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ABSTRACT

Based on its applicability and features, two approaches for multivariate time series modelling
were discussed. The first, method based Principal Component Analysis is much more simple
and direct method, having the advantage of closed form computational processes and
therefore holding much smaller computational burden. Its disadvantage is, that it
theoretically destroys part of the mutual information that the multivariate data contain,
because it preserves only raw mutual correlations between stations but not higher order
dependencies. The basis is that it searches for transformation that has been designed based
on the covariance matrix, which is a low order statistical characteristic of data. The second,
method based on Independent component analysis, theoretically preserves even those higher
order dependencies, because it extracts from the data more mutual information and is
therefore able to reapply this information to independent univariate synthetic time series that
were generated individually.

The practical part of this thesis involved construction of the PCA method based multivariate
model and evaluation of its performance. Regarding the preservation of the correlation
structure the model performed arguably quite well, having total error as a performance
measure explained in section 7.4 around 3.40% for the autocorrelation structure of lag 1 of
the data set and total error of 7.86% for the cross-correlation structure describing mutual

relationships of the multivariate data.

In traditional applications of streamflow data the generated time series did not deviate
extensively from expected outcomes, making the model’s output usable in some classical
water management solutions. However, there were some drawback of the model’s
performance especially in water reservoir operation solutions, where the model produced

data that underestimated storage capacity requirements for longer time series.
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1 LAY SUMMARY

Mathematical modeling of synthetic time series is nowadays basic method used during the
design process of many water management engineering solutions of different kinds. We use
this method in cases, where the available historical time series are not sufficient for proper
design solutions of engineering problems. This is usually because the available historical
time series are too short and therefore produce unreliable assumptions about future
behaviour of the phenomenon they represent. Mathematical modelling enables us to create
much longer synthetic time series, based on the historical real data, with the same sets of
statistical characteristics. It provides us with more reliable data usable for more complex
problems, and data that meet requirements on input materials demanded by the present

legislation. [38]

There is fundamental difference between simulation of single time series, called univariate,
and simulation of sets of inter-related time series together, called multivariate time series
modelling. While the methodical approach for univariate time series modelling has been
soundly established over many years of its research and application in the last century,
modelling of multivariate time series is still experiencing intensive development and
completely new methods have been introduced in recent decades, mainly thanks to advance
in computer technologies. The problem of accurately simulating multivariate time series
along with their inner dependence and mutual information stored within is non-trivial

problem and more complex solution must be employed. [19]

Two main methods broadly used for this problem, Principal Component Analysis and
Independent Component Analysis are going being described and compared in this thesis.
They both aim to discover and describe mathematically the spatial and temporal dependence
within the historical data and based on that to design a model which will maintain the
dependence relationships in the new modelled time series. While the first method is older
and its computational difficulty is much smaller, it will be shown, that the latter, much
younger method of these two, goes further with the analysis of the dependence and therefore

preserves the statistical characteristics better. [21]



2  GOALS OF THIS THESIS

The goals of this thesis are to summarize currently used methodological approaches for
modelling of synthetic hydrological time series in systems of stations for purposes of solving
water storage function of water reservoirs and watercourse systems and to investigate into
new methods recently emerged or still emerging in water management engineering. Main
focus will be given to methods of Principal Component Analysis and Independent
Component Analysis, whereas this thesis aims to evaluate their usability and possible
application and to assess the pros and cons in their employment on multivariate hydrological

time series.

Secondly, this thesis aims to produce mathematical model for generation of random monthly
averages streamflow time series and verify the model for chosen case study. The model will
allow preservation of correspondence of probability characteristics of the real and the
synthetic streamflow time series including month-wise autocorrelations and cross-

correlation structure among individual profiles.



3. INTRODUCTION

Mathematical modeling of synthetic time series is nowadays basic method used during the
design process of many water management engineering solutions of different kinds. We use
this method in cases, where the available historical time series are not sufficient for proper
design solutions of engineering problems. This is usually because the available historical
time series are too short and therefore produce unreliable assumptions about future
behaviour of the phenomenon they represent. Mathematical modelling enables us to create
much longer synthetic time series, based on the historical real data, with the same sets of
statistical characteristics. It provides us with more reliable data usable for more complex
problems, and data that meet requirements on input materials demanded by the present

legislation. [38]

There is fundamental difference between simulation of single time series, called univariate,
and simulation of sets of inter-related time series together, called multivariate time series
modelling. While the methodical approach for univariate time series modelling has been
soundly established over many years of its research and application in the last century,
modelling of multivariate time series is still experiencing intensive development and
completely new methods have been introduced in recent decades, mainly thanks to advance
in computer technologies. The problem of accurately simulating multivariate time series
along with their inner dependence and mutual information stored within is non-trivial

problem and more complex solution must be employed. [19]

Two main methods broadly used for this problem, Principal Component Analysis and
Independent Component Analysis are going being described and compared in this thesis.
They both aim to discover and describe mathematically the spatial and temporal dependence
within the historical data and based on that to design a model which will maintain the
dependence relationships in the new modelled time series. While the first method is older
and its computational difficulty is much smaller, it will be shown, that the latter, much
younger method of these two, goes further with the analysis of the dependence and therefore

preserves the statistical characteristics better. [21]



4. THEORETICAL BACKGROUND

4.1 Basic terms

At first it is desirable to define basic terms used in this thesis and the way in which
hydrological time series are mathematically approached here. When considering time series
in hydrology, they can be viewed as discrete random variable samples. The discharge in a
river is a stochastic process which we cannot accurately and fully describe mathematically,
we can only observe its realizations, whereas discharge in a river has always only one
realization. All the values of the realization form a population and by measuring the
discharge we take values from the population and we create a random sample - values are
drawn from sample space, which is set of all possible outcomes of the process (for discharge

of a river the sample space is infinite set of real numbers).[2, 3]

We also say that we are recording observations of the realization of the process. The set of
observations in chronological order is then referred to as time series. One times series
accounts for one set of observations of one realization and is represented by one random
variable ;. When conducting time series analysis, we are trying to estimate the
characteristics of the population, but because only a sample of the population is available to
us, we do that by computing characteristics of the sample. The characteristics of the
population are called statistical parameters, and we are estimating them with statistics or
estimators such as sample mean.[3, 4] Therefore in this thesis, whenever mean, standard
deviation or any statistical characteristics is mentioned, it is always referred to statistic,

characteristic of the sample, unless it is stated otherwise.

Multivariate time series are sets of observations of more than one variable, such as flow rates
at different measuring stations over the same period of time, which is also the case of this
thesis. Each station is represented by one time series, mathematically a vector of certain
length, but when conducting mathematical operations with the time series, we sometimes

view it as a random variable.

The observed time series are referred to as real or historical time series, while realizations of
the process generated by a mathematical model are called artificial or synthetic time series.
When modeling a synthetic time series, the goal is to find a model which bets fits the real

historical time series. When the model is fitted to an existed realization of a stochastic
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process with reasonable accuracy, it should possess the same statistical properties as the
process that generated the existent realization. This procedure is called time series
analysis.[19] The model can be afterwards used to simulate other possible realizations during

the same period of time or generate longer time series for other applications.

4.2 Time series modeling in water management

Time series modeling is an essential discipline in hydrological forecasting. When designing
water reservoir or any water structure, future forecast of hydrological events are necessary
inputs in water management. These events are random in nature and therefore we must equip
ourselves with statistics and probability theory to bring ourselves closer to accurate forecasts

of these events.

Sometimes, for the design of a water structure, will suffice to predict the frequency of
occurrence of certain hydrological event, using statistical method called frequency analysis.
With this method, we can predict for example how often can we expect flood of certain
magnitude, or rather to predict the maximum flood magnitude in certain period of time,

typically 100, 1000 or 5000 years, generally known as N-year events.[25]

In some other cases, like assessing proper functioning of water reservoir or water systems
meeting required goals, it is necessary to take into consideration the actual development of
hydrological event over a period of time, looking at the whole sequence, not only the
sequence’s extremes. Typical example of required data is set of monthly averages of
discharge in a catchment over next number of years (again: 100, 1000, 5000, etc.). In this
case, not only the magnitude of the values matters, but their order in the sequence matters
too. This type of hydrological forecasting can be made by methods called synthetic data

generation, also referred to as time series modeling.[39]

While some methods of hydrological forecasting, for example frequency analysis, considers
only certain values from historical records, like the extreme discharge magnitudes and the
frequency of their occurrence, time series modeling considers in its process the whole
continuous sets of observations of a given phenomenon. This makes it more difficult to select
reliable records for this method, but it also means the forecasts made by times series

modeling are more complex and more plausibly describe the reality. Moreover, when



properly modelled, synthetic data series can be used to determine N-year events as well,
simply by observation of the time series.[25], [32]

Hydrological forecasting techniques based of streamflow time-series modelling enables
engineers and researchers examine possible scenarios for water resources systems with
chronological context to it. Synthetic time series can simulate possible behaviour of a water
system with realistic succession of events and their context within the continuous
development of flow-rate, which is especially important in periods of drought or on the
contrary during high-flow periods. This is essential in tasks like designing optimal operation
of water systems, irrigation systems, water supply systems, systems upon which
hydroelectric power stations rely, flood management planning or risk assessment of
reliability of water systems. Variety of generated scenarios and diversity of conditions can
largely contribute to creation of more efficient solutions of these tasks and perfected

strategies. [40]

4.3 Statistical characteristics of a time series

The properties of a time series are described through statistical moments and other
characteristics. These characteristics are needed construct a mathematical model and then to

measure its goodness of fit.

This section of the thesis aims to clarify the usage of basic statistical and mathematical terms
and expressions, rather than explain to detail their mathematical definitions. It is for the
purpose of not confusing some fundamental statistical elements as the terminology is not
always uniform in all publications dedicated to this topic. In addition, mathematical symbols
and operators used in this thesis are explained to a reasonable extent in the Glossary at the

end of the thesis.

4.3.1 Statistical moments

Mean

When it a mean of a variable is being mentioned in this thesis, it is always referred to mean
of its sample, sample mean, conventionally denoted by i, not a mean of its population, which

is usually expressed as u, and is being computed from the whole population of a variable,

which is something never available to us in hydrology, and therefore it is never the case here



either. Also, it is always referred to arithmetic mean, computed as in Equation 4.1, where n

Both standard deviation and variance express the spread, or dispersion of values of a

is the number of elements in the sample.[30]

Sk

X =
Standard deviation and Variance
variable from its mean. Standard deviation is being expressed here as a,, and variance, being
its square as ¢2. Without the availability of the whole population, standard deviation and
variance are being computed by expressions Equation 4.1. Because this standard deviation

Is computed using the sample mean X, it is therefore sometimes called uncorrected sample

standard deviation.[30]

n n

The skewness measures the lack of symmetry of a distribution. It is being denoted by x and

Skewness

expressed through standard deviation o, as in Equation 4.1.[52]

n L 3
K, = Zi=1(§13 X) (4.1)

Skewness can be used to determine normality of a distribution (Normal distribution is
symmetric about the mean and therefore has a skewness of zero), wherefore it has a use in
this thesis in determining effectiveness of normalization transforms used. For example
D'Agostino's K-squared test is a technique commonly used to measure the departure of a
distribution from normality through skewness and kurtosis. [11]

4.3.2 Probability density function and Cumulative distribution function

Cumulative distribution function (CDF) and Probability density function (PDF), are two
closely related statistical tools, but should not be confused with each other. The first, PDF,
describes the probability IP of a variable x taking certain values a — it describes probability

of its value distribution. Here, PDF is being expressed as in Equation 4.1. [30]
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p(x) = P(x = a) (4.1)

The second, CDF, also called probability distribution function or cumulative frequency
function, describes probability of a variable taking values less then certain values as in
Equation 4.1.[30]

F(x) = P(x < a) (4.1)

The direct relation between PDF and CDF is, that PDF is CDF’s derivative:[30]
f(x) = F'(x) (4.1)

4.3.3 Covariance and correlation coefficient

Covariance is understood as a measurement of the linear relationship between two variables,
for example x and y, and it can be expressed by a single value computed by the Equation
4.1. [52]

Oxy = cov(x,y) = E[(x — Ex})(y — E{y})] (4.1)

When mentioning correlation coefficient here, it is always referred to standard Pearson
product-moment correlation coefficient, sometimes shortly PCC, which is expressed through
covariance of two variables divided by the product of their standard deviation. Therefore
they both describe linear relationships between variables, but the difference between PCC
and covariance is, that PCC is scaled and takes only values between -1 and 1, while
covariance can take any Real values. Positive or negative values of PCC signify positive or
negative correlation respectively, when PCC equals zero, there is no correlation between the
two examined variables at all. The Equation 4.1 expresses computing PCC for two different
variables.[20]

_cov(x,y)

., 4.1)

px,y

4.3.4 Partial autocorrelation function

Autocorrelation function, also called serial correlation, describes correlation of a signal with
latter itself. It is computed as in Equation 4.1, between observations separated by k time
intervals. [19], [53]
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Pr = Proxeny, = E[(xt — E{x}) (x4 — E{x})] _ (4.4)

axtaxt+k

Partial autocorrelation function (PACF) is then expressing the development of
autocorrelation function at different time lags k. It is very important tool for deciding up to
which extent the is a time series autocorrelated. It can be then used to determine suitable

order of autoregressive model.

4.3.1 Covariance matrix of multivariate and univariate time series

Mutual covariances of n variables of a vector x are being expressed by the covariance matrix
of n X n dimensions, denoted by X, expressed by Equation 4.2, or by more compact
formulation in Equation 4.3. This can represent covariance matrix of multivariate time series
where every variable x; stands for one time series or more specifically one streamflow
station. [52]

X1 Oxix1  Oxpxp =+ Oxixn
x Oxyxy Oxpr, = Oxpoy

I, =cov[X]=o0 :2 = xz: N xzzx (4.2)
Xn Oxnx1  Oxpx, Oxpaxn

cov[x] = [(x — E[x])(x — E[x])"] = E(xx") (4.3)

While univariate time series is being in mathematical modelling considered as single
variable (see section 4.1), it is possible to express the covariances among sequences of the
same time series in univariate covariance matrix. In a discrete time series vector with
elements equidistantly spaced from each other by time intervals we can define the
covariance of a variable x; with latter itself x:+k, k-time intervals apart, by formulation in
Equation (4.4). [19]

Yie = cov[xy, xepi] = E[(xe — E{x}) (xe4r — E{x})] (4.4)

Then the univariate covariance matrix can be defined as (4.5). [52]

[ Yo V1 Y2 VN—1'|
| V1 Yo V1 = VYN-2|

cov[x] =] Y2 V1 Yo - VN-3 (4.5)
YN-1 VN-2 VYN-3 - Yo

12



4.4 Time series analysis

4.5. Univariate time series modelling

Univariate time series modelling has already long history in the world and Czech Republic
too. Many models are based on some sort of autoregressive process, describing inner time
dependence of the observations. Basic type is Autoregressive model of order p, which
determining the value of an observations based on p number of previous observations.
However, despite, or maybe thanks to, its simplicity, if employed correctly and smartly, it
can yield very satisfactory results.

As the time series modelling discipline developed, additional features were being
incorporated into the models with autoregressive basis, such that they take into account

non-stationarity or periodicity of a time series or trends found in the raw data.

Worth mentioning is also disaggregation modeling and method of fragments, which has a

tradition in Czech Republic and has been widely used here.

4.6 Types of models for univariate time series generation

4.6.1 Autoregressive model

Autoregressive model (hereinafter AR model) is type of so-called Box-Jenkings models,
which are linear non-seasonal models, assuming stationarity of the data. Moreover, it does
not account for potential periodicity of the phenomenon it is supposed to simulate.
Hydrological time series, including streamflow time series, exhibit very strong and obvious
periodicity and it is desirable to simulate it in the synthetic data. Therefore, the AR model
cannot be used directly on full time series, but first the periods must be recognized and then
it is to determine with how many autoregressive coefficients is the series going to be

simulated.

If data consists of monthly averages and the aim is to simulate also time series consisted of
monthly averages for observations, the suitable approach is to separate raw data according
to months, therefore creating twelve vectors of observations, one for each month. Then the

correlation coefficients for each month are determined individually.

Generally, the Autoregressive process of order p is described as in Equation 4.A. [19]

13



Zy = Q1Z¢ 1 T Q2Zp 3t F QpzZip + & (4.A)

Construction of the model thus relies on computing the required correlation coefficients ¢
and generating the white noise. For generating white noise, pseudorandom generators in any
computational software can be safely used. The elements comprised of previous
observations and corresponding correlation coefficients are adding up to the deterministic
component of the model. The white noise along with its coefficient is representing the
stochastic (random) component.

The order of the model p determines number of the elements used and number of the

correlation coefficients ¢ used. Here the correlation coefficient of order p for series of

variable x with [ number of observations is defined as in Equation 4.0. [38]
Cov(xl...l—p'xp+1...l)

@p = corr(Xy . Xy p; Xpyg X)) = Pry = ~ - (4.0)
X1.l-p  Xp+1..1

The order p is chosen so that it reflects the behaviour of the time series most accurately.
There exist tests to determine up to which order there is significant relationships between
the observations. For modelling time series with daily observations, it is natural, that the
value of the observation, for example flowrate in a stream, might depend on more than one
previous observation, so choosing higher order AR model might be appropriate. For monthly
data, it is much more likely that the monthly average depends only on the previous month
and AR(1) model can be employed in such case. History of research on hydrological time
series modelling on Czech Technical University showed, that low order models (with order
1 or 2) yield the best results and higher order models are for this application on monthly

streamflow data much less predictable.[13]

Base of Equation 4.A, autoregressive model of order 1 would then look like in Equation 4.B.
In this model, another coefficient y was applied to reduce the contribution of the white noise
term, the model then looks like in Equation 4.C. The coefficient is taking values from 0 to 1

and is being computed as in Equation 4.D.[49]

Zt = P1Zt1 T & (4.B)

Zt = QP1Zi—1 T V& (4.C)
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y=vJi1-¢:? (4.D)

4.6 Multivariate time series modelling

4.6.1 Multivariate time series

True challenge in time series modeling in water management comes when there is need to
generate multiple time series for multiple stations which are in relative proximity and their
waterflows are mutually correlated. These inter-correlated time series are referred to as
multivariate time series or sometimes also as multivariable time series. This applies for
example to a system of water reservoirs all belonging to the same watershed or to adjacent
sites affected by similar conditions, we call them multiple reservoir systems.

Within this kind of system, the water reservoirs located within the same watershed are
subject to similar precipitation, evaporation, temperatures and climatic conditions generally.
Sometimes they even directly affect each other; some of the reservoirs in the system can be
simply downstream from others on the same watercourse. The streamflow times series in
their profiles therefore exhibit strong both temporal and spatial dependence with each other.
The challenge in time series modeling lies in the task to preserve the mutual spatial and
temporal dependence between multiple reservoirs in the synthetic time series, more precisely

to authentically simulate the dependences.

The problem gets even more challenging when dealing with not only yearly averages but
also with monthly average streamflows. Within a year, seasonal trends can be observed and
appropriate model or approach which reflects this seasonality must be employed to

accurately simulate all the properties of historical records.

4.6.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a method of linear transformation used for
decorrelation of data. It can be used to transform set of process realizations which are
correlated into data sets, which are mutually linearly uncorrelated. We call these new data

sets principal components and we say we are extracting the components from the historical
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data.[22] The PCA method in the centre of focus of this thesis and its principle and
application is explained in detail in section 5.2.

4.6.3 Independent Component Analysis

Independent Component Analysis (ICA) also decorrelates data within its process, but it goes
further with minimization of mutual dependencies and looks for so-called independent
components, which are statistically independent, which is concept explained in section 5.3.4.
By finding components that hold even less mutual information upon each other than PCA it
basically stores more of the information on the dependence of raw data and can reapply this
information on synthetic data retaining fully both spatial and temporal dependence of the
original time series. ICA is also explained and discussed much more thoroughly, further in

the thesis, namely in section 5.3 and 5.4.
4.6.4 Other methods for preserving dependence in multivariate data

Neural networks approach

Another approach is to use artificial neural networks which are systems inspired by the
functioning of human brain. These systems have very specific information distribution of
information in form of analogue pattern signal and learning abilities which enables them to
evolve their own solutions for non-linear problems. [3] Application of neural network in
time series modelling was presented for example by Spanish-Colombian authors (Ochoa-
Rivera et al., 2002). [40] A hybrid model for generation of multivariate streamflow time
series based on a multilayer feedforward neural network, simulating deterministic
component with random component represented by normally distributed noise accounting
for its stochastic part, was proposed by them and compared with autoregressive model of
order 2. Their work is following, among others, research papers on hydrological time series
modelling by neural networks of Raman and Sunilkumar (1995) examining this approach
for bivariate time series and Anmala et al. (2000) dealing with trivariate data. [42] and [4]
respectively, as cited in [40] According to their results, the composite NN-stochastic model
yielded much more satisfactory results than the purely stochastic AR model, especially in
terms of simulation of longer persisting events within hydrological series, such as drought
periods, which is very essential issue concerning optimal operation of water reservoir

schemes design processes.[40]
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Wavelet-based method with IAAFT algorithm

Another method presented by working paper by Keylock (2012) [27], is as wavelet-based
method based on techniques in non-linear physics from the Fourier domain. This approach
for multivariate synthetic time series generation claims to not only preserve the cross-
correlative structure of the historical records, as is attempted in PCA, but also to simulate
nonlinear properties that may be present. The paper works with assertion that among the
most important nonlinear property of the streamflow data is the frequent temporal
asymmetry of its hydrographs and uses derivative us skewness to describe and address this
property. Author previously presented use of method called gradual wavelet reconstruction
for synthetic data generation [28], and adapted in the mentioned work this method to the

multivariate case. [27]

Because other two mentioned methods (ICA and PCA) relies on covariance matrices in the
search for proper orthogonal transformations, they retain in the process only correlation at
zero-lag. Proposed method by Keylock aims to preserve Fourier cross-spectrum between
multivariate time series, explaining that it yields identical result as an attempt to preserve
cross-correlation function. The iterated amplitude adjusted Fourier transform (IAAFT)
algorithm extended to application on multivariate series is in the focus the paper. The
research also presents comparison of its introduced method with PCA and ICA, with results
speaking for advantage in enhancement of preservation of the full cross-correlation function
over both ICA and PCA. [27]

4.7 Input and output data

We usually obtain the flow rates as daily, monthly or yearly averages. It is common to
generate synthetic time series of monthly o yearly averages, whereas this thesis deals with
the more complex case of modeling monthly averaged series, which also includes the

solution for yearly averaged data.

Any input data used engineering solutions should be first critically evaluated in terms of

their representativeness. In hydrology, one of the main problems with available source data

is their scarcity. When conducting time series analysis on streamflow time series, there is

available usually only one set of observations on one realization of the process, often also

over relatively short period of time. Results of estimating parameters of the streamflow

process, based on rather small sample must be used with caution. It is common to work with
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time series of only few decades of flow rate measurements, while the task is often to generate
synthetic series of several thousands of years.

In hydrology, these synthetic time series are created in the same manner as the historical
ones - as chronological sequences where the order of the elements matter. Therefore, we can
work with them the same way as with the real historical data and use them as an input without

further adjustment of the design process.

4.7.1 Critical assessment of source data

In every case, individual assessment of the researcher is needed to consider all possible cause
that may have affected the representativeness of the data. Every problem is somehow

specific and human evaluation is irreplaceable.

It is important to take into account all the conditions that accompanied the observations and
acquisition of the data, in terms of their homogeneity. The researcher must get acquainted
with the location where the observations originated, the landscape circumstances of the
watershed and its development during the whole period which is represented by the data
sample and in the future too. In case of flowrate measurements in a watercourse, following

list presents an example of things that must be considered:

= land-use changes in the watershed during the represented period and future prospects
= anthropogenic interventions in all related watercourses

= method of measurement and its development

If homogeneity in any of the factors listed above has not been maintained during the
observed period, influenced sections of the data sample must be ‘purged’ of the effect that
compromised the coherence or they must be excluded from the analysis and shorter versions
of the observations must be used.
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5. METHODICAL APPROACH

5.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a method of linear transformation used for
decorrelation of data. It can be used to transform set of process realizations which are
correlated into data sets, which are mutually linearly uncorrelated. We call these new data
sets principal components and we say we are extracting the components from the historical
data.[22]

The method was invented by Karl Pearson and was first introduced by him in 1901 in journal
article of Philosphical Magazine, ‘On lines and planes of closest fit to systems of points in
space ’.[41] as cited in [26]

The main focus of PCA is to reduce the dimensionality of a data set, while preserving as
much variation as possible. The method deals with transformation of interrelated variables,
into a new set of uncorrelated variables, the principal components (PCs). The components
are ordered by the amount of preserved variance of the original variables, leaving the last
PCs least important. [26], [48] This property allows to reduce dimension from n to p of the
original data set, by keeping the first p principal components, which explain substantial

portion of the variance of the data set.[54]

PCA uses information that is contained inside the covariance matrix (section 4.6.2) to derive

the transformation matrix which will decorrelate the data.

The method of principal components represents type of orthogonal transformation, that is
generally speaking a linear transformation which preserves the inner product. It is being
done by orthogonal matrix — a matrix whose inner product of itself and its inverse matrix
equals an identity matrix, in other words, its transpose is equal to its inverse. Moreover, two
vectors are orthogonal, if and only if their inner product equals zero. Important property of
an orthogonal transformation for this particular use, is that the length of the vectors stays the
same. [2, 3]
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5.3 Independent Component Analysis

While PCA is will yield uncorrelated variables, they are not truly statistically independent.
Any residual dependence left in the processed data, can be lost or destroyed during the
synthetic data generation. By Independent Component Analysis (ICA) one can achieve
higher order independence within processed data and therefore retain both spatial and
temporal dependence of the original time series, which will be stored inside the procedures
applied to the data during ICA.

5.3.1 History

The Independent component analysis was introduced for the first time by French authors,
namely Jeanny Hérault and Bernard Ans, in 1984 in a journal article for Comptes rendus de
l"Académie des Sciences, with Christian Jutten joining them in 1985 for conference
proceedings in Paris and Nice. [17], [5], [18] as cited in [21]

Many concepts of ICA, including connection between negentropy and mutual information,
or estimation of the components by minimization of the mutual information were most likely
introduced in work of Pierre Comon (1994).[9] as cited in [21]

Probably the most extensive work on ICA have been done the Finnish team Aapo Hyvérinen,
Juha Karhunen, and Erkki Oja from University of Helsinky, with the main reference book
published in 2001.[21] Work of the Finnish authors is the most significant source for this

thesis.

Contribution to the topic with summary of previous work was also done by James V. Stone,
under MIT in 2004.[44] Research about ICA with regard to hydrology, which is of particular
interest in this thesis, have been done by Westra, Brown, Lall and Sharma in 2007 and is

being continued.[54]

5.3.2 Introduction

Independent component analysis is closely related to the problem called Blind Source
Separation (BSS). That is an extraction of source signals from mixed observations without
any or very little additional information to the observed data, hence the name ‘blind’.[7] It
comes as an solution to the cocktail party problem. That is a well known mathematical
problem, popularize in Cherry (1953), where there is number of signals observed, for
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example from microphones placed on different locations in a room where number of source
signals, e.g. people speaking in the room, are present.[23] as cited in [36] In this problem,
each microphone records different combination of the speech signals, each signal having
different strength in each of those combinations. The goal is to estimate the source signals —
speeches, as they were recorded directly, uninfluenced and unpolluted by other signals. [1]
The only assumption on the source signals, is that they are independent in their origin. That

is also one of the basic assumptions of the ICA.

Tu put it in simplified way, there can be two basic cases where ICA can be used. One is to
find good linear representation of multivariate data. By transforming the variables, it aims
to discover some hidden information on the data set that describes the underlying structure.
The idea behind ICA is that the independent components correspond to some real physical

parts of the process that generated the observations. [21]

5.3.3 Application

Even though ICA is relatively young method, it is widely used across all scientific fields and
professions. Because of generality of ICA, its use can be found in medicine, financial
markets or audio-visual sciences and several more, including natural sciences, where
working with hydrological time series belongs. This section presents other uses and
applications than the one of interest in this thesis, which is streamflow synthetic data
generation. It is also fair to mention that at first it has found its application in signal
processing, where ICA was used to separate the source signals from recorded mixtures of

signals as it was explained in section 4.5.2 for ‘blind source separation®.
Medicine

Many diagnostic medical devices are using ICA to analyse their outputs, which usually are
dimensionless electric signals, to find underlying factors, corresponding to some activities
of the body. For example magnetoencephalography - it is a functional neuroimaging
technique for mapping brain activity. [33] Magnetoencephalography device records the
signals emitted by brain. However, the signals are being mixed up in the sensors of the device

placed on the head of the patient and ICA is used to re-extract them.[22]

Another health care diagnostic method called optical coherence tomography (OCT) used for

biomedical imaging, with applications in ophthalmology or dermatology, can utilize ICA
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techniques to process output images, reducing speckle noise present in them and thus helping
the process of interpretation of the images. [6]

Macroeconomics

Utilization of ICA analysis can be find in econometry. Many macroeconomic indicators are
not strictly deterministic and are influenced by some hidden factors, which cannot be
observed. Finding the background structure or driving mechanism of parallel time series
such as currency exchange rates or stock prices may be useful both for econometry

application and forecasting on financial markets.[21]
Some other applications

In audio-visual sciences there is also broad area of application of ICA, such as separating
and purifying specific sources on sound recordings, removing noise from images, extraction

features from images, or finding filters for natural images. [24]

Considering ICA deals with signals, other obvious area of employment for ICA is
telecommunications. where it can be used for example for separation of signals interfering

with other signals in mobile communications. [22]

Another use can be found in abundance quantification for hyperspectral imagery, more
specifically for endmember extraction, a field where PCA was commonly applied in history,
but not always yielded satisfactory results, as frequent scarcity of endmembers can result in
very small influence on data variance, which is something that PCA reflects poorly, while

ICA can be implemented more effectively. [50]

5.4 Mathematical background of ICA

5.4.1 The Central Limit Theorem

The Central Limit Theorem is a key concept in probability theory, allowing for application
of many statistical methods. The theorem establishes, that the sum of independent random
samples with any type of distribution, tends toward normal distribution, or at least is more
gaussian than any original sample. With more data samples, the approximation of normal
distribution gets better.[53], [22]
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The logic of the theorem, or more accurately its reverse, is adapted in ICA, which searches
for transformation that will result in as non-Gaussian variables as possible. Its search is based
only on the observed mixtures, which are by the central limit theorem assumptions much

more Gaussian than their underlying signals.[54]

5.4.2 Data representation

When we denote the n mixtures x; and the m source signals as ¢; we can express the observed
singals as linear combinations in Equation 4.-2 or expanded form in Equation 4.-1. The
coefficients a;; are real numbers representing the ‘strengths’ of the original signals in

different combinations, the source signals c; are called the independent components.

X; =Zaijcj,wherei= l.nj=1..m (4.-2)
J
x1 = a11C1 + a12C2 + + almcm
xz = a21C1 + a22C2 + + aZmCm
' (4.-1)
xn = anlcl + an2C2 + + anmcm

Using vector and matrix notations to the above equations, they can be written as in Equations
4.x and 4.x, where A is the n x m matrix of linear real coefficients a;;.We call the matrix
A the mixing matrix, as it explains how the components got mixed and resulted in the

observed mixtures.

X1 €1
2l =al 7 (4-2)
x'l’l Cm

x = Ac (4.-2)

The mixing matrix A is unknown to us, and so are the components ¢; , all we have are the

observed mixtures. If we knew the mixing matrix, we could use its inverse to find the
components, which is basically the approach for finding the solution. The goal is to find the

inverse of the mixing matrix such that the resulting components have the desired properties
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or more specifically stastistical characteristics. Most important restriction is that they should

be as independent as possible.

5.4.3 Objective of ICA - Statistical independence

When applying ICA to a data set, we are trying find as independent components as possible,
so it might be useful to explain, how the statistical independence is defined.

In mathematical terms, two random variables x and y are statistically independent if their
joint probability density functions can be expressed as a product of their individual
(marginal) probability density functions (explained in section 4.3.2) as expressed in Equation
4.0. This definition also applies to their cumulative density functions, as in Equation 4.0.
Both their PDFs and CDFs must be factorizable. [30], [52], [21] In layman’s terms, variables
are independent if changes in one do not affect the other, and they hold no information about

each other.

p(x,y) = p(xX)p(y) (4.0)

If two variables are uncorrelated, their covariance is 0, and if they are not constants, which
we can safely assume they are not when considering natural random variables, their Pearson

correlation coefficient is also zero — Equation 4.0.[30]

_cov(x,y)

0 .
> 4.1)

px,y

But that means only that they are partly independent and they can still contain significant
amount of mutual information. Simply: when two variables are independent it implies they
are also uncorrelated, but not vice versa. Uncorrelated variables are also statistically
independent if and only if their joint probability distribution F(x,y) is normal, which is
inferred from the assumptions of central limit theorem.[53] Therefore, when searching for
independence, the independent variables must not have normal distribution — they must be

non-Gaussian.

5.4.4 Non-Gaussianity

Many variables encountered in statistical theory tend to have normal distributions.[22] Some
authors also argue that this also applies to many physical quantities appearing in natural
environment. [15] The fact that ICA searches for non-Gaussian variables, precludes the
usage of ICA in many applications, where the wanted independent variables are assumed to
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have normal distribution. Independent components can be mathematically found, but they
probably will not correspond to real variables that were searched for.

The same fact also complicates application in hydrological time series modelling, although
not for the same reason. We are not searching for particular existing variables, only
independent underlying factors representing the behaviour of our data, and distributions of
these components are unknown to us. They need not to be normally distributed in terms of
the representation. However, for further modelling procedures the components to be as
normal as possible, because we estimate important characteristics, like auto-regression
parameters, from them, used in univariate models, which often use the assumption of normal
variables, as they are designed also to model normally distributed synthetic data. The
assumption concerns not only mean and variance, but also skewness and behaviour of tails.
[8], [39] Fitting of the autoregressive model requires that the probability distribution of the
modelled variable matches the distribution of the transformed sample from which the
statistics are estimated. The most desirable and easiest way to approach this restriction is to

model the synthetic data Gaussian with mean 0 and variance 1.[38]

A solution offers itself here: to apply normalization procedure only after the ICA
transformation directly on the estimated components. Normalizing will not affect their
independence after it was found. This is however non-trivial task as many widely used
normalization procedures, with effects that are desirable for hydrological modelling (such as
not magnifying the variance dispersion), work on data that are positive only, which data after
ICA transformation along with its pre-processing procedures never are. Even when applying
the fastICA algorithm alone, the algorithm, when maximizing the non-Gaussianity, will

reach for negative values.

Among possible solutions of this ICA property are to use normalization transformation that
can work also with negative values and yields desirable results, modify fastICA algorithm
S0 it ouputs positive data only, or to use different method of synthetic series generation such
as bootstrapping, or other resampling methods, that will accurately simulate even non-

Gaussian distributions.
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5.4.5 Measures of non-Gaussianity

First, a measure of non-Gaussianity must be established, in order to mathematically define
the search for the independent components in ICA. Among known measures are Kurtosis
and Negenthropy.

Kurtosis is probably more classical measure. Being the scaled version of fourth moment, it
tells us something about the behaviour of the peak and the tails of the distribution.[53] It can

be defined by general formula in Equation 5.1.

o = E[x*] = 3(E[x*])? (5.1)

Although for standardized variable we can write kurtosis as in Equation 5.2.[53]

G =E [(x — fﬂ -3 (5.1)

Ox

Same as for skewness, the kurtosis will be zero for Gaussian variables because the following

relationship will apply.[21]

E[x*] = 3(E[x*])? (5.1)

Kurtosis can take both positive or negative values (from -2 to infinity), which signifies so-
called super-Gaussian or sub-Gaussian distribution respectively.[53] Super-Gaussian
distribution’s PDF has spiky peak and heavy tails, and is much more common when it comes
to hydrological data, such as flowrate.[56] However, absolute value of kurtosis is being
usually used to measure non-Gaussianity. The problem with kurtosis is, that it is very
sensitive to ouliers and these are very common in streamflow data.[16] It is however much

simpler both computationally and theoretically than the latter method.
Negentropy

Negentropy is also being used as a measure of non-Gaussianity and is defined through
differential entropy, which is a concept from information theory. Entropy is sometime being
called measure of randomness — the more unpredictable a variable is, the higher its entropy
is. Mathematically it is defined as in Equation 5.3, where H(x) is entropy of variable x. For
vectors, modified definition can be used, called differential entropy, expressed in Equation
5.4.
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H(x) = —Z P(x = a;) - In[P(x = a;)] (5.1)

HOO = — f () - In[p(x)] - dx (5.1)

The most important feature of entropy for herein application is, that it is largest for Gaussian
variables. [10] as cited in [21] To obtain measure of non-Gaussianity, the definition of
differential entropy must be further modified into definition of Negentropy which contrarily
to entropy smallest for Gaussian variables — it is always non-negative and it goes to 0 for
Gaussian variables. The definition of Negentropy J(x) of vector xis as follows, in
Equation 5.3.

Jx) = H(Xgaussian) — H(x) (5-1)
The vector of random variables X qyssian IS Vector of Gaussian variables with the same

covariance matrix as x.

5.4.6 Ambiguities of ICA

Among ambiguities of ICA belongs unknown variances and signs of the components as well
as their order. Because of the nature of the transform it is impossible to determine the
variances of the independent components. When we are searching for the mixing matrix,
which is unknown, there is no unequivocal sole solution, because with different matrix with
columns multiplied by unknown scalar, or with matrix that is a linear combination of other
possible mixing matrices, we can accomplish similar results in terms of independence.
Because of the same reason, there is also no way to determine the signs the components.
Because of this ambiguity, the variances of all the components are sometimes being scaled
to 1, by diving the combinations with standard deviation. [21], [44]

However, in many applications, this ambiguity is not significant. [21] It is also not important
for multivariate hydrological time series modelling, where the goal is not to find components
representing some particular existing latent variables as that would be impossible, it is
sufficient to find components that are independent and represent the overall variance of the

multivariate data.
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5.5 Application of ICA to multivariate streamflow series

Before using Independent Component Analysis, we must first prepare the data. Some of
these techniques are not necessary but they can be very useful and can make the process of
estimation of ICAs much easier. It includes for example centering and whitening the input
data.

The inconsistency of synthetic data is a result from either bias (systematic error), lying within

the chosen techniques and procedures the model is based on, or from a random error.

The random error should not be significant for many utilizations of the modelled data,
especially when longer time series are modelled. When 10 000 years long time series are
being generated, it of course give more space for any random error, but they also lose
significance at least in terms of sample statistics and long term behaviour parameters of the
system. However random error can cause for example generation of unrealistically high
flowrate at certain point of the time series, which might affect some tasks the series is being

used to solve, e.g. frequency analysis and related applications.

The bias on the other hand, is of more concern. It can be stored within applied

transformations or methods used to achieve the deterministic component of the model.

5.5.1 Standardization

By standardization it is here meant making the data zero mean with standard deviation equal
to 1. We can achieve centering of the input data simply by substracting the mean from the
time series (4.1). This will make the data zero mean, which is done solely to simplify the
upcoming process. When we also divide each time series or its part by standard deviation,
we then achieve in having data sets that are scaled to the same variance (and standard
deviation) of 1, which also simplifies next processeces. Standardized variable is denoted as
X0, and computed as in equation 4.1.

_x—E{x}

Xo O'— (41)
x

5.5.2 Whitening

Whitening is another process that can help prepare the data for further analysis. It is a linear

transformation which transforms elements of a vector into new vector whose elements are
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uncorrelated. Covariance matrix of the original vector is used for this transformation, hence

it must be known.[21]

The whitening transformation will convert the input vector into white noise vector whose
covariance matrix is an identity matrix (the elements have no correlation with each other and
they all have variance equal to one), as expressed in Equation 4.5, where X is the whitened

vector.

ERRT) =1 (4.5)

One of the ways how to perform whitening transformation is to use Eigen Value
Decomposition, denoted as EVD. The EVD can be applied to covariance matrix of original
vectors and it will yield corresponding matrix of eigenvectors E and diagonal matrix of
eigenvalues D. Eigenvectors are important mathematical elements with convenient
properties when using linear transformation matrices. Eigenvector e of linear transformation
matrix A does not change direction when this transformation is applied to it, it only changes
scale by A, which is its corresponding eigenvalue.[45] This relationship is represented by

Equation 4.6.

Ae = le (4.6)
After finding the matrices E and D, they can be used to create new matrix V which will
perform the required transformation process. There are more ways how to create the
whitening transform matrix V, one is represented in Equation 4.7.[31], [54] Transformation

of vector x into white noise vector z is then expressed in Equation 4.8.

V = D 1/2ET (4.7)

z = VX (4.8)

5.5.3 Normalization transformation

Real streamflow data is never truly normal. By common sense, it is understandable that the
probability distribution or the PDF of streamflow data goes to zero very quickly on the left
tail from the mean as it cannot exceed to negative values of the horizontal axis. On the right
tail on the other hand, there are extremes, even thought they might be scarce, very far from

the mean, making the PDF to converge to zero much more slowly. This phenomenon is
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called heavy right tail, and we speak of heavy-tailed distributions, which is, by definition,
every distribution whose tail is heavier than the tail of an exponential distribution. [8]

Box-cox power transform

Box cox is type of power transformation where simple objective function is employed to
find optimal coefficient A, that is subsequently used as a power in following Equation 5.3.
Its advantage is, that it deals very well with non-normally behaving tails. Unfortunately for
our application, it also has wo major disadvantages. One is that being a very strong
transform, it can very sensitive to outliers, unnaturally boosting variance in its reapplication
after synthetic data generation. The second disadvantage is, that in its original form, it cannot
be reapplied to negative data, which synthetic data generated by AR model always contain.
Result of the reapplication on negative data would result in complex numbers and modified
version of the transformation needs to be used, like the one in Equation 5.4, if one wishes to

employ Box cox power transform.

(5.3)

y=x* (5.4)

3-Parameter Log-Normal transform

One of the ways to normalize is through defining so-called 3-Parameter Log-Normal
distribution.[43] To normalize variable x, it is searched for variable y, defined in Equation
4.0.

y = In|x — x| (4.8)
If this variable y has normal distribution, which is what is needed, the variable x has log-
normal distribution, defined by three parameters u,,, o,, and x,, expressed in Equations 4.0,
4.0 and 4.0, where c expresses coefficient of variation and for the 3-parameter log-normal
distribution is defined through relation with skewness of x described in Equation 4.0. The
three parameters express the mean and standard deviation of the sample space of y and a
shift of the distribution, respectively. The shift parameter is present to smooth the asymmetry

of the distribution of x. Its PDF can be written as follows, in Equation 4.0.[43]
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e
|x — xoloyV2m

p(x) =

o

=1Ino, —In|c| = 0.5In(1+c?) =1In (—x> 4.8
Hy = In oy dViTe 2
o =In(1+c?) (4.8)

1
Xg = X — — Oy (48)

c
c3+3c—kKk,=0 4.?)

The way to find y is to find the shift parameter x,, such that the expression Equation 4.7 is
true. The skewness k, of variable x is within this setup defined in Equation 4.8, but in order
to find ¢ and subsequently x,, the k, is computed in standard way, as in Equation 4.1.[43]

= (% 1 2) e — 1 “8)

5.5.3 Independent components estimation

As it was explained, we are looking for components that are as independent as possible. As
it was described in section 5.3.4 the components ic will be independent when their PDFs are

factorizable as in equation 4.9.[53]

p(icy,icy, ...,icy) = p(icy)p(icy) ...p(ic,) (4.9)
The independence can be searched for by looking for maximum non-Gaussianity. That is
true, because of the logic of central limit theorem. If the components were Gaussian, their
PDFs could be factorizable even if they are not truly independent by origin, but their
“independence” could still be proved. With components that are not non-Gaussian, the
estimation is not possible. There is an exception allowing for at most one of the independent

components being Gaussian.[22]

5.6 Comparison of PCA and ICA

Main purpose of PCA, for which was this technique originally intended, is to maximize

variance. In water management, we are using also its orthogonality and uncorrelatedness
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properties, although these are part of the method mainly to ensure that each of PCs are
expressing separate factors. For ICA the separation of components is its main objectives and
has more demanding requirements for unrelatedness of the components, as it aims for them
being not only uncorrelated but also statistically independent and that not only for Gaussian
variables.[53] [26]

Uncorrelated variables with Gaussian distribution are also independent if their joint
probability distribution is also Gaussian. For that particular case, PCA can be viewed as an
equivalent to ICA and ICA can be considered as generalization of PCA to non-Gaussian
data. In scientific community it is sometimes considered that PCA assumes normality of
data, but that is not by any means necessary, unless one wants to find principal components
with statistical independence (in mathematical definition-wise sense) and does not want to,

for any reason possible, use ICA.[2] as cited in [26]

Generally, PCA can be used to reduce a data set’s dimension before ICA algorithm is applied
to it. When dealing with high-dimensional entries it can significantly reduce computational
difficulty of the iterative algorithm. However sometime reducing dimension of your source
data might not be desirable and it that case the one might want to use PCA mechanisms just
to pre-process data for ICA by making them uncorrelated and standardized.[2] Eigenvalue

or singular value decompositions are commonly being used for this purpose.[54], [31], [22]
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6. MATHEMATICAL MODEL
6.1 Introduction and goals of the mathematical model

6.2 Structure of the model

Whole model was coded in MATLAB R2015a, MathWorks software as a function with

variable inputs.

6.2.1 Input data

To simplify the work with source data it is convenient to put all the flow rate time series as
input vectors in one matrix Q, where each vector represents one station. They are being
ordered vertically, so columns correspond to stations and rows correspond to observations
at the same time, as in Equation 6.1. We can call the matrix Q the input matrix. Obviously,
all the vectors must be of the same length [ and the resulting matrix is then of dimensions

[ X n,where n is the number of time series (number of stations).

d11 @21 - dm
Q= qs12 q22 - q?z 6.1)
qu 4921 - qn

But technically we will view the source data set as vector q of random variables q; where
i =1..1, Equation 6.2.

q1
q=1% (62)

q

The matrix Q can contain any number of time series of any length, the model performs the
procedures independently on the dimension of the input matrix. While this does not affect
its functionality, it may significantly affect the computing time and there is no information

whether it might affect the efficiency of PCA, although there is no reason to believe so.

6.2.2 Pre-processing

Normalization transformation
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Although it is listed here as pre-processing transformation, because it does not have a
significant impact on PCA or ICA in terms of looking for uncorrelated or independent
components, it is very important part of the process of time series modelling, and the choice

of normalization method has fundamental implications.

To check if the normalization transformation succeeded, the Kolmogorov—Smirnov one
sample test (KS test), named after Andrey Kolmogorov and Nikolai Smirnov, was used. It
IS @ nonparametric test used to compare the probability distribution of tested sample, with
reference probability distribution, such as normal distribution. The transformed time series
is taken, standardized and compared with standard normal distribution.[46] In MATLAB the
corresponding function to execute this test is [h,p] = kstest(x,y). The null hypothesis is that
the tested sample comes from a standard normal distribution, which is either accepted

resulting in h is 0, or rejected at significance level alpha (implicitly 5%), resulting in h is 1.

y="2 &)

y =x* )

Standardization

Very simple standardization transformation is used in this model. The aim is to make the
data zero-mean with standard deviation equal to 1, as was explained in section [5.6.1]. To
do that, the normalized time series N is taken, from which mean is subtracted for every
column in every month matrix and then it is divided by its standard deviation, as expressed
in Equation 6.1, resulting in standardized times series S.

Spun = mmn ~ Nnn 6.1)

UNm,n
Although some methods of normalization, as for example the MATLAB built-in Box-Cox
transformation, already make the data zero mean, it won’t affect the data to subtract the mean
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in every case again in standardization process and it might prove helpful in case the
normalization method is changed, so we do not need to change the standardization and de-

standardization procedures already implemented within the model.

6.2.3 Employment of Principal Component Analysis
6.2.4 Autoregressive model

6.2.6 Reverse transformations and interpretation of data

6.3 Verification of the model

6.3.1 System of stations for verification of the model

The constructed model was verified on system of stations in Moravian-Silesian region in
Czech Republic (hereinafter CR). All stations belong to the same watershed of river Odra.
It is a 850 km long river, out of which 112 km is in Czech Republic, where it starts. Its spring
can be found in hill formation Oderské Vrchy in region of Olomouc, from where it goes
north-east to city of Ostrava and then crosses the border to Poland. Table 6.1 contains names
of the stations, the streams they are located on and their average long-term annual flowrate
Q.. From now on, the stations are referred to only by their corresponding numbers in Table
6.1.

Details of these station can be found on webpage of national organization Povodi Ohie. [57]
Approximate locations of the stations within the region are shown in map of the region in

Appendix 1.

Table 6.1
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Number Station

1 KS Svinov

2 VD Kruzberk

3 Déhylov

4 VD Sance

5 VD Moravka

6 Vysni Lhoty

7 VD Olesna

8 VD Zermanice

9 Slezska Ostrava
10 Cesky T&sin
11 VD Térlicko
12 Véiovice
13 Reka

Stream
Odra
Moravice
Opava
Ostravice
Moravka
Moravka
Olesna
Luc¢ina
Ostravice
Olse
Stonavka
ORse
Ropicanka

SYSTEM OF STATIONS in ODRA WATERSHED
Qa [ma3/s]

12.135
5.784
14.788
3.148
1.7
3.355
0.392
0.552
13.523
7.329
1.226
15.521
0.304

This thesis is focused on methodology of construction of the model itself and uses arbitrary

historical data only to evaluate the model’s performance, without consideration of possible

water management implications to examined stations. Data that were chosen for this purpose

were already used in similar research and their homogeneity and consistency were already

evaluated. Critical assessment of the input data as it was described in section 4.7.1 is

therefore not included here.

Number

2 VD Kruzberk
4 VD Sance

5 VD Moravka

7 VD Olesna

8 VD Zermanice
11 VD Térlicko

Reservoir Name

Table 6.2 [58]
STATIONS with WATER RESERVOIR
Storage Capacity Watershed area Dam Height Flooded Area
[mil. m®] [km?] [m] [ha]

24.6 567.0 34.5 280.0

43.1 146.4 65.0 337.0

4.9 63.3 39.0 79.5

35 33.6 18.0 88.0

18.5 45.5 32.0 248.0

22.0 82.0 25.0 267.6

36



During the 36 years long period, two outstanding flood events can be seen. One is from July
of 1997, and second from May of 2010. Both event affected mainly eastern part of Czech
Republic and Silesia, if we restrict our interest on Czech country only. The 2010 event was
considerably smaller in scale than the one from 1997, but both represent exceptional

incidents within such short period of time.

In terms of statistics, in May 2010 the flows were estimated to have return periods 20 to 50
years in most of the watercourses in Odra and Morava watersheds, in watershed of river Olse
(part of Odra watershed) the flows exceeded 100 years values. In July of 1997 the flows had
estimated return periods at least 50 years in most watercourses, many exceeded 100 years
and at least one river (Opava) registered discharge with return period significantly higher
than 100 years. Table 6.3 summarizes the estimates on return periods as a result of research

conducted on the records of the two events. [59]

Table 6.3; [57, p. 48]

FLOOD EVENTS of 1997 and 2010 in ODRA WATERSHED

Culmination flow Return perion

Stream Station July 1997 | May 2010 | July 1997 [ May 2010

[m%s] [m®/s] [years] [years]

Odra Ostrava-Svinov 688.0 404.0f >100 20-50

Opava Opava 647.0 76.9| >>100 2-5

Ostravice Ostrava 898.0 780.0 50 20-50

Odra Bohumin 2160.0 1070.0f >100 10-20

Olse Vérnovice 673.0 1030.0 20-50 > 100

Table 6.4 [57]
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RETURN PERIODS for SYSTEM OF STATIONS in ODRA WATERSHED

Station Stream
1 KS Svinov Odra
2 VD Kruzberk  Moravice
3 Déehylov Opava
4 VD Sance Ostravice
5 VD Moravka  Moravka
6 Vysni Lhoty Moravka

7 VD Olesna Olesna

8 VD Zermanice Lu&ina

9 Slezska Ostrava Ostravice
10 Cesky Tésin ~ ORe
11 VD Térlicko Stonavka
12 Véovice ORse
13 KS Smilovice ~ Ropi¢anka

Q1

128
52.6
101
52.8
21.8
35.4
9.6
16.2
186
110
27.8
182
7.32

Q2

180
75.5
150
84.9
39.4
57.7
15.8
23.3
280
164
40.8
267
12.3

Q5

258
111
228
132
67
96.5
26.9
34.1
431
249
61.2
399
20.2

Q10 Q20
322 392
140 173
296 371
170 211
9.7 117
133 175
374 499
433 533
565 714
323 405
788 981
512 637
27.2 35

Q50

491
219
482
267
155
241
69.6
67.7
936
525
127
819
46.4

Q100
571
258
576
313
187
300

87
79.5
1120
626
150
970
56.2
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7.  RESULTS AND DISCUSSION

7.1 Testing the synthetic time series

This section of thesis aims to test the synthetic times series generated with the constructed
model with water management problems that are commonly being solved based on
streamflow time series. These problems involve following solutions.[34]

a) Requirement for supply storage capacity in a water reservoir and the reliability with
which this capacity ensures unimpaired water supply at required rate, along with
function expressing volume of water present in the reservoir in progress.

b) Operational function expressing relation between required for supply storage

capacity and required improved outflow at given level of temporal reliability.

7.1.1 Water Supply Reliability function - WSR - ad a)

This function is dealing with basic water management solution. Requirement for supply
storage capacity is computed, such that the required reliability of the reservoir is satisfied. It
also produces plot of function expressing volume of water present in the reservoir in

progress. The way WSR works is summarized in computational diagram, in Picture 7.1.

Following table show requirements for both historical and synthetic data, while the synthetic
time series used as an input were 100 years long and the values of required storage capacities

were averaged throughout 50 runs.

Table 7.1
Water Supply Storage Capacity requirements
Stations 1 2 3 4 D) 6 7 8 9 10 11 12 13

Historical data [mil.m®] | 8510 3150 8150 1470 880 17.60 3.00 400 77.90 3460 920 7270 2.00
Synthetic data [mil.m*] | 8309 3456 8308 19040 974 1930 2090 349 7405 3991 803 7423 170

39



WATER SUPPLY RELIABILITY FUNCTION (WSR)

Picture 7.1

Flowrate timeseries Condition True
Number of second
current mont 1n current mont
h » i h
dt
). {\verage flowrate Local input Local
in current month input
Q¢ v P
Improved outflow Global input > Balance equation ¢
% —>  X=Vy+dtHQq - dt*Q,
Initial volume in Global input
storage capacity D Next step
Vi(0) =V, t+1
Condition Balance function
V=0
t Ve=max{ 0 ;min {X:V}}
True
Temporal Number of New vear = 1
realiability |q—— failure months B Y <
Legend:
l —  Newyear=0 Inputs and
variables
Conditi A
ondition .
New year = 1 <« Equations
Functions
True
Occurence Number of Conditions
realiability |\ g—— failure years Global
P,
Y +1 outputs
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7.1.2 Water Reservoir Operation function - WRO

One of the exercises that has been used to study the behaviour of a time series, is Water
Reservoir Operation function. It gives us relation between required storage capacity and
different demanded improved outflows secured at given constant temporal reliability. It is a
complex water reservoir management solution and elementary characteristic of any water

reservoir.

Computing reservoir function involves iteration process, where for selected improved
outflows, small volumes of storage capacity are added with each iteration to the reservoir
characteristic, until the required reliability is secured. The smallest storage capacity which
will satisfy that condition is the function output for that given improved outflow. The process

is described in its computational diagram in Picture 7.2.

Picture 7.2

WATER RESERVOIR OPERATION FUNCTION (WRO)

WSR function )
Improved outflow | Globalinput (Global input
Qi #|  Computes temporal
reliability P,

Initial capacity Local input ) [Pl=wsr(V,Q,) Local input
V=0 <

Required temporal | 1obal input Lﬂcal
reliability nput
Pi,req
Condition true Add capacity
Legend: Py <Pireq — > v=v+av
Inputs and
variables
Functions false
iti Next ste i
Conditions WRO function output Xt step Chan§§tgrcl)[:oved
wro N=Veq=V [
Global (9n1)=Vareq Qn = Quji+1
outputs

Operation function is very useful tool for evaluation process of model’s performance and an

important indicator of its correctness. Classic time series models are usually performing very
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good in terms of reproducing time series with the same sets of statistical moments. Especially
low order moments are easily determinable and quite simply manageable, for the
transformations built within the model are based on the identification of these characteristics
and in case of their insignificant deviation from desired values, due to the unreliability of the
stochastic component, uncomplicated correction techniques are available to
deterministically achieve output with desired properties. However not only the preservation
of overall statistics is important, but also accurate simulation of long-term and short-term
behaviour of the time series represented by fair appearance of characteristic events like
drought periods or flood flows and their realistic succession. This is difficult to express
mathematically. The behaviour of synthetic time series can be examined by experienced eye
of a researcher directly from a plot of the time series, but this can be very subjective and
time consuming and the results are difficult to quantify. One way to examine realisticness of
the time series behaviour is through operation function. The function plot can represent
several scenarios in scaled and compact figures, where the behaviour of time series is
represented by simple exponential-like curve based on the ability of the time series to satisfy
certain conditions. This way we can easily compare the “performance® of synthetic time
series with the one of the historical time series, judge the deviations and make conclusions
about the performance of the model.

It is necessary to mention that the structure of the WSR function was substantially simplified
compared to the real solutions in practice. For example, the evaporation element was left out
of the function, simply because its computation would require Depth-Area-Volume function
data, which is a fundamental characteristic of any water reservoir. This characteristic is
obviously unavailable for the stations where there is no existent reservoir and therefore
implementation of the evaporation element would require design of possible reservoir
solutions and that was beyond the reach of this thesis. However, while this would certainly
hold an impact on the applicability of the WSR function in practice, it does not affect herein
application, because we omit the respective elements in both historical and synthetic data
processing and this simplification can be safely used without the loss of representativeness
of the method.

For improved flows a vector of 20 values was used, starting at 20% and ending at 80% of

long-term annual average of historical data of corresponding station.
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7.2 Testing tools

In this section, tools used to evaluate behaviour of both synthetic and historical time series
are presented and their mathematical background is explained. It includes commonly used
parameters of water reservoirs, like temporal and occurrence reliability or required supply
storage capacity. Several significance tests which were used to determine whether statistical
characteristics of the modelled water system were preserved in the synthetic system, are also

presented.

7.3.1 Temporal and Occurrence Reliability

Temporal reliability is the primary parameter of water reservoir that is being used here to
determine sufficient storage capacity. To determine temporal reliability, empirical
probability estimate is used, based on the number of months the reservoir fails to provide
sufficient water supply with given supply storage capacity. As from the definition of
empirical probability, which is defined by the ratio of the number of outcomes in which the
given event occurs to the total number of trials [37], ratio of the number of months the
reservoir did not fail to meet the water demand to the total number of months is used to
assess the temporal reliability. The ratio is being expressed through Cegodajev empirical
probability formula [14], as in Equation 6.1, where [ is the total number of months and f;,

number of failure months.[29]

(= fw) =03

— 6.1
P [+ 0,4 (6.1)

Occurrence reliability is another measure used to evaluate the storage capacity requirement.
It is very similar to temporal reliability, but instead of months it uses years in which the
reservoir does not meet the requirements - ratio of non-failure years to total number of years
is used. A year is considered as failed if it contains at least one failure month. The formula

is expressed in Equation 6.1, where £, is the number of failure years.[29]

l
(5= £)-03
o= ]

ﬁ+0’4

(6.1)

Level of reliability required differs and depends on size of the reservoir and its purpose. For
large water reservoir, supplying water for civil usage, the demanded temporal reliability is
usually 99.5%.
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7.3.2 Two sample T-test for sample means and variances

Other test conducted on the simulated data was evaluation of deviation of sample statistics
between synthetic and historical time series. Classic two sample t-test was used for this
evaluation, testing the null hypothesis that both observation samples have equal means and
variances and they are coming from independent random sample spaces. T-test is a type of
parametric test that uses the significance level a upon which it rejects or accepts the null
hypothesis. Second output of the t-test is the p-value, which is being compares to the limit
level of significance, at which we still rejects the null hypothesis — we reject the hypothesis,
if p is smaller than «.[47] MATLAB function [h,p] = ttest2(x,y), was used for this test. The
result h is 1 if the test rejects the null hypothesis at the significance level a (implicitly 5%),
and 0 otherwise.[35]

The test was to determine whether the model preserves sample means and variances in whole
time series but also across month samples. For example, sample mean of all monthly
flowrate averages in Novembers in historical data were compared with those in synthetic
data and so it was done for all months and for each station. Finally, whole sample means
were compared.

Zero values signify that the null hypothesis was not rejected and means and the variances
were not significantly different for the historical data and the modelled time series. Non-zero
values mean rejection of the null hypothesis and at the same time they express the p-values
upon which the hypothesis was rejected. They are therefore all smaller than the 5%

significance level a.

7.3.3 Two sample correlation significance test using Fisher’s procedure

Following method was used to compare pairs of correlation coefficients. The two sample
correlation significance test is testing null hypothesis that a correlation of two samples from
one time series is the same as a correlation of the same corresponding two samples from
second time series. Procedure introduced by R. A. Fisher in 1921, explained in following

equations, was implemented in the test.[12] as cited in [55]

First the two correlation coefficients being compared are transformed by the Fisher’s
transformation as in Equation 6.1, then the searched statistic is computed by Equation 6.1,
where n is the size of the sample - number of observations, used to compute corresponding
coefficient. [55]
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p'=l-ln(1+p) 6.1)

_ lp1 — P2l
\/ 1 1 (6.1)

n1—3+n2—3

The p value is then computed standardly through normal distribution function Normal CDF

with zero mean and variance of 1, as in Equation 6.1.[53]

1 (? —z?
p=2-(1-F(z01) = \/7_”]_ exp (T) dt (6.1)

The value is than compared with the chosen significance level — here 0.05. If p is smaller

than the the significance level, the null hypothesis is rejected.

7.3 Preservation of basic sample statistics

Because of the employment of the correction techniques, which directly reapply the sample
mean and variance of the historical data to the synthetic time series, these two statistics are
always preserved without error, if we compare only the end data. Following table proves
that. It shows the percentages of cases in which the mean and variance were significantly
different between the historical and synthetic time series, which is tested by the two-sample
t-test from section 7.3.2. All of the results are zero, signifying that the test’s null hypothesis

was never rejected.

Table 7.1
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Mean and Variance comparation - two sample Student Test's percentage results
Stations| 1 2 3 4 5 6 7 8 9 10 11 12 13

Xl 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
Xl 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
| 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
I 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
I 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
[\ 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
V 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
VI 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
VII 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
VIII 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
IX 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
X 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%
Q 0% | 0% [ 0% | 0% [ 0% | 0% [ 0% | 0% | 0% | 0% | 0% | 0% | 0%

Same percentages are shown in Table 7.2, signifying cases in which the synthetic time series
had significantly different probability distribution, which is tested by the classic

Kolmogorov-Smirnov two sample test.

The percentages higher than 15% are highlighted by red colour. The 15% limit was chosen
arbitrarily. As you can see, the model preserves fairly the distributions of values in vectors
comprised of the same month. The least pleasant behaviour can be seen in July’s data. This
is probably due to the higher variance of July’s averages across years, even in the historical
data. In July, both major flood events and severe droughts can occur. However, the model
does not perform very well in preserving the distributions of the time series as a whole. This
can be caused by the structure of the model itself, as it is applying individual transformations

separately on every month.

Table 7.2
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Distribution comparation - two sample Kolmogorov-Smirnov Test's percentage results

Stations | 1 2 3 4 5 6 7 8 9 10 11 12 13
Xl 0 ]101% 0 0 0 0 ]101% 0 0 0 0 0 0
Xl 0 ]101% [ 0.4% 0 0 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0 0

[\ 0.1% 0 0 0 0 0 ]101% 0 0 0 ]101% 0 0
V 10.3%| 0 [ 0.3% | 0.5% | 0.2% | 0.3% [14.5% | 0.9% | 3.8% | 4.9% | 0.2% |15.7% | 0.3%
VI 01% | 21% | 1.9% 0 0 0 ]101% 0 0 0 0 0 0
VIl 180.2% [61.8% | 76.5% [ 11.6% | 13.9% | 11.7% | 55.1% | 2.3% | 18.4% | 8.7% | 1.0% | 4.9% | 3.9%
VI 139.8%| O 0 105%[12% ] 0.2% |28.0%]| 1.2% | 0.3% 0 ]15.0%( 0.4% 0
IX 8.7% | 6.6% | 0.5% | 3.6% | 4.7% [ 54% | 1.1% | 1.5% | 0.9% |[10.8% | 1.0% | 0.7% | 0.4%
X 3.7% [22.7% | 3.5% 0 0 0 ]103%|03%]| 0.2% 0 0 0 0
Q 99.8% [91.3% | 80.0% | 66.9% | 34.7% | 49.5% | 99.5% | 76.1% [ 41.2% | 45.2% | 77.5% | 34.7% | 8.0%

Table 7.3

Stations| 1 2 3 4 5 6 7 8 9 10 11 12 13
Xl 0 2.8% 0 0 0 0 2.8% 0 0 0 0 0 0
Xl 0 2.8% | 2.8% 0 0 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0 0 0 0

1l 0 0 0 0 0 0 0 0 0 0 0 0 0

v [28w] 0 0 0 0 0 [28%n] o 0 0 [28%] o0 0
V. [23n] 0 [28%]28%]28%][28%][22%|26% | 25% | 2.5% [ 2.8% [ 2.3% [ 2.3%
Vi [28%|27%[24%] 0 0 0 [o6n] o 0 0 0 0 0
VIL [ 13% [ 1.7% | 1.3% | 2.4% [ 2.2% [ 2.0 [ 1.8% [ 2.4% [ 2.0 [ 2.4% [ 2.3% [ 2.4% | 2.3%
Vil [19%] o 0 [28% [ 23% [20%]20%|28%|18%] 0 [22%[28%] 0
IX [24% ] 24% ] 28% [ 2.4% [ 25% | 2.4% | 2.8% | 2.6% | 2.8% | 2.3% [ 2.8% [ 2.8% | 2.8%
X [25%[22%]26%] 0 0 0 [28%|28%[28%]| 0 0 0 0
Q [04%[15%][18%][23%][29%]27%]03%]19%]27%][27% [ 1.9% [ 3.0% | 3.4%

Following table — Table 7.2 a), shows summary of the Table 7.2, making averages of the
percentages firstly only for monthly values, secondly for the full series comparison and

finally it shows total error of the table by making an average of the entire table.

Table 7.2 a)
Total error in equal distribution test within months 3.66%
Total error in equal distribution test within full series 61.88%
Total error for entire table 8.13%

7.4 Examination of correlation coefficients

Two basic sets of correlation trends were examined:
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1) Autocorrelations of months with previous months - The first set show the inner
autocorrelation structure of individual stations. By examining the set, it is aimed to
determine whether the model preserved inner time dependent and periodical
behaviour of the individual historical time series. This could be also done separately
for each station.

2) Cross-correlations between stations — The second set represents matter of higher
interest in this thesis. It shows us both temporal and spatial dependence of stations
with each other, which the very thing the model aims to preserve and replicate. By
temporal dependence it is meant time-coordinated behaviour - if an event occurs in
one of the stations, the other stations, being in its proximity, behave accordingly
always with similar time response, depending on the extent of the event of course.
By spatial dependence, it is meant the similarity of behaviour based on their mutual
distances and their topographic relationships — an event cause by natural
phenomenon, like precipitation, in one of the stations, probably affects by certain

measure other stations in its proximity, depending on the extent of the phenomenon.

7.4.1 Autocorrelations of months with previous months —ad 1)

At first were tested coefficients expressing correlations of each month average flowrates
with previous month average flowrates throughout the whole observed period. For example,
vector of flowrate averages in all Novembers in station 1 were taken and compared with
vector of flowrate averages in all Octobers. Finally, autocorrelation with lag 1 for vector
with all months was computed, i.e. relationship between a times series and latter itself,
shifted by one month (one value). This was done for the historical time series, then for the
synthetic one and then were these pairs of correlation coefficients compared by the

two-sample correlation significance test using Fisher’s procedure, described in section 7.3.3.

Table 7.4 shows autocorrelation structure for the historical data and Table 7.5 shows
averages of correlation coefficients for 1000 generated time series. Row labels with months
represent correlation between the month on the label and its previous month. Final row
represents full time series autocorrelation. The tables are colour-scaled with red colour for
positive correlation, blue colour for negative correlation and white cells are those with very

small or no correlation at all. Higher saturation means stronger relationship.
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It is clear from the tables, that the structure for historical data is much more chaotic, while
the structure for synthetic data is much more homogeneous for individual months. This is
obviously by main part caused by the fact that the table for historic data represents one single
scenario, while the table for synthetic data is smoothed by 1000 runs making the values to
converge to correlation figures of the modelled population. Also there are no negative
correlations in the synthetic data, but that can be of no significance, as the very few negative
correlations in historical data are very week and their reproduction in synthetic time series
can be assessed as unimportant. However, some considerable difference can be spotted and

their significance will be assessed in following paragraph.

Table 7.4

Autocorrelation coefficients for Historical Time Series
4 5 6 7 8 9 10 11 12 13

043 | 044 | 0.40 | 047 0.47 | 0.39
-0.02 | 0.05 | 0.08 030 | 0.21 ] 010 [ 029 | 0.20 [ 0.11

020 | 014 | 0.09 [ 0.21 [ 0.09 | 0.08 | -0.01 | 0.10 | 0.13 | 0.01
0.07 | 0.08 | 0.13 [[-0.04] 0.09 | 0.04 | 0.11 [ 0.06 | 0.07 | 0.05

I 018 | 0.23 [ 018 [ 0.21 | 0.13 | 0.16 | 013 | 0.09 | 0.17 | 0.02 | 0.12 | 0.07 | 0.15
[\ 0.27 | 021 | 0.32 | 0.03 | 0.08 | 0.23 | 0.15 ] 0.16 | 031 | 0.35 | 0.21 | 0.33 | 0.27
\ 0.38 0.01 | -0.01 | -0.01 | 0.11 | 0.05 | 0.02 | -0.02 [ 0.07 | -0.03 [ 0.01
VI 017 | 046 | 011 | 0.27 [ 029 [ 038 | 0.13 | 0.32 | 0.26
VII 0.05 | 0.06 | 0.02 [ 0.36 | 0.37 [ 0.21 | 0.07 [ 0.13 | 0.17 | 0.19 | 0.18 | 0.13 | 0.09
VIII 0.13 | 038 [ 0.20 [ 0.02 | 0.07 | 0.10 | 0.07 | 0.10 | 0.09 | 0.08 | 0.10 | 0.08 | 0.08
IX 0.08 | 0.37 | 0.20 0.00 | 0.02 | -0.03 | 0.09 | -0.01 | 0.10 | -0.01 [ 0.07 | 0.08
X 0.46 031 ] 043 ] 039 020|014 | 030 | 028 | 019 | 0.32 | 0.32

Q 0.27 | 045 | 035 | 020 [ 020 | 0.23 | 0.13 | 0.19 | 019 | 0.21 | 0.16 | 0.19 | 0.21

Stations | 1 2 8 4 5 6 7 8 9 10 11 12 13

Xl

Xl 022 ] 025 | 024 | 022 [ 022 | 0.22 | 0.21 | 0.21 | 0.23 | 0.22 | 0.23 [ 0.22 | 0.22

| 012 | 007 | 010 | 010 | 011 [ 011 ] 0.11 [ 013 | 0.14 | 0.13 | 0.13 | 0.14 | 0.12

Il 0.09 | 012 [ 0.11 [ 0.08 | 0.08 | 0.08 | 0.10 | 0.09 | 0.06 | 0.06 | 0.07 | 0.06 | 0.06

I 017 | 017 | 018 | 0.16 | 0.16 [ 0.17 | 0.14 [ 015 | 0.18 | 0.18 | 0.16 | 0.18 | 0.17

v 023 ] 025|027 | 020 [ 021 | 0.24 | 0.19 | 0.19 | 026 | 0.25 | 0.19 [ 0.25 | 0.25

V 010 011 | 011 | 010 | 0.11 { 011 ] 0.09 [ 0.10 | 0.11 | 0.10 | 0.10 | 0.11 | 0.11

VI 028 | 025 | 026 | 0.26 [ 0.26 [ 0.30 | 0.27 | 0.28 | 0.31 | 0.29 | 0.27 | 0.30 [ 0.30

VII 022 { 020 019 | 018 ) 021 | 023 | 021 | 0.21 | 0.23 | 0.22 | 0.21 | 0.23 | 0.21

vill .
IX | 018|027 | 021
X

Q 026 030 | 025 ] 0.6 | 028 | 0.22 | 0.26 | 0.28 | 0.26 | 0.5 | 0.26 | 0.30
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Next two tables, Table 7.6 and Table 7.7, represent the two-sample comparation test’s
results. By the same logic as in the two-sample test of equal means and variances, or
distributions, the first one (7.6) gives us percentages of runs when the null hypothesis was
rejected, and the second one gives us average p values upon which the hypothesis was
rejected, counting only cases when it was actually rejected. For example, the autocorrelation
coefficient of Novembers with preceding Decembers in station 1, was significantly different
in 1.7% of cases (first row, first column). Zero values signify that the null hypothesis was
never rejected for that particular relation and the correlation coefficients were never
significantly different for the historical data and the modelled time series. The table 7.6 is
arguably the most important one, because it shows something about how similarly to the
historical data the synthetic time series behave and therefore it tells us something about the

model’s performance.

The percentages higher than 15% are highlighted by red colour. As you can see, the
autocorrelation structure of the series was not disrupted by the model too often in many
places as substantial majority of values is smaller than 1% or even 0. It however highlighted
problematic periods especially in stations 2 and 3, namely autocorrelation at lag 1 for
Novembers, Januaries and Mays, where the structure was disrupted significantly. Cross-
referencing the locations of these deviations with correlation coefficient in tables 7.4 and
7.5, it is clear, that this has been caused by sort of systematic error of the model, rather than

being a result of weak autocorrelation or unpredictability of relevant periods.

Table 7.7, as expected, corresponds to results in Table 7.6, and top of it, it shows that the p
values are not critically small, most of them being between 3-4% meaning that the
hypothesises were not far from the rejection limit, set at 5% significance level. Values below
1% are highlighted by yellow colour, pointing to spots with largest probability of different

values in terms of autocorrelation.
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Table 7.6

* Autocorrelation coefficients cbmparaﬁon - two sampie Fisher's Test's percehtage results

Stations| 1 2 3 4 5 6 7 8 9 10 11 12 13
Xl 1.7% |88.9%|87.3%| O 0.2% 0 0.6% | 4.0% | 0.1% 0 1.3% 0 0.1%
Xl 1.6% 0 1.7% 0 0 0 19.7% | 0.8% | 0.1% 0 0.3% | 0.2% 0
| 6.9% |58.6% [60.0% | 1.3% | 0.2% | 0.2% | 1.6% | 0.1% 0 0 0 0.1% 0
I 0 0.2% | 0.4% | 0.4% | 0.5% | 1.1% 0 0.1% | 0.3% | 0.5% | 0.2% | 0.2% | 0.2%
1] 0.2% | 0.8% | 0.1% | 0.5% | 0.3% | 0.3% | 0.2% 0 0.3% | 0.1% | 0.2% 0 0.2%
v 0.2% | 0.6% | 0.8% 0 0.1% | 0.5% 0 0 0.3% | 1.9% | 0.3% | 0.4% | 0.6%
\Y/ 15.1% [ 62.8% | 36.0% | 0.1% 0 0 0.2% | 0.1% 0 0 0 0 0
VI 15.6% [ 15.6% | 11.4% | 14.5% | 0.1% | 4.2% 0 0 0.1% | 1.4% 0 0 0
VIl 0 0 0 |[42% | 3.2% | 0.2% 0 0.1% 0 0 0.1% 0 0.1%
VIII 0 1.2% 0 0 0 0 0 0 0 0 0 0 0
IX 0 1.6% | 0.2% 0 0 0 0 0 0 0 0 0 0
X 1.3% | 5.2% | 3.9% 0 0.6% | 0.3% 0 0 0 0 0 0 0.2%
Q 1.1% [11.6% | 5.3% 0 0 0 0 0 0 0 0 0 0

Table 7.7

Stations| 1 2 3 4 5 6 7 8 9 10 11 12 13
Xl 3.2% | 0.6% | 0.8% 0 3.4% 0 29% | 2.9% | 3.8% 0 3.1% 0 2.6%
Xl 3.5% 0 3.0% 0 0 0 2.4% | 2.7% | 2.6% 0 2.0% | 3.1% 0
| 3.0% | 1.7% | 1.7% | 3.0% | 2.4% | 3.8% | 3.3% | 4.3% 0 0 0 4.9% 0
1 0 2.8% | 3.0% | 3.5% | 4.1% | 3.6% 0 35% | 44% | 4.1% | 3.4% | 4.6% | 4.2%
] 2.0% | 3.0% | 0.5% | 2.3% | 3.2% | 1.1% | 2.6% 0 2.5% | 4.8% | 4.5% 0 1.2%
v 1.9% | 3.2% | 2.6% 0 4.8% | 2.9% 0 0 3.3% | 3.5% | 3.8% | 3.9% | 3.5%
V 2.6% | 1.6% | 2.1% | 4.4% 0 0 3.3% | 3.8% 0 0 0 0 0
Vi 2.4% | 2.8% | 2.8% | 2.5% | 3.5% | 3.0% 0 0 |4.4% | 3.8% 0 0 0
VIl 0 0 0 3.1% | 3.2% | 2.8% 0 4.0% 0 0 2.2% 0 4.3%
VIl 0 3.4% 0 0 0 0 0 0 0 0 0 0 0
IX 0 3.0% | 2.3% 0 0 0 0 0 0 0 0 0 0
X 3.6% | 3.0% | 2.9% 0 3.3% | 3.0% 0 0 0 0 0 0 4.5%
Q 3.1% | 2.9% | 3.0% 0 0 0 0 0 0 0 0 0 0

Following the same measure done for the equal distributions test, Table 7.6 a), shows
summary of the Table 7.6, making averages of the percentages firstly only for monthly
values, secondly for the full series comparison and finally it shows total error of the table by

making an average of the entire table.

Table 7.6 a)
Total error in autocorrelation within months 3.57%
Total error in autocorrelation within full series 1.38%
Total error for entire table 3.40%
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7.4.2 Cross-correlations between stations

As a second measure, cross correlations between stations were computed and compared.
Again, this was first done for separate months, i.e. correlation of Novembers in Station 1
with Novembers in Station 2, and then for the time series as a whole, expressing correlation
of development of flowrates between the two examined stations throughout he whole
observed period. These coefficients were again computed for the historical time series, for
1000 of synthetic time series, construction average values of them and then were these pairs
of correlation coefficients compared by the two-sample correlation significance test from

section 7.3.3.

Four tables were constructed by the same manner as in previous section 7.4.1, but due to the
large size of the tables (with 13 stations there is (123) possible combinations, that is 78

relationships), they are included as appendices — namely in Appendix 5 (pages XIV — XVI).

Table 7.8 shows cross-correlation structure for the historical data and Table 7.9 shows
averages of cross-correlation coefficients for 1000 generated time series. Row labels tell
between which two stations is the corresponding relationship, columns represent months in
which the relationship is examined. Final column represents correlation between full time
series. The table is colour-scaled, but differently than in Tables 7.4 and 7.5, as here, in Table
7.8 and 7.9 the correlations are always positive, which is understandable considering they
represent spatial dependence in one watershed and being strongly tied to weather behaviour
in the area. Red colour is for strongest positive correlations, blue colour for least strong
relationships and white colour is used as transition colour, signifying average strength of
dependence. Higher saturation of red or blue colour means higher proximity to maximum or

minimum values respectively.

There is very clearly observable similarity between the structures for historical data and
synthetic data. Overall, most of the correlations are very strong. There are observable
patterns, showing for example weaker correlations for winter and spring months especially
among first few stations and particularly strong correlations in months May, July and
September in all of the profile relationships. While all values remain positive, naturally all
strengths can appear, as some stations used here for verification are quite distant from each
other and their relationship can lack the spatial dependence at all, leaving only the temporal

dependence, which is with greater distance arguably also weaker. This means that no
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strength of dependence is suspicious, unless it is preserved (not reduced nor boosted) in the
synthetic data. Altogether, we can safely say, that the structures are not apparently different,
signifying fair performance of the PCA method. Evaluation of significance of discovered

difference follows in next two paragraphs.

The next two tables in Appendix 5, Tables 7.10 and 7.11 show percentages of times series
where the particular correlations were significantly different between the historical and
synthetic data and the average p values upon which the null hypothesis assuming
insignificant difference was usually rejected, if so, counting again only the cases it was
rejected. Table 7.10 is colour-scaled (unlike in Table 7.6) with more saturated red colour
signifying higher number of different outcomes. It is very clear from the table that the most
“bad-behaving” month is July, and May follows. The results for July are unpleasant, showing
that the cross correlations were significantly different in majority of cases. This can again
signify systematic error of the model and/or certain unpredictability of the flows in month
of July. It was previously discussed in section 7.3, that July is the month most likely to be
unpredictable, along with discussion of results in 7.2, where July was also showing highest
rate of error. There is however another thing in play, which is the nature of Fisher’s
transformation, because of which the differences between high correlation coefficients close
to 1 are rated as much more significant than the differences between weaker correlations.
For example, the Fisher’s test will reject the null hypothesis for comparation of correlations
0.90 and 0.97, but it will not reject the hypothesis for values 0.2 and 0.5, assuming all values
were computed from vectors of the same length. This is arguably right approach considering
the definition of correlation coefficient [53], but it might be in some applications, including
this one, overestimating the significance of difference between strong correlation

relationships.

By making average summary of the table 7.10 we get a total error of the structure. Three
values were produced - first as a total error in cross-correlations within months, second as
total error in cross-correlations between full time series and third as a total error of the
complete structure, making an average from entire table. Results are in Table 7.11 a), and

are showing that the total errors are within reasonable limits.
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Table 7.11 a)

Total error in cross correlations within months 7.19%
Total error in cross correlations between full series 15.90%
Total error for entire table 7.86%

In Table 7.11 the p values lower than 1% are highlighted with yellow colour, making not
very extensive list. This tells us that even if the null hypothesis of the test was rejected in
majority of cases in those particular relationships, it was mostly rejected upon p value not
very far from the significance level.

7.5 Influence of particular transformations

7.5.1 Importance of the correction techniques

If the definitions of sample mean and sample variance is taken into consideration, it is clear
that the correction techniques suppress only the outcome by-product of the stochastic
component, not its desired feature directly, and only from the long-term point of view, where
for example the variance could differ slightly in realistic solution of 1000 years long and
longer synthetic time series , but would also be autonomously corrected by the convergence
process, refining the variance, bringing it closer to the population mean, the longer the series

is.
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8. CONCLUSION

Based on its applicability and features, two approaches for multivariate time series modelling
were discussed. The first, method based Principal Component Analysis is much more simple
and direct method, having the advantage of closed form computational processes and
therefore holding much smaller computational burden. Its disadvantage is, that it
theoretically destroys part of the mutual information that the multivariate data contain,
because it preserves only raw mutual correlations between stations but not higher order
dependencies. The basis is that it searches for transformation that has been designed based
on the covariance matrix, which is a low order statistical characteristic of data. The second,
method based on Independent component analysis, theoretically preserves even those higher
order dependencies, because it extracts from the data more mutual information and is
therefore able to reapply this information to independent univariate synthetic time series that

were generated individually.

The practical part of this thesis involved construction of the PCA method based multivariate
model and evaluation of its performance. Regarding the preservation of the correlation
structure the model performed arguably quite well, having total error as a performance
measure explained in section 7.4 around 3.40% for the autocorrelation structure of lag 1 of
the data set and total error of 7.86% for the cross-correlation structure describing mutual
relationships of the multivariate data.

In traditional applications of streamflow data the generated time series did not deviate
extensively from expected outcomes, making the model’s output usable in some classical
water management solutions. However, there were some drawback of the model’s
performance especially in water reservoir operation solutions, where the model produced

data that underestimated storage capacity requirements for longer time series.
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LIST OF MATHEMATICAL NOTATIONS

x random variable

X vector of random variables

X matrix

xT /XT transpose of a vector/matrix

A element wise division operator, for other operations analogically
E expected value operator

Uy mean of a sample of a population of variable x

X mean of a sample of a variable x

o standard deviation of variable x

Ky skewness of variable x

Oy kurtosis of variable x

P(A) probability of event A

p(x) marginal probability density function of variable x
p(x,y) joint probability density function of variables x and y
F(x) cumulative distribution function of variable x

Px.y Pearson correlation coefficient between variables x and y
Oy covariance between variables x and y, also cov(x, y)
Vx+k covariance of variable x with latter itself, also y;,

)N covariance matrix of a random vector x

& white noise element

®p autocorrelation coefficient of order p
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APPENDIX 1; Map with locations of examined stations; [60]
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APPENDIX 4; Maximum monthly averages comparison
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APPENDIX 5; Cross-correlation test results; Table 7.8

XV

RO ORRELATIO 0 ORICA R

Comparedst.| X1 XII I 1l IV V. VI vl VIl IX X Q
1 x 2| 067 076 08l 068 060 083 079 084 0.86  0.84 0.77
1 x 3| 087092 091 083 0.88 0.90 091 0.92
1 x 4| 068 060 058 0.66 0.60 0.83 0.82 0.86] 0.76
1 x 5| 064 063 057 0.66 0.89 084 080 0.70 0.73
1 x 6| 066 067 060 0.59 0.70 0.73 083 082 071 078
1 x 7| 069 08 08 071 0.87 0.73 0.78] 0.89
1 x 8| 074 079 08 063 08 080 091 075 086 087 068 084
1 x 9| 076 084 08 071 084 0.85- 0.78 092 089 084 0.88
1 x 10| 070 076 073 065 079 0.77 072 091 085 079 073 0.83
1 x 11| 076 08 08 078 081 0.9 0.90 089 0.76] 0385
1 x 12| 078 083 085 0.80 0.830110:94 0.85 0.76] 0.88
1 x 13| 072 0.65 0.72  0.89 0.85  0.60] 0.8
2 x 3| 0% 0.82 0.90
2 x 4] 051 0.81 0.68 091 071 060 0.77] 0.77
2 x 5 0.76 0.67 090 073 054 055 0.70
2 x 6 0.76 0.82 0.67 090 075 059 054 0.69
2 x 7 0.63 0.65 091 075 070 063 054
2 x 8 0.58 0.57 0.8 075 065 0.54
2 x 9 ] 0.74 0.69 083 0.65 091 081 065 068 0.68
2 x 10 069 081 071 081 060 053 08 074 053 056 0.70
2 x 1 0.63 0.56  0.56 084 079 066 058 052
2 x 12 070 068 066 076 060 052 087 079 060 062 065
2 x 13 0.62 0.69 069 064 0.60 0.89 074 060 0.64
3 x 4 061 071 073 079 0.77 085 081 081 080
3 x 5 ] 060 066 067 079 077 0.92 087 080 066 0.78
3 x 6| 064 057 061 069 076 08l 078 054 091 087 083 066 0.80
3 x 7| 05 066 065 072 072 0.79 0.87[W093 0.70| 0.75
3 x 8| 060 060 069 072 070 0.73 0.88 083 086 059 073
3 x 9| 072 068 075 077 08 08 078 054 0.88 0.77] 0.83
3 x 10| 066 063 067 079 085 082 073 054 087 086 078 066 0.79
3 x 11| 061 064 070" 054 070 068 072 049 085 088 089 069 0.71
3 x 12| 065 067 076 076 08 08l 075 057 088 090 083 071 0.79
3 x 13| 061 069 062 071 08L 074 074 061 090 08 085 053 0.79
4 x 5 0.87 0.88

4 x 6 0.85 0.88

4 x 7| 073 055 0.53 087 090 085 0.69
4 x 8| 08 063 072 0.57 0.61 0.90 0.83] 0.74
4 x 9 085 087 08 08l 091 0.75 0.90
4 x 10 0.88 0.90 0.0 0.80 0.82 0.89
4 x 11| 079 067 067 053 091 055 0.91 0.89| 0.72
4 x 12| 090 077 077 070 0.69 0.82 0.75 0.90| 0.86
4 x 13| 087 084 088 080 081 0.76 0.62 0.75] 0.86
5 x 6 0.85
5 x 7| 075 058 051 0.56 087 090 080] 0.71
5 x 8| 087 064 071 0.64 0.56 0.90 0.88) 0.78
5 x 9 0.87 087 085 0.78 0.75
5 x 10 091 088 090 0.77 0.82
5 x 11| 08 070 0.66 0.60 0.56 0.91 0.90] 0.76
5 x 12| 091 079 077 069 066 086 0.73 0.87
5 x 13| 091 0.89 0.82 0.82 0.83 0.69 0.870.91
6 x 7| 076 063 058 053 061 0.72 0.87 0.83| 0.78
6 x 8| 08 069 075 0.62 0.68 0.84 0.90] 0.84
6 x 9 091 090 091 091
6 x 10 0.90
6 x 11| 08 076 0.70 0.60 0.64 0.79 0.92 0.82
6 x 12 084 08l 076 0.82 089 0.91
6 x 13 092095 0.87/ 0.90 0.84 0.88
7 x 8| 08 08 08 07400004 089 0.88 0.89 0.84] 0.91
7 x 9| 087 08 08 061 08 080 0.88 0.92| 0.91
7 x 10| 077 077 075 0.79 0.72 0.76 090 089 089 083
7 x 11| 08707092 091 091 0.89 0.91
7 x 12| 08l 087 08 076 08 085 0.85 0.90| 091
7 x 13| 079 069 068 056 068 0.68 0.82 0.85 0.76] 0.83
8 x 9 0.87 090 064 086 081 0.91
8 x 10| 089 083 08 052 084 0.75 0.84 0.89
8 x 11 091 085
8 x 12 091 068 090 0.86 0.92 0.90
8 x 13 0.76 0.81 059 0.80 0.80 0.88 0.91 0.85] 0.90)
9 x 10
9 x 11 0.90 071 0.85 0.81
9 x 12
9 x 13 0.91 0.88 0.85

10 x 11| 088 088 087 063 082 0.74 0.82 0.87
10 x 12 0.91

10 x 13 0.85 0.89 0.88

1 x 12 0.84/ 091 0.88 0.92

11 x 13| 091 08 079 070 075 078 0.91 0.91 0.89] 0.88
12 x 13 0.88 0.85_ 091 0.87 0.85 0.92 0.86
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APPENDIX 4; Maximum monthly averages comparison
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APPENDIX 5; Cross-correlation test results; Table 7.8

XV

RO ORRELATIO 0 ORICA R

Comparedst.| X1 XII I 1l IV V. VI vl VIl IX X Q
1 x 2| 067 076 08l 068 060 083 079 084 0.86  0.84 0.77
1 x 3| 087092 091 083 0.88 0.90 091 0.92
1 x 4| 068 060 058 0.66 0.60 0.83 0.82 0.86] 0.76
1 x 5| 064 063 057 0.66 0.89 084 080 0.70 0.73
1 x 6| 066 067 060 0.59 0.70 0.73 083 082 071 078
1 x 7| 069 08 08 071 0.87 0.73 0.78] 0.89
1 x 8| 074 079 08 063 08 080 091 075 086 087 068 084
1 x 9| 076 084 08 071 084 0.85- 0.78 092 089 084 0.88
1 x 10| 070 076 073 065 079 0.77 072 091 085 079 073 0.83
1 x 11| 076 08 08 078 081 0.9 0.90 089 0.76] 0385
1 x 12| 078 083 085 0.80 0.830110:94 0.85 0.76] 0.88
1 x 13| 072 0.65 0.72  0.89 0.85  0.60] 0.8
2 x 3| 0% 0.82 0.90
2 x 4] 051 0.81 0.68 091 071 060 0.77] 0.77
2 x 5 0.76 0.67 090 073 054 055 0.70
2 x 6 0.76 0.82 0.67 090 075 059 054 0.69
2 x 7 0.63 0.65 091 075 070 063 054
2 x 8 0.58 0.57 0.8 075 065 0.54
2 x 9 ] 0.74 0.69 083 0.65 091 081 065 068 0.68
2 x 10 069 081 071 081 060 053 08 074 053 056 0.70
2 x 1 0.63 0.56  0.56 084 079 066 058 052
2 x 12 070 068 066 076 060 052 087 079 060 062 065
2 x 13 0.62 0.69 069 064 0.60 0.89 074 060 0.64
3 x 4 061 071 073 079 0.77 085 081 081 080
3 x 5 ] 060 066 067 079 077 0.92 087 080 066 0.78
3 x 6| 064 057 061 069 076 08l 078 054 091 087 083 066 0.80
3 x 7| 05 066 065 072 072 0.79 0.87[W093 0.70| 0.75
3 x 8| 060 060 069 072 070 0.73 0.88 083 086 059 073
3 x 9| 072 068 075 077 08 08 078 054 0.88 0.77] 0.83
3 x 10| 066 063 067 079 085 082 073 054 087 086 078 066 0.79
3 x 11| 061 064 070" 054 070 068 072 049 085 088 089 069 0.71
3 x 12| 065 067 076 076 08 08l 075 057 088 090 083 071 0.79
3 x 13| 061 069 062 071 08L 074 074 061 090 08 085 053 0.79
4 x 5 0.87 0.88

4 x 6 0.85 0.88

4 x 7| 073 055 0.53 087 090 085 0.69
4 x 8| 08 063 072 0.57 0.61 0.90 0.83] 0.74
4 x 9 085 087 08 08l 091 0.75 0.90
4 x 10 0.88 0.90 0.0 0.80 0.82 0.89
4 x 11| 079 067 067 053 091 055 0.91 0.89| 0.72
4 x 12| 090 077 077 070 0.69 0.82 0.75 0.90| 0.86
4 x 13| 087 084 088 080 081 0.76 0.62 0.75] 0.86
5 x 6 0.85
5 x 7| 075 058 051 0.56 087 090 080] 0.71
5 x 8| 087 064 071 0.64 0.56 0.90 0.88) 0.78
5 x 9 0.87 087 085 0.78 0.75
5 x 10 091 088 090 0.77 0.82
5 x 11| 08 070 0.66 0.60 0.56 0.91 0.90] 0.76
5 x 12| 091 079 077 069 066 086 0.73 0.87
5 x 13| 091 0.89 0.82 0.82 0.83 0.69 0.870.91
6 x 7| 076 063 058 053 061 0.72 0.87 0.83| 0.78
6 x 8| 08 069 075 0.62 0.68 0.84 0.90] 0.84
6 x 9 091 090 091 091
6 x 10 0.90
6 x 11| 08 076 0.70 0.60 0.64 0.79 0.92 0.82
6 x 12 084 08l 076 0.82 089 0.91
6 x 13 092095 0.87/ 0.90 0.84 0.88
7 x 8| 08 08 08 07400004 089 0.88 0.89 0.84] 0.91
7 x 9| 087 08 08 061 08 080 0.88 0.92| 0.91
7 x 10| 077 077 075 0.79 0.72 0.76 090 089 089 083
7 x 11| 08707092 091 091 0.89 0.91
7 x 12| 08l 087 08 076 08 085 0.85 0.90| 091
7 x 13| 079 069 068 056 068 0.68 0.82 0.85 0.76] 0.83
8 x 9 0.87 090 064 086 081 0.91
8 x 10| 089 083 08 052 084 0.75 0.84 0.89
8 x 11 091 085
8 x 12 091 068 090 0.86 0.92 0.90
8 x 13 0.76 0.81 059 0.80 0.80 0.88 0.91 0.85] 0.90)
9 x 10
9 x 11 0.90 071 0.85 0.81
9 x 12
9 x 13 0.91 0.88 0.85

10 x 11| 088 088 087 063 082 0.74 0.82 0.87
10 x 12 0.91

10 x 13 0.85 0.89 0.88

1 x 12 0.84/ 091 0.88 0.92

11 x 13| 091 08 079 070 075 078 0.91 0.91 0.89] 0.88
12 x 13 0.88 0.85_ 091 0.87 0.85 0.92 0.86



CROSS-CORRELATIONS for SYNTHETIC TIME SERIES

Table 7.9

COWWOWWOWOOWWWOWOONNNNNNDODODOODOOODOOUITUONUOTUOITORERBRERBRERBRERRERDLEDRERDLEROWWWWWWWWWWNRNRNNNNMNNONNNNNMNNNRRRPRPRPRERPRERPRRERRE

XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0.82
0.81
0.73
0.83
0.77
0.75

0.89

0.86

0.89

0.88
0.90
0.80

0.90
0.76
0.90
0.85

0.88

0.85
0.89

0.54
0.71
0.87
0.89
0.68
0.79
0.86

0.83
0.68
0.90
0.86

0.88

0.79

0.85/ 091 0.8

0.86

0.75
0.84

0.79
0.89
0.75
0.65
0.55

0.77
0.58
0.68
0.59

0.68

0.85
0.72

0.84
0.82/  0.90
0.58
0.83

0.78

0.72
0.81

0.80
0.85

0.61
0.68

0.65 0.80
0.87
0.84
0.66 0.83

0.89

0.61
0.83

0.85
0.90
086 081 0.88
0.87 0.88 0.90

083092 087 081

074 087 086 0.87

0.88
0.81
0.79

0.87
0.70
0.85
0.83

0.83 0.82, 0.90
0.90

0.82 0.79

0.88
0.88
0.83
0.88

0.90
0.75

0.90 0.89

XV

Comparedst.| XI__ Xl IV. V. VI VIl vl IX

x 2| 075 0.66 0.80 0.78 0.84 086 0.87
3| 08 o088 0.89 086 089
4| 068 062 0.66 078 067 085 082 0.85
5| 066 063 0.67 077 060 084 083 0.82
6 070 068 071 079 077 085 084 0.86
7| 067 o084 0.86/0.90 0.82[IN04  0.90!
8| 07 08 o } 077 081 078 085 085 0.87
9| o078 084 08 075 08 083 08 083093 0901 092
10| 073 076 08 070 08 075 08 075 08 084 083
11| 079 08 08 08 08 07/ 08 076 085 08 090
12| 078 084 08 08 08 08 08 08 08 08 087
13| 073 076 070 067 071 075 08 08 08 08 085
3 0.89
4 0.69
5 0.66
6 0.71
7 0.78
8 0.70
9 0.76 0.76
10 081 073 0.65
1 0.74
12 0.72 0.69 b 0.70
13 ] 073 071 ] 0.67
4 076 074 073 0.79 077 078 0.80
5 b 074 069 068 080 0. 077 081 081
6| 068 057 073 077 081 070 054 077 08 085
7| 054 062 075 071 074 060 079 07907091
8| 063 059 0.73 066 064 055 077 076 0.82
9| 073 065 o 079 087 08 073 058 08 088 089
10| 068 060 078 08 08 079 065 056 073 08 079
11| 065 060 072 061 071 064 063 053 077 078 087
12| 069 064 079 079 08 078 068 059 078 08 08

075 0.82

0.87
0.90

0.91

0.88

0.88
0.88
0.86

0.78
0.89

0.81]

089 0.89

0
0.89



Table 7.10

COMPARISON of CROSS-CORRELATION COEFFCIENTS

Comparedst.| XI Xl | 11 111 [\ \% Vi VIL VI IX X Q

1 x 2 0 3.7% 0.1% 0 0 0.2% 0.4% 0.2%/935% 0.2%| 0.1%) 19.8% 0.8%
1 x 3 0 45% 0.1% 0 0 21% 53% 23% 924% 8.7% 5.1% 12.8% 58.7%
1 x 4 0 0 0 0 0 0/ 57.1% 0/ 60.8% 0.2% 0 0.5% 53%
1 x 5 0 0 0 0 0 0/ 30.9% 0/59.7% 0.2% 0 0 2.7%
1 x 6 0 0 0 0 0 0 46.7% 0 52.6% 0 0 0 4.5%
1 x 7 0 0 0.2% 0/ 0.4% 0.2%) 44.7% 0/ 23.1% 12.3%  0.2% 0/ 14.0%
1 x 8 0/ 0.1% 0 0 01% 0/ 31.7% 01 25.9% 0.5% 0.1% 0/ 17.5%
1 x 9 0 0 0 0 0 0] 38.9% 0 22.6% 1.8% 0 0 8.5%
1 x 10 0 0 0 0 0 0] 37.0% 0 25.1% 0.3% 0 0 9.6%
1 x 1 0 0 0 0 0.6% 0.2% 19.9% 0 6.3% 7.4% 0 0/ 13.3%
1 x 12 0 0 0 0 0 0] 29.1% 0/ 17.5% 15.1% 0 0/ 25.2%
1 x 13 0 0 0 0 0 0/ 13.1% 0/ 45.8% 0.1% 0 0 6.1%
2 x 3| 01% 16% 0 0 0 0.2% 1.2% 0/95.0% 2.0% 0/ 34.1% 0
2 x 4 0 0 0 0 0 0/ 0.2% 01 67.9% 0 0 1.7% 2.0%
2 x 5 0 0 0 0 0 0 0 0/66.1% 0.1% 0 0/ 0.1%
2 x 6 0 0 0 0 0 0/ 0.2% 0/ 62.4% 0 0 0 0.1%
2 x 7 0 0.2% 0 0 0 0/ 0.1% 0/69.4% 0.7% 0 0 0.3%
2 x 8 0 0 0 0 0 0 0 0/ 40.5% 0.1% 0 0 0
2 x 9 0 0 0 0 0/ 0.3% 0 0/ 55.7% 0.1% 0 0/ 0.2%
2 x 10 0 0 0 0 0 10% 0 0/ 42.1% 0 0 0/ 0.1%
2 x 1 0 0.1% 0 0 0 0 0.1% 0.1%) 18.9% 1.4% 0 0 0
2 x 12 0 0 0 0 0/ 0.3% 0 0.1%) 38.8% 0.1% 0 0 0.1%
2 x 13 0/ 0.1% 0 0 0 0 0 0.1%) 59.1% 0.3% 0 0/ 0.2%
3 x 4 0 0 0 0 0 0/ 6.1% 0 64.7% 4.0% 0.3% 0.7%) 21.8%
3 x 5 0 0 0 0 0 0 1.8% 0/ 57.6% 4.1% 0 0 7.6%
3 x 6 0 0 0 0 0 0 35% 0/51.9% 1.8% 0 0/ 11.2%
3 x 71 01% 0 0 0 0 0 1.4% 0/55.1% 11.2%  1.2% 0/ 18.9%
3 x 8 0 0 0 0 0 0 14% 0/ 26.9% 5.2% 1.4% 0 8.5%
3 x 9 0 0 0 0 0 0.1% 0.9% 0/ 40.7% 11.8% 0.1% 0/ 19.3%
3 x 10 0 0 0 0 0 0.1% 1.4% 0 27.8% 4.9% 0 0/ 14.4%
3 x 11 0 0 0 0 0 0 2.3% 0 8.0% 19.4% 0.6% 0/ 55%
3 x 12 0 0 0 0 0 0/ 0.8% 0/ 21.9% 12.9% 0 0/ 12.3%
3 x 13 0 0 0 0 0 0 0.7% 0.1%) 42.6% 4.3%| 0.1% 0/ 15.0%
4 x 5| 14% 0.7% 0 1.5% 0 0.1% 5.9% 0/ 84.9% 18.8% 40.5% 0/ 73.8%
4  x 6| 0.6%| 2.8% 0 01% 0.1%| 0.2%| 43.3% 01 79.0% 8.5% 39.4% 07 78.1%
4 x 7| 0.4% 0 0 0 0 0/ 78.4% 0/ 70.8% 0.6% 19% 0.9% 0.9%
4 x 8 0 0 0 0 0 0] 37.4% 0/ 61.5% 1.2% 13.3% 0/ 0.6%
4 x 9| 01%| 0.2% 0 0 0 0/ 43.1% 0/55.4% 2.3% 8.8%  0.6%| 3.0%
4  x 10| 0.1%| 0.2%| 0.1% 0 0 0.1%) 53.4% 0/51.5% 4.3% 21.0% 0] 39.6%
4 x 11 0 0 0 0 0 0/ 43.5% 01 22.7% 1.1% 9.8% 0/ 0.4%
4 x 12 0 0 0 0 0 0/ 55.7% 0/43.9% 2.3% 11.2% 0 3.1%
4 x 13 0 01% 0.2% 0 0 0 4.3% 0/844% 7.1% 4.3% 0/ 12.0%
5 x 6| 15%| 03% 0.1% 1.0% 0 0.1% 8.7% 0/55.9% 8.1% 18.6% 0 7.6%
5 x 7 0 0 0 0 0 0/ 43.7% 0 77.7% 1.8% 1.8% 0 21%
5 x 8| 01% 0 0 0 0 0] 30.9% 0/ 41.5% 1.6% 12.2% 0 0
5 x 9] 02% 01% 0 0 0 0/ 10.1% 0/59.5% 9.8% 8.5% 0 3.0%
5 x 10 0 0.1% 0/ 0.3% 0 0.7% 11.9% 0/ 36.1% 5.3% 29.4% 0 8.4%
5 x 11| 01% 0 0 0 0 0/ 53.0% 0/ 11.5% 1.4%  5.5%  0.1%| 0.5%
5 x 121 01% 0 0 0 0 0 6.1% 0 32.7% 2.0% 6.1% 0 0.1%
5 x 13| 0.2% 0 0.3% 0 0 0/ 25.9% 0/819% 35% 1.6% 0 9.8%
6 x 7 0 0 0 0 0 0/ 68.6% 0783.0% 1.1% 0.4% 0 57%
6 x 8 0 0 0 0 0 0] 46.6% 0/49.3% 1.2% 12.2% 0/ 0.6%
6 x 9 0 0.1% 0 0 0 0] 34.5% 0/ 725% 0.7% 2.7% 0/ 17.3%
6 x 10 0/ 0.2% 0.3% 0 0 1.2%) 27.8% 0/ 43.0% 9.6% 16.6%  0.1%/ 46.6%
6 x 11] 01% 0 0 0 0 0/ 56.3% 0 9.3% 06% 36% 02% 11%
6 x 12 0 0 0 0 0 0| 18.6% 0/38.4% 1.2% 2.4%| 0.5% 2.0%
6 x 13| 03% 0 1.9% 0 0 0/ 15.1% 0190.1% 1.8% 1.2% 0/ 20.6%
7 x 8] 09% 0 0 0 2.7% 0.7%) 75.4% 0/59.0% 1.4% 3.8% 0/ 83.3%
7 x 9] 2™ 0 0 0 0 0/ 85.3% 07190.3% 4.7%  2.4%| 0.3% 46.0%
7 x 10| 02% 0 0 0 0 0/ 80.4% 0/53.8% 3.5% 0.6% 0] 24.2%
7 x 11] 0.8% 0 0 01% 11%| 54%|41.7% 0.2%) 21.6% 18.2%| 1.1%| 0.1% 79.0%!
7 x 12 01% 0 01% 0.2% 0.1% 0/ 78.7% 0/69.9% 29.2% 1.2% 0.2% 71.8%
7 x 13] 0.3% 0 0 0 0 0| 17.4% 0/689% 15% 6.7% 0/ 12.3%
8 x 9 0 0 0 0.1% 0 0/56.3% 0.1% 36.3% 3.0%| 16.2% 0/ 28.7%
8 x 10 0 0 0 0 0 0/ 33.0% 0/19.1% 7.1% 4.8% 0 2.5%
8 x 11| 02% 0 0 0/ 0.3% 0.4%) 49.9% 0 3.8% 0.4%) 26.8% 0.2%| 21.5%
8 x 12 0 0 0 0.1% 0 0] 31.9% 0/ 13.9%, 4.7% 7.7% 0/ 16.8%
8 x 13| 0.3% 0 0/ 0.1% 0 0/ 23.7% 0 734% 14% 9.1% 0 4.4%
9 x 10 0 0 0 0 0 0.1% 54.0% 0/ 28.4% 9.9% 3.7% 0 46.5%
9 x 11| 06% 0 0 0 01% 0 48.2% 0 1.3%) 15.8% 5.4%  0.2%| 23.9%
9 x 12 0 0 0 0 0 0] 44.7% 0/ 16.1% 19.5% 2.5%  0.1%| 41.5%
9 x 13 0 0 0 0 0 0 3.4% 0/ 77.9% 5.8% 8.0% 0 43.0%
10 x 11 0 0 0 0 0 0 35.6% 0 4.4% 8.0% 24% 53% 3.6%
100 x 12 0 0 0 0 0 0/ 60.1% 01423% 0.4% 3.7%| 0.8%| 5.8%
10 x 13 0 0/ 0.3% 0 0 0 2.9% 0/60.2% 1.8% 2.9% 0 4.0%
11 x 12| 02% 0/ 0.2% 0 01% 0 7.1% 0 1.8% 47.5% 2.9% 1.7%) 24.0%
11 x 13| 0.3% 0 0 0 0 0/ 56.5% 0/ 23.8% 1.6% 2.3%| 0.1%| 12.5%
12 x 13| 0.2% 0 0 0 0 0 0.5% 0/57.0% 0.4% 2.4% 0 4.2%
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Table 7.11

OMPARISON of CRO ORRELA 0
Compared st.| Xl Xl | 11 111 1V \Y Vi VI Vil 1X X Q
1 x 2 0 26% 4.0% 0 0 39% 26% 15% 04% 43% 23% 21%| 3.5%
1 x 3 0 31% 4.7% 0 0 34% 31% 26% 04% 24% 3.0% 24%| 14%
1 x 4 0 0 0 0 0 0 14% 0 12% 4.2% 0 4.3%| 2.6%
1 x 5 0 0 0 0 0 0 2.0% 0 13% 41% 0 of 2.7%
1 x 6 0 0 0 0 0 0 16% 0 16% 0 0 0 2.5%
1 x 7 0 0 25% 0 21% 38% 16% 0 20% 23% 2.9% of 2.5%
1 x 8 0 4.6% 0 0 4.9% 0 19% 0 23% 27% 3.3% 0f 2.2%
1 x 9 0 0 0 0 0 0 19% 0 21% 3.5% 0 0 2.3%
1 x 10 0 0 0 0 0 0 18% 0 22% 3.1% 0 of 2.3%
1 x 1 0 0 0 0 34% 47% 23% 0 28% 28% 0 0 2.1%
1 x 12 0 0 0 0 0 0 21% 0 24% 25% 0 0 1.9%
1 x 13 0 0 0 0 0 0 2.4% 0 16% 32% 0 0f 2.4%
2 X 3| 46% 26% 0 0 0 43% 3.0% 0 03% 3.0% 0 1.9% 0]
2 x 4 0 0 0 0 0 0 42% 0 12% 0 0 3.5%| 3.5%
2 x5 0 0 0 0 0 0 0 0 13% 4.2% 0 0f 4.3%
2 x 6 0 0 0 0 0 0 41% 0 14% 0 0 0 4.1%
2 x 7 0 4.4% 0 0 0 0 25% 0 11% 3.9% 0 of 3.4%
2 x 8 0 0 0 0 0 0 0 0 19% 4.1% 0 0 0j
2 x 9 0 0 0 0 0 3.8% 0 0 15% 4.8% 0 0 4.9%
2 x 10 0 0 0 0 0 3.4% 0 0 1.9% 0 0 0f 3.8%
2 x 11 0 3.6% 0 0 0 0 38% 38% 24% 41% 0 0 0]
2 x 12 0 0 0 0 0 37% 0 49% 20% 3.9% 0 of 4.8%
2 x 13 0 47% 0 0 0 0 0 40% 16% 3.9% 0 0f 4.9%
3 x 4 0 0 0 0 0 0 3.0% 0 12% 3.0% 3.0% 3.9%| 2.2%
3 x 5 0 0 0 0 0 0 3.6% 0 15% 3.3% 0 of 2.7%
3 x 6 0 0 0 0 0 0 3.4% 0 18% 3.6% 0 0f 2.4%
3 x 7| 42% 0 0 0 0 0 3.0% 0 14% 27% 3.6% 0 2.2%
3 x 8 0 0 0 0 0 0 3.6% 0 22% 31% 3.4% 0 2.7%
3 x 9 0 0 0 0 0 48% 3.3% 0 18% 27% 28% 0 2.2%
3 x 10 0 0 0 0 0 46% 3.4% 0 24% 2.8% 0 of 2.4%
3 x 1 0 0 0 0 0 0 3.3% 0 29% 24% 4.0% 0f 2.8%
3 x 12 0 0 0 0 0 0 3.9% 0 25% 25% 0 o 2.7%
3 x 13 0 0 0 0 0 0 36% 37% 19% 29% 27% of 2.5%
4 x 5| 34% 3.6% 0 3.4% 0 48% 29% 0 07% 23% 18% of 1.0%
4 x 6| 33% 34% 0 32% 49% 3.9% 1.6% 0 09% 26% 1.9% 0 1.0%
4 x 7| 3% 0 0 0 0 0 0.9% 0 11% 33% 3.0% 3.3%| 3.1%
4 x 8 0 0 0 0 0 0 18% 0 13% 3.4% 25% 0 4.1%
4 x 9| 29% 3.8% 0 0 0 0 16% 0 14% 3.0% 26% 25%| 3.0%
4 x 10| 42% 42% 3.7% 0 0 47% 14% 0 16% 33% 23% of 2.0%
4 x 11 0 0 0 0 0 0 19% 0 23% 33% 26% 0 3.9%
4 x 12 0 0 0 0 0 0 14% 0 18% 32% 2.7% of 3.1%
4 x 13 0 50% 42% 0 0 0 2.9% 0 07% 27% 3.0% of 2.7%
5 x 6] 37% 23% 13% 3.6% 0 48% 25% 0 13% 27% 22% 0 2.8%
5 x 7 0 0 0 0 0 0 17% 0 09% 28% 3.4% 0f 3.4%
5 x 8| 41% 0 0 0 0 0 19% 0 17% 31% 26% 0 0]
5 x 9| 46% 18% 0 0 0 0 25% 0 14% 24% 2.9% of 3.0%
5 x 10 0 31% 0 3.9% 0 43% 26% 0 19% 27% 19% of 2.8%
5 x 11| 31% 0 0 0 0 0 1L7% 0 25% 30% 29% 3.8%| 3.4%
5 x 12| 29% 0 0 0 0 0 2.8% 0 21% 29% 25% of 2.4%
5 x 13| 3.3% 0 25% 0 0 0 21% 0 09% 31% 3.3% 0 2.7%
6 x 7 0 0 0 0 0 0 12% 0 08% 28% 3.4% of 2.9%
6 x 8 0 0 0 0 0 0 16% 0 15% 27% 25% 0f 3.4%
6 x 9 0 0.9% 0 0 0 0 1L7% 0 1.0% 28% 28% 0 2.2%
6 x 10 0 3.0% 33% 0 0 32% 22% 0 18% 26% 23% 4.7%| 19%
6 x 11| 3.0% 0 0 0 0 0 15% 0 29% 31% 27% 27%| 3.6%
6 x 12 0 0 0 0 0 0 23% 0 19% 27% 26% 3.9%| 3.2%
6 x 13| 3.4% 0 3.0% 0 0 0 27% 0 05% 25% 3.2% 0f 2.2%
7 x 8| 36% 0 0 0 35% 34% 10% 0 14% 29% 29% of 0.7%
7 x 9| 2% 0 0 0 0 0 0.6% 0 05% 30% 3.0% 3.8%| 1.8%
7 x 10| 42% 0 0 0 0 0 0.8% 0 15% 28% 3.5% 0f 2.3%
7 x 11| 41% 0 0 30% 34% 28% 1.8% 3.6% 21% 26% 3.2% 3.6%| 0.8%
7 x 12| 35% 0 31% 41% 4.0% 0 0.8% 0 12% 18% 31% 4.1%| 12%
7 x 13| 41% 0 0 0 0 0 23% 0 11% 3.0% 27% 0 2.6%
8 x 9 0 0 0 41% 0 0 14% 4.6% 19% 31% 25% of 2.1%
8 x 10 0 0 0 0 0 0 19% 0 19% 30% 28% 0f 3.4%
8 x 11| 37% 0 0 0 34% 29% 14% 0 29% 35% 21% 3.1%| 2.1%
8 x 12 0 0 0 42% 0 0 19% 0 22% 28% 3.1% of 2.2%
8 x 13| 24% 0 0 2.0% 0 0 21% 0 10% 29% 2.6% 0f 2.2%
9 x 10 0 0 0 0 0 13% 15% 0 19% 25% 3.5% 0 1.6%
9 x 11| 42% 0 0 0 46% 0 15% 0 25% 25% 26% 28%| 21%
9 x 12 0 0 0 0 0 0 1L7% 0 24% 23% 3.0% 3.6%| 1.7%
9 x 13 0 0 0 0 0 0 3.0% 0 08% 30% 28% 0f 1.5%
10 x 11 0 0 0 0 0 0 19% 0 28% 27% 31% 3.0%[ 2.9%
100 x 12 0 0 0 0 0 0 13% 0 15% 34% 29% 3.4%| 3.0%
10 x 13 0 0 35% 0 0 0 31% 0 14% 31% 3.2% of 2.2%
11 x 12| 3.8% 0 2.9% 0 26% 0 2.6% 0 3.0% 16% 31% 29%| 20%
11 x 13| 3.3% 0 0 0 0 0 14% 0 20% 33% 33% 4.7%| 2.5%
12 x 13| 35% 0 0 0 0 0 2.9% 0 16% 34% 27% 2.4%
I
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APPENDIX 6; Water Reservoir Operation Function plots for 36 years long synthetic TS
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APPENDIX 7; Water Reservoir Operation Function plots for 100 years long synthetic TS
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APPENDIX 9; Matlab model

function [SYNT] = MTSM( X,T )

%% MULTIVARIATE TIME SERIES MODEL

%% performs PCA on any number of vectors and creates synthetic time series with
AR (1) model

oe

Programmed by Waldemar Gresik

% X - Input data - rows correspond observations and columns to
% variables (stations)
% T - number of synthetic years to generate

oe

The function preserves the order of the months in the input

%% [1] Data preparation - measures dimensions, separate months and creates 12
matrices, one for each month

n=size(X,2); % n = number of stationsQmT
m=size(X,1); % m = lenght of the vectors - number of months
for i=1:12

Om{i}= X(i:12:end, :); % creates cell array with 12 month matrices
End
%% [2] Normalize by 3LGN
CsN=zeros (12,n);
S0=zeros (12,n);
function[e]=cmin (c, kappax) % Objective function
e=abs (c"3+3*c-kappax) ; % Optimization criteria
end
for i=1:12

N{i}=zeros(m/12,n);

for j=1:n

x = 0om{i}(:,73); % Time series to normalize

mux=mean (x) ;
sigmax=std(x) ;
kappax=skewness (x) ;

initial=-0.5*std(x); % initial guess for the optimization function
% Optimization function - finds minimum of the Objective function

c=fminsearch (@cmin, initial, [], kappax) ;

oe

x0=mux-1/c*sigmax; computes the shift parameter
sigmay=(log(1+c”2))"0.5; % second parameter of the distribution

3 first parameter of the distribution
muy=log (sigmax)-log(abs(c))-1/2*log(1+c”"2);

y=log (x-x0) ; % Normalizing time series
N{i} (:,3) = vyi
csy=skewness (y) ;
S0(i,3)=x0;
CsN(i,3j)=csy;
end
end
assignin('base', 'S0',S50);

oe

Controls skewness of normalized data
Assigns shift parameters
Assigns skewness coefficient

oe

o\

%% [3] 1. Standardization - Standardize data by substracting mean and dividing by
standard deviation
for i=1:12;
S{i}=bsxfun (@minus,N{i},mean (N{i}));
S{i}=bsxfun (@rdivide, S{i},std(N{i}));
deviation of 1
end

% Makes the data zero mean
Makes the data of standard

e

%% [4] Kolmogorov-Smirnov test to Check if the probability distribution of the
vectors is standard normal
for i=1:12

for j=1:n
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KS(i,j)=kstest(S{i}(:,3), "Alpha',0.05); % K-S test with significance
level of Alpha (implicit value is 5%)

end
end
disp ('Kolmogorov-Smirnov I - before PCA - should be 0 and is:');
disp (sum(sum(KS)));

%% [5] PRINCIPAL COMPONENT ANALYSIS -
% finds the "mixing" matrix TRANSM such that the principal components are
uncorrelated

o)

% and ordered by amount of variance they represent
for 1=1:12;
[TRANSM{i},Z{i},VAR{i}] = princomp(S{i}); % Singular Value Decomposition is

used to determine TRANSM
end

%% [6] 2. Standardization - smooths the redistribution of variance after PCA

for i=1:12;
Zc{i}=bsxfun(@rdivide,Z{i},std(Z{i})); % Makes data of variance of 1
end

%% [7] Kolmogorov-Smirnov test to Check if the probability distribution of the
vectors is standard normal

for i=1:12

for j=1:n

KSZ (i, j)=kstest (Zc{i} (:,3), "Alpha',0.05); % K-S test with significance

level of Alpha (implicit value is 5%)

end
end
display('Kolmogorov-Smirnov II - after PCA - should be 0 and is:');
disp (sum(sum(KSZ))) ;
%% [8] AR(1) MODEL %% ---- %% AR(1l) MODEL %%
Syn=zeros (T*12,n); % empty matrix for synthetic data
Phi=zeros (12,n); % empty matrix for correlation coefficients
for j=1:n

for i=2:12

o

% Corr. coeff. for Novembers (one element shorter vectors)
Phi(1,j)=corr(Zc{l}(2:m/12,73),2c{12} (1:m/12-1,73));
% Corr. coeff. for other months
Phi(i,j)=corr(Zc{i} (:,3),Z2c{i-1}(:,3));
end
end
xm=zeros (T*12,1); % empty vector for synthetic time series
for j=1:n
epsilon=randn(T*12,1);% random numbers with N(0,1)
xm(l,1)=epsilon(l); % first observation (without deterministic component)
for k=2:T*12;
month=mod (k-1,12) +1; determination of month
ssgm=sqrt (1-Phi (month,j) .”"2) ;% sigma coefficient for stochastic component

oe

% ‘modelling of observations with AR(1l) process
xm(k,1)=(epsilon (k) *ssgm)+ (xm(k-1,1) *Phi (month, J));
end
Syn(:,j)=xm;
end
assignin('base', 'Phi',Phi);

%% [9] Decomposition of Synthetic data for inverse transformations and correction
of statistics
for i=1:12

Qmsyn{i}= Syn(i:12:end, :);

% Correction of mean to O
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OmsynO0l{i}=bsxfun (@Gminus,Qmsyn{i},mean (Qmsyn{i}));
% Correction of variance to 1
OmsynO0l{i}=bsxfun(@rdivide,Qmsyn01l{i}, std(Qmsyn01l{i}));

end

%% [10] Reverse 2. Standardization from section [6]
for 1=1:12;
Zr{i}=bsxfun (@times,Qmsyn01{i},std(z{i})); % Incorporating PCA
redistributed variance
end

%% [11l] Inverse PCA transformation - applying inverse of transformation matrix

TRANSM
for i=1:12;
Sr{i}=Zr{i}*inv (TRANSM{i}); % Product with Inverse pca coefficients
matrix
end

%% [12] Reverse 1. Standardization from section [3]
for 1=1:12;

Nr{i}=bsxfun (@times,Sr{i},std(N{i})); % Incorporating stadard deviation of
historical data

Nr{i}=bsxfun (@plus,Nr{i},mean (N{i})); % Incorporatin mean of historical
data

end

%% [13] Inverse normalization - reverses process from section [2]
for i=1:12

for j=1:n
Qmr{i} (:,j)=exp (Nr{i} (:,3))+S0(i,]); % Inverse log transform into
Log-Normal distributed data
end

end

%% [14] Correction of statistics

for i=1:12
Omr {i}=bsxfun (@times,Qmr{i},std(Qm{i})./std(Qmr{i}));
Qmr{i}=bsxfun (@plus,Qmr{i},mean(Qm{i})- mean(Qmr{i}));
end

%% [15] Final Recomposition - creates synthetic data matrix
SYNT = zeros (T*12,n);

for i=1:12

SYNT (i:12:end, :)= QOmr{i}; % puts the data in single matrix, following
the formatting of the input
end

%% [16] Check negatives
Negatives=zeros (T*12,13);
for i=1:(T*12)
for j=1:n
if SYNT(i,7)<0;
Negatives (i, j)=1;
end
end
end
disp ('Number of negatives for each station:');
disp (sum(Negatives)) ;

%% [17] Replace negatives with minimum streamflow
correction=0.001*mean (X) ;
for i=1:n
for j=1:T*12
if SYNT(J,1)<0;
SYNT (j, 1i)=correction(i);
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else SYNT(j,i)=SYNT(j,1i);
end
end
end
assignin('base', 'SYNT', SYNT) ;

%% [18] Plot results

for i=1:n
figure (i)
set (gcf, 'Units', 'Normalized', 'OuterPosition', [0 0.3 1 (1/T~(1/6))1);
plot (X(:,1i), 'Linewidth',1.0, "Color', [0.9020 0.0000 0.00001])
hold on
plot (SYNT(:,1i), 'Linewidth',1.2,'Color',[0.0000 0.4392 0.7529])
x1im ([0, T*12]);
legend ({'historical data', 'synthetic

data'}, "location', 'northeast', 'FontSize',11);
hold off

end

end
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MODEL STRUCTURE

Legend: Input data Q T
Inputs and . month, year, station. Number of years
. Equations

variables XL,1,1. XL1,2 XL13. - XL1,n to generate
XIL,1,1. XIL,1,2. XII,1,3. X, 1,n.

Functions || Slobal L1 L2 L13. L1,n.

outputs H :

XN, 1. X,N,2. XN, 3. - XNn

|
\ 2 Y V VY VY V V V'Y Y_ VY

November flows Qxy Qx| Q1§ Qu | Qx| Qv il Qv | Qvi | |Qvin | [Qvimf | Qux || Ox
month, year, station

XL 1,1. X122
XL,2,1. XL2.2.

XL, 1,n.
; * * Objective function

" St. deviation (x) | | Skewness (x)
XN, 1. XN, 2. g e 3
6, Ky —) Finds minimum of:

| A +3c- Ky |
NORMALIZATION I

November flows Qxj

Normalization equation Shift parameter
y=In(x-xg) < xo = (-1/c)*6, | €~

month, year, station

X, 1,1. X1, 1,2.
XL, 2,1. XI,2,2.

Variation
coefficient ¢

XL N, 1. XL N, 2.

N(o®) Na?)

CENTERING .
Centering
X -mean (X)

November flows Qxy
month, year, station
X,1,1. XI,1,2.

X1, 2,2.
XL N, 2.
X, =0 - K *
Covariance matrix XI PCA algorithm
u-x,,x-l Ux|,x2 UX-I,Xn
Components for November XI xaxs Oxaxs Oxzn singular Value
i i Decomposition

month, year, component Orpxs Oons o Orr Cov(XI) = U*S*V'

W = inv(U)*s 50"

XI,1,1.PC  XI,1,2.PC
XL, 2,1.PC X, 2,2.PC

PCA transformation

XL,N,1.PC XI,N,2.PC
PCx;=W * Qx

STANDARDIZATION

Components for November XI
month, year, component _) Standardizin :
XL, 1,1.PC_|XI,1,2.PC | - | XI,1,n.PC S M
X1, 2,1.PC ||X1,2,2.PC X1, 2,n.PC -
XLN,1.PC | XLLN,2.PC| --- | XI,N,n.PC E M
Ox1pc =1|l0x2pc =1 = | Oxnpc=1 E E
N1 || MO N (0,1) Qr J] Qu ] Quux | Qv || Qv || Qvi | |Qvu | |Qvin | Qx Do
Correlation Current month
(M, M-1) _————— -
Random number generator
Correlation coefficients of order 1 0 TeNOD
& = {g1,&, 83, ..., E12T} € 3
\ 4 Pmonth, reference month; pc/station I.l ¢ A 127 |,I

Px1x;1.(Pxin) Pa1x:2.(9 Px1xin.(@x1:n)

Pxixi(@xir1. pxixin (Pxirn) AR (1)mode] (—
Pixit.(@r1) Prxi2\Pr;2. Pixin.(Prn) _) (
: ; 7 = PuyZe-1 + Jl — O
Pxx.(Px;1) pxax2.(Px2) Pxxn. (@x;n) -——_—————
¢ Next step (t+1)

PC representation of Synthetic Time series with N(0,1)

Zobservation;station

z1;1. = f(@xi;10€1) z12. = fPx12.€1) = Zin = f(@x1n0 €1)
23,1, = f(@xi1;1. €2) Z2;2. = f(@x11;2. €2) Z2in. = f(Ox11,n.0€2)
ziz1m1. = f(@x:10€121)  Ziz1i2. = F(@x:20€121) 0 Zizrn. = f(@xino €121)
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November flows Qx Qxull| Qr [ Qu |} Q| Qv || Qv || Qur [§Qv | [Qvim | Qux || Ax
month, year, station
X[,1,1.PC XL1,2.PC - |XI,1,n.PC g q 58
b1 b L )1, Inverse standardizin
X1L21.PC X122 PC X1.2.n.PC Transformation function (__ Anverse standardizing e

*
Z* oy

A

XLT,1.PC XLT,2.PC - |XLT,n.PC [T Applies inverse L
___ o o transformations Inverse PCA transform

N§O1D MO | N¥OD on synthetic data Qx = inv(W) * PCx;
| Reverse centering

A A A

synt + mean (X )
XII T IO 11V V VIVIVIIIX X
Inverse normalization :
nE=expl(y)IE Yy
Y

Output data - Synthetic time series - Qsynt.
month, year, station.

A

X, 1,1 X1, 1,2 XL, 1,3. XL1,n.
XII, 1,1 XII, 1,2. XII, 1,3. XIL, 1,n.
1,1 1,12 1,1,3. L1,n
XT,1. X, T,2. X,T,3. X, T,n.

LogV (y, 02)  LogN (uy, 02) LogN (i, a2) LogWV (i, 02)
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