
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of telecommunication engineering

Diploma thesis

Resource allocation for vehicular cloud computing

Bc. Nikolay Volkov

Supervisors: doc. Ing. Zdeněk Bečvář, Ph.D.
prof. Ray-Guang Cheng

Study Programme: Communications, Multimedia, Electronics

Field of Study: Networks of Electronic Communication

January 8, 2018

iv

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

406112Personal ID number:Volkov NikolayStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Telecommunications Engineering

Communications, Multimedia, ElectronicsStudy program:

Networks of Electronic CommunicationBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Resource allocation for vehicular cloud computing

Master’s thesis title in Czech:

Přidělování prostředků v cloudu automobilů

Guidelines:
Study concept of computing resource sharing in vehicular cloud computing. Assess usability of different wireless technologies
for transmission of sensors? and users? data among vehicles and between vehicles and infrastructure. Select suitable
approach for joint allocation of radio resources and computing resources for data processing. Assess the selected approach
and propose its extension to improve its performance.

Bibliography / sources:
[1] M. Vondra, Z. Becvar, P. Mach, 'Vehicular network-aware route selection considering communication requirements of
users for ITS,' IEEE Systems Journal, vol. PP, no. 99, November 2016
[2] T. Adhikary, A. K. Das, M.A. Razzaque, A. Almogren, M. Alrubaian, M. M. Hassan, 'Quality of Service Aware Reliable
Task Scheduling in Vehicular Cloud Computing,' Mobile Networks and Applications, vol. 21, no. 3, June 2016.
[3] R. Yu, Y. Zhang, S. Gjessing, W. Xia, K. Yang, ?Toward cloud-based vehicular networks with efficient resource
management,? IEEE Network, vol. 27, no. 5, pp. 48-55, October 2013.
[4] M. Eltoweissy, S. Olariu, M. Younis, ?Towards Autonomous Vehicular Clouds,? Ad Hoc Networks, 2010.

Name and workplace of master’s thesis supervisor:

doc. Ing. Zdeněk Bečvář, Ph.D.,

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 09.01.2018Date of master’s thesis assignment: 24.08.2017

Assignment valid until: 18.02.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Zdeněk Bečvář, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

V Praze dne 08. 01. 2018 .

v

Abstrakt

V blízké budoucnosti bude každé vozidlo pravidelně informovat svá sousední vozidla o
jejich poloze, rychlosti, výpočetních schopnostech a informacích o chování. Zprávy ne-
soucí takové informace sníží pravděpodobnost nehod, zlepší bezpečnost řidičů a cestu-
jících, a umožní další multimedialní služby. Hlavními kandydáty jsou dnes IEEE 802.11p a
LTE-Advanced s komunikací mezi zařízeními (LTE-D2D). V této práci navržen algoritmus
plánování úloh v LTE-Advanced, který bude poskytovat sdílení zdrojů ve cloudu automobilů
z hlediska pravděpodobnosti a propustnosti systému. Algoritmus provádí hledáni automo-
bilů z hlediska výpočetních parametrů a času zpracováni tasků s predikci jejich pochybu.
Navrženy algoritmus je spolehlivější a výkonnější, průměrně dosažené zlepšení je o 31% větší
pravděpodobnost úspěchu tasku, nebo zvýšení propustnosti systému o 31 task za minutu.

Abstract

In a near future, each vehicle will be able to periodically broadcast information to their
neighbors vehicles about their position, speed, computational capability and their behav-
ioral information. The messages carrying such information will reduce the probability of
accidents, improve the safety of drivers and passengers and allow additional multimedia
services. The main candidate technologies for this scope today are IEEE 802.11p and LTE-
Advanced with device-to-device communications (LTE-D2D). The aim of this study is to
develop the task scheduling algorithm in LTE-Advanced, that will provide resource sharing

Keywords — Vehicular communication, Task processing, Scheduling, Algorithm,
Mobile networks

vi

vii

in vehicular cloud computing in terms of probability and system throughput. The algorithm
searches appropriate vehicles in terms of the performance characteristics and computation
time with the movement and connection prediction. The proposed algorithm is more reli-
able with better performance, the average improvement is +31% of success execution task
or +31 tasks per minute of system throughput.

Contents

1 Introduction 2

2 Literature Review 5
2.1 The main concept of vehicular cloud computing 5
2.2 Wireless technologies . 5
2.3 Existing algorithms and their methodology 6

3 System model 8
3.1 Vehicles . 8

3.1.1 Speed and velocity . 9
3.1.2 Acceleration . 10
3.1.3 Performance resources . 10
3.1.4 Drivers’ behaviour matrix . 10
3.1.5 Own vehicle . 10

3.1.5.1 Data Size . 11
3.1.5.2 Deadline . 12
3.1.5.3 Instruction set . 12
3.1.5.4 Priority . 12

3.1.6 Neighbour vehicles . 12
3.2 Assumptions . 13

4 Proposed algorithm 15
4.1 Flow chart . 15
4.2 Algorithm’s functions . 18

4.2.1 Pick function . 18
4.2.1.1 Inserting new task . 19
4.2.1.2 Taking a task from the root 19

4.2.2 Success probability function . 24
4.2.2.1 Deadline filter parameter . 24
4.2.2.2 Driver’s behaviour parameter 27
4.2.2.3 Prediction parameter . 30

4.2.3 Minimal probability . 51
4.2.4 Creating a cluster . 51
4.2.5 Considering function . 52

4.3 Task scheduling algorithm . 52

viii

CONTENTS ix

5 Simulations 55
5.1 Simulation assumptions and scenario . 56
5.2 Algorithms . 59
5.3 Performance metrics . 60
5.4 Simulation results . 60

5.4.1 Impacts of vehicle density . 60
5.4.2 Impacts of task size . 62
5.4.3 Impacts of task arrival rate . 64

6 Conclusion and future work 66

List of Figures

1.1 Concept of vehicular cloud computing . 3

3.1 Vehicles’ parameters in some area . 9
3.2 Common characteristics of vehicles . 11
3.3 Characteristics of Neighbour vehicles . 13

4.1 Flowchart of the proposed algorithm . 16
4.2 Structure of binary tree . 19
4.3 Structure of binary tree . 20
4.4 Swap in the sub-tree, first step . 20
4.5 Swap in the sub-tree, second step . 21
4.6 Structure of binary tree . 21
4.7 Swap in the sub-tree, second step . 22
4.8 Pick the root value . 22
4.9 Replacing the empty space of root by node #6 23
4.10 Swap in the sub-tree, second step . 23
4.11 Swap in the sub-tree, third step . 24
4.12 Example: An area with 5 roads and 2 intersections 29
4.13 Common cases when vehicles are on a same road 31
4.14 Distance between vehicles in time . 34
4.15 Distance between vehicles after 20 [s] . 35
4.16 Distance between vehicles in time . 36
4.17 Vertical road vj → horizontal road v0 . 38
4.18 Vehicles are on the same road . 40
4.19 Vertical road v0 → horizontal road vj . 41
4.20 Vehicles are on the same road . 44
4.21 Horizontal road v0 → Vertical road vj . 45
4.22 Vehicles are on the same road . 47
4.23 Horizontal road vj → Vertical road v0 . 48
4.24 Vertical road v0 → horizontal road vj . 50

5.1 Simulation scenario . 58
5.2 Snapshots of Mobility Scenario Generated by SUMO 58
5.3 Snapshots of Mobility Scenario Generated by SUMO 59
5.4 Impact of vehicle density on success probability for α = 0.8 61
5.5 Impact of vehicle density on the system throughput for α = 0.8 62

x

LIST OF FIGURES xi

5.6 Impact of task size on success probability for α = 0.8 63
5.7 Impact of task size on the system throughput for α = 0.8 63
5.8 Impact of task arrival rate on success probability for α = 0.8 64
5.9 Impact of task arrival rate on the system throughput α = 0.8 65

List of Tables

4.1 First and second conditions for connection time 32
4.2 Data from the movement model showing distance between vehicles 33
4.3 Third and forth conditions for connection time 35
4.4 Data from the movement model showing distance between vehicles 36

5.1 Simulation parameters . 57

1

Chapter 1

Introduction

The increasing evolution of computer science, in particular the rapid technological innovation
in telecommunications, has allowed humankind to move from the telegraph to satellites and
cellphones in only one century. Simultaneous development in different types of wireless
communications have brought us from Morse code to Navigation systems, the main purpose
of which is to connect people around the world. Among the discoveries that have been made
recently is VANET (vehicular ad-hoc network) technology. There are great expectations that
VANET will be able to improve road safety, managing transport efficiently and provide a
wide variety of services for passengers and drivers.

In general, VANET is a wireless technology enabling a vehicle to communicate with
other vehicles and the surrounding environment. VANET is capable of supporting a wide
range of services by using different communication media such as microwave transmission
and communication satellites. Currently vehicles on the road carry many of on-board com-
puting devices having small-scale processing capabilities. A good number of research efforts
have recently been undertaken that are looking for ways to make driving experience safer
and smarter through the use VANET applications [1]. As vehicles increasingly become
equipped with advanced sensors, a number of applications, ranging from inter vehicular
driver healthcare and safety related applications to highway dynamic congestion manage-
ment applications, are being developed using the huge deployment of data that is being
obtained from these sensors. To be of any use, the huge amount of data generated by vehic-
ular sensors needs to be processed immediately. For that reason has appeared (see fig.1.1)
Vehicular Cloud Computing (VCC) [1].

2

3

Figure 1.1: Concept of vehicular cloud computing

The difference between VCC and traditional cloud computing is that the VCC infras-
tructure and the resources are not fixed to a geographic location. The topology changes
dynamically therefore connectivity among the vehicles is neither reliable nor persistent. Ve-
hicles have low computing capabilities and a VCC allows to capitalize by accessing spare
and idle resources available on neighbour vehicles. In such an environment, possibility to
select the neighborhood computing resources in such a manner that the application can be
executed reliably within a delay deadline is very essential. The main challenge in VCC is
the development of real-time services which can quickly analyze a huge volume of sensory
data produced from a variety of on-board sensors such as speedometers, engines, gas tanks,
cameras, outside temperature sensors, and so on. In the literature, most of the research
on VCC focuses on short time connection or real time applications tasks [2]. Most of them
are safety applications, that generate alarm or warning tasks [3]. It has successfully been
implemented and tested in several countries like USA, Japan and European Union [4]. A
new idea to proceed the big amount of data and reducing connection loss due to dynami-
cal changing topology has been developed by researchers of Bangladesh and Saudi Arabia.
They designed an algorithm for an infrastructure less VCC system, named the QoS Aware
Reliable Task Scheduling (QARTS) system [1]. QARTS algorithm has been developed and
all data are computing into the clusters. It can be implemented when there are heavy traffic
or vehicles have a low velocity and high vehicle density on a road, otherwise communication
delay in cluster is critical.

In this study, we have developed new task scheduling algorithm with optimal task sorting,
that compare and identify the suitable vehicle for different tasks from all available neighbour
vehicles. The main objective was to improve VCC services reducing connection loss and
increasing the number of successfully executed tasks per time. The major contributions of
this study can be summarized as follows:

1. Communication with infrastructure is a particular case in dynamically changing
network, where one node has fixed position. For more common case has considered an
infrastructureless network using only V2V (vehicle to vehicle) communication. 2. To increase
the success probability of execution a task and a throughput of executed tasks in time unit
have been formulated as a main objective of the study. 3. Task-scheduling algorithm has
been developed to reach all mentioned above goals. 4. The results of a simulations, carried

4 CHAPTER 1. INTRODUCTION

out on MATLAB, depict that significant performance improvements have been achieved by
the proposed algorithm mainly compared to current state-of-the-art model QARTS model
[1] and another solutions, that will be described further.

The remainder of the study is organized as follows. The theoretical review and state
of-the-art work on task scheduling in VCC is described in Section 2. In Section 3, the
assumptions and the system model are demonstrated. The proposed solution of scheduling
tasks with all functions presented in Section 4. The performance evaluation of our model is
demonstrated in Section 5. Section 6 is Conclusion and future work.

Chapter 2

Literature Review

2.1 The main concept of vehicular cloud computing

The vast number of vehicles on streets, roadways and parking lots will be treated plentiful
and underutilized computational resources,which can used for providing public services.
Every day, many vehicles, spend hours in a parking garage, driveway or parking lot. The
idle vehicles are a vast unexploited resource, which is currently simply wasted. These features
make vehicles the perfect candidates for nodes in a cloud computing network. Some vehicle
owners may agree to rent out excess on board resources, similar to the holders of huge
computing and storage facilities who rent out their excess capacity and benet economically.
The travelers normally park their cars in airport parking spaces while they are traveling.
The airport authority will power the vehicles’ computing resources and allow for on demand
access to this parking garage data center. Similarly, the drivers stuck in trafc congestion will
agree donate their on board computing resources to help city trafc authorities run complex
simulations designed to remove congestion by rescheduling the trafc lights of the city [5].

The Vehicular Cloud Computing can be dened as a group of largely autonomous vehicles
whose corporate computing, sensing, communication and physical resources can be coordi-
nated and dynamically allocated to authorized users [6]. The benefits of using the Vehicular
Cloud instead of the Internet Cloud are reduced communication delay, reduced spectrum
costs and amply expanded range of applications. In the new scenario, the mobiles upload
to the Internet Cloud only the content of global, long lasting value and delegate to it only
those tasks that are too complex or too energy consuming to process in the Vehicular Cloud
[7]. In the Vehicle Cloud, the leading applications are safe driving, urban sensing, content
distribution, mobile advertising and intelligent transportation. For example, vehicles pick
up information via sensors (congestion, pavement conditions, surrounding cars, environment
video clips, advertisements and so on) [7].

2.2 Wireless technologies

The vehicles provide communication with each other directly V2V (vehicle to vehicle) or
indirectly through infrastructure (. Today the main candidate technologies for these com-

5

6 CHAPTER 2. LITERATURE REVIEW

munications are IEEE 802.11p or WAVE (Wireless Access in the Vehicular Environments)
and LTE-Advanced [8].

The IEEE 802.11p has been developed in 2010 [9]. Given the large experimentation
records and the large number of devices already available on the market, the main advantage
of this technology is that it appears mature for a large scale deployment and still remains
the main standard for V2V communications [10]. The Main concerns of WAVE:

• high level of errors when heavy traffic conditions happen

• the lack of perspective further improvements for the standard

• for deployment necessary new expensive devices as a RSU.

The IEEE 802.11p using carrier sensing multiple access (CSMA/CA) with collision avoid-
ance at the medium access control (MAC) layer [10]. It supports 5.850 - 5.925 GHz spectrum
in North America [11] and operates in the same band in Europe [12]. On the physical (PHY)
layer data rate varies between 3 and 27 Mb/s depending on the adopted MCS ((Modulation
Coding Scheme) [9].

While IEEE 802.11p had been the most popular standard for VCC and had been used in
appropriate applications until 2016, at the end of that year essential update of 3GPP (3rd
Generation Partnership Project) had been announced. LTE-A starts support direct com-
munication between vehicles in Release 14 [13]. Driven by the already available and almost
ubiquitous coverage of cellular systems and by the advances in the direct communications
among devices, LTE is becoming a new option for connected vehicles in the recent years [8].
It enables to exploiting the same hardware as for cellular networks, which makes VCC easy
to implement and not expensive technology. The signicant advantages of LTE-A (release
14):

• cost, vehicles are already equipped with a cellular interfaces

• all specifications are continuously updated and improve each release

• cellular base stations are already deployed, new equipment is not necessary to setup

At the MAC and PHY layers LTE-A is based on SC-FDMA (single carrier frequency division
multiple access). Advanced coding techniques and an almost continuous variation of MCS
combinations contribute to a higher reliability and range with respect to IEEE 802.11p [8].
The data rate depends on a distance between vehicles, it is 5.5 Mbit/s for distance until 10
m and for 50 m distance is 1.9 Mbit/s [14]. Operation bands for communication between
vehicles considered in 5.9 GHz and between vehicle and base station 2 GHz [15].

2.3 Existing algorithms and their methodology

There are many research teams working and developing algorithms for a young but rapidly
developing VANET. Some of them explore connection between vehicles and RSU (Road side
unite). RSUs support cooperative and distributed applications in which vehicles and RSUs

2.3. EXISTING ALGORITHMS AND THEIR METHODOLOGY 7

work together to coordinate actions and to share and process several types of information.
Have been exploited RSUs to route packets between any source and destination in the
VANET. It has been the first attempt to use the infrastructure backbone to efficiently route
packets to very far locations in VANETs by using geographic forwarding [16]. Another ones
had been exploited the presence of RSUs to reduce the load on vehicles and to hide the
complexity of getting the required data on roads [17]. Had been proposed a new smart
parking algorithm for large parking lots through vehicular communication. The proposed
scheme can provide the drivers with real-time parking navigation service, intelligent anti
theft protection, and friendly parking information dissemination [18]. Another have been
proposed a cost efficient RSUs deployment scheme to guarantee that vehicles any place could
communicate with RSUs in certain driving time with short-time update certification needed
for signing to a RSU [19]. Even some studying drivers behaviour in intersections, that is
not only influenced by the rules of priority in the intersection but also by the design of the
intersection as well as the behaviour of other road users [20]. Alternative teams develop
algorithms for applications and routing protocols. They have been presented a combined
transmission range and packet generation rate control algorithm which takes into account
the safety of the vehicles and maximizes the control channel utilization [21]. But with the
development of technology there is an increasing problem about optimal resource allocation.
The main and significant study have been provided researchers from Bangladesh and Saudi
Arabia. They developed a reliable task-scheduling model in VCC environment with aiming
to minimize execution time so as to satisfy task deadlines. They have achieved better
performances in time and reliability domains compared to the state-of-the-art approaches
[1].

Chapter 3

System model

This chapter presents several methods for describing designed algorithm. It shows, through
the use of examples, pseudo-codes, flowchart and figures how the algorithm works and
describes solutions to encountered problems. There will be many definitions, special symbols
and keywords that have to simplify algorithm understanding.

The main aim of the algorithm is to allocate the generated tasks by the own vehicle
to neighbor vehicles in dynamically changing topology. Note that the own vehicle can also
execute the tasks in case of better performance properties in comparison with other vehicles
and available performance resources.

Proposed algorithm does not use any CH (cluster head) for re-transmitting messages
unlike many others. As advantage we don’t need to rebuild a cluster structure in case of
network structure changes, is not necessary to collect and exchange information for cluster
formation. Moreover, for common cluster-based algorithms delayed response time is critical.
This is due to the fact that in order to get the executed task back, we must wait for
several transmissions. The minimum response time will be at least the time it takes for
the transmission to travel from one vehicle to the cluster, and from the cluster to a nearby
vehicle and back.

3.1 Vehicles

In this section we are presenting characteristics and information about all vehicles A1×K
a

(see Fig. 3.1) in some area, their types and properties.

8

CHAPTER 3. SYSTEM MODEL

General information about all vehicles in some area

Area vehicles

.

.

.

.

5

Figure 3.1: Vehicles’ parameters in some area

We consider that all vehicles are able to determine their own positions. These parameters
can be fulfilled by equipping vehicles with GPS receivers, which is a plausible assumption
given the rapid diffusion of this technology in the automotive industry [22].

Definition 3.1.1. We use (xa, ya) positions for ath vehicle, which means, that the Carte-
sian coordinate system in two dimensions was chosen (also called an orthogonal coordinate
system) for all further calculations. The value of x is called the x-coordinate or abscissa and
the value of y is called the y-coordinate or ordinate.

If necessary we can transform it to Geographic coordinate systems [23], because many re-
searchers use one of the best known geographic routing protocols Greedy Perimeter Stateless
Routing (GPSR), that uses the Global Positioning System (GPS) coordinates [24] [25].

Definition 3.1.2. Let va be ath vehicle from all vehicles Aarea in a certain area, then such
set we can describe as:

Aarea = {v0, v1, v2, ...va, ...vA−1}, where a ∈ 〈0, A− 1〉, a ∈ N, A ∈ N

3.1.1 Speed and velocity

Each individual vehicle va has various characteristics of speed, acceleration/deceleration,
CPU (Central processing unit), A1×K

a (drivers’ behaviour matrix) and driving style. Let
us dwell a little dipper to understand correctly further functions of proposed algorithm.

3.1. VEHICLES 9

CHAPTER 3. SYSTEM MODEL

Definition 3.1.3. speeda is a speed of ath vehicle shows instantaneous speed [26], other
words the speed of a vehicle at a particular moment (instant) in time.

speeda − an instantaneous speed of ath vehicle in meters per second [m/s]

3.1.2 Acceleration

Definition 3.1.4. accela is an acceleration of ath vehicle, shows how quickly the velocity
of an object changes. So, the acceleration is the change in the velocity, divided by the time.
Deceleration is the opposite of acceleration. It is the rate at which an object slows down.
Deceleration is the final velocity minus the initial velocity divided by that time period, with
a negative sign in the result because the velocity is dropping. So for simplicity we use the
term acceleration with negative sign for deceleration in further calculations.

accela − an instantaneous acceleration of ath vehicle
in meters per second squared [m/s2]

3.1.3 Performance resources

Definition 3.1.5. CPUa is an information about performance resources of ath vehicle. The
CPU performance include size of core frequency, number of cores and threads per core and
others parameters [27]. Cores of CPU allow parallel processing tasks [28], for our model
only one task can be executed in one time and instead of core is used simple abstraction slot.
MIPS (million instructions per second) are used as the processing power of the slot.

CPUa = {slota,MIPSa}, (3.1)
slot [−], MIPS in million instructions per second [MI/s]

3.1.4 Drivers’ behaviour matrix

Intersections are one of the major locations where safety is a big concern to drivers, it is
also one of the main criteria to predict the movement of vehicle as accurate as possible. Let
us consider another important property of ath vehicle - drivers’ behaviour matrix A1×K

a .
That information we collect from RSU[17]. That matrix is collecting all information about
behaviours of vehicle and then can be used as a part of prediction of vehicle.

3.1.5 Own vehicle

First of all we need to define a considering vehicle, that will generate packets to be executed.
That special vehicle will be the Own vehicle (see Fig. 3.2). The own vehicle has index 0 and
v0 ∈ A1×K

a . The wide range of possible applications of the vehicular technology generates
tasks x, which the own vehicle needs to be executed.

10 3.1. VEHICLES

CHAPTER 3. SYSTEM MODEL

List of generated tasks

Own vehicle

.

.

.

.

Figure 3.2: Common characteristics of vehicles

Definition 3.1.6. Let xi be ith generated task in a list of tasks Qtasks, then such list we
can define as:

Qtasks = {x1, x2, . . . , xi, . . . , xI}, where i ∈ 〈1, I〉, i ∈ N, I ∈ N

Each generated task has unique properties, such as DS (data size), DL (deadline), IS
(instruction set) and α (see Fig. 3.2). Let us consider each parameter in more detail.

3.1.5.1 Data Size

Definition 3.1.7. DSi is a size of ith task. This parameter required to calculate transmis-
sion time for sending task for further calculation. Simultaneously, DSresult

i is a resulting
size of ith task.This parameter required to calculate the time result transmission time for
sent ith task.

DSi, DS
result
i − size of ith task in bytes [B]

3.1. VEHICLES 11

CHAPTER 3. SYSTEM MODEL

3.1.5.2 Deadline

Definition 3.1.8. DLi is a deadline of ith task, other words the final time that ith task
must be completed by some car from a certain area.

DLi− deadline of ith task in seconds [s]

3.1.5.3 Instruction set

Definition 3.1.9. The IS provides commands to the CPU, to tell it what it needs to do.
For algorithm purpose was considered to use IS as an amount instructions that needed to
execute some task, other words that parameter demonstrates complexity of a task. Let ISi a
number of instructions needed to execute ith task, then

ISi − amount instructions for ith task in million instructions [MI]

3.1.5.4 Priority

Definition 3.1.10. The parameter α is a relative priority between response time and success
probability. Some applications produce tasks, that are delay-tolerant but require higher prob-
ability to being processed successfully. Some other real-time applications might emphasize
the total time rather than success probability.

αi − relative priority between response time and success probability for ith task [-]

3.1.6 Neighbour vehicles

We have already mentioned an own vehicle and all vehicles in a certain area. The neighbour
vehicle is a such vehicle that within a transfer range of own vehicle and vehicles can com-
municate with each other. A hop means number of different nodes (vehicle/RSU) a task
(packet) has to go through in order to reach its final destination address. More over network
coverage area is often much larger than radio range of a vehicle, so in order to reach some
destination node can use other vehicles as relays. This type of communication is known as
multi-hop routing in wireless mesh networks [29].

Multi-hop allows to use available resources of VANET network more efficiently. But
on other side we get much more energy efficient than multi-hop routing [30], end-to end
delay, lower packet loss [29] and so on. In this thesis, we considered algorithm in single-hop
network.

12 3.1. VEHICLES

CHAPTER 3. SYSTEM MODEL

Definition 3.1.11. All vehicles that appear after scanning a network by the own vehicle v0
will be neighbour vehicles N neighb. Let vj is a jth neighbour vehicle (see Fig. 3.3) from all
neighbour vehicles N neighb in a certain area Aarea after scanning by the own vehicle v0, so
a set of all neighbour vehicle can be defined as

N neighb = {v1, v2, . . . , vj , . . . , vN} (3.2)
where j ∈ 〈1, N〉; j ∈ N, N ∈ N; N neighb ⊆ Aarea

Scanning and getting infromation

Neighbour vehicles

.

.
.

5

Figure 3.3: Characteristics of Neighbour vehicles

3.2 Assumptions

All scenarios have been provided on infrastructure less simple grid road map, which is a type
of city plan where roads run at right angles to each other, forming a grid. Only one way
roads are considered for fair comparison with another existing algorithms. Vehicles use only
V2V communication type. The vehicular cloud computing environment has been considered,
where sensing and generating tasks are providing only by the own vehicle, but computing
services can be implemented by each idle vehicle. For more realistic results according to the

3.2. ASSUMPTIONS 13

CHAPTER 3. SYSTEM MODEL

general speed limitations in EU (European Union) maximal vehicle’s speed for urban roads
is 50 km/h [31]. All assumptions can be briefly written in the following way

• grid road map with one way roads

• only V2V communication (infrastructure less network)

• only the own vehicle generates tasks, but each vehicle including the own vehicle can
execute them

• maximal speed is 50 km/h [31]

14 3.2. ASSUMPTIONS

Chapter 4

Proposed algorithm

4.1 Flow chart

In this subsection we considered the functional of algorithm without math functions, just
to understand high level concept of proposed method. We already know all parameters
required to find optimal vehicle to execute some tasks with different priorities.

Before starting the description a flowchart (see Fig. 3.1) it is very important to reader
clearly understand the blocks which are used in the flowchart. Oval or rounded rectangle
is signaling the start of a process. Set of operations that change value, form, or location of
data represented as a rectangle [32]. Conditional operation determining which of two paths
the program will take represented as a rhombus [32]. Finally, there is an operation in orange
color, which means, that a process runs in parallel with running main algorithm.

So let us imagine, in some area an own vehicle starts to generate tasks. It can be any
task of firmware updating or may be alerting, that something happened on a road, online
surfing or even online gaming and so on. Main thing for us, that each task xi has different
priority and dynamically adding to our algorithm (see Fig. 3.1).

15

CHAPTER 4. PROPOSED ALGORITHM

Figure 4.1: Flowchart of the proposed algorithm

16 4.1. FLOW CHART

CHAPTER 4. PROPOSED ALGORITHM

If we have no task in queue the algorithm will check every τ1 milliseconds until some
will come. If tasks will arrive faster than a vehicle can process them, the own vehicle puts
them into the queue (also called the buffer) until it can get around to transmitting them.

Important to note that each task has DLi and it decrements by τ2 milliseconds every
τ2 milliseconds. Using pick function fpick(xi), the own vehicle picks a task with the lowest
DLi, if there are more than one task has the same DLi, function also compare it by priority
αi, then task with the highest priority will be chosen. In case if DLi and αi will be the same
for two or more tasks, those tasks will be considered consistently.

Depending on a type of a priority task, we provide reactive or proactive scanning. Re-
active scanning approach provides scanning after getting a task, which leads to some delay,
but at the same time it is more accurate, that is essential for high priority task. Hence for
a low priority task nothing is needed, since reactive scanning was already provided.

After scanning we need to add the own vehicle v0 to a set of neighbour vehicles N neighb

for further calculations caused the task can also be executed by own vehicle it self.

N neighb = {v0, v1, v2, ...vj , ...vN}, where j ∈ 〈0, N〉

Subsequently for each vj determine Success probability Ps(vj , xi) for chosen task xi with
the highest DLi and relative priority αi. Also calculate the Total time for execution xi task.
Total time consist of three times: transmission time to neighbour, task execution time and
reception time.

T T L
j (vj , xi) = ttxj (vj , xi) + texe

j (vj , xi) + trec
j (vj , xi)

Note that for v0 vehicle success probability Ps is one, or 100%, and it is logical, because we
do not need to send and get back the task, so probability, that we lose a task tends to zero.
Certainly there is also exists probability, that own vehicle can fail the task, because of full
buffer or other technical problem, but we can neglect it. Consequently ttx0 and trec

0 are also
zero, because we calculate task by ourselves.

Ps(v0, xi) = 0 (4.1)
T T L

0 (v0, xi) = texec
0 (v0, xi) (4.2)

Knowing all success probabilities for J + 1 vehicles (remember all neighbour vehicles
N neighb + own vehicle v0), we define the minimal probability. That value will be constant
for all vehicles, and updates each new scanning. After compare, we will get a new cluster
with vehicles, which values more or equal to minimal probability. After that operation at
the best case scenario we all neighbour vehicles will stay with us, but usually somebody has
a lower probability, so in normal cases that comparison like a filter, that does not let pass
vehicle with a lower value than minimal value.

N cluster ← (Ps(vj , xi) ≥ Pmin)

N cluster = {v0, v1, ...vj∗ , ...vN∗}, where j∗ ⊆ j, j∗ ∈ 〈0, N∗〉, j∗ ∈ N

We almost have got all information needed to initialize process to execute task xi. The
last thing is to decide which one vehicle is an optimal for specific task with different suc-
cess probabilities of neighbour vehicles and some priority. Because one vehicle has better

4.1. FLOW CHART 17

CHAPTER 4. PROPOSED ALGORITHM

probability to execute, but lower performance resources. In that case considering function
f cons

j (vj∗ , xi) helps us, in math it is some kind of weight function.
It might happened that considering function will not have any optimal vehicle, it may

be due to the all vehicles are busy, or probabilities so low or our own vehicle rides alone on
a road and already execute another task. For that case next block checks this state.
• if there is no suitable vehicle, we need to check if we still have a time to execute this

task providing scanning again and applying algorithm once more. For that case, Arithmetic
mean value of total time T T L

j with some reserve constant ξreserve in seconds must be lower
or equal to DLi. Otherwise we will not execute task on time and DLi will be expired. Then
we check queue of tasks, if it is still have some tasks, we provide pick function and repeat
all steps above, if it is empty we need to wait τ1 milliseconds and check the queue again.
• if there is a suitable vehicle immediately task will be sent. Then as we mentioned

above we check queue of tasks, if it is still have some tasks, we provide pick function and
repeat all steps above, for empty queue we need to wait τ1 milliseconds and check the queue
again.

4.2 Algorithm’s functions

In this section we describe how each function works and discuss in more detail. There
are pick function, success probability of executing task, minimal probability, considering
function and other ones, which make up the whole algorithm. At the end of this chapter we
finally define algorithm with all functions.

4.2.1 Pick function

This part presents algorithms that solve the following sorting problem:
Input: A sequence of I deadlines {DL1, DL2, ..., DLi, ..., DLI}
Output: A reordering {DL′1, DL′2, ..., DL′i, ..., DL′I} of the input sequence such that

DL′1 6 DL′2 6 ... 6 DL′i 6 ... 6 DL′I
The input sequence is an I-element queue of tasks xI , that must be sorted from the

lowest value of DLi. The pick function fpick is based on minimal binary heap algorithm
[33].

A binary heap is a heap data structure created by using a binary tree (see Fig. 4.6). The
main advantage of that algorithm is low-latency low-complexity [34]. Binary tree has two
properties:

• Shape property: all levels of the heap must be fully filled, except the bottom level,
which may be partially filled from left to right

• Order property: due to highest priority is the minimum parents are less or equal than
children

18 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Root

Parent Node

Child Node

Sublings

Level 0

Level 1

Level 3

Level 2

A

B C

D E F G

H I

1

2 3

4 5 6 7

8 9

Sub-tree

Figure 4.2: Structure of binary tree

The node at the top of the tree is called root. There is only one root per tree. Any
node except the root node has one edge upward to a node called parent. The node below
connected by its edge downward is called its child node.

4.2.1.1 Inserting new task

All new tasks put at the bottom of the heap. If an inserted task’s DL is smaller than its
parent node swap the element with its parent. Keep repeating the above operation and if
task reaches its correct position algorithm stops.

4.2.1.2 Taking a task from the root

Taking out the task from the root. It is the task with the minimum value of DL. Then
taking out the last task from the bottom level and putting to the empty root. If replaced
task’s DL is greater than any of its child task’s DL swap the element with its smallest DL.
Keep repeating the above step, if node reaches its correct position algorithm stops.

Example 4.2.1. The own vehicle in a very short time generates queue of tasks
Q tasks = {x1, x2, x3, x4, x5}, which have DL1 = 27 [s], DL1 = 25 [s], DL3 = 10 [s], DL4 =
13 [s], DL5 = 17 [s] . Applying shape property all tasks will be insert consistently (see
Fig. 4.6). x1 inserted to the root, x2 to the second place, x3 to third and so on.

4.2. ALGORITHM’S FUNCTIONS 19

CHAPTER 4. PROPOSED ALGORITHM

1

2 3

4 5

Figure 4.3: Structure of binary tree

Then start from the bottom of tree to compare all tasks. Take a look at sub-tree that
contains nodes #2,#4,#5. Node #2 is a parent of nodes #4 and #5. We see that DL of
forth node is smaller than DL of second node, so provide swap (see Fig. 4.4 a). After that
operation, we finish with that sub-tree (see Fig. 4.4 b)

1

2 3

4 5

a) swap nodes #2 and #4

1

2 3

4 5

b) after swap

Figure 4.4: Swap in the sub-tree, first step

Then go for a one level up, take a look at the root node #1 and its children are node #2
and #3. Notice that node #3 has the smallest DL, so swap with the root with node #3 (see
Fig. 4.5 a).

20 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

1

2 3

4 5

a) swap nodes #3 and #1

1

2 3

4 5

b) after swap

Figure 4.5: Swap in the sub-tree, second step

Finally example’s heap are sorted (see Fig. 4.5 b). According to that figure queue of tasks
looks like Q tasks = {x3, x4, x1, x2, x5}

Example 4.2.2. Let us extend our example, so right after sorting came the task x6 with the
DL6 = 20 [s]. Again according to shape property, task is inserted consistently and will be a
child of node #3 in the node #6. Note the attentive reader will notice, that when another
task will come all DL will be lower, but algorithm will be the same and all DL change at
the same time, so topology does not change as well. That is why for simplicity we use above
example data.

1

2 3

4 5 6

Figure 4.6: Structure of binary tree

Take a look at a new sub-tree that contains nodes #3 and #6. DL of sixth node is
smaller than DL of the third node, so provide swap (see Fig. 4.7 a). After that operation,
heap is sorted (see Fig. 4.7 b). Queue is Q tasks = {x3, x4, x6, x2, x5, x1}

4.2. ALGORITHM’S FUNCTIONS 21

CHAPTER 4. PROPOSED ALGORITHM

1

2 3

4 5 6

a) swap nodes #3 and #1

1

2 3

4 5 6

b) after swap

Figure 4.7: Swap in the sub-tree, second step

The last and the important feature of pick function fpick, taking the task with the lowest
DL from the heap and rebuilding the heap properly. Next and last example will show how
effectively it provides it.

Example 4.2.3. Again, we are using data from the last example for simplicity. According to
(see Fig. 4.7 b) in the queue Q tasks = {x3, x4, x6, x2, x5, x1} x3 has the lowest DL3 = 10 [s],
so function picks it for further calculation (see Fig. 4.8) and the root place is empty.

1

2 3

4 5 6

Figure 4.8: Pick the root value

After find the last node #6 and insert it to the root (see Fig. 4.9).

22 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

1

2 3

4 5 6

a) swap nodes #3 and #1

1

2 3

4 5

b) after swap

Figure 4.9: Replacing the empty space of root by node #6

Again we need to provide comparison root node #1 with children #2 #3. The second
node has lower value of DL, swap (see Fig. 4.10 a) and structure after swap (see Fig. 4.10 b).

1

2 3

4 5

a) swap nodes #3 and #1

1

2 3

4 5

b) after swap

Figure 4.10: Swap in the sub-tree, second step

Sub-tree with parent node #2, children #4, #5. Node #5 has the lowest DL (see
Fig. 4.10 a) - swap.

4.2. ALGORITHM’S FUNCTIONS 23

CHAPTER 4. PROPOSED ALGORITHM

1

2 3

4 5

a) swap nodes #3 and #1

1

2 3

4 5

b) after swap

Figure 4.11: Swap in the sub-tree, third step

Finally after removing root from the heap and rebuilding we get another queue Q tasks =
{x4, x5, x6, x2, x5}

4.2.2 Success probability function

In this subsection we talk about success probability Ps(vj , xi) function, that vehicle vj will
execute ith task. It consists of three significant parameters, which mutually complement each
other and they are like a three level filter, that helps to choose the optimal vehicle. There
are: deadline parameter φDL

j , Driver’s behaviour parameter βbeh
j and Prediction parameter

ψcon
j . Each parameter will be considered in separate paragraphs.

Ps(vj , xi) = φDL
j (vj , xi) · βbeh

j ((x0, y0),A1×K
j) · ψcon

j (vj , xi) (4.3)

Note that according to flowchart in the set of neighbours was already added an own vehicle.
Ps(v0, xi) will be always 1, with the exception when the own vehicle is busy.

4.2.2.1 Deadline filter parameter

According to the title of this paragraph φDL
j is working with a DL of tasks. It shows if some

vehicle can execute a task within its DL, otherwise task will be expired.
Initially let us define T T L

j (vj , xi), with which φDL
j works very tightly.

Total time of task execution

T T L
j (vj , xi) is a total time that jth vehicle needs to execute ith task. It is a sum of

three time periods: transmission time to neighbour vehicle ttx0j(vj , xi), execution time of
task texe

j (vj , xi) and reception time trec
j0 (vj , xi), in other words time needed to send back

executed task.

24 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Transmission time

Let DSi is a size of ith task and C0j(d0j) by Shannon–Hartley theorem is the maximum
rate at which information can be transmitted over a communications channel of a specified
bandwidth in the presence of noise [35] that depends on a distance between own vehicle v0
and neighbour vehicle vj , so transmission time can be expressed as following

ttx0j(vj , xi) = DSi

C(d0j) (4.4)

where C(d) is a channel capacity and according to 3GPP TR 36.785 (Release 14) [15] we
got parameters of channel bandwidth B = 10 MHz and received power Prx =, −22 dBm

C(d) = B · log2

(
1 + Prx

PLd

)∣∣∣∣B = 10 MHz

Prx=−22 dBm
(4.5)

corresponding to 3GPP TR 36.885 (Release 14) [36] pathloss model for V2V connection is
LOS (Line of sight) in WINNER+ B1 [37] (note that the antenna height should be set to
1.5 m.) d is a distance between own vehicle and neighbour vehicle must be less that r, which
is a maximal signal range of the own vehicle, other words is breakpoint distance. Note that
for distance up to 10 m, the value of PL will be the same as value for 10m

PL = 22.7 · log10(d) + 27 + 20 · log10(fc)
∣∣∣∣10 m < d < (r = 50 m)

fc = 2 GHz
(4.6)

Distance d between two points (between the own vehicle and a neighbour vehicle) in R2 is
denoted d(v0, vj) and is defined by

d0j =
√

(x0 − xj)2 + (y0 − yj)2 (4.7)

Execution time

Let ISi is a number of instruction needed to execute ith task andMIPSj is a performance
of jth vehicle, the execution time of ith task for jth vehicle can be calculated following
equation

texe
j (vj , xi) = ISi

MIPSj
(4.8)

4.2. ALGORITHM’S FUNCTIONS 25

CHAPTER 4. PROPOSED ALGORITHM

Reception time

Reception time is a time needed to send back the executed ith task from jth vehicle to
own vehicle v0. We have already known how to calculate data rate between two vehicles
(4.5), but we do not know what the distance will be after transmitting time to neighbour and
execution task time between two vehicles. In that case we can just predict it. For prediction
the distance between these vehicles we must consider the parameters not yet used. There
are actual instantaneous speed and acceleration, knowing that we can calculate the distance
how far a vehicle can travel

d = speed · t+ accel · t2

2 (4.9)

Unfortunately this approach (4.9) consider that we have constant values of speed and accel,
of course that can leads for not accuracy. It is logical that the greater the time value, the
lower the accuracy of the calculations. But for relative short time intervals, which exactly
VANET approach, it gives good results.

As we said before for time value we need to consider transmission time and execution
time

t = ttx0j(vj , xi) + texe
j (vj , xi) (4.10)

Hence, distances how far each vehicle can travelled are

d0 = speed0 · (ttx0j(vj , xi) + texe
j (vj , xi)) +

accel0 · (ttx0j(vj , xi) + texe
j (vj , xi))2

2 (4.11)

dj = speedj · (ttx0j(vj , xi) + texe
j (vj , xi)) +

accelj · (ttx0j(vj , xi) + texe
j (vj , xi))2

2 (4.12)

Then if we take away these values from each other, we get the distance between two
vehicles.

d0 − dj = d0j

dj − d0 = dj0

Let us generalize it, so it does not matter, which vehicle travelled more distance, necessary
to know a value

√
(d0 − dj)2 = |d0 − dj | = d0j = dj0 (4.13)

Note that very important to remember, that vehicles were not on the same place, it was
some distance when communication initialized. So complement (4.13) adding (4.7) and we
get

drec
j0 = |d0 − dj |+ dj0 (4.14)

26 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Finally substitute the values of (4.14) using (4.11), (4.12) and (4.7) we get predicted
value of reception distance drec. In such a way we know all values that need to calculate
reception time trec

j0 (vj , xi):

trec
j0 (vj , xi) = DSresult

i

C(drec) (4.15)

And knowing transmission time (4.4), execution time (4.8) and reception time (4.15),
we get the total time

T T L
j (vj , xi) = ttxj (vj , xi) + texe

j (vj , xi) + trec
j (vj , xi) (4.16)

Definition 4.2.1. Let φDL
j (vj , xi) is a deadline filter parameter of jth vehicle for ith task,

if the total time T T L
j will be less than the deadline of ith task DLi, the parameter return 1,

otherwise 0. That method helps us to not consider vehicles, that needed more time that ith
task has before expired.

• φDL
j (vj , xi) =

{
1, if T T L

j (vj , xi) < DLi

0, otherwise. (4.17)

4.2.2.2 Driver’s behaviour parameter

We have to familiarize with the components of driver‘s behaviour parameter before defining
it.

Definition 4.2.2. Let l is a number of roads at an intersection B1×l
k and B1×l

k is a kth

matrix of all intersections K, so matrix of all roads and intersections S1×K
a for ath vehicle

can be defined by

S1×K
a =

(
B1×l

1 B1×l
2 · · · B1×l

k · · · B1×l
K

)
, (4.18)

where l ∈ 〈1, L〉, l,∈ N, L ∈ N and k ∈ 〈1,K〉, k,∈ N,K ∈ N

B1×l
k =

(
road1 road2 · · · roadl · · · roadL

)
, (4.19)

Note, has been considered, that each intersection includes up to 4 roads (max{l} = 4).

According to the text above number l shows the number of roads at matrix B1×l
k , but

we still do not know how many roads considering area has. So we need to define the new
parameter roadh.

Definition 4.2.3. Let roadh is a hth road of all existing roads H, and H is a proper
superset of all values of l, then roadh include two parameters. There are ID of a road - h

4.2. ALGORITHM’S FUNCTIONS 27

CHAPTER 4. PROPOSED ALGORITHM

and counterh, that shows how many times some vehicle rode through that road. By default
it is 0.

roadh = {h, counterh}. (4.20)
units of h [-] and of a counter [-]

where h ∈ H; H ⊇ l and H ⊇ L

Knowing intersection matrix (4.19) and definition 4.2.3 we can get another interpretation
of (4.18) as

S1×K
a =

(
road1 road2 · · · roadh · · · roadH

)
(4.21)

Thus, we defined S1×K
a as list of all roads on a certain area.

Every driver has personal preferences how to drive from one place to another, sometimes
we choose the shortest route, sometimes we want to avoid heavy traffic or bring somebody
home and so on. It is a stochastic process, but in general if we compare it with daily routine
things it can be neglected, because most of our time we ride the same ways even noticed
that. Let us define next component of drivers’ behaviour matrix A1×K

a .

Definition 4.2.4. Let roadf is f th road from all roads F, and Froute
a be a list of all roads,

that vehicles has traveled for a some time, therefore we can explain it as following

Froute
a =

(
road1 road2 · · · roadf · · · roadF

)
, (4.22)

where f ∈ F ; (H ⊇ F) ∨ (F ⊇ H) ∨ (H ∩ F); f ∈ N, F ∈ N.
Important to say, that why we define Froute

a as another set, different from S1×K
a . First

for the reason that ath vehicle could travelled outside of considering area, it can be different
village, city or even country. Another case, that an ath vehicle can ride just on the part of
a certain area, definitely, it depends just on individual vehicle. That is why Froute

a can be
subset or proper superset of S1×K

a , or they can have just a common intersection.

Definition 4.2.5. roadf as roadh also consists of two parameters (see 4.2.3): ID - f and
counterf . But unlike of roadh, counterf has a fix value equal 1. It means that ath vehicle
rode through f th road and counter put number 1. Sequence of roads Froute

a also shows us
from which road we got to actual road. For example sequence (roadf−1, roadf , roadf+1)
said that we turn from a road (f − 1)th to the (f)th and then we turn to a (f + 1)th. So
roadf we can defined as

roadf = {f, counterf}, (4.23)
units of f [-] and the counterf = 1

Note, in that sequence same roads can appear multiple times, because Froute
a is a route

of ath vehicle and the vehicle can travelled through some roads several times for some time
period.

28 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Definition 4.2.6. Let A1×K
a be a matrix after adding the route Froute

a (4.22) of ath vehicle
to a matrix of all roads and intersections S1×K

a (4.21), so finally we can defined drivers’
behaviour matrix as

A1×K
a = (S1×K

a ← Froute
a) (4.24)

After that operation, the counterh of hth road in S1×K
a (4.21) will change on such a

value according to a number of same roads in (4.22). After adding the route of ath vehicle
we know how many times that vehicle was on each road. The last step will be calculation of
probability, that next time ath vehicle will turn from some road to another road according
to actual direction of an own vehicle.

Definition 4.2.7. Let P k
a,l be a probability of ath vehicle, that turns to lth road at kth

intersection, then for calculation we need to divide counter of lth road to sum of all counters
of all roads of kth intersection

P k
a,l = counterl∑

l ∈ B1×l
k

counterl
· 100, (4.25)

units are percents [%]

Let us consider simple example to make it less confused and more comprehensible (see
Fig. 4.12)

Example 4.2.4. Knowing route Froute
a and matrix of roads and intersection S1×l

a , we need
to calculate probability that ath vehicle will turn to the 5th road from 2nd road.

We have a small area with 5 roads and considered just intersection among roads #2, #4
and #5. The parameters of ath vehicle are:

Road 1

Road 3

Road 2

Road 4

Road 5

Figure 4.12: Example: An area with 5 roads and 2 intersections

Froute
a =

(
road1 road2 road4 · · · road2 road5 · · · road2 road4 · · ·

)
,

4.2. ALGORITHM’S FUNCTIONS 29

CHAPTER 4. PROPOSED ALGORITHM

S1×2
a =

(
B1×3

1 B1×3
2

)
=
(
road1 road2 road3 road4 road5

)
,

B1×3
2 =

(
road2 road4 road5

)
,

Under the conditions of example it were three turns from the road2 :

×2 : road2 → road4

×1 : road2 → road5

Then provide calculation (4.24), afterwards the counters of road4 and road5 changes from 0
to 1 and 2 accordingly. Then we can easily calculate (4.25) probability that ath vehicle will
turn to the 5th road.

P k
a, l = countl∑

l ∈ B1×l
k

countl
· 100

P k = 2
a, l=3 = 1

1 + 2 · 100 = 33.33 [%]

Note that a probability will be more accurate, when it will be more counts on each
intersection. But every vehicle can provide update (4.24) every certain time period and
after some sufficient time it can be very useful information for further calculations.

If we come back to driver’s behaviour parameter all necessary parameters was defined.
For clarification, in the proposed algorithm position values of the own vehicle will help to
identify where we are riding to get appropriate information from a driver’s behaviour matrix
A1×K

a about next intersection and roads, that it includes. Coordinates also can show us
the direction of the vehicle (the difference of coordination values while the vehicle on a road
(x0 0 − x0 −1) and (y0 0 − y0 −1).
Definition 4.2.8. A1×K

a is a driver’s behaviour matrix and (x0, y0) are coordinates of own
vehicle (x0, y0), then driver‘s behaviour parameter will be

• βbeh
j ((x0, y0),A1×K

j) = counth∑
h ∈ Bk

counth
, (4.26)

unitless [−].

As we can see βbeh
j ((x0, y0),A1×K

j) is also can removes is not suitable vehicles. The last
parameter of vehicle probability function left, let consider it in the next paragraph.

4.2.2.3 Prediction parameter

The last component of vehicle probability function Ps(vj , xi) is prediction parameter ψcon
j .

That parameter checks how long jth vehicle will travelled within our range of signal. If any
vehicle needs more time to get task, execute it and send back than connection time, such
the vehicle will be removed automatically.

tcon
j (vj , xi) is a connection time, which means time that jth vehicle will be in our range

without losing signal. There are several options and we need consider all of them to be as
accurate as possible.

30 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Vertical and Horizontal roads

It is the most common case, when two vehicles v0 and vj riding on a same road. So the
question is, can we use that neighbour vehicle, for example with very good parameters for
task execution? What if this car leaves our signal range before execution task?

Let us consider that vehicles ride on a same road (see Fig. 4.13)

O

J

Road 1

a) Horizontal road

O

J

Road 1

b) Vertical road

Figure 4.13: Common cases when vehicles are on a same road

We had a similar situation when we defined reception time, but in that case we knew
the connection time, it was transmission time and execution time. But now we do not know
even that.

First we need to derive the formula of connection time. We know that an own vehicle
and a neighbour vehicle travelled some distance and after connection time jth vehicle will
be out of range.

|dj − d0| = r (4.27)

Again we need to remember, that vehicles did not start from a same place, there was
some distance (4.7) between them

|dj − d0| = r − d (4.28)

Let substitute values of dj and d0 using (4.9), we get∣∣∣∣speedj · tcon
j +

accelj · (tcon
j)2

2 − speed0 · tcon
j −

accel0 · (tcon
j)2

2

∣∣∣∣ = r − d

4.2. ALGORITHM’S FUNCTIONS 31

CHAPTER 4. PROPOSED ALGORITHM

Remove the absolute value from the equation

speedj · tcon
j +

accelj · (tcon
j)2

2 − speed0 · tcon
j −

accel0 · (tcon
j)2

2 = ± (r − d)

Move to the left side from right side of the equation and divide out the greatest common
factor from each term

(tcon
j)2 · accelj − accel02 + tcon

j · (speedj − speed0)∓ (r − d) = 0

The discriminant of the quadratic equation is

D = (speedj − speed0)2 − 4 · accelj − accel02 · (∓ (r − d))

D = (speedj − speed0)2 ± 4 · accelj − accel02 · (r − d)

The roots of the quadratic equation are

tcon
j =

−(speedj − speed0)±
√

(speedj − speed0)2 ± 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.29)

We know, that a time must have only positive values. But in that case it is quite
complicated to identify, cause jth neighbour vehicle can have different values in comparison
with an own vehicle. There are four variations for each sign of equation:

• speedj > speed0 and accelj < accel0

• speedj < speed0 and accelj > accel0

• speedj > speed0 and accelj > accel0

• speedj < speed0 and accelj < accel0

And we have 4 equations with 4 different variations each, so totally we have 16 equations
with 32 roots. Certainly we have not to consider negative and complex roots, but in this case,
the algebraic method of solving is more complicated, so we will use the analytical method
of solving. We build movement models for each case, it will help to choose appropriate
equation for each case.

These two conditions we can consider simultaneously, because it does not matter, which
vehicle will overtake. We need to know, after what time will be distance equals r. Next
table was get using (4.9) for each vehicle.

To know what kind of value to expect, reference movement model was used. For example
consider following values:

Table 4.1: First and second conditions for connection time

a) speedj > speed0 and accelj < accel0

speed accel
vj 10 2
v0 12 1.8

b) speedj < speed0 and accelj > accel0

speed accel
vj 12 1.8
v0 10 2

32 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

For those parameters we got according table. First column is a distance between vehicles
(4.27), again remember that it does matter for us which vehicle is onward or backward, that
is why we can use two conditions together. d0 is a distance that travelled own vehicle per
time t, dj is a distance that travelled neighbour vehicle per time t. For second condition,
will be same values of distance between vehicles, only need to rechange second and third
columns, which means values in second column will be for d0 and in the third for dj

Table 4.2: Data from the movement model showing distance between vehicles

a) Horizontal road

|d| [m] dj [m] d0 [m] t [s]
1.9 11 12.9 1
3.6 24 27.6 2
5.1 39 44.1 3
6.4 56 62.4 4
7.5 75 82.5 5
8.4 96 104.4 6
9.1 119 128.1 7
9.6 144 153.6 8
9.9 171 180.9 9
10 200 210 10
9.9 231 240.9 11
9.6 264 273.6 12
9.1 299 308.1 13
8.4 336 344.4 14
7.5 375 382.5 15
6.4 416 422.4 16
5.1 459 464.1 17
3.6 504 507.6 18

b) Vertical road

|d| [m] dj [m] d0 [m] t [s]
1.9 551 552.9 19
0 600 600 20
2.1 651 648.9 21
4.4 704 699.6 22
6.9 759 752.1 23
9.6 816 806.4 24
12.5 875 862.5 25
15.6 936 920.4 26
18.9 999 980.1 27
22.4 1064 1041.6 28
26.1 1131 1104.9 29
30 1200 1170 30
34.1 1271 1236.9 31
38.4 1344 1305.6 32
42.9 1419 1376.1 33
47.6 1496 1448.4 34
52.5 1575 1522.5 35
57.6 1656 1598.4 36

Then we can get a figure 4.8 showing distance between vehicles depending on time.

4.2. ALGORITHM’S FUNCTIONS 33

CHAPTER 4. PROPOSED ALGORITHM

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 35

Time [s]

0

4

8

12

16

20

24

28

32

36

40

44

48
50

D
is

ta
nc

e
be

tw
ee

n
ve

hi
cl

es
 [

m
]

speed j > speed0 and accel j < accel0
speed j < speed0 and accel j > accel0

Figure 4.14: Distance between vehicles in time

According to the figure 4.14, first 10 seconds the distance between vehicles increases,
because the own vehicle (for second condition a neighbour vehicle) has more speed than
neighbour vehicle (for second condition the own vehicle), then in time interval between 10
seconds and 20 the distance decreases, because the own vehicle (neighbour vehicle) has more
acceleration and is catching up the neighbour vehicle (the own vehicle). Most important
part for us starts after 20 seconds (see Fig. 4.15) distance start increasing, because the own
vehicle (neighbour vehicle) has more speed and acceleration, after 35 seconds distance is
around 50 meters and we lose signal.

34 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

4

8

12

16

20

24

28

32

36

40

44

48
50

speedj > speed0 and accelj < accel0
speedj < speed0 and accelj > accel0

D
is

ta
nc

e
be

tw
ee

n
ve

hi
cl

es
 [

m
]

Time [s]

Figure 4.15: Distance between vehicles after 20 [s]

Applying (4.29) we need to find exactly equation, that gives same results as movement
model. So in that way

1. For speedj < speed0 and accelj > accel0

tcon
j =

−(speedj − speed0) +
√

(speedj − speed0)2 + 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.30)

2. For speedj > speed0 and accelj < accel0

tcon
j =

−(speedj − speed0)−
√

(speedj − speed0)2 − 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.31)

Let us consider the third condition and forth conditions.

Table 4.3: Third and forth conditions for connection time

a) speedj > speed0 and accelj > accel0

speed accel
vj 12 2
v0 10 1.8

b) speedj < speed0 and accelj < accel0

speed accel height vj

10 1.8
v0 12 2

4.2. ALGORITHM’S FUNCTIONS 35

CHAPTER 4. PROPOSED ALGORITHM

Table 4.4: Data from the movement model showing distance between vehicles

a) Third condition

|d| [m] dj [m] d0 [m] t [s]
2.1 13 10.9 1
4.4 28 23.6 2
6.9 45 38.1 3
9.6 64 54.4 4
12.5 85 72.5 5
15.6 108 92.4 6
18.9 133 114.1 7
22.4 160 137.6 8
26.1 189 162.9 9
30 220 190 10
34.1 253 218.9 11
38.4 288 249.6 12
42.9 325 282.1 13
47.6 364 316.4 14
52.5 405 352.5 15

b) Forth condition

|d| [m] dj [m] d0 [m] t [s]
2.1 10.9 13 1
4.4 23.6 28 2
6.9 38.1 45 3
9.6 54.4 64 4
12.5 72.5 85 5
15.6 92.4 108 6
18.9 114.1 133 7
22.4 137.6 160 8
26.1 162.9 189 9
30 190 220 10
34.1 218.9 253 11
38.4 249.6 288 12
42.9 282.1 325 13
47.6 316.4 364 14
52.5 352.5 405 15

Graph will be one for two cases same as in the previous case.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

4

8

12

16

20

24

28

32

36

40

44

48

52

speedj > speed0 and accelj > accel0
speedj < speed0 and accelj < accel0

Time [s]

D
is

ta
nc

e
be

tw
ee

n
ve

hi
cl

es
 [

m
]

Figure 4.16: Distance between vehicles in time

According to the graph (see Fig. 4.17), the distance between vehicles in the whole domain
increasing, because the neighbour vehicle (own vehicle for forth condition) has greater values

36 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

of speed and acceleration than the own vehicle (the neighbour vehicle). In the same way as
before, we can identify appropriate equation for each condition.

3. For speedj > speed0 and accelj > accel0

tcon
j =

−(speedj − speed0) +
√

(speedj − speed0)2 + 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.32)

4. For speedj < speed0 and accelj < accel0

tcon
j =

−(speedj − speed0)−
√

(speedj − speed0)2 − 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.33)

Let us compare all four conditions. An attentive reader will notice that for the first
condition (4.30) and third equations (4.32) are the same. For second (4.31) and forth
condition (4.33) equation is also the same.

Take a look at first and third conditions:

speedj < speed0 and accelj > accel0

speedj > speed0 and accelj > accel0

We came to an important conclusion, that a value of speed do not impact on the equation.
In depends only on acceleration values. To be sure, check the remaining third and forth
conditions:

speedj > speed0 and accelj < accel0

speedj < speed0 and accelj < accel0

Again, all conditions depend only on acceleration values. The main aim of this paragraph
was to get prediction time, when vehicles on vertical or horizontal roads. So finally, we got

1. If accelj > accel0

tcon
j =

−(speedj − speed0) +
√

(speedj − speed0)2 + 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.34)

2. If accelj < accel0

tcon
j =

−(speedj − speed0)−
√

(speedj − speed0)2 − 2 · (accelj − accel0) · (r − d)
accelj − accel0

(4.35)

We have already considered common cases when cars are on the same road. Now there
will be more specific cases.

4.2. ALGORITHM’S FUNCTIONS 37

CHAPTER 4. PROPOSED ALGORITHM

Vertical road vj → horizontal road v0

For better understanding, it is necessary to notify the reader how to understand notations
correctly. Each point will be written capital letter and its coordinates are also capital letters.
For example point D has coordinates (xD, yD), exception is for a neighbour vehicle, that
always will start from point J, but has coordinates (xj , vj) and for an own vehicle (x0, y0),
that always will start from point O.

On this situation the neighbour vehicle rides on vertical road and then will turn to the
same road, where rides the own vehicle (see Fig. 4.13).

J

F DC OE

Road 1

Road 2Road 3

Road 4

Figure 4.17: Vertical road vj → horizontal road v0

Note that we always consider, that a neighbour vehicle will turn to the same road, other
case will be removed by our second filter - driver’s behaviour parameter βbeh

j ??.
Again we need to calculate connection time, how long the neighbour vehicle will be in our

signal radius. Let us derive it, for the beginning calculate the distance between intersection
and the neighbour vehicle.

dJE =
√

(xj − xE)2 + (yj − yE)2 =

=
√

(yj − yE)2 =

=
√

(yj − y0)2

(4.36)

Note that
√

(...)2 notation also said as, that point J can be on the other side of road, it does
not matter if neighbour vehicle rides from the south or north and turns to the own vehicle’s
road.

According to that vj rides on the vertical road x position will not change or the slightest
change can be neglected. Y coordinate of own vehicle has the same value of intersection
coordinate (see Fig. 4.13).

38 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Calculate the time tj,JE when vj will reach an intersection

dJE = speedj · tj,JE +
accelj · t2j,JE

2 (4.37)

We know all these parameters (4.79), just need to find the roots of that equation.

accelj · t2j,JE

2 + speedj · tj,JE − dJE = 0

We do not need to consider a negative root, so

tj,JE =
±
√

2 · accelj · dJE + speed2
j − speedj

accelj
=

=

√
2 · accelj · dJE + speed2

j − speedj

accelj
=

=

√
2 · accelj · (

√
(yj − y0)2) + speed2

j − speedj

accelj

(4.38)

So, we have already know the time, that needed jth neighbour to reach an intersection.
Then calculate a distance dCE and time t0,CE when the own vehicle signal will not reach
the intersection. In that case the, values of y coordinate will be the same, changes only x
coordinate

dCE = r − dEO =

= r −
√

(xE − x0)2 + (yE − y0)2 =

= r −
√

(xE − x0)2

(4.39)

dCE = speed0 · t0,CE +
accel0 · t20,CE

2

accel0 · t20,CE

2 + speed0 · t0,CE − dCE = 0

t0,CE =
±
√

2 · accel0 · dCE + speed2
0 − speed0

accel0
=

=

√
2 · accel0 · dCE + speed2

0 − speed0

accel0
=

=

√
2 · accel0 · (r −

√
(xE − x0)2 + speed2

0 − speed0

accel0

(4.40)

So we know tj,JE and t0,CE , it is logically if the neighbour vehicle needs more time to
get to intersection, than the own vehicle to be out of reach, then we lose connection with vj

and our connection time with vj will be tj,JE .

4.2. ALGORITHM’S FUNCTIONS 39

CHAPTER 4. PROPOSED ALGORITHM

If tj,JE > t0,CE =⇒ tcon
j = t0,CE (4.41)

If tj,JE ≤ t0,CE , which means the neighbour vehicle will be faster than own vehicle. It
requires further calculations to get connection time. In that case vehicles will be on the
same road, but we do not know their exactly positions.

We can calculate the distance dwhile waiting j
0 , which the own vehicle rode, while waited

for the neighbour vehicle for time reaching the intersection by neighbour vehicle tj,JE

dwhile waiting j
0 = speed0 · tj,JE +

accel0 · t2j,JE

2

But we still does not know, the exactly coordinate where the own vehicle will be. Get it
from the definition of distance

dwhile waiting j
0 =

√
(x0 − xwhile waiting j

0)2

xwhile waiting j
0 = x0 ± dwhile waiting j

0 (4.42)

Note that ± notation said us, that own vehicle v0 can have two directions on the horizontal
road, if v0 rides to the east we use "+" sign, for the west direction use "-" sign.

Let us consider, when the vehicles on the same road (see Fig. 4.18)

FE

Road 1

Road 2Road 3

Road 4

Figure 4.18: Vehicles are on the same road

Coordinates of v0 after tj,JE are in the node F:

F = (x0 ± dwhile waiting j
0 , y0) (4.43)

40 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Coordinates of vj after tj,JE are in the node E:

E = (xj , y0) (4.44)

The distance between two vehicles on the same road will be

dbetween 0 and j =

√√√√(x0︸︷︷︸
x0 ± dwhile waiting j

0

− xj

)2
+
(
y0 − yj︸︷︷︸

y0

)2
=

=

√√√√(x0 ± dwhile waiting j
0 − xj

)2

(4.45)

Now according to the values of accelj and accel0 choose an appropriate formula (4.34)
or (4.35), then calculate connection time tcon

j . So the total connection time of the neighbour
vehicle in case of vertical road and then turning to the same rode as own vehicle will be:

tT L,con
j = tj,JE + tcon

j (4.46)

Vertical road v0 → horizontal road vj

According to this situation own vehicle rides on vertical road (both cases included from
north and from south) and wants to turn to a horizontal road (see Fig. 4.19), where rides
potential neighbour vehicle. We need to know its time connection.

F DE J

O

Road 1

Road 2Road 3

Road 4

Figure 4.19: Vertical road v0 → horizontal road vj

4.2. ALGORITHM’S FUNCTIONS 41

CHAPTER 4. PROPOSED ALGORITHM

Calculate distance dOE between the own vehicle and intersection

dOE =
√

(x0 − xE)2 + (y0 − yE)2) =

=
√

(y0 − yE)2 =

=
√

(y0 − yj)2

(4.47)

Derive the time t0,OE , that the own vehicle will spend to get to an intersection

dOE = speed0 · t0,OE +
accel0 · t20,OE

2
accel0 · t20,OE

2 + speed0 · t0,OE − dOE = 0 (4.48)

We need a positive root of the quadratic equation

t0,OE =
±
√

2 · accel0 · dOE + speed2
0 − speed0

accel0
=

=

√
2 · accel0 · dOE + speed2

0 − speed0

accel0
=

=

√
2 · accel0 ·

√
(y0 − yj)2 + speed2

0 − speed0

accel0

(4.49)

Then, necessary to know the distance dJD and time tj,JD when the neighbour vehicle
lose a connection with the own vehicle. First of all, we need to find out coordination of
point D.

dOD = r =
√

(x0 − xD)2 + (y0 − yD)2 =

=
√

(x0 − xD)2 + (y0 − yj)2
(4.50)

Finally xD is

xD = x0 ±
√
−y2

j + 2y0yj + r2 − y2
0 (4.51)

Note, that sign "+" means, that the own vehicle turns to the east, "-" we use when the own
vehicle rides to the west direction

Then we can get the distance dJD

dJD =
√

(xj − xD)2 + (yj − yD)2) =

=
√

(xj − xD)2 =

=

√√√√(xj − (x0 ±
√
−y2

j + 2y0yj + r2 − y2
0)
)2

(4.52)

42 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Knowing the distance calculate time tj,JD

dJD = speedj · tj,JD +
accelj · t2j,JD

2

accelj · t2j,JD

2 + speedj · tj,JD − dJD = 0

tj,JD =

=
±
√

2 · accelj · dj,JD + speed2
j − speedj

accelj
=

=

√
2 · accelj · dj,JD + speed2

j − speedj

accelj
=

=

√√√√2 · accelj ·
√(

xj − (x0 ±
√
−y2

j + 2y0yj + r2 − y2
0)
)2

+ speed2
j − speedj

accelj

(4.53)

So we know t0,OE and tj,JD, it is logically if the own vehicle needs more time to get to
intersection, than the neighbour vehicle to be out of reach, then we lose connection with vj

and our connection time with vj will be tj,JD.

If t0,OE > tj,JD =⇒ tcon
j = tj,JD (4.54)

If t0,OE ≤ tj,JD, which means the own vehicle will be faster than neighbour vehicle will
lose its connection. It requires further calculations to get connection time tcon

j . In that case
vehicles will be on the same road, but we do not know their exactly positions. Calculate the
distance dwhile waiting 0

j , which the neighbour vehicle rode while waited for the own vehicle
turn for the time t0,OE

dwhile waiting 0
j = speedj · t0,OE +

accelj · t20,OE

2

But we still does know, the exactly coordinate where the neighbour vehicle will be. Get it
from the definition of distance

dwhile waiting 0
j =

√
(xj − xwhile waiting 0

j)2

Coordinate while the jth neighbour waiting for the own vehicle ("plus" for the east
direction, "minus" for the west) calculating by the following equation:

xwhile waiting 0
j = xj ± dwhile waiting 0

j (4.55)

Coordinates of vj after t0,OE are in the node F:

F = (xj ± dwhile waiting 0
j , yj) (4.56)

4.2. ALGORITHM’S FUNCTIONS 43

CHAPTER 4. PROPOSED ALGORITHM

Coordinates of v0 after t0,OE are in the node E:

E = (x0, yj) (4.57)

Finally, vehicles are on the same road, let us calculate the distance between two vehicles
on the same road

dbetween 0 and j =

√√√√(xj︸︷︷︸
xj ± dwhile waiting 0

j

− x0

)2
+
(
yj − y0︸︷︷︸

yj

)2
=

=

√√√√(xj ± dwhile waiting 0
j − x0

)2

(4.58)

FE

Road 1

Road 2Road 3

Road 4

Figure 4.20: Vehicles are on the same road

Now according to the values of accelj and accel0 choose an appropriate formula (4.34)
or (4.35), then calculate connection time tcon

j . So the total connection time of the neighbour
vehicle in case of horizontal rode and then turning own vehicle to the same rode as the
neighbour vehicle will be:

tT L,con
j = tj,JE + tcon

j (4.59)

Horizontal road v0 → Vertical road vj

According to this situation an own vehicle rides on a horizontal road and wants to turn to
a vertical road (both cases included to north and to south) and there is rides a potential
neighbour vehicle (see Fig. 4.13). We need to know its time connection.

44 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

O

F

C

J

E

Road 1

Road 2Road 3

Road 4

Figure 4.21: Horizontal road v0 → Vertical road vj

Find out the threshold node, where the neighbour vehicle leave the signal radius (see
Fig. 4.13, node C). Derive it from the definition of radius

dOC = r =
√

(x0 − xC)2 + (y0 − yC)2 =

=
√

(x0 − xj)2 + (y0 − yC)2
(4.60)

yC = y0 ±
√
−x2

j + 2x0xj + r2 − x2
0, (4.61)

For north direction of the own vehicle "+" sign, for south direction "-" sign)

Distance dJC needed to leave our signal range for the neighbour vehicle will be

dJC =
√

(xj − xC)2 + (yj − yC)2 =

=

√√√√(yj −
(
y0 ±

√
−x2

j + 2x0xj + r2 − x2
0

))2 (4.62)

If we know distance, we can calculate the time tj,JC

dJC = speedj · tj,JC +
accelj · t2j,JC

2

accelj · t2j,JC

2 + speedj · tj,JC − dJC = 0

4.2. ALGORITHM’S FUNCTIONS 45

CHAPTER 4. PROPOSED ALGORITHM

tj,JC =
±
√

2 · accelj · dJC + speed2
j − speedj

accelj
=

=

√
2 · accelj · dJC + speed2

j − speedj

accelj
=

=

√√√√2 · accelj ·
√(

yj − (y0 ±
√
−x2

j + 2x0xj + r2 − x2
0)
)2

+ speed2
j − speedj

accelj

(4.63)

Consider the own vehicle and calculate distance dOE and time t0,OE to get an intersection.

dOE = r =
√

(x0 − xE)2 + (y0 − yE)2 =

=
√

(x0 − xE)2 =

=
√

(x0 − xj)2

(4.64)

dOE = speed0 · t0,OE +
accel0 · t20j,OE

2

accel0 · t20,OE

2 + speed0 · t0,OE − dOE = 0

t0,OE =
±
√

2 · accel0 · dOE + speed2
0 − speed0

accel0
=

=

√
2 · accel0 · dOE + speed2

0 − speed0

accel0
=

=

√
2 · accel0 ·

√
(x0 − xj)2 + speed2

0 − speed0

accel0

(4.65)

So we know tj,JC and t0,OE , it is logically if the own vehicle needs more time to get to
intersection, than the neighbour vehicle leave signal range, then we lose connection with vj

and our connection time with vj will be tj,JC .

If t0,OE > tj,JC =⇒ tcon
j = tj,JC (4.66)

If t0,OE ≤ tj,JC , which means the own vehicle will be faster than the neighbour vehicle.
It requires further calculations to get the total connection time. In that case vehicles will
be on the same road, but we do not know their exactly positions.

We can calculate the distance dwhile waiting 0
j , which the neighbour vehicle rode while was

waiting for the own vehicle for time reaching the intersection by own vehicle t0,OE

dwhile waiting 0
j = speedj · t0,OE +

accelj · t20,OE

2

46 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

But we still does not know, the exactly coordinate where the own vehicle will be. Get it
from the definition of distance

dwhile waiting 0
j =

√
(yj − ywhile waiting 0

j)2

ywhile waiting 0
j = yj ± dwhile waiting 0

j (4.67)

where "+" sign if the vehicles will going to north and "-" for south direction

Vehicles are on the same road (see Fig. 4.18) and their coordinates will be
Coordinates of v0 after t0,OE are in the node F:

F = (xj , y0)

Coordinates of vj after tj,OE are in the node E:

E = (xj , yj ± dwhile waiting 0
j)

F

E

Road 1

Road 2Road 3

Road 4

Figure 4.22: Vehicles are on the same road

The distance between two vehicles on the same road will be

dbetween 0 and j =

√√√√(xj − x0︸︷︷︸
xj

)2
+
(
yj︸︷︷︸

yj ± dwhile waiting 0
j

− y0

)2
=

=

√√√√(yj ± dwhile waiting 0
j − y0

)2

(4.68)

4.2. ALGORITHM’S FUNCTIONS 47

CHAPTER 4. PROPOSED ALGORITHM

Now according to the values of accelj and accel0 choose an appropriate formula (4.34)
or (4.35), then calculate connection time tcon

j . So the total connection time of the neighbour
vehicle in case of vertical road and then turning to the same rode as own vehicle will be:

tT L,con
j = tj,JE + tcon

j (4.69)

Horizontal road vj → Vertical road v0

The last case of prediction parameter ψcon
j , when the own vehicle rides on vertical road

and get connected to the neighbour vehicle, that rides on the horizontal rode and after turns
to the same road as own vehicle (see Fig. 4.18).

O

F

D

C

J E

Road 1

Road 2Road 3

Road 4

Figure 4.23: Horizontal road vj → Vertical road v0

Calculate dJE a distance between jth vehicle and an intersection

dJE =
√

(xj − xE)2 + (yj − yE)2) =

=
√

(xj − xE)2 =

=
√

(xj − x0)2

(4.70)

Then calculate time tj,JE from definition of the distance dJE

dJE = speedj · tj,JE +
accelj · t2j,JE

2 (4.71)

accelj · t2j,JE

2 + speedj · tj,JE − dJE = 0

48 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

tj,JE =
±
√

2 · accelj · dJE + speed2
j − speedj

accelj
=

=

√
2 · accelj · dJE + speed2

j − speedj

accelj
=

=

√
2 · accelj ·

√
(xj − x0)2 + speed2

j − speedj

accelj

(4.72)

Then calculate the distance dDE , after that the own vehicle will not reach the intersec-
tion.

dDE = r − dEO =

= r −
√

(xE − xO)2 + (yE − yO)2) =

= r −
√

(yE − yO)2 =

= r −
√

(yj − y0)2

(4.73)

The time t0,DE when the own vehicle will not reach the intersection

dDE = speed0 · t0,DE +
accel0 · t20,DE

2

accel0 · t20,DE

2 + speed0 · t0,DE − dDE = 0

t0,DE =
±
√

2 · accel0 · dDE + speed2
0 − speed0

accel0
=

=

√
2 · accel0 · dDE + speed2

0 − speed0

accel0
=

=

√
2 · accel0 · (r −

√
(yj − y0)2) + speed2

0 − speed0

accel0

(4.74)

So we know tj,JE and t0,DE if the own vehicle needs more time to get to intersection than
the neighbour vehicle to be out of reach, then we lose connection with vj and our connection
time with vj will be t0,DE .

If tj,JE > t0,DE =⇒ tcon
j = t0,DE (4.75)

If tj,JE ≤ t0,DE , which means the neighbour vehicle will be faster than the own vehicle
will lose its connection. It requires further calculations to get connection time tcon

j . In that
case vehicles will be on the same road (see Fig. 4.24), but we do not know their exactly
positions.

4.2. ALGORITHM’S FUNCTIONS 49

CHAPTER 4. PROPOSED ALGORITHM

F

E

Road 1

Road 2Road 3

Road 4

Figure 4.24: Vertical road v0 → horizontal road vj

Calculate the distance dwhile waiting j
0 , which the own vehicle rode while waited for a turn

of the neighbour vehicle for a time tj,JE

dwhile waiting j
0 = speed0 · tj,JE +

accel0 · t2j,JE

2
But we still does know, the exactly coordinate where the neighbour vehicle will be. Get it
from the definition of distance

dwhile waiting j
0 =

√
(y0 − ywhile waiting j

0)2

Coordinate y while the own vehicle waiting for the neighbour vehicle ("plus" for the
north direction, "minus" for the south) calculating by the following equation:

ywhile waiting j
0 = y0 ± dwhile waiting j

0 (4.76)

Coordinates of v0 after tj,JE are in the node F:

F = (x0, y0 ± dwhile waiting j
0) (4.77)

Coordinates of vj after tj,JE are in the node E:

E = (x0, yj) (4.78)

The distance between two vehicles on the same road will be

dbetween 0 and j =

√√√√(xj︸︷︷︸
x0

− x0

)2
+
(
yj − y0︸︷︷︸
y0 ± dwhile waiting j

0

)2
=

=

√√√√(yj − (y0 ± dwhile waiting j
0)

)2

(4.79)

50 4.2. ALGORITHM’S FUNCTIONS

CHAPTER 4. PROPOSED ALGORITHM

Now according to the values of accelj and accel0 choose an appropriate formula (4.34)
or (4.35), then calculate connection time tcon

j . So the total connection time of the neighbour
vehicle in case of horizontal rode and then turning to the vertical road, where rides own
vehicle will be:

tT L,con
j = tj,JE + tcon

j (4.80)

Finally we know all cases for the last component of probability function Ps(vj , xi) -
prediction parameter ψcon

j . Remember, that parameter predicts how long jth vehicle will
travelled within our range of signal. If any vehicle needs more time to get task, execute it
and send back than connection time, that vehicle will be removed automatically.

Definition 4.2.9. Let tT L,con
j is a total connection time of jth vehicle, T total

j (vj , xi) is a
total time. If the total time is less than total connection time the prediction parameter ψcon

j

returns 1, other wise 0. That means that execute ith task makes no sense, if we know that
the neighbour vehicle will not be in our radius the whole total time. So prediction parameter
ψcon

j can be defined

• ψcon
j (vj , xi) =

{
1, if T total

j (vj , xi) < tcon
j (vj , xi)

0, otherwise. (4.81)

4.2.3 Minimal probability

Definition 4.2.10. Let Ps(vj , xi) be a success probability of jth vehicle to execute ith task,
αi is a relative priority between response time and success probability for ith task, so the min-
imal probability is a multiplication of priority and the mean value of all neighbour vehicles’
probabilities

Pmin = αi ·

N∑
j=1

Ps(vj , xi)

N
(4.82)

4.2.4 Creating a cluster

A minimal probability needs to filter vehicles by priority of the tasks. If a task has a high
priority αi, which means that probability of completing ith task must be as great as possible,
vehicles with low probability will not be considered and will be created a new cluster.

N cluster ← (Ps(vj , xi) ≥ Pmin) (4.83)
N cluster = {v0∗ , v1∗ , ...vj∗ , ...vN∗}, (4.84)

where N∗ ⊆ N, j∗ ∈ 〈0, N∗〉, j∗ ∈ N

4.2. ALGORITHM’S FUNCTIONS 51

CHAPTER 4. PROPOSED ALGORITHM

4.2.5 Considering function

After getting all necessary information from vehicles, we need to consider which one for cer-
tain αi is the most optimal. Some tasks can be delay-tolerant but require higher probability
for being processed successfully. Some other real-time applications might emphasize on the
total time rather than success probability.

Was considered, that we divide tasks on two groups. There are important tasks and
normal tasks. For important tasks success probability has more weight than the total time,
for normal tasks and for normal tasks respectively on the contrary. But can happened, that
two vehicles have similar parameters, for example Ps(vj , xi) = 0.9 and T T L

j = 4 [s] and
Ps(vj+1, xi) = 0.8 and T T L

j+1 = 3 [s] in such case considering function f cons
j was built.

Definition 4.2.11. Let T T L
j∗ is a total time for j∗ th vehicle, Ps(vj∗ , xi) is a success prob-

ability of j∗ th vehicle, so considering function for two different priorities can be defined
as

f cons
j (vj∗ , xi) =

=



min
∀j∗∈N cluster, i∈Q

{(
Ps(vj∗ , xi)−1

)1.5
·

T T L
j∗ (vj∗ , xi)

max
∀j∗∈N cluster, i∈Q

{T T L
j∗ (vj∗ , xi)}

}
, for α1

min
∀j∗∈N cluster, i∈Q

{(
Ps(vj∗ , xi)−1

)0.5
·

T T L
j∗ (vj∗ , xi)

max
∀j∗∈N cluster, i∈Q

{T T L
j∗ (vj∗ , xi)}

}
, for α2

(4.85)

Note that without the power on success probability each factor of multiplication has
the same weight and take values from 0 to 1. For high priority or for important tasks
first equation is considered. Increasing the power of vehicle success probability increase its
weight, other words is more important to execute the task with higher probability than to
complete it as soon as possible. Another case is to decrease the power, accordingly the
weight will be decreased, which means that to completing time is more important that the
success probability.

4.3 Task scheduling algorithm

Finally we have defined all functions of the proposed algorithm. Task scheduling algorithm
summarize all functions above and can be expressed as

The complexity of Algorithm 1 is quite straightforward to follow. The statements no.1 −
3 are enclosed in a loop and checks whether queue is empty or not. When we get some task
use fpick(xi) function to get a task with the lowest deadline (line no.4). Then we provide
reactive scanning, which means, that we do not provide any scanning in advance, an own
vehicle scan the network only after getting some task (line no.5). After scanning we will get
a list on neighbour vehicles and add to that list an own vehicle (line no.6), because it also
can execute task xi. For statements no.7 − 14 we calculate for every vehicle in the list of

52 4.3. TASK SCHEDULING ALGORITHM

CHAPTER 4. PROPOSED ALGORITHM

Algorithm 1 Task scheduling algorithm
Input : Q tasks = {x1, x2, . . . , xi, . . . , xI}
Output: Sending task xi to vj for execution

1 while Q tasks ∈ ∅ do
2 check every τ1
3 end
4 Calculate fpick(xi) from Qtasks (section 4.2.1)
5 Reactive scanning, getting list N neighb

6 N neighb ← v0
7 for each vj ∈ N neighb do
8 Calculate T T L

j (vj , xi) using (4.16)
9 Calculate φDL

j (vj , xi) using (4.17)
10 Calculate βbeh

j (vj , xi) using (4.26)
11 Calculate ψcon

j (vj , xi) using (4.81)
12 Calculate Ps(vj , xi) using (4.3)
13 end
14 Calculate Pmin using (4.82)
15 N cluster ← {v0, v1, ...vj∗ , ...vN∗ | Ps(vj , xi) ≥ Pmin, N

∗ ⊆ N}
16 Calculate f cons

j (vj∗ , xi) using (4.2.5)
17 if f cons

j (vj∗ , xi) ∈ ∅ then
18 if T T L

j + ξreserve ≤ DLi then
19 go to step #5
20 else
21 drop xi task
22 go to step #1
23 end
24 else
25 sending task xi to vj for execution
26 go to step #1
27 end

4.3. TASK SCHEDULING ALGORITHM 53

CHAPTER 4. PROPOSED ALGORITHM

neighbour vehicles all necessary functions. In the statement no.15 the cluster of vehicles will
be provided, vehicles with higher value that the minimal probability will be chosen. The
last loop on statements no.18 − 27 if the considering function does not return vehicle, we
have have two options: 1) try to provide the scanning again in case, that we have enough
time (lines no.18 − 19) 2) drop a task 2) if we do not have enough time (lines no.21 − 23),
the own vehicle drops task and goes to statement no.1. If the considering functions returns
appropriate vehicle for the picked task we send it to that vehicle and go to statement no.1.

54 4.3. TASK SCHEDULING ALGORITHM

Chapter 5

Simulations

In this section, simulations are presented to estimate proposed algorithm and compare it
with existing one. Microscopic traffic simulator SUMO (simulation of urban mobility) are
used with further integration in MATLAB. Sumo emphasize local behavior of individual
vehicles by representing the velocity and position of each vehicle at a given moment. This
type of simulation is especially helpful for studying localized traffic interactions, but it comes
with the price of reduced scalability [38].

Simulation consists of two interacting applications: SUMO and MATLAB. SUMO is a
server and MATLAB is a client. The simulation was written in the style of OOP (Object-
Oriented Programming).

The name of starting simulation script is general.m. All the parameters of the simulation
can be changed in it. There are the number of neighbour vehicles, the number of tasks per
second, the length of simulation and the other things.

At the start we execute SUMO, which runs in a server mode, then using the API interface
Traci4Matlab we can get the necessary values of each vehicle, there are (id vehicle, x, y,
road, speed). But to implement our algorithm, we also need to know the acceleration of the
vehicles in each step. Only the maximum possible acceleration is realized in SUMO, but
not an actual value. Therefore, acceleration was calculated for each step by using following
formula

accel stepx =
speedstepx − speed stepx−1

step length

∣∣∣∣
step length = 0.2 [s]

(5.1)

These values in the process of interaction of SUMO and MATLAB are saved in the
MATLAB’s object Data. That means, we do not read the .xml that SUMO also generates,
but use the interface API Traci4Matlab, because it requires further calculations.

Data is a classic map, where the key is the simulation step (time) of the simulation and
the value is all four vehicles’ parameters in this step. As we have all the values of all vehicles
in each step of the simulation, we run our written system.

Let us consider the basic concept of the simulation. There is an object Timer that starts
first. Then the Task and V ehicle objects are connecting using event-listener interface. The
aim of the Timer is to notify connected objects that a certain time has passed (the simulation
step). The aim of the Task to change its deadline on the simulation step (in our case 0.2

55

CHAPTER 5. SIMULATIONS

[s]), when it notified by the timer. The aim of the V ehicle is to change its four parameters
(id vehicle, x, y, road, speed) each step of the simulation (when it is notified by the Timer).
The V ehicle object also reads the Data object.

Was implemented so-called life cycle for Task object. Life cycle consist of 7 states. There
are: ”Born”, ”InProcess”, ”Sending”, ”InExecution”, ”Receiving”, ”Success”, ”Dead”.

• Born: ith task gets state ”Born”, when it was born by the Factory of Tasks and
was added to the Heap of the own vehicle v0.

• InProcess: ith task gets state ”InProcess”, when it was picked by fpick(xi) (section
4.2.1) from the binaryheap.

• Sending: ith task gets state ”Sending”, when it was sending to the neighbour vehicle
vj .

• InExecution: ith task gets state ”InExecution”, when it was successfully got by
neighbour vehicle vj and started to executed the certain task xi.

• Receiving: ith task gets state ”Receiving”, when it was executed and is receiving by
the own vehicle v0.

• Success: ith task gets state ”Success”, when it was successfully received and complete.

• Dead: ith task gets state ”Dead”, when it was expired or executed.

Each task xi can have at least two of these states (”Born” and ”Dead”) in case no vehicle
were to execute it, and in the best case all states of life cycle.

All states mention above were implemented to simulate proposed algorithm and help to
verify the effectiveness of our solution. The whole algorithm implemented in the separate
class "Flowchart".

5.1 Simulation assumptions and scenario

In order to conduct simulation for proposed algorithm, one needs to build simulation scenario
that imitates the reality. The simulation is divided into two parts: the first part is the
mobility and traffic generation which we generate using SUMO, and the second part is the
network simulation which is performed using MATLAB. SUMO is an open source, highly
portable, microscopic and continuous road traffic simulation package designed to handle
large road networks. It is mainly developed by employees of the Institute of Transportation
Systems at the German Aerospace Center [39].

Improved Krauss car-following model has been modified by SUMO to make it more
suitable for the real situation. This is the main reason for choosing such a model, it allows
us to get results close to real implementation. The estimated speed of vehicles related to
the speed and distance between the front cars, the rear cars [40] and their safe speed.

Safe speed (5.2) is a speed of a vehicle in relation to the vehicle ahead of it. It illustrates
that the following vehicle is always trying to keep a safe distance with leading vehicle. The

56 5.1. SIMULATION ASSUMPTIONS AND SCENARIO

CHAPTER 5. SIMULATIONS

following vehicle always adapt to the deceleration behavior of the leading vehicle [41]. Safe
speed is computed as follows:

vsafe = vl(t) +
g(t)− vl(t)tr

vl(t) + vf (t)
2b + tr

, (5.2)

Where vl(t) represents speed of the leading vehicle in time t, vf (t) represents speed of the
following vehicle in time t, g is gap to the leading vehicle in time t, tr is the driver’s reaction
time (about 1s) and b is the maximum deceleration of the vehicle [m/s2].

Simulation is run for 1800 seconds in SUMO and the results of 5 individual simulations are
averaged to get one point on figure. The main reason is to reduce the influence of random
variability in the inputs. All parameters are shown in the table 5.1

Table 5.1: Simulation parameters

Parameters Values
Car-Following Model Krauss model

Size of map 166 x 166 [m] [1]
Road Length 55 and 84 [m] [1]
Lane Width 3.7 [m]

Number of Lanes 2 and 3 [-]
Number of Intersections 3 [-]
Simulation Duration 1800 [s] [1]
Number of Vehc1es 0 - 40 [-]
Max vehicle’s Speed 50 [km/h] or 13.8 [m/s] [31]

Max vehicle’s Acceleration 2.5 [m/s2]
Max vehicle’s Deceleration 4.5 [m/s2]

Transmission Rate 1.9 - 5.5 [Mbit/s]
Transmission Radius r 50 [m]

Arrival Rate 60 - 420 [tasks/min] or 1-7 [tasks/s]
DS (Data Size) 0.5 - 5 [MB]

DSresult(Data Size Result) 0.5 - 5 [MB]
DL (Deadline) 1 - 3 [s]

Relative Priority α 0.8 [-]
IS (Instruction set) 2000 [MI] [1]

Number of Cores per CPU 1 [-]
Number Threads per Core 1 [-]

MIPSj 1500 - 2500 [MI/s] [1]
MIPS 0 2000 [MI/s]

An urban environment of square size with 166 m length on each side is created into
SUMO (see Fig. 5.1). Simulation scenario consist of one-way roads and 3 intersections
(dashed circles on the Fig. 5.1).

5.1. SIMULATION ASSUMPTIONS AND SCENARIO 57

CHAPTER 5. SIMULATIONS

16
6

[m
]

166 [m]

55
 [m

]

84 [m] 84 [m]

55
 [m

]
55

 [m
]

A

C

B

Figure 5.1: Simulation scenario

SUMO can show the real streets or the streets you design with lanes, traffic lights and
other things the real world has. It allows to simulate a given traffic demand or dynamic
assignments by users. SUMO allows addressing a large set of traffic management topics and
gives a lot of help to VANET simulation [42]. Fig. 5.2 and Fig. 5.3 show snapshots of
SUMO output at a specific point of time.

a) b)

Figure 5.2: Snapshots of Mobility Scenario Generated by SUMO

58 5.1. SIMULATION ASSUMPTIONS AND SCENARIO

CHAPTER 5. SIMULATIONS

a) b)

Figure 5.3: Snapshots of Mobility Scenario Generated by SUMO

5.2 Algorithms

Was considered five algorithms. There are our task scheduling algorithm, QARTS − 1,
QARTS − 2, random and computation by itself .

QARTS-1 Heuristic task scheduling algorithm was built. Was exploited MapReduce com-
putation model to address the problem of resource heterogeneity and to support computation
parallelization. They do not consider any kind of prediction and looking a vehicle with the
minimal value of total time T T L [1]. Note that value of time connection, other words a
time, how long travelled the neighbour vehicle withing signal range was taken for a constant
(5 − 10 s), because there is no information about it. They also did not define the value of
reception time, so it was chosen as a mean value of all reception times. Picking the tasks
carried out by FIFO (First-In-First-Out).

QARTS-2 QARTS-2 is an improved version of QARTS-1 algorithm. Was used the same
core, but several features was taken from our algorithm. The fpick function considered for
queue of tasks, also was improved the reception time, it is no more constant and predicted
by us (4.15)

Our task scheduling algorithm In our approach tasks automatically sorted using binary
tree algorithm. And always pick with the lowest value of deadline, if there are more than
one such tasks, then we sort them by priority. Success probability function Ps (4.3) provides
three types of filtering, that increase choosing accuracy and reliability. Then considering

5.2. ALGORITHMS 59

CHAPTER 5. SIMULATIONS

function on the basis of two parameters looks an optimal vehicle. Even more if we do not
have any suitable vehicle, we provide scanning again in case if we have enough time.

Random In that case when the own vehicle is busy it choose randomly a neighbour vehicle
for task execution. If there is no vehicle and the own vehicle is busy task will be dropped.

Computation by itself In that case all computations provides by the own vehicle itself.
If we are already executing some task, another one in queue will be dropped.

5.3 Performance metrics

Successful task execution (5.3) and the system throughput (5.4) are selected as the perfor-
mance metrics to evaluate the performance of algorithms in this thesis.

The successful task execution can be obtained from the total number of successful tasks
(tasks, that arrived back to the own vehicle) divided by the total number of sent tasks and
dropped tasks by own vehicle. System throughput of computation models is measured by
the number of task executed in it per unit of time.

The performance is better when number of received tasks is high. Mathematically they
can be shown as following equations:

Successful Task execution =
completed tasks

sent tasks + dropped tasks =
completed tasks

all tasks [−] (5.3)

System Throughput =
number of completed tasks

time unit [# of tasks/time unit] (5.4)

They depend on various parameters chosen for the simulation. The major parameters
are: vehicle density, task size and task arrival rate.

5.4 Simulation results

The remainder of this section is organized as follows. Three scenarios are considered, they
are impacts impact of vehicle density, impact of task size and impact of task arrival rate on
success task execution and on the system throughput.

Let us take a look on results of the main map on next sections.

5.4.1 Impacts of vehicle density

In Scenario I, the success probability of task execution and the system throughput depending
on the vehicle density are presented in Fig. 5.4 and Fig. 5.5, respectively. Task arrival rate
is 2 tasks per second, DSi = 1MB, DSresult

i = 1MB, ISi is 2000 MI, DLi of each task is
a random value between 1 s and 3 s. Performance of each vehicle is also random, so values
of MIPSj are 1500-2500 MI/s, MIPS0 = 2000 MI/s.

60 5.3. PERFORMANCE METRICS

CHAPTER 5. SIMULATIONS

Increasing the number of vehicles, increases available data processing resources and re-
duces job execution time, because we have more vehicles to choose. Also increases the
transmitting data among the vehicles and thus decreases task transmission time and recep-
tion time, therefore the probability of execution task increases as well.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Vehicle density (on the map) [-]

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
uc

ce
ss

fu
l t

as
k

ex
ec

ut
io

n
[-

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.4: Impact of vehicle density on success probability for α = 0.8

It is depicted that the percentage of successful job execution increases exponentially
with the vehicle density. After 30 vehicles on the map the probability almost is equal 1
and constant (see Fig. 5.4). This is due to the fact, that the relative priority is 0.8, which
means that the own vehicle sends high priority tasks and for us is more important the high
probability of execution task than the total computation time. However, the probability
is high enough for QARTS algorithms as well on high vehicle density (after 20 vehicles).
Noticeably, that the prediction of our algorithm gives a significant advantage approximately
until 16 vehicles on the map and the maximal improvement around 20% Fig. 5.4) or 21
tasks/min can be executed more Fig. 5.5) on 5 vehicles on the map. Successful task execution
of the own vehicle is always 0.5, because we have a time just for each second task (task arrival
rate is 2 and the own vehicle can execute 1 task per second) and another half of tasks are
dropped, because we are busy.

5.4. SIMULATION RESULTS 61

CHAPTER 5. SIMULATIONS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Vehicle density [-]

57

60

63

66

69

72

75

78

81

84

87

90

93

96

99

102

105

108

111

114

117

120

T
hr

ou
gh

pu
t [

 n
um

be
r

of
 ta

sk
s/

m
in

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.5: Impact of vehicle density on the system throughput for α = 0.8

The random algorithm is slightly better than computation by itself and after 22 vehicles
can be used for video streams, where the probability is not critical, but is not effective
enough to use it all time.

5.4.2 Impacts of task size

In Scenario II, the success probability of task execution and the system throughput depend-
ing on the task size for α = 0.8 are presented in Figure 5.6 and Figure 5.7, respectively.
Vehicle density setup on 20 per map, other simulation parameters are same as the scenario
I.

62 5.4. SIMULATION RESULTS

CHAPTER 5. SIMULATIONS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Task's data size [MB]

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l t

as
k

ex
ec

ut
io

n
[-

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.6: Impact of task size on success probability for α = 0.8

Increasing size of task decreasing the probability exponentially till 3 MB, then it looks
like linear decreasing. Increasing the task size the transmission time and reception time is
increasing, so as more heavy the task as more accurate prediction needs. QARTS algorithm
was built for MapReduce technology and slightly worse until the task less than 1 MB, then
decreasing very fast. Our algorithm is more stable and reliable, but after 4 MB it is also
not so good and needed more accurate probability to be used.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Task's data size [MB]

57

60

63

66

69

72

75

78

81

84

87

90

93

96

99

102

105

108

111

114

117

120

T
hr

ou
gh

pu
t [

 n
um

be
r

of
 ta

sk
s/

m
in

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.7: Impact of task size on the system throughput for α = 0.8

5.4. SIMULATION RESULTS 63

CHAPTER 5. SIMULATIONS

5.4.3 Impacts of task arrival rate

In Scenario III, the success probability of task execution and the system throughput de-
pending on the task arrival rate for α = 0.8 are presented in Figure 5.8 and Figure 5.9,
respectively. DSi = 1MB, DSresult

i = 1MB were considered as optimal for fair compari-
son, other simulation parameters are same as the scenario II.

The figures depict the fact that the percentage of job execution decreases exponentially
for increasing arrival rates. This is because additional computation load forces the system to
choose relatively poor nodes for task execution. We see that our prediction approximately
reliable until we get 240 tasks per minute, then the percentage is lower than 65%.

30 60 90 120 150 180 210 240 270 300 330 360 390 420

Arrival rate [tasks/min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l t

as
k

ex
ec

ut
io

n
[-

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.8: Impact of task arrival rate on success probability for α = 0.8

64 5.4. SIMULATION RESULTS

CHAPTER 5. SIMULATIONS

60 90 120 150 180 210 240 270

Arrival rate [tasks/min]

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

T
hr

ou
gh

pu
t [

 n
um

be
r

of
 ta

sk
s/

m
in

]

Our algorithm
QARTS-2 algorithm
QARTS-1 algorithm
Random algorithm
Computation by itself

Figure 5.9: Impact of task arrival rate on the system throughput α = 0.8

System throughput increases exponentially with the vehicle density until 210 tasks/min
for our algorithm and until 180 taks/min for others, and and starts to decrease after reaching
a saturation point. After these points the system becomes congested with a large number
of tasks in the queue, that as a result leads to a decrease in productivity and the system
throughput starts to decrease.

5.4. SIMULATION RESULTS 65

Chapter 6

Conclusion and future work

This thesis has proposed task scheduling algorithm for communication between vehicles in
vehicular cloud computing. The new algorithm has a big potential. Important, that there
are many opportunities to improve it, because many new functions have developed. We have
got more stable and reliable results. However, if we have heavy traffic jam (high vehicle
density) or small tasks QARTS algorithm [1] works good as well. We see, that for further
deployment the VANET network cannot exist with advance prediction functions.

Comparison QARTS-1 with QARTS-2 (+4.3% or +8 tasks/min), which we have got
using optimal sorting of queue of tasks and prediction of reception time. Comparison Task
scheduling algorithm with random algorithm (+28% or +40 tasks/min) Comparison Task
scheduling algorithm with QARTS-1 algorithm (+19% or +31 tasks/min)

In the future, the algorithm proposed in this thesis can be widely adopted to study more
advanced level algorithms. Multi-hop network with vehicle-to-infrastructure connection can
be designed. Necessary to consider two-way roads scenario with traffic lights for more
realistic results. Then finally after several improvements of functions it can be realized it in
real life.

66

References

[1] T. Adhikary, A. K. Das, M. A. Razzaque, A. Almogren, M. Alrubaian, and M. M. Has-
san, “Quality of service aware reliable task scheduling in vehicular cloud computing,”
Mobile Networks and Applications, vol. 21, pp. 482–493, June 2016.

[2] Z. Jiang, S. Zhou, X. Guo, and Z. Niu, “Task replication for deadline-constrained
vehicular cloud computing: Optimal policy, performance analysis and implications on
road traffic,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2017.

[3] H. A. Najada and I. Mahgoub, “Anticipation and alert system of congestion and acci-
dents in vanet using big data analysis for intelligent transportation systems,” in IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016.

[4] C. Vyas, P. Wararkar, and S. S. Dorle, “Systematic analysis, design and implementa-
tion of prioritized vanet in real time application,” in nternational Conference on Global
Trends in Signal Processing, Information Computing and Communication (ICGT-
SPICC), pp. 369–374, December 2016.

[5] M. Whaiduzzaman, M. Sookhak, A. Gani, and R. Buyya, “A survey on vehicular cloud
computing,” J. Netw. Comput. Appl., vol. 40, pp. 325–344, April 2014.

[6] S. Olariu, T. Hristov, and G. Yan, The Next Paradigm Shift: From Vehicular Networks
to Vehicular Clouds, pp. 645–700. John Wiley Sons, Inc., 2013.

[7] M. Gerla, “Vehicular cloud computing,” in The 11th Annual Mediterranean Ad Hoc
Networking Workshop (Med-Hoc-Net), pp. 152–155, June 2012.

[8] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, “Beaconing from connected vehi-
cles: IEEE 802.11p vs. LTE-V2V,” in IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, September
2016.

[9] F. den Hartog, A. Raschella, F. Bouhafs, P. Kempker, B. Boltjes, and M. Seyede-
brahimi, “A pathway to solving the Wi-Fi tragedy of the commons in apartment
blocks,” in 27th International Telecommunication Networks and Applications Confer-
ence (ITNAC), pp. 1–6, November 2017.

[10] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, “On the performance of IEEE
802.11p and LTE-V2V for the cooperative awareness of connected vehicles,” IEEE
Transactions on Vehicular Technology, vol. 66, pp. 10419–10432, November 2017.

67

REFERENCES

[11] V. Prakaulya, N. Pareek, and U. Singh, “Network performance in ieee 802.11 and ieee
802.11p cluster based on vanet,” in International conference of Electronics, Communi-
cation and Aerospace Technology (ICECA), vol. 2, pp. 495–499, April 2017.

[12] R. Molina-Masegosa and J. Gozalvez, “LTE-V for Sidelink 5G V2X Vehicular Commu-
nications: A New 5G Technology for Short-Range Vehicle-to-Everything Communica-
tions,” IEEE Vehicular Technology Magazine, vol. 12, pp. 30–39, December 2017.

[13] S. h. Sun, J. l. Hu, Y. Peng, X. m. Pan, L. Zhao, and J. y. Fang, “Support for vehicle-
to-everything services based on lte,” IEEE Wireless Communications, vol. 23, pp. 4–8,
June 2016.

[14] M. Hasan and E. Hossain, “Resource allocation for network-integrated device-to-device
communications using smart relays,” in IEEE Globecom Workshops (GC Wkshps),
pp. 591–596, December 2013.

[15] 3GPP TR 36.785 (Release 14), Technical Specification Group Radio Access Network;
Vehicle to Vehicle (V2V) services based on LTE sidelink; User Equipment (UE) radio
transmission and reception., October 2016.

[16] K. Mershad, H. Artail, and M. Gerla, “Roamer: Roadside units as message routers in
vanets,” Ad Hoc Netw., vol. 10, pp. 479–496, May 2012.

[17] K. Mershad, H. Artail, and M. Gerla, “We can deliver messages to far vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, pp. 1099–1115, September
2012.

[18] R. Lu, X. Lin, H. Zhu, and X. Shen, “Spark: A new vanet-based smart parking scheme
for large parking lots,” in IEEE INFOCOM, pp. 1413–1421, April 2010.

[19] Y. Sun, X. Lin, R. Lu, X. Shen, and J. Su, “Roadside units deployment for efficient
short-time certificate updating in vanets,” in IEEE International Conference on Com-
munications, pp. 1–5, May 2010.

[20] G. M. Björklund and L. Åberg, “Driver behaviour in intersections: Formal and informal
traffic rules,” vol. 8, pp. 239–253, 05 2005.

[21] M. A. Javed and J. Y. Khan, “Performance analysis of an adaptive rate-range control
algorithm for vanet safety applications,” in International Conference on Computing,
Networking and Communications (ICNC), pp. 418–423, February 2014.

[22] M. Fogue, F. J. Martinez, P. Garrido, M. Fiore, C. F. Chiasserini, C. Casetti, J. C.
Cano, C. T. Calafate, and P. Manzoni, “Securing warning message dissemination in
vanets using cooperative neighbor position verification,” IEEE Transactions on Vehic-
ular Technology, vol. 64, no. 6, pp. 2538–2550, 2015.

[23] T. Soler and L. D. Hothem, “Coordinate systems used in geodesy: Basic definitions
and concepts,” Journal of Surveying Engineering, vol. 114, no. 2, pp. 84–97, 1988.

68 REFERENCES

REFERENCES

[24] C. M. Huang, T.-H. Lin, and K.-C. Tseng, “Bandwidth aggregation over vanet using
the geographic member-centric routing protocol (gmr),” in International Conference on
ITS Telecommunications, pp. 737–742, November 2012.

[25] Z. Liu, Y. Xiang, and W. Sun, “Geosvr: A geographic stateless vanet routing,” in IEEE
Conference Anthology, pp. 1–7, Jan 2013.

[26] K. Fujita and K. Sado, “Instantaneous speed detection with parameter identification
for ac servo systems,” in Conference Record of the IEEE Industry Applications Society
Annual Meeting, pp. 632–638 vol.1, October.

[27] Y. Khaliq, A. Qureshi, G. Abbas, and F. Zeeshan, “Calculation of cpu performance,
power and cost using hadoop,” in Sixth International Conference on Innovative Com-
puting Technology (INTECH), pp. 122–127, August 2016.

[28] R. Low, “More mips per slot (atca or not) [power management],” Communications
Engineer, vol. 3, no. 1, pp. 40–43.

[29] L. Gui-sen, R. Chen, D. bin, and Z. Shun-zhi, “A remediable broadcasting protocol
for vehicular ad hoc network,” in IEEE International Conference on Computer and
Communications (ICCC), pp. 2183–2187, October 2016.

[30] I. Rubin, Y.-Y. Lin, A. Baiocchi, F. Cuomo, and P. Salvo, “Rapid dissemination of
public safety message flows in vehicular networks,” Journal of communications, vol. 9,
no. 8, pp. 616–626, 2014.

[31] B. Wilmots, E. Hermans, T. Brijs, and G. Wets, “Speed control with and without
advanced warning sign on the field: An analysis of the effect on driving speed,” Safety
Science, vol. 85, pp. 23 – 32, 2016.

[32] H. Myler, Fundamentals of engineering programming with C and Fortran. Cambridge
New York: Cambridge University Press, 1998.

[33] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd ed., 2001.

[34] Y. Hwang, K. Yang, and K. Cheun, “Low-latency low-complexity heap-based extended
min-sum algorithms for non-binary low-density parity-check codes,” IET Communica-
tions, vol. 9, no. 9, pp. 1191–1198, 2015.

[35] L. Surhone, M. Timpledon, and S. Marseken, Shannon-Hartley Theorem. VDM Pub-
lishing, 2010.

[36] 3GPP TR 36.885 (Release 14), Technical Specification Group Radio Access Network;
Study on LTE-based V2X Services,, June 2016.

[37] P. Heino, J. Meinilä, P. Kyösti, L. Hentila, T. Jämsä, E. Suikkanen, E. Kunnari, and
M. Narandzic, “CP5-026 WINNER+ D5.3 v1.0 WINNER+ Final Channel Models,”
January 2010.

REFERENCES 69

REFERENCES

[38] V. Cristea, V. Gradinescu, C. Gorgorin, R. Diaconescu, and L. Iftode, “Simulation of
vanet applications,” Automotive Informatics and Communicative Systems, pp. 258–276,
2009.

[39] G. Sallam and A. Mahmoud, “Performance Evaluation of OLSR and AODV in VANET
Cloud Computing Using Fading Model with SUMO and NS3,” in International Con-
ference on Cloud Computing (ICCC), pp. 1–5, April 2015.

[40] S. Ibrahim, K. Choo, Z. Yan, and W. Pedrycz, “Algorithms and Architectures for
Parallel Processing: 17th International Conference, ICA3PP, Helsinki, Finland, August
21-23, 2017, Proceedings,” 2017.

[41] J. Song, Y. Wu, Z. Xu, and X. Lin, “Research on car-following model based on sumo,” in
The 7th IEEE/International Conference on Advanced Infocomm Technology, pp. 47–55,
November 2014.

[42] Y. Su, H. Cai, and J. Shi, “An improved realistic mobility model and mechanism
for vanet based on sumo and ns3 collaborative simulations,” in IEEE International
Conference on Parallel and Distributed Systems (ICPADS), pp. 900–905, December
2014.

70 REFERENCES

	Introduction
	Literature Review
	The main concept of vehicular cloud computing
	Wireless technologies
	Existing algorithms and their methodology

	System model
	Vehicles
	Speed and velocity
	Acceleration
	Performance resources
	Drivers' behaviour matrix
	Own vehicle
	Data Size
	Deadline
	Instruction set
	Priority

	Neighbour vehicles

	Assumptions

	Proposed algorithm
	Flow chart
	Algorithm's functions
	Pick function
	Inserting new task
	Taking a task from the root

	Success probability function
	Deadline filter parameter
	Driver's behaviour parameter
	Prediction parameter

	Minimal probability
	Creating a cluster
	Considering function

	Task scheduling algorithm

	Simulations
	Simulation assumptions and scenario
	Algorithms
	Performance metrics
	Simulation results
	Impacts of vehicle density
	Impacts of task size
	Impacts of task arrival rate

	Conclusion and future work

