11920} * 10^{3} + \frac{44,77}{0,00029897} * 10^{-3} = 292,5MPa < \frac{f_{yk}}{\gamma_{M1}} = \frac{355}{1,1} = 322,7MPa$$

SATISFACTORY (90,6%)

Stress in upper fibre:

$$\sigma_x = \frac{N_{Ed}}{A_{eff}} + \frac{M_{y,Ed}}{w_{y,el,eff}} + \frac{M_{z,Ed}}{w_{z,el,eff}} = \frac{1690,8}{11920} * 10^3 + \frac{49,27}{0,0014360} * 10^{-3} + \frac{5,54}{0,00094109} * 10^{-3} = 182,0MPa < \frac{f_{yk}}{\gamma_{M1}} = \frac{235}{1,1} = 213,6MPa$$

SATISFACTORY (85,2%)

Picture 4.4-8 - maximal shear force in longitudinal stiffener, midspan

 $V_{Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{355 * 240 * 16}{\sqrt{3} * 1,0 * 1000} = 787,0kN > 128,0kN$ SATISFACTORY (16,3% - no interaction of shear force and bending moment)

4.4.2 Cross section in stationing L=7,4m

In that place changes thickness of upper flanges. For every load is found its critical position on a bridge and the alleviating effects are neglected. Inner forces diagrams:

Picture 4.4-9 – maximal normal force in longitudinal stiffener, change of thickness of upper flange

Picture 4.4-10 – extremes of bending moment My in longitudinal stiffener, change of thickness of upper

Picture 4.4-11 - bending moment M_z in longitudinal stiffener, change of thickness of upper flange

Effective cross section of longitudinal stiffener for normal force is calculated in chapter 4.1.4:

Effective cross section for bending moments:

ψ=	1		I	ψ=	0	
k _σ =	4,000			k _σ =	7,810	
b=	560	mm		b=	560	mm
t=	14	mm		t=	14	mm
f _y =	235	MPa		f _y =	235	MPa
ε=	1,000			ε=	1,000	
λ _P =	0,704			λ _P =	0,504	
ρ=	0,976			ρ=	1,000	
b _{eff} =	547	mm		b _{eff} =	560	mm
α ₀ =	0,988			α ₀ =	1,000	
b ₀ =	280	mm		b ₀ =	240	mm
L _{e,1} =	1680	mm		L _{e,1} =	1680	mm
L _{e,2} =	1200	mm		L _{e,2} =	1200	mm
к1=	0,165			κ ₁ =	0,143	
К2=	0,233			κ ₂ =	0,200	
sagg	ing bend	ing		sagging bending		ing
β ^κ =	0,974			β ^κ =	0,983	
beff=	533	mm		beff=	236	mm
hogg	ging bend	ling	ng hogging bending			ling
β ^κ =	0,809			β ^κ =	0,850	
beff=	453	mm		beff=	204	mm

Picture 4.4-12 – effective cross section for M_y

Picture 4.4-13 – effective cross section for M_z

Stress in lower fibre:

$$\sigma_x = \frac{N_{Ed}}{A_{eff}} + \frac{M_{y,Ed}}{w_{y,el,eff}} = \frac{972,9}{10040} * 10^3 + \frac{46,68}{0,00028685} * 10^{-3} = 259,6MPa < \frac{f_{yk}}{\gamma_{M1}} = \frac{355}{1,1} = 322,7MPa$$

SATISFACTORY (80,5%)

Stress in upper fibre:

$$\sigma_x = \frac{N_{Ed}}{A_{eff}} + \frac{M_{y,Ed}}{w_{y,el,eff}} + \frac{M_{z,Ed}}{w_{z,el,eff}} = \frac{813,8}{10040} * 10^3 + \frac{44,74}{0,0011889} * 10^{-3} + \frac{3,47}{0,00073202} * 10^{-3} = 123,4MPa < \frac{f_{yk}}{\gamma_{M1}} = \frac{235}{1,1} = 213,6MPa$$
SATISFACTORY (57,8%)

Picture 4.4-14 – maximal shear force in longitudinal stiffener, change of thickness of upper flange

 $V_{Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{355 * 240 * 16}{\sqrt{3} * 1,0 * 1000} = 787,0kN > 135,7kN$ SATISFACTORY (17,2% - no interaction of shear force and bending moment).

4.4.3 Cross section above support

Because of solid end girder, there is maximal bending moment in cross section above support. For every load is found its critical position on a bridge and the alleviating effects are neglected. Inner forces diagrams:

Picture 4.4-15 – extremes of bending moment M_y in longitudinal stiffener, above support

Effective cross section of longitudinal stiffener for normal force is calculated in chapter 4.1.4:

Effective cross section for bending moments:

beff=	514	mm			
β ^κ =	0,917				
hogging bending					
κ ₂ =	0,140				
L _{e,2} =	2000	mm			
b ₀ =	280	mm			
α ₀ =	0,988				

Picture 4.4-16 – effective cross section for M_y

Stress in lower fibre: $\sigma_x = \frac{M_{y,Ed}}{w_{y,el,eff}} = \frac{67,37}{0,00029059} * 10^{-3} = 231,8MPa < \frac{f_{yk}}{\gamma_{M1}} = \frac{355}{1,1} = 322,7MPa$ <u>SATISFACTORY (71,8%)</u>

Picture 4.4-17 – maximal shear force in longitudinal stiffener, above support

$$V_{Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{355 * 240 * 16}{\sqrt{3} * 1,0 * 1000} = 787,0 kN > 137,4 kN$$

SATISFACTORY (17,5% - no interaction of shear force and bending moment).

Kateřina Soukupová

83 Department of Steel and Timber Structures
4.4.4 Fatigue

Lower fibre of longitudinal stiffener in midspan (EN 1993-1-9, table 8.1, detail 1):

$$\gamma_{Ff} * \lambda * \Phi_2 * \Delta \sigma_{71} \leq \frac{\Delta \sigma_C}{\gamma_{Mf}}$$

$$\lambda_1 = 1,03 \ (for \ span \ L = 2 * 2,4 = 4,8m)$$

$$\lambda_2 = 0,83 \ (traf \ fic \ per \ year \ 10^6 t)$$

$$\lambda_3 = 1,00 \ (design \ life \ 100 \ years)$$

$$\lambda_4 = 1,00 \ (monorail)$$

$$\lambda_{loc} = \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 1,03 * 0,83 * 1,00 * 1,00 = 0,855$$

Picture 4.4-18 – maximal normal force caused by traffic load in longitudinal stiffener, midspan

 $\begin{array}{l} \mbox{Picture 4.4-19-minimal bending moment } M_y \mbox{caused by traffic load in longitudinal stiffener, midspan} \\ \sigma_{glob} &= \frac{N_{Ed}}{A_{eff}} = \frac{659,3}{11920} * 10^3 = 55,310 MPa \\ \sigma_{loc} &= \frac{M_{y,Ed}}{w_{y,el,eff}} = \frac{14,27}{0,00029897} * 10^{-3} = 47,731 MPa \\ \lambda * \Phi_2 * \Delta\sigma_{71} &= \lambda_{loc} * \Phi_{loc} * \Delta\sigma_{loc} + \lambda_{glob} * \Phi_{glob} * \Delta\sigma_{glob} = \\ &= 0,855 * 1,600 * 47,731 + 0,531 * 1,071 * 55,310 = \\ &= 96,750 MPa \\ 1,0 * 96,750 &= 96,750 MPa \leq \frac{160}{1,15} = 139,130 MPa \\ \underline{SATISFACTORY(69,5\%)} \\ Load capacity: \\ z_{LM71} &= \frac{\Delta\sigma_C/\gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_2 * \Delta\sigma_{71}} = \frac{139,130}{96,750} = 1,438 \rightarrow not \ determinative \end{array}$

<u>Upper fibre of web in midspan, butt weld – longitudinal attachment (EN 1993-1-9, table 8.4, detail 1):</u>

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_2 * \Delta \sigma_{71} &\leq \frac{\Delta \sigma_C}{\gamma_{Mf}} \\ \lambda_1 &= 1,03 \ (for \ span \ L = 2 * 2,4 = 4,8m) \\ \lambda_2 &= 0,83 \ (traffic \ per \ year \ 10^6 t) \\ \lambda_3 &= 1,00 \ (design \ life \ 100 \ years) \\ \lambda_4 &= 1,00 \ (monorail) \\ \lambda_{loc} &= \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 1,03 * 0,83 * 1,00 * 1,00 = 0,855 \\ \sigma_{glob} &= \frac{N_{Ed}}{A_{eff}} = \frac{651,21}{11920} * 10^3 = 54,632MPa \\ \sigma_{loc} &= \frac{M_{y,Ed}}{w_{y,el,eff}} = \frac{12,50}{0,0013930} * 10^{-3} = 8,973MPa \\ \lambda * \Phi_2 * \Delta \sigma_{71} &= \lambda_{loc} * \Phi_{loc} * \Delta \sigma_{loc} + \lambda_{glob} * \Phi_{glob} * \Delta \sigma_{glob} = \\ &= 0,855 * 1,600 * 8,973 + 0,531 * 1,071 * 54,632 = 43,345MP \\ 1,0 * 43,345 = 43,345MPa \leq \frac{56}{1,15} = 48,696MPa \\ \hline \end{split}$$

A.2. Detailed static analysis

Load capacity:

$$z_{\text{LM71}} = \frac{\Delta \sigma_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_2 * \Delta \sigma_{71}} = \frac{48,696}{43,345} = 1, 123 \rightarrow determinative$$

Upper fibre of web (EN 1993-1-9, table 8.1, detail 6), welds of web and flanges - continuous fillet weld transmitting a shear flow (EN 1993-1-9, table 8.2, detail 8):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_2 * \Delta \tau_{71} &\leq \frac{\Delta \tau_C}{\gamma_{Mf}} \\ \lambda_1 &= 1,03 \; (for \; span \; L = 2 * 2,4 = 4,8m) \\ \lambda_2 &= 0,83 \; (traffic \; per \; year \; 10^6 t) \\ \lambda_3 &= 1,00 \; (design \; life \; 100 \; years) \\ \lambda_4 &= 1,00 \; (monorail) \\ \lambda_{loc} &= \lambda_1 * \lambda_2 * \lambda_3 * \lambda_4 = 1,03 * 0,83 * 1,00 * 1,00 = 0,855 \end{split}$$

	ų	₽° -									
			2'6								
7											V

Picture 4.4-20 - maximal shear force caused by traffic load

$$\begin{split} \Phi_2 * \Delta \tau &= \Phi_2 * \frac{V_{Ed,1} * S_f}{t * I_y} = 1,600 * \frac{49,22 * 0,000268632}{16 * 0,000059446} = 22,242 MPa \\ 1,0 * 0,855 * 22,242 = 19,017 MPa \leq \frac{80}{1,15} = 69,565 MPa \\ \underline{SATISFACTORY}(27,3\%) \end{split}$$

2

Load capacity: $z_{\text{LM71}} = \frac{\Delta \tau_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_2 * \Delta \tau_{71}} = \frac{69,565}{19,017} = 3,659 \rightarrow not \ determinative$

Load carrying joint of longitudinal stiffener - partial penetration joint (EN 1993-1-9, table 8.5, details 1,3):

$$\begin{split} \gamma_{Ff} * \lambda * \Phi_2 * \Delta \tau_{71} &\leq \frac{\Delta \tau_C}{\gamma_{Mf}} \\ \Delta \tau_{loc,w} &= \frac{V_{Ed}}{4 * a * l} = \frac{49,22}{4 * 5 * 160} * 10^3 = 15,381 MPa \\ \lambda_{loc} * \Phi_{loc} * \Delta \tau_{loc} = 0,855 * 1,600 * 15,381 = 21,042 MPa \\ 1,0 * 21,042 = 21,042 MPa \leq \frac{80}{1,15} = 69,565 MPa \\ \underline{SATISFACTORY(30,2\%)} \end{split}$$

Load capacity: $z_{\text{LM71}} = \frac{\Delta \tau_C / \gamma_{Mf}}{\gamma_{Ff} * \lambda * \Phi_2 * \Delta \tau_{71}} = \frac{69,565}{21,042} = 3,306 \rightarrow not \ determinative$

4.4.5 Load capacity

Lower fibres:

N_{Ed}	1702,1	kN	N _{Ed,LM71}	882,1	kN	N _{Ed,rs}	820,1	kN
M _{y,Ed}	44,77	kNm	M _{y,Ed,LM71}	40,79	kNm	M _{y,Ed,rs}	3,98	kNm

$$\eta_{1,\rm rs} = \frac{N_{Ed,rs}}{A_{eff}*f_y} + \frac{M_{y,Ed,rs}}{w_{y,el,eff}*f_y} = \frac{820,1*10^3}{11920*355/1,1} + \frac{3,98*10^{-3}}{0,00029897*355/1,1} = 0,254$$

$$\eta_{1,\text{LM71}} = \frac{N_{Ed,\text{LM71}}}{A_{eff} * f_y} + \frac{M_{y,\text{Ed},\text{LM71}}}{w_{y,el,eff} * f_y} = \frac{882.1 * 10^3}{11920 * 355/1.1} + \frac{40.79 * 10^{-3}}{0.00029897 * 355/1.1} = 0.652$$

$$z_{\text{LM71}} = \frac{1 - \eta_{1,\text{rs}}}{\eta_{1,\text{LM71}}} = \frac{1 - 0.254}{0.652} = \mathbf{1}, \mathbf{144}$$

$$\begin{split} V_{Ed} &= 1,144 * 112,8 + 15,1 = 144,1 kN \\ \mu_2 &= \frac{V_{Ed}}{V_{Rd}} = \frac{144,1}{787,0} = 0,183 < 0,5 \\ \text{Load capacity is valid.} \end{split}$$

Lower fibres:

N _{Ed}	1690,8	kN	N _{Ed,LM71}	875,0	kN	N _{Ed,rs}	815,8	kN
$M_{y,Ed}$	49,27	kNm	M _{y,Ed,LM71}	43,77	kNm	M _{y,Ed,rs}	5,50	kNm
$M_{z,Ed}$	5,54	kNm	M _{z,Ed,LM71}	3,83	kNm	M _{z,Ed,rs}	1,71	kNm

$$\eta_{1,rs} = \frac{N_{Ed,rs}}{A_{eff} * f_y} + \frac{M_{y,Ed,rs}}{w_{y,el,eff} * f_y} + \frac{M_{z,Ed,rs}}{w_{z,el,eff} * f_y} = \\ = \frac{815,8 * 10^3}{11920 * \frac{235}{1,1}} + \frac{5,50 * 10^{-3}}{0,0014360 * \frac{235}{1,1}} + \frac{1,71 * 10^{-3}}{0,00094109 * \frac{235}{1,1}} = 0,347$$

$$\eta_{1,\text{LM71}} = \frac{N_{Ed,\text{LM71}}}{A_{eff} * f_y} + \frac{M_{y,\text{Ed},\text{LM71}}}{w_{y,el,eff} * f_y} + \frac{M_{z,\text{Ed},\text{LM71}}}{w_{z,el,eff} * f_y} = \\ = \frac{875,0 * 10^3}{11920 * 235/1,1} + \frac{43,77 * 10^{-3}}{0,0014360 * 235/1,1} + \frac{3,83 * 10^{-3}}{0,00094109 * 235/1,1} = 0,505$$

$$z_{\rm LM71} = \frac{1 - \eta_{1,\rm rs}}{\eta_{1,\rm LM71}} = \frac{1 - 0.347}{0.505} = 1,293$$

4.5 Stiffener inside box girder

Combination of loads causing maximal shear force (gr12, formula 10.b):

Linear - ultimate	self-weight	1,06
	other permanent load	1,06
	average	
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature minimal	0,90
	traction force	0,65
	wind L	1,01
	wind Z-, left	1,01
	stiffener-maxN-LM71,Ql	1,39
	stiffener-maxN-CF	1,30
	stiffener-maxN-NFI	1,30

Picture 4.5-1 – cross section (SHS 100x8)

Picture 4.5-2 – maximal normal force

• Flexural buckling: Buckling length: $L_{cr,y} = 3108mm$ Non-dimensional slenderness:

$$\lambda_{1} = \pi * \sqrt{\frac{E}{f_{y}}} = \pi * \sqrt{\frac{210000}{235}} = 93,913$$

$$\lambda' = \frac{L_{cr,z}}{i_{y}} * \frac{1}{\lambda_{1}} = \frac{3108}{37} * \frac{1}{93,913} = 0,894$$

Reduction factor:

$$\varphi = 0,5 * \left[1 + \alpha * (\lambda' - 0,2) + {\lambda'}^{2}\right] = 0,5 * \left[1 + 0,21 * (0,894 - 0,2) + 0,894^{2}\right] = 0,973$$

$$\chi_{y} = \frac{1}{\varphi + \sqrt{\varphi^{2} - {\lambda'}^{2}}} = \frac{1}{0,973 + \sqrt{0,973^{2} - 0,894^{2}}} = 0,737$$

 $N_{Rd} = \chi * A * \frac{t_{yk}}{\gamma_{M1}} = 0,737 * 2880 * \frac{235}{1,1} * 10^{-3} = 453,4kN \ge 76,1kN$ SATISFACTORY (16,8%)

4.5.1 Load capacity

$$\begin{split} \hline \mathbf{N}_{Ed} & 76,1 \text{ kN} & \mathbf{N}_{Ed,LM71} & 53,3 \text{ kN} & \mathbf{N}_{Ed,rs} & 22,8 \text{ kN} \\ \eta_{1,rs} &= \frac{N_{Ed,rs}}{N_{Rd}} = \frac{22,8}{453,4} = 0,050 \\ \eta_{1,LM71} &= \frac{N_{Ed,LM71}}{N_{Rd}} = \frac{53,3}{453,4} = 0,118 \\ z_{LM71} &= \frac{1 - \eta_{1,rs}}{\eta_{1,LM71}} = \frac{1 - 0,050}{0,118} = \mathbf{8},\mathbf{051} \end{split}$$

4.6 Bridge deck

Combination of loads causing maximal shear force (gr12, formula 10.b):

Linear - ultimate	self-weight	1,06
	other permanent load average	1,06
	other permanent load maximal	1,06
	maintenance load	1,20
	temperature max linear	0,90
	traction force	0,65
	wind Z-	1,01
	wind L with train	1,01
	LM71 - L - maximal M	2,08
	centrifugal force - maximal M	1,30
	nosing force - L - maximal M	1,30

Thickness of plates is modified according to effective cross sections calculated in previous captures, so local and global buckling effect is included. For upper flange is used orthotropy for different directions.

Picture 4.6-3 – stress τ on bridge deck (for dynamic factor $\emptyset = 1,600$)

Picture 4.6-4 – maximal stress on bridge deck (for dynamic factor @=1,600)

These results are calculated for dynamic factor $\emptyset = 1,600$, but correctly should be for global influence (normal stress caused by bending of a main box girder) used dynamic factor $\emptyset = 1,071$. It is taken in consideration bellow:

Picture 4.6-5 - bending moment caused by traffic load LM71 (for dynamic factor Ø=1,600)

Modified normal stress in direction x: $\sigma_{x,Ed,M} = \frac{M_{Ed}}{l_y} * z_f = \frac{41432,5*10^{-3}}{0,73143} * 1,580 = 89,5MPa$ $\sigma_{x,Ed} = -173,6 + \frac{(1,600 - 1,071)}{1,600} * 89,5 = -144,0MPa$

Assessment of a plate of bridge deck

$$\rho = \left(\frac{\sigma_{x,Ed}}{f_y/\gamma_{M1}}\right)^2 + \left(\frac{\sigma_{z,Ed}}{f_y/\gamma_{M1}}\right)^2 - \left(\frac{\sigma_{x,Ed}}{\frac{f_y}{\gamma_{M1}}}\right) * \left(\frac{\sigma_{z,Ed}}{\frac{f_y}{\gamma_{M1}}}\right) + 3 * \left(\frac{\tau_{Ed}}{f_y/\gamma_{M1}}\right)^2 = \\ = \left(\frac{-144,0}{235/1,1}\right)^2 + \left(\frac{34,8}{235/1,1}\right)^2 - \left(\frac{-144,0}{235/1,1}\right) * \left(\frac{34,8}{235/1,1}\right) + 3 * \left(\frac{8,3}{235/1,1}\right)^2 = \\ = 0,595 \le 1 \\ \underline{SATISFACTORY}$$

4.6.1 Load capacity

Load capacity of bridge deck is find iteratively using a table below:

	σ _x [MPa]	σ _z [MPa]	τ[MPa]	
μ_{LM71}	-79,1	25,6	6,9	
μ _{rs}	-64,9	9,2	1,4	
Z LM71=	1,513			
Z _{LM71} =	1,513 σ _x [MPa]	σ _z [MPa]	τ[MPa]	ρ

4.7 Verification of rigid stiffeners

4.7.1 Upper cross girder

• critical buckling stress - plate type behaviour

$$a = \frac{a}{b} = \frac{2800}{42800} = 0,065 \le \sqrt[4]{\gamma} = \sqrt[4]{886,7} = 5,457$$

$$\delta = \frac{\sum A_{sl}}{A_p} = 0,205$$

$$\gamma = \frac{l_{sl}}{l_p} = 886,7$$

$$\psi = 1$$

$$k_{\sigma} = \frac{2 * ((1 + \alpha^2)^2 + \gamma - 1)}{\alpha^2 * (\psi + 1) * (1 + \delta)} = \frac{2 * ((1 + 0,065^2)^2 + 886,7 - 1)}{0,065^2 * (1 + 1) * (1 + 0,205)} = 174167,5$$

$$\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{18}{42800}\right)^2 = 0,034MPa$$

$$\sigma_{cr,p} = k_{\sigma} * \sigma_E = 174167,5 * 0,034 = 5853,0MPa$$

• critical buckling stress – column type behaviour

$$\sigma_{cr,c} = \frac{\pi^2 * E * I_{sl,1}}{A_{sl,1} * a^2} = \frac{\pi^2 * 210000 * 1,0343 * 10^9}{52040 * 2800^2} = 5254,3MPa$$

Cross girder is verified using N_{Ed} calculated for cross section in midspan and minimal load capacity z_{LM71} =1,051:

$$w_{0} = \frac{s}{300} = \frac{2400}{300} = 8mm$$

$$\sigma_{m} = \frac{\sigma_{cr,c}}{\sigma_{cr,p}} * \frac{N_{Ed}}{b} * \left(\frac{1}{a_{1}} + \frac{1}{a_{2}}\right) = \frac{5254,3}{5853,0} * \frac{12682,2}{2800} * \left(\frac{1}{2400} + \frac{1}{2400}\right) * 10^{3} = 3,388MPa$$

$$u = \frac{\pi^{2} * E * e_{max}}{\frac{f_{y} * 300 * b}{Y_{M1}}} = \frac{\pi^{2} * 210000 * 323}{\frac{235 * 300 * 2800}{1,1}} = 3,73050$$

$$I_{st} = \frac{\sigma_{m}}{E} * \left(\frac{b}{\pi}\right)^{4} * \left(1 + w_{0} * \frac{300}{b} * u\right) = \frac{3,388}{210000} * \left(\frac{2800}{\pi}\right)^{4} * \left(1 + 8 * \frac{300}{2800} * 3,73050\right) = 4,27369 * 10^{7}mm^{4}$$

Picture 4.7-1 - cross girder

 $I_{CG} = 2,24450 * 10^8 mm^4 > 4,27369 * 10^7 mm^4$ SATISFACTORY – cross girder provides rigid support for longitudinal stiffeners Verification of resistance to torsional buckling:

$$\begin{split} I_{y} &= \frac{1}{12} * (200 * 16^{3} + 12 * 470^{3}) + 200 * 16 * 478^{2} + 470 * 12 * 235^{2} = 1,14651 * 10^{9} mm^{4} \\ I_{z} &= \frac{1}{12} * (16 * 200^{3} + 470 * 12^{3}) = 1,07343 * 10^{7} mm^{4} \\ \frac{I_{t}}{I_{p}} &= \frac{\frac{1}{3} * (470 * 12^{3} + 200 * 16^{3})}{1,14651 * 10^{9} + 1,07343 * 10^{7}} = \frac{543786,7}{1,15724 * 10^{9}} = 0,000470 > 5,3 * \frac{f_{y}}{E} = 5,3 * \frac{235}{210000} \\ &= 0,00593 \\ \frac{\text{NOT SATISFACTORY}}{L_{cr,\omega}} = 0,75 * 2400 = 1800 mm \\ \sigma_{cr} &= \frac{1}{I_{p}} * \left(GI_{t} + \frac{\pi^{2} * EI_{w}}{a^{2}}\right) \\ &= \frac{1}{1,15724 * 10^{9}} * \left(81000 * 543786,7 + \frac{\pi^{2} * 210000 * 2,51942 * 10^{12}}{1800^{2}}\right) = 1430,7MPa > 6 * f_{y} = 6 * 235 = 1410MPa \\ \text{SATISFACTORY} (fulfilment of one condition is sufficient) \end{split}$$

4.7.2 Upper longitudinal stiffener

Verification of resistance to torsional buckling:

$$I_{y} = \frac{1}{12} * 16 * 240^{3} + 240 * 16 * 120^{2} = 7,37280 * 10^{7} mm^{4}$$

$$I_{z} = \frac{1}{12} * 240 * 16^{3} = 81920 mm^{4}$$

$$\frac{I_{t}}{I_{p}} = \frac{\frac{1}{3} * 240 * 16^{3}}{7,37280 * 10^{7} + 81920} = \frac{327680}{7,37810 * 10^{7}} = 0,00444 > 5,3 * \frac{f_{y}}{E} = 5,3 * \frac{355}{210000} = 0,00896$$
NOT SATISFACTORY

$$\sigma_{cr} = \frac{1}{I_P} * \left(GI_t + \frac{\pi^2 * EI_w}{a^2} \right) = \frac{1}{7,37810 * 10^7} * (81000 * 327680 + 0) = 359,7MPa > 6 * f_y$$

= 6 * 355 = 2130MPa
NOT SATISFACTORY

Lateral torsional buckling is verified by non-linear analysis in chapter 4.7.6.

4.7.3 Longitudinal stiffeners of web and lower flange

<u>Verification of resistance to torsional buckling:</u> $I_P = 8,917 * 10^6 + 2,695 * 10^6 + 3460 * (106^2 + 24^2) = 5,248 * 10^7 mm^4$ $I_t = \frac{1}{3} * (160 + 100) * 14^3 = 237813mm^4$ $\frac{I_t}{I_p} = \frac{237813}{5,248 * 10^7} = 0,00453 > 5,3 * \frac{f_y}{E} = 5,3 * \frac{235}{210000} = 0,00593$ **NOT SATISFACTORY**

 $\sigma_{cr} = \frac{1}{I_P} * \left(GI_t + \frac{\pi^2 * EI_w}{a^2} \right) = \frac{1}{5,248 * 10^7} * \left(81000 * 237813 + \frac{\pi^2 * 210000 * 1,19467 * 10^{11}}{2400^2} \right) = 1186,2MPa > 6 * f_y = 6 * 355 = 2130MPa$ NOT SATISFACTORY

Longitudinal stiffeners L160x100x14 are in most cases in tensile zone or the compression is not significant ($\sigma_{com}=60,6MPa << f_y/\gamma_{M1}=235/1,1=213,6MPa$), so we can suppose, that they do not buckle in torsion.

4.7.4 End transverse stiffener of web

 $\begin{aligned} & \frac{\text{Verification of resistance to torsional buckling:}}{I_P = 3,8944 * 10^8 + 7,2082 * 10^7 + 20492 * 27^2 = 4,76461 * 10^8 mm^4 \\ & I_t = 8,9089 * 10^5 mm^4 \\ & \frac{I_t}{I_p} = \frac{8,9089 * 10^5}{4,76461 * 10^8} = 0,00189 > 5,3 * \frac{f_y}{E} = 5,3 * \frac{235}{210000} = 0,00593 \\ & \frac{\text{NOT SATISFACTORY}}{L_{cr,\omega}} = 0,75 * (3420 - 400 - 486) = 1900mm \\ & \sigma_{cr} = \frac{1}{I_P} * \left(GI_t + \frac{\pi^2 * EI_w}{L_{cr,\omega}^2} \right) = \\ & = \frac{1}{4,76461 * 10^8} * \left(81000 * 8,9089 * 10^5 + \frac{\pi^2 * 210000 * 2,24897 * 10^{12}}{1900^2} \right) = \\ & = 2861,4MPa > 6 * f_y = 6 * 235 = 1410MPa \end{aligned}$

Stiffener is assessed for normal force N_{Ed} =3265,6kN (combination for maximal shear force in box girder, traffic load multiplied by load capacity z_{LM71} =1,051):

• Flexural buckling: Buckling length: $L_{cr,z} = 0.75 * 2534 = 1900mm$ Non-dimensional slenderness: $\lambda_{1} = \pi * \sqrt{\frac{E}{f_{y}}} = \pi * \sqrt{\frac{210000}{235}} = 93,913$ $\lambda' = \frac{L_{cr,z}}{i_{y}} * \frac{1}{\lambda_{1}} = \frac{1900}{138} * \frac{1}{93,913} = 0.147 \le 0.200 \rightarrow cross \ sectional \ check$ $N_{Rd} = A * \frac{f_{yk}}{\gamma_{M1}} = 20492 * \frac{235}{1.1} * 10^{-3} = 4377,8kN$ $M_{y,el,Rd} = w_{y,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0.0019971 * \frac{235000}{1.1} = 426,7kNm$ $k_{yy} = c_{my} * \left(1 + 0.6 * \lambda' * \frac{N_{Ed}}{N_{Rd}}\right) = 1.0 * \left(1 + 0.6 * 0.147 * \frac{3284,7}{4377,8}\right) = 1.066$ $\frac{N_{Ed}}{N_{Rd}} + k_{yy} * \frac{N_{Ed} * e_{y}}{M_{y,el,Rd}} = \frac{3265,6}{4377,8} + 1.066 * \frac{3265,6 * 0.027}{426,7} = 0.966 \le 1$ SATISFACTORY

4.7.5 Transverse stiffener of web

<u>Verification of resistance to torsional buckling:</u> $I_P = 2,0170 * 10^8 + 1,8714 * 10^7 + 15816 * 12^2 = 2,22692 * 10^8 mm^4$ $I_t = 5,6401 * 10^5 mm^4$ $\frac{I_t}{I_p} = \frac{5,6401 * 10^5}{2,22692 * 10^8} = 0,00253 > 5,3 * \frac{f_y}{E} = 5,3 * \frac{235}{210000} = 0,00593$ <u>NOT SATISFACTORY</u>

A.2. Detailed static analysis

$$\sigma_{cr} = \frac{1}{I_P} * \left(GI_t + \frac{\pi^2 * EI_w}{L_{cr,\omega}^2} \right) = \\ = \frac{1}{2,22692 * 10^8} * \left(81000 * 5,6401 * 10^5 + \frac{\pi^2 * 210000 * 5,54922 * 10^{11}}{1900^2} \right) = \\ = 1635,8MPa > 6 * f_y = 6 * 235 = 1410MPa \\ \text{SATISFACTORY (fulfilment of one condition is sufficient)}$$

 $\frac{\text{Minimal second moment of area for intermediate stiffeners:}}{\frac{a}{h_w} = \frac{2200}{3420} = 0,643 < \sqrt{2} \rightarrow I_{st} = 2,0170 * 10^8 mm^4 \ge 1,5 * h_w^3 * \frac{t^3}{a^2} = 1,5 * 3420^3 * \frac{14^3}{2200^2} = 3,4018 * 10^7 mm^4$

SATISFACTORY

Buckling length: $L_{cr.z} = 0.75 * 2534 = 1900$

$$\begin{split} & L_{cr,z} = 0.75 * 2534 = 1900mm \\ & \text{Non-dimensional slenderness:} \\ & \lambda' = \frac{L_{cr,z}}{i_y} * \frac{1}{\lambda_1} = \frac{1900}{116} * \frac{1}{93,913} = 0,174 \le 0,200 \rightarrow cross \ sectional \ check \\ & \text{N}_{\text{Rd}} = \text{A} * \frac{f_{\text{yk}}}{\gamma_{M1}} = 15816 * \frac{235}{1,1} * 10^{-3} = 3378,9kN \\ & \text{M}_{\text{y,el,Rd}} = \text{w}_{\text{y,eff}} * \frac{f_{\text{yk}}}{\gamma_{M1}} = 0,0011416 * \frac{235000}{1,1} = 243,9kNm \end{split}$$

Stiffener is assessed for normal force calculated below (combination for maximal shear force in box girder, traffic load multiplied by load capacity z_{LM71} =1,051, V_{Ed} =3053,3kN is considered in distance 0,5h_w from support):

$$\alpha = \frac{a}{h_w} = \frac{2400}{3420} = 0,702$$

$$k_\tau = 4,00 + 5,34 * \left(\frac{h_w}{a}\right)^2 = 4,00 + 5,34 * \left(\frac{3420}{2400}\right)^2 = 14,843$$

$$\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{3420}\right)^2 = 3,184MPa$$

$$\tau_{cr} = k_\tau * \sigma_E = 14,843 * 3,184 = 47,258MPa$$

$$\lambda_w = 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{47,258}} = 1,695$$

$$1 = f_{ww} * h_w * t = 1 = 235 * 3420 * 14$$

$$N_{Ed} = V_{Ed} - \frac{1}{\lambda'_w^2} * \frac{f_{yw} * h_w * t}{\sqrt{3} * \gamma_{M1}} = 3053,3 - \frac{1}{1,695^2} * \frac{235 * 3420 * 14}{\sqrt{3} * 1,1 * 1000} = 997,7kN$$

$$k_{yy} = c_{my} * \left(1 + 0.6 * \lambda' * \frac{N_{Ed}}{N_{Rd}}\right) = 1.0 * \left(1 + 0.6 * 0.184 * \frac{997.7}{3378.9}\right) = 1.032$$
$$\frac{N_{Ed}}{N_{Rd}} + k_{yy} * \frac{N_{Ed} * e_y}{M_{y,el,Rd}} = \frac{997.7}{3378.9} + 1.032 * \frac{997.7 * 0.012}{243.9} = 0.346 \le 1$$

SATISFACTORY

4.7.6 Non -linear analysis of behaviour of longitudinal stiffener in torsion

Longitudinal stiffeners of upper flange do not meet requirements for resistance to torsional buckling according to standard EN 1993-1-5. In this case it is necessary to verify a correctness of global buckling calculation in previous captures using non-linear calculation. There are considered following imperfections:

Picture 4.7-2 - part of model with imperfections for non-linear analysis

Picture 4.7-3 - shape of bending for implementation of imperfections

Flange (thickness 18mm):

Stress calculated by linear and non-linear calculation for the same bending moment $(M_{Ed,max}=z_{LM71}*M_{Ed}=1,051*60864,5=63968,6kNm)$:

Picture 4.7-4 - uniformly distributed stress calculated by linear method

Kateřina Soukupová

94 Department of Steel and Timber Structures

Picture 4.7-5 - stress diagram calculated by non-linear method – inner part of upper flange

In chapter 4.1.3 is considered buckling coefficient for flange ρ_c =0,897 for inner part of flange, which should be equal the ratio of stresses for linear and non-linear behaviour.

Comparison with non-linear analysis results: $\frac{\sigma_{I}}{\sigma_{II}} = \frac{132,7}{145,0} = 0,915 > \rho_{c} = 0,897$ $\rightarrow torsional deviation does not increase bukcling effect$

Longitudinal stiffener:

In chapter 4.1.3 is considered buckling coefficient for longitudinal stiffener (including local and global buckling) ρ =0,897*0,858=0,770, which should be equal the ratio of stresses for linear and non-linear behaviour.

Picture 4.7-6 - average stress, linear behaviour (left) and stress diagram for non-linear behaviour (right)

$$\frac{\sigma_I}{\sigma_{II}} = \frac{118,2}{131,3} = 0,900 > \rho = 0,770$$

Comparison of effective area whole upper flange with longitudinal stiffeners:

- Effective area calculated in chapter 4.1.3: $A_{eff,1} = 103692mm^2$
- Effective area non-linear calculation: $A_{eff,2} = 0.915 * (18 * 5150) + 0.900 * (6 * 16 * 240) = 105578mm^2$
- $A_{eff,1} < A_{eff,2} \rightarrow effective cross section is not necessary to modify$

It is proved that torsional resistance of longitudinal stiffeners is sufficient and torsional buckling does not increase buckling effect. So calculations in capture 4.1.3 are considered valid.

Flange (thickness 14mm):

Stress calculated by linear and non-linear calculation for the same bending moment $(M_{Ed,max}=z_{LM71}*M_{Ed}=1,051*36512,7=38374,8kNm)$:

Picture 4.7-7 - uniformly distributed stress calculated by linear method

Picture 4.7-8 - stress diagram calculated by non-linear method – inner part of upper flange

In chapter 4.1.4 is considered buckling coefficient for flange (including local and global buckling) ρ =0,912*0,992=0,904 for inner part of flange, which should be equal the ratio of stresses for linear and non-linear behaviour.

Comparison with non-linear analysis results:

 $\frac{\sigma_{I}}{\sigma_{II}} = \frac{91.6}{100.7} = 0.910 > \rho = 0.904 \rightarrow torsional \ deviation \ increase \ bukcling \ effect$

Longitudinal stiffener:

In chapter 4.1.4 is considered buckling coefficient for longitudinal stiffener (including local and global buckling) ρ =0,912*0,862=0,786, which should be equal the ratio of stresses for linear and non-linear behaviour.

Picture 4.7-9 - average stress, linear behaviour (left) and stress diagram for non-linear behaviour (right)

$$\frac{\sigma_I}{\sigma_{II}} = \frac{81.6}{90.2} = 0.905 > \rho = 0.786$$

Comparison of effective area whole upper flange with longitudinal stiffeners:

- Effective area calculated in chapter 4.1.4: $A_{eff,1} = 85224mm^2$
- Effective area non-linear calculation: $A_{eff,2} = 0.910 * (14 * 5150) + 0.905 * (6 * 16 * 240) = 86462mm^2$
- $A_{eff,1} < A_{eff,2} \rightarrow effective cross section is not necessary to modify$

It is proved that torsional resistance of longitudinal stiffeners is sufficient and torsional buckling does not increase buckling effect. So calculations in capture 4.1 are considered valid.

4.8 Comparison of preliminary a detailed assessment

Percentage of use:

[%]	preliminary	detailed
Box girder - midspan	96,2	97,4
Box girder - L=7,8m	70,4	71,9
Cross girder	85,7	86,7

The results from preliminary assessment are verified. Percentage of use are in detailed assessment slightly higher, because for preliminary assessment were some loads neglected and there was not calculated with transverse distribution of load. For detailed assessment are also used different effective cross section for three ways of stress distribution.

4.9 Bearings and a combined response of structure and track

On support S1 is a pair of expansion bearings (type II-V-5) and on support S2 are placed fixed bearing (type II-P-5).

Maximal vertical reaction in support:

For longitudinal reaction is created a model, which takes into an account a combined response of structure and track for variable load. Constructions of bridge and rail is connected using imaginary beams of infinite stiffness. Rigidity of the connection is considered as shown below. Fixed bearing has longitudinal tolerance ±5mm, it is also taken in consideration using non-linear support in longitudinal direction. There is different resistance of track in ballast during summer and winter, when the ballast is frozen. However, a combination of force caused by deflection, warming and traction force is decisive.

Picture 4.9-2 – stiffness of non-linear support in long. direction – not-loaded rail (left), loaded rail (right)

Kateřina Soukupová

97 Department of Steel and Timber Structures

Picture 4.9-3 - stiffness of fixed bearing (left) and detail of non-linear supports (right)

A.2. Detailed static analysis

 $F_{D,x} = \frac{1}{2} * (290,79 + 685,65) = 488,22kN < 565kN$

The longitudinal reaction in support of a bridge meets the requirements to load capacity of fixed bearing (type II-P-5).

Verification of limit deformation:

4.10 Summary of load capacity

In a table below are summarized results of all parts of construction.

	ULS	fatigue (if determinative)		
Box girder - midspan	1,051	-		
Box girder - L=7,8m	1,658	-		
Box girder - above support	1,298	-		
Intermediate cross girder	1,175	1,130		
End cross girder	1,486	-		
Longitudinal stiffener	1,144	1,123		
Stiffener inside box girder	8,051	-		
Bridge deck	1,513	-		
Bearings, combined response of structure and track	1,087	-		
Serviceability limit state	1,567			

4.11 Compatibility of the interface between vehicle and infrastructure

The bridge is classified by line category C3-70. The construction is assessed for corresponding traffic load according to standard EN 15528.

Dynamic factor for real train:

Picture 4.11-1 - first natural bending frequency no=3,35

$$K = \frac{v}{2 * L_{\phi} * n_{0}} = \frac{70/3.6}{2 * 42.8 * 3.35} = 0.06781$$

$$\varphi' = \frac{K}{1 - K + K^{4}} = \frac{0.06781}{1 - 0.06781 + 0.06781^{4}} = 0.07274$$

$$\alpha = \frac{v}{22} = \frac{70/3.6}{22} = 0.884$$

$$\varphi'' = \frac{\alpha}{100} * \left[56 * e^{-\left(\frac{L_{\phi}}{10}\right)^{2}} + 50 * \left(\frac{L_{\phi} * n_{0}}{80} - 1\right) * e^{-\left(\frac{L_{\phi}}{20}\right)^{2}} \right] =$$

$$= \frac{0.884}{100} * \left[56 * e^{-\left(\frac{42.8}{10}\right)^{2}} + 50 * \left(\frac{42.8 * 3.35}{80} - 1\right) * e^{-\left(\frac{42.8}{20}\right)^{2}} \right] =$$

$$= 0.00359$$

$$\Phi_{T1} = 1 + \varphi' + \varphi'' = 1 + 0,07274 + 0,00359 = 1,07633$$

A.2. Detailed static analysis

$$\psi = \frac{\phi_{T1}}{\phi_3} = \frac{1,07633}{1,07100} = 1,005$$

For traffic load is supposed to be distributed in longitudinal direction on three neighbouring rail supports in ratio 1:2:1. It consists of four axle forces of value 200kN in length 11,1m, alternative continuous load is 72kN/m.

Picture 4.11-3 - critical position of traffic load for maximal bending moment

Inner forces in midspan caused by traffic load LM71 load for line category C3:

N _{Ed,LM71}	189,3	kN	$N_{Ed,T}$	189,3	kN
$M_{y,Ed,LM71}$	29935,3	kNm	$M_{y,Ed,T}$	21160,7	kNm
M _{z,Ed,LM71}	3362,9	kNm	M _{z,Ed,T}	2656,3	kNm

$$\eta_{1,LM71} = \frac{N_{Ed,LM71}}{N_{Rd}} + \frac{M_{y,Ed,LM71} + N_{Ed,LM71} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed,LM71} + N_{Ed,LM71} * e_{z,N}}{M_{z,el,Rd}} =$$
$$= \frac{189,3}{60905,6} + \frac{29935,3 + 189,3 * 0,065}{71843,8} + \frac{3362,9 + 189,3 * 0,092}{49608,5} =$$
$$= 0,48809$$

$$\eta_{1,T} = \frac{N_{Ed,T}}{N_{Rd}} + \frac{M_{y,Ed,T} + N_{Ed,T} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed,T} + N_{Ed,T} * e_{z,N}}{M_{z,el,Rd}} = \\ = \frac{189,3}{60905,6} + \frac{21160,7 + 189,3 * 0,065}{71843,8} + \frac{2656,3 + 189,3 * 0,092}{49608,5} = \\ = 0.35171$$

 $\lambda_{LM71} = \frac{\eta_{1,T}}{\eta_{1,LM71}} = \frac{0.35171}{0.48809} = 0.721$ $Z_{LM71} = \mathbf{1}, \mathbf{051} \ge \psi * \lambda_{LM71} = 1.005 * 0.721 = \mathbf{0}, \mathbf{725}$ SATISFACTORY

The calculation meets the requirement for line category C3.

5 Conclusion

Below is introduced list of load capacity according to railway regulation [17].

A. identification of the bridge:									
track section	0711 - Pragu	e, Smíchov	- Hostivice						
definition section	Prague, Stod	lůlky - Prage	e, Zličín						
B. identification of the part of bridge:									
load bearing steel structure									
C. additional information									
category of load capacity: C									
3D computational mode	el in Scia Engin	eer prograr	n						
Ge	eometry of tra	ck:							
	beginning	middle	end						
radius [m]	434,726	660,744	886,762						
cant [mm]	68	51	34						
eccentricity [mm]	200	-200	200						

No.	Element	Detail	Stress	type	L _P	Φi	LΦ	γ _{F,LM71}	see side	note	Z _{LM71}
1	main girder, midspan	upper fibres	normal	N+M	42,8	1,071	42,8	1,30	42,53	ULS, deciding detail	1,051
2	main girder, stationing L=7,8m	upper fibres	normal +shear	N+V+M	42,8	1,071	42,8	1,30	43,54	ULS	1,658
3	main girder, above supports	web	shear	v	42,8	1,071	42,8	1,30	45,54	ULS	1,298
4	main girder, midspan	upper fibres	normal	N+M	42,8	1,071	42,8	1,30	49	fatigue	3,387
5	main girder, above supports	upper fibre of web	shear flow	V	42,8	1,071	42,8	1,30	49	fatigue	3,997
6	main girder, web	bolted joint	normal	М	42,8	1,071	42,8	1,30	50	fatigue	2,807
7	main girder	welds of longitudinal stiffeners	normal	М	42,8	1,071	42,8	1,30	50	fatigue	1,488
8	main girder	welds of web and flanges	shear flow	V	42,8	1,071	42,8	1,30	51	fatigue	2,742
9	main girder	vertical weld in upper part	normal	М	42,8	1,071	42,8	1,30	51	fatigue	1,816
10	main girder	const. welds of lower flange	normal	М	42,8	1,071	42,8	1,30	52	fatigue	2,975
11	main girder	const. welds of upper flange	normal	М	42,8	1,071	42,8	1,30	52	fatigue	2,536
12	main girder, midspan	vertical deformation	deformation	w	42,8	1,071	42,8	1,00	61	SLS	1,967
13	main girder, above supports	roation	rotation	Φ	42,8	1,071	42,8	1,00	61	SLS	1,567
14	cross girder	above web of main girder	shear	V	2,8	1,727	5,6	1,30	64,66	ULS	1,175

A.2. Detailed static analysis

CTU, Faculty of Civil Engineering

15	end cross girder	above web of main girder	shear	v	2,8	2,000	3,6	1,30	74,76	ULS	1,486
16	cross girder	upper fibres, midspan	normal	м	2,8	1,727	5,6	1,30	70	fatigue	1,615
17	cross girder	upper fibre of web	shear flow	v	2,8	1,727	5,6	1,30	70	fatigue	1,261
18	cross girder	bolted joint	normal	м	2,8	1,727	5,6	1,30	71	fatigue	1,183
19	cross girder	const. welds of lower flange	normal	м	2,8	1,727	5,6	1,30	71	fatigue	1,130
20	cross girder	const. welds of upper flange	normal	М	2,8	1,727	5,6	1,30	72	fatigue	1,501
21	cross girder	longitudinal welds	normal	м	2,8	1,727	5,6	1,30	72	fatigue	1,463
22	cross girder	connection of long. stringer	normal	V+M	2,8	1,727	5,6	1,30	73	fatigue	1,400
23	longitudinal stiffener	upper fibre	normal	N+M	2,4	1,600	7,2	1,30	80,86	ULS	1,144
24	longitudinal stiffener	lower fibre	normal	N+M	2,4	1,600	7,2	1,30	81,86	ULS	1,293
25	longitudinal stiffener	lower fibres, midspan	normal	N+M	2,4	1,600	7,2	1,30	84	fatigue	1,438
26	longitudinal stiffener	longitudal welds	normal	N+M	2,4	1,600	7,2	1,30	85	fatigue	1,123
27	longitudinal stiffener	upper fibre of web	shear flow	v	2,4	1,600	7,2	1,30	85	fatigue	3,659
28	longitudinal stiffener	load bearing weld	shear	v	2,4	1,600	7,2	1,30	85	fatigue	3,306
29	stiffener inside box girder	buckling	normal	N	3,108	1,071	42,8	1,30	87	ULS	8,051
30	bridge deck plate	see picture 4.6-4	maximal stress	N+M	2,4	1,600	7,2	1,30	89	ULS	1,513
31	track - additional stress	combined response	normal	N	42,8	1,071	42,8	1,30	99	SLS	1,087

Type: N=normal force, M=bending moment, V=shear force, w=deflection, Φ=rotation.

Critical detail for load capacity is upper fibre of main girder in midspan, where load capacity is calculated for normal stress and its value is 1,051.

All parts of steel structure of a bridge are suitable for the LM71 traffic load and load category C3-70.

List of used literature

- [1] ČSN EN 1990 ed.2 (73 0002): *Eurokód: Zásady navrhování konstrukcí*. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 100 s.
- [2] ČSN EN 1991-1-1 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-1: Obecná zatížení Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: ČNI, 2004, 44 s.
- [3] ČSN EN 1991-1-4 ed.2 (73 0035): *Eurokód 1: Zatížení konstrukcí Část 1-4: Obecná zatížení Zatížení větrem.* Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013, 124 s.
- [4] ČSN EN 1991-1-5 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-5: Obecná zatížení Zatížení teplotou. Praha: ČNI, 2005, 44 s.
- [5] ČSN EN 1991-1-7 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-7: Obecná zatížení Mimořádná zatížení. Praha: ČNI, 2007, 64 s.
- [6] ČSN EN 1991-2 (73 6203): Eurokód 1: Zatížení konstrukcí Část 2: Zatížení mostů dopravou. Praha: ČNI, 2005, 152 s.
- [7] ČSN EN 1993-1-1 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-1: Obecná pravidla a pravidla pro pozemní stavby. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 94 s.
- [8] ČSN EN 1993-1-5 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí Část 1-5: Boulení stěn. Praha: ČNI, 2008, 56 s.
- [9] ČSN EN 1993-1-8 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-8: Navrhování styčníků. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 120 s.
- [10] ČSN EN 1993-1-9 (73 1401): *Eurokód 3: Navrhování ocelových konstrukcí Část 1-9: Únava.* Praha: ČNI, 2006, 44 s.
- [11] ČSN EN 1993-2 (73 6205): Eurokód 3: Navrhování ocelových konstrukcí Část 2: Ocelové mosty. Praha: ČNI, 2008, 102 s.
- [12] ROTTER, Tomáš a Jiří STUDNIČKA. *Ocelové mosty*. Praha: Česká technika-nakladatelství ČVUT, 2006. ISBN 80-01-03410-0.
- [13] RYJÁČEK, Pavel. *Ocelové mosty: cvičení.* V Praze: České vysoké učení technické, 2015. ISBN 978-80-01-05672-1.
- [14] SOKOL, Zdeněk a František WALD. *Ocelové konstrukce: tabulky*. 2., přeprac. vyd. V Praze: České vysoké učení technické, 2010. ISBN 978-80-01-04655-5.
- [15] STUDNIČKA, Jiří. *Ocelové konstrukce: normy*. 2. vyd. V Praze: České vysoké učení technické, 2014. ISBN 978-80-01-05489-5.
- [16] STUDNIČKA, Jiří a Milan HOLICKÝ. *Ocelové konstrukce 20: zatížení staveb podle Eurokódu*. Praha: Vydavatelství ČVUT, 2003. ISBN 80-01-02751-1.
- [17] Směrnice SŽDC Metodický pokyn pro určování zatížitelnost železničních mostních objektů. 2005.
- [18] UIC Code 774-3 (R): *Track/bridge Interaction, Recommentation for calculations.* Paris: International Union of Railways, 2001, ISBN 2-7461-0257-9.
- [19] TNŽ 73 6277: Ocelová ložiska železničních mostů. Ložiska odlévaná a svařovaná. Praha: Výzkumný ústav železniční, 1994.
- [20] POKORNÝ, Bohdan. Protokol o podrobné prohlídce mostního objektu provedené dle Vyhlášky MD č. 177/95 Sb., a předpisu SŽDC S5 Správa mostních objektů, 2014.
- [21] ČD S5/4 Předpis: Protikorozní ochrana ocelových konstrukcí. České dráhy. 2001.
- [22] Prováděcí project oelové konstrukce železničního mostu na komunikaci JZM-Motol, Železniční most v km 12,478 na trati Smíchov-Hostivice. Mostárna Frýdek-místek. 1978

List of pictures

Picture 1.1-1 - maximal and minimal deviation of other permanent loads	3
Picture 1.1-2 – other permanent loads	4
Picture 1.2-1 - accentricity caused by the titling of the track	5
Picture 1.2-1 – eccentricity caused by the fitting of the track	5 5
Picture 1.2-3 – transversal and longitudinal distribution of unit traffic load	6
Picture 1.2-4 - deflection at mid span due to permanent load	6
Picture 1.2-5 - transversal distribution of centrifugal forces	7
Picture 1.2-6 – transversal and longitudinal distribution of nosing force	8
Picture 1.2-7 - acions due to traction	9
Picture 1.2-8 - actions for non-public footpaths	9
Picture 1.2-9 - wind actions without a train	11
Picture 1.2-10 - wind actions with a train	
Picture 1.2-11 – vertical wind actions	
Picture 1.2-12 - Design situation I	12 12
Picture 1.2-13 - It alls versal and folgetudinal distribution of deraliment actions (design situation I)	13 12
Picture 1.2-14- Design situation in	13
Picture 3 - 1 – rendered 3D model	
Picture 3 - 2 - 3D model	
Picture 3 - 3 - longitudinal stiffener of upper flange	
Picture 3 - 4 - cross girder of upper flange	15
Picture 3 - 5 - cross sections of cross girder of upper flange	15
Picture 3 - 6 - longitudinal stiffener of webs and lower flange	16
Picture 3 - 7 - intermediate transverse stiffener (left) and end transverse stiffeners (right) - web	16
Picture 3 - 8 - intermediate cross girder (left) and end cross girder (right) – lower flange	16
Picture 3 - 9 - position of stiffeners	
Picture 3 - 10 - diaphragm above support	
Picture 3 - 11 - Inner stiffeners in dox girder	1/ 17
Picture 3 - 12 - piates framing the track ballast	17
Picture 4.1-1 – stress in plate framing track ballast – horizontal loads	
Picture 4.1-2 – stress in plate framing track ballast – horizontal loads	
Picture 4.1-3 - numbers of subpanels	19
Picture 4.1-4 – effective cross section – compressive force, midspan	22
Picture 4.1-5 - numbers of subpanels	23
Picture 4.1-6 – effective cross section – compressive force, L=7,8m	26
Picture 4.1-7 - numbers of subpanels	
Picture 4.1-8 - Effective cross section – bending moment My, midspan	
Picture 4.1-9 - numbers of subpanels	
Picture 4.1-10 - Effective closs section – bending moment My, L=7,om.	
Picture 4.1-11 - Humbers of Subpaners	
Picture 4.1-13 - numbers of subnanels	
Picture 4.1-14 - Effective cross section – bending moment Mz. L=7.8m	
Picture 4.1-15 - critical position of traffic load	
Picture 4.1-16 - critical position of traffic load	43
Picture 4.1-17 – critical position of traffic load LM71	44
Picture 4.1-18 - critical position of traffic load - derailment, design situation I	
Picture 4.1-19 – bending moment resistance	47
Picture 4.1-20 – bending moment resistance	
Picture 4.1-21 - maximal stress caused by traffic load	
Picture 4.1-22 - maximal shear force caused by traffic load	
Picture 4.1-2.3 - maximal bending moment caused by traffic load	
Picture 4.1-25 - maximal benuing moment caused by traffic load	50 51
Picture 4.1-26 - maximal bending moment caused by traffic load	51
Picture 4.1-27 - maximal bending moment caused by traffic load	
Picture 4.1-28 - maximal bending moment caused by traffic load	
Picture 4.1-29 - spacings of bolts on web	
Picture 4.1-30 - support reactions - unloaded train	59
Picture 4.1-31 - support reactions - derailment, design situation I and II	59

A.2. Detailed static analysis

Picture 4.1-32 - stress in box girder - upper flange	60
Picture 4.1-33 - stress in box girder - lower flange	60
Picture 4.1-34 - stress in box girder – web and vertical plates	60
Picture 4.1-35 - vertical deformation caused by variable loads	61
Picture 4.1-36 - rotation caused by variable loads	61
Picture 4.2-1 - bending moment diagram	62
Picture 4.2-2 - eff. cross section in areas of positive and negative bending moment, flange thickness 14mm	63
Picture 4.2-3 - eff. cross section in areas of positive and negative bending moment, flange thickness 18mm	63
Picture 4.2-4 - shear force diagram	63
Picture 4.2-5 – bending moment diagram	64
Picture 4.2-6 - shear force diagram	65
Picture 4.2-7 – bending moment diagram	65
Picture 4.2-8 – effective cross section for My in section 2-2	65
Picture 4.2-9 – maximal bending moment for cross girder of flanges thickness 18mm	67
Picture 4.2-10 – maximal bending moment for cross girder of flanges thickness 18mm	68
Picture 4.2-11 – maximal bending moment for cross girder, serviceability limit state	69
Picture 4.2-12 - maximal bending moment caused by traffic load	/0
Picture 4.2-13 - maximal sheaf force caused by traffic load	/ U 71
Picture 4.2-14 - Illaxillal bending moment caused by traffic load	/ 1 71
Picture 4.2-16 - maximal bending moment caused by traffic load	/ 1 72
Picture 4.2-17 - maximal bending moment caused by traffic load	72
Picture 4.2-18 - maximal bending moment caused by traffic load	73
Picture 4.2-19 - maximal shear force caused by traffic load	73
Disture 4.2.1 shoet force diagram	74
Picture 4.5-1 - Siledi Iolice uldgi alli	74
Picture 4.3-2 - Defiuling moment utagram	74 71
Picture 4.3-5 - effective cross section for sagging hending moment M.	74
Picture 4.3-5 - effective cross section for hogging bending moment M_v	75
Picture 4.3-6 - shear force diagram	
Picture 4.3-7 – bending moment diagram	
Picture 4.3-8 – effective cross section for M _v in section 2-2	76
Picture 4.3-9 - effective cross section	77
Picture 4.3-10 - critical loaded stiffener	77
Picture 4.3-11 - shear force diagram of end cross beam for load capacity zLM71=1,486	77
Picture 4.3-12 - stress in stiffener under end cross girder according to software (maximal: 171,6MPa)	78
Picture 4.3-13 - effective cross section of lower cross girder	78
Picture 4.4-1 – critical traffic load of longitudinal stiffener	79
Picture 4.4-2 – maximal normal force in longitudinal stiffener, midspan	79
Picture 4.4-3 – minimal bending moment My in longitudinal stiffener, midspan	79
Picture 4.4-4 – maximal bending moment My in longitudinal stiffener, midspan	80
Picture 4.4-5 - bending moment M_z in longitudinal stiffener, midspan	80
Picture 4.4-6 – effective cross section for M _z	80
Picture 4.4-7 – effective cross section for My.	80
Picture 4.4-8 – maximal shear force in longitudinal stiffener, midspan	81
Picture 4.4-9 – maximal normal force in longitudinal stiffener, change of thickness of upper flange	81
Picture 4.4-10 – extremes of bending moment M _y in longitudinal stiffener, change of thickness of upper flange	81
Picture 4.4-11 - Defining moment M _Z in longitudinal sufferent, change of unckness of upper hange	01 Q2
Picture $4.4-12$ – effective cross section for M	02
Picture 4.4-14 – maximal shear force in longitudinal stiffener change of thickness of unper flange	02
Picture 4.4-15 – extremes of bending moment M_v in longitudinal stiffener above support	83
Picture 4.4-16 – effective cross section for M _v	
Picture 4.4-17 – maximal shear force in longitudinal stiffener, above support	83
Picture 4.4-18 – maximal normal force caused by traffic load in longitudinal stiffener, midspan	84
Picture 4.4-19 – minimal bending moment My caused by traffic load in longitudinal stiffener, midspan	84
Picture 4.4-20 - maximal shear force caused by traffic load	85
Picture 4.5-1 – cross section (SHS 100x8)	87
Picture 4.5-2 – maximal normal force	87
Picture 4.6-1 – stress σ_{n} on bridge deck (for dynamic factor $\alpha = 1.600$)	QQ
Picture 4.6-2 – stress σ_z on bridge deck (for dynamic factor σ =1,000).	88

Picture 4.6-3 – stress τ on bridge deck (for dynamic factor $\emptyset = 1,600$)	
Picture 4.6-4 – maximal stress on bridge deck (for dynamic factor Ø=1,600)	
Picture 4.6-5 - bending moment caused by traffic load LM71 (for dynamic factor Ø=1,600)	
Picture 4.7-1 - cross girder	
Picture 4.7-2 – part of model with imperfections for non-linear analysis	
Picture 4.7-3 - shape of bending for implementation of imperfections	
Picture 4.7-4 - uniformly distributed stress calculated by linear method	94
Picture 4.7-5 - stress diagram calculated by non-linear method – inner part of upper flange	95
Picture 4.7-6 - average stress, linear behaviour (left) and stress diagram for non-linear behaviour (right)	95
Picture 4.7-7 - uniformly distributed stress calculated by linear method	95
Picture 4.7-8 - stress diagram calculated by non-linear method - inner part of upper flange	
Picture 4.7-9 - average stress, linear behaviour (left) and stress diagram for non-linear behaviour (right)	96
	07
Picture 4.9-1 - model for combined response of structure and track	
Picture 4.9-2 – stiffness of non-linear support in long. direction – not-loaded rail (left), loaded rail (right)	
Picture 4.9-3 – stiffness of fixed bearing (left) and detail of non-linear supports (right)	
Picture 4.9-4 - design value of reaction caused by temperature load	
Picture 4.9-5 - design value of reaction caused by traction force and deflection of structure	
Picture 4.9-6 - design resistance of bearings in longitudinal direction	
Picture 4.9-7 - longitudinal deformation caused by traction force	
Picture 4.9-8 – long. deformation caused by deflection from traffic load (side with expansion bearing)	
Picture 4.9-9 – longitudinal deformation caused by deflection from traffic load (side with fixed bearing)	
Picture 4.9-10 - maximal additional normal force caused by traffic load	
Picture 4.11-1 - first natural bending frequency no=3.35	
Picture 4 11-2 - traffic load for line category C3	101
Picture 4.11.3 - critical position of traffic load for maximal bending moment	101
i icture 1.11 5 critical position of traine load for maximal bending momentamentamentamentamentamentamentamenta	

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Master's thesis

B. Preliminary static analysis

Contents

1	Introdu	iction	2
2	Action	on structure	2
	2.1 Pe	ermanent loads	2
	2.1.1	Self-weight of the structure	2
	2.1.2	Other permanent loads	2
	2.2 Va	ariable loads	2
	2.2.1	Traffic loads	2
	2.2.2	Dynamic factors	3
	2.2.3	Centrifugal forces	3
	2.2.4	Nosing force	3
	2.2.5	Actions due to traction and braking	3
	2.2.6	Actions for non-public footpaths	3
	2.2.7	Wind actions	3
	2.2.8	Thermal actions	4
	2.3 Co	ombination of actions	5
3	Compu	tational model	6
4	Prelimi	nary static analysis	8
	4.1 M	ain box girder	
	4.1.1	Inner forces	8
	4.1.2	Mid-span cross section	8
	4.1	2.1 Local buckling and shear lag	9
	4.1	2.2 Global buckling	10
	4.1	2.3 Normal stress	12
	4.1.3	Cross section in place of thickeness of flanges	13
	4.1	3.1 Local buckling and shear lag	13
	4.1	3.2 Global buckling and shear lag	14
	4.1	3.3 Normal stress	16
	4.1.4	Design shear resistance	17
	4.1	4.1 Combination of shear force and bending moment	17
	4.2 Cr	oss girder	
	4.2.1	Inner forces	18
	4.2.2	Bending strength	18
	4.2.3	Design shear resistence	19
	4.2	3.1 Combination of shear force and bending moment	19
Lis	st of used	literature	20
Lis	st of pictu	res	21

1 Introduction

This attachment of thesis was written as part of the subject diploma seminar (134DISE). The results of this preliminary static analysis are compared to detailed analysis in A.2, chapter 4.8.

2 Action on structure

2.1 Permanent loads

2.1.1 Self-weight of the structure

The self-weight is calculated from the dimensions shown in the drawings.

• self-weight of steel structure (including box girder, inner maintenance walkway, continuous longitudinal ribs)

$$g_{k1} = 29,26 kN/m$$

• self-weight of cross girders and stiffeners placed in distances 2,4m $F_{k1} = 9,92kN$

2.1.2 Other permanent loads

- protective cement screed with liner and insulation, total thickness 5 cm $g_{k2} = 5.6 * 0.05 * 24 = 6.72 kN/m$
- cable trays and cables

$$g_{k3} = 1,60 kN/m$$

- track ballast, thickness 400mm
- $g_{k4} = 5,0 * 0,4 * 20 = 40,00 kN/m$
- rails and fasteners

$$g_{k5} = 1,80 kN/m$$

railing

$$g_{k5} = 1,00 kN/m$$

Total permanent loads:

$$g_{k,g} = 29,26 + 6,72 + 1,6 + 40 + 1,8 + 4 * 1,00 + 9,92/2,4 = 87,51 kN/m$$

For permanent load are considered these deviation:

 $g_{k2,\max} = 6,72 * 1,4 = 9,41kN/m$ $g_{k2,\min} = 6,72 * 0,8 = 5,38kN/m$ $g_{k3,\max} = 1,60 * 1,2 = 1,92kN/m$ $g_{k3,\max} = 1,60 * 0,8 = 1,28kN/m$ $g_{k4,\max} = 40,00 * 1,3 = 52,00kN/m$ $g_{k4,\min} = 40,00 * 0,7 = 28,00kN/m$ $g_{k,g,\max} = 87,51 + 2,67 + 0,32 + 12,00 = 102,50kN/m$ $g_{k,g,\min} = 87,51 - 1,34 - 0,32 - 12,00 = 72,52kN/m$

Partial factor for permanent loads: $\gamma_{FG} = 1,25$ (coefficient for steel member, without any control, older than 30 years).

2.2 Variable loads

2.2.1 Traffic loads

For traffic loads is used the load model LM71 and load classification factor α =1,00. The load is placed in the most unfavourable position for each element, alleviating effects are being neglected.

Partial factor for traffic loads is $\gamma_{Q,LM71} = 1,30$ (coefficient for steel member, without any control, older than 30 years).

2.2.2 Dynamic factors

Dynamic factor for track with standard maintenance:

$$\phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73 = \frac{2,16}{\sqrt{42,8} - 0,2} + 0,73 = 1,071$$

Cross girders:

$$L_{\phi} = 2 * 2,800 = 5,600m$$

$$\phi_3 = \frac{2,16}{\sqrt{5,600} - 0,2} + 0,73 = 1,727$$

2.2.3 Centrifugal forces

For the calculation is used a line speed 70 km/h. The force is horizontal and perpendicular to the track axis at a height of 1,8 m above the rail. It is combined with the appropriate vertical load. The radius of curvature is at one end of the bridge $R_1 = 886,762m$ and the second $R_2 = 434,726m$. The mean radius r = 660,744m is considered. Load classification factor is α =1,00 and dynamic factor is not used for centrifugal forces. Partial factor for centrifugal forces is $\gamma_{Q,LM71} = 1,30$.

$$Q_{tk} = \frac{V^2}{127 * r} * (f * Q_{vk}) = \frac{70^2}{127 * 660,744} * (1 * 250) = 14,60kN$$
$$q_{tk} = \frac{V^2}{127 * r} * (f * q_{vk}) = \frac{70^2}{127 * 660,744} * (1 * 80) = 4,67kN/m$$

2.2.4 Nosing force

As nosing force is considered a concentrated force Q_{sk} =100kN acting horizontally, at the top of the rails, perpendicular to the centre-line of track.

2.2.5 Actions due to traction and braking

This load act at the top of the rails in the longitudinal direction. It is uniformly distributed over the corresponding influence length.

Traction force:

 $Q_{lak} = 33 * L_{ab} = 33 * 42,8 = 1412,4kN \ge 1000kN \rightarrow Q_{lak} = 1000kN$ Braking force:

 $Q_{lbk} = 20 * L_{ab} = 20 * 42,8 = 856kN \le 6000kN$

For a continuous track on the bridge is considered, that 60% of the traction force is transmitted by the bearings and the load-bearing steel structure.

2.2.6 Actions for non-public footpaths

Partial factor for loads of footpaths is $\gamma_{Q,fp} = 1,50$. Load of inner maintenance walkway: $q_{fp,1} = 2,0 * 0,8 = 1,64kN/m$ Load of upper non-public footpaths: $q_{fp,1} = 5,0 * 0,7 = 3,50kN/m$

2.2.7 Wind actions

The height of the bridge construction is 4,100m, the height of an open parapet is considered 0,6m high and the train height for the calculation is 4m. Partial factor for wind actions is $\gamma_{0,w} = 1,35$.

- density of air
 - $\rho = 1,25 kg/m^{3}$
- the reference height under terrain z=7,086m

B. Preliminary static analysis

.

• terrain factor

$$k_r = 0.19 * \left(\frac{z_0}{z_{0II}}\right)^{0.7} = 0.19 * \left(\frac{0.05}{0.05}\right)^{0.7} = 0.19$$

roughness coefficient (terrain category II)

$$c_r(z) = k_r * ln \frac{z}{z_0} = 0.19 * ln \frac{7,086}{0.05} = 0.9412$$

- wind area 2 ... $v_{b,0}=25m/s$
- directional factor und season factor $c_{dir} = c_{season} = 1,0$
- basic wind velocity $v_b = c_{dir} * c_{season} * v_{b,0} = 1,0 * 1,0 * 25 = 25m/s$
- orography factor $c_0(z) = 1,0$
- turbulence factor
 - $k_{I} = 1,0$

• mean wind velocity

$$v_m(z) = c_r(z) * c_o(z) * v_b = 0,9412 * 1,0 * 25 = 23,53m/s$$

turbulence intensity

$$I_{v}(z) = \frac{k_{I}}{c_{0}(z) * \ln\left(\frac{z}{z_{0}}\right)} = \frac{1,0}{1,0 * \ln\left(\frac{7,086}{0,05}\right)} = 0,202$$

• peak velocity pressure

$$q_{wk} = (1 + 7 * I_v(z)) * \frac{1}{2} * \rho * v_m^2 = = (1 + 7 * 0.202) * \frac{1}{2} * 1.25 * 23.53^2 * 10^{-3}$$
$$= 0.835 kN/m^2$$

$$a_{to}$$
 $g_{wk} = c_{f,x} * q_{wk} = 2,341 * 0,835 * 8,1 = 15,833 kN/m$

2.2.8 Thermal actions

The steel parts of the bridge are grouped as Type 1. Thermal actions consist of a uniform temperature component and a temperature difference component. Partial factor for thermal actions is $\gamma_{F,t} = 1,5$.

Uniform temperature component:

- T_{max}=40°C ... maximal shade air temperature
- T_{min}= -32°C ... minimal shade air temperature
- T₀=10°C ... initial bridge temperature
- maximal uniform bridge temperature component

$$T_{e,max} = T_{max} + 16 = 40 + 16 = 56$$
°C

• minimal uniform bridge temperature component

$$T_{e,min} = T_{min} - 3 = -32 - 3 = -35$$
°C

- maximum expansion range of the uniform bridge temperature component $\Delta T_{N,exp} = T_{e,max} T_0 = 56 10 = 46$ °C
- maximum contraction range of the uniform bridge temperature component $\Delta T_{N,con} = T_0 T_{e,min} = 10 (-35) = 45^{\circ}\text{C}$

Temperature difference linear component:

- $\Delta T_{m,heat} = 18*0,6=11^{\circ}C$ temperature difference for top warmer than bottom
- $\Delta T_{m,cool}$ =13*1,4=18°C temperature difference for bottom warmer than top

Simultaneity of both components:

 $\begin{array}{l} \Delta T_{m,cool} + \omega_n * \Delta T_{N,exp} = 18 + 0.35 * 46 = 34.1^{\circ} \mathrm{C} \\ \omega_m * \Delta T_{m,cool} + \Delta T_{N,exp} = 0.75 * 18 + 46 = \mathbf{59}, \mathbf{5}^{\circ} \mathrm{C} \\ \Delta T_{m,cool} + \omega_n * \Delta T_{N,con} = 18 + 0.35 * 45 = 33.8^{\circ} \mathrm{C} \\ \omega_m * \Delta T_{m,cool} + \Delta T_{N,con} = 0.75 * 18 + 45 = \mathbf{58}, \mathbf{5}^{\circ} \mathrm{C} \end{array}$

• For expansion is considered a temperature +59,5°C, for contraction -58,5°C.

2.3 Combination of actions

• For a global assessment of the girder are used following combination of actions. The main variable loads is traffic.

Name	Description	_Туре	Load cases	Coeff.
			$\Gamma \simeq \Gamma$	-,,[-]/∕
10a		Envelope - ultimate	permanent load	1,06
\sim	NGU		traction force	1,30
-		$P \sim \sim \sim$	nosing force	1,30
			maintanance load	1,20
			wind with train	1,01
			teperature expansion	0,90
			teperature contraction	0,90
			UL-LM71-Min Vz	1,39
			UL-LM71-Min My	1,39
			UL-LM71-Max Vz	1,39
			UL-LM71-Max My	1,39
			UL1-LM71-Min Vz	1,39
			UL1-LM71-Min My	1,39
			UL1-LM71-Max Vz	1,39
			UL1-LM71-Max My	1,39
10b		Envelope - ultimate	permanent load	1,25
			traction force	1,04
			nosing force	1,04
			maintanance load	1,20
			wind with train	1,01
			teperature expansion	0,90
-			teperature contraction	0,90
			UL-LM71-Min Vz	1,11
			UL-LM71-Min My	1,11
			UL-LM71-Max Vz	1,11
			UL-LM71-Max My	1,11
			UL1-LM71-Min Vz	1,11
			UL1-LM71-Min My	1,11
			UL1-LM71-Max Vz	1,11
			UL1-LM71-Max My	1,11

Combination for assessment of cross girder

10a		Envelope - ultimate	self-weight autogenerated	1,06
\sim	תקס		self-weight plate	1,06
		$P \smile \Box \smile$	other permanent load	1,06
			maintanance load	1,20
			LM71	2,40
			temperature expansion	0,90
			temperature contraction	0,90
			nosing force	1,30
			centrifugal force	1,30
10b		Envelope - ultimate	self-weight autogenerated	1,25
			self-weight plate	1,25
			other permanent load	1,25
			maintanance load	1,20
			LM71	1,80
			temperature expansion	0,90
			temperature contraction	0,90
			nosing force	1,04
			centrifugal force	1,04

3 Computational model

For preliminary assessment is the construction simulated as a simple beam. Permanent load, maintenance load, traction force and wind actions are placed as continuous uniformly distributed load with appropriate eccentricities. Temperature expansion and contraction is considered according to the calculation.

Picture 2.3-1 – 2D model of a box girder with effective cross sections

Picture 2.3-7 – nosing force in midspan

The cross girder is in preliminary assessment modelled as a simple beam with overhanging endings. It is loaded as bellow:

Picture 2.3-8 - other permanent load Picture 2.3-9 - self-weight - plate of bridge deck

Picture 2.3-10 - maintenance load

Picture 2.3-11 - traffic load LM71

Picture 2.3-13 - nosing force

Forces caused by nosing force:

 $F_{k,\rm NF} = 100 * 0,66/1,4 = 47,14\rm kN$

The uniformly distributed traffic load is calculated below, a supposed value of reaction for one wheel force is 208,3kN (according to static tables). $g_{k,LM71} = 208,3 * 2/2,765 = 150,67 \text{kN/m}$

Forces caused by centrifugal force: $F_{k,CF} = (208,3 * 2 * 0,058393) * 2,46/1,4 = 42,75$ kN

4 Preliminary static analysis

4.1 Main box girder

4.1.1 Inner forces

Picture 4.1-2 - shear force diagram

4.1.2 Mid-span cross section

Dimensions of individual parts of cross sections are found out in an iterative manner. These dimensions depend on a real stress diagram in computational model. It takes into an account the local and global buckling of compression areas of the cross section and the shear lag of the flanges.

Picture 4.1-3 - numbers of subpanels

4.1.2.1 Local buckling and shear lag

• subpanel no. 1 Ratio of compressive and tensile stress: $\psi = 1$ Buckling factor: $k_{\sigma} = 4$ Plate slenderness for buckling: $\lambda_{P} = \frac{\frac{b}{t}}{28,4 * \varepsilon * \sqrt{k_{\sigma}}} = \frac{\frac{441}{18}}{28,4 * 1,0 * \sqrt{4}} = 0,431$ Reduction factor: $\rho = 1,000$ Effective width: $b_{eff} = \rho * b = 1,000 * 441 = 441mm$

Upper flange - buckling and shear lag

subpane	el no. 1		subpa	nel no. 2		subpa	nel no. 3		subpa	nel no. 4		subpa	nel no. 5	
ψ=	1		ψ=	1		ψ=	1		ψ=	1		ψ=	1	
k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000	
b=	441	mm	b=	545	mm	b=	544	mm	b=	545	mm	b=	331	mm
t=	18	mm	t=	18	mm	t=	18	mm	t=	18	mm	t=	18	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000		ε=	1,000	
λ _P =	0,431		λ _P =	0,533		λ _P =	0,532		λ _P =	0,533		λ _P =	0,324	
ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000		ρ=	1,000	
b _{eff} =	441	mm	b _{eff} =	545	mm	b _{eff} =	544	mm	b _{eff} =	545	тт	b _{eff} =	331	mm
			α0=	1,000		α0=	1,000					α0=	1,000	
			b0=	1862	mm	b0=	1400	mm				b0=	1732	mm
			Le=	42800	mm	Le=	42800	mm				Le=	42800	mm
			к=	0,044		к=	0,033					к=	0,040	
			β=	0,988		β=	0,993					β=	0,990	
			teff=	17,8	mm	teff=	17,9	mm				teff=	17,8	mm
b _{e1} =	221	mm	b _{e1} =	273	mm	b _{e1} =	272	mm	b _{e1} =	273	mm	b _{e1} =	166	mm
Web - b	ouckling													
subpane	el no. 6		subpa	nel no. 7		subpa	nel no. 8		subpa	nel no. 9		subpa	nel no. 10	
ψ=	0,75		ψ=	0,88		ψ=	0,77		ψ=	0,25		ψ=	-1,72	
k _σ =	4,556		k _σ =	0,474		k _σ =	4,505		k _σ =	6,308		k _σ =	44,242	
b=	351	mm	b=	240	mm	b=	446	mm	b=	1140	mm	b=	1126	mm
t=	12	mm	t=	16	mm	t=	12	mm	t=	14	mm	b _c =	419	mm
f _y =	235	MPa	f _y =	355	MPa	f _y =	235	MPa	f _y =	235	MPa	t=	14	mm
ε=	1,000		ε=	0,814		ε=	1,000		ε=	1,000		f _y =	235	MPa
λ _P =	0,483		λ _P =	0,943		λ _P =	0,617		λ _P =	1,142		ε=	1,000	
ρ=	1,000		ρ=	0,849		ρ=	1,000		ρ=	0,739		λ _P =	0,426	
b _{eff} =	351	mm	b _{eff} =	204	mm	b _{eff} =	446	mm	b _{eff} =	842	mm	ρ=	1,000	
b _{e1} =	165	mm				$h_{o1} =$	211	mm	b _{e1} =	355	mm	b _{eff} =	419	mm
	105					we1						cjj	415	
b _{e2} =	186	mm				b _{e1} =	235	mm	b _{e2} =	488	mm	b _{e1} =	168	mm

Lower nange - snear lag	Lower	flange	-	shear	lag
-------------------------	-------	--------	---	-------	-----

t=	25	mm
α0=	1,000	
b0=	1400	mm
Le=	42800	mm
к=	0,033	
β=	0,993	
teff=	24,8	mm

4.1.2.2 Global buckling

• global buckling- inner part of box girder - plate type behaviour

$$a = \frac{a}{b} = \frac{2388}{2786} = 0.857 \le \sqrt[4]{\gamma} = \sqrt[4]{181,970} = 3.673$$

$$\delta = \frac{\sum A_{sl}}{A_p} = \frac{15360}{50148} = 0.306$$

$$\gamma = \frac{I_{sl}}{I_p} = \frac{270754550}{1487908} = 181,970$$

$$\psi = 1$$

$$k_{\sigma} = \frac{2 * ((1 + \alpha^2)^2 + \gamma - 1)}{\alpha^2 * (\psi + 1) * (1 + \delta)} = \frac{2 * ((1 + 0.857^2)^2 + 181,970 - 1)}{0.857^2 * (1 + 1) * (1 + 0.306)} = 191,7$$

$$\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{18}{2786}\right)^2 = 7.931MPa$$

$$\sigma_{cr,p} = k_{\sigma} * \sigma_E = 191,7 * 7.931 = 1520,4MPa$$

$$\beta_{a,c} = \frac{A_{c,eff,loc}}{A_c} = \frac{53086}{55680} = 0.953$$

$$\lambda_P = \sqrt{\frac{\beta_{a,c} * f_y}{\sigma_{cr,p}}} = \sqrt{\frac{0.953 * 235}{1520,4}} = 0.384$$

$$\rho = 1,000$$

• global buckling- inner part of box girder - column type behaviour

$$\sigma_{cr,sl} = \sigma_{cr,c} = \frac{\pi^2 * E * I_{sl,1}}{A_{sl,1} * a^2} = \frac{\pi^2 * 210000 * 64832595}{13920 * 2388^2} = 1692,8MPa$$

$$\lambda_c = \sqrt{\frac{\beta_{a,c} * f_y}{\sigma_{cr,c}}} = \sqrt{\frac{0,953 * 235}{1692,8}} = 0,364$$

$$\alpha_e = \alpha + \frac{0,09}{i/e} = 0,49 + \frac{0,09}{68,2/93,5} = 0,613$$

$$\phi = 0,5 * (1 + \alpha_e * (\lambda_c - 0,2) + \lambda_c^2) = 0,5 * (1 + 0,613 * (0,364 - 0,2) + 0,364^2) = 0,616$$

$$\chi_c = \frac{1}{\phi + \sqrt{\phi^2 - \lambda_c^2}} = \frac{1}{0,616 + \sqrt{0,616^2 - 0,364^2}} = 0,898$$

• global buckling– inner part of box girder – interaction $\xi=0$

$$\rho_c = (\rho - \chi_c) * \xi * (2 - \xi) + \chi_c = (1,000 - 0,898) * 0 * (2 - 0) + 0,898 = 0,898$$

A thickness of the flange is modified according to formula $A_{c,eff} = \rho_c * A_{c,eff,loc}$. So the reduced thickness of plate is 15,4mm. • global buckling – does not buckle itself because of validity of formula $\sigma_{com,Ed}$ =144,5MPa< $<\rho_{c}*f_{y}/\gamma_{M1}=0.928*235/1.1=198,3MPa$. But there is a stress peak caused by buckling of neighbouring panel, so the thickness is modified in the same way.

Plate effe	ect - stiffene	r 7	<u>Column ef</u>	fect	
I _{sI} =	63707243	mm ⁴	σ _{cr,sl} =	1780,9	MPa
b1=	455	mm	ψ1=	1	
b2=	560	mm	ψ2=	1	
b=	1015	mm	b1=	441	mm
t=	18	mm	b2=	545	mm
a _c =	3959	mm	b _{1,inf} =	220,5	mm
a=	2388	mm	b _{2,inf} =	272,5	mm
$A_{c,eff,loc} =$	12312	mm²	b _{1,eff} =	441	mm
A _c =	13002	mm²	b _{2,eff} =	545	mm
β _{a,c} =	0,947		b _{1,inf,eff} =	220,5	mm
A _{sl,1} =	13002	mm ²	b _{2,inf,eff} =	272,5	mm
σ _{cr,sl} =	2014,6	MPa	I _{sl,1} =	63707243	mm ⁴
v=	0,3		A _{sl,1} =	13002	mm²
b _c =	544	mm	a=	2388	mm
b _{sl1} =	544	mm	bc=	544	mm
			b _{sl1} =	544	mm
σ _{cr,p} =	2014,6	MPa	σ _{cr,c} =	1780,9	MPa
λ _p =	0,332		$A_{sl1,eff}=$	12422	mm²
ψ=	1,00		β _{a,c} =	0,955	
ρ=	1,000		λc=	0,355	
			i=	70,0	mm
			e=	91,0	mm
Interaction	on - outside	part	$\alpha_{\rm e}$ =	0,607	
ξ=	0,131		Ф=	0,610	
ρc=	0,928		χc=	0,904	

• global buckling of web – web does not buckle

Plate eff	ect - web		Column effect - web		
I _{sI} =	63572809	mm ⁴	σ _{cr,sl} =	1518,7	MPa
b1=	1140	mm	ψ1=	0,25	
b2=	2280	mm	ψ2=	-1,72	
b=	3420	mm	b1=	1140	mm
t=	14	mm	b2=	419	mm
a _c =	11262	mm	b _{1,inf} =	660	mm
a=	2388	mm	b _{2,inf} =	168	mm
Ac,eff,loc=	16348	mm ²	b _{1,eff} =	842	mm
A _c =	18762	mm²	b _{2,eff} =	419	mm
β _{a,c} =	0,871		b _{1,inf,eff} =	488	mm
σ _{cr,sl} =	1521,7	MPa	b _{2,inf,eff} =	168	mm
v=	0,3		I _{sl,1} =	63572809	mm ⁴
b _c =	1572	mm	A _{sl,1} =	15214	mm²
b _{sl1} =	426	mm	a=	2388	mm
			b _c =	1572	mm
			b _{sl1} =	426	mm
σ _{cr,p} =	5615,4	MPa	σ _{cr,c} =	5604,2	MPa
λ _p =	0,191		A _{sl1,eff} =	12801	mm²
ψ=	0,00		β _{a,c} =	0,841	
ρ=	1,000		λc=	0,188	
			i=	64,6	mm
			e=	111,4	mm
Interacti	<u>on - web</u>		$\alpha_{e}=$	0,645	
ξ=	0,002		Ф=	0,514	
ρ _c =	1,000		χc=	1,000	
4.1.2.3 Normal stress

Picture 4.1-4 – effective cross section in midspan

$$N_{Rd} = A_{eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,31987 * \frac{235}{1,1} * 1000 = 68335,9 \text{kNm}$$

$$M_{y,el,Rd} = w_{y,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,33619 * \frac{235}{1,1} * 1000 = 71822,4 \text{kNm}$$

$$M_{z,el,Rd} = w_{z,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,24287 * \frac{235}{1,1} * 1000 = 51885,9 \text{kNm}$$

$$\eta_1 = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed} + N_{Ed} * e_{z,N}}{M_{z,el,Rd}} =$$

$$= \frac{190,4}{68335,9} + \frac{59471,4 + 190,4 * 0,065}{71822,4} + \frac{6801,0 + 190,4 * 0,001}{51885,9} = 0,962$$

SATISFACTORY (96,2%)

4.1.3 Cross section in place of thickeness of flanges

Picture 4.1-5 - numbers of subpanels

4.1.3.1 Local buckling and shear lag

Upper flange - buckling and shear lag														
subpa	anel no. 1		subpa	nel no. 2		subpa	nel no. 3		subpa	inel no. 4	ļ	subpa	nel no. 5	
ψ=	1		ψ=	1		ψ=	1		ψ=	1		ψ=	1	
k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000		k _σ =	4,000	
b=	441	mm	b=	545	mm	b=	544	mm	b=	545	mm	b=	331	mm
t=	14	mm	t=	14	mm	t=	14	mm	t=	14	mm	t=	14	mm
f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa	f _y =	235	MPa
ε=	1,000		ε=	1,000		ε=	1,000		=3	1,000		ε=	1,000	
λ _P =	0,555		λ _P =	0,685		λ _P =	0,684		λ _P =	0,685		λ _P =	0,416	
ρ=	1,000		ρ=	0,991		ρ=	0,992		ρ=	0,991		ρ=	1,000	
b _{eff} =	441	mm	b _{eff} =	540	mm	b _{eff} =	539	mm	b _{eff} =	540	mm	b _{eff} =	331	mm
			α0=	0,995		α0=	0,996					α0=	1,000	
			b0=	1862	mm	b0=	1400	mm				b0=	1732	mm
			Le=	42800	mm	Le=	42800	mm				Le=	42800	mm
			к=	0,043		к=	0,033					к=	0,040	
			β=	0,988		β=	0,993					β=	0,990	
			teff=	13,8	mm	teff=	13,9	mm				teff=	13,9	mm
b _{e1} =	221	mm	b _{e1} =	270	mm	b _{e1} =	270	mm	b _{e1} =	270	mm	b _{e1} =	166	mm
Web	 buckling 								1			I		
subpa	anel no. 6		subpa	nel no. 7		subpa	nel no. 8		subpa	inel no. 9)	subpa	nel no. 10	
ψ=	0,74		ψ=	0,86		ψ=	0,74		ψ=	0,25		ψ=	-2,60	
k _σ =	4,581		k _σ =	0,482		k _σ =	4,581		k _σ =	6,308		k _σ =	77,501	
b=	355	mm	b=	240	mm	b=	450	mm	b=	1140	mm	b=	1126	mm
t=	12	mm	t=	16	mm	t=	12	mm	t=	14	mm	b _c =	273	mm
t _y =	235	MPa	t _y =	355	МРа	t _y =	235	MPa	t _y =	235	MPa	t=	14	mm
=3	1,000		=3	0,814		=3	1,000		=3	1,000		t _y =	235	МРа
Λ _P =	0,487		Λ _P =	0,935		Λ _P =	0,617		Λ _P =	1,142		ε=	1,000	
ρ=	1,000		ρ=	0,854		ρ=	1,000		ρ=	0,739		Λ _P =	0,322	
Deff=	355	mm	D _{eff} =	205	mm	Deff=	450	mm	Deff=	842	mm	ρ=	1,000	
D _{e1} =	10/	mm				D _{e1} =	211	mm	D _{e1} =	355	mm	D _{eff} =	2/3	mm
h .	100					h _	220		h -	100	100 100	h _	100	
b _{e2} =	188 r flangs	mm	~			b _{e2} =	239	mm	b _{e2} =	488	mm	b _{e1} =	109	mm
b _{e2} = Lowe	188 r flange - :	mm shear la	g			b _{e2} =	239	mm	b _{e2} =	488	mm	b _{e1} = b _{e2} =	109 164	mm mm

1400

42800

0,033

0,993

13,9

mm

mm

mm

b0=

Le=

к=

β= teff=

4.1.3.2 Global buckling and shear lag

• global buckling - inner part of box girder

Plate eff	ect - inner pai	rt	Column effect - inner part			
A _{c,eff,loc} =	44018	mm²	σ _{cr,sl} =	1871,2	MPa	
A _c =	46720	mm²	ψ1=	1		
β _{a,c} =	0,942		ψ2=	1		
t=	14	mm	b1=	544	mm	
b=	2786	mm	b ₂ =	544	mm	
σ _E =	4,798	MPa	b _{1,inf} =	272	mm	
a=	2388	mm	b _{2,inf} =	272	mm	
α=	0,857		b _{1,eff} =	539	mm	
I _{sI} =	263482493	$\rm mm^4$	b _{2,eff} =	539	mm	
I _p =	700072	$\rm mm^4$	b _{1,inf,eff} =	270	mm	
γ=	376,365		b _{2,inf,eff} =	270	mm	
∑A _{sl} =	15360	mm²	I _{sl,1} =	60132189	$\rm mm^4$	
A _p =	39004	mm²	A _{sl,1} =	11680	$\rm mm^2$	
δ=	0,394		a=	2388	mm	
ψ=	1		b _c =	544	mm	
			b _{sl1} =	544	mm	
k _σ =	369,5		σ _{cr,c} =	1871,2	MPa	
σ _{cr,p} =	1772,8	MPa	A _{sl1,eff} =	11004	mm²	
λ _p =	0,353		β _{a,c} =	0,942		
ρ=	1,000		$\lambda_c =$	0,344		
			i=	71,8	mm	
			e=	85,3	mm	
<u>Interacti</u>	<u>on - inner par</u>	<u>t</u>	α _e =	0,597		
ξ=	0		Ф=	0,602		
ρ _c =	0,912		χ c=	0,912		

A thickness of the flange is modified according to formula $A_{c,eff} = \rho_c * A_{c,eff,loc}$. So the reduced thickness of plate is 12,2mm. • global buckling – does not buckle itself because of validity of formula $\sigma_{com,Ed}$ =102,4MPa< $\rho_c * f_y / \gamma_{M1}$ =0,928*235/1,1=198,3MPa. But there is a stress peak caused by buckling of neighbouring panel, so the thickness is modified in the same way

Plate effect - stiffener 7			Column effect			
I _{sI} =	58795187	mm ⁴	σ _{cr,sl} =	1948,7	MPa	
b1=	455	mm	ψ1=	1		
b2=	560	mm	ψ2=	1		
b=	1015	mm	b1=	441	mm	
t=	14	mm	b2=	545	mm	
a _c =	4685	mm	b _{1,inf} =	220,5	mm	
a=	2388	mm	b _{2,inf} =	272,5	mm	
$A_{c,eff,loc} =$	10287	mm²	b _{1,eff} =	441	mm	
A _c =	10966	mm²	b _{2,eff} =	540	mm	
β _{a,c} =	0,938		b _{1,inf,eff} =	220,5	mm	
A _{sl,1} =	10966	mm²	b _{2,inf,eff} =	270,0	mm	
σ _{cr,sl} =	2079,1	MPa	I _{sl,1} =	58795187	mm ⁴	
v=	0,3		A _{sl,1} =	10966	mm²	
b _c =	544	mm	a=	2388	mm	
b _{sl1} =	544	mm	bc=	544	mm	
			b _{sl1} =	544	mm	
σ _{cr,p} =	2079,1	MPa	σ _{cr,c} =	1948,7	MPa	
λ _p =	0,326		A _{sl1,eff} =	10287	mm²	
ψ=	1,00		β _{a,c} =	0,938		
ρ=	0,996		λc=	0,336		
			i=	73,2	mm	
			e=	81,3	mm	
<u>Interactio</u>	n - outside p	art	α _e =	0,590		
ξ=	0,067		Ф=	0,597		
ρ _c =	0,928		χc=	0,918		

• global buckling of web – web does not buckle

Plate effect - web			<u>Column effect - web</u>		
I _{sl} =	62619608	mm ⁴	σ _{cr,sl} =	1580,9	MPa
b1=	1140	mm	ψ1=	0,25	
b2=	2280	mm	ψ2=	-2,60	
b=	3420	mm	b1=	1140	mm
t=	14	mm	b2=	273	mm
a _c =	11220	mm	b _{1,inf} =	660	mm
a=	2388	mm	b _{2,inf} =	109	mm
Ac,eff,loc=	14276	mm²	b _{1,eff} =	842	mm
A _c =	16690	mm²	b _{2,eff} =	273	mm
β _{a,c} =	0,855		b _{1,inf,eff} =	488	mm
σ _{cr,sl} =	1584,1	MPa	b _{2,inf,eff} =	168	mm
v=	0,3		I _{sl,1} =	62619608	mm ⁴
b _c =	1426	mm	A _{sl,1} =	14397	mm ²
b _{sl1} =	280	mm	a=	2388	mm
			bc=	1426	mm
			b _{sl1} =	280	mm
σ _{cr,p} =	8067,5	MPa	σ _{cr,c} =	8051,1	MPa
λ _p =	0,158		A _{sl1,eff} =	12801	mm²
ψ=	0,00		β _{a,c} =	0,889	
ρ=	1,000		$\lambda_c =$	0,161	
			i=	66,0	mm
			e=	109,2	mm
Interactio	<u>on - web</u>		α_{e} =	0,639	
ξ=	0,002		Ф=	0,501	
ρ _c =	1,000		χc=	1,000	

Picture 4.1-6 - effective cross section, stress diagram

$$N_{Rd} = A_{eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,26633 * \frac{235}{1,1} * 1000 = 56897,8kNm$$

$$M_{y,el,Rd} = w_{y,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,27276 * \frac{235}{1,1} * 1000 = 58270,9kNm$$

$$M_{z,el,Rd} = w_{z,el,eff} * \frac{f_{yk}}{\gamma_{M1}} = 0,21416 * \frac{235}{1,1} * 1000 = 45751,8kNm$$

$$\eta_1 = \frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed} + N_{Ed} * e_{y,N}}{M_{y,el,Rd}} + \frac{M_{z,Ed} + N_{Ed} * e_{z,N}}{M_{z,el,Rd}} =$$

$$= \frac{335,1}{56897,8} + \frac{35480,2 + 335,1 * 0,062}{58270,9} + \frac{4053,2 + 335,1 * 0,005}{45751,8} = 0,704$$

SATISFACTORY (70,4%)

4.1.4 Design shear resistance

Shear buckling for a whole web (for a=2200mm): $\alpha = \frac{a}{h_w} = \frac{2200}{3420} = 0,643$ $k_\tau = 4,1 + \frac{6,3 + 0,18 * \frac{I_{sl}}{t^{3*}h_w}}{\alpha^2} + 2,2 * \sqrt[3]{\frac{I_{sl}}{t^3*}h_w}} = 4,1 + \frac{6,3 + 0,18 * \frac{2*33348536}{14^3*3420}}{0,643^2} + 2,2 * \sqrt[3]{\frac{2*33348536}{14^3*3420}} = 26,662$ $\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{3420}\right)^2 = 3,184MPa$ $\tau_{cr} = k_\tau * \sigma_E = 26,662 * 3,184 = 84,891MPa$ $\lambda_w = 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{84,891}} = 1,264 (determinative)$

Shear buckling for a subpanel (for a=2200mm):

$$\alpha = \frac{a}{h_w} = \frac{2200}{1140} = 1,930$$

$$k_\tau = 5,34 + 4 * \left(\frac{h_w}{a}\right)^2 = 5,34 + 4 * \left(\frac{1140}{2200}\right)^2 = 6,414$$

$$\sigma_E = 190000 * \left(\frac{t}{b}\right)^2 = 190000 * \left(\frac{14}{1140}\right)^2 = 28,655MPa$$

$$\tau_{cr} = k_\tau * \sigma_E = 6,243 * 28,655 = 183,795MPa$$

$$\lambda_w = 0,76 * \sqrt{\frac{f_{yw}}{\tau_{cr}}} = 0,76 * \sqrt{\frac{235}{183,795}} = 0,859$$

Shear resistance:

$$\chi_w = \frac{0.83}{\lambda_w} = \frac{0.83}{1.264} = 0.657$$

$$V_{bw,Rd} = \frac{2 * \chi_w * f_{yw} * h_w * t}{\sqrt{3} * \gamma_{M1}} = \frac{2 * 0,657 * 235 * 3420 * 14}{\sqrt{3} * 1,1 * 1000} = 7760,0 \text{kN} > 5693,2 \text{kN}$$

SATISFACTORY (73,3%)

4.1.4.1 Combination of shear force and bending moment

• For
$$V_{Ed} = \frac{V_{bw,Rd}}{2} = \frac{7760,0}{2} = 3880,0$$
kN ... $M_{Ed} = 35491,6$ kNm
 $\mu_1 = \frac{M_{Ed}}{M_{el,Rd}} = \frac{35491,6}{59037,5} = 0,601 < \frac{M_{f,Rd}}{M_{el,Rd}} = \frac{42483,8}{59037,5} = 0,720$... interaction does not assess

Kateřina Soukupová

4.2 Cross girder

Picture 4.2-2 - shear force diagram

4.2.2 Bending strength

• calculation of dimension of an effective cross section including a buckling and a shear lag

ψ=	1	
k _σ =	4,000	
b=	2400	mm
t=	14	mm
f _y =	235	MPa
ε=	1,000	
λ _P =	3,018	
ρ=	0,307	
b _{eff} =	737	mm
α ₀ =	0,554	
b ₀ =	1200	mm
L _{e,1} =	1960	mm
L _{e,2} =	2240	mm
κ ₁ =	0,339	
κ ₂ =	0,536	
saggi	ing bend	ing
β ^κ =	0,829	
beff=	611	mm
hogg	ing benc	ling
β ^κ =	0,438	
beff=	1051	mm

18

B. Preliminary static analysis

Picture 4.2-3 – eff. cross section in areas of positive and negative bending moment

$$\begin{split} & w_{y,eff,14+} = 0,0021454m^3 \\ & w_{y,eff,14-} = 0,0022373m^3 \end{split}$$

 $M_{y,el,Rd} = w_{y,el} * \frac{f_{yk}}{\gamma_{M1}} = 0,0021454 * \frac{235}{1,1} * 1000 = 458,3 \text{kNm} > 353,5 \text{kNm}$ SATISFACTORY (77,1%)

4.2.3 Design shear resistence

 $V_{pl,Rd} = \frac{f_y * h_w * t}{\sqrt{3} * \gamma_{M0}} = \frac{235 * 430 * 12}{\sqrt{3} * 1,0 * 1000} = 700,1kN > 599,8kN$ SATISFACTORY (85,7%)

4.2.3.1 Combination of shear force and bending moment

• For $V_{Ed} = 599,8$ kN ... $M_{Ed} = 38,8$ kNm

$$\mu_1 = \frac{M_{Ed}}{M_{el,Rd}} = \frac{38,8}{478,0} = 0,081 < \frac{M_{f,Rd}}{M_{el,Rd}} = \frac{325,2}{478,0} = 0,680 \dots interaction \ does \ not \ assess$$

List of used literature

- [1] ČSN EN 1990 ed.2 (73 0002): *Eurokód: Zásady navrhování konstrukcí.* Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 100 s.
- [2] ČSN EN 1991-1-1 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-1: Obecná zatížení Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha: ČNI, 2004, 44 s.
- [3] ČSN EN 1991-1-4 ed.2 (73 0035): *Eurokód 1: Zatížení konstrukcí Část 1-4: Obecná zatížení Zatížení větrem.* Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013, 124 s.
- [4] ČSN EN 1991-1-5 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-5: Obecná zatížení Zatížení teplotou. Praha: ČNI, 2005, 44 s.
- [5] ČSN EN 1991-1-7 (73 0035): Eurokód 1: Zatížení konstrukcí Část 1-7: Obecná zatížení Mimořádná zatížení. Praha: ČNI, 2007, 64 s.
- [6] ČSN EN 1991-2 (73 6203): Eurokód 1: Zatížení konstrukcí Část 2: Zatížení mostů dopravou. Praha: ČNI, 2005, 152 s.
- [7] ČSN EN 1993-1-1 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-1: Obecná pravidla a pravidla pro pozemní stavby. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 94 s.
- [8] ČSN EN 1993-1-5 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí Část 1-5: Boulení stěn. Praha:
 ČNI, 2008, 56 s.
- [9] ČSN EN 1993-1-8 ed.2 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí-Část 1-8: Navrhování styčníků. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2011, 120 s.
- [10] ČSN EN 1993-1-9 (73 1401): Eurokód 3: Navrhování ocelových konstrukcí Část 1-9: Únava. Praha: ČNI, 2006, 44 s.
- [11] ČSN EN 1993-2 (73 6205): Eurokód 3: Navrhování ocelových konstrukcí Část 2: Ocelové mosty. Praha: ČNI, 2008, 102 s.
- [12] ROTTER, Tomáš a Jiří STUDNIČKA. *Ocelové mosty*. Praha: Česká technika-nakladatelství ČVUT, 2006. ISBN 80-01-03410-0.
- [13] RYJÁČEK, Pavel. *Ocelové mosty: cvičení.* V Praze: České vysoké učení technické, 2015. ISBN 978-80-01-05672-1.
- [14] SOKOL, Zdeněk a František WALD. *Ocelové konstrukce: tabulky*. 2., přeprac. vyd. V Praze: České vysoké učení technické, 2010. ISBN 978-80-01-04655-5.
- [15] STUDNIČKA, Jiří. *Ocelové konstrukce: normy*. 2. vyd. V Praze: České vysoké učení technické, 2014. ISBN 978-80-01-05489-5.
- [16] STUDNIČKA, Jiří a Milan HOLICKÝ. *Ocelové konstrukce 20: zatížení staveb podle Eurokódu.* Praha: Vydavatelství ČVUT, 2003. ISBN 80-01-02751-1.
- [17] Směrnice SŽDC Metodický pokyn pro určování zatížitelnost železničních mostních objektů. 2005.
- [18] UIC Code 774-3 (R): *Track/bridge Interaction, Recommentation for calculations.* Paris: International Union of Railways, 2001, ISBN 2-7461-0257-9.
- [19] TNŽ 73 6277: Ocelová ložiska železničních mostů. Ložiska odlévaná a svařovaná. Praha: Výzkumný ústav železniční, 1994.
- [20] POKORNÝ, Bohdan. Protokol o podrobné prohlídce mostního objektu provedené dle Vyhlášky MD č. 177/95 Sb., a předpisu SŽDC S5 Správa mostních objektů, 2014.
- [21] ČD S5/4 Předpis: *Protikorozní ochrana ocelových konstrukcí*. České dráhy. 2001.
- [22] Prováděcí project oelové konstrukce železničního mostu na komunikaci JZM-Motol, Železniční most v km 12,478 na trati Smíchov-Hostivice. Mostárna Frýdek-místek. 1978

List of pictures

Picture 1.3-1 – 2D model of a box girder with effective cross sections	6
Picture 1.3-2 - permanent load	6
Picture 1.3-3 - traction force	6
Picture 1.3-4 - traffic load	6
Picture 1.3-5 - wind actions	6
Picture 1.3-6 - maintenance load	6
Picture 1.3-7 – nosing force in midspan	6
Picture 1.3-8 - other permanent load, Picture 1.3-9 - self-weight - plate of bridge deck	7
Picture 1.3-10 - maintenance load, Picture 1.3-11 - traffic load LM71	7
Picture 1.3-12 - centrifugal force	7
Picture 1.3-13 - nosing force	7
Picture 3.1-1 - bending moment diagram	8
Picture 3.1-2 - shear force diagram	8
Picture 3.1-3 - numbers of subpanels	8
Picture 3.1-4 – effective cross section in midspan	12
Picture 3.1-5 - numbers of subpanels	
Picture 3.1-6 - effective cross section, stress diagram	
Picture 3.2-1 - bending moment diagram	18
Picture 3.2-2 - shear force diagram	18
Picture 3.2-3 – eff. cross section in areas of positive and negative bending moment	19

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering Department of Steel and Timber Structures

The assessment and the load capacity of the bridge in Prague - Motol

Master's thesis

C. Drawing documentation

Kateřina Soukupová

Prague 2018

List of drawings:

- C.1: PLAN VIEW AND LONGITUDINAL CROSS SECTIONS
- C.2: CROSS SECTION 1-1, 6-6
- C.3: CROSS SECTION 2-2, 5-5
- C.4: CROSS SECTION 3-3, 4-4

ructures Prague in Prague — Motol		A	
IONS		Size:	10xA4
	Attachment No.:	Other scales:	1:50
	C.1	Date:	01/2018

CROSS SECTION 6-6 (1-1 mirror-inverted) 1:25

MATERIALS: LOAD BEARING STEEL STRUCTURE (EXCLUDING UPPER LONGITUDINAL STIFFENERS): STEEL 37 (S235) UPPER LONGITUDINAL STIFFENERS: STEEL 51 (S355) **BEARINGS: CAST IRON** SCREW JOINTS: HIGHT STRENGTH BOLTS 10.9

SURFACE WORKING:

OUTSIDE SURFACE:

METALIZATION IN COMPOSITION 70µZn and 150µAl

SYNTHETIC SURFACE COLOR S2013

INSIDE SURFACE:

TWO LAYERS OF COLOR O2005 THREE LAYERS OF COLOR S2302-Plumbinex

STRUCTURE OF TRACK BALLAST:

TRACK BALLAST (FRACTION 16/32, DRUMED GRAVEL) ... MINIMAL THICKNESS 400mm PROTECTIVE CEMENT SCREED WITH WIRE INSERT ... THICKNESS 50mm INSULATING INSERT STICKED WITH GLUE ... THICKNESS 10mm PLATE OF BRIDGE DECK

Department:Department of Steel and Timber StructuresFaculty, university:Faculty of Civil Engineering, CTU in PragueThesis supervisor:doc. Ing. Pavel RYJÁČEK, Ph.D.Drawn by:Kateřina SoukupováThe assessment and the load capacity of the railway bridge in Prague – Motol							
Drawing: CROSS SECTION 1-1, 6-6					Size:	A2	
		Academic year:	Scale:	Attachment No.:	Other scales:	_	
<u>`</u>		2017/2018	1:25	L 0.Z	Date:	01/2018	

OUTSIDE SURFACE:

METALIZATION IN COMPOSITION 70µZn and 150µAl

SYNTHETIC SURFACE COLOR S2013

INSIDE SURFACE:

TWO LAYERS OF COLOR O2005

THREE LAYERS OF COLOR S2302-Plumbinex

STRUCTURE OF TRACK BALLAST:

TRACK BALLAST (FRACTION 16/32, DRUMED GRAVEL) ... MINIMAL THICKNESS 400mm PROTECTIVE CEMENT SCREED WITH WIRE INSERT ... THICKNESS 50mm INSULATING INSERT STICKED WITH GLUE ... THICKNESS 10mm PLATE OF BRIDGE DECK

Department:	Department	of Steel and Ti	Steel and Timber Structures				
Faculty, university:	Faculty of	Civil Engineering,	e	G			
Thesis supervisor:	doc.		$\times (20)$				
Drawn by: Kateřina Soukupová							
The assessment and the load capacity of the railway bridge in Prague - Motol						NAI	
Drawing:			F				
URUSS SECTION 2-2, 3-3						A2	
		Academic year:	Scale:	Attachment No.:	Other scales:	_	
		2017/2018	1:25	C.3	Date:	01/2018	

SURFACE WORKING:

OUTSIDE SURFACE:

METALIZATION IN COMPOSITION 70µZn and 150µAl SYNTHETIC SURFACE COLOR S2013

INSIDE SURFACE:

TWO LAYERS OF COLOR O2005

THREE LAYERS OF COLOR S2302-Plumbinex

STRUCTURE OF TRACK BALLAST:

TRACK BALLAST (FRACTION 16/32, DRUMED GRAVEL) ... MINIMAL THICKNESS 400mm PROTECTIVE CEMENT SCREED WITH WIRE INSERT ... THICKNESS 50mm INSULATING INSERT STICKED WITH GLUE ... THICKNESS 10mm PLATE OF BRIDGE DECK

Department:	Department	of Steel and Ti	mber Structure	S				
Faculty, university:	Faculty of Civil Engineering, CTU in Prague							
Thesis supervisor: doc. Ing. Pavel RYJÁČEK, Ph.D.						$\times (20)$		
Drawn by: Kateřina Soukupová								
The assessment and the load capacity of the railway bridge in Prague - Motol						NAI		
Drawing:						p. 10		
UKUSS SEUTIUN 3-3, 4-4						A2		
		Academic year:	Scale:	Attachment No.:	Other scales:	_		
		2017/2018	1:25	C.4	Date:	01/2018		