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8th January 2018





Acknowledgements

First of all, I would like to express my gratitude to doc. Ing. Daniel Sýkora,
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Abstrakt

Tato diplomová práce pojednává o vedené syntéze textury na základě předlohy.
Syntéza textury má za ćıl co nejvěrněji napodobit umělecký styl i použitý
umělecký nástroj. V moderńı poč́ıtačové vědě je syntéza textury častým
předmětem výzkumu a má široké uplatněńı. Obsahem této diplomové práce
jsou definice a popis problému vedené syntézy textury a jej́ıho řešeńı. V práci
je k nalezeńı přehled základńıch i pokročilých technik a algoritmů použ́ıvaných
k řešeńı problému syntézy textury. Implementace algoritmu syntézy textury
popsána v této práci byla integrována do existuj́ıćı mobilńı navigace. Detaily
implementace a integrace lze v této práci taktéž naj́ıt. Možnost paralelizace
problému byla vzata v potaz a jej́ı realizace je rovněž vysvětlena. Dále práce
zahrnuje výsledky, porovnáńı, experimenty a měřeńı, které byly na algoritmu
syntézy textury provedeny.

Kĺıčová slova stylizace, syntéza textury, na základě předlohy, mapa výskyt̊u,
paralelizace, mobilńı zař́ızeńı

Abstract

This thesis deals with example-based guided texture synthesis. The goal of
texture synthesis is to reproduce artistic style and used art tool as faithfully as
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possible. In modern computer science texture synthesis is an active research
problem and has wide use. The thesis includes a definition and description of
the guided texture synthesis problem and its solution. An overview of both ba-
sic and advanced methods and algorithms used to solve the texture synthesis
problem are provided. Implementation of the texture synthesis algorithm de-
scribed in this thesis was integrated into an existing mobile navigation applica-
tion, implementation and integration details are included. Parallelization was
considered and implemented and is described in this thesis as well. Addition-
ally, the thesis contains results, comparisons, experiments and measurements
which were performed on the texture synthesis algorithm.

Keywords stylization, texture synthesis, example-based, occurrence map,
parallelization, mobile device
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Introduction

If we have a painting of a certain artistic style, an artist is able to draw a new
image of different content in the same style as his inspiration. The problem
is when the new image should be significantly larger and would consume too
much of the artist’s time, that is where computer texture synthesis becomes
really helpful. For example, a detailed map of Europe or of the whole world
is much bigger than an image which could be drawn by a human artist, so
texture synthesis is needed. Furthermore, if we do not know the content of
the new image in advance, computer texture synthesis is the only option. The
goal of this thesis is to explore the state-of-the-art in texture synthesis and
implement example-based style transfer into navigation maps.

Example-based stylization is a complex problem. In modern computer
science, there has been a lot of research in this field and there has been re-
markable progress in quality and speed of texture synthesis. At present time,
texture synthesis is still a very active researcher topic, meaning there is a lot
of researchers and research groups.

Motivation

Computer-generated navigation maps are often confusing and it is hard to
find important information for orientation. That is especially the problem
when a driver drives a car and he has only a few seconds to look at the
navigation map and understand where he should drive. A thesis, Visualizing
Route Maps [3], has been published which describes how valuable, useful and
easy to follow are hand-drawn maps instead of classical computer-generated
maps. To the best of our knowledge, there is not any mobile navigation, which
uses handcrafted or stylized maps.

Many state-of-the-art stylization approaches work well with complex im-
ages, for example, photos but fail on simple images like a screenshot from
a map. In a complex scene and a complex artistic style, it is easy to hide some
glitches without notice. However, these glitches are very apparent in a simple
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Introduction

scene and a simple style. The survey showed that StyLit [4] is currently the
best and the most suitable technology for map stylization. This thesis uses
methods from StyLit.

Goal of this Thesis

The goal of this thesis is to implement guided texture synthesis to stylize nav-
igation maps on mobile devices by using a given style example. Requirements
for this stylization are both the speed and quality of a result. Texture syn-
thesis implementation, described in this thesis, is integrated into an existing
mobile navigation application Dynavix [5] as the prototype.

Thesis Structure

The thesis is divided into seven chapters: Introduction, Background, Method,
Algorithm, Implementation, Results and Comparison and Conclusion. Next
is the summarized content of each chapter.

Introduction. At first, the texture synthesis problem and the motivation
to solve it are briefly presented in the Introduction chapter. It is followed by
related work where many past and present methods are presented.

Background chapter contains a general description of texture synthesis
and its types. There, the texture energy and global optimization approach
used to solve texture synthesis are defined. The chapter also includes a defin-
ition of the Image Analogies [6] concept.

Method. In this chapter, basic terms and methods related to texture
synthesis are defined. The texture synthesis problem and energy function are
defined in a more formal way.

Algorithm chapter contains a detailed description of methods and al-
gorithms as well as images with examples. Pseudocodes of methods are
provided.

Implementation chapter describes the implementation of algorithms and
methods with more technical details and with more pseudocode examples.
Additionally, parallel implementation as well as a description of the integration
into Dynavix [5] is presented in this chapter.

Results and Comparison chapter compares quality and speed of our
implementation with other approaches and implementations. A comparison
with nowadays popular convolutional neural networks is presented.

Conclusion. Last chapter Conclusion contains a summarization and fu-
ture work.
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Related work

Related work

In recent years manny different approaches has been published, dealing with
the creation of a digital painting. The algorithmic compositon of exemplar
strokes proposed by Salisbury et al. [7] and Zhao and Zhu [8]. Decomposition
of the stylized image into a set of meaningful parts to better preserve semantic
of individual regions by Zeng et al. [9]. The physical simulation was proposed
by Curtis et al. [10] and by Haevre et at. [11]. Procedural approach by
Bousseau et al. [12] and Benard et al. [13]. Advanced image filtering by
Winnemöller et al. [14] and by Lu et al. [15]. All mentioned approaches can
produce impressive results but only on the particular type of data since they
are limited by the used algorithm or by the library of applied brush strokes.
The appearance of the result is defined only by the algorithm so it can produce
only one or limited amount of styles.

Generic example based technique The Lit Sphere was introduced by Sloan
et al. [16]. By artist painted shaded sphere is used as the style example and
pixels from this exemplar are transferred to the target 3D model using texture
mapping. Patch-based synthesis with more complex illumination guidance was
proposed in StyLit [4].

Image Analogies is a concept proposed by Hertzman et al. [6]. There are
two pairs of images, source images and target images (one image in the pair is
filtered-stylized and one is unfiltered). Stylization is described by the source
image pair. The algorithm iterates over unfiltered target pixels and finds the
most similar location in the unfiltered source image and transfers look from the
filtered counterpart. However, this approach suffers from introducing visible
seams, repetition and other artefacts and does not preserve visual appearance
of used art tool. Hashimoto et al. [17] and Benard et al. [18] extended this
approach for animation.

Another example-based region-growing approach is by Efros et al.[1], where
the new texture is generated by one pixel at one time. Given a sample tex-
ture image, a new image is initialized by a patch from the sample texture and
this patch in the new texture is grown pixel by pixel. Another approach is
proposed also by Efros et al. [2]. The new texture is not growing one pixel
at a time but one patch at a time. New pixels or patches in both previous
approaches are determined based on similarity with the sample texture.

Kwatra et al. [19] and Wexler et al. [20] introduced a texture optimiz-
ation technique. They defined similarity metric for measuring the quality of
synthesized texture with respect to a given input sample by Markov Random
Field. Then they formulated the synthesis problem as the minimization of an
energy function by using expectation-maximization like algorithm. In contrast
to the region-growing approaches, it is not synthesized one pixel at a time or
one patch at a time, but the whole new texture is refined many times in it-
erations, from randomly initialized, through coarse texture to the sharp, fine
and faithfully-looked texture.
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In recent work of Fiser et al. [21] and of Barnes et al. [22] there was
a replaced original Hertzman [6] algorithm with texture optimization tech-
nique. This new approach is ideally suited for the controllable synthesis of
textures and other adjustments, but it suffers from the so-called wash-out ef-
fect proposed by Newson et al. [23] and closely described by Jamrǐska et al.
[24]. Wash-out effect makes some parts of the new texture to be smoothed or
blurry. This undesired effect is caused by an extensive use of small amount
of same or similar patches from which a new texture is composed. Many
strategies have been developed to deal with the wash-out effect, e.g. discrete
solver by Han et al. [25], feature masks by Lefebvre and Hoppe [26], color his-
togram matching by Kopf et al. [27], and bidirectional similarity by Simakov
et al. [28] and Wei et al. [29]. These approaches work well in case of the
source being mostly stationary without many nearly-homogeneous patches.
Unfortunately, it does not work well on realistic style examples. More robust
mitigation of the wash-out effect by encouraging uniform patch usage was re-
cently published by Kaspar et al. [30] and Jamrǐska et al. [24] and before by
Chen and Wang [31] and Benard et al. [18]. In our scenario, some patches
need to be used multiple times, so that uniform patch usage is also not robust
enough. Pure uniform patch usage is suitable for normal texture synthesis but
not for guided texture synthesis.

Recently, few alternative approaches to achieve computer-assisted styliza-
tion by using Neural Networks were developed. [32] uses a deep convolutional
neural network VGG [33], trained for object recognition. In this approach
the VGG-Network is used for extracting information from a texture, it can
extract information about both style and content. Texture synthesis is rep-
resented as the minimization problem solved by an iterative gradient descent.
The minimization problem is defined by the similarity between VGG style
response from Sample style and Output texture and VGG content response
from Output guide and Output texture. This approach has impressive results
in some cases. Since the VGG network is trained on natural images, it does
not work well on images with synthetic appearance - like computer-generated
maps. In complex images, it is easier to hide some artifacts and glitches, so
this method does not work well on simple images. The additional drawback of
this approach is that there is no intuitive way to control the transfer process.
Extension of this approach, along with the original Hertzman Image Analogy
[6] concept results in the Deep Image Analogy [34], that uses VGG as well.
This has very promising results, but both input images have to be the same
in content, which is the big limitation.
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Chapter 1
Background

In this chapter we will talk about texture synthesis in general and types of
texture synthesis, the difference between example-based and procedural syn-
thesis, we will define and describe in detail region-growing and the global
optimization method and the difference between guided and non-guided tex-
ture synthesis. The Image Analogy concept is also defined in this chapter.

1.1 Types of Texture Synthesis

The research in texture synthesis was quite active in the last two decades, [1],
[2], [6], [19], [4], [30]. Many methods and algorithms facilitating texture syn-
thesis, accelerating texture synthesis [35] or dealing with the guidance channels
different way [4] have been proposed. Since there are many texture synthesis
approaches, we can classify them into the following categories. Example-based
or Procedural, Region-Growing or Global Optimization and Guided or Non-
Guided texture synthesis. In the next three subsections, we will talk about
these categories in more detail.

1.1.1 Example-based / Procedural

From the texture generating point of view, we can distinguish between example-
based and the procedural approach. In case of procedural texture synthesis,
the new texture is generated using predefined parts and methods. For ex-
ample, texture is composed of the predefined set of brush strokes, filters and
effects. The typical example of procedural approach is shown in the Interact-
ive watercolor rendering with temporal coherence and abstraction [12] where
the result is obtained using the static pipeline. At first, a paper effect (dry
brush or wobbling) is applied, then an edge darkening effect and in the final
step, there is a turbulent flow effect, pigment dispersion and a paper vari-
ation effect. This leads to the well looking watercolor image, but since this is
a procedural approach, it can produce only watercolor images.
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1. Background

Figure 1.1: Example of four similar patches in two textures.

The Example-based approach is more generic, meaning it does not depend
on the specific algorithm. An example of a style has to be provided and the
new image is created based on this example. There is no limitation of styles
and the current state-of-the-art example-based approaches (e.g. StyLit [4])
can reproduce almost every possible style very faithfully.

1.1.2 Region-Growing / Global Optimization

We can also categorize texture synthesis approaches into the Region-Growing
category, where new texture grows one pixel or one patch at a time, or into the
Global Optimization category, where the whole texture is refined in multiple
iterations, from coarse initialization to a finite and faithfully looking texture.
Both categories are described in more detail in the next two subsections.

1.1.2.1 Region-Growing

In the Region-Growing method [1], [6] the new texture is generated one pixel
at a time or one patch at a time. Given the sample texture, the new image is
initialized by a patch from the sample texture. This patch in the new texture
is grown pixel by pixel. New pixels which are added to the new image are
determined based on similarity with the sample texture. Meaning the part of
the new image where the new pixel is added should look as similar as possible
as any part of the sample image. It means that if you choose an arbitrary
patch from the new image there should exist a very similar or almost the same
patch in the original sample texture. See demonstration on 1.1.

Efros and Leung [1] described the Region-Growing algorithm so that given
a sample texture image (left) 1.2, a new image is being synthesized one pixel
at a time (right) 1.2. To synthesize a pixel, the algorithm first finds all the
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1.1. Types of Texture Synthesis

Figure 1.2: Texture Synthesis by Non-parametric Sampling algorithm Over-
view. [1]

neighborhoods in the sample image (boxes on the left) that are similar to
the pixel’s neighborhood (box on the right) and then randomly chooses one
neighborhood and takes its center to be the newly synthesized pixel.

A little different approach is called the Image Quilting and was proposed
by [2]. This approach still falls into the Region-Growing category but the new
texture is not growing one pixel at a time but one patch at a time. The new
image is initialized by one random patch from the sample texture. The sample
texture is then searched for patches which best follow on the new image with
respect to the defined overlap. The founded patch is ”quilted” next to the new
image with respect to this overlap. We can see the results of this algorithm
on figure 1.3. The most left image shows a case with no overlap, it means
that blocks are placed next to each other based on no information, so there
are strong horizontal and vertical artefacts. The image in the middle shows
a case with overlap and each new block is chosen with respect to this overlap,
the boundary between blocks is horizontal or vertical, so it results in little
horizontal and vertical artefacts in the image. The most right image shows
a case with overlap and the boundary between blocks is not straight and is
computed as a minimum cost path through overlap region, which results in
a really well ”quilted” image.

1.1.2.2 Global Optimization

This approach is built on a totally different basis than the Region-Growing
algorithms. In this approach, we do not synthesize one pixel at a time or
one patch at a time, but we refine a whole new texture many times in iter-
ations, from randomly initialized, through coarse texture to the sharp, fine
and faithfully-looking texture. This approach was published by [19] and tex-
ture synthesis is there defined as a problem of energy minimization using the
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1. Background

Figure 1.3: Quilting texture. [2]. On the left image, blocks are placed next
to each other randomly, there is no quilting. On the middle image, there is
overlap and straigth quilting. On the right image, there is overlap and minimal
boundary cut quilting.

expectation-maximization-like algorithm. Given the sample texture, the new
texture is synthesized. As long as the new texture does not look similar as the
sample texture, the new texture has high energy and it is changed in a way
to look more similar as the sample texture, so it is changed in such a way to
have lower energy. In each iteration, each pixel from the new image is evalu-
ated as the average of several pixels from the sample texture. Generally, more
iteration leads to better results. The energy function E of a texture X with
respect to the sample style S is defined as follows:

E =
∑
x∈X

min
s∈S

[SSD(x, s)]

In other words, energy E is the sum of distances of each patch from tex-
ture X to its closest patch in texture S. The distance between two patches is
computed using the SSD similarity measure method 2.2.1.

As can be seen, energy E would be zero if for each patch from texture
X could be found a perfect match in texture S. We will see later, that this
definition of energy is not robust enough.

1.1.3 Guided / Non-Guided

We can distinguish between guided and non-guided synthesis. If guide im-
ages are provided and the new image is synthesized based on the content of
the output guide, we call this guided texture synthesis [4]. Guided texture
synthesis is needed if our sample style image is more complex.

8



1.2. Image Analogies

Figure 1.4: Real demonstration of stylization of a navigation map. Both
Sample Guide and Output Guide are screenshots from Dynavix. Sample Style
is painted by a human and scanned. Output is a result of the synthetization
algorithm. The filter or transformation used here is crayon drawing.

If there is only sample style texture and we want to synthesize the same
texture just bigger it is called normal texture synthesis or non-guided texture
synthesis [19].

1.2 Image Analogies

Image Analogies is a concept which was originally defined by Aaron Hertzman
[6]. It describes relation (analogy) between two pairs of images, shown on
figure 1.4. We have two pairs of images, first pair is image A and image A’,
second pair is image B and B’. There is an analogy between the images A
and B and between A’ and B’, meaning image A’ has to image A the same
relation as image B’ to image B. Hertzmann in Image Analogies [6] likens the
problem of synthesis to the filtering and defines that given a pair of images A
and A’ (where A is unfiltered and A’ is a filtered source image), along with
some additional unfiltered target image B, a new filtered target image B’ can
be synthesized. This Hertzman definition means that we have an example
of some unknown filtration (in some literature the word ”transformation” is
used rather than ”filtration”) in case image A and A’, we also have another
unfiltered image B, given the example of filtration we can modify image B
to obtain image B’, which completes the analogy. In this thesis we will also
refer to example image A as Sample Guide, stylized image A’ as Sample Style,
image B as Output Guide and stylized image B’ will be called Output.
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Chapter 2
Method

In this chapter, we will describe the synthesis problem and based on the
previous chapter, we will define methods and terms which are used to solve the
texture synthesis problem. We will also define the texture synthesis problem
and its energy more formally. First, we need to describe and clarify some
problems, methods and terms which we will use to formulate the problem of
texture synthesis. It is important to define even really basic terms with which
the reader is surely very acquainted. Because in each publication these terms
may be defined a little differently.

2.1 Basic terms

Some of these terms are defined more deeply or described from the implement-
ation point of view in the chapter Algorithm or Implementation.

Texture T, often referred to as image, is a rectangular shaped area con-
sisted of pixels. A texture is defined by its width w and height h. A certain
pixel from the texture can be referred to by its position x, y in the texture.
See 2.1 for illustration. Suppose x ≤ w and y ≤ h, then Tx,y refers to the
pixel.

Patch P is a square region of pixels of some width. The smallest possible
patch is a patch of size 1 which is one pixel. Most of patches mentioned in
this thesis are small (5, 7 or 15 pixels) and have odd width. If a patch has odd
width and belongs to the texture T, we can define patch P by its width wp
and its center pixel (yP, xP) in texture T. Certain pixel from the patch can
be referred by its position x, y in the patch. See 2.1 for illustration. Suppose
x ≤ wp and y ≤ wp, then Px,y refers to the pixel. Later in the thesis we will
define many operations with patches.
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Figure 2.1: Example of patch P in texture T. Size wp of the patch P is 5 in
this case and the patch is centered around the red pixel (y, x)

2.2 Measures of patch similarity

In computer graphics, a measure of patch similarity is a common and not
a trivial problem. We will often need to measure how two patches are similar
or we will need to find the most similar patch from a set of patches referring
to one particular patch. The problem of similarity measuring is described in
detail in [36]. We are more likely to encounter dissimilarity measuring than
similarity measuring. This means we define a dissimilarity function which
reaches high values if patches are different and low or zero value if patches
are very similar or the same respectively. In the most literature, the term
similarity is used instead of dissimilarity even if it refers to dissimilarity. In
this thesis, we will not distinguish between similarity and dissimilarity and
we will use only the term similarity. There exists a lot of ways to measure
similarity, most common are the Sum of Absolute Differences, Sum of Squared
Differences and Normalized Cross-Corelation. In the implementation of this
thesis, only the Sum of Squared Differences measure method is used, so we
will define only this method.

2.2.1 SSD - Sum of Squared Differences

Sum of Squared differences, often referred to as SSD, is a similarity measure
between two patches of the same size. Suppose we have a patch P and a patch
Q, both patches have size wp. The SSD function is defined as follows:

SSD(P,Q) =
wp−1∑
x=0

wp−1∑
y=0

(Px,y −Qx,y)2

12



2.3. Wash-out Effect

2.3 Wash-out Effect

Wash-out effect [23] is an undesired effect which occurs when a small amount
of same or similar patches from the sample texture (A’ in our case) are used
too excessively when a new output texture (B’ in our case) is synthesized. If
particular patches are used too often, the output texture loses its diversity
and some parts of the texture may look smoothed or blurry. Many strategies
have been developed to deal with this undesired phenomenon. Between 2006
- 2008 many approaches was published, discrete e.g. solver by Han et al. [25],
feature masks by Lefebvre and Hoppe [26], color histogram matching by Kopf
et al. [27], and bidirectional similarity Simakov et al. [28] and Wei et al. [29].
In past few years more robust approaches was published, Kaspar et al. [30]
and Jamrǐska et al. [24].

In this thesis, we will mitigate wash-out phenomenon using the Kaspar
et al. [30] approach. It means we will penalize patches which were already
used too much and prevent them from being used again. In case of guided
synthesis, the content of guide images needs to be taken into account when
the patch is penalized.

See 2.2 figure, there is an example of the wash-out effect on the road and
a strong wash-out effect on the water area.

2.3.1 Occurrence Map

Occurrence map Ω is a structure used while creating texture B’ from texture
A’. Occurrence map is same in the size as image A’ and for each pixel from
A’ it stores how many times was this pixel used in the new texture B’. In
other words, it stores how many times each pixel from image A’ was used in
the patches that make up the output image B’. Let N(si) denote the set of
the pixels in a patch si, Kaspar et al. [30] defines the occurrence map Ω as
follows:

Ω(x, y) = |{si|(x, y) ∈ N(si)}|

In case of not-guided texture synthesis, it is ideal if each exemplar pixel is
used the same number of times. Further ωbest is defined and later it will be
extended for guided synthesis.

ωbest = |B
′|

|A′|
∗ |P |

where |P | is a number of pixels in patch P. This will encourage uniform
distribution of patches which is suitable for normal texture synthesis but not
for guided texture synthesis. In our case, the content of guide images needs
to be taken into account. Suppose that there is a water area in both images
A and B and |Awater| is the size of the water area in image A and |Bwater| is
the size of the water area in image B. We can define ωbest for water as follows:

13
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(a) Without patch penalization (b) With patch penalization

(c) Water style (d) Water without patch pen-
alization

(e) Water with patch penaliz-
ation

Figure 2.2: The wash-out effect Demonstration on the navigation map. Look
at the images in the top row and focus on the yellow road of the image (a),
there are visible vertical lines which are not part of the style. The yellow road
at the image (a) is composed of the small amount of patches which causes the
road to look vertically blurred. The bottom three images are an example of
a strong wash-out effect on water. Image (c) is a sample of water style, on
the image (d) a significant blur is visible. Image (e) was created using patch
penalization, so there is almost no wash-out effect.
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ωbest water = |Bwater|
|Awater|

∗ |P |

For each other areas (e.g. forest, road ...) ωbest is defined in the same way, see
more details in the Algorithm chapter.

Additionaly we can also define Ω(si) for the entire patch as follows:

Ω(si) =
∑

(x,y)∈si
Ω(x, y)

|P |

2.4 Nearest-neighbor Field

Once we have defined the similarity between two patches, we can define the
term Nearest-neighbor Field (NNF), see illustration 2.3. It describes the re-
lation between two textures. Let A’ and B’ be textures (e.g. A’ can be our
sample style texture and B’ can be our Output texture). Let ϕ be some patch
similarity metric (e.g, Sum of Squared Differences 2.2.1). We can define NNF
as follows:

NNFB′→A′(P ) = min
Q∈A′

[ϕ(P,Q)]

P is an arbitrary patch from image B’. NNF is the mapping of all patches
from image B’ to some patches of image A’. This mapping is not injective,
multiple patches from image B’ can be mapped to one particular patch from
image A’.

2.4.1 Nearest-neighbor Field with Patch Penalization

In order to deal with the wash-out effect described above, we need to extend
the NNF by occurrence map Ω and penalize and prevent particular patches to
be used too often. To achieve this we extend the SSD similarity metric used
when constructing NNF by patch penalization.

d(ti, si) = ||ti − si||2 + λocc ∗
Ω(si)
ωbest

λocc controls the relative contribution of uniformity enforcement and is set
experimentally.

Later in this thesis, we will use the term NNFΩ to refer to this extended
NNF which deals with patch penalization.

2.5 Problem Formulation

The texture synthesis solution, described in this thesis, is based on [19] texture
optimization approach. Texture synthesis is treated as an energy minimization
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Figure 2.3: Illustration of the Nearest-neighbor Field, in case of our texture
synthesis it maps all patches from the output image B’ to the sample style
image A’. For simplification, the figure shows only few patches.

problem. We will define energy exactly how Kwatra [19] defines it and we will
extend it two times. At first, we will augment this definition by guide images.
Second, the definition will be augmented to mitigate the wash-out effect.

Suppose we have textures denoted as in 1.4, ϕ is some similarity measure
method (in our case it is SSD 2.2) and once we have defined NNF 2.4 we can
define energy E as follows:

E =
∑
s∈B′

ϕ(s,NNFϕB′→A′(s))

This is the energy definition by Kwatra [19]. Since Kwatra’s approach
is not guided synthesis it does not deal with sample guide (A) and output
guide (B). This means we have to extend this energy definition by guide im-
ages. Note that both NNFϕB′→A′ and NNFϕB→A exist in a pair and contain
the same information, NNFϕB′→A′ returns style patch and NNFϕB→A returns
guide patch. For simplification we will use NNFs instead of NNFϕB′→A′(s)
for style Nearest-neighbor Field and NNFg for guide Nearest-neighbor Field
respectively.

E =
∑
s∈B

α · ϕ(s,NNFs) + β · ϕ(s,NNFg)

Parameters α and β are optional and can be used to make synthesis follow
more guide than style or follow more style than guide.

Kwatra’s original definition of energy is not robust enough and suffers from
the wash-out effect. In section 2.3 is explained what is the wash-out effect and
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why it occurs. To mitigate the wash-out phenomenon we need to extend the
current definition of energy in order to suppress the excessive use of particular
patches.

E =
∑
s∈B′

α · ϕ(s,NNFs) + β · ϕ(s,NNFg) + λ · Ω(NNFg)

Our energy definition is now a sum of squared differences in style plus a sum
of squared differences in guide plus patch penalization. Patch penalization Ω
will encourage that patches from sample style will be used with respect to
areas in guide images. Parameter λ determines how big is the penalization for
patches which are used more often than they should be.
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Chapter 3
Algorithm

Based on the terms, methods and problem formulation we have already defined,
we can now construct an algorithm, solving the guided texture synthesis prob-
lem. This algorithm is based on Kwatra’s approach [19] extended by Kaspar’s
[30] patch penalization. We will construct the basic algorithm for texture syn-
thesis and extend it by the Multi-resolution approach. The chapter contains
also a description of guidance on navigation maps and pre-synthesized texture
improvement.

3.1 Texture Synthesis Algorithm

This is a global optimization problem solved in multiple iterations. At first,
our Output image is initialized by random colors and then is refined in mul-
tiple iterations to a fine and faithfully looking texture, see image 3.1, this
iterative approach is in some literature called ”coarse-to-finite”. In each itera-
tion, NNF is computed and each pixel of the new output texture is evaluated
based on this NNF using the Voting method 3.2. During iterations, each next
subsequent output image should have lower energy (defined in chapter above)
therefore should look more like style sample but with content defined in the
output guide. See the algorithm TextureOptimization 1. There are four input
parameters, sample guide A, output guide B, sample style A’ and number of
iterations N. In this algorithm, function findNNF takes four parameters, both
guide images, sample and output image. It means that the distance between
two patches is computed using two SSD computations, SSD distance between
image A and A’ plus SSD distance between image B and B’. To deal with the
undesired wash-out effect we were discusing in 2.3, the function findNNF uses
extended NNF, described in 2.4.1.
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(a) Sample Style (b) Output Guide

(c) Random initialization (d) 1st iteration (e) 4th iteration

(f) 7th iteration (g) 10th iteration (h) 17th iteration

Figure 3.1: Coarse-to-finite illustration on real map synthetization example.
The result is initialized by random colors and then it is refined in multiple
iterations. It can be seen that the content of the output guide image is captured
in the first few iterations. Then the style of Sample Style and the texture
appearance is captured.
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Algorithm 1 Texture Synthesis Basic Algotrithm
function TextureOptimization(A, B, A’, N)
for n = 0 : N do

if n == 0 then
NNF = random NNF

else
NNF = findNNF(A, B, A’, B’)

end if
B’ = voting(NNF, A’)

end for
return B’
end function

3.2 Voting method

For simplification, suppose we are solving non-guided texture synthesis, there-
fore, we only have images A’ (sample style) and B’ (output). NNF describes
the relation between these two images - for every patch in image B’, NNF
gives a patch in image A’ which is similar the most. Let NNF be created
using a patch of size wp, then each pixel in image B’ is contained in Wp2

patches in image A’, so this amount of patches (its center pixels respectively)
will ”vote” to assess the value of the new pixel. Such voting is used to evaluate
every pixel in the new texture B’. See example 3.2 of voting for one pixel.

3.3 Multi-resolution approach

Multi-resolution approach gives us a significant improvement in both speed
and quality of texture synthesis. Sample texture, as well as both guide tex-
tures, are downsampled to half of their original resolution a few times. Syn-
thetization then starts from the lowest resolution. See figure 3.3. Multiple
iterations are performed on each resolution level. When transiting to higher
resolution level, output texture is upsampled. See pseudocode of texture syn-
thesis augmented by the multi-resolution approach 2. There are five input
parameters, sample guide A, output guide B, sample style A’, number of iter-
ations on each resolution level N and number of resolution levels LVLS. The
advantage of having sample textures in multiple resolutions is that we can
use Example-based Upsample method 4.5 for upsampling, see details in the
section below. Next, we will discuss details of speed and quality improvement
which the Multi-resolution approach offers.
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Figure 3.2: Example of pixel evaluation using the Voting method. Let NNF
between output texture B’ and sample style texture A’ be computed, see arrows
in the figure. Patches have size 5 so pixel x in image B’ is evaluated based
on 25 patches (pixels) from image A’. Pixel x is evaluated as an arithmetic
mean of pixels x′1 ... x′25, see the simplified example with four patches and
four pixels x′1, x′2, x′18 and x′25 at this figure.

Multi-resolution approach - Speed improvement

Finding NNF is a very time-consuming problem, it has complexity O(|A| · |B|)
where |A| is a number of pixels of the sample image and |B| is a number of
pixels of the output image. In each iteration, NNF has to be computed.
Performing n iterations on m cascading resolution levels and upsampling the
output image between resolution levels is significantly less time-consuming
than performing n ·m iterations on the original resolution level.

Multi-resolution approach - Quality improvement

Beside speed improvement, the multi-resolution approach gives us also a signi-
ficant quality improvement. Suppose using the same size of the patch during
constructing NNF at each resolution level. On lower resolution levels, texture
synthesis is able to capture bigger image features, because the ratio of im-
age size to patch size is lower. It also decreases the impact of the randomly
generated initial NNF.

3.4 Upsampling

There is a significant advantage to performing texture synthesis on multiple
resolution levels and transitioning from a lower resolution level to a higher
resolution level needs upsampling. The inherit problem of upsampling is that
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Figure 3.3: The multi-resolution approach illustration on a real map example,
there are three resolution levels and five iterations on each level. Synthesis
starts from random initialization on quarter resolution, five iterations are per-
formed and the result is upsampled, five iterations on half resolution are per-
formed and the image is upsampled once more and the final five iterations on
full resolutions are performed.
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Algorithm 2 Texture Synthesis - Multi-Resolution
function TextureOptimizationMultiResolution(A, B, A’, N, LVLS)
for lvl = 0 : LVLS do
A↓ = Downsample(A, 2LV LS−lvl)
B↓ = Downsample(B, 2LV LS−lvl)
A′↓ = Downsample(A′, 2LV LS−lvl)
for n = 0 : N do

if n == 0 then
NNF = random NNF

else
NNF = findNNF (A↓, B↓, A′↓, B′)

end if
B′ = voting(NNF,A′↓)

end for
if lvl < LVLS then
B′ = Upsample(B′, NNF )

end if
end for
return B’
end function

we need to add new pixels into the image to make it bigger; so we need to
determinate the color of those pixels in order to preserve the natural appear-
ance of the image. There are multiple common upsampling methods such as
the Nearest-Pixel Interpolation, Linear Interpolation or Example-based Up-
sampling. In case of Nearest-Pixel Interpolation, the image is enlarged, which
results in empty pixels and the color of these pixels is set to the color of the
nearest original pixel. But upsampled image looks coarse. A similar method
is Linear Interpolation, the image is enlarged so that there are empty pixels
as in the previous method. The color of these empty pixels is computed as
an aritmethic average of two or four nearest original pixels. In this case, an
upsampled image does not look coarse but is blurry. The different and more
sophisticated approach is the Example-based Upsample, which yields results of
significantly better quality than the previous two methods. Since this method
requires additional information about the image, it is not suitable in all cases,
but in case of multi-scale texture synthesis, we have this information. Next is
a subchapter describing the Example-based upsample method more in depth.

3.4.1 Example-based Upsample

Assume that we have two in content and appearance same sample textures.
One sample texture of the same resolution as a smaller image and one sample
texture of the same resolution as is our desired size. These sample textures
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must capture all the important elements and characteristics of the texture
we want to upsample. Then we can match the smaller image to the lower
resolution sample texture using NNF 2.4. Once NNF is computed it can
be upsampled - all positions in NNF are multiplied by two. Based on this
upsampled NNF and a higher resolution sample texture, a bigger image can
be reconstructed. This upsampling method has significantly better results
than the Nearest-Pixel Interpolation or Linear Interpolation, but it requires
sample textures which is the big limitation. This upsample approach is also
often referred to as the NNF-upsampling.

3.5 Map Segments Guidance

Since we do not synthesize only one texture but the entire image with more
complex content, guidance is needed to distinguish between different parts
of the synthesized image. A computer-generated map is usually consisted
only from a small amount of regions and therefore only from a small amount
of colors. Image 1.4 is consisted from five different colors - blue color for
water, yellow color for bigger roads, white color for smaller roads, pink color
for built-up areas and sand color for grass areas. This inherit segmentation of
computer-generated maps is ideally suited to be used as the guide for synthesis.
Later in this section, the term ”segment” is used to refer to a map component
like water, road, built-up area, etc.

In section 2.4.1, we have defined the distance between two patches using
an occurrence map and ωbest. Finding a good value of ωbest in general case is
a very complex problem. In our case, ωbest can be computed separately for
each segment as follows:

ωbest(segment) = output[segment].size
sample[segment].size

If ωbest is set correctly, function findNNF will probably, for most of the
water patches from output guide, also find water patches in sample guide. But
it might not work every time, suppose that in our guide images A and B, the
color of one segment is similar to the color of a different segment, for example,
water has a light-blue color and road has a dark-blue color. Also, assume that
findNNF already assigned a lot of water patches to water patches thus all the
water patches in sample guide already have a big occurrence value. Even if
ωbest is correct for each segment, it can happen that for a light-blue water
patch from output guide findNNF will assign a patch from the dark-blue road
segment in the sample guide because this dark-blue patch has little different
color but it has low occurrence. We can get significant quality and also speed
improvement by setting a strong requirement for the findNNF function to
match patches only between the same segments. It means, for example, for
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a patch from output guide located on water, the findNNF function will find
the closest patch only from water patches in the sample image.

3.6 Pre-Synthesized Textures Speed-Up

As we describe in the section above, computer-generated maps consist of
a small amount of segments, therefore, there is a possibility to pre-generate the
texture of each segment and use these textures to speed-up the synthetization.
The output image is initially composed of pre-generated textures which results
in visible seams and sharp borders between different segments. Since the tex-
ture synthesis approach used in this thesis is the global optimization method,
this coarse composed image is then optimized in multiple iterations in order
to remove seams and make borders between segments faithfully-looking. Syn-
thesis is applied only around seam areas and borders. See detailed illustration
on 3.4.
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(a) A’ (Sample Style) (b) A (Sample Guide) (c) B (Output Guide)

(d) Texture grass (e) Texture water (f) Texture small
road

(g) Texture big
road

(h) Texture
builtup

(i) Mask (j) Initialization (k) Final result

Figure 3.4: Illustration of the Pre-Synthesized Textures Speed-Up on the real
example. At the top row, input images A’, A and B are shown. The middle
row contains pre-synthesized textures. At first, a mask around the edges of
the Output Guide B is computed, see image (i). Areas near to the edges are
initialized by random colors, areas far from the edges are initialized by pre-
synthesized textures based on the content of Output Guide B, see image (j).
Only areas around the edges are then synthesized. See (k) for the final result.
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Chapter 4
Implementation

In this chapter, we will describe the implementation of the previously men-
tioned algorithms more in depth and with more technical details, pseudocode
examples are provided. We will start from the basic functions and compose
a texture synthesis algorithm step-by-step. The chapter also contains one
section dealing with graphic card acceleration improvement. Pseudocodes of
kernels written in the OpenCL [37] standard are provided as well.

4.1 SSD function

In this implementation, we use the SSD - Sum of Square Differences 2.2.1
method for the measure of patch similarity. Since this is guided synthesis, the
sum of squared differences is computed based on two style patches (A and
B) and two guide patches (A’ and B’). While constructing NNF, the SSD
function is called multiple times in order to find the best mapping between
the patches. A significant speed-up is achieved if the optional parameter
BestSSD is provided to early terminate SSD comparison if a better match is
already known. Additional optional parameters α and β are used to make the
SSD comparison function more sensitive to the difference in style or in guide
respectively. The ideal setting of α and β is a complex problem and depends
on the particular style, it was empirically found that the ideal ratio is α

β = 0.3
0.7

for most of the styles.
See pseudocode of SSD function 3. There are seven input parameters,

a patch from image A, B, A’ and B’, optional parameter BestSSD, α and β
which are described above.

4.2 Find nearest neighbour

Given a patch from output image B and output guide image B’, this function
finds its nearest patch in image A, A’ respectively. See pseudocode 4. The
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Algorithm 3 SSD Similarity method for guided texture synthesis
function SSD(A, B, A’, B’, BestSSD = inf, α = 0.3, β = 0.7)
SSDTotal = 0
for [x, y] in A.pixels.position do

SSDStyle = (Ax,y −A′x,y)
2

SSDGuide = (Bx,y −B′x,y)
2

SSDValue = α·SSDStyle + β·SSDGuide
if BestSSD ≤ SSDTotal then

return bestSSD
end if

end for
return SSDTotal
end function

occurrence map Ω is taken into account. SampleMask is a mask over the
sample guide image, describing where to look for patches. Using this mask,
a significant speed-up and quality improvement is achieved. For example, if
we have a patch of a water region, using this mask we will search in the sample
image only where the water is. See section Map Segments Guidance 3.5 for
details. The function, takes six parameters, patch from output guide B and
output B’, sample guide A and sample style A’, sample mask and omega for
patch penalization computing.

Algorithm 4 Find nearest neighbour
function FindNearestNeighbour(PatchB, PatchB’, A, A’, SampleMask,
Omega)
bestOccurrence = find best occurrence for PatchB
bestSSD = -inf
bestPosition = NULL
for [x,y] in SampleMask do

PatchA = create patch around pixel Ax,y
PatchA’ = create patch around pixel A′x,y
currentSSD = SSD(PatchA, PatchB, PatchA’, PatchB’, bestSSD, 0.3,
0.7) + (Omega[x,y] bestOccurrence)
if currentSSD < bestSSD then

bestSSD = currentSSD
bestPosition = [x,y]

end if
end for
return bestPosition
end function
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4.3 Find NNF

Function findNNF, see pseudocode 5, finds the nearest neighbour field between
two images. In our case, it is used to find the NNF mapping from output
guide B and output guide B’ to sample style A and sample guide A’. NNF
is found with respect to patch occurrence penalization. OutputMask specifies
the region for which we need to find NNF.

Algorithm 5 Find nearest neighbour field
function FindNNF(A, A’, B, B’, SampleMask, OutputMask)
NNF = NULL
Occurrence = init with zero
for [x,y] in OutputMask do

PatchB = create patch around pixel Bx,y
PatchB’ = create patch around pixel B′x,y
NNF[x,y] = FindNearestNeighbour(PatchB, PatchB’, A, A’,
SampleMask, Occurrence)
Occurrence[NNF[x,y]] = Occurrence[NNF[x,y]] + 1

end for
return NNF
end function

4.4 Voting method

Based on the nearest neighbor field, the new image is composed using the
Voting method. Once we have computed NNF which maps each patch from
output image B’ to the closest patch in sample style image A’, we take these
patches from A’ and merge them together. See pseudocode 6. At first, the
StackedImagePixels structure is computed, it is a structure similar to an image
but with multiple pixels at each position. Provided NNF does not have to cover
the entire output image if there was an Output mask during NNF computing
so StackedImagePixels is initialized with output image B’. All pixels of all
patches from NNF are added to this StackedImagePixels structure so there
is up to PatchSize2 pixels at a single position. Then a new OutputImage is
computed as an average of stacked pixels. The Voting method function takes
a sample style image A’, nearest neighbour field and patch size pSize with
which NNF was computed. Function avg computes an arithmetic mean from
the provided list of values.
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Algorithm 6 Voting method
function Voting(A’, B’, NNF, pSize)
StackedImagePixels = init with B’
for x = 0 : NNF.size.width do

for y = 0 : NNF.size.height do
for innerX = NNF[x,y].x - (pSize/2) : NNF[x,y].x + (pSize/2) do

for innerY = NNF[x,y].y - (pSize/2) : NNF[x,y].y + (pSize/2) do
stackedX = x + innerX - NNF[x, y].x
stackedY = y + innerY - NNF[x, y].y
StackedImagePixels[stackedX, stackedY].add(A’[innerX, innerY])

end for
end for

end for
end for
OutputImage = allocate
for x = 0 : StackedImagePixels.size.width do

for y = 0 : StackedImagePixels.size.height do
OutputImage[x,y] = avg(StackedImagePixels[x,y])

end for
end for
return OutputImage
end function

4.5 Texture Synthesis

Given A, B and A’, the output image B’ is created in the TextureSynthesis
function, see pseudocode 7. OutputImage is initialized using pre-synthesized
textures based on the output guide. Output image is filled with pre-synthesized
textures and only seams are synthesized, SampleMask and OutputMask de-
scribe the location of mentioned seams. Argument N is the number of itera-
tions on each resolution level LVLS.

At first, images A, B and A’ are downsampled to the desired resolution
level. Based on guide A and B, a mask is created so that it covers only
the location where segments change, e.g. transition from a water segment to
a grass segment. Output image B’ is initialized with pre-synthesized textures
in the first iteration or reinitialized with pre-synthesized textures of higher
resolution. This initialization respects output guide B, so that space around
seams is not reinitialized again once it have been synthesized. FindNNF and
the Voting function are applied in each iteration and Upsample refers to the
Example-based upsampling .

Based on consideration and experimental evaluation, we found that the
ideal value for most of the styles is 5 for a number of iterations on each level
and 3 for a number of resolution levels. We also consider size 5 of a patch to be
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Algorithm 7 Texture Synthesis
function TextureSynthesis(A, B, A’, N, LVLS)
for lvl = 0 : LVLS do
A↓ = Downsample(A, 2LV LS−lvl)
B↓ = Downsample(B, 2LV LS−lvl)
A′↓ = Downsample(A′, 2LV LS−lvl)
SampleMask = CreateMask(A)
OutputMask = CreateMask(B)
B’ = InitWithPre-SynthesizedTextures(B, OutputMask)
for n = 0 : N do

NNF = FindNNF(A, A’, B, B’, SampleMask, OutputMask)
B’ = Voting(A’, B’, NNF, 5)

end for
if lvl < LVLS then

B’ = Upsample(B’, NNF)
end if

end for
return B’
end function

ideal. If the patch size is bigger, synthesis is able to preserve larger structures,
but since we do not change the size of a patch for lower resolutions, large-scale
structures are captured on lower resolution levels, e.g. on quarter resolution
a patch of size 5 has a relative size 20, in comparison to the original image.

4.6 Parallel acceleration

From algorithms described in this and previous chapters, it is obvious that
the most time-consuming part of texture synthesis is finding the Nearest-
Neighbor Field. Texture synthesis runs in multiple iterations on multiple
resolution levels and in each iteration, NNF is computed. NNF matches each
patch from output texture B’ to the closest patch (with respect to the patch
penalization) in sample style A’. In our case NNF is computed exactly by
using a brute-force-like algorithm so for each patch from B’ the entire image
A’ is searched. Suppose that the width and height of both images A’ and
B’ is n, that means that complexity of the NNF computing is O(n4). Other
parts of the texture synthesis algorithm have significantly less complexity. By
accelerating the NNF, the entire texture synthesis will be accelerated.

For simplification, suppose we are not dealing with patch penalization,
meaning this brute-force-like NNF algorithm is ideally suited for paralleliza-
tion. For each patch from image B’, texture A’ can be searched independently.
During computing of the NNF, texture A’ is accessed only for reading, so there
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is no need for any explicit synchronization and finding NNF can be naturally
parallelized. Next in this section, we will deal with parallelization of the NNF.

4.6.1 OpenCL

At first, we will introduce the OpenCL [37] standard briefly. Then, we will
follow with parallel functions used in texture synthesis.

OpenCL stands for Open Computing Language. It is an open stand-
ard for parallel programming of heterogeneous systems and is maintained
by a non-profit technology consortium Khronos Group. It runs on central
processing units (CPUs), graphic processing units (GPUs), digital signal pro-
cessors (DSPs), field-programmable gate arrays (FPGAs) and many other
hardware accelerators. In OpenCL terminology, by device or OpenCL device
is meant a hardware accelerator (e.g. CPU, GPU) where a parallel program
is executed. By term host is meant a processor, which calls a parallel pro-
gram on the OpenCL device. Kernel is a term for functions executed on an
OpenCL device. OpenCL defines a C-like programming language for writing
kernels. Kernels are compiled at run-time thus OpenCL code is ideally port-
able between implementations for various host devices. In the OpenCL stand-
ard, there are host APIs only for C and C++, but there also exist third-party
implementations or wrappers for Python, Java, .NET and others. Nowadays,
the OpenCL standard is adopted and implemented by various companies such
as AMD, Apple, ARM, Intel, Nvidia, Samsung and many others, meaning
OpenCL programs can run on Windows, Linux, OSX and even on some An-
droid devices.

4.6.2 SSD OpenCL Kernel

Following is the kernel for computing sum of squared differences. For simplific-
ation, this pseudocode deals only with one image, it can be used for non-guided
synthesis as is or naturally extended by another image and patch. Input argu-
ments are image I, which can be in our case sample the image A’, patch P is
a patch which will be found in image I, width imgWidth and height imgHeight
of image I and size of patch pSize. Last is the output parameter outputSS-
DData, which stores all the computed SSDs. See pseudocode 8. The input
image I is serialized to a one-dimensional array. Function get global id(0) is
an OpenCL API function returning an index of the thread, this index is used
to determine which data should this particular thread take care of.

4.6.3 Find NNF OpenCL Kernel

Another kernel used in the implementation of this thesis is a kernel for finding
the nearest neighbour field, see pseudocode 9.
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Algorithm 8 SSD kernel function
kernel function SSD KERNEL(I, P, imgWidth, imgHeight, pSize, out-
putSSDData)
patchHalf = patchsize / 2
row = get global id(0) / (imgWidth - 2·patchHalf)
col = get global id(0) % (imgWidth - 2·patchHalf)
ssd = 0
for innerRow = 0 : patchSize do

for innerCol = 0 : patchSize do
imgIndex = [(innerCol + col) + (innerRow + row)·imgWidth] ·3
patchIndex = innerCol·3 + innerRow·pSize·3
diffB = I[imgIndex] - P[patchIndex]
diffG = I[imgIndex + 1] - P[patchIndex + 1]
diffR = I[imgIndex + 2] - P[patchIndex + 2]
ssd = ssd + diffB·diffB + diffG·diffG + diffR·diffR

end for
end for
outputSSDData[get global id(0)] = ssd
end kernel function

4.7 Dynavix Integration

Implementation of this thesis was integrated into an existing mobile navigation
Dynavix [5] as the prototype. Dynavix offers GPS navigation and maps for
Android devices. In this section, we will describe the details of this integration.

During the startup of Dynavix, an instance of the class TextureSynthesis is
created. Two methods used to initialize the TextureSynthesis object are called,
i.e. loadSampleAndSampleGuide and loadPreSynthesizedTextures. These meth-
ods load input images, needed by texture synthesis, into memory and pre-
pare them to be used. Method loadSampleAndSampleGuide takes the path to
sample and the guide image as an argument, it loads sample style image A’ and
sample guide image A, downsamples them to half and quarter resolution and
stores them into the TextureSynthesis object as OpenCV [38] images. Method
loadPreSynthesizedTextures loads presynthesized textures, downsamples them
and store them into the TextureSynthesis object as well.

Dynavix uses OpenGL technology for map and map widgets rendering and
the Android Framework for the rest of its user interface. In the first phase,
a map using OpenGL is rendered. In the second phase, map widgets are
rendered over the previously rendered map, also by OpenGL. In the third
phase, the remaining Android UI is rendered over it. The prototype of map
stylization was inserted between the first and the second phase.

See pseudocode 10 of initializing and running a map stylization in Dynavix.
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Algorithm 9 FindNNF kernel function
kernel function FindNNF KERNEL(B’, A’, pSize, A, B, outNNFRow,
outNNFCol, outImgSize, sampleSize)
pHalf = pSize / 2
outImgRow = (get global id(0) / (outImgSize - 2 * pHalf)) + pHalf
outImgCol = (get global id(0) % (outImgSize - 2 * pHalf)) + pHalf
bestSSD = +inf
for [sampleRow, sampleCol] : sample.pixels.position do

SSD = 0
for innerRow = 0 : patchsize -1 do

for innerCol = 0 : patchsize -1 do
currOutRow = outImgRow + innerRow - pHalf;
currOutCol = outImgCol + innerCol - pHalf;
currSmpRow = sampleRow + innerRow - pHalf;
currSmpCol = sampleCol + innerCol - pHalf;
indexOutImg = currOutRow * outImgSize * 3 + currOutCol * 3;
indexSampleImg = currSmpRow * sampleSize * 3 + currSmpCol *
3;

diffB = A’[indexSampleImg] - B’[indexOutImg];
diffG = A’[indexSampleImg+1] - B’[indexOutImg+1];
diffR = A’[indexSampleImg+2] - B’[indexOutImg+2];
squareSum = diffB * diffB + diffG * diffG + diffR * diffR;

diffB = A[indexSampleImg] - B[indexOutImg];
diffG = A[indexSampleImg+1] - B[indexOutImg+1];
diffR = A[indexSampleImg+2] - B[indexOutImg+2];
squareSumGuide = diffB * diffB + diffG * diffG + diffR * diffR;

SSD = SSD + squareSum + squareSumGuide;
end for

end for
if SSD < bestSSD then

bestSSD = SSD;
index = (outImgRow - pHalf) * (outImgSize - 2 * pHalf) + (outImgCol
- pHalf);
outNNFRow[index] = sampleRow;
outNNFCol[index] = sampleCol;

end if
end for
end kernel function
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Algorithm 10 Dynavix Main
function DynavixMain()
textureSynthesis = create TextureSynthesis object
textureSynthesis.loadSampleAndSampleGuide(...)
textureSynthesis.loadPreSynthesizedTextures(...)
...
while Dynavix is running do

Render Map
B = Read pixels from OpenGL bufffer
B’ = textureSynthesis.synthesis(B)
Write B’ to OpenGL buffer
Render Map Widgets
Render Android Framework UI

end while
end function
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Chapter 5
Results and Comparison

At first, in this chapter, we will compare the quality of this synthetsis imple-
mentation with nowadays very popupar convolutional neural networks. Next
are some experiments with the Pre-Synthesized texture improvement, OpenCL
acceleration speed-up and experiments with loss-less zooming. Many images
are presented here.

5.1 Comparison with CNN approaches

In past years, there has been a big expansion of the machine learning, deep
learning and neural networks. These technologies expanded into almost all of
the corners of computer science, including texture synthesis and stylization.
Convolution neural networks have impressive results if they are used for styl-
ization of complex paintings. In case of simple style and simple guide, most
of neural network approaches do not work well.

Next, in this section, we will compare the quality of the results of our
synthesis implementation with three neural approaches. First is the ”Semantic
Style Transfer and Turning Two-Bit Doodles into Fine Artwork” [39] (later
reffered to only as Neural Doodle), second is ”A Neural Algorithm of Artistic
Style” [32] (later reffered to only as Artistic Style) and third is Deepart.io
[40]. Implementation of the Neural Doodle and the Artistic Style is available
as python code and the Deepart.io has a web page application.

Figure 5.1 shows input images used in comparison. There is the output
guide, a crayon style sample and a pen style sample. The first is a compar-
ison of three previously mentioned convolutional neural network approaches
and is performed on the crayon style, see 5.2. As can be seen, our result is
significantly better than any other result. According to the Deepart.io web
application [40], it has good results when the sample style and output guide
are more complex, however in our simple map scenario, Deepart.io results are
insufficient. Artistic Style completely failed to capture colors, while Neural
Doodle failed to capture content, showing the sample style content instead of
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5. Results and Comparison

(a) A’ Crayon (b) A’ Pen (c) B output guide

Figure 5.1: Comparison with CNN - input images for comparison, results are
shown on figure 5.3 and 5.2

the output guide content. See another comparison 5.3 performed on the pen
style. Results are similar as on the previous comparsion. Moreover, on this
style Neural Doodle failed to preserve the content, the bottom third of the
image has red roads same as output guide, but the rest of the image is wrong.
Our result shows three little visible green glitches on the white roads. It can
be fixed by setting α and β parameters of the SSD measure to make synthesis
follow more guide than style.

Comparison of two more styles of our implementation with only Deepart.io
is shown on figure 5.4. The chalk style is a scan of the real image painted with
chalk. MS Paint style is a style, where some parts of the image were repainted
by a brush in the Microsoft Paint software.

5.2 Pre-Synthesized textures experiments

In this section, some results and experiments performed on Pre-Synthesized
textures improvement are presented.

In case of the Pre-Syntheiszed improvement, the output image is initialized
with pre-generated textures and only areas around seams (e.g. edges in the
output guide) are synthesized. Quality of the result is given by the size of
the synthesized area around the edges. If the area around the edges has the
size of 0, nothing is synthesized and the resulting image is composed only
from pre-synthesized textures. If the area around the edges has a size bigger
than width or height of the image, the whole texture is synthesized and it is
not Pre-Synthesized improvement anymore. At figure 5.5, see multiple results
for different sizes of the synthesized area around the edges. As can be seen,
results (a), (b) and (c) look almost the same, meaning we need to synthesize
only a really small area around the edges to get a faithfully-looking result.
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5.2. Pre-Synthesized textures experiments

(a) Deepart.io (b) Artistic Style

(c) Neural Doodle (d) Ours

Figure 5.2: Comparison with CNN - crayon style, input images are shown
on figure 5.1. The image (a) shows result of Deepart.io, image (b) result of
Artistic Style, image (c) result of Neural Doodle and the last image (d) is our
result.
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(a) Deepart.io (b) Artistic Style

(c) Neural Doodle (d) Ours

Figure 5.3: Comparison with CNN - pen style, input images are shown on fig-
ure 5.1. The image (a) shows result of Deepart.io, image (b) result of Artistic
Style, image (c) result of Neural Doodle and the last image (d) is our result.
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5.3. OpenCL acceleration

(a) Chalk style (b) Deepart.io (c) Ours

(d) MS Paint style (e) Deepart.io (f) Ours

Figure 5.4: Deepart.io comparison with ours. Chalk style and style created
using MS Paint.

Table 5.1: OpenCL NNF speed-up

Single thread CPU GPU
Intel i7-4700MQ GeForce GT 745M (ms)

360 x 360 pixels 14 000 ms (±200ms) 1 750 ms (±50ms)
160 x 160 pixels 2 180 ms (±30ms) 460 ms (±20ms)

5.3 OpenCL acceleration

In our implementation, finding the NNF is parallelized using OpenCL. Table
5.1 contains the speed-up results. Time of finding one NNF on a certain
resolution was measured. First is the time of single thread NNF computing
on the CPU, second is the time of NNF computing on the GPU. As can be
seen, GPU implementation is approximately eight times more effective.
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5. Results and Comparison

(a) Full synthesis area (b) Bigger synthesis area

(c) Smaller synthesis area (d) No synthesis area

Figure 5.5: Pre-Synthesized improvement - different sizes of the synthesized
area around the edges. Image (a) shows a case of full synthesis case, size of
area around the edges is larger than size of the image. Image (b) shows a case
where an area of size 2 was synthesized around the edges on quarter resolution,
4 on half resolution and 8 on full resolution. Image (c) shows a case where
an area of size 1 was synthesized around the edges on quarter resolution, 2
on half resolution and 4 on full resolution. On the image (d) area around the
edges is 0, meaning nothing was sythesized and the image is all composed of
pre-synthesized textures.
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5.4. Zoom experiments

5.4 Zoom experiments

Texture synthesis, as described in this thesis, has a wide use. It can be used,
for example, to do ”loss-less” zooming on a bitmap texture. Given the sample
style, texture is synthesized on each zoom level, meaning zoomed texture has
the same texture appearance and quality as the original texture. See examples
on figure 5.6. Zoom is performed without loosing the quality and resolution of
the texture. Light-blue areas on the water may look like glitches, but they are
a part of the style. In the original texture, there is light-blue water near the
shore and dark-blue water in the center of the river. However, guide textures
do not distinguish between them, meaning the texture synthesis algorithm
cannot differentiate between them.

5.5 More results

Figure 5.7 and 5.8 show more results of two different crayon styles. Sample
style can be also a very simple filter, experiments with basic filters are shown
on figure 5.9.
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(a) Original zoom (b) Zoom to 150%

(c) Zoom to 200% water (d) Zoom to 200% road

Figure 5.6: Zoom experiments. The image (a) shows original texture. Zoom
to 150% is on the image (b). Image (c) shows zoom to 200% on the water
region and the image (d) shows 200% zoom on the road.
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5.5. More results

(a) Guide 1 (b) Guide 2

(c) Result 1 (d) Result 2

Figure 5.7: Crayon drawing example. The top row shows guide images, bottom
row shows the results.
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(a) Guide 1 (b) Guide 2

(c) Result 1 (d) Result 2

Figure 5.8: Crayon drawing example. The top row shows guide images, bottom
row shows the results.
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5.5. More results

(a) Blur style (b) Gray-scale style (c) Emboss style

(d) Output guide

(e) Blur result (f) Gray-scale result (g) Emboss result

Figure 5.9: Example of three basic filters. To obtain image (e), image (a) was
used as a sample style and image (d) was used as an output guide. Image (f)
was created using grayscale style (b) and image (g) was created using emboss
style (c).

49





Conclusion

In the course of this thesis, we have begun with a description of the stylization
problem in general, and a motivation to solve such problem. Many related
publications were mentioned, and the most important of them were described
in detail. Numerous terms and approaches used to solve the texture synthesis
problem were explained. Kwatra’s [19] optimization approach and definition
of texture energy were formulated and extended two times. At first, from non-
guided texture synthesis to guided texture synthesis. Second, it was extended
by Kaspar’s [30] occurrence map Ω in order to mitigate the wash-out effect
[23].

Based on this previous formulation of the problem, we then presented
the basic method to solve the guided texture synthesis problem. This basic
method was extended by the multi-resolution approach. Additionally, exten-
ded guidance, based on the content of the stylized image and computing of
Ωbest, was introduced. Provided is also an explanation of speed-up using pre-
synthesized textures.

Furthermore, detailed implementation with many pseudocodes is provided.
Starting with basic functions and its pseudocodes and continuing with a de-
scription of the texture synthesis algorithm. Parallel implementation and
OpenCL kernels of the most time-consuming parts of an algorithm are also
provided. The texture synthesis algorithm was integrated into the Dynavix
GPS navigation as a prototype. Details of integration are presented as well.

Finally, the results are presented and compared with other stylization ap-
proaches and implementations. Our results have significantly better quality in
map stylization in most cases. Moreover, computational time is substantially
lower and quality is still within a satisfactory range. Our implementation
does not have any dependencies on additional resources like neural networks,
databases, etc., meaning it is ideally suited for integration into mobile navig-
ation applications or any other pipeline or device. The goal of this thesis was
therefore successfully fulfilled.

After reading this thesis, the reader should be familiar with the texture
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synthesis problem in general along with its past as well as with the state-of-
the-art methods that used to solve this problem. The reader should also be
able to implement all the methods and algorithms described in this thesis.

Future work

Still, some options for future improvement are available. The algorithm can
be improved in multiple ways and its implementation can be more effective.
Although finding NNF is, in the case of the Pre-Synthesized improvement
computed only around the edges, there is still a possibility to achieve further
speed improvement by using the approximative method [35]. Since this imple-
mentation targets mobile devices and not all mobile phones support OpenCL,
another future development could be an implementation of an OpenGL ver-
sion of finding NNF. Moreover, working with a mask during NNF computing
could be done more efficiently. Although this implementation uses OpenCV,
only a few and very basic structures and functions from this library are ac-
tually used. By removing OpenCV, implementation can become even more
independent. Many other minor things could also be improved, but mentioned
were the most fundamental.
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D. Color Me Noisy: Example-based rendering of hand-colored animations
with temporal noise control. Computer Graphics Forum 33, 4, 1-10., 2014.

54



Bibliography

[22] Barnes, C.; Zhang, F. L.; Lou, L.; Wu, X.; Hu, S. M. PatchTable: Efficient
patch queries for large datasets and applications. ACM Transactions on
Graphics 34, 4, 97, 2015.

[23] Newson, A.; Almansa, A.; Fradet, M.; Gousseau, Y.; Pérez, P. Video
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Appendix A
Acronyms

SSD Sum of Squared Differences

NNF Nearest-neighbor Field

OCC Occurrence, refers to the Occurrence Map

OpenCV Open Computer Vision

OpenCL Open Computing Language

CPU Central Processing Unit

GPU Graphic Processing Unit

DSP Digital Signal Processor

FGPA Field-Programmable gate arrays

API Application Programming Interface

GPS Global Positioning System

CNN Convolutional Neural Network
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
impl...........................................implementation sources
res....................................the directory of resource images
text .................................... the directory with thesis PDF
thesis.................the directory of LATEX source codes of the thesis
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